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Abstract

We present a method for applying the Karhunen-Loève decomposition to
systems with continuous symmetry. The techniques in this paper contribute to
the general procedure of removing variables associated with the symmetry of a
problem, and related ideas have been used in previous works both to identify
coherent structures in solutions of PDEs, and to derive low-order models via
Galerkin projection. The main result of this paper is to derive a simple and
easily implementable set of reconstruction equations which close the system of
ODEs produced by Galerkin projection. The geometric interpretation of the
method closely parallels techniques used in geometric phases and reconstruction
techniques in geometric mechanics. We apply the method to the Kuramoto-
Sivashinsky equation and are able to derive accurate models of considerably
lower dimension than are possible with the traditional Karhunen-Loève expan-
sion.
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1 Introduction

KLE for Symmetric Systems. The Karhunen-Loève expansion (KLE),
also known as the proper orthogonal decomposition or the method of empirical
eigenfunctions, has been widely recognized as a useful tool both for identifying
and analyzing coherent structures in turbulent fluids, and for determining low-
order models for complex dynamical systems (see, for example, Sirovich [20]
and Holmes et al [9]). The principal idea behind the Karhunen-Loève (KL)
method is that, given an ensemble of data, one can find a basis of a given
dimension that spans that data optimally, in the L2 sense.

Much of the literature on symmetry and the KL method addresses how
to handle discrete symmetries. These discrete group considerations were first
addressed by Sirovich in [20], who suggested enlarging the dataset by symme-
try operations. These ideas were later applied by Sirovich and Park [19, 21],
who studied a Rayleigh-Bénard problem, respecting the dihedral group D2k.
Symmetrized data sets were further studied by Aubry, Lian, and Titi [2], who
showed that when the data is averaged over the symmetry group, the resulting
Galerkin system is equivariant with respect to the symmetry group. This is
important because certain dynamical features are structurally stable only in
the presence of symmetries. Berkooz and Titi [4] generalize these results to the
case of general, compact Abelian groups; for discrete groups, they also suggest a
means for computational savings, which was later demonstrated by Smaoui and
Armbruster [23] in a study of Kolmogorov flow. The complete symmetry group
for the Kolmogorov equations is the semidirect product D2k � SO(2), but the
methods in [23] focus on the discrete part D2k. Dellnitz et al [6] expand further
on these ideas, considering non-Abelian finite groups, and presenting a modi-
fication to the KL procedure which ensures that the Galerkin system retains
precisely the same symmetry as the original system, without introducing any
new symmetries.

There has also been some work on how to handle continuous symmetries
with the KL method. It is well known that for systems with periodic or trans-
lational symmetry, the optimal basis consists of Fourier modes (see [20]). In
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systems with more general continuous symmetry groups, more complicated sets
of modes can arise (see [4]), but are nevertheless determined completely by
harmonic analysis, and not from data. Such a basis normally gives no informa-
tion about coherent structures in the data, and furthermore, a reduced-order
model based on Fourier modes must typically retain many modes to adequately
capture the dynamics. The references mentioned previously treat discrete sym-
metries in an efficient way, but while recognizing the importance of continuous
symmetry groups and their limitations, they do not attempt to deal with these
limitations.

Various methods have been developed to overcome these fundamental lim-
itations of the KL method for systems with continuous symmetries. Such sys-
tems typically exhibit traveling structures, and several techniques have been
proposed to handle them, notably those in Kirby and Armbruster [12], Arm-
bruster et al [1], and Glavaški et al [7, 8]. In these works, symmetry is typically
incorporated into the expansion, using for instance traveling KL modes. Travel-
ing structures have also been considered by Cutler and Stone [5] in the context
of archetypal analysis, and by Basdevant et al [3], who present an efficient,
general method for discretizing partial differential equations (PDEs) using a
traveling wavelet basis.

In the traveling frame, the KL eigenfunctions are no longer forced to be
Fourier modes. As a result, information about coherent structures can be ob-
tained, and usually many fewer modes are required to accurately capture the
dynamics. More generally, it is expected that if one makes use of spatial and
temporal structure when applying the Karhunen-Loève technique, then one can
achieve significant computational savings. The simplest of these situations is
the efficient use of symmetry methods for continuous symmetry groups, which
is the subject of the present paper.

The Main Result of this Paper. The main result of the present paper
is the development of a simple and computationally efficient method for the re-
construction of traveling KL modes from their corresponding symmetry-reduced
modes. This result allows one to decouple the dynamics of the mode shapes from
their location and to then determine the locations by a separate integration. We
demonstrate the effectiveness of the procedure using the Kuramoto-Sivashinsky
equation.

The Karhunen-Loève Procedure. Given an ensemble of data (func-
tions of space taken at various snapshots in time), the Karhunen-Loève method
determines a basis set of orthogonal functions of space which span the data
optimally, in the L2 sense. More precisely, if u(x, t) is a function of space and
time, the KL method determines functions ϕn(x), n = 1, 2, . . . , such that the
projection onto the first N functions

û(x, t) =
N∑

n=1

an(t)ϕn(x) (1.1)

has a minimum error, defined by

E
(
‖u− û‖2

)
. (1.2)
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Here, E(·) denotes time average, and ‖ · ‖ denotes the L2 norm on functions of
space. The functions ϕn are computed by solving the integral equation∫

K(x, y)ϕ(y) dy = λϕ(x), (1.3)

where the kernel K(x, y) = E
(
u(x, t)u(y, t)

)
. The functions ϕn are called the

Karhunen-Loève eigenfunctions (also called POD modes, or empirical
eigenfunctions).

If the function u(x, t) is the solution to a PDE which has translational
symmetry, then our method considers, instead of (1.1), the expansion

û(x, t) =
N∑

n=1

an(t)ϕn(x + c(t)), (1.4)

which is just a spatial translation of (1.1) by the amount c(t). If the function u
consists of a traveling structure, for instance, this expansion can be interpreted
as viewing the data in the frame of reference of the traveling structure. If a
Galerkin projection is to be performed on the governing PDE using the new
expansion (1.4), then it is necessary to specify the evolution of the symmetry
variable c(t).

Reconstruction. The main contribution of this work may now be stated
more precisely: we provide a simple, general method for finding reconstruction
equations for the symmetry variable c(t). The terminology “reconstruction
equations” is borrowed from the geometric phase literature, as the geometric
interpretation of the method closely resembles similar techniques in that liter-
ature; see, for example, Marsden et al [15], Marsden and Ostrowski [16], and
references therein. In our work as well as in the geometric phase literature, one
of the main ideas is that one gets well defined dynamical equations on the phase
space modulo the symmetry group (these are called the reduced equations on
the reduced phase space) and the problem is then how to put back into the
dynamics the missing group, or phase variables. These additional equations are
usually called the reconstruction equations.

Outline of the Paper. First, in §2, we illustrate our method of sym-
metry reduction and reconstruction on a PDE that is equivariant under one-
dimensional translations. The geometric interpretation of the method is then
discussed in §3, and indicates how the method may be generalized to arbitrary
continuous symmetry groups. In §4, we apply the method to the Kuramoto-
Sivashinsky equation, which was studied in [12], and we derive low-order models
which capture the dynamics over parameter ranges which are poorly modeled
by the traditional methods used in [12].

2 Reduction and Reconstruction:
Translational Symmetry

First, we describe the procedure we use for determining the shift amount c(t) in
the expansion (1.4), essentially the position of the traveling structure. The shift-
ing procedure we use, called template fitting, was introduced by Kirby and
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Armbruster [12] as an algorithm for preprocessing data before performing KLE.
Template fitting was also used by Cutler and Stone [5] in the related context
of archetypal analysis.

A similar but distinct shifting procedure, called centering, was introduced
by Glavaški et al [7, 8]. This work was the first to address the dynamics of
the projected system (1.4) (i.e., the system of ODEs obtained by Galerkin
projection onto the traveling modes). In [7, 8], attention was focused on PDEs
of the form

ut + ωux = D(u) (2.1)

where D(·) is a nonlinear spatial differential operator. For this case, solutions
typically propagate with speed ω, so the shift variable c(t) was chosen to satisfy
ċ(t) = −ω. This is an example of a simple reconstruction equation; the purpose
of the present section is to develop simple reconstruction equations for more
general translation-invariant PDEs than the advection equations considered
in [7, 8].

Either template fitting or centering may be used with the reduction tech-
niques presented in this section, but here we focus on template fitting, which
generalizes, in our view, more naturally to arbitrary symmetry groups. Cen-
tering works well for some problems, but for other problems it can lead to
complicated reconstruction equations and can even fail catastrophically. We
discuss centering and its limitations in Appendix A.

2.1 Template Fitting

The strategy in template fitting is to shift the data so that at each time the
data matches up best with a preselected template. Let f : R → R be a 2π-
periodic function, so f(x) = f(x+2π) for all x. Let f0(x) be a fixed 2π-periodic
function, which will be referred to as the template. In [12], the shift amount c
is defined to be the solution to the problem

min
c

∫ 2π

0

[f(x− c) − f0(x)]2 dx, (2.2)

where the minimization is over c in the range 0 ≤ c < 2π. Note that solving (2.2)
for c is equivalent to solving

max
c

〈f(x), f0(x + c)〉 , (2.3)

where 〈· , ·〉 denotes the standard inner product on L2[0, 2π], defined by

〈f, g〉 =
∫ 2π

0

f(x)g(x) dx. (2.4)

If c solves (2.3), then assuming differentiability, we have a critical point

∂c 〈f(x), f0(x + c)〉 = 0, (2.5)

which is equivalent to

〈f(x), f ′
0(x + c)〉 = 0 i.e., 〈f(x− c), f ′

0(x)〉 = 0. (2.6)

We shall use equation (2.6) to determine the shift amount c when template fit-
ting is used. This characterization in terms of the inner product leads to a very
nice geometric interpretation of template fitting, as we will see in subsequent
sections.
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2.2 Galerkin Projection

Consider a PDE of the form

∂tu(x, t) = D(u) (2.7)

for 0 ≤ x ≤ 2π, with periodic boundary conditions and appropriate initial
conditions, where D(·) is a nonlinear spatial differential operator that is equiv-
ariant under spatial translations; i.e., for each periodic function v(·) and
each real number c,

D(Sc[v]) = Sc[D(v)],

where Sc[v](x) = v(x+c) is the shift operator on periodic functions. Consider
the function û defined by a truncated series expansion

û(x, t) =
N∑

n=1

an(t)ϕn(x) + ū(x), (2.8)

where the ϕn are known orthonormal periodic functions (for us, these will be
the Karhunen-Loève eigenfunctions), and ū is a known periodic function (for
us this will be the mean field of the shifted solution). To find an approximate
solution to equation (2.7), we consider

u(x, t) = û(x + c(t), t) (2.9)

where c(t) is a shift amount. If u(x, t) is thought of more generally as an
arbitrary set of data, this procedure can be thought of as preprocessing the
data, to get a shifted version of the data, û(x, t), and then performing KLE on
the shifted data. Inserting the expression (2.9) into the PDE gives

ût(x + c, t) + ûx(x + c, t)ċ = D(û(x + c, t)). (2.10)

Note that from (2.8), we have

ût(x, t) =
N∑

n=1

ȧn(t)ϕn(x) (2.11)

and

ûx(x, t) =
N∑

n=1

an(t)ϕ′
n(x) + ū′(x). (2.12)

Multiplying (2.10) by ϕj(x+ c), integrating from 0 to 2π, and using the equiv-
ariance of D gives

ȧj = 〈D(û), ϕj〉 − ċ 〈ûx, ϕj〉 , j = 1, . . . , N. (2.13)

This system of ordinary differential equations (ODEs) does not depend on c,
but it does depend on ċ, so to close the system we need an additional (recon-
struction) equation to determine ċ(t).
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2.3 Reconstruction Equation

If we choose a template function u0(x) and define the symmetry variable c(t)
by template fitting, as in (2.6), then c(t) satisfies

〈u(x− c, t), u′
0(x)〉 = 0. (2.14)

Differentiating with respect to t gives

〈ut(x− c, t), u′
0(x)〉 − 〈ux(x− c, t), u′

0(x)〉 ċ = 0. (2.15)

Solving for ċ, substituting u(x, t) = û(x+ c, t), and using equivariance of D, we
obtain the reconstruction equation

ċ =
〈D(û), u′

0〉
〈ûx, u′

0〉
. (2.16)

This equation may be used as a closure for the system (2.13) when template
fitting is used. An analogous equation may be obtained when centering is used
to define the shift amount, and is discussed in Appendix A.

2.4 Summary of the method.

The method consists of two main steps.

Step 1: Computing the reduced KL eigenfunctions. Given an en-
semble of data u(x, t), one first chooses a template u0(x), and applies template
fitting, forming the shifted data û(x, t) = u(x+c(t), t). Here, c(t) is determined
by applying equation (2.6) at each time t. The time average ū(x) = E(û(x, t))
is then computed, and the symmetry-reduced KL eigenfunctions ϕn are found
by computing the standard KLE for the zero-mean shifted data û(x, t) − ū(x).

Step 2: Forming the reduced model. The dynamics of û(x, t) =∑N
n=1 an(t)ϕn(x) + ū(x) is given by

ȧj = 〈D(û), ϕj〉 −
〈D(û), u′

0〉
〈ûx, u′

0〉
〈ûx, ϕj〉 , (2.17)

where j = 1, . . . , N (this equation is independent of c and ċ) and then the
solution is given (approximately for finite N and exactly as N → ∞) by
u(x, t) = û(x + c(t), t), where

c(t) =
∫ t

0

〈D(û), u′
0〉

〈ûx, u′
0〉

(s) ds. (2.18)

Note that from (2.14), û(x, t) belongs to a restricted class of functions sat-
isfying the orthogonality condition

〈û(x, t), u′
0(x)〉 = 0. (2.19)

The geometric meaning of this condition will be discussed in the following
section.
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3 Geometric Interpretation

In this section, we discuss the geometric interpretation of the above procedures,
and show how the method may be generalized to arbitrary symmetry groups.
Examples where more complicated symmetry groups arise include waves on
a surface, where the symmetry could be the special Euclidean group SE(2)
if the surface is a plane, the circle S1 if the surface is a disk, or the special
orthogonal group SO(3) if the surface is a sphere. Other interesting examples
include rotating flexible structures, such as a tumbling space station, where the
symmetry is again the rotation group SO(3).

3.1 Orthogonality Condition

In §2.2, we wrote the solution u in terms of the spatial translation of a function
û, namely u(x, t) = û(x + c(t), t). When the translation amount c(t) is defined
by (2.14) then û(x, t) satisfies the orthogonality condition

〈û, u′
0〉 = 0, (3.1)

where u0(x) is the chosen template. Since this relation holds at any time t, this
in turn implies that ū, the mean field of the shifted solution, is also orthog-
onal to u′

0, and hence each of the Karhunen-Loève eigenfunctions ϕn is also
orthogonal to u′

0.
In writing the solution u(x, t) as a group translation of û(x, t), and solving

for the dynamics of û, we have projected the solution u(x, t), which lies in the
set of all functions of space and time, onto a restricted set of functions û which
are orthogonal to u′

0.
This procedure has the following general geometric interpretation. Consider

a dynamics problem u̇ = X(u) for a dynamical variable u, lying in a space M ,
and assume that there is a continuous symmetry group G that acts on M . We
will assume that M is a linear inner product space for simplicity and that the
group action is linear. (The constructions hold more generally, but this is a
simple case that meets our present needs.) Assume that the dynamics is given
by an equivariant dynamical system on M .

In the above examples, M is the space of periodic functions, the dynamics is
given by our evolution equation (that is, X is the operator D), the inner product
is the L2 inner product and G is the group of spatial translations. Equivari-
ance just means that the equations and boundary conditions are translation
invariant.

Whenever one has equivariant dynamics on M , one gets a well defined dy-
namical system on the quotient (or orbit) space M/G which consists, in our
case, of the space in which two functions related by a translation are identified.
When M is an inner product space and the group action is by isometries, there
is a natural way to identify, at least locally in function space, the quotient space
with a subspace of M . Namely we pick a point u0 ∈ M and look at the affine
space through the point u0 orthogonal to the group orbit through that point.1

We call this affine space a slice and denote it by Su0 .
In our case, the orthogonality condition defining the space Su0 is exactly the

condition in equation (3.1). Indeed, the tangent space to the group orbit is the

1See, for example, Marsden and Ratiu [17] for an elementary discussion of these group theoretic
concepts.
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one-dimensional space (since G = R is one-dimensional) given by differentiating
the translation of the function u0 by an amount c with respect to c at the
identity, c = 0. This is, of course, just the function u′

0. The affine space Su0 is
then defined as

Su0 =
{
u0 + û

∣∣ 〈û, u′
0〉 = 0

}
(3.2)

or, equivalently,

Su0 =
{
û

∣∣ 〈û, u′
0〉 = 0

}
(3.3)

since 〈u0, u
′
0〉 = 0 (this identity holds for all periodic functions u0).

In the more general theory, assuming that the point u0 has no isotropy
(in our case this means that the function u0 is not symmetric with respect to
any nontrivial translations by amounts strictly between 0 and 2π), the map
that identifies an element of Su0 with its equivalence class in M/G is a local
diffeomorphism. One can also identify (modulo points with isotropy) M , at
least locally, with the product space M/G × G, that is, with Su0 × G. The
identification takes an element (r, g) ∈ Su0 × G and maps it to the element of
M given by the action of g on r.

One wants now to reconstruct the dynamics on M from the dynamics on
M/G and the reconstruction equation provides the missing dynamics for the
group elements. This is exactly what we are doing here.

In the reconstruction and geometric phase literature in mechanics, one often
exploits an inner product structure as well via a connection, and in that theory
the reconstruction equations have the same flavor as those we have obtained
here. In the next section, we give a reconstruction equation in a simplified
setting appropriate to our needs and give the reconstruction equation using
connections in Appendix B.

3.2 Reconstruction Equation from Slices.

The general procedure is indicated in Figure 1.
Consider a dynamical system which evolves in a space M , and which admits

a continuous symmetry group G. In particular, for u(t) ∈ M , u(t) satisfies

u̇ = X(u), (3.4)

where the differential operator X is equivariant under the action of G. (This
corresponds to the operator D in preceding sections).

To derive reconstruction equations, we begin by generalizing the orthogonal-
ity condition (3.1). The above discussion of the geometric viewpoint suggests
a natural way of generalizing this condition. We begin by choosing a point
u0 ∈ M (the template), and constructing the tangent space to the group orbit,
defined by

Tu0Orb(u0) =
{
ξM (u0)

∣∣ ξ ∈ g
}

(3.5)

where g is the Lie algebra of G, and ξM : M → TM (a vector field on M)
denotes the infinitesimal generator of the action corresponding to ξ. Then, the
slice Su0 consists of all functions r (corresponding to û previously), which are
orthogonal to this tangent space, so that

Su0 =
{
u0 + r

∣∣ 〈r, ξM (u0)〉 = 0, for all ξ ∈ g
}
. (3.6)
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u0

M/G

Su0

group shift

r(t)

u(t)

r(t)

M

projection to quotient

group orbit direction

Figure 1: The geometry of the reconstruction equation.

Now we identify the quotient space (locally in the space M) with the slice,
as explained above. In other words, we define r(t) ∈ Su0 by translating u(t)
until it hits the slice. The general theory (see also Appendix B) guarantees
that the function r inherits well defined dynamics. We verified this directly for
our example in the preceding section. The resulting quotient dynamics will be
denoted

ṙ(t) = XSu0
(r), (3.7)

(in the setting of Appendix B, this is denoted [X]). We now start with a solution
of the quotient dynamics r(t) and attempt to reconstruct the solution u(t).

To do this, we seek a group element g(t) such that u(t) = g(t)r(t) (the group
action is denoted by concatenation) satisfies the given equation (3.4). To derive
the equation for g(t), substitute u(t) = g(t)r(t) into u̇(t) = X(u(t)) to give an
equation in ṙ and ġ which we denote

ġr + gṙ = X(gr). (3.8)

(Appendix B gives a more general formula). Using (3.7) and equivariance of X
(i.e., X(gr) = gX(r)), (3.8) is equivalent to

g−1ġ · r + XSu0
(r) = X(r). (3.9)

As shown in Appendix B, the precise way to interpret this equation is as follows.
Let ξ(t) = g(t)−1ġ(t) (left translation of ġ(t) to the identity), which is a curve
in the Lie algebra g. The first term of the left hand side of (3.9) is exactly
(ξ(t))M (r(t)).
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Consider now the orthogonal projection map P : M → Su0 . The orthogonal
projection to the complement, namely Id−P, takes a vector v in M and pro-
duces a vector tangent to the group orbit through u0. We now apply Id−P to
equation (3.9). Since, by construction, (Id−P)XSu0

(r(t)) = 0, we get

(Id−P) (ξ(t) · r(t)) = (Id−P)X(r(t)), (3.10)

which may be regarded as an algebraic equation to be solved for ξ. This gives
the reconstruction equation ; denote it by

ξ = ξ(r) (3.11)

which then yields a differential equation for ġ.
The equation for the dynamics of r itself is then obtained from (3.9):

ṙ = XSu0
(r) = X(r) − ξ(r) · r. (3.12)

Special Case: One-dimensional Translational Symmetry. We
now show that the template reconstruction equation (2.16) is indeed a special
case of equation (3.10), when G is the group of one-dimensional translations or
rotations, so the Lie algebra is simply g = R.

In this case, the group actions and generators are given by

(gu)(x, t) = u(x + g, t)
(ξ · u)(x, t) = ξux(x, t)

where g ∈ G and ξ ∈ g. The slice Su0 is defined by equation (3.3), and the
orthogonal projection to the complement of the slice is given by

(Id−P) (v) =
〈v, u′

0〉
〈u′

0, u
′
0〉

u′
0.

In our case, ξ = ċ, so (3.10) becomes

ċ
〈ûx, u

′
0〉

〈u′
0, u

′
0〉

u′
0 =

〈D(û), u′
0〉

〈u′
0, u

′
0〉

u′
0,

which, after taking an inner product with u′
0, agrees with (2.16). Substituting

this equation into (3.12) gives, as before, the dynamics of û itself.

4 Application: the Kuramoto-Sivashinsky Equa-
tion

We now apply the symmetry reduction procedure described above to a sample
problem, the Kuramoto-Sivashinsky (KS) equation

ut + uux + uxx + νuxxxx = 0 (4.1)

for 0 ≤ x ≤ 2π, with periodic boundary conditions. Several versions of the KS
equation have been studied—perhaps the most common form is

vτ + 4vxxxx + α

(
vxx +

1
2
(vx)2

)
= 0, (4.2)
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which is equivalent to (4.1) with

u = vx

t = ατ

ν = 4/α.
(4.3)

The dynamics of (4.2), for a wide range of the parameter α, have been exten-
sively investigated by Hyman et al [10], and traditional KLE and Galerkin pro-
jection were applied to this form of the equation by Kirby and Armbruster [12].
One reason the form (4.2) is often preferred in the dynamics literature is that it
has greater symmetry, since (4.2) is O(2)-equivariant, while (4.1) is only SO(2)-
equivariant. However, despite the loss of symmetry, the form (4.1) has several
nice features. First, it bears closer resemblance to other model problems of
fluid dynamics, such as Burger’s equation. In addition, the spatial average

um(t) :=
∫ 2π

0

u(x, t) dx

remains constant in time, while for the form (4.2) the corresponding mean quan-
tity is not constant, and simulations of this equation typically add a correction
term to keep the mean value from growing unbounded (see, e.g., [10]).

Here, we begin by computing an accurate numerical solution to (4.1), for
several different values of the parameter ν. Details of the computation are
included in §4.1, along with the Galerkin ODEs and reconstruction equations
for the KS equation. We then apply template fitting to the data, compute the
KL eigenfunctions from the shifted data, and finally solve the low-order system,
and compare solutions of the reduced system to those of the full system.

4.1 Numerical Details

We first compute a highly accurate solution to (4.1) using a 20-mode (com-
plex) Fourier-Galerkin representation, and using a Crank-Nicholson scheme to
advance the linear terms and 2nd-order Adams-Bashforth to advance the non-
linear terms. Because of the sensitive dependence on initial conditions, all
computations were performed in double precision, and through a careful study
of convergence in space and time, we determined that 20 modes and a timestep
of 10−4 were sufficient to accurately compute a solution for the parameter values
we investigated.

We then shift the data, using template fitting, and in our examples we take
the template to be the first snapshot (i.e., u0(x) = u(x, t0)). We subsequently
subtract the mean field of the shifted data

ū(x) =
1

t1 − t0

∫ t1

t0

û(x, t) dt (4.4)

where t0 and t1 are the times of the first and last snapshots used, and then
compute the standard KL eigenfunctions ϕn(x) for the shifted, zero-mean data.
Because the computational data is given in terms of Fourier modes, the KL
eigenfunctions are also computed in terms of their Fourier coefficients, using
the method of snapshots (see, e.g., Sirovich [20]).

Once we have the spatial modes ϕn(x), we may apply the Galerkin projec-
tion discussed in §2.2. Taking

D(u) = −uux − uxx − νuxxxx (4.5)
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and writing u as the Karhunen-Loève expansion

u(x, t) =
N∑

n=1

an(t)ϕn(x + c(t)) + ū(x + c(t)), (4.6)

the Galerkin projection of §2.2 yields the system of ODEs

ȧk = −
N∑

m,n=1

bkmnaman −
N∑

n=1

cknan − dk −
N∑

n=1

eknanċ− fk ċ (4.7)

for k = 1, . . . , N , where

bkmn = 〈ϕnϕ
′
m, ϕk〉 ekn = 〈ϕ′

n, ϕk〉
ckn = 〈ūϕ′

n + ū′ϕn + ϕ′′
n + νϕ′′′′

n , ϕk〉 fk = 〈ū′, ϕk〉
dk = 〈ūū′ + ū′′ + νū′′′′, ϕk〉

are constants which may be computed before solving (4.7). The derivatives in
these coefficients may be computed exactly (without finite differencing), since
the KL modes, mean field, and template are all known in terms of their Fourier
coefficients. To close this system, we use the reconstruction equation (2.16),
which takes the form

ċ = −
(

N∑
m,n=1

pmnaman +
N∑

n=1

qnan + r

)/ (
N∑

n=1

snan + t

)
(4.8)

where

pmn = 〈ϕnϕ
′
m, u′

0〉 sn = 〈ϕ′
n, u

′
0〉

qn = 〈ūϕ′
n + ū′ϕn + ϕ′′

n + νϕ′′′′
n , u′

0〉 t = 〈ū′, u′
0〉

r = 〈ūū′ + ū′′ + νū′′′′, u′
0〉 .

We solve this reduced system using a 4–5th order variable-timestep Runge-
Kutta method, with an error tolerance of 10−6, and compare the solution of
the reduced system to the solution of the full system, obtained from the 20-
complex-mode Fourier-Galerkin procedure.

4.2 Full Simulations and Template Fitting

We study numerical solutions of the KS equation for two different values of the
parameter: α = 84.25 and α = 87, where ν = 4/α is the parameter in (4.1).
This regime has been studied extensively in [10], and low-order models were
derived in [12]. For 72 < α < 89 there exists a strange2 fixed point which is
globally attracting. Solutions in the vicinity of the fixed point consist of beating
waves, which are stationary for α < 86 and traveling for α > 86.

Figure 2 shows the a contour plot of the beating wave for α = 84.25. The
contour levels for all plots are between −10 and 10, equally spaced at intervals
of 5.0. Also shown is the solution after template fitting has been performed (i.e.,
the left plot shows u(x, t), and the right plot shows û(x, t) = u(x − c, t)). As
stated earlier, in all cases the template u0 was chosen to be the first snapshot.

2As coined in [10], this fixed point is called “strange” because it is not a cellular state, and has
a broad Fourier spectrum. This should not be confused with the notion of a strange (i.e., chaotic)
attractor encountered in nonlinear ODEs.
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Figure 2: Contour plot of solution of full simulation, for α = 84.25; same solution,
after template fitting.

Figure 3 shows the solution before and after template fitting, for α = 87.
Note that the beating wave is now traveling in space, and the template fitting
removes this translation. The initial condition for all runs is the same as that
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Figure 3: Contour plot of solution of full simulation, for α = 87; same solution, after
template fitting.

used in [12]:

u(x, 0) = − sin(x) + 2 cos(2x) + 3 cos(3x) − 4 sin(4x)

and the transient solution is computed until t = 120, by which time a relative
equilibrium has been reached. Solutions were computed from t = 120 to t =
140, but for clarity, figures 2 and 3 show the solution only to t = 130.

4.3 Reduced-order Simulations

Karhunen-Loève modes were determined from the above data by taking 400
snapshots between t = 120 and t = 140. The reduced equations (4.7) and (4.8)
were then computed and solved, keeping various numbers of modes. We found
that keeping 3 modes was sufficient to capture the qualitative behavior for either
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parameter value. When 4 or more modes are used, the solution of the reduced
system is virtually indistinguishable from the solution of the full simulation.

Recall that without the symmetry reduction methods discussed here, the
optimal modes are Fourier modes. If Fourier modes are used, 8 complex modes
(or 16 real modes) are required to capture qualitatively correct dynamics, for
either value of α shown here. (When fewer than 8 Fourier modes are used, either
the oscillations die out completely, or the solution blows up.) Figures 4 and 5
show the 3-mode solution of the reduced equations along with the solution from
the 8-mode (complex) Fourier-Galerkin simulation.

We remark that in Kirby and Armbruster [12], a 3-mode model was obtained
for a regime where solutions do not travel (α = 72), but no low-order models
were attempted for α = 87, where the beating wave is traveling. Also, in our
simulations of the reduced system we experienced none of the stability problems
reported in [12].
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Figure 4: Contour plot of solution of 3-mode KL Galerkin system, for α = 84.25;
solution of corresponding 8-mode (complex) Fourier-Galerkin system.
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Figure 5: Contour plot of solution of 3-mode KL Galerkin system, for α = 87;
solution of corresponding 8-mode (complex) Fourier-Galerkin system.
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5 Discussion

We have presented a technique for combining symmetry reduction techniques
with the Karhunen-Loève method. The main result has been to derive recon-
struction equations which specify the evolution of the symmetry variable c(t).
For the simple case of one-dimensional translational symmetry, the reconstruc-
tion equation is particularly simple, and we have generalized our approach to an
abstract setting, which applies to a large class of continuous symmetry groups.

We applied the method to the Kuramoto-Sivashinsky equation, and were
able to derive models of much lower order than were previously possible. Our
method is particularly effective when solutions are traveling waves, in which case
the standard KLE gives Fourier modes. For the example shown, the standard
method requires at least 8 complex Fourier modes (16 degrees of freedom) to
capture qualitatively correct dynamics, while our method requires only 3 modes.

In recent years, there have been significant developments in incorporating
symmetry into the KLE, mostly focusing on discrete symmetry groups (e.g.,
Aubry et al [2], Smaoui and Armbruster [23]). The method presented in this
paper for continuous groups nicely complements these methods for discrete
groups, and in fact may permit them to be used even more effectively on prob-
lems with both continuous and discrete symmetry.

Another structure that is important to take into account in some situa-
tions is the mechanical structure. For elastic systems this structure is used in
Lall et al [13]; similar things should also be of interest in fluid mechanics. It
would be natural to extend the reduction procedures here to similar ones for
mechanical systems that exploit both reduction theory for mechanical systems
and variational symplectic integration methods such as the Newmark algorithm
(see [18] and [11] for the current state of affairs in these subjects and for further
references).
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Dieter Armbruster, Larry Sirovich, and Emily Stone for their interest and in-
sightful comments on the problem considered in this work. This work was par-
tially supported by NSF grant KDI/ATM-9873133 and NSF/DARPA/Opaal
grant DMS-9874082.
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A Centering: an alternative shifting procedure

This appendix discusses centering, a shifting procedure which may be used in
place of template fitting. The method was introduced in [7, 8], where it was
applied to models of rotating stall cells in compressors.

We define a center of a 2π-periodic function f(x) to be a value of c ∈ [0, 2π)
that satisfies ∫ π

0

[f(x− c)]2 dx =
∫ 2π

π

[f(x− c)]2 dx. (A.1)

This definition of the center does not correspond to the definition of center
in [7, 8], but corresponds rather to the final shift value reached after applying
the iteration described in [7, 8].3 If c satisfies (A.1), we say that the new
function fc(x) = f(x− c) is centered.

A.1 Reconstruction equation: centering

Consider the translationally invariant PDE u̇ = D(u), as before, and now define
c(t) such that ∫ π

0

[u(x− c, t)]2 dx =
∫ 2π

π

[u(x− c, t)]2 dx (A.2)

for all t. Differentiate this relation with respect to t, to give∫ π

0

2u(x− c, t)
(
ut(x− c, t) − ux(x− c, t)ċ

)
dx

=
∫ 2π

π

2u(x− c, t)
(
ut(x− c, t) − ux(x− c, t)ċ

)
dx. (A.3)

Letting û(x, t) = u(x−c, t) and noting that ux(x, t) = ûx(x+c, t) and ut(x, t) =
D(u(x, t)), this becomes∫ π

0

û ·
(
D(û) − ûxċ

)
dx =

∫ 2π

π

û ·
(
D(û) − ûxċ

)
dx, (A.4)

where we have used equivariance of D. Solving for ċ, we have

ċ =

∫ π

0

ûD(û) dx−
∫ 2π

π

ûD(û) dx∫ π

0

ûûx dx−
∫ 2π

π

ûûx dx

. (A.5)

This equation, which we refer to as the centering reconstruction equation,
may be used as a closure for the system (2.13), when c(t) is determined by
centering (i.e., defined by (A.2)). Defining the centering bilinear functional
〈〈·, ·〉〉c : L2 × L2 → R by

〈〈f, g〉〉c =
∫ π

0

f(x)g(x) dx−
∫ 2π

π

f(x)g(x) dx, (A.6)

3The center c defined in [7, 8] satisfies
∫ c

0
|f |2 dx =

∫ 2π

c
|f |2 dx. One then sets up an iteration

procedure to produce a shift d which corresponds to our c.
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we may rewrite (A.5) in the concise form

ċ =
〈〈D(û), û〉〉c
〈〈ûx, û〉〉c

(A.7)

which closely resembles the form of the template-fitting reconstruction equa-
tion (2.16).

Note that when u(x, t) = û(x + c, t) and c(t) is determined by centering,
then û(x, t) belongs to a restricted class of “centered” functions satisfying

〈〈û, û〉〉c = 0, i.e.,
∫ π

0

[û(x, t)]2 dx =
∫ 2π

π

[û(x, t)]2 dx (A.8)

for all t. This space of centered functions is the analog of the slice Su0 , defined
in §3.1 for the template-fitting reduction procedure.

A.2 Limitations

Centering works well for many problems, but for certain problems the method
can fail catastrophically. The problem is that the derivation of the reconstruc-
tion equation in the previous section requires that the shift amount c(t) is
differentiable. When centering is used to define c(t), this amount can change
discontinuously, even when the solution u(x, t) varies smoothly in time. We
illustrate this process with the following example.

Consider the solution of the KS equation, for α = 84.25, as discussed in §4.2.
Part of the solution is plotted in Figure 6, both before and after centering is
applied (i.e., the left plot shows u(x, t), and the right plot shows û(x, t) = u(x+
c, t), where c(t) is given by (A.2)). As the beating wave oscillates, the center
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Figure 6: Contour plot of solution of full simulation, for α = 84.25; same solution,
after centering—catastrophic failure.

location jumps back and forth discontinuously. This jumping is an inherent flaw
in the method, and not dependent on the algorithm which finds the (possibly
nonunique) location of the center, as we now show.

For a given function u(x, t), possible center locations (i.e., solutions of (A.2))
correspond to zeros of the function

Ft(c) = 〈〈u(x− c, t), u(x− c, t)〉〉c .
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Note that Ft(c + π) = −Ft(c) for all c, so we need only search for zeros in the
range 0 ≤ c < π. Figure 7 shows the function Ft(c) at several different times,
for the solution u plotted in Figure 6.

0 0.2 0.4 0.6 0.8 1
-5

0

5

c/π

F(
c)

,  
 t=

12
0.

00

0 0.2 0.4 0.6 0.8 1
-5

0

5

c/π

F(
c)

,  
 t=

12
0.

05
0 0.2 0.4 0.6 0.8 1

-5

0

5

c/π

F(
c)

,  
 t=

12
0.

10

0 0.2 0.4 0.6 0.8 1
-5

0

5

F(
c)

,  
 t=

12
0.

30
c/π

Figure 7: Plot of Ft(c) at four different times (t = 120.00, 120.05, 120.10,
and 120.30). Note how zeros of Ft(c) must change discontinuously as t varies.

There is a unique solution of Ft(c) = 0 for c at the initial time. At the next
time shown in Figure 7, multiple solutions arise, but we may still follow the
original solution. At the third time, the original solution disappears, and we
are forced to jump discontinuously to a new (unique) root. At the final time
shown, multiple roots arise once again, and the process repeats itself.

It is possible that this difficulty may arise with template fitting as well—in
fact, a straightforward application of the implicit function theorem shows that
this jumping is possible with template fitting at points v ∈ Su0 where the group
orbit Orb(v) is tangent to the slice Su0 . (In the one-dimensional example, for
instance, this is when the denominator in the reconstruction equation (2.16)
becomes zero). Locally, in a neighborhood of the template u0, this situation is
guaranteed not to occur, as long as the action is locally free. However, if the
dynamics carry the solution far from the template, this difficulty may arise. In
this case, one might choose a new template near the new dynamics, and treat
the different slices as local coordinate charts for the quotient space M/G.

B The General Reconstruction Equation

In this appendix we give an alternative abstract reconstruction equation in
the setting of general dynamical systems with symmetry. When one has the
additional structure of a mechanical system with conservation laws one can
refine this procedure by taking the conservation law into account. See, for
example, [15] and [18] for this theory.
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B.1 Equivariant Dynamical Systems

The general theory starts with a manifold M with the (left) action of a Lie
group G. The Lie algebra of G is denoted g. We denote the action of a group
element g ∈ G on a point u ∈ M by Φg(u) = g · u. We consider an equivariant
dynamical system u̇ = X(u) on M . We assume that the action of G is free
and proper so that the quotient or orbit space M/G is a smooth manifold.
We denote the projection to the quotient by π : M → M/G; u �→ [u], where
[u] = {g · u | g ∈ G} denotes the equivalence class of u.

Choosing a representative u of the class [u], the tangent space to M/G at
a point [u] is isomorphic to the quotient space TuM/(ξ · u). Here, ξ · u =
{ξM (u) | ξ ∈ g} is the tangent space to the group orbit through the point u,
where ξM (u) denotes the infinitesimal generator of the group action associated
with the Lie algebra element ξ ∈ g. The isomorphism mentioned is induced by
the tangent to the projection map: Tπ : TM → T (M/G).

Because the vector field X is equivariant, it induces a vector field [X] on
the quotient space with the property that [X]([u]) = Tuπ ·X(u) for all u ∈ M .
The flow ϕt of [X] is related to the flow Ft of X by π ◦ Ft = ϕt ◦ π.

B.2 Reconstruction

The reconstruction problem is the following. Given an integral curve [u](t) =
ϕt([u](0)) of the quotient dynamics and a point u0 such that [u0] = [u](0),
determine the solution u(t) with initial condition u0.

Connections. To carry this out we need some additional structure, namely
that of a connection. Recall that a (principal) connection is a Lie algebra valued
one form A : TM → g with the following properties:

1. A(ξM (u)) = ξ for all ξ ∈ g and u ∈ M ,

2. A is equivariant (with respect to the given action on M and the adjoint
action on g); that is, for a tangent vector vu ∈ TuM ,

A(g · vu) = Adg (A(vu)) ,

where g · vu denotes the tangent action of G on TM ,

3. The horizontal space Horu = kerA|TuM is a complement to the vertical
space ξ · u.

Given a connection, one has a horizontal and vertical decomposition of any
vector vu ∈ TuM as follows:

vu = Veru(vu) + Horu(vu)

where Veru(vu) = (A(vu))M (u) and Horu(vu) = vu − Veru(vu).
If one has an equivariant distribution of horizontal spaces, then these prop-

erties uniquely determine a connection.
For example, if we can write M = S × G and the group action is by left

translation on the second factor alone, then a connection is given by declaring
the first factor to be horizontal and the second factor to be vertical.
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The Reconstruction Equation. The reconstruction equation is based
on a general formula for the derivative of a curve of the form u(t) = g(t) · z(t)
where g(t) is a curve in G and z(t) is a curve in M . This formula is the following:

u̇(t) =
(
Adg(t) ξ(t)

)
M

(u(t)) + g(t) · ż(t)
= g(t) · [(ξ(t))M (z(t)) + ż(t)] ,

where ξ(t) = g(t)−1 · ġ(t) is a curve in the Lie algebra. This formula is proved
in, for example, [17].

Given the integral curve [u](t) of [X] in M/G, we choose a convenient curve
ũ(t) with the property that [ũ(t)] = [u](t) and ũ(0) = u0. We then write our
solution in the form u(t) = g(t)ũ(t). By the preceding display, we can write

u̇(t) = g(t) ·
[
(ξ(t))M (ũ(t)) + ˙̃u(t)

]
.

We now use the fact that u(t) should be an integral curve of X and the fact
that X is equivariant to get

X(ũ(t)) = (ξ(t))M (ũ(t)) + ˙̃u(t).

Apply the connection to both sides of this equation:

A (X(ũ(t))) = ξ(t) + A
( ˙̃u(t)

)
.

Solving for ξ gives the desired reconstruction equation :

g(t)−1 · ġ(t) = A
(
X(ũ(t) − ˙̃u(t))

)
, (B.1)

which we regard as a differential equation for the unknown curve g(t) to be
solved with the initial condition g(0) = Id. With this solution, the desired
integral curve of X is given by u(t) = g(t) · ũ(t).

The technique we used in the text to derive the reconstruction equation
on slices is not literally a special case of the geometric version given here, but
it proceeds in the same spirit. To illuminate the similarities and distinctions
between the two approaches, we now write the reconstruction equation (B.1)
where G is the group of one-dimensional translations.

Special Case: One-dimensional Translational Symmetry. We
begin by constructing the principal connection A, assuming the additional
structure of a Riemannian metric 〈〈·, ·〉〉 on M . The procedure we follow is
a standard procedure for constructing the mechanical connection, as described
in [14].

First, for each u ∈ M , we define the locked inertia tensor I(u) : g → g∗

by

〈I(u)ξ, η〉 = 〈〈ξM (u), ηM (u)〉〉 ,

where 〈·, ·〉 denotes the natural pairing. In our case, ξM (u) = ξu′ and the
natural pairing is just scalar multiplication, so I(u) = 〈〈u′, u′〉〉.

Next, we define the momentum map J : TM → g∗ by

〈J(vu), ξ〉 = 〈〈vu, ξM (u)〉〉 ,

which in our case is just J(vu) = 〈〈vu, u
′〉〉.
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Finally, the connection A : TQ → g is given by

A(vu) = I(u)−1 · J(vu),

which for translational symmetry is simply

A(vu) =
〈〈vu, u

′〉〉
〈〈u′, u′〉〉 . (B.2)

It is simple to verify that A satisfies the three properties of a principal connec-
tion.

For translational symmetry, g(t)−1 · ġ(t) = ġ(t), and so the reconstruction
equation (B.1) becomes

ġ(t) =

〈〈
X(ũ) − ˙̃u, ũ′〉〉
〈〈ũ′, ũ′〉〉 . (B.3)

A natural way to specify the (arbitrary) choice of ũ is that it be horizontal (i.e.,
˙̃u(t) ∈ Horũ(t) for all t). The previous equation then becomes

ġ(t) =
〈〈X(ũ), ũ′〉〉
〈〈ũ′, ũ′〉〉 , (B.4)

which is identical to the reconstruction equation on slices (2.16), if the (now
time-varying) template u0 is the solution itself, û(t).

Application to the KL method. As described in the summary in §2.4,
there are two distinct steps in applying these symmetry methods to the KL pro-
cedure. The first step involves computing the KL eigenfunctions for symmetry-
reduced space, by first shifting data by the group action, and then performing
the standard KLE. The second step involves constructing the reduced-order
model, and this is where the reconstruction equation is needed.

The reconstruction procedures given in this appendix address only the sec-
ond part of the KL method. They allow one to construct a Galerkin model of a
PDE, provided the KL eigenfunctions are already specified. They do not, how-
ever, indicate how to construct the KL eigenfunctions in the symmetry-reduced
space. To accomplish this, one needs a shifting procedure, such as template
fitting, or its generalization, shifting onto slices, described in §3.2.
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Supplement: Reconstruction equation for solitons

in the Korteveg-de Vries equation

Clancy Rowley

March 13, 2001

We show that the reconstruction equation given in [2] correctly recovers
the speed of solitons in the Korteveg-de Vries equation (KdV), regardless of
the choice of template used for template fitting.

Solitons in KdV

The Korteveg-de Vries equation is given by

ut + 6uux + uxxx = 0 (1)

(see, e.g., [1]) and admits soliton solutions of the form u = ϕ(x− ct). Sub-
stituting into (1), we see these solutions must satisfy

−cϕ′ + 6ϕϕ′ + ϕ′′′ = 0. (2)

The method of [2] expresses a shifted version of the solution as

û(x, t) = u(x− α(t), t) (3)

where the shift amount α(t) satisfies a reconstruction equation

α̇ =
〈D(û), u′0〉
〈ûx, u′0〉

, (4)

where D(u) = −6uux− uxxx, and u0(x) is a template function, chosen arbi-
trarily. We wish to see under what conditions the reconstruction equation
correctly recovers the shift amount α(t) = −ct, so that u(x, t) = û(x− ct, t)
and û(x, t) = ϕ(x).

For the soliton solution u = ϕ(x− ct), we have

û(x, t) = u(x− α(t), t) = ϕ(x− α(t)− ct) = Sα+ct[ϕ](x) (5)

1



where Sa[v](x) = v(x− a) is the shift operator on periodic functions. Hence

D(û) = −6ûûx − ûxxx
= Sα+ct[−6ϕϕ′ − ϕ′′′]
= Sα+ct[−cϕ′]

by (2), so the reconstruction equation gives

α̇ =
〈−cSα+ct[ϕ′], u′0〉
〈Sα+ct[ϕ′], u′0〉

= −c (6)

as long as 〈Sα+ct[ϕ′], u′0〉 �= 0. Hence α(t) = −ct, independent of the tem-
plate u0, as desired.

General traveling waves

More generally, if a PDE given by u̇ = D(u) admits traveling wave solutions
u = ϕ(x−f(t)), and D is equivariant under translations, then ϕ must satisfy

−ḟϕ′ = D(ϕ). (7)

Again defining û(x, t) = u(x−α(t)) = Sα+f [ϕ](x), the reconstruction equa-
tion becomes

α̇ =
〈D(û), u′0〉
〈ûx, u′0〉

=
〈Sα+f [D(ϕ)], u′0〉
〈Sα+f [ϕ′], u′0〉

=

〈
Sα+f [−ḟϕ′], u′0

〉

〈Sα+f [ϕ′], u′0〉
= −ḟ , (8)

where the second equality holds by equivariance of D, and the third by (7).
Integrating, we have α(t) = −f(t), once again recovering the correct position
of the traveling wave.
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