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Abstract

This dissertation deals with reduction of two classes of dynamical systems in
order to make them suitable for control design using linear systems theory. The first
class consists of the large-dimensional systems governing fluid flows, for which we
employ dimension reduction techniques for stabilization of unstable steady states.
The second class consists of systems with a continuous symmetry, for which we use
a template-based symmetry reduction method for stabilization of unstable relative
equilibria.

Model reduction has opened the world of linear control techniques to flow con-
trol. Linear control methods involve large matrix computations and are limited to
dimensions of O(102−4), while discretized fluid equations are typically of O(105−8),
making model reduction essential. A method that has been shown to accurately
capture dynamics is the snapshot-based approximate balanced truncation, in which
the governing equations (linearized about a steady state) are projected onto a
small number (typically ≤ 100) of dynamically important modes. The reduced
models obtained using this method accurately capture the input-output (actuation
to sensing) behavior. However, a limitation is that this method is restricted to
systems linearized about stable steady states. In this work, we extend its applica-
bility to unstable steady states, assuming a small number of unstable modes. The
unstable dynamics is treated exactly while the (large dimensional) stable dynamics
is modeled. We show a theoretical equivalence between approximate balanced
truncation and an experimental system identification technique called eigensystem
realization algorithm (ERA). We extend ERA to simulations and obtain an order-
of-magnitude cost reduction over balanced truncation.

With the motivation of designing micro-air vehicles inspired by bird flight, the
reduction techniques are applied to a model problem of the 2D flow past a flat plate
at a low Reynolds number and a large angle of attack. The natural (uncontrolled)
flow is periodic vortex shedding, though there also exists an unstable steady state
that we seek to stabilize. The control actuation is modeled using a localized
body-force actuator close to either the leading or the trailing edge of the plate
and velocities are measured at two near-wake sensor locations. We obtain reduced
models of the input-output dynamics linearized about the unstable steady state and
provide time and frequency domain comparisons to show that 20-30 order models
accurately capture the full system dynamics. We develop sensor-based feedback
controllers and include them in the full nonlinear simulations. Even though the
models are valid in a local neighborhood of the steady state, we show that they
are even capable of suppressing the periodic vortex shedding, which is a nonlinear
phenomenon.

We also consider systems with a continuous symmetry and use a template-based
approach to reduce the equations to a frame in which the symmetry is factored out.
Relative equilibria are steady states in the symmetry-reduced frame; an example is
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traveling waves in systems with periodic boundary conditions. The control goal is to
stabilize unstable relative equilibria and the control design is based on linearization
of the reduced equations about these steady states. A systematic reconstruction
procedure to obtain the form of the controller in the original coordinates is provided.
The key feature of the design is that the controlled system retains the symmetry of
the original system. The control is demonstrated using various examples, including
stabilization of unstable traveling waves in the 1D Kuramoto-Sivashinsky equation.
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Chapter 1

Introduction

The theme that runs throughout this dissertation is that of employing reduction with
the goal of stabilization of certain features using feedback control. In particular,
we consider two types of systems. The first one involves fluid flows that often
exhibit simple low-dimensional behavior, even though the governing equations are
the infinite-dimensional Navier-Stokes equations. For such systems, we employ
dimension reduction techniques to obtain reduced models. The second class of
systems consists of those endowed with a continuous symmetry, for which we employ
symmetry reduction techniques to stabilize relative equilibria.

1.1 Dimension reduction for flow control

Many fluid flows in nature appear low-dimensional to the eye, and often are char-
acterized by coherent structures. However, they are mathematically described by
the Navier-Stokes equations, which in numerical computations lead to extremely
large sets of equations, typically O(105−8) and sometimes even higher. Flow control
is important for many applications, such as drag reduction in aircraft, enhanced
mixing for efficient combustion or air-conditioning, quieter vehicles, and many
others. The tools for control design from systems theory are however limited
to systems of much lower dimension, up to O(103−4). The main reason for this
limitation is that many of these control theoretic techniques require solutions of
matrix equalities or inequalities, where the matrices involved are full and of the same
dimension as the state. For instance, for a scalar variable discretization with n = 105

grid points, the storage of an n2-matrix itself requires 74 Gigabytes, and the cost
scales as n3 for computations such as matrix inversion or solution of Lyapunov or
Riccati equations or inequalities. Dimension reduction techniques seek to exploit
the simplicity of fluid flows in order to obtain reduced yet accurate models for which
the control tools are applicable.
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Proper orthogonal decomposition. Extensive research effort in model reduc-
tion has focused on the method of proper orthogonal decomposition (POD) and
Galerkin projection, introduced to fluid mechanical systems by Lorenz (1956) in
the context of statistical weather prediction and later by Lumley (1970) in the
context of identifying coherent structures in turbulent flows. The method captures
the energetically dominant features of fluid flows (Holmes et al., 1996) and has been
widely used to achieve better understanding of complex flow physics. In one of the
earliest applications, Corke et al. (1994) used a POD-based model to guide control
experiments on an axisymmetric jet. Lumley & Blossey (1998) used the method for
active control of turbulent boundary layers in order to reduce the drag by building
on their prior experience with design of controllers for reduced models (Coller, 1995).
Ravindran (2000) developed optimal control strategies for reducing the recirculation
bubble length in the flow behind a backward facing step; two different actuation
mechanisms, using moving walls and mass blowing through the boundary were
considered. Other applications of POD-based methods for flow control include bluff-
body wake suppression (Graham et al., 1999a; Noack et al., 2004; Tadmor et al.,
2007; Siegel et al., 2008) and noise reduction in cavity flow (Rowley & Juttijudata,
2005; Gloerfelt, 2008).

The main limitation of POD is that, although the resulting modes are energet-
ically optimal, the reduced models obtained by subsequent Galerkin projection of
the governing equations do not always represent the dynamics accurately. Further-
more, POD does not account for the control actuation and sensing, which can be
important for good performance; for example, Prabhu et al. (2001) explored the
effect of wall-based control on turbulent channel flow and showed that a POD basis
obtained from the uncontrolled case grossly under-predicts the Reynolds stress of
the controlled flow. Various modifications to improve upon POD-based models
have been proposed; refer to the introduction of Siegel et al. (2008) for a review of
these techniques. Graham et al. (1999a,b) devised strategies to incorporate control
action in the reduced models and developed optimal controllers for flow past a
cylinder actuated by the cylinder rotation. Noack et al. (2003) included a shift
mode, representing a mean-field correction, and global eigenmodes to the POD
basis and obtained significant improvement of the transient dynamics in flow past
a cylinder, while Luchtenburg et al. (2009) used shift modes to develop mean-
field POD models of a periodically actuated flow past an airfoil that captured the
transients between actuated and unactuated regimes. Siegel et al. (2008) developed
a double POD method to account for the changes in the spatial structure of the
POD modes during transients, and used an artificial neural network based approach
to obtain reduced models.

Balanced truncation. A model reduction technique that has attracted consid-
erable interest recently is the approximate balanced truncation method developed
by Rowley (2005), also called balanced POD. As the name suggests, the method is
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an approximation to the balanced truncation method of Moore (1981), which is a
control theoretic method to obtain reduced models of linear, stable, time-invariant,
state-space systems. Balanced truncation accounts for the effects of both actuation
and sensing, and results in models that capture the input-output dynamics of the
full system within a-priori error bounds. However, like many control theoretic tools,
this technique becomes intractable for large-dimensional systems. The approximate
method of Rowley (2005) overcomes this drawback by adopting ideas from POD
to develop a computationally tractable algorithm. The method has been used to
obtain models of linearized channel flow by Ilak & Rowley (2008) and to control
boundary layers for drag reduction by Bagheri et al. (2009a), and has been shown
to accurately capture control actuation and also to outperform the POD/Galerkin
models.

In contrast to the POD/Galerkin approach, which results in models of full
nonlinear equations, the approximate balanced truncation method results in models
only of linearized equations. Although it appears to be a disadvantage, it was argued
in the review by Kim & Bewley (2007), that for developing control strategies, it is
often sufficient to use linearized models that accurately capture the effects of inputs
and outputs of the system.

The balanced truncation method of Moore (1981) is applicable only to systems
linearized about stable steady states. An extension to unstable linear systems was
proposed by Zhou et al. (1999), by introducing frequency-domain definitions of
controllability and observability Gramians. Reduced-order models were obtained
by first decoupling the dynamics on the stable and unstable subspaces, and then
truncating the relatively uncontrollable and unobservable modes on each of the two
subspaces. In this work, we build upon the techniques of Rowley (2005) and Zhou
et al. (1999) to develop a systematic algorithm for modeling unstable systems. The
dynamics on the unstable subspace is treated exactly by a projection onto the
global eigenmodes, while the dynamics on the stable subspace is modeled using
the algorithm developed by Rowley (2005).

Eigensystem realization algorithm. The approximate balanced truncation al-
gorithm involves post-processing data from linear and adjoint impulse-response
simulations to compute reduced models. The adjoint simulations are not physical,
which limits the method to computations only. In this work, we establish equiva-
lence between this method and eigensystem realization algorithm (ERA), a system
identification technique developed by Juang & Pappa (1985). The equivalence allows
two significant advances over the original method. First, ERA does not require
adjoint simulations and thus can be used in experiments. Second, when adapted to
simulations, ERA results in an order-of-magnitude reduction in computational cost
over approximate balanced truncation. ERA has been used previously for model
reduction of fluids: Gaitonde & Jones (2003) developed models of airfoils with small
amplitude heaving and pitching as inputs; Silva & Bartels (2004) developed models
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of unsteady aerodynamics and combined it with a structural model for aeroelastic
analysis and flutter prediction in 3D wings; Cattafesta et al. (1997) used the method
to obtain models for lift enhancement in flow over airfoils, while Cabell et al. (2006)
developed controllers to reduce tones generated by flow over a cavity.

1.1.1 Control of flow past 2-D wings

As a proof-of-concept study, the modeling procedure developed in this work is
applied to the problem of two dimensional low-Reynolds-number flow past a flat
plate at a large angle of attack. We develop reduced-order models and design
controllers that stabilize the unstable steady states of this flow. The motivation
for the choice of this problem comes from our interest in regulating vortices in
separated flows behind low aspect-ratio wings, which is of importance in design
of micro air vehicles (MAVs). Recently, design of MAVs has been inspired from
experimental observations in insect and bird flights of a stabilizing leading edge
vortex (Birch & Dickinson, 2001; Ellington et al., 1996), which remains attached
throughout the wing stroke and provides enhanced lift. So, it could be beneficial to
design controllers that can manipulate the wake of MAVs to enhance lift and achieve
better maneuverability in presence of wind gusts. Recent studies in this direction,
using open-loop control of the flow past low-aspect-ratio wings using steady or
periodic blowing, were performed computationally by Taira & Colonius (2009a)
and experimentally by Williams et al. (2008). These studies explored different
forcing amplitudes and frequencies, locations and directions. However, the design
of feedback controllers remains a challenge, due to the large dimensionality of the
problem and the complex flow physics. We present computational tools that we
hope can at least pave a direction and provide techniques towards addressing some
of these challenges.

Much of the previous research in this area has focused on the control of flow past
a cylinder, which is qualitatively similar to the flow past a flat plate at large angle of
attack, with the natural flow in both the cases being periodic vortex shedding. The
flow past a cylinder undergoes a transition from steady state to periodic shedding
with increasing Reynolds number, while a similar transition occurs in the flow past
a flat plate with increasing angle of attack. There has been considerable research
effort on suppression of this shedding in cylinder and other bluff body wakes, using
passive and active, open-loop and feedback control, as reviewed by Choi et al.
(2008). Among those, some techniques are based on reduced-order models; for
instance, Gillies (1998) developed models using artificial neural networks and a POD
basis, Graham et al. (1999a) modified the POD/Galerkin method to account for
actuation by means of cylinder-rotation, while Siegel et al. (2008) developed a double
POD method to account for changes in the wake structure during transients. Some
earlier efforts in the control of a flat-plate wake include those by Cortelezzi (1996),
Cortelezzi et al. (1997) who used vortex-based methods to model the flow past a
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vertical plate (angle of attack = 90◦); vortex-based models form their own class
of modeling techniques reviewed recently by Protas (2008). Lagrangian coherent
structures were used by Wang et al. (2003) to enhance mixing in flow past a bluff
body with the trailing surface similar to the vertical flat plate. One of the few
efforts towards control of flat plate at an angle of incidence was by Zannetti & Iollo
(2003), who used a passive leading-edge suction control along with a potential flow
vortex model. Pastoor et al. (2008) also used reduced-order vortex models for drag
reduction on an elongated D-shaped bluff body.

In this work, we consider the two-dimensional flow past a flat plate, actuated by
a localized body force close to either the leading or the trailing edge, with two near-
wake velocity sensors. We design reduced-order models of the flow linearized about
an unstable steady state at a large angle of attack, using approximate balanced
truncation and ERA. We use these models to develop a reduced-order compensator
and, even though the models are linear, we show that the resulting controller is able
to suppress vortex shedding, which is a consequence of nonlinearity.

1.2 Control of systems with symmetry

The second class of systems that we consider are those with a continuous symmetry:
some of the examples in fluid mechanical systems are plane channel flow, Rayleigh-
Bénard convection and Taylor-Couette flow, all of which have translational or
rotational symmetry. Relative equilibria constitute particular types of solutions
in such systems: they are steady states in a frame of reference with the symmetry
factored out; some examples in fluid systems are traveling waves in the channel flow,
spiral rolls in Rayleigh-Bénard convection (Bodenschatz et al., 2000) and Taylor
vortices in Taylor-Couette flow. Examples in other systems include rotating spiral
waves in models of pattern formation (Golubitsky & Stewart, 2002), vehicles or
animals moving in specific formations (Justh & Krishnaprasad, 2004), coordinated
networks of rotating rigid bodies such as satellites (Nair & Leonard, 2007), and
many others.

The dynamics of systems with symmetry can be thought of as a sum of two
components: one associated with the symmetry variable called the group dynamics
(e.g., the position of a traveling wave), and the second associated with the rest
of the variables called the shape dynamics (e.g., the shape of a traveling wave).
A relative equilibrium is then a fixed point of the shape dynamics. Our goal is to
develop techniques for stabilization of unstable relative equilibria, and the approach
we adopt is that of symmetry reduction to obtain appropriate shape dynamics. We
then linear the shape dynamics about a relative equilibrium (steady state) and use
linear systems tools to develop optimal feedback controllers.
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In the context of mechanical systems that arise from a Lagrangian or a Hamil-
tonian, stabilization of relative equilibria has been an active topic of research; for
example, see Bloch et al. (2000, 2001), Jalnapurkar & Marsden (1999, 2000) and
Bullo (2000). The control technique common to these works is the use of either
kinetic or potential shaping to modify the Lagrangian in order to achieve the
desired stability properties. In the work of Bloch et al. (2000, 2001), a control
term was added to the Lagrangian (leaving the relative equilibrium to be stabilized
unchanged) to form a controlled Lagrangian and the additional terms appearing in
the corresponding Euler-Lagrange equations were identified as the control forces.
In Bloch et al. (2000), relative equilibria were stabilized by kinetic shaping, which
essentially means modifying the kinetic energy by control terms. Potential shaping
was further included in Bloch et al. (2001), to achieve stability in the full phase space
by breaking the symmetry. Jalnapurkar & Marsden (2000) used potential shaping to
stabilize relative equilibria for which the shape configuration is unstable. This work
was extended by Jalnapurkar & Marsden (1999) to stabilize relative equilibria in
the full phase space. Bullo (2000) considered systems on Riemannian manifolds
and achieved exponential stabilization in the full phase space. The work used
potential shaping to stabilize the subspace orthogonal to the symmetry direction
and exponential stability was achieved by adding dissipation. Such mechanical
systems (arising from a Lagrangian or a Hamiltonian) often have the advantage
of a readily available Lyapunov function, which not only leads to stability results,
but also naturally allows one to define the domains of attraction. Even though the
stability achieved by this method is just Lyapunov stability, adding dissipation can
often lead to asymptotic stability.

Much previous work towards control of more general (not necessarily mechan-
ical) systems with symmetry has focused on linear systems. Brockett & Willems
(1974) considered a system of ordinary differential equations (ODEs), arising upon
discretization of certain partial differential equations (PDEs), in which the state
and control matrices had a block circulant structure. Their work exploited the
symmetry to save computational effort in solving system theoretic problems. Linear
optimal control problems with symmetry were studied by Lewis & Martin (1983) and
Mozhaev (1975a,b). The latter showed that such problems can be decomposed into
several smaller dimensional independent problems. Bamieh et al. (2002) considered
the optimal control problem of linear, translationally invariant PDEs, where the
feedback law was chosen so as to minimize a given translationally invariant objective
or cost function. They showed that the resulting feedback inherits the translational
invariance and that it can be obtained by solving a one-parameter family of finite-
dimensional optimal control problems. D’Andrea & Dullerud (2003) addressed the
control problem of systems consisting of extremely large number of interconnected
subsystems with a symmetric structure. Their work exploited this symmetry to
develop computationally tractable tools for control design. Also see the references
listed in the introduction of Bamieh et al. (2002) for more information along this
line of research.
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An important early work considering the control of general nonlinear systems
with symmetry was by Grizzle & Marcus (1985). They showed that, under certain
conditions, such systems can be locally or globally decomposed into lower dimen-
sional subsystems. In particular, if the original system evolves on a manifold M
and the symmetry group acting on M is G, they showed that such a system
can be globally decomposed into two subsystems: one evolving on the quotient
space M/G and the other on the group space. The work of Grizzle & Marcus
(1985) was extended in Grizzle & Marcus (1984) to decompose the optimal control
problem into similar lower-dimensional factors. Rowley et al. (2003) and Rowley &
Marsden (2000) obtained a similar decomposition for uncontrolled systems, and in
addition presented different systematic procedures to define the quotient space for
this decomposition; see also Beyn & Thümmler (2004) for different such procedures
and Aronson et al. (2001) for an application to self-similar problems. One of
the methods described in Rowley et al. (2003) and Rowley & Marsden (2000) is
what the authors called the method of slices or the template-based method, which is
applicable to systems evolving on an inner-product space. This method gives rise to
a particular set of equations, called the slice or template or shape dynamics, in which
the symmetry is dynamically factored out. These slice dynamics are constrained to
evolve on a subspace that is locally isomorphic to the quotient space, called a slice,
and the relative equilibria are just the fixed points of these dynamics. In this work,
we adopt this view of the dynamics to derive feedback laws that stabilize relative
equilibria of general nonlinear systems with symmetry, evolving on an inner-product
space.

We will show that the template dynamics can be viewed as a set of coupled
differential-algebraic equations (DAEs). The algebraic equations constrain the dy-
namics of the differential equations to evolve on the slice. There exist substantive
tools for feedback control design for DAEs, for example, see Krishnan & Mc-
Clamroch (1992); Kumar & Daoutidis (1995, 1996, 1999). The methods in these
papers involve obtaining an equivalent state-space realization, that is, a purely
differential system, which then allows use of traditional tools from linear or nonlinear
control theory. Krishnan & McClamroch (1992) considered a linear system of DAEs
and developed a computational procedure using singular value decomposition to
derive an equivalent set of linear ODEs suited for application of linear control
techniques. Kumar & Daoutidis (1995, 1996, 1999) considered a broad class of
nonlinear DAEs, developed an algorithmic procedure for deriving the equivalent
state-space realization, and used that as the basis for feedback controller synthesis.

The aim of this work is to combine the template-based symmetry reduction
technique with the feedback control methodology for DAEs to develop a systematic
approach to stabilizing relative equilibria. The relative equilibria are simple fixed
points of the template or slice dynamics. These dynamics are constrained to evolve
on a slice, which for our systems is an affine subspace. This simplifies the task,
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allowing us to linearize about the fixed points and use standard tools from linear
control theory for feedback controller design.

1.3 Outline and contributions

We now outline the main contributions of this work and their place in the disser-
tation. Chapters 2 and 3 deal with model dimension reduction of linear systems
with control, while chapter 4 deals with symmetry reduction for stabilizing unstable
relative equilibria.

Chapter 2 first reviews the projection-based model reduction techniques using
global eigenmodes, proper orthogonal decomposition and approximate balanced
truncation for stable linear systems in section 2.1. A key contribution, presented
in section 2.2, is the extension of approximate balanced truncation to unstable sys-
tems. In section 2.3, an equivalence between approximate balanced truncation and
the eigensystem realization algorithm (ERA) is exploited for achieving substantial
speed-up in computations; this work was done jointly with Zhanhua Ma. The idea
of exploiting ERA for reducing computational cost belongs to ZM. My contribution
was to work together with ZM in solving issues that arose while implementing those
ideas in numerical computations.

Chapter 3 concerns with the application of the model reduction techniques devel-
oped in chapter 2 to a model problem of the two-dimensional flow past a flat plate
at a large angle of attack. The immersed boundary method used for computations
is described and its linear and adjoint formulations are developed in section 3.1. A
continuation study with varying angle of attack and the linear stability analysis of
the resulting steady states are presented in section 3.3. Reduced-order models of
the linearized dynamics are developed and evaluated by comparison with full linear
simulations in section 3.4. Stabilizing controllers are developed using full-state feed-
back in section 3.5 and using observers based on near-wake velocity measurements
in section 3.6. The resulting compensator is shown to stabilize the unstable states,
and results in a sufficiently large basin of attraction to suppress the periodic vortex
shedding.

Chapter 4 extends the symmetry reduction method using templates to systems
with control inputs in section 4.1. The reduced dynamics are linearized about
relative equilibria, which are steady states in the reduced frame, in section 4.2.
Linear systems techniques are used in section 4.4 to develop two different controllers,
that minimize a cost function defined in the original (unreduced) frame. The
resulting controllers are shown to preserve the symmetry of the original system.
The method is illustrated with three examples in section 4.5: a planar rotationally-
invariant ODE, an inverted pendulum on a cart, and a translationally invariant
PDE, namely, the the Kuramoto-Sivashinsky equation.
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Chapter 5 provides a summary of the dissertation and suggests directions for
future work.

The approximate balanced truncation for unstable systems and its application
to control of the flow over a flat plate were developed in Ahuja & Rowley (2009).
The computational speed-up of the approximate balancing algorithm using ERA
appears in Ma et al. (2009). The work on template-based symmetry reduction for
stabilizing unstable equilibria has been published in Ahuja et al. (2007).
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Chapter 2

Model dimension reduction of
linear state-space systems

Numerical discretization of fluid mechanical systems leads to large systems of ODEs
or DAEs of dimension typically greater than O(105). The control design of such
large dimensional systems is difficult as the typical linear and nonlinear system
theoretic tools are restricted to dimensions O(103−4). The restriction arises due to
the fact that most of these tools involve solutions of certain matrix equations or
inequalities (such as Lyapunov or Riccati), which becomes prohibitive due to the
huge storage requirements of the matrices involved. Dimension reduction techniques
have thus played an important role in making these control tools available for fluid
flows.

This chapter describes some dimension reduction methods that involve project-
ing the governing equations onto a low-dimensional subspace. We think of the
governing equations being the Navier-Stokes equations, linearized about a steady
state solution, which on spatial discretization result in a large set of linear ordinary
differential equations (ODEs). The chapter is organized as follows: section 2.1 gives
a geometric picture of projection-based model reduction methods and reviews the
existing methods based on global eigenmodes and proper orthogonal decomposition,
and the approximate balanced truncation method for stable systems developed
in Rowley (2005). An approximate algorithm for balanced truncation of unstable
systems is developed in section 2.2; this algorithm has been developed in Ahuja &
Rowley (2009). The eigensystem realization algorithm is adopted in section 2.3 for
substantial computational savings of the approximate balanced truncation method;
the results from this section have been presented in Ma et al. (2009).
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2.1 Model reduction: overview

The focus here is on obtaining reduced-order models of the input to output dynamics
of linear and time-invariant (LTI) systems of the form

dx

dt
= Ax+Bu, (2.1)

y = Cx, (2.2)

where x ∈ X is the state, u ∈ U is the input, and y ∈ Y is the output of the
system. We assume that X ⊂ Rn, U ⊂ Rp and Y ⊂ Rq are linear vector spaces
endowed with inner-products denoted by 〈·, ·〉X , 〈·, ·〉U and 〈·, ·〉Y respectively. The
matrices A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant. The system (2.1) is
stable if all the eigenvalues of A are strictly to the left of the imaginary axis on the
complex plane. It is neutrally stable or unstable if any of these eigenvalues are on
or to the right of the imaginary axis.

In general, projection-based model reduction techniques rely on the idea that the
full dynamics of (2.1) is projected onto a low-dimensional subspace along a certain
direction to obtain a reduced model. There are two key components for obtaining
accurate models: one is the choice of a r-dimensional subspace Xr ⊂ X (r � n) onto
which the dynamics is restricted, and the other is the choice of direction of projection
onto Xr, often related to another r-dimensional subspace Zr ⊂ X . Fig. 2.1 shows
two different ways of restricting the dynamics of a general nonlinear system ẋ = f(x)
to a subspace Xr, one being an orthogonal projection (in which case Zr ≡ Xr), and
the other being a projection along a direction orthogonal to Zr. Subsequent sections
present different choices of these subspaces widely used to obtain reduced models.

Xr

Zr

f(x)

P⊥f(x)

Figure 2.1: Projection of the full dynamics f(x) onto Xr.
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In order to obtain an explicit form of the reduced-order models, we also need the
bases spanning the subspaces Xr and Zr. In general, the choice of these bases
is not arbitrary but is determined by the model reduction technique at hand,
for example, by solving an optimization problem. Throughout this chapter, the
bases spanning Xr and Zr are represented by Φ, Ψ ∈ Rn×r, with columns denoted
by φi, ψi ∈ Rn respectively. Then, the state x is approximated by xr ∈ Rn using a
modal expansion

x ≈ xr =
r∑
i=1

φiai = Φa, a = (a1, a2, . . . , ar)
T , ai ∈ R, (2.3)

where a ∈ Rr is the reduced-order state. Substituting (2.3) in the governing
equations (2.1) and taking inner-products with ψj yields the reduced-order model:

da

dt
= Ψ∗AΦa+ Ψ∗Bu, (2.4)

y = CΦa, (2.5)

where the asterisk ∗ represents the adjoint with respect to the inner-product 〈·, ·〉X .
Further, we have assumed that the bases Φ and Ψ are bi-orthonormal, that is,

〈ψi, φj〉 = δij or Ψ∗Φ = Ir. (2.6)

where δij is the Kronecker delta and Ir ∈ Rr×r is the identity. Finally, the initial
condition for (2.4) is obtained by projecting the initial condition x0 of (2.1) as

ai = 〈ψi, x0〉 or a = Ψ∗x0 (2.7)

We now describe certain projection-based modeling techniques which we adopt
later to develop a new algorithm for approximate balanced truncation of unstable
systems.

2.1.1 Projection onto the global eigenspace

One of the simplest ways of obtaining the reduced-order models of (2.1) is to
project the dynamics onto the leading eigenvectors of A. An appropriate restriction
is obtained by choosing the direction of projection being orthogonal to the left
eigenvectors of A. That is, the bases Φ and Ψ in (2.4) are chosen to be the leading
right and left eigenvectors of A (that is, the corresponding eigenvalues have a large
real part):

AΦ = ΦΛ and Ψ∗A = ΛΨ∗, (2.8)

where Λ ∈ Rr is a diagonal matrix of eigenvalues (or a block diagonal matrix
representing the Jordan normal form of A). The resulting model is then given by

ȧ = Λa+ Ψ∗Bu, y = CΦa (2.9)
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Even though the method is conceptually simple, the eigenvalue problem is com-
putationally prohibitive due to the huge system of equations. The most widely used
methods for such problems are based on Krylov methods, with the main advantage
being that they require storage and manipulation of only a relatively small number of
matrix-vector products Aw; the computational package called ARPACK developed
by Lehoucq et al. (1998) which uses an implicitly restarted Arnoldi algorithm is
often used. Further, easy implementations using computational wrappers around
the original direct numerical solver were developed by Barkley & Tuckerman (1999)
in an attractive timestepper-based technique. This model reduction technique has
been used used by Henningson & Åkervik (2008) and Åkervik et al. (2007) for
stability analysis and control design for the Blasius boundary layer and flow over a
shallow cavity.

The global eigenmodes are useful for understanding various instability mecha-
nisms. However, for control design, their performance is limited. The main reason
being that the modes that are most important from the instability point of view
might not be relevant from the controls perspective, maybe because they are difficult
to excite by control actuation or are difficult to measure. Mathematically, the
reduced-order models obtained using this method do not account for the particular
choice of B and C in (2.1). We will see later that a method from balanced truncation
precisely accounts for these two factors and thus results in both models; this has
been demonstrated for a transitional channel flow by Ilak & Rowley (2008) and the
Blasius boundary layer by Bagheri et al. (2009a).

2.1.2 Proper orthogonal decomposition

The method of proper orthogonal decomposition (POD), along with Galerkin pro-
jection, is arguably the most widely used method for model reduction of fluid
systems. POD was originally introduced for fluid problems by Lumley (1970) for
extracting dominant coherent structures in turbulent flows. It is a method for
obtaining an optimal basis for modal expansion of a given data-set, obtained either
from experiments or numerical simulations. In the context of model reduction
described in section 2.1, we can think of POD as a method for computing the
subspace Xr to which the original dynamics is restricted. It computes this subspace
by solving an optimization problem that maximizes the energy or the L2-norm of
the orthogonal projection of a given data-set. Although we restrict our attention
to a finite-dimensional system, the method can be extended to infinite dimensional
systems; see Holmes et al. (1996) for a rigorous treatment. Given a data-set {xi}mi=1,
snapshots from it are first stacked in a matrix X:

X =
(
x1 x2 . . . xm

)
. (2.10)

The optimization problem is that of obtaining an orthogonal projection P⊥ such
that, on average, the norm of the error between the original and the projected
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datasets is minimized:

1

m

m∑
i=1

‖xi − P⊥xi‖X , (2.11)

where ‖ · ‖X is the norm induced by 〈·, ·〉X . By calculus of variations, this leads to
a symmetric eigenvalue problem

XX∗Θ = ΘΛ. (2.12)

Since XX∗ is symmetric, the eigenvalues λi (diagonal elements of Λ) are positive (or
zero) and the corresponding eigenvectors θi (columns of Θ) are orthonormal. These
eigenvectors are called the POD modes and the optimal projection is given by P⊥ =
ΘΘ∗. Further, the eigenvalues λi are directly proportional to the energy content
(or norm) of the corresponding POD mode θi, and thus give a physical criterion for
truncating the modal expansion at a low order. The eigenvalue problem (2.12) is
too expensive if the vectors xi are large-dimensional (XX∗ ∈ Rn×n), as is typically
the case for fluid flows. A computational algorithm using a method of snapshots
developed by Sirovich (1987), takes advantage of the fact that the number of
snapshots m� n. Instead of solving (2.12), one solves the eigenvalue problem

X∗XU = UΛ, (2.13)

where now X∗X ∈ Rm×m, which is tractable and now Λ ∈ Rm×m. The leading m
eigenvalues resulting from (2.12) and (2.13) are the same, and the POD modes can
then be computed using

Θ = XUΛ−1/2. (2.14)

For obtaining reduced-order models, the subspace Xr to restrict the dynamics is
chosen to be the span of the energetically dominant r POD modes. Then, Galerkin
projection is often employed to project the governing equations, which are in general
nonlinear, onto the POD modes. In Galerkin projection, the governing equations
are projected orthogonally onto the span of POD modes. From Fig. 2.1, it means
that the spaces Zr and Xr are identical and represented by the same basis given
by POD modes Θr. A main disadvantage of the POD/Galerkin is that it often
does not capture the dynamics of the original system; this has been shown in many
studies on modeling various fluid flows, for example, flow past a cylinder by Deane
et al. (1991) and Noack et al. (2003), plane Couette flow by Smith (2003), linearized
channel flow by Ilak & Rowley (2008). Now, using this technique, the reduced-order
model (2.4) of the linear system (2.1) becomes

ȧ = Θ∗AΘa+ Θ∗Bu, y = CΘa. (2.15)

As it was shown by Rowley (2005) and will be discussed later, if the data-set (2.10)
is chosen from an impulse response simulation of (2.1), and appropriately scaled,
the POD modes capture the most controllable modes and the resulting models
capture the effect of actuation. However, the effect of the choice of sensors is still

15



not captured by this method. Also, the resulting models are not guaranteed to be
stable after truncating at a low order. The balanced truncation technique, described
in the next section, precisely captures the effect of both actuation and sensing, and
“balances” their effect in the resulting reduced models, and guarantees stability.

2.1.3 Exact balanced truncation: stable systems

The exact balanced truncation procedure was developed by Moore (1981) and is
valid only for stable systems of the form (2.1). This method uses the concepts of
controllability and observability of a system, and starts with defining the controlla-
bility and observability Gramians of the system (2.1) as follows:

Wc =

∫ ∞
0

eAtBB∗eA
∗t dt (2.16)

and Wo =

∫ ∞
0

eA
∗tC∗CeAt dt, (2.17)

where asterisks are used to denote adjoint operators, defined by

〈Bu, x〉X = 〈u,B∗x〉U , ∀u ∈ U and ∀x ∈ X , (2.18)

〈Cx, y〉Y = 〈x,C∗y〉X , ∀y ∈ Y and ∀x ∈ X . (2.19)

The Gramians (2.16,2.17) have a nice physical interpretation. For controllability,
the minimum amount of input energy required to drive the system from the origin
at time t = −∞ to a state x0 at t = 0 is given by ‖u‖2

U = x∗0W
−1
c x0. The states that

can be reached using the least input energy are the most controllable states, and
geometrically, they can be represented by the major axes of the ellipsoid x∗Wcx = 1,
while the minor axes represent the least controllable states; see Fig. 2.2. On the
other hand, the output energy excited by the system starting at state x0 is given
by ‖y‖2

Y = x∗0Wox0. The states that excite the largest output energy are most
observable and are given by the major axes of x∗Wox = 1.

x∗Wcx = 1x∗Wox = 1
x̃∗W̃cx̃ =

x̃∗W̃ox̃ = 1

x = Φx̃

Figure 2.2: A two-dimensional caricature of the balanced transformation of the controllability and
observability Gramians.
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Balancing is referred to as a transformation of the system (2.1, 2.2) to different
coordinates in which the controllability and observability Gramians (2.16, 2.17) are
equal and diagonal. It is always possible to find such a transformation if the system
is both controllable and observable. Thus, in the balanced coordinates, the most
controllable and the most observable states coincide and a reduced model can be
obtained by simply truncating the least controllable and observable modes. If the
balanced transformation is given by x = Φx̃, the Gramians in the new coordinates
are given by

W̃c = Φ−1Wc(Φ
−1)∗, W̃o = Φ∗WcΦ, (2.20)

and W̃c = W̃o = Σ, (2.21)

where Σ ∈ Rn×n is diagonal, whose entries σi ≥ 0 decrease monotonically; they are
called the Hankel singular values (HSVs) and are directly related to the controlla-
bility and observability of the corresponding states; see Fig. 2.2. A reduced-order
model is obtained by truncating the states with relatively small HSVs, that is, the
states which are almost uncontrollable and unobservable. Further, the HSVs are
independent of the choice of the coordinates and are given by the eigenvalues of the
product of the Gramians WcWo, while the (appropriately scaled) eigenvectors give
the balancing transformation.

The main advantage of balanced truncation over the previously described meth-
ods is that it captures both the actuation and sensing. The resulting reduced model
is guaranteed to be stable, provided that the truncation does not take place at an
order between two equal HSVs. Also, there exist rigorous error bounds for the
accuracy of the reduced model. In particular, if G(t) is the input-ouput impulse
response of (2.1,2.2) and Gr(t) is the impulse response of the balanced system (2.4,
2.5) truncated at an order r, the error is given by

‖G(t)−Gr(t)‖∞ < 2
∞∑

i=r+1

σi. (2.22)

A disadvantage of the exact balanced truncation method is that it is not tractable
for large-dimensional systems as it involves solution of large matrix Lyapunov
equations to compute the Gramians; we now describe an approximate technique
developed by Rowley (2005).

2.1.4 Approximate balanced truncation: stable systems

For systems of large dimension such as those encountered here, the Gramians (2.16,
2.17) are huge matrices which cannot be easily computed or stored. A compu-
tationally tractable procedure was introduced by Rowley (2005) for obtaining an
approximate balancing transformation. The procedure relies on an approximate
expression of the Gramians which was introduced by Moore (1981), which can
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be arrived at by observing that the impulse response of (2.1) is given by x(t) =
exp(At)B, where columns of x(t) ∈ Rn×p are states obtained from the response
of (2.1) to an impulse to the corresponding element of input u. The controllability
Gramian (2.16) can be written in terms of this impulse response as

Wc =

∫ ∞
0

(xx∗) dt. (2.23)

If the snapshots from this impulse response are sampled at equal time intervals δt
and stacked in a matrix X ∈ Rn×pmc (after scaling),

X =
√
δt
(
x1 x2 . . . xmc

)
(2.24)

=
√
δt
(
eAt1B eAt2B . . . eAtmcB

)
. (2.25)

the integral in (2.23) can be approximated by the quadrature sum

Wc ≈ XX∗. (2.26)

In general, the snapshots need not be sampled at equal time intervals, in which
case each snapshot needs to be scaled differently by the appropriate quadrature
factor. As pointed out by Rowley (2005), if the dataset (2.24) is used in (2.10) for
computing POD modes, the resulting modes are the leading controllable modes;
thus POD captures the effect of actuation but not sensing.

The observability Gramian can also be approximated in a similar way. We first
define the adjoint state-space system of (2.1,2.2):

ż = A∗z + C∗v, (2.27)

w = B∗z, (2.28)

where the adjoint matrices are given by (2.18, 2.19). The observability Gramian
can be written in terms of the impulse response z(t) = exp(A∗t)C∗ of (2.27), where
columns of z(t) ∈ Rn×q are states obtained from the response of (2.27) to an impulse
to the corresponding element of input v:

Wo =

∫ ∞
0

(z(t)z(t)∗) dt. (2.29)

If the snapshots of the impulse response are again sampled at equal time intervals δt
and stacked in a matrix Z ∈ Rn×qmo ,

Z =
√
δt
(
z1 z2 . . . zmo

)
(2.30)

=
√
δt
(
eA

∗t1C∗ eA
∗t2C∗ . . . eA

∗tmoC∗
)

(2.31)

the integral in (2.29) can be approximated by

Wo ≈ ZZ∗. (2.32)

The approximate Gramians (2.26, 2.32) are huge dimensional and not actually
computed due to the large storage cost, but the leading columns (or modes) of the
transformation that balances these Gramians are computed using a cost-efficient
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algorithm similar to the method of snapshots using POD. It involves computing the
singular value decomposition of

Z∗X = UΣV ∗ =
(
U1 U2

)(Σ1 0
0 Σ2

)(
V ∗1
V ∗2

)
, (2.33)

where Σ1 ∈ Rr×r is a diagonal matrix of the most significant HSVs greater than
a cut-off which is a modeling parameter, while Σ2 ∈ R(n−r)×(n−r) is a diagonal
matrix of smaller and zero HSVs. Note that Z∗X ∈ Rqmo×pmc is a relatively small
matrix, where mc and mo are the number of snapshots of the impulse responses
of systems (2.1) and (2.27), to each input, respectively. For fluid systems that we
are interested in, the typical number of snapshots is O(102−4), thus resulting in a
reasonable computational cost, and typically r ≤ 100. The leading columns and
rows of the balancing transformation and its inverse are obtained using:

Φ = XV1Σ
−1/2
1 and Ψ = ZU1Σ

−1/2
1 , (2.34)

where Φ,Ψ ∈ Rn×r, and the two sets of modes are bi-orthogonal; that is, Ψ∗Φ = Ir.
The columns of Φ and Ψ are called the balancing and adjoint modes respectively.
The reduced-order model is obtained by using the expressions (2.34) in the general
model (2.4, 2.5). Thus, the subspaces Xr and Zr in Fig. 2.1 are given by linear
combinations of snapshots obtained from the forward and adjoint impulse responses.

Another comparison with POD was obtained by Rowley (2005): the models
are the same as those obtained using POD/Galerkin method of section 2.1.2 if the
inner-product used in the eigenvalue problem (2.13) is weighted by the observability
Gramian (2.17).

Output projection

When the number of outputs of the system (rows of C) is large, the algorithm
described in section 2.1.4 can become intractable. The reason for this is that it
involves one simulation of the adjoint system (2.27) for each component of v, the
dimension of which is the same as the number of outputs. This number is often large
in fluids systems where a good model needs to capture the response of the entire
system to a given input (C = I). To overcome this problem, Rowley (2005) proposed
a technique called output projection, which involves projecting the output y of (2.1,
2.2) onto a small number of energetically important modes obtained using POD.
Let the columns of Θ ∈ Rq×m consist of the leading m POD modes of the dataset
consisting of the outputs obtained from an impulse response of (2.1, 2.2). Then, for
the purpose of obtaining a reduced-order model, the output (2.2) is approximated
by

y = ΘΘ∗Cx, (2.35)

where ΘΘ∗ is an orthogonal projection of the output onto the first m POD modes.
The resulting output-projected system is optimally close (in the L2-sense) to the
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original system, for an output of fixed rank m. With this approximation, only m
adjoint simulations are required to approximate the observability Gramian; refer
to Rowley (2005) for details. The number of POD modes m for output projection
is a design parameter: for instance, one might choose this so that the first m modes
capture at least 90% of the output energy. In the rest of this dissertation, the
models resulting from this approximation of the output are referred to as m-mode
output projected models.

The reduced-order model of the output-projected system is then given by

ȧ = Ψ∗AΦa+ Ψ∗Bu, (2.36)

y = ΘΘ∗CΦa. (2.37)

2.2 Balanced truncation: unstable systems

2.2.1 Exact method

We briefly describe a model reduction procedure using the balanced truncation
method for unstable systems developed by Zhou et al. (1999). The eigenvalues of A
are assumed to be anywhere on the complex plane, except on the imaginary axis.
For unstable systems, the integrals in (2.16, 2.17) are unbounded and hence the
Gramians are ill-defined. A modified technique was proposed by Zhou et al. (1999)
based on the following frequency-domain definitions of the Gramians:

Wc =
1

2π

∫ ∞
−∞

(jωI − A)−1BB∗(−jωI − A∗)−1 dω, (2.38)

Wo =
1

2π

∫ ∞
−∞

(−jωI − A∗)−1C∗C(jωI − A)−1 dω. (2.39)

By using Parseval’s theorem, it can be shown that for stable systems, the frequency-
domain definitions (2.38, 2.39) are equivalent to the time-domain definitions (2.16,
2.17). The model-reduction procedure of Zhou et al. (1999) begins by first trans-
forming the system (2.1) to coordinates in which the stable and unstable dynamics
are decoupled. That is, let T be a transformation such that if x = T x̃, the
system (2.1, 2.2) transforms to

˙̃x =
d

dt

(
x̃u
x̃s

)
=

(
Au 0
0 As

)
x̃+

(
Bu

Bs

)
u (2.40)

y =
(
Cu Cs

)
x̃. (2.41)

Here, Au and As are such that all their eigenvalues are in the right- and left-half com-
plex planes respectively, while x̃u and x̃s are the corresponding states. Next, denote
the controllability and observability Gramians corresponding to the set (As, Bs, Cs)
describing the stable dynamics by W s

c and W s
o respectively. Similarly, denote the
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Gramians corresponding to the set (−Au, Bu, Cu) by W u
c and W u

o . The Gramians
of the original system (2.1, 2.2) are then related to those corresponding to the two
subsystems by:

Wc = T

(
W u
c 0

0 W s
c

)
T ∗ (2.42)

and Wo = (T−1)∗
(
W u
u 0

0 W s
u

)
T−1. (2.43)

A system is said to be balanced if its Gramians defined by (2.42, 2.43) are equal
and diagonal, in which case the diagonal entries are called the generalized Hankel
singular values. A reduced-order model is obtained by truncating the states with
small generalized HSVs.

A physical interpretation of the Gramians (2.42, 2.43) was also given by Zhou
et al. (1999) and is as follows. The sum of the minimum input energies required
to drive the system from the origin at time at t = −∞ to a state x0 at t = 0
and back to the origin at t = ∞ is given by ‖u‖2

U = x∗0W
−1
c x0. For observability,

if the system (2.1, 2.2) is started with an initial condition x0 and with no control
input, the sum of the output energies: (a) excited on the stable subspace of A in
forward time t = (0,∞), and (b) excited on the unstable subspace of A in the time
interval t = (−∞, 0), is given by ‖y‖2

Y = x∗0Wox0.

The properties of balanced truncation for stable systems described in section 2.1.3
extend to unstable systems as well; the reduced system is guaranteed to have no
eigenvalues on the imaginary axis provided that the balanced model is not truncated
between two equal generalized HSVs. Also, the error bound (2.22) holds for unstable
systems, but with the time-domain impulse response G(t) replaced by its frequency-
domain counterpart G(s) (which is the transfer-function from u to y). This is
because, for unstable systems, G(t) grows without bound, however, the ∞-norm is
well-defined if the transfer function G(s) is used.

A disadvantage of reducing an unstable system based on generalized HSVs is
that an unstable mode, if it is almost uncontrollable or unobservable, might get
truncated. Thus the reduced model will not capture all the instabilities, which
might be undesirable for control. In the next section, we develop an approximate
algorithm which differs from the approach of Zhou et al. (1999) in this respect; the
proposed method treats the unstable dynamics exactly and obtains a reduced model
of the stable dynamics.

2.2.2 Approximate method

The approximate balancing procedure described in section 2.1.4, which is essen-
tially a snapshot-based method, does not extend to unstable systems since the
impulse responses of (2.1) and (2.27) are unbounded. We could consider applying
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the algorithm to the two sub-systems given in (2.40), but the transformation T
that decouples (2.1) itself is not available. However, when the dimension of the
unstable sub-system is small, we show that it is not necessary to compute the
entire transformation T and it is still possible to obtain an approximate balancing
transformation. Here, we present an algorithm for computing such a transformation
and also show that it essentially results in a method that is a variant of the technique
of Zhou et al. (1999) presented in section 2.2.1. The idea behind the algorithm is to
first project the original system (2.1) onto the still high-dimensional stable subspace
of A. Then, one obtains a reduced-order model of the projected system using the
snapshot-based procedure described in section 2.1.4. The dynamics projected onto
the unstable subspace can be treated exactly on account of its low dimensionality.

We assume that the number of unstable eigenvalues nu is O(10) and can be
computed numerically, say using the computational package ARPACK developed
by Lehoucq et al. (1998). We further assume that the bases for the right and the
left unstable eigenspaces Φu,Ψu ∈ Rn×nu , defined as in (2.8), can be computed. For
the algorithm, we need the following projection operator onto the stable subspace
of A:

Ps = I − ΦuΨ
∗
u, (2.44)

where Φu and Ψu have been scaled such that Ψ∗uΦu = Inu . We use the operator Ps
to obtain the dynamics of (2.1) restricted to the stable subspace of A as follows:

ẋs = PsAxs + PsBu, (2.45)

ys = CPsxs (2.46)

where xs = Psx. The adjoint of (2.45, 2.46) is the same as the dynamics of (2.27,
2.28) restricted to the stable subspace of A∗ using P∗s, and is given by

żs = P∗sA∗zs + P∗sC∗v, (2.47)

ws = B∗P∗szs, (2.48)

where zs = P∗sz. Then, as shown in appendix A, balancing the stable part of the
Gramians Wc and Wo defined in (2.42, 2.43) (balancing W s

c and W s
o ) is the same as

balancing the Gramians of the stable subsystem (2.45, 2.46).

We use the procedure of section 2.1.4 to obtain a transformation that balances
the Gramians of the stable subsystem (2.45, 2.46). We first compute the state-
impulse responses of (2.45) and (2.47) and stack the resulting snapshots xs and zs
in matrices Xs and Zs respectively. As in (2.33), we compute the singular value
decomposition of Z∗sXs and use the expressions (2.34) to obtain the balancing
modes Φs and the adjoint modes Ψs, where again Ψ∗sΦs = Ir. The reduced-order
modes are obtained by expressing the state x as

x = Φuau + Φsas, (2.49)
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where au ∈ Rnu and as ∈ Rr. Substituting (2.49) in (2.1) and pre-multiplying by Ψ∗u
and Ψ∗s, we obtain

da

dt
≡ d

dt

(
au
as

)
=

(
Ψ∗uAΦu Ψ∗uAΦs

Ψ∗sAΦu Ψ∗sAΦs

)(
au
as

)
+

(
Ψ∗u
Ψ∗s

)
Bu (2.50)

y = C(Φuau + Φsas) ≡
(
CΦu CΦs

)
a. (2.51)

Now, since the unstable subspace is invariant (range(AΦu) ⊆ span(Φu)), we can
write AΦu = ΦuΛ for some Λ ∈ Rnu×nu , and using the properties of eigenvectors,
we have Ψ∗sAΦu = Ψ∗sΦuΛ = 0. Similarly, it can be shown that Ψ∗uAΦs = 0. Thus,
the cross terms in (2.50) are zero and the reduced-order model is

da

dt
=

(
Ψ∗uAΦu 0

0 Ψ∗sAΦs

)(
au
as

)
+

(
Ψ∗u
Ψ∗s

)
Bu

def
=

(
Ãu 0

0 Ãs

)(
au
as

)
+

(
B̃u

B̃s

)
u (2.52)

y = C(Φuau + Φsas)
def
=
(
C̃u C̃s

)
a. (2.53)

The procedure described so far to obtain the reduced-order model (2.52, 2.53) is
related to the procedure of Zhou et al. (1999) described in section 2.2.1. It can
be shown that the transformation that balances the Gramians defined by (2.42,
2.43) results in a system in which the unstable and stable dynamics are decoupled.
Furthermore, the resulting stable dynamics are the same as those given by the
equations describing the as-dynamics of (2.52). The difference is that, in our
algorithm, the unstable dynamics are not balanced, while they are in Zhou et al.
(1999). Further, our approach does not explicitly compute the stable subsystem As,
since it is not tractable for large systems. A disadvantage of Zhou’s approach is that
an unstable mode might be truncated resulting in a model which does not capture
all the unstable modes, which is undesirable for control purposes.

Output projection for the stable subspace

For systems with a large number of outputs, the number of adjoint simulations (2.47)
can become intractable; however, the output projection of section 2.1.4 can readily
be extended to unstable systems. Instead of projecting the entire output y onto POD
modes, we first express the state x = xu + xs, where xu = (I − Ps)x and xs = Psx
are projections on the unstable and stable subspaces of A respectively. We similarly
express the output as y = yu + ys = C(xu + xs). We then project the component ys
onto a small number of POD modes, of the data set consisting of the outputs from
an impulse response of (2.45, 2.46). If the POD modes are represented as columns
of the matrix Θs ∈ Rq×m, the output of (2.1, 2.2) is approximated by

y =
[
C(I − Ps) + ΘsΘ

∗
sCPs

]
x = Cxu + ΘsΘ

∗
sCxs. (2.54)
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Finally, with the state x expressed by the modal expansion (2.49), the output of
the reduced-order model (2.52) is given by

y =
(
CΦu ΘsΘ

∗
sCΦs

)(au
as

)
. (2.55)

2.2.3 Algorithm

The steps involved in obtaining reduced-order models of (2.1), for the case with a
large number of outputs, can now be summarized as follows:

1. Compute the unstable eigenvectors Φu and Ψu of the linearized and adjoint
systems.

2. Project the original system (2.1, 2.2) onto the subspace spanned by the stable
eigenvectors of A in the direction of the unstable eigenvectors of A to ob-
tain (2.45, 2.46). Compute the state and output responses from an impulse
on each input of (2.45) and stack the state snapshots {xs(ti)} in a matrix Xs.

3. Assemble the resulting output snapshots {ys(ti)}, and compute the POD
modes θj of the resulting data-set. These POD modes are stacked as columns
of Θs.

4. Choose the number of POD modes one wants to use to describe the out-
put (2.46). For instance, if 10% error is acceptable, and the firstm POD modes
capture 90% of the energy, then the output is the velocity field projected onto
the first m modes. Thus, the output is represented as ys = Θ∗sCxs.

5. Project the adjoint system (2.27, 2.28) onto the subspace spanned by the
stable eigenvectors of A∗ in the direction of the unstable eigenvectors of A∗

to obtain (2.47, 2.48). Compute the (state) response of (2.47), starting with
each POD mode θj as the initial condition (one simulation for each of the first
m modes). Stack the snapshots {zs(ti)} in a matrix Zs.

6. Compute the singular value decomposition H = Z∗sX
∗
s = UsΣsV

∗
s ; let Ur

and Vr be the leading r columns of Us and Vs and let Σr ∈ Rr×r contain the
leading rows and columns of Σs.

7. Define balancing modes φsj and the corresponding adjoint modes ψsj as columns
of the matrices Φs and Ψs, where

Φs = XsVrΣ
−1/2
r , Ψs = YsUrΣ

−1/2
r . (2.56)
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8. Obtain the reduced-order model using (2.52), which can be written as

da

dt
=

(
Ãu 0

0 Ãs

)
a+

(
B̃u

B̃s

)
u

def
= Ãa+ B̃u, (2.57)

y =
(
C̃u C̃s

)
a

def
= C̃a where, (2.58)

a =

(
au
as

)
, (2.59)

Ãu = Ψ∗uAΦu, B̃u = Ψ∗uB, C̃u = CΦu, (2.60)

Ãs = Ψ∗sAΦs, B̃s = Ψ∗sB, C̃s = ΘsΘ
∗
sCΦs. (2.61)

When the output is the entire state or C = I, the entire field can be recon-
structed by measuring the coefficients of the unstable modes au and the POD
modes Θs of the stable subspace. That is, the output (2.58) can be represented
as

y =

(
Ĉu 0

0 Ĉs

)(
au
as

)
def
= Ĉa, where, (2.62)

Ĉu = Inu , Ĉs = Θ∗sΦs. (2.63)

Finally, if the initial state x0 is known, the initial condition of (2.57) can be
obtained using

a0 =
(
Ψu Ψs

)∗
x0. (2.64)

2.3 Eigensystem Realization Algorithm (ERA)

Here, we develop a technique for reducing the computational cost of the approxi-
mate balanced truncation described in section 2.1.3. The method requires impulse
response simulations of the linear and adjoint systems given by (2.1) and (2.27)
respectively, which are limited by the speed of the numerical solver. The next
step is to compute the cross-correlation matrix Z∗X of the two sets of snapshots,
as needed for the SVD in (2.33). We show that the cost of both these steps can
be substantially reduced by adopting a system identification technique called the
eigensystem realization algorithm (ERA) developed by Juang & Pappa (1985). We
will see that, at a discrete-time level, ERA results in the same reduced-order model
as approximate balanced truncation, and is feasible for experiments.

ERA is a method for model reduction of discrete-time, stable, linear time-invariant
systems of the form

xk+1 = Adxk +Bduk (2.65)

yk = Cdxk, (2.66)
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where we think of (2.65, 2.66) as being obtained from a temporal discretization
of (2.1, 2.2). The discretization time-step ∆t is assumed to be a constant, and the
index k is used to represent various quantities at time t = k∆t. As in approximate
balanced truncation, ERA begins by computing the impulse response of (2.65, 2.66),
and the resulting outputs yk are sampled every M time-steps. The ouputs can be
compactly described by the Markov parameters given by

yk = CdA
k
dBd, (2.67)

where yk ∈ Rq×p is a matrix with elements yij which represent the ith output from an
impulse on the jth input. The Markov parameters are sampled every M time-steps:(

y0 yM y2M . . . y(mc+mo)M

)
(2.68)

=
(
CdBd CdA

M
d Bd CdA

2M
d Bd . . . CdA

(mc+mo)M
d Bd

)
. (2.69)

These outputs are used to assemble the Hankel matrix H as follows:

H =


y0 yM . . . ymcM
yM y2M . . . y(mc+1)M

...
...

. . .
...

ymoM y(mo+1)M . . . y(mc+mo)M

 (2.70)

=


CdBd CdA

M
d Bd . . . CdA

mcM
d Bd

CdA
M
d Bd CdA

2M
d Bd . . . CdA

(mc+1)M
d Bd

...
...

. . .
...

CdA
moM
d Bd CdA

(mo+1)M
d Bd . . . CdA

(mc+mo)M
d Bd

 . (2.71)

The reduced-order models are obtained by first computing the SVD of H

H = UΣV ∗. (2.72)

Then, if Ur and Vr are the leading columns of U and V , and Σr ∈ Rr×r contains
the leading rows and columns of Σ, the reduced model of (2.65, 2.66) is given by

ak+1 = Arak +Bruk, (2.73)

yk = Crak (2.74)

where, Ar = (Σ
− 1

2
r U∗r )H1 (VrΣ

− 1
2

r ), (2.75)

Br = (Σ
− 1

2
r U∗r ) Colfirst(H), (2.76)

Cr = Rowfirst(H) (VrΣ
− 1

2
r ). (2.77)
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In the above expressions, Colfirst(H) and Rowfirst(H) represent the first block column
and row of H respectively, and

H1 =


y1 yM+1 . . . y(mc+1)M

yM+1 y2M+1 . . . y(mc+2)M

...
...

. . .
...

ymoM+1 y(mo+1)M+1 . . . y(mc+mo)M+1

 . (2.78)

Note that H1 cannot be assembled from the building blocks given by (2.68) but
needs the following additional Markov parameters:(

y1 yM+1 y2M+1 . . . y(mc+mo)M+1

)
(2.79)

=
(
CdAdBd CdA

M+1
d Bd CdA

2M+1
d Bd . . . CdA

(mc+mo)M+1
d Bd

)
. (2.80)

Thus, pairs of output snapshots at consecutive time-steps (kM, kM + 1) for k =
0, 1, . . . ,mc +mo are needed to compute the reduced model (2.73, 2.74).

2.3.1 Equivalence with approximate balanced truncation

For comparison with ERA, we first obtain reduced-order models of the discrete-
time system (2.65, 2.66) using the approximate balanced truncation method. The
algorithm, outlined in section 2.1.4 for continuous-time systems, is essentially the
same for discrete-time systems. First, impulse response simulations are computed
of the forward and adjoint systems and the resulting snapshots are stacked in
matrices X and Z respectively, as in (2.25) and (2.31):

X =
(
x1 x2 . . . xmc

)
=
(
At1d B At2d B . . . A

tmc
d B

)
, (2.81)

Z =
(
z1 z2 . . . zmo

)
=
(
(A∗d)

t1C∗ (A∗d)
t2C∗ . . . (A∗d)

tmoC∗
)
. (2.82)

The next step is to compute the SVD of the correlation matrix Z∗X and use the
resulting factors to compute the balancing and adjoint modes. If the snapshots are
sampled at times ti = (i− 1)M , we have from (2.81, 2.82) by direct calculation

Z∗X = H, (2.83)

where H is the Hankel matrix (2.71) obtained using ERA. Thus the SVD factoriza-
tion of Z∗X is given by (2.72) and can be used in expressions (2.34) to obtain the
balancing modes Φ and the adjoint modes Ψ. Finally, the reduced model can be
obtained by expressing the state xk = Φak and projecting the system (2.65, 2.66)
onto the adjoint modes:

ak+1 = Ψ∗AdΦak + Ψ∗Bduk (2.84)

yk = CdΦak. (2.85)

For comparison with the models (2.73, 2.74) obtained using ERA, we substitute the
expressions for Φ and Ψ from (2.34) in the reduced matrices obtained in (2.84, 2.85)
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and define:

Ar
def
= Ψ∗AΦ = (Σ

− 1
2

r U∗r ) (Z∗AX) (VrΣ
− 1

2
r ), (2.86)

Br
def
= Ψ∗B = (Σ

− 1
2

r U∗r ) (Z∗B), (2.87)

Cr
def
= CΦ = (CX) (VrΣ

− 1
2

r ). (2.88)

Again by direct calculation, we obtain

Z∗AX = H1, Z∗B = Colfirst(H), CX = Rowfirst(H). (2.89)

On substituting (2.89) in (2.86, 2.87, 2.88), we obtain expressions for the reduced
matrices which are the same (2.75, 2.76, 2.77), that is, those obtained using ERA.
Thus, the two methods theoretically result in the same reduced-order models for
discrete-time systems.

Even though the two techniques theoretically result in identical reduced-order
models, there are key differences in the computational steps involved, and both
methods have their own advantages. The main advantages of ERA as compared to
approximate balanced truncation are:

1. ERA requires only the Markov parameters (2.69, 2.80) which can be obtained
from impulse response of the original system (2.65, 2.66). Thus, unlike approx-
imate balanced truncation, it does not need any adjoint simulations, which
makes it feasible for experiments. For instance, ERA has been used for system
identification in flow control experiments by Cattafesta et al. (1997), Cabell
et al. (2006).

2. Once the snapshots from impulse-response simulations have been obtained, the
most computationally expensive step in approximate balanced truncation is
the computation of the correlation matrix Z∗X (2.83), which was shown to be
the same as the Hankel matrix H defined in (2.71). The computation of each
building-block of H requires pq inner-products, where p and q are the number
of inputs and outputs of the system. In approximate balanced truncation,
all the (mc + 1)× (mo + 1) blocks are obtained by computing inner-products
of all the adjoint snapshots (2.82) with all the forward snapshots (2.81). In
contrast, ERA requires the computation of only the first block-row and the last
block-column of H and H1, which are essentially the Markov parameters (2.69,
2.80) and require 2(mc +mo) inner-products. Thus, ERA results in an order-
of-magnitude savings over approximate balanced truncation. As an example,
if mc = mo = 100, the number of block-computations required using balanced
truncation is 104, while that using ERA is 200 or only 2% of the former.

Although the approximate balanced truncation method is computationally more
expensive, it has its own advantages over ERA:

1. Approximate balanced truncation provides the balancing and adjoint modes,
which form the bases of the subspaces Xr and Zr in Fig. 2.1, and can be used
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to reconstruct the full state xk from the reduced state ak. These modes can
also be useful for control design, as they highlight regions of the flow most
receptive to actuation and sensing. ERA does not provide such modes, so
the full state cannot be readily reconstructed. Theoretically, it is possible to
obtain the reduced state from the full state by computing additional Markov
parameters, but the procedure is computationally expensive as it requires the
full simulation and thus defeats the purpose of model reduction.

2. Since balanced truncation provides the projection subspaces, reduced models
of the governing nonlinear equations can also be obtained. Further, the pa-
rameters in the governing equations such as Reynolds number can be retained
in the reduced models. Thus, the reduced models can in principle be used
for a wide range of parameters; initial studies on the linearized channel flow
by Ilak & Rowley (2008) show promise in this direction.
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Chapter 3

Control of flow past a flat plate

The model-reduction techniques developed in chapter 2 are applied to develop
controllers for a two-dimensional flow past a flat plate at low Reynolds number
and large angle of attack. Numerical simulations are performed using the immersed
boundary solver developed by Colonius & Taira (2008), which is adapted into a suite
of computational tools for performing linearized and adjoint simulations, computing
steady states and global eigenmodes, and developing reduced-order models suitable
for control. We show that as the angle of attack is increased beyond 27◦, the flow
undergoes a Hopf bifurcation from steady state to periodic vortex shedding. For
control, the actuation is modeled as a localized body force near the flat plate, and
reduced models are developed of the dynamics linearized about an unstable steady
state at α = 35◦. The models are used to design two different controllers, one based
on full-state feedback and the other based on two near-wake velocity measurements.
We include the controllers in the full nonlinear simulations and show that they are
able to suppress the nonlinear vortex shedding, and thus are effective even in the
regions of phase-space where the nonlinear effects are strong.

3.1 Immersed boundary projection method

The numerical scheme used is the fast immersed boundary projection method devel-
oped by Colonius & Taira (2008), which is an accelerated version of the technique
developed by the same authors in Taira & Colonius (2007). The method is first
described in this section and then adapted into linearized and adjoint formulations.

Consider the following form of the incompressible Navier-Stokes equations, based
on the continuous analog of the immersed boundary formulation introduced by Pe-
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skin (1972):

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u+

∫
f(ξ)δ(ξ − x)dξ, (3.1)

∇ · u = 0, (3.2)

u(ξ) =

∫
u(x, t)δ(x− ξ)dx = uB, (3.3)

where u and p are the fluid velocity and pressure respectively. The force f acts as a
Lagrange multiplier that imposes the no-slip boundary condition on the Lagrangian
points ξ, which arise from the discretization of a body moving with the velocity uB.
We consider the body to be a stationary flat plate at an angle of attack α; that is,
here uB = 0. The variables u and x are non-dimensionalized with respect to the free
stream velocity U and the flat plate chord length c, and the Reynolds number is
defined as Re = Uc/ν where ν is the kinematic viscosity. The other quantities p, f ,
and time t are consistently non-dimensionalized as well: time as Ut/c, pressure
as p/ρU2 and the force as f/ρU2c. Equations (3.1-3.3) are discretized in space
using a second-order finite-volume scheme on a staggered grid, which results in the
following semi-discrete equations:

M
dq

dt
+Gp−Hf = N (q) + Lq + bc1, (3.4)

Dq = bc2, (3.5)

Eq = 0, (3.6)

where q, p, and f are the discrete velocity flux, pressure, and force respectively. The
operator N (q) is the discretized nonlinear term u · ∇u, L is the discrete Laplacian,
and M is the diagonal mass matrix, which is the identity for a uniform grid. The
operators G and D are the discrete gradient and divergence operators constructed
such that G = −DT , and the operators E and H are interpolation and regularization
operators that smear the Dirac delta functions in equation (3.1) over a few grid
points. In order to obtain a symmetric matrix in the Poisson solve, these operators
are also constructed such that E = −HT ; see Taira & Colonius (2007) for details.
The terms bc1 and bc2 depend on the particular choice of boundary conditions; as
an example, for a 2-D flow past a stationary object, uniform flow conditions are
applied at the inlet and at the lateral walls, while convective boundary conditions
are applied at the outflow.

The equations are (3.4, 3.5, 3.6) are then discretized in time using an implicit
trapezoidal scheme for the linear terms and the second-order accurate Adams-
Bashforth for the nonlinear terms. The resulting algebraic equations are solved
using a fractional-step (or projection or operator-splitting) algorithm to march the
variables forward in time. The key feature of this technique of Taira & Colonius
(2007) is that the pressure p and the force f are combined together as a single
Lagrange multiplier λ = (p, f), which in turn is obtained by solving a single modified
Poisson equation.
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A fast algorithm of the above immersed boundary method was developed by Colo-
nius & Taira (2008) by employing a nullspace approach and a multi-domain method
for applying the far-field boundary conditions. The discrete streamfinction s is
introduced, which is related to the flux q by a discrete curl operation C constructed
as the nullspace of the divergence D:

q = Cs, where, DC ≡ 0. (3.7)

Thus, the incompressibility condition (3.5) is satisfied at all times. The transpose
operator CT relates the discrete circulation γ to the discrete flux by:

γ = CT q. (3.8)

Pre-mutliplying (3.4) by CT eliminates the pressure, since CTG = −CTDT = 0,
resulting in a semi-discrete formulation in terms of the circulation γ:

dγ

dt
+ CTET f̃ = −βCTCγ + CTN (q) + bcγ, (3.9)

ECs = uB, (3.10)

where a uniform grid is assumed (M = I) for achieving computational speed-
up using fast Sine transforms. In (3.9), the discrete Laplacian is represented
by −CTCγ, using the identity ∇2γ = ∇(∇ · γ) − ∇ × (∇ × γ) = −∇ × (∇ × γ);
the constant β = 1/Re∆2, where ∆ is the uniform grid spacing. The nonlinear
term N (q) can also be represented as the spatial discretization of q× γ. From (3.7)
and (3.8), the discrete stream function s and circulation γ are related by

s = (CTC)−1γ. (3.11)

The boundary conditions specified are Dirichlet and Neumann for the velocity
components normal and tangential to the domain boundaries, which for the flow
past a flat plate imply a uniform-flow in the far-field. With a uniform grid and
these boundary conditions, the Laplacian CTC can be diagonalized using the fast
Sine transform:

L = CTC = SΛS, (3.12)

where, S is the symmetric operator representing the discrete Sine transform and Λ
is a diagonal matrix containing eigenvalues of CTC. Equations (3.9, 3.10) are then
discretized in time, using the trapezoidal rule for the linear terms and the second-
order Adams-Bashforth for the nonlinear terms to obtain the time-stepping scheme:

S
(

1 +
β∆t

2
Λ
)
Sγ∗ =

(
I − β∆t

2
CTC

)
γn (3.13)

+
∆t

2

(
3N (qn)−N (qn−1)

)
+ ∆tbcγ,

EC
(
SΛ−1

(
1 +

β∆t

2
Λ
)−1

S
)

(EC)T f̃ =ECSΛ−1Sγ∗ − un+1
B , (3.14)

γn+1 = γ∗ − S
(

1 +
β∆t

2
Λ
)−1

S(EC)T f̃ , (3.15)
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where the index n represents the fields at time tn = n∆t. The dimension of the
Poisson solve (3.14), for the force f̃ , is much smaller than the corresponding solve,
for pressure p, required in the scheme resulting from a similar temporal discretization
of (3.4–3.6).

The above boundary conditions are valid for only a sufficiently large domain,
and with a uniform grid, could result in a large number of grid points. In order
to circumvent this problem, Colonius & Taira (2008) developed a multi-domain
approach to apply simple far-field boundary conditions. The domain around the
immersed body is considered to be embedded in a series of domains, each twice as
large as the preceding, with a uniform but a coarser grid having the same number
of grid points; see Fig. 3.1. The circulation field on the smallest is first coarsified
or interpolated onto the next larger mesh. The Poisson equation (3.11), with zero
boundary conditions, is solved on the largest domain to obtain the stream function.
This solution is then interpolated to obtain the values on the boundary of the next
smaller domain, which are in turn used as boundary conditions to solve the Poisson
equation on the smaller domain. The immersed body is assumed to be present
only in the smallest domain, which consists of a fine mesh in the region of interest
around the body. For the model problem of two dimensional flow past a flat plate,
the typical size of the largest domain is around 40 chord lengths in each direction,
and the number of domains is 3–5. The operators for interpolating between different
levels of domains are carefully designed to preserve the total circulation. The cost
of the method increases due to the multi-domain implementation, as the Poisson
equation (3.11) is required to be solved at least once for each domain, however,
the overall cost benefit due to the elimination of pressure and use of the fast Sine
transform results in an overall speed-up by an order-of-magnitude over the previous
algorithm of Taira & Colonius (2007).

3.1.1 Linearized and adjoint equations

For deriving reduced-order models useful for control design using the approximate
balanced truncation method outlined in section 2.2, we first linearize equations (3.9,
3.10) about a pre-computed steady state (γ0, q0); computation of this steady state
is discussed later in section 3.3.1. The linearized equations are the same as equa-
tions (3.9, 3.10) with the nonlinear term N (q) replaced by its linearization about
the steady state. Thus, the linearized equations are:

dγ

dt
+ CTET f̃ = −βCTCγ + CTNL(γ0)γ, (3.16)

ECs = 0, (3.17)

where NL(γ0)γ is the spatial discretization of

q0 × γ + q × γ0, (3.18)
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~s ¼ SK"1S~c; ð28Þ

where ~c is an arbitrary input vector (with length equal to
the number of discrete circulation values on the grid), ~s is
the solution (with length equal to the number of discrete
streamfunction values), and the operator SK"1S implies
the following operations:

~cð1Þ ¼ ~c; ð29Þ

~cðkÞ ¼
~cðkÞ where x 2 DðkÞ nDðk"1Þ;

P ðk"1Þ!ðkÞð~cðk"1ÞÞ where x 2 Dðk"1Þ;

k ¼ 2; 3; . . . ;Ng;

8
><

>:
ð30Þ

~sðNgþ1Þ ¼ 0; ð31Þ
~sðkÞ ¼ SK"1S~cðkÞ þ bcs½P ðkþ1Þ!ðkÞð~sðkþ1ÞÞ';

k ¼ Ng;Ng " 1; . . . ; 1; ð32Þ

~s ¼ SK"1S~c ¼ ~sð1Þ: ð33Þ

Here P(k"1)!(k) is a fine-to-coarse interpolation operator
and P(k)!(k"1) is its coarse-to-fine counterpart restricted
to oDðk"1Þ by bcs.

In constructing P, it would be desirable to preserve (to
machine roundoff) certain moments of the circulation dis-
tribution so that the velocity decay rate far from the body
is correct. In the present implementation, we attempt to
preserve only the total circulation. Switching from
matrix/vector to point-operator notation, we write, for
the two-dimensional case,

P ðk"1Þ!ðkÞð~cðk"1ÞÞ2i;2j ¼ ~cðk"1Þ
i;j þ 1

2
~cðk"1Þ
i"1;j þ 1

2
~cðk"1Þ
iþ1;j

þ 1

2
~cðk"1Þ
i;j"1 þ 1

2
~cðk"1Þ
i;jþ1 þ 1

4
~cðk"1Þ
i"1;j"1

þ 1

4
~cðk"1Þ
iþ1;j"1 þ

1

4
~cðk"1Þ
i"1;jþ1

þ 1

4
~cðk"1Þ
iþ1;jþ1: ð34Þ

The 9-point stencil leads to a conservation of the total cir-
culation and is second-order accurate based on a Taylor-
series expansion. We note that the coefficients in Eq. (34)
sum to 4 since the circulation in the (dual) cell is the vortic-
ity multiplied by the area, and coarsifying the grid by a fac-
tor of 2 results in a factor of 4 increase in cell area. The
three-dimensional version of Eq. (34) consists of averaging
Eq. (34) over two adjacent (i, j) planes of data normal to
the vorticity component, for each of the three components.

For the coarse-to-fine interpolation at the boundary of
the next-finer mesh, we use the value from the coarser mesh
for those grid points that coincide, and a mid-point linear
interpolation (again second-order accurate) for those
points in between.

We note that circulation is only strictly preserved if there
is no vorticity advecting or diffusing out of the original
domain. During vorticity transfer from fine to coarse mesh,
circulation is only preserved to the level of discretization
error, since the discretization error is different on each
mesh and advection and diffusion rates are therefore
slightly different. Tests below confirm that changes in circu-
lation as structures pass between the different domains are
appropriately small.

Utilizing the multi-domain description of the circulation
and solution of the Poisson equation, we now write
the overall system of equations to be solved at each
time-step.

S I þbDt
2

K
! "

ScðkÞ
(

¼ I "bDt
2

CTC
! "

cðkÞ
n þDt

2
ð3CTNðqðkÞnÞ"CTNðqðkÞn"1ÞÞ

þDt
2
bccð½P ðkþ1Þ!ðkÞðcðkþ1Þ( Þ'þ ½P ðkþ1Þ!ðkÞðcðkþ1ÞnÞ'Þ;

k ¼Ng;Ng"1; . . . ;1; ð35Þ

EC SK"1 I þbDt
2

K
! ""1

S

 !

ðECÞT~f ¼ ECSK"1Scð1Þ
( " unþ1

B ;

ð36Þ

cnþ1 ¼ cð1Þ
(
" S I þbDt

2
K

! ""1

SðECÞT~f ; ð37Þ

snþ1 ¼ SK"1Scnþ1: ð38Þ

Note that in solving for the streamfunction at the next time
step, Eq. (38), we save the coarsified circulation fields and
streamfunctions to use on the right-hand side of Eq. (35)
at the next time step.

Fig. 5. Schematic of 3-level multi-domain solution of the Poisson
equation.

T. Colonius, K. Taira / Comput. Methods Appl. Mech. Engrg. 197 (2008) 2131–2146 2139

Figure 3.1: Mutli-domain method to solve the Poisson equation. Figure taken from Colonius &
Taira (2008).

and the flux q is related to γ by (3.11). The boundary conditions for the linearized
equations are bcγ = 0 on the outer boundary of the largest computational domain.

The modeling technique of section 2.2 also requires certain adjoint simulations to
approximate the observability Gramians. In order to derive the adjoint formulation
of (3.9, 3.10), we define the following inner-product on the state-space:

〈γ1, γ2〉X =

∫
Ω

γ1 (CTC)−1γ2 dx. (3.19)

That is, the inner-product defined on the state-space is the standard L2-inner prod-
uct weighted with the inverse-Laplacian operator. Using (3.8, 3.11), it can be shown
that the inner-product (3.19) induces the usual energy-norm; that is, 〈γ, γ〉X =∫

Ω
q2 dx, which is the energy of the fluid integrated over the entire domain. This

choice is convenient as it results in the adjoint equations which differ from the lin-
earized equations only in the nonlinear term. A derivation is outlined in appendix B

34



and the resulting equations are:

dζ

dt
+ CTETψ = −βCTCζ + (CTC)NL(γ0)T qa, (3.20)

ECξ = 0, (3.21)

where the variables ζ, ξ and ψ are dual to the discrete circulation γ, stream
function s and body force f̃ , respectively, and qa = Cξ is dual to the flux q. The
adjoint of the linearized nonlinear term is (CTC)NL(γ0)T qa, which can be shown to
be a spatial discretization of

∇× (γ0 × qa)−∇2(q0 × qa). (3.22)

Since equation (3.20) differs from (3.16) only in the last term on the right hand
side, the numerical integrator for the adjoint equations can be obtained by a small
modification to the solver for the linearized equations.

The nature of the multi-domain scheme used to approximate the boundary
conditions of the smallest computational domain results in a multi-domain discrete
Laplacian that is not exactly self-adjoint to numerical precision. As a result, the
adjoint formulation given by (3.20, 3.21) which also uses the same multi-domain
approach, is not precise and results in small, rather insignificant, errors in the
computation of the reduced-order models.

3.2 Model problem: flow past a flat plate

We apply the model reduction techniques developed in the previous sections to
the uniform flow past a flat plate in two spatial dimensions, at a low Reynolds
number, Re = 100. We obtain reduced-order models of a system actuated by
means of a localized body force near either the leading edge or the trailing edge
of the flat plate; the vorticity contours of the flow field obtained on an impulsive
input to the actuator are shown in Fig. 3.2. Using these reduced-order models, we
develop feedback controllers that stabilize the unstable steady state at high angles
of attack. We first assume full-state feedback, but use output projection described
in section 2.1.4 to considerably decrease the number of outputs in order to make the
model computation tractable. Later, we relax the full-state feedback assumption,
and develop more practical observer-based controllers which uses a few velocity
measurements in the near-wake of the flat plate (shown in Fig. 3.2) to reconstruct
the entire flow.

3.2.1 Numerical parameters

The grid size used is 250 × 250, with the smallest computational domain given
by [−2, 3] × [−2.5, 2.5], where lengths are non-dimensionalized by the chord of the
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Figure 3.2: Actuator modeled as a localized body force near the leading (left) and trailing (right)
edge of the flat plate, with the angle of attack fixed at α = 35◦. Vorticity contours are plotted,
using both color and line plots, with negative contours shown by dashed lines. The velocity-sensor
locations are marked by solid circles.

flat plate, with its center located at the origin. We use 5 domains in the multiple-
grid scheme, resulting in an effective computational domain 24 times larger the size
of the smallest domain; thus the largest domain is given by [−32, 48] × [−40, 40].
The timestep used for all simulations is ∆t = 0.01.

3.2.2 Input and output

The actuation is modeled as a localized body force near the flat plate; two different
locations, near the leading and trailing edges of the flat plate, are considered. The
control is implemented in the numerical solver by simply adding a term of the
form Bu, as appears in equation (2.65), where B is a velocity field that is divergence-
free and satisfies the no-slip boundary conditions at the surface of the flat plate:

γk+1 = Φ(γk) +Buk, (3.23)

where Φ(γk) is a compact representation of the time-stepper obtained from a tem-
poral discretization of (3.9, 3.10). The flow-field obtained from an impulsive in-
put (uk = δk) consists of two counter-rotating vortices, where the circulation of
each vortex given by

Bi
γ(r) = ±c(1− ar2)e−ar

2

, i = 1, 2 (3.24)

where, r2 = (x− x0,i)
2 + (y − y0,i)

2; (3.25)

the constants a and c determine the radius and strength of the vortices, while
(x0,i, y0,i) determine the location of the centers of these vortices. The velocity fields
corresponding to the functions Bi

γ do not satisfy the no-slip boundary conditions
at the plate surface; a projection step is used to enforce these conditions and the
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resulting fields are used to model actuation. The two different choices of actuation
considered here are shown in Fig. 3.2.

In previous research, Taira & Colonius (2009a) considered actuators modeled
as body forces smeared over a few grid points in studying the effect of open loop
constant forcing on three-dimensional flows past a low aspect ratio flat plate, while
Williams et al. (2008) performed experiments on semi-circular planforms using peri-
odic blowing through slots on the leading edge. The actuation above is a simplistic
model of blowing and suction, although our aim here is not to have an accurate
representation of blowing or suction, but rather to demonstrate the effectiveness
of the algorithms presented in chapter 2 by developing simple controllers. Several
other actuators were also considered by varying the constants a, c in (3.24), and two
that resulted in successful controllers are reported here.

The energy input from the actuation, in studies using open-loop control by
steady or periodic forcing, is often quantified in terms of the momentum coeffi-
cient Cµ (Greenblatt & Wygnanski, 2000; Taira & Colonius, 2009a) which is defined
as:

Cµ =
ρU2

actσact

1
2
ρU2
∞c

(3.26)

where Uact is the constant actuator velocity in case of steady forcing, σact is the
actuator width, and c is the flat plate chord length. With feedback control, the
input u is a function of time and so is Uact, and thus the momentum coefficient
is time-dependent. However, for the sake of quantifying the control input, we
assume that the input u has unit amplitude and is a constant. Later, we will see
that the maximum amplitude of u is O(1) and this assumption holds. For leading
edge actuation, the maximum velocity of actuation is Uact/U∞ = 0.003, while the
actuation width is σact/c = 1, which gives Cµ ≈ 0.08%. For trailing edge actuation,
the maximum velocity of actuation is Uact/U∞ = 0.07, while the actuation width
is σact/c = 0.3, which gives Cµ ≈ 0.15%. Both of these values are in the standard
range Cµ = 0.01% to 10% used in studies using steady actuation (Greenblatt &
Wygnanski, 2000; Taira & Colonius, 2009a).

We also consider two different outputs of the system, and they are:

1. The velocity field over the entire fluid domain, which is used for developing
full-state feedback controllers. As discussed in section 2.1.4, for large dimen-
sional outputs, the model reduction procedure using approximate balanced
truncation becomes intractable as the number of adjoint simulations needed
is the same as the number of outputs. Hence, output projection is used and the
observables are considered to be the velocity field projected onto (a) unstable
eigenmodes and (b) leading POD modes of the stable subspace dynamics
(impulse-response).
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2. Velocity measurements at two near-wake sensor locations, shown in Fig. 3.2,
which are used to develop observer-based feedback controllers.

The control goal is to stabilize unstable steady states using the above actuators
and sensors, for which we first develop reduced-order models using the methods
developed in sections 2.2.2 and 2.3.

3.3 Steady state analysis

The dimension reduction techniques described in chapter 2 start with linear state-
space equations of the form (2.1, 2.2). In order to obtain equations in that form,
we linearize the Navier-Stokes equations about steady-state solutions. Further, the
approximate balanced truncation method of section 2.2.2 requires the global unsta-
ble eigenvectors of the linearized flow. This section deals with the computations of
steady states of our model problem, and their linear stability analysis. We use a
“time-stepper based” approach reviewed in Tuckerman & Barkley (1999), in which
the original numerical solver is treated as a black box and efficient computational
wrappers are developed around it for performing steady-state analyses.

3.3.1 Continuation using Newton-GMRES

The computational task of computing steady states of the governing equations
is fundamentally different from the task of developing solvers for marching the
solutions forward in time. The first consists of solving boundary value problems
and, after discretization, leads to coupled nonlinear algebraic equations, usually
solved using iterative techniques. The second task consists of initial value problems
and leads to time-stepping schemes; the immersed boundary method of section 3.1 is
an example. For fluid mechanical problems, the first task often becomes unwieldy
due to large dimensional discretizations, although it has been applied to various
problems. For instance, Sanchez et al. (2002) developed efficient continuation
methods for cylindrical geometries and applied it to a flow in a driven cylinder;
Cliffe et al. (2000) developed a detailed convergence theory for a finite element
method and performed a bifurcation study of the Taylor-Couette flow; de Almeida &
Derby (2000) computed steady states of the flow over a lid-driven cavity. Although
there has been considerable research effort in this area, a much greater impetus
has been towards the second task of developing numerical time-steppers, as it offers
insights into the dynamics, and allows direct comparison with experiments; the
number of solvers developed is so vast that a review is not even attempted here.
The main idea of Tuckerman & Barkley (1999) is to convert these time-steppers
into steady-state solvers, thus performing the first task without having to solve the
huge set of nonlinear equations. This technique was first developed by Chowdhury
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& Tuckerman (1995) for the spherical Couette flow, and has been applied for
identifying three-dimensional instabilities of the flow past a cylinder by Barkley
& Henderson (1996) and in the flow over a backward-facing step by Barkley et al.
(2002).

An alternate method, called selective frequency damping, was developed by Åkervik
et al. (2006), adapting tools from control theory for computing steady states. In
this method, a control term proportional to the difference between the actual and
the (temporally) low-pass filtered state, is used in an attempt to stabilize unstable
steady states. The method was used to compute steady states of flow over a cavity
by Åkervik et al. (2006), a three-dimensional jet in cross-flow by Bagheri et al.
(2009b) and of the flow over a low aspect-ratio flat plate by Rowley et al. (2008).
The method has good performance when the instability arises due to high frequency
components, but the choice of filtering parameters is ad-hoc; in the presence of low-
frequency components, it becomes difficult to obtain the parameters that stabilize
the steady state.

Here, we adopt the approach of developing computational wrappers around the
immersed boundary solver to compute steady states. If the numerical timestepper
advances a circulation field γk at a timestep k to a circulation field γk+T ≡ ΦT (γk)
after T timesteps, a steady state is given by a field γ0 that satisfies

g(γ0) = γ0 − ΦT (γ0) = 0. (3.27)

The steady states are thus given by zeros of g(γ0), which could, in principle,
be solved for using Newton’s method. However, the standard Newton’s method
involves computing and inverting Jacobian matrices at each iteration, which is
computationally infeasible due to the large dimension of fluid systems. Instead
of computing the Jacobian, we use a Krylov-space based iterative solver called
Generalized Minimal Residual Method (GMRES) developed by Saad & Schultz
(1986) to compute the Newton update (see Kelley (1995) and Trefethen & Bau
(1997) for a description of the method). This method requires computation of
only Jacobian-vector products Dg(γ) · v, which can be approximated using finite
differences as

Dg(γ) · v =
g(γ + εv)− g(γ)

ε
, for 0 < ε� 1. (3.28)

So, the Jacobian-vector products can also be computed by invoking the appropriately-
initialized timestepper. A nice feature of GMRES is relatively fast convergence to
the steady state when the eigenvalues of the Jacobian Dg(γ0) occur in clusters; see
Kelley (1995) and Kelley et al. (2004) for details. For systems with multiple time-
scales, such as Navier-Stokes, most of the eigenvalues of the continuous Jacobian lie
in the far-left-half of the complex plane. Thus, the corresponding eigenvalues of the
discrete Jacobian DΦT , for a sufficiently large value of T , cluster near the origin;
this is schematically shown in Fig. 3.3; the larger the value of T , the tighter is the
clustering.
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ẋ = f(x)
eig(Df(x0)) = λi

xk+1 = ΦT (xk)
eig(I −DΦT (x0)) = eλiT

Figure 3.3: A schematic showing the clustering of the eigenvalues (red circles) of the linearization
of the discrete time-stepper.
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Figure 3.4: Convergence study of Newton-GMRES for different values of the paramter T .

We now study the effect of varying T on the convergence of Newton-GMRES;
such a study was performed in much greater detail for a reaction-diffusion equation
by Kelley et al. (2004). The angle of attack is fixed at α = 35◦ and the initial
guess for the Newton solve is the steady state computed for α = 36◦. The value
of T is varied from 10 to 400 time-steps, and in each case, 7 Newton iterations
were required for convergence; the stopping criterion used was the residual to reach
a level ‖g‖2 = 10−8. For each Newton iteration, the update step is computed
iteratively using GMRES. In Fig. 3.4, the reduction in the residual is plotted against
the cumulative number of function calls during each iteration. We see that the
total number of function calls decreases with increasing T , which can be justified
by greater clustering of the eigenvalues. However, since the number of iterations of
the numerical solver increases with T , the total cost need not decrease with T . In
this case, the total number of integration time-steps is in fact the least for T = 10;
see the inset in Fig. 3.4.
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The Newton-GMRES method described above is used to compute the branch
of steady states for the angles of attack 0 < α < 90◦; the parameter T in (3.27)
is fixed to 50 timesteps. The lift and drag coefficients, CL and CD, and their
ratio CL/CD with changing α are plotted in Fig. 3.5. As with flow past bluff bodies
with increasing Reynolds number (for example, see Provansal et al. (1987)), the flow
undergoes a Hopf bifurcation from a steady flow to periodic vortex shedding as the
angle of attack α is increased beyond a critical value αc, which in our computations
is αc ≈ 27◦. Also plotted in the figure are the maximum, minimum, and mean values
of the forces during shedding for α > αc. We see that the (unstable) steady state
values of the lift coefficient are smaller than the minimum for the periodic shedding
until α ≈ 75◦, after which they are slightly higher, but still smaller than the mean
lift for the periodic shedding. The (unstable) steady state drag is much lower than
the minimum value for periodic shedding. The ratio CL/CD of the (unstable) steady
state is close to the mean value for shedding. Thus, if the large fluctuations in the
forces are undesirable at high angles of attack, it would be useful to stabilize the
unstable state. The steady state at α = 35◦ is shown in Fig. 3.6(a), and a time
history of the lift coefficient CL with this steady state as an initial condition is shown
in Fig. 3.6(b). Since the steady state is unstable, numerical perturbations excite
the instability, and the flow eventually transitions to periodic vortex shedding.

3.3.2 Linear stability analysis

For the linear stability analysis about the steady state γ0, we need to solve the
eigenvalue problem

ΦT (γ0)v = vλ (3.29)

where λ and v are the eigenvalue and eigenvector of the operator ΦT (γ0), which we
now think of as the time-stepper obtained from the temporal discretization of either
the linearized equations (3.16, 3.17) or the adjoint equations (3.20, 3.21). In order to
solve (3.29), we use another Krylov technique called the Arnoldi iteration developed
by Arnoldi (1951); see also Trefethen & Bau (1997). A variant of this method
called the implicitly restarted Arnoldi method has been implemented by Lehoucq
et al. (1998) and is freely available in the form of a Fortran-77 library called
ARPACK. This library can be used to compute a small number of eigenvalues
(and eigenvectors) with user-specified properties such as the largest or smallest
magnitude, largest or smallest real part, etc. to a desired accuracy. We use this
library to compute the leading eigenvectors of the linearized and adjoint equations,
that is, those corresponding to the eigenvalues with the largest magnitude.

The eigenvalues µ of the continuous operator are related to the eigenvalues λ
of the discrete operator by µ = log λ/(T∆t), where we fix T = 30 timesteps.
We computed two eigenvalues with the largest magnitude for the range of angle
of attack 20 ≤ α ≤ 90◦, and found that they form a complex pair, implying an
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Figure 3.5: Forces on a flat plate at a fixed angle of attack α and at Re = 100, showing a transition
from a stable equilibrium to periodic vortex shedding at α ≈ 26◦. Shown are the force coefficients
corresponding to the stable ( ) and unstable ( ) steady states, and the maximum and
minimum ( ), and the mean ( ) values during periodic vortex shedding. Also shown are
the vorticity contours (negative values in dashed lines) of steady states at α = 15◦, 55◦ and the
flow fields corresponding to the maximum and minimum force coefficients at α = 55◦.
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Figure 3.6: (a) Streamlines of the unstable steady state at α = 35. (b) CL vs. time, with the
steady state as an initial condition.

oscillating eigenmode. The real and imaginary parts of these eigenvalues, which
correspond to the growth rate and frequency of the instability, are plotted in
Fig. 3.7. The real part of the eigenvalue becomes positive (or the eigenvalues
cross the imaginary axis into the right-half complex plane with a non-zero speed)
at αc ≈ 27◦, confirming Hopf bifurcation. For the post-bifurcation values of α,
we also plot the frequency of vortex shedding, which depart considerably from the
frequency of the linear instability growth, consistent with the finding of Barkley
(2006) for the flow past a cylinder. The real and imaginary parts of the right and
left (linear and adjoint) unstable eigenvectors of the flow linearized about the steady
state at α = 35◦ are plotted in Fig. 3.8. These modes are qualitatively similar to the
structures during periodic vortex shedding, but have different spatial wavelengths,
as reported in earlier studies by Noack et al. (2003) and Barkley (2006).
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Figure 3.7: The real (µr) and imaginary (µi) part of the eigenvalues, representing the growth
rate and frequency of the corresponding eigenmodes, of the flow linearized about the steady states
in the range 20 ≤ α ≤ 90◦. Also shown is the frequency of the periodic vortex shedding for
α ≥ 27◦ ( ).
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Figure 3.8: Real (top) and imaginary (bottom) parts of the unstable eigenvectors of the linearized
(left) and the adjoint (right) equations, for α = 35◦. Vorticity contours are plotted (negative
contours are dashed).

3.4 Reduced-order models

In this section, we describe the process involved in deriving the reduced-order models
of the input-output response of the linearized Navier-Stokes equations (3.16, 3.17),
which upon adding the actuation inputs and sensor outputs, are in the form of the
state-space equations (2.1, 2.2). The equations (3.16, 3.17) are considered to be
linearized about the unstable steady state at α = 35◦, and the models developed
here will be used in the later sections to develop controllers that stabilize this steady
state. The model reduction procedure is outlined for the leading edge actuation,
plotted on the left in Fig. 3.2, and is similar for the trailing edge actuation. The
models are derived using the approximate balanced truncation procedure outlined
in section 2.2.2. The output of the system is considered to be the entire velocity
field. Since this would result in large number of adjoint simulations, we use output
projection described in section 2.1.4, and approximate the output by its projection
onto (a) the unstable eigenspace, and (b) the span of the leading POD modes of
the impulse response restricted to the stable subspace.

The first step in computing the reduced-order models is to project the flow field B
onto the stable subspace of (3.16, 3.17) using the projection operator Ps defined in
equation (2.44); the unstable eigenvectors computed in section 3.3.2 are used to
define Ps numerically. The vorticity contours of the corresponding flow field PsB
are plotted in Fig. 3.9a. The next step is to compute the impulse response of (2.45),
which is rewritten here:

ẋs = PsAxs + PsBu; (3.30)
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(a)
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Figure 3.9: Vorticity contours of (a) the flow field shown in Fig. 3.2, projected onto the stable
subspace, and (b,c) the first- and fifth-most energetic POD modes of the impulse response to the
leading edge actuation, restricted to the stable subspace.

that is, at each timestep of integration, we project the state xs onto the stable
subspace of A using the operator Ps. Since the stable subspace is an invariant
subspace for the linearized dynamics (3.16, 3.17), theoretically, it should be suf-
ficient to project only the initial condition, and the resulting dynamics should
be constrained to the stable subspace. However, due to the (small) numerical
inaccuracy of the projection Ps (which is a result of the numerical inaccuracy of
the unstable eigenspaces Φu and Ψu), the resulting dynamics might not be strictly
restricted to the stable subspace and indeed, in the long term, grows without bound
in the unstable direction. Thus, the state is projected at each timestep to ensure
that it remains constrained to the stable subspace. Next, we compute the POD
modes θis of the impulse response of (3.30), and consider the output of (3.30) to
be the state xs projected onto a certain number of these POD modes. Here, 200
snapshots spaced every 50 timesteps were used to compute the POD modes. The
leading 4, 10 and 20 POD modes contain 84.47%, 98.98% and 99.89% of the energy
respectively and, as it has been observed in previous studies (Deane et al., 1991;
Ilak & Rowley, 2008), these modes come in pairs in terms of their energy content,
a characteristic of traveling structures; the leading first and third POD modes are
shown in Fig. 3.9.

The next step is to compute the adjoint snapshots, with the POD modes of the
impulse response (projected onto the stable subspace of the adjoint) as the initial
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Figure 3.10: Vorticity contours of the leading (in the order of Hankel singular values of the stable
subspace dynamics) first and third balancing (left) and adjoint (right) modes. The input is given
by leading edge actuation and the output is the entire velocity field, projected onto 10 POD modes.

conditions. As in the case of the linearized impulse response, these simulations are
also restricted to the stable subspace. We compute the impulse response of (2.47),
which is rewritten here:

żs = P∗sA∗ + P∗sC∗v. (3.31)

The snapshots of the impulse responses of systems (3.30) and (3.31) are stacked
as columns of X and Z, and using the expressions (2.33) and (2.34), we obtain
the balancing modes φis and the adjoint modes ψis. We used 200 snapshots of the
linearized simulation and 200 snapshots of each adjoint simulation, with the spacing
between snapshots fixed to 50 timesteps, to compute the balancing transformation.
These number of snapshots and the spacing were sufficient to accurately compute
the modes; further reduction in the spacing did not significantly change the singular
values from the SVD computation (2.33). We considered the outputs to be a
projection onto 4, 10 and 20 POD modes (corresponding to 4, 10 and 20 mode
output-projections, as introduced in section 2.1.4). Using these modes, we use the

expressions in equation (2.57, 2.62) to obtain the matrices Ãs, B̃s, Ĉs defining the
reduced-order model of the stable-subspace dynamics. The vorticity contours of the
balancing and the adjoint modes, for a 10-mode output projected system, are plotted
in Fig. 3.10. The adjoint modes provide a direction for projecting the linearized
equations onto the subspace spanned by the balancing modes. These modes are
quite different from the POD and the balancing modes; thus, the resulting models
are also quite different from those obtained using the standard POD-Galerkin tech-
nique wherein an orthogonal projection is used. Since the models obtained using
balanced truncation are known to perform better than the POD-Galerkin models,
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Figure 3.11: Reduced-order models obtained using approximate balanced truncation. The
empirical Hankel singular values ( ) and the diagonal elements of the controllability ( , ◦)
and observability ( , ×) Gramians of a 25-mode model with leading edge actuation and the
full-state output approximated using a 4, 10, and 20-mode output projection, for the unstable
steady state at α = 35.

as reported in Ilak & Rowley (2008), the better performance could be attributed to
a better choice of projection using the adjoint modes.

Since the reduced-order models of the stable-subspace dynamics are approxi-
mately balanced, the controllability and observability Gramians of the as-dynamics
of (2.57, 2.58), given by expressions (2.16, 2.17), are approximately equal and
diagonal. Further, their diagonal values are approximately the same as the Hankel
singular values (HSVs) σi obtained by the SVD (2.33). The diagonal values of
the Gramians and the singular values for different output projections are plotted
in Fig. 3.11 for a 30-state reduced-order model. With increasing order of output
projection, the HSVs converge to the case with full-state output, and the number
of converged HSVs is roughly equal to the order of output projection, as was
observed by Ilak & Rowley (2008). We see that the diagonal elements of both
the Gramians are very close to the HSVs for the first 20 modes. For higher modes,
the observability Gramians are inaccurate, which is due to a small inaccuracy of
the adjoint formulation mentioned in section 3.1.1. For controller design, we use
models of order ≤ 20, for which these Gramians are sufficiently accurate.

In order to test the accuracy of the reduced-order models, we compare the impulse
responses of system (3.30) (that is, restricted to the stable subspace) with that of
the model (2.57), restricting au = 0. In particular, we compare the outputs of the
two systems, which are the projection onto the POD modes; a representative case in
Fig. 3.13 shows the results of 4, 10 and 20 mode models of a system approximated
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Figure 3.12: The plots represent the same information shown in Fig. 3.11 for reduced-order models
obtained using ERA.

using a 20-mode output projection (the outputs are projection onto the leading
10 POD modes). The first output, which is a projection onto the first POD mode,
is well captured by all the models until t ≈ 60, while the 20-mode model performs
well for all time. Also shown is the eleventh output, which is well captured only by
the 20-mode model. As we will see later, it is important to capture the higher-order
outputs for design of observers.

3.4.1 Comparison with ERA

As described in section 2.3, the eigensystem realization algorithm (ERA) theoreti-
cally results in the same reduced-order models as approximate balanced truncation.
Here, we use ERA to compute models of the stable subspace dynamics and compare
them with those obtained in the previous section using balanced POD.

In order to compute models using ERA, the first step is to collect the Markov
parameters given by (2.69, 2.80), which are simply the outputs of the impulse
response of (2.45, 2.46). Here, the output is the entire velocity field approximated as
a projection onto m-POD modes of this impulse response (using output projection).
Thus, m inner products are required to compute the Markov parameters for each
snapshot. For direct comparison with models obtained using approximate balanced
truncation, 400 pairs of Markov parameters spaced every 50 timesteps were collected
to compute the Hankel matrices H and H1, given by (2.71, 2.78). Thus, for an
output projection of order m, the number of inner products required is mc +mo =
400m (see section 2.3). In comparison, in approximate balanced truncation the
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Figure 3.13: Outputs (projection of the flow field onto POD modes) from a reduced-order model
obtained using a 20-mode output projection. Actuation is near the leading edge. The first (top
figure) and eleventh (bottom figure) outputs of the DNS ( , ◦) are compared with predictions
of models with 4 ( , ×), 10 ( , O), and 20 ( , ∗) modes.

Hankel matrix H is obtained by computing the inner products of forward and
adjoint snapshots as given in 2.83. Thus, the number of inner products required
is 200× 200m, which is 50 times more than that to compute H and H1 in total for
ERA. The number of inner-products required using the two methods for different
orders of output projection is given in table 3.1.

The diagonal values of the controllability and observability Gramians, and the
empirical Hankel singular values of the reduced-order models obtained using ERA
are plotted in Fig. 3.12 and can be compared directly with those obtained using
balanced POD, shown in Fig. 3.11. The models obtained using ERA are more
accurate in the sense that the three sets of curves are almost indistinguishable, for
all orders of output-projection. However, for balanced POD, the diagonal values
of the observability Gramians are accurate only for certain leading modes, the
number of which depends on and increases with the order of output projection. This
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inaccuracy can be attributed to a slight inaccuracy in the adjoint formulation, which
in turn results from an approximation in the multi-domain approach of the immersed
boundary method of Colonius & Taira (2008). Thus, ERA is advantageous as it
does not need any adjoint simulations and results in more balanced Gramians. The
advantage of balanced truncation is that it provides the adjoint modes, which can
be used to compute the reduced states, which in turn can be used for full-state
feedback control. More importantly, these modes can provide other information
such as the identifying regions of the flow that are most sensitive to actuation.

Order of output No. of inner-products No. of inner-products Speed-up
projection using approx. bal. trunc. using ERA factor

4 1.6 ×105 2.0 ×103 80
10 4.0 ×105 4.4 ×103 91
20 8.0 ×105 8.4 ×103 95

Table 3.1: Comparison of the computational costs for obtaining reduced-order models using
approximate balanced truncation and ERA. The second and third column compare the number of
inner-products required in the two methods, using 200 snapshots from each linearized and adjoint
impulse response simulation. The last column is the total speed-up factor achieved using ERA.

3.5 Full-state feedback control

The reduced-order models derived in section 3.4 can now be used along with stan-
dard linear control techniques to obtain stabilizing controllers. We again consider
leading edge actuation and the output is considered to be the entire velocity field.

We use a Linear Quadratic Regulator (LQR) u = Ka so that the eigenvalues

of (Ã + B̃K) (where the matrices were defined in (2.57)) are in the left-half of the
complex plane, and the gain K is chosen to minimize the cost function

J [a, u] =

∫ ∞
0

(a∗Qa+ u∗Ru) dt, (3.32)

where Q and R are positive weights chosen as follows. We choose Q such that the
first term in the integrand of (3.32) represents the energy (in perturbations from the

steady state), that is, we use Q = C̃∗C̃, with C̃ defined in (2.58) and C = I. The
weight R is chosen to be a multiple of the identity cI, and typically c is chosen to be
a large number ∼ O(104−7), to avoid excessively aggressive controllers. The control
implementation steps are sketched in Fig. 3.14; first compute the reduced-order
state a, using the expression (2.64), then the control input is given by u = Ka. Here,
we derive the gain K based on a 12-mode reduced-order model (with 2 unstable and
10 stable modes), using R = 105, and include the same in the original linearized
and nonlinear simulations. The output is approximated using a 4-mode output
projection. The difference between the linear and nonlinear simulations is that, in
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the latter, the steady state field x0 is subtracted from the state x, before projecting
onto the modes to compute the reduced-order state a.

Navier-Stokes equations
ẋ = f(x) + Bu

K Ψ∗

y = x− x0

a = Ψ∗y

u = Ka

Figure 3.14: Schematic of the implementation of full-state feedback control in the nonlinear
simulations. The entire velocity is first projected onto the unstable eigenvectors and the stable
subspace POD modes to compute the reduced-order state a. The state is then multiplied by the
gain K, computed based on the reduced-order model using LQR, to obtain the control input u.

Fig. 3.15 compares the model predictions with the projection of data from the
simulations of the linearized system (3.16, 3.17), with a control input. The initial
condition used is the flow field obtained from an impulsive input to the actuator.
Both the states shown in the figure eventually decay to zero, which implies that
the perturbations decay to zero, thus stabilizing the unstable steady state. More
importantly, the model predicts the outputs accurately for the time horizon shown
in the plots.

We now use the same controller in the full nonlinear simulations and test the
performance of the model for various perturbations of the steady state. A plot of
the lift coefficient CL vs. time t, with the control turned on at different times of the
base simulation, is shown in Fig. 3.16. The initial condition for the base case (no
control) is the unstable steady state; eventually, small numerical errors excite the
unstable modes and the flow transitions to periodic vortex shedding. In separate
simulations, control is turned on at times t = 170, 180, 210 corresponding to the
base case. As the figure shows, the control is effective and is able to stabilize the
steady state in each case, even when the flow exhibits strong vortex shedding. We
remark that the latter two of these perturbations are large enough to be outside the
range of validity of the linearized system, but the control is still effective, implying a
large basin of attraction of the stabilized steady state. We also compare the output
of the reduced-order model with the outputs of the nonlinear simulation; the plots
are shown in Fig. 3.17. The models perform well for the initial transients, but for
longer times fail to capture the actual dynamics. This is not surprising as these
perturbations are outside the range of validity of the linear models. For control
purposes, it appears to be sufficient to capture the initial transients (approximately
one period), during which the instability is suppressed to a great extent. We remark
that one could possibly compute nonlinear models by projecting the full nonlinear
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Figure 3.15: Control gain obtained using LQR, and the initial condition is that obtained by
an impulsive input to the system with leading edge actuation. Control is turned on at t = 0.
Comparison of the outputs yu1 and ys3 of a 12-mode reduced-order model ( ,×) with the
projection of data from the linearized simulation ( , ◦).

equations onto the balancing modes, or enhance the model subspace by adding POD
modes of vortex shedding and the shift modes as proposed by Noack et al. (2005)
to account for the nonlinear terms.

Finally, we note that the reduced-order model (2.57) decouples the dynamics on
the stable and unstable subspaces, and also, the dynamics on the unstable subspace
can be computed only using the unstable eigen-bases Φu and Ψu. Thus, we could
derive a control gain K ∈ R1×nu , based only on the two-dimensional unstable part
of the model, such that the eigenvalues of (Ãu − B̃uK) are in the left half complex
plane. That is, we can obtain a stabilizing controller without modeling the stable
subspace dynamics. We have performed simulations to test such a controller and
found that it also is capable of suppressing the periodic vortex shedding and thus
results in a large basin of attraction for the stabilized steady state. The choice of
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Figure 3.16: Leading edge actuation. Lift-coefficient CL vs. time t, for full-state feedback control,
with control turned on at different times in the base uncontrolled simulation. The base case
with no control ( ) has the unstable steady state as the initial condition, and transitions
to periodic vortex shedding. The control is tested for different initial conditions, corresponding
to t = 170, 180, 210 of the base case, and stabilizes the steady state in all the cases ( ).

weight matrices Q and R in the LQR cost (3.32) needs to be different to obtain a
comparable performance. However, as shown in the next section, it is essential to
model the stable subspace dynamics to design a practical controller based on an
observer that reconstructs the entire flow field using a few sensor measurements.

3.6 Observer-based control

The full-state feedback control of section 3.5 is not directly useful in practice, since
it is not possible to measure the entire flow field. Here, we consider a more practical
approach of measuring certain flow quantities at a small number of sensor locations.
We assume that we can measure the velocities at the sensors shown in Fig. 3.2, in
the near-wake of the plate. We remark that, even though these sensors may not be
experimentally realizable, they serve as a good testing ground for our models. We
will consider both leading and trailing edge actuation.

Using the reduced-order models derived as outlined in section 3.4, we design
observers that dynamically estimate the entire flow field. The estimation is then
used along with the full-state feedback controllers of section 3.5 to determine the
control input. We outline two different approaches for developing these observers.
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Figure 3.17: Outputs of a system with full-state feedback control using leading edge actuation.
The control gain is obtained using LQR, and the initial condition is that corresponding to t = 180
of the uncontrolled case plotted in Fig. 3.16. Comparison of the outputs yu1 and ys1 of a 12-mode
(2 unstable and 10 stable modes) reduced-order model ( ,×) with the projection of data from
the full nonlinear simulation ( , ◦).

3.6.1 Observer design 1: using models that are not balanced

The approximate balanced truncation method produces reduced models of the
input-output response of the original system, and thus the inputs and outputs to the
system first need to be defined. In section 3.5, the output was considered to be the
entire velocity field, observed as a projection onto a small number of modes using
output projection. The output matrix C̃ of the resulting model (2.57, 2.58) can

now be modified to represent the sensor measurements, while retaining Ã and B̃.
We replace the output equation (2.58) with

y = M
(
C̃u C̃s

)
a

def
= Ca, (3.33)
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Figure 3.18: The energy of the flow-field (L2−norm) obtained from an impulse response ( , ◦)
of (3.30) with leading edge actuation, and the energy captured by 4 ( , ×), 10 ( , O), and
20 ( , �) leading POD modes.

where M ∈ Rs×n and s is the number of sensor measurements. The matrix M is
sparse and extracts the values of the output of (2.57) at the sensor locations; thus,
each row of M is filled with 0s except for the entry corresponding to a sensor
measurement, which is 1.

Since the observability Gramian corresponding to the pair (Ã, C) is different from

that for the pair (Ã, C̃), the model (2.57) with the output represented by (3.33),
is not balanced. However, an advantage of using these models is that the cost
function (3.32), based on the total kinetic energy of the perturbation velocity, is
well captured.

The models used in section 3.5 for full-state feedback were those of a system whose
stable-subspace output was the velocity field projected onto the leading 4 POD
modes. These 4 POD modes capture only about 85% of the energy, but the resulting
models were effective in suppressing vortex shedding. However, for observer design,
this representation of the output is inadequate, as the energy content of the flow at
the sensor locations is very small, while the POD modes capture the energetically
dominant modes. Hence, a greater number of POD modes is required to accurately
represent the velocity at the sensor locations. The temporal evolution of the energy
content of the flow, obtained from an impulse response of the system restricted
to evolve on the stable subspace, is plotted in Figure 3.18. Also plotted is the
energy content of the same flow, but projected onto the leading 4, 10 and 20 POD
modes; thus, a 4-mode projection leads to noticeable errors, while both 10- and 20-
mode projections accurately represent the energy. The velocity field at the sensor
locations, reconstructed by 10 and 20 POD modes, plotted in Figure 3.19, shows
that a 10-mode projection does not accurately represent the velocities at the sensor
locations. Since 20 POD modes are sufficient to represent these velocities, we derive
models using a 20-mode output projection, and use the same for observer design.
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Figure 3.19: Velocities at the sensor locations ( , ◦), of an impulse response of (3.30) with
leading edge actuation, compared with the reconstruction using 10 ( , O) and 20 ( , ×)
leading POD modes.

3.6.2 Observer design 2: develop balanced models

The more systematic approach is to construct reduced-order models of the system
with the outputs corresponding to the sensor measurements. Since the number
of outputs is typically small (here, we consider two velocity sensors), the output
projection step is not required. The models are obtained using:

1. The approximate balanced truncation described in section 2.2.2, for which
we need two adjoint impulse response simulations. We note that the lin-
earized Navier-Stokes equations (3.16, 3.17) are differential-algebraic equa-
tions (DAEs), with the algebraic equations (3.17) imposing the constraint that
enforces the velocity fields to remain divergence-free and to satisfy the no-slip
boundary conditions at the flat plate surface. The adjoint equations for these
DAEs are appropriately derived using the procedure outlined in appendix B.2.
As a result, instead of (2.27, 2.2), the adjoint equations are given by:

ż = PHA∗z + PHC∗v (3.34)

w = B∗z, (3.35)

where PH is an orthogonal projection onto the range of nullspace of EC(CTC)−1,
which defines the algebraic constraint (3.17).

2. The eigensystem realization algorithm (ERA) described in section 2.3, which
results in the same models (of the stable subspace dynamics) as approximate
balanced truncation at a lower computational cost. The method does not
require adjoint simulations and only the impulse-response simulations of the
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linearized system (3.16, 3.17), projected onto the stable subspace. The only
information that needs to be stored is the velocity measurements at the
sensor locations, which form the Markov parameters (2.69). The reduced-
order models (of the stable subspace dynamics) is given by (2.73, 2.74).

The models obtained using the above methods are balanced and thus capture the
most controllable and observable modes. In order to design the controllers using
these models, the LQR weight is again chosen to be Q = C̃∗C̃, which in this case
seeks to minimize the energy of the output signal.

3.6.3 Modeling of process and sensor noise

The reduced-order models derived above are now used to develop observers using a
Linear Quadratic Gaussian (LQG) estimation. This method assumes that the errors
in representing the state a and and the measurement y (due to the inaccuracies of
the model) are stochastic Gaussian processes, and results in an estimate â of the
state a that is optimal in the sense that it minimizes the mean of the squared error;
refer to Skogestad & Postlethwaite (2005) for details. We now discuss briefly our
procedure for modeling these noises; consider the reduced-order model (2.57, 2.58),
but with process noise w and sensor noise v which enter the dynamics as follows:

ȧ = Ãa+ B̃u+ w (3.36)

y = C̃a+ v. (3.37)

A key source of the process (state) noise w arises from model truncation, and second,
from ignoring the nonlinear terms in the reduced-order model. The nonlinearity
of the dynamics is important, for instance, when the model is used to suppress
vortex shedding. A source of the sensor noise arises from two sources; first, the
state x is approximated as a sum of a finite number of modes (2.49), and second,
in the output projection step (if used), the output is considered as a projection of
the (approximated) state x onto a finite number of POD modes (2.55). Here, we
approximate these two noises as Gaussian processes whose variances are

Q = E(ww∗), w = f(ameas)− Ãameas, (3.38)

R = E(vv∗), v = y − Cameas, (3.39)

and E(·) gives the expected value. Here, f(·) is the operator obtained by projecting
the nonlinear Navier-Stokes equations (3.1) onto the balancing modes Φ, using the
adjoint modes Ψ. The state ameas is obtained by projecting the snapshots, obtained
from a representative simulation of the full nonlinear system, onto the balancing
modes. The representative simulation we used here is the base case, with no control,
shown in Fig. 3.16, which includes the transient evolution from the steady state to
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periodic vortex shedding. The resulting estimator is of the form:

˙̂a = Ãâ+ B̃u+ L(y − Câ), (3.40)

ŷ = Câ, (3.41)

where â is the estimate of state a, ŷ is the estimated output, and L is the observer
gain. The estimator is then used along with the full-state feedback controller
designed in section 3.5 to determine the control input; a schematic is shown in
Fig. 3.20.

K

Navier-Stokes equations
ẋ = f(x) + Bu

y = Cx

Sensor
output, y

Reduced order observer
˙̂a = Ãâ + B̃u + L(y − C̃â)

â

u = Kâ

u

y

Figure 3.20: Schematic of the implementation of observer-based feedback control in the nonlinear
simulations. The control input u and the sensor measurements y are used as inputs to the observer,
which reconstructs the reduced-order state â. This state is then multiplied by the gain K, to obtain
the control input u. Both, the controller and observer gains K and L are computed based on the
reduced-order model using LQR and LQG respectively.

3.6.4 Observer-based control

Observers using method 1: models are not balanced

The models obtained using the modified output (3.33) are used to design dynamic
observers based on the vertical (v-) velocity measurements at the sensor locations.
A 22-mode reduced-order model, with 2 and 20 modes describing the dynamics on
the unstable and stable subspaces respectively, is used to design a Kalman filter for
producing an optimal estimate of the velocity field based on Gaussian approxima-
tions of error terms (3.38, 3.39). This estimate is then used along with reduced-order
controller to determine the control input, as shown in Fig. 3.20. The results of this
observer-based controller (or compensator) are shown in Figs. 3.21, 3.22. Initially,
the observer has no information about the states (the initial condition is zero),
but it quickly converges to and follows the actual states. There is a key difference
from the full-state feedback control, that the compensator does not stabilize the
unstable operating point but converges to its small neighborhood. Thus, although
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the controller gains are chosen to stabilize the operating point of the reduced model,
it is unstable in the full system. This is a result of the approximations that enter
in the modeling procedure, namely, that of the state by projecting onto balancing
modes and the output by means of projection onto POD modes.

Observers using method 2: balanced models using ERA

The reduced-order models are designed using ERA with the sensor measurements
as at the output. In the case of point measurement outputs, the cost benefit of
ERA is much greater (in comparison to the full-state output), as no inner-products
are required to compute the Markov parameters (2.69, 2.80). In comparison, the
balanced POD procedure still requires the computation of mcmo block inner prod-
ucts to compute the Hankel matrix (2.83). Thus, ERA allows easy experimentation
with different choices of actuators and different controller and observer gains. The
trailing edge actuator resulted in better closed-loop performance over the leading-
edge actuator; the results are shown in Figs. 3.23, 3.24. Again, initially the observer
has no information about the states, but soon converges to the actual states;
see Fig. 3.24, where, since the actual states cannot be computed using ERA, a
comparison of the actual and estimated outputs is given. Further, from Fig. 3.23,
we see that the unstable operating point is indeed stabilized in this case.

We experimented with a few other actuators, such as narrower actuation near the
leading edge and mid-chord, but neither resulted in stabilizing controllers. Although
ERA allows for easy experimentation, the method of choosing actuators remains
ad-hoc and a more systematic approach towards actuator and sensor placement is
required; further discussion is provided in the concluding chapter.

3.7 Summary

The model reduction techniques developed in chapter 2 were applied in this chapter
to develop controllers for the 2-D low-Reynolds-number flow past a flat plate at a
large angle of attack α, where the natural flow state is periodic vortex shedding. We
performed a continuation study at Re = 100 and computed the branch of steady
states with α varying from 0 to 90◦; we show that the flow undergoes a Hopf
bifurcation from steady state to periodic shedding at α ≈ 27◦. We performed
a linear stability analysis of these steady states and presented the growth rate
and frequencies of the leading eigenmodes. We developed reduced-order models of
the linearized dynamics at α = 35◦, considering two different actuators modeled
as a localized body force close to the leading and trailing edges of the plate.
The outputs were first considered to be the entire flow field, projected onto the
unstable eigenmodes and the leading POD modes of the impulse response simulation
(restricted to the stable subspace). We developed stabilizing controllers based on
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Figure 3.21: Lift-coefficient CL vs. time t, for estimator-based feedback control, with control
turned on at different times in the base uncontrolled simulation. The base case ( ) is the
same as in Fig. 3.16, and the control is tested for different initial conditions, corresponding to t =
170, 180, 210 of the base case ( ). In both the cases, the controller stabilizes the flow to a
small neighborhood of the steady state.

the reduced-order models to stabilize the unstable steady state and showed that the
models agreed well with the actual simulations. We also included the controllers
in the full nonlinear simulations, and showed that they had a large-enough basin
of attraction to even suppress the vortex shedding. For such large perturbations,
however, the model agreement with the full simulation was good only for short
times. We also developed more practical controllers by considering an observer-
based control design, in which the outputs were modified to be just two near-wake
velocity measurements. The nonlinear terms in the equations, which our models do
not capture, were treated as process noise, and the error in modeling the outputs
was treated as sensor noise. We designed a 22-mode reduced-order observer which
reconstructed the flow field accurately, and along with the controllers, suppressed
vortex shedding and stabilized the flow in a small neighborhood of the unstable
steady state. We remark that the actuator and sensors considered here are not
practically realizable, but the methodology presented here can be extended to a more
practical actuation such as blowing and suction through the plate and measurements
using surface pressure sensors.
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Figure 3.22: States of the system with observer-based control; the states reconstructed ( , ×)
by a 22-mode observer quickly converge to the actual states ( , ◦). The initial conditions
used are those corresponding to t = 180, 210 (top and bottom) of the uncontrolled case shown in
Fig. 3.21.
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Figure 3.23: Trailing edge actuation and models obtained using ERA. Lift-coefficient CL vs. time t,
with the different curves similar to that in Fig. 3.21. The controller stabilizes the unstable steady
state for all initial conditions.
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Figure 3.24: Outputs of the system with observer-based control; trailing edge actuation is used
and the models are obtained using ERA. The outputs reconstructed ( , ×) by a 22-mode
observer quickly converge to the sensor measurements ( , ◦). The initial conditions used are
those corresponding to t = 210 of the uncontrolled case shown in Fig. 3.23.
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Chapter 4

Symmetry reduction for
stabilization of relative equilibria

The previous two chapters dealt with exploiting the low-dimensionality of the be-
havior of certain fluid flows, typically characterized by large coherent structures,
in order to obtain reduced-order models of the governing Navier-Stokes equations.
In this chapter, we consider fluid flows that are characterized by another structure,
that of symmetry: some examples include Taylor-Couette flow, Rayleigh Bénard
convection, circular jets and plane channel flow, all of which have translation,
rotation or reflection symmetries. Analysis of the physics of these flows, which
is rich in terms of the bifurcations that take place, has benefited immensely from
symmetry-reduction methods developed using group theory; see the review article
by Crawford & Knobloch (1991) and also the volumes by Golubitsky & Schaeffer
(1985); Golubitsky et al. (1988).

Control of fluid flows with symmetry has also been an active area of research. For
example, Weisberg et al. (1997) and Marques & Lopez (1997) studied the Taylor-
Couette flow and showed that the formation of Taylor vortices could be delayed
to larger rotation rates of the inner cylinder by harmonic axial sliding of the inner
cylinder, while Sinha et al. (2006) and Avila et al. (2007) investigated symmetry-
breaking bifurcations to more complex behavior in the same flow at higher rotation
rates. Tang & Bau (1998) and Or et al. (2001) developed controllers to delay the
onset of Rayleigh-Bénard convection. Add more examples.

An important class of solutions of systems with a continuous symmetry are
relative equilibria, which are states that evolve only in the symmetry direction. For
example, in a translationally invariant system, relative equiibria are simple traveling
waves that move at a constant speed, while their shape remains unchanged. Other
simple examples are standing, rotating, and modulated waves, and spiral and Taylor
vortices; see the introduction of Roberts et al. (2002) for examples in various other
systems. In this chapter, we develop controllers that stabilize unstable relative
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equilibria, by using symmetry reduction methods that borrow ideas from Lie group
theory widely used in geometric mechanics (Marsden, 1992; Marsden & Ratiu, 1994).

In this chapter, we employ symmetry reduction using a template-based method
developed in Rowley & Marsden (2000) and generalized to self-similar systems
in Rowley et al. (2003). The method has been used by Wei & Rowley (2009), in
combination with proper orthogonal decomposition (POD), to develop models of a
free shear layer with self-similar spreading; models were developed in a scaled frame
of reference obtained by factoring out the self-similarity. We extend the template-
based method to systems with control and obtain equations in a symmetry-reduced
frame of reference. The relative equilibria of the original system are fixed points
of these reduced equations. Our controller design methodology is based on the
linearization of the reduced equations about such fixed points, and is simple to im-
plement as it relies on standard linear control techniques. We illustrate our approach
using three examples: a planar rotationally invariant ODE, an inverted pendulum
on a cart, and the translationally invariant Kuramoto-Sivashinsky equation in one
spatial dimension. The work presented in this chapter has been published in Ahuja
et al. (2007).

4.1 Template-based reduction

In this section, we first describe the method of slices introduced in Rowley et al.
(2003) to obtain equations in a frame of reference in which the symmetry of the
system has been factored out, and extend it to systems with control. More precisely,
given dynamics on a manifoldM that are equivariant to the action of a Lie group G,
the procedure results in reduced dynamics that evolve on a subspace of M that is
locally diffeomorphic to the quotient spaceM/G. In many standard examples, (e.g.,
Lie-Poisson or Euler-Poincare reduction (Marsden & Ratiu, 1994), in which M =
T ∗G or TG), this quotient space may be constructed explicitly (e.g., it is g∗ or g),
but in other examples, such as equivariant PDEs, it is often not clear how to write
coordinates on the quotient space, and this is where the present method is useful.

4.1.1 Template dynamics of systems with control

Consider the evolution equations on an n-dimensional manifold M with control
inputs u ∈ U

ż = X(z, u) (4.1)

where z(t) ∈ M , ż := dz/dt and the initial condition is z(0) = z0. Suppose that
the dynamics of (4.1) are equivariant to the action of a d-dimensional Lie group G.
The action of G on M is Φg : M → M, that on U is Ψg : U → U and we
assume that both actions are free and proper, so that the quotient space M/G is a
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smooth manifold; see Marsden & Ratiu (1994). The equivariance of (4.1) implies
that ∀z ∈M, ∀u ∈ U , and ∀g ∈ G,

X(Φg(z),Ψg(u)) = TΦg(X(z, u)) (4.2)

where TΦg : TM → TM is the tangent of the action on M . Further, we assume
that with zero input u = 0, the vector field in (4.1) is X(z, 0) = X(z).

In what follows, we will use the short-hand concatenation to denote all the group
actions:

g · z := Φg(z) ∀z ∈M, (4.3)

g · v := TΦg(v) ∀v ∈ TM, (4.4)

g · u := Ψg(u) ∀u ∈ U . (4.5)

The idea behind the method of slices is that we decompose the solution z(t)
of (4.1) and the input u(t) as

z(t) = g(t) · z̃(t) (4.6)

u(t) = g(t) · ũ(t) (4.7)

where g(t), z̃(t), and ũ(t) are curves in G,M, and U respectively. The value of g(t) is
to be chosen such that z̃(t) is constrained in a useful manner: in particular, it evolves
on a subspace locally diffeomorphic to the quotient spaceM/G. Substituting (4.6,
4.7) into (4.1) and using equivariance (4.2), we obtain

˙̃z = X(z̃, ũ)− ξM(z̃), (4.8)

where, ξM : M → TM is the infinitesimal generator of the action Φg in the
direction ξ(t) = g−1ġ ∈ g, the Lie algebra of G; it is defined by

ξM(z̃) =
d

ds

∣∣∣∣
s=0

h(s) · z̃, (4.9)

where h(s) is a curve in G such that h(0) = Id, dh/ds(s = 0) = ξ. See Rowley et al.
(2003) for the details leading to equation (4.8). Note that the vector field (4.8) is
the same as that of (4.1) with an additional term subtracted. This additional term
depends on ξ(t) (and hence on g(t)), the choice of which so far has been arbitrary.
As discussed in Rowley et al. (2003) and Beyn & Thümmler (2004), there are several
ways to place a constraint on ξ(t) such that the dynamics of z̃(t) are restricted to a
subspace that is isomorphic to M/G. The template-based method, or the method
of slices, is one such way described in Rowley et al. (2003).

In order to use the template-based method, we assume thatM is a vector space
endowed with an inner product, denoted by 〈·, ·〉. We then choose a template z0 ∈M
and choose a constraint on z̃(t) so that, in time, it remains “aligned with” the
template z0 in the following sense: h = Id is a local minimum of ‖z̃ − h · z0‖. This
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Figure 4.1: Method of slices

condition is equivalent to requiring z̃(t) to lie in an affine space Sz0 defined by

Sz0 = {z̃ ∈M| 〈z̃ − z0, ηM(z0)〉 = 0, ∀η ∈ g}. (4.10)

We call this set the slice through z0. As shown in Fig. 4.1, the slice Sz0 may be
interpreted as an (n−d)-dimensional affine space containing z0 and orthogonal to the
group orbit through z0. It can be shown that this slice is locally isomorphic to the
quotient space M/G, consisting of equivalence classes of M in which two points in M
related by the group action are identified. Thus, in writing the decomposition (4.6,
4.7) and choosing z̃(t) to lie in the slice, we effectively move to a reference frame in
which the motion in the group direction has been factored out.

Now, differentiating (4.10) with respect to time and using (4.8), we find that
requiring z̃(t) to live on the slice is equivalent to requiring 〈 ˙̃z, ηM(z0)〉 = 0, ∀η ∈ g.
This gives a set of d algebraic equations for ξ (recall that d = dim(G)):

〈X(z̃, ũ)− ξM(z̃), ηM(z0)〉 = 0, ∀η ∈ g. (4.11)

Equation (4.11) essentially means that ξ is chosen such that the projection of the
vector field X(z̃) and of ξM(z̃) onto the direction perpendicular to the slice Sz0 is the
same: refer to the right hand part of Fig. 4.1. Equations (4.8, 4.10) are the reduced
or slice dynamics of (4.1) and are evolution equations for the shape variable z̃(t).
To get the full solution z(t), we still need g(t), for which we have the following
reconstruction equations:

g−1ġ = ξ(t) (4.12)

where, for a given z̃(t), ξ(t) is given by (4.11). The slice dynamics for the open loop
or uncontrolled equations can be obtained by simply setting ũ = 0 in (4.8, 4.10).

Note that the constraint (4.11) in general depends on the control input ũ, which
means that ξ(t) and g(t) depend on ũ. Thus, in general, the control input affects
the group variables as well as the shape variables. We are particularly interested in
the way the control input splits between these two variables.

66



4.1.2 Control objective

A fixed point of the slice dynamics of (4.1) is a relative equilibrium of (4.1). Assume
that z̃s is a fixed point of the slice dynamics of (4.1) with no control input, that
is, z̃s is a fixed point of (4.8, 4.11) with ũ = 0. Then, the corresponding solution
of (4.1) is given by z(t) = g(t) · z̃s, which is a relative equilibrium.

We want to find feedback laws such that z̃s is an asymptotically stable fixed point
of (4.8), with control, thus stabilizing the whole group orbit G · z̃s of the original
system. We consider two different ways in which the control input appears in the
closed loop equations.

1. Assume that the dynamics are affine in the control input and that the avail-
able actuation is equivariant. Then, we find feedback laws that minimize a
prescribed quadratic cost function that is invariant to the group action.

2. Assume that we don’t have equivariant actuators but that the actuators can be
“translated” in the group direction using an additional control input. Then,
we obtain feedback laws by restricting the control to affect only the shape space
and not the group space. Such a control has been called internal actuation
in Jalnapurkar & Marsden (2000).

4.2 Control of differential-algebraic equations

The slice dynamics (4.8, 4.10) form a set of differential-algebraic equations (DAEs),
and the control of such systems has been extensively studied; see Dai (1989); Vergh-
ese et al. (1981); Cobb (1981, 1983); Krishnan & McClamroch (1992); Kumar &
Daoutidis (1995, 1996, 1999) for examples. Equation (4.10) constrains the dynamics
of (4.8) to live on the slice Sz0 . That is, Sz0 is an (n − d)-dimensional invariant
subspace of (4.8, 4.10), and it is the dynamics on this subspace that we want to
control.

The feedback control problem of a class of nonlinear DAEs that is relevant here
was addressed in Kumar & Daoutidis (1995, 1996, 1999); the procedure developed
in these papers is as follows. First, an algorithmic procedure is outlined to eliminate
the constraints and obtain an equivalent state-space realization of the DAEs. The
feedback synthesis is based on this state-space realization, using tools from linear or
nonlinear systems. The slice dynamics fall under this class of DAEs and we use the
same procedure, outlined as follows, to derive a state-space realization and derive
stabilizing feedback laws:

1. Differentiate the algebraic constraint (4.10) with respect to time and use the
ODEs (4.8) to obtain an explicit expression for ξ in terms of z̃ (4.11).
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2. Substitute for ξ in (4.8) to get a set of n-ODEs, which have the slice Sz0 as
a d-dimensional invariant subspace. As we will show more explicitly later in
this section, the slice is an affine subspace of M .

3. Linearize the ODEs about the relative equilibrium, which is a fixed point
of this system. Since the slice dynamics have the slice as a linear invariant
subspace, the resulting linearized ODEs also have the same invariant subspace.

4. Use equation (4.10) of the slice Sz0 to eliminate d equations from (4.8) to get
an (n− d)-dimensional state space realization.

5. Use tools from linear control theory to find stabilizing feedback laws.

4.2.1 Linearization about a relative equilibrium

Here, we derive an expression for the linearization of the slice dynamics about the
fixed point in the slice. For that, it is helpful to use the fact that the infinitesimal
generator ξM(z) is linear in ξ and thus can be expressed in the following form:

ξM(z) = Y (z)ξ (4.13)

where Y (z) : g → TzM is linear. Assuming that M is an inner product space and
using (4.13), the equation of the slice (4.10) simplifies as follows:

〈z − z0, Y (z0)η〉 = 0, ∀η ∈ g, (4.14)

=⇒ Y ∗(z0)(z − z0) = 0. (4.15)

where Y ∗(z0) : TM→ g is the adjoint of Y (z0). Thus, the slice Sz0 is the space of
all vectors z − z0 in the null space of Y ∗(z0) and this subspace forms an (n − d)-
dimensional affine subspace.

With the form (4.13) of the infinitesimal generator, we can obtain an explicit
form for ξ that appears in the slice dynamics (4.8). Since ξ satisfies (4.11), we have

〈X(z̃, ũ)− Y (z̃)ξ, Y (z0)η〉 = 0, ∀η ∈ g. (4.16)

Thus, ξ =
(
Y ∗(z0)Y (z̃)

)−1

Y ∗(z0)X(z̃, ũ). (4.17)

Substituting for ξ into (4.8) from (4.17) results in a purely differential system of
equations.

We assume that the template has been chosen such that (Y ∗(z0)Y (z̃))−1 exists.
We will explore the physical significance of this assumption with specific examples
in section 4.5. If we use z0 = z̃(t) and assume Y (z̃) to have full rank, then Y ∗Y
will always be invertible. This choice of a time-dependent template gives a different
method for deriving reduced dynamics, which was introduced and called as the
method of connections in Rowley et al. (2003). However, unlike the method of
slices, the resulting reduced dynamics do not have an invariant subspace (in the
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terminology of Rowley et al. (2003), the connection is not flat) containing a unique
equilibrium. As our control method relies on the existence of such an invariant
subspace, we use the method of slices throughout this work.

Now we are ready to derive an expression for the linearized dynamics in the
neighborhood of a fixed point z̃s. Let z̃ = z̃s+w and ũ = 0+v, where ‖w‖, ‖v‖ � 1
are small perturbations about the fixed point and zero input. We think of w as a
perturbation restricted to lie within the slice. Substituting this expansion in (4.8),
where ξ is given by (4.17), and simplifying gives (refer to appendix C for a derivation)

ẇ = PSz0
(
Dz̃X(z̃s, 0)w +DũX(z̃s, 0)v

)
− PSz0Dz̃Y (z̃s)w

(
Y ∗(z0)Y (z̃s)

)−1

Y ∗(z0)X(z̃s, 0) +O(2) (4.18)

def
= PSz0 (Âw + B̂v) +O(2), (4.19)

where O(2) represents terms second or higher order in w and v. Here, PSz0 is a
projection onto the slice, i.e., the space orthogonal to the range of Y (z0):

PSz0 = I − Y (z̃s)
(
Y ∗(z0)Y (z̃s)

)−1

Y ∗(z0). (4.20)

The linearization (4.19) clearly has an invariant subspace that lives on the slice Sz0 .
That is, (4.19) identically satisfy the constraint (4.15), which in terms of w is:

Y ∗(z0)w = Y ∗(z0)(z̃s − z0) = 0. (4.21)

Now, (4.20) is symmetric if and only if z0 = z̃s, that is, if the template is chosen to
be the fixed point. In that case, (4.20) is an orthogonal projection onto the space
orthogonal to the columns of Y (z̃s). In what follows and in the rest of this chapter,
we will assume that the template chosen to define the slice Sz0 is the fixed point of
the slice dynamics, z̃s. Our control design in later sections is based on the linear
part of equations (4.19). In particular, we will use LQR to derive optimal feedback
laws that stabilize z̃s.

Linearization about a fixed point

In the special case of the relative equilibrium that is also a steady state of the full
dynamics (in which case a continuum of such steady states exist), the linearized
equations (4.19) take a much simpler form. For this case, we have X(g · z̃s, 0) = 0,
∀g ∈ G and hence the linearized slice dynamics (4.19) become:

ẇ = PSz̃s (Dz̃X(z̃s, 0)w +DũX(z̃s, 0)v) +O(2) (4.22)

def
= PSz̃s (Aw +Bv) +O(2). (4.23)
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This implies that for linearization about a fixed point of (4.1), the following diagram
commutes:

ż = X(z, u)
lin. about z̃s−−−−−−−−−→ ẇ = Aw +Bv

↓ slice dynamics ↓ PSz̃s (4.24)

˙̃z = X(z̃, ũ)− ξM(z̃)
lin. about z̃s−−−−−−−−−→ ẇ = PSz̃s (Aw +Bv).

In words, the linearization of the slice dynamics about its fixed point is the same as
the projection of the linearized original dynamics (about the same point) onto the
slice defined with that fixed point as a template.

4.3 State-space formulation

In this section, we find an equivalent state-space realization of the linear DAEs (4.19,
4.21) by using the constraint equation (4.21) to eliminate d equations from (4.19).
First, we write w = (ws, wg), where ws ∈ Rn−d and wg ∈ Rd. Then the equa-
tions (4.19) can be written as(

ẇs
ẇg

)
=

(
As1 Ag1
As2 Ag2

)
︸ ︷︷ ︸

PSz̃s Â

(
ws
wg

)
+

(
Bs

Bg

)
︸ ︷︷ ︸
PSz̃s B̂

v. (4.25)

Similarly, the constraint (4.21) can be written as(
Y ∗s (z̃s) Y ∗g (z̃s)

)︸ ︷︷ ︸
Y ∗(z̃s)

(
ws
wg

)
= 0. (4.26)

where Y ∗s ∈ Rd×(n−d) and Y ∗g ∈ Rd×d. The splitting w = (ws, wg) is chosen such
that Y ∗g (z̃s) is invertible, so that we can express wg in terms of ws. This can always
be done as Y (z̃) has full rank. Thus, we have

wg = −(Y ∗g (z̃s))
−1Y ∗s (z̃s)ws

def
= Λws. (4.27)

Then the state space realization is obtained by substituting (4.27) in the ẇs equa-
tions in (4.25). The resulting equations are:

ẇs = (As1 + Ag1Λ)ws +Bsv
def
= Asws +Bsv. (4.28)

Various properties of the linear DAEs such as controllability and stabilizability can
now be stated based on the state equations.
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4.3.1 Controllability and stabilizability

A simple check for controllability of the slice Sz0 is as follows. Construct the
controllability test matrix corresponding to the pair (PSz0 Â,PSz0 B̂) of (4.19):

C = PSz0
[
B̂ (ÂPSz0 )2B̂ . . . (ÂPSz0 )n−1B̂

]
. (4.29)

Since the span of C defines the controllable subspace of (4.19), the slice Sz0 is a
controllable subspace of (4.19) iff rank(C) = n − d. Since C is independent of
the splitting (4.26), controllability of the slice is also independent of this splitting.
However, in general, controllability does depend on the template z0 chosen to define
the slice.

There is another equivalent test for controllability of (4.19), which arises from
the theory of control of linear DAEs of the form Eẋ = Āx + B̄u, where E is
singular. Such systems are treated, for example, in Cobb (1981, 1983) and Dai
(1989). To express our system in this form, we ignore the differential equations in the
variable wg from (4.25) and augment the system with the algebraic equations (4.26).
This gives us the following set of DAEs:(

I 0
0 0

)
︸ ︷︷ ︸

E

(
ẇs
ẇg

)
=

(
As1 Ag1

Y ∗s (z̃s) Y ∗g (z̃s)

)
︸ ︷︷ ︸

Ā

(
ws
wg

)
+

(
Bs

0

)
︸ ︷︷ ︸

B̄

v. (4.30)

The above equations are indeed in the form Eẋ = Āx + B̄u, where E is a singular
matrix with rank n−d. Then, from theorem 2-2.1 on page 29 of Dai (1989), we have
the following condition for controllability: Sz̃s is a controllable subspace of (4.19) if
and only if

rank
[
sE − Ā B̄

]
= n, ∀s ∈ C, s finite. (4.31)

4.4 Feedback control design

In this section, we use the state-space representation of the linearized slice dynam-
ics (4.28) to derive optimal feedback laws that asymptotically stabilize the relative
equilibria. First, we find the feedback laws for the linearized reduced system and
then we derive the form that these laws take in the full space. Essentially, we could
use pole placement to find the feedback gain such that the poles of the resulting
closed loop system are in the left half complex plane. We could also use LQR to
find feedback laws that minimize a given cost function, quadratic in ws and v. The
trouble with these approaches is that in general the resulting feedback law depends
on the way we split w into (ws, wg). In order to circumvent this problem, we define
the cost function in terms of the original variables z and u. Then, we use (4.27) to
derive the form this cost function takes in terms of the reduced variables ws and v.
The resulting feedback law is then independent of the choice of (ws, wg).
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4.4.1 Optimal control with equivariant actuation

We assume that the closed loop dynamics (4.1) are affine in the control input:

X(z, u) = X(z) +H(z)u. (4.32)

Equivariance of (4.32) implies that H(z) has to satisfy the following property:

H(Φg(z)) ◦Ψg = TzΦg ◦H(z), ∀g ∈ G, ∀z ∈M. (4.33)

We seek a feedback law for u such that z̃s is a stable fixed point of the slice dynamics
of (4.1,4.32) and the following cost function is minimized:

J [z̃, ũ] =

∫ ∞
0

( 〈z̃ − z̃s, Q(z̃ − z̃s)〉+ 〈ũ, Rũ〉 ) dt. (4.34)

where Q :M→M and R : U → U are positive definite weights. The cost (4.34) is
prescribed to be invariant to the action of G, that is, J [Φh(z),Ψh(u)] = J [z, u], for
all h ∈ G. This in turn imposes the following restrictions on Q and R:

Q = Φh−1 ◦Q ◦ Φh, (4.35)

R = Ψh−1 ◦R ◦Ψh, ∀h ∈ G. (4.36)

Using (4.6,4.7), and the invariance (4.36), the cost (4.34) in terms of the original
variables z and u is given by

J [z, u] =

∫ ∞
0

( 〈g−1 · z − z̃s, Q(g−1 · z − z̃s)〉+ 〈u,Ru〉 ) dt, (4.37)

where g is as defined in the reconstruction equation (4.12); it is the action that
aligns z with the template z̃s. Then, substituting z̃ = z̃s + w and ũ = v in (4.34)
gives the cost function in the variables (w, v). Thus, the problem of finding an
optimal feedback law is the same as finding (w(t), v(t)) that satisfy (4.19, 4.15) and
minimize J [w, v].

As in the previous section, to obtain the state-space realization, we use the
constraint (4.26) to eliminate wg from the cost function; that is J [(ws, wg), v] =
J [(ws,Λws), v]. The cost function thus obtained in terms of ws only by using (4.27)
is

J [ws, v] =

∫ ∞
0

( 〈ws, Q̃ws〉+ 〈v,Rv〉 ) dt. (4.38)

It can be easily shown that

if Q =

(
Q11 Q12

Q21 Q22

)
, (4.39)

then Q̃ = Q11 +Q12Λ + Λ∗Q21 + Λ∗Q22Λ. (4.40)

The optimal control problem can now be stated as follows: find a feedback law v =
K̃ws such that (ws, v) satisfy (4.28) and minimize the reduced cost (4.38). If (4.28) is
controllable, we have a standard result from linear systems theory that the optimal
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feedback law v = K̃ws is given by K̃ = −R−1B∗sM whereM , which is symmetric and
positive definite, is obtained by solving the following (n− d)-dimensional algebraic
Riccati equation:

MAs + A∗sM −MBsR
−1B∗sM + Q̃ = 0 (4.41)

Here, we would like to mention some similarity with the work of Cobb (1983) which
considered the problem of finding an optimal feedback law for linear DAEs of the
form mentioned earlier in section 4.3.1, that is Eẋ = Ax+Bu. The author showed
that the optimal control can be found by solving a Riccati equation of order p,
where p is the rank of E; this is exactly what our method involves as well. As
mentioned earlier, our control problem is just a special case of that considered
in Cobb (1983) which considers more general systems of DAEs. In general, if the
initial conditions are not consistent with the algebraic constraints, the behavior of
the system of DAEs consists of impulses at the starting time; Cobb (1983) accounts
for such initial conditions as well. We do not consider such initial conditions as
we considered perturbations restricted to the slice while deriving the linearized
equations.

Finally, the feedback law can be expressed in the original variables w by express-
ing ws in terms of w:

ws = (I + Λ∗Λ)−1
(
I Λ∗

)
w. (4.42)

Here, I + Λ∗Λ is invertible as Λ∗Λ is Hermitian and positive definite. Thus,

v = K̃ws = K̃(I + Λ∗Λ)−1
(
I Λ∗

)
w

def
= Kw. (4.43)

Form of feedback law in the original frame

Now we derive the form that the feedback law (4.43) takes in the original framework.
Since we restricted the closed loop system to be linear in u, then ũ is the same as
its linearization v; thus

ũ = Kw = K(z̃ − z̃s) (4.44)

∴ Ψg−1(u) = K(Φg−1(z)− z̃s) using (4.6, 4.7) (4.45)

or u = Ψg ◦K(Φg−1(z)− z̃s). (4.46)

Here, g(t) is given by solving the reconstruction equation (4.12) and it represents
a “translation” of z to the slice Sz̃s . Also, it can be easily shown that the control
law (4.46) is independent of the template chosen, provided that the template is a
group shift of z̃s. The choice of feedback law (4.46) for u can be described using
Fig. 4.2 as follows. Choose z̃ to be a group shift of z by an amount g−1 such that
z̃ lies in the slice defined using the template z̃s. Then, evaluate the difference z̃− z̃s
and act on it by the feedback gain K, which gives the input ũ. Finally, the input u
is just a group shift of ũ by the same amount g.
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Figure 4.2: Feedback control using the method of slices

4.4.2 Amplitude and phase actuation

Here we consider a second approach to control design, where we allow for more
general actuators. We do not assume that the given actuator is equivariant to the
group action, but we assume that the equivariance of the closed loop vector field
results from a freedom to “move the actuator” in the group direction. That is, we
assume the closed loop equations to be of the form:

ż = X(z) +
m∑
i=1

TΦhi ◦ biui, (4.47)

where bi : R → TM are the actuators, and ui ∈ R and hi ∈ G are the control
inputs. We can think of the input hi as being the phase and the input ui being
the amplitude of actuator bi. The control space U is defined as m (≤ dim(M) = n)
copies of R×G, and the action Ψg on U is

Ψg · (ui, hi) = (ui, g · hi), i = 1, 2, . . . ,m. (4.48)

Note that each actuator can be moved independently in the group direction, that is,
the phase of each actuator bi can be separately prescribed by the control inputs hi.

As in section 4.1, in order to derive the slice dynamics of (4.47), we write z =
Φg(z̃), where z̃ ∈ Sz̃s . The resulting equations are:

˙̃z = X(z̃) +
m∑
i=1

TΦg−1hi ◦ biui − ξM(z̃), (4.49)
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where we rewrite the expression for ξ from (4.17) as:

ξ =
(
Y ∗(z̃s)Y (z̃)

)−1

Y ∗(z̃s)
(
X(z̃) +

m∑
i=1

TΦg−1hi ◦ biui
)
. (4.50)

Now, in order to derive feedback laws, we first need to linearize the slice dynamics
about the fixed point and a zero amplitude control input. For that, we write z =
z̃s + w and ui = 0 + vi and the resulting equations are:

ẇ = PSz̃s (Âw +
m∑
i=1

TΦg−1hi ◦ bivi) +O(2), (4.51)

where Â is the same as defined in (4.19). The above equations are nonlinear in
the control input hi and hence not in a form appropriate for using linear control
techniques. However, if we choose hi to be g · ci, where ci ∈ G is a constant, then
the resulting equations will be linear in w and v. The choice of these constants ci
comes from a phase condition which is explained as follows. We choose ci such that
the control term does not act in the group direction. This is the same as a choice
that gives a zero contribution of the control term to ξ in (4.50). That is, ci are given
by

Y ∗(z̃s) (TΦci ◦ bi ui) = 0, ∀ui ∈ R, i = 1, 2, . . . ,m. (4.52)

This choice of ci means that the group variable g, which depends on ξ, is not affected
by the control input and the resulting control acts only on the shape space. The
linearized equations (4.51) thus become

ẇ = PSz̃s (Âw + B̂v) +O(2), (4.53)

where v = (v1, v2, . . . , vm)T and B̂ is comprised of columns ci · bi. Equation (4.53)
is in the form for linear control design and we can proceed to derive feedback laws
for v as described in the previous section.

The amplitude v is chosen such that (w, v) minimize a quadratic cost function,
which in this case is

J [z̃, u] =

∫ ∞
0

( 〈z̃ − z̃s, Q(z̃ − z̃s)〉+ 〈u,Ru〉 ) dt, (4.54)

where u = (u1, u2, . . . , um)T . Q is again equivariant to the action Φg and has to
satisfy (4.35). But since the action Ψg leaves u unchanged, R can be an arbitrary,
positive-definite, m ×m matrix. The resulting control law is optimal in the sense
that the inputs ui are chosen such that they minimize the cost (4.54); however, the
choice of the other inputs hi does not come from an optimality criterion, but from
an imposed phase condition.

Note that the choice of the control inputs hi = g · ci implies that the phase of the
actuators differs from the group variable just by a constant. This means that the
actuators appear “stationary” in the reduced frame of reference and their “phase-
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difference” is always constant. We will demonstrate with the help of a numerical
example that this choice of the phase hi, in general, is not the best choice; that is,
different phase conditions might lead to cheaper or more efficient controllers.

4.5 Examples

In this section, we illustrate our control methodology with the help of three exam-
ples. First, we consider a simple planar, rotationally invariant system and derive
feedback laws to stabilize an open-loop unstable limit cycle. Then we consider a
physical example, that of stabilizing an inverted pendulum on a cart, which was
previously considered in Bloch et al. (2000) to illustrate the method of controlled
Lagrangians. Finally, we demonstrate the potential of the developed methods to
control of fluid flows with symmetry, using a simplified model of flame dynamics and
turbulence, namely the Kuramoto-Sivashinsky equation, which is a translationally
invariant PDE in one spatial dimension. For this PDE, we derive feedback laws
that stabilize unstable traveling waves and present numerical results.

4.5.1 A planar ODE system with rotational symmetry

We consider (4.1) to be a system of ODEs on M = R2 with the symmetry group
acting on M being G = SO(2). Then, for z ∈ R2 and θ ∈ S1, the group action
is Φθ(z) = Rθz, where Rθ is rotation through an angle θ ∈ [0, 2π). Equivariance
of (4.1), with no control, implies that X(Rθz) = RθX(z). We consider the following
particular example, where z = (x, y):

ẋ = −x− y + x
√
x2 + y2, (4.55)

ẏ = x− y + y
√
x2 + y2. (4.56)

In polar coordinates (r, θ), the above equations are:

ṙ = r2 − r, θ̇ = 1. (4.57)

This system has r = 1 as an unstable limit cycle or a relative equilibrium, which we
want to stabilize. Note that in polar coordinates, the shape dynamics (r) and the
group dynamics (θ) are decoupled. So, a simple control technique is to just ignore
the θ-dynamics in (4.57) and add a control term of the form Bu to the r-equation,
where the input u = K(r−1) with K chosen such that r = 1 is stable. This control
retains the symmetry of the system and stabilizes the relevant relative equilibrium,
the limit cycle r = 1. Here instead, we work with equations (4.56) in Cartesian
coordinates to illustrate our template-based control technique.
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We first derive the reduced or slice dynamics of the above system. The infinites-
imal generator ξM(z) can be obtained from (4.9) by:

ξM(z) =
d

ds

∣∣∣∣
s=0

Rφ(s)z = ξ

(
0 −1
1 0

)
z

def
= ξ J z, φ(0) = 0, ξ =

dφ

ds
(s = 0),

(4.58)

where ξJ ∈ g = so(2) is an element of the Lie algebra of G. Comparing with (4.13),
we note that Y (z) = Jz. Next, we define the slice Sz0 . Let the template z0 be a
particular point on the limit cycle r = 1, that is z0 = (cos β, sin β), for some β ∈
[0, 2π). Then using (4.15), the slice Sz0 is given by

− sin β x+ cos β y = 0 (4.59)

which is a straight line through the origin and z0. The slice dynamics can be
obtained by writing z = Rθz̃, where z̃ ∈ Sz0 and θ is a rotation of z to the line
defined by (4.59); see Fig. 4.3. The resulting equations for z̃ are:

˙̃z = X(z̃)− ξ J z̃, (4.60)

where ξ is given by (4.19). Then, we differentiate (4.59) with respect to time and
use (4.60) to find an explicit expression for ξ. In this example, we pick β = tan−1(2),
and the resulting open loop expression for ξ is

ξ =
(3x+ 2y)− (2x− y)

√
x2 + y2

x+ 2y
. (4.61)

Equations (4.60,4.59) are the reduced or slice dynamics and they form a set of DAEs
with two differential and one algebraic equations; the relative equilibrium r = 1 is
a fixed point (1/

√
5, 2/
√

5) of these equations.

Equivariant actuation

Consider the closed loop vector field to be of the form (4.32), that is affine in u.
Suppose that u ∈ U = R2 and that the action of G on U is Ψθ = Φθ. Equivariance
of H(z) implies that H(z)Rθ = RθH(z). That is, H(z) is of the form:

H(z) =

(
a(r) −b(r)
b(r) a(r)

)
∀z ∈ R2, r =

√
x2 + y2 (4.62)

Here, we choose H(z) to be a constant with a(r) = 2 and b(r) = 1. Letting z̃ =
z0 + (wx, wy) and u = 0 + v, the linearization of the closed loop slice dynamics
about the fixed point z0 = (1/

√
5, 2/
√

5) is given by (4.19):

ẇ =

(
ẇx
ẇy

)
=

1

5

(
1 2
2 4

)(
wx
wy

)
+

1

5

(
4 3
8 6

)
v. (4.63)

By direct calculation, it can be verified that (4.63) has an invariant subspace
defined by the constraint (4.59). Now, as in (4.25, 4.26), we write w = (ws, wg) and
eliminate one of the equations from (4.63). Equation (4.59) is analogous to (4.26)
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Figure 4.3: Planar rotationally invariant system.

and, for our choice of β, we can either express wx in terms of wy or vice-versa.
If β = 0, then (4.63) would become wy = 0 and we can eliminate only the wx
equation from (4.63); similarly, for β = π/2, we can eliminate only the wy-equation.
We let ws = wx and wg = wy, so that from (4.59) we have wg = (tan β)ws = 2ws :=
Λws. We use this to eliminate the equation for wg from (4.63) to get

ẇs = ws +
1

5

(
4 3

)
v

def
= Asws +Bsv. (4.64)

Now, clearly (4.64) is controllable, as the rank of Bs is 1. This implies that the
slice Sz0 is a controllable subspace of (4.63).

Optimal control design. Invariance of the cost function (4.37) to the group
action imposes a restriction on Q, R, which is the same as that on H(z̃) in (4.62).
But since they also have to be symmetric and positive definite, Q, R can only be
multiples of I. We choose Q = R = I. Then, eliminating wg from (4.37), the
modified cost function is

J [w, u] =

∫ ∞
0

(
(w2

s + w2
g) + vTv

)
dt =

∫ ∞
0

(5w2
s + vTv) dt. (4.65)

Thus, the weight in the reduced cost function (4.38) is Q̃ = 5. The LQR problem
to be solved is: find the feedback law v = K̃ws such that (ws, v) solve (4.64) and
minimize (4.65). The 1D Riccati equation to be solved, as in (4.41) is

M2 − 2M − 5 = 0 =⇒ M = 1 +
√

6. (4.66)
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Then, K̃ = R−1BsM = BsM and v = K̃ws, where, as shown in (4.42), ws can be
expressed in terms of w as:

ws =
1

5

[
1 2

]
w

def
= Γw. (4.67)

Finally, the feedback law in terms of w is

v = −1 +
√

6

25

(
4 8
3 6

)
w

def
= Kw. (4.68)

The feedback law in the original framework is given by (4.46), with Φg = Rθ where
−θ is the angle of rotation to the slice (refer Fig. 4.3). The closed loop system in
polar coordinates becomes,

ṙ = −r + r2 − κ(r − 1), θ̇ = 1, (4.69)

where κ = 1 +
√

6. Thus, the resulting control does not affect the group variables,
just the shape variables. This may appear as a convoluted way to design an obvious
controller, but it serves to illustrate the mathematical machinery in a transparent
example.

Amplitude and phase actuation

We now consider a more general system of the form (4.47) with m = 1; that is we
have one actuator that is not equivariant but can be rotated about the origin. We
consider a controller of the form RαBd, where d ∈ R and B : R→ R2 (We use the
symbol α here, instead of h used in (4.47)). The control inputs are (d, α) ∈ U = R×
G and the action of G on U is Ψθ(d, α) = (d, α+ θ). If we choose B = (a(r), b(r))T

where a, b are defined as in (4.62), then it is easy to see that the resulting control is
the same as in the previous section if we identify u = (u1, u2) with (d cosα, d sinα).
However, the choice of the inputs is different in the two cases. In this case, the slice
dynamics for (4.47) can be obtained by decomposing z = Rθz̃:

˙̃z = X(z̃) +Rα−θBd− ξJz̃, (4.70)

where ξ is given by

ξ =
〈X(z̃) +Rα−θBd, Jz̃s〉

〈Jz̃, Jz̃s〉 . (4.71)

As discussed in section 4.4.2, we choose α such that the control term does not
affect ξ. That is, from (4.71), we choose α such that

〈Rα−θBd, Jz̃s〉 = 0 ∀d ∈ R. (4.72)

With the given form of B = (a, b)T , and again choosing a = 2 and b = 1, this
simplifies to:

α− θ = β − tan−1(−b/a) = tan−1(3/4). (4.73)
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Using (4.73) in (4.70) and expressing z̃ = z̃s+w, we get the linearized slice dynamics:

ẇ =

(
ẇx
ẇy

)
=

1

5

(
1 2
2 4

)(
wx
wy

)
+

(
1
2

)
d. (4.74)

As in (4.63, 4.64), we use the equation of the slice (4.59) to eliminate the equation
for wy. That is, we substitute wy = 2wx in (4.74) to get

ẇx = wx + d
def
= Aswx +Bsd. (4.75)

Now, we can derive an optimal feedback law for (4.75). The matrices Q and R in the
cost function are chosen to be equal to 2 and 1-dimensional identities respectively.
The Riccati equation to be solved in this case turns out to be the same as (4.66).
Thus, the feedback law for d is

ε = −BsMwx = −BsMΓw using (4.67) (4.76)

=
1 +
√

6

5

(
2 1

)
w

def
= Kw. (4.77)

Finally, the feedback law in the original frame is given by

d = K(R−θz − zs). (4.78)

Thus, the inputs d and α are given by (4.78) and (4.73) respectively. With this
control the closed loop equations in polar coordinates happen to be the same
as (4.69). Thus, for this example, both approaches yield the same feedback laws.
This is not the case in general, though, as illustrated in a following section.

4.5.2 Inverted pendulum on a cart

We now consider a physical example: that of stabilizing an inverted pendulum on a
cart. We will also compare our controller with that obtained in Bloch et al. (2000)
using the method of controlled Lagrangians.

We first derive the equations of motion. Let s be the cart position and φ be the
pendulum angle measured clockwise from the vertical axis; the Lagrangian of the
system is:

L(φ, s, φ̇, ṡ) =
1

2
(m1l

2φ̇2 + 2m1l cosφṡφ̇+ (m1 +m2)ṡ2)−m1gl cosφ, (4.79)

where m1 and m2 are the pendulum and the cart masses, and l is the pendulum
length. As the Lagrangian is independent of s, the equations of motion are invariant
to translations of the cart. The momenta conjugate to φ and s are

pφ = m1l
2φ̇+m1l cosφṡ and (4.80)

ps = (m1 +m2)ṡ+m1l cosφφ̇, (4.81)
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and the equations of motion are
φ̇
ṡ
ṗφ
ṗs

 =


γpφ−β cosφps
αγ−β2 cos2 φ
αps−β cosφpφ
αγ−β2 cos2 φ

−D sinφ− β sinφṡφ̇
0

 , (4.82)

where α = m1l
2, β = m1l, γ = m1 + m2, and D = −m1gl. Define the state as z =

(φ, s, pφ, ps), z ∈ M , where we think of M as being R4. (Note that actually z ∈
S1 × R3; however, as our control objective is only to achieve local stabilization of
relative equilibria, it suffices to use a local chart on M). The symmetry group G
acting on M is (R,+), corresponding to translations in s. The relative equilibria
that we attempt to stabilize are φ = φ̇ = 0 and ṡ = v, a constant, which correspond
to inverted pendulum on a cart moving with a constant velocity v.

We now define the slice and derive the slice dynamics. The infinitesimal generator
is ξM(z) = ξ(0, 1, 0, 0), where ξ ∈ R = g, the Lie algebra of G. If we choose the
template to be the origin, the slice is defined by the set {z̃ | 〈z̃, ηM(z̃)〉 = 0,∀η ∈ R},
which is the set s = 0. Then, the slice dynamics are given by subtracting ξM(z̃)
from (4.82) and imposing the constraint s = 0. It can be easily verified that
the equivalent slice dynamics are ṡ = 0, with the equations in the other variables
remaining unchanged. Thus, the state-space realization of the slice dynamics is
obtained by just ignoring the s-equation from (4.82). The template-based method
seems trivial here as the shape and the group spaces are already decoupled. This
is comparable with the previous example of a planar rotational system. As we
saw there, when written in polar coordinates, the group space θ and the shape
space r were also decoupled. In general, such a decomposition might not always be
possible, as in the same example written in Cartesian coordinates; the template-
based reduction is non-trivial and useful for such cases. The template-based control
design for the inverted pendulum is based on the linearization of the remaining three
equations about the origin. Here, we define a quadratic cost function in terms of
the reduced state (φ, pφ, ps) and the input u and use LQR to find the gain K̃ that
stabilizes the origin.

In order to compare with Bloch et al. (2000), we consider a control input only in
the direction of the cart, that is, we consider a control term of the form (0, 0, 0, u).
Thus, u ∈ U = R and we assume that the group action leaves this input unchanged,
i.e., u is independent of s. We demonstrate our results using some specific numerical
values, same as those used in Bloch et al. (2000): m = 0.14, M = 0.44, l = 0.215. In
particular, we attempt to stabilize the inverted pendulum on a stationary cart (v =
0). The eigenvalues of the linearization of the reduced uncontrolled system about
this equilibrium are (±7.751, 0) and so the equilibrium is unstable. The eigenvalues
of the linearization of the reduced closed loop system (4.28) are tabulated in table 4.1
along with the feedback gains K̃ defining the feedback law (4.43) for different weights
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in the cost function (4.38). Note that as K is increased, the eigenvalues approach
the values corresponding to the minimum energy control, (−7.751,−7.751, 0).

Q̃ R Gain, K̃ closed loop eigenvalues
diag(1,0,10) 10 (12.84, 337.35, -16.51) (-0.998, -7.755 ± 0.22i)
diag(1,0,10) 100 (11.83, 310.92, -15.82) (-0.316, -7.752 ± 0.07i)
diag(1,0,10) 1000 (11.52, 302.60, -15.60) (-0.100, -7.752 ± 0.02i)

Table 4.1: LQR gains. Here, “diag” implies a diagonal matrix with its diagonal entries in
parentheses.

Now, the control law derived in Bloch et al. (2000) is

u =
κβ sinφ(αφ̇2 + cosφD)− c(α− β2

γ
cos2 φ

)(
(λ(κ+ 1) + 1)β cosφφ̇+ λγ(ṡ− v)

)
α− β2

γ
(1 + κ) cos2 φ

(4.83)

where, κ, c, and λ are the control gains. For numerical comparison, we use the same
control gains as in Bloch et al. (2000): κ = 135, λ = 0.01, and c = 50. The lineariza-
tion of (4.83) about the relative equilibrium can be written in the form u = K̃w
and the feedback gain thus obtained is K̃ = (5.819, 17.17,−0.879). The resulting
closed loop eigenvalues are (−0.570,−0.155±1.11i). These values can be compared
with those in table 4.1. We see that the control gains resulting from the controlled
Lagrangians method are much smaller than those from the template-based method.
We also compare the performances using Matlab simulations. Fig. 4.4 shows the
time histories of the pendulum angle, the cart position, and the control input; the
control gain being the second listed in table 4.1. The initial angle is φ(0) = 0.5, the
initial cart position is at the origin, and the initial pendulum and cart velocities are
zero. With both methods, the pendulum comes to rest at the upright position φ = 0,
while the cart moves a considerable distance before coming to rest. However, using
the controlled Lagrangian method, there are considerably more oscillations in the
transient approach to the equilibrium as compared to that using the template-
based approach and even though the gains are smaller, the overall actuator energy
is greater. A key advantage of the controlled Lagrangian method is that the domain
of stability can be defined, whereas the template based method can only ensure local
stability.

4.5.3 The Kuramoto-Sivashinsky equation: a spatially dis-
tributed example

Here, we illustrate our control methodology using a less simplistic example. We
consider a dissipative PDE, the Kuramoto-Sivashinsky (K-S) equation

zt = −zzx − zxx − νzxxxx, x ∈ [0, 2π), (4.84)
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Figure 4.4: Comparison of template-based LQR (solid line) and the controlled Lagrangian method
(dashed line).

in one spatial dimension and with periodic boundary conditions. That is, z ∈M =
L2([0, 2π]), the space of 2π-periodic, square integrable functions. This system is
translationally invariant, that is equation (4.84) is equivariant under the action of
the additive group G = (R,+). The group action is given by Φg(z(x)) = z(x + g)
and TΦg = Φg. The infinitesimal generator obtained using (4.9) is

ξM(z) = ξzx. (4.85)

Physically, ξ is the speed of travel in the group direction.

The K-S equation exhibits complex dynamics for different values of the viscous
parameter ν. Various analytical and numerical studies have been performed on the
equation; for example, see Kevrekidis et al. (1990), Armbruster et al. (1988) and
the references therein. Here, we restrict our attention to two different values of ν,
for which we try to stabilize different types of unstable relative equilibria: steady
states, and traveling waves. For ν = 4/20, we will try to stabilize an unstable open
loop traveling wave (actually, the equation possesses two of them, one left-traveling
and one reflection-symmetric right-traveling one); for ν = 4/15, we will try to
stabilize a ring of open-loop unstable spatially nonuniform steady states. Fig. 4.5
shows numerical results demonstrating that the transients are eventually attracted
to a heteroclinic loop at ν = 4/20 and to a stable traveling wave at ν = 4/15;
see Kevrekidis et al. (1990). Our goal is to find feedback laws that stabilize members
of these two types of representative solution families.

We base our control design on a finite dimensional ODE approximation of (4.84)
obtained using a Galerkin projection onto the 2π-periodic Fourier modes. Such an
approach of control design for PDEs is very common, (for example, see Armaou &
Christofides (2000) and the references therein) and is justified by the existence of a
low-dimensional inertial manifold (Jolly et al., 1990; Temam, 1988; Nicolaenko et al.,
1989). We note that the feedback control problem of the K-S equation with periodic
boundary conditions was considered before in Armaou & Christofides (2000), Lou
& Christofides (2003), and Lee & Tran (2005); the focus in these works was on
stabilization of the zero solution.
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(a) (b)

Figure 4.5: Plot (a): ν = 4/20. A contour plot of z(x, t) showing transients which, initialized in
the vicinity of an unstable traveling wave approach asymptotically a persistent heteroclinic loop.
Plot (b): ν = 4/15. A contour plot showing transients which, initialized in the vicinity of a ring
of unstable steady states, asymptotically approach a stable traveling wave.

First, we obtain a finite-dimensional ODE approximation of (4.84). For that, we
decompose z(x, t) into its Fourier modes:

z(x, t) =
∞∑

k=−∞

ck(t) exp(ikx), ck = ak + i bk, c−k = c∗k. (4.86)

Here, we consider only solutions with a zero spatial mean; that is c0 = 0. Substitut-
ing (4.86) in (4.84), performing a Galerkin projection onto the Fourier modes, and
truncating at an order n, results in a finite set of ODEs for ck. The action Φg(z(x))
translates to an action on the Fourier coefficients ck as Φg(ck) = eikgck, k =
0, 1, . . . , n. We consider two different controllers, belonging to the class of controllers
described in sections 4.4.1 and 4.4.2. In the first case, the closed loop system is affine
in the control input and the actuation is equivariant:

ż = X(z) +
m∑
k=1

uk(t) exp(ikx)
def
= X(z) +

m∑
k=1

uk(t)bk(x), (4.87)

The actuators bk(x) are considered to be the first m Fourier modes, and the control
inputs essentially prescribe the amplitudes of these modes. The action Ψg on the
control inputs uk is the same as that of Φg on the Fourier coefficients ck.

In the second case, we consider arbitrarily shaped actuators and assume that the
actuator can be translated by any amount in space. The closed loop system for this
case is

ż = X(z) +
m∑
k=1

uk(t)bk(x+ hk). (4.88)
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Physically, hk and uk are the inputs that specify the phase and amplitude of the
actuator bk respectively. The group action on the control inputs is Ψg : (uk, hk)→
(uk, hk + g), k = 1, 2, . . . ,m.

If z̃s is the template, the slice Sz̃s is defined using (4.10, 4.85) to be the set of z̃
such that

〈z̃ − z̃s, z̃′s〉 = 0 (4.89)

where 〈·, ·〉 is the L2-inner product and prime denotes differentiation with respect
to x. Now, if we denote the right hand sides of (4.87, 4.88) as X(z) + U , we can
formally write the slice dynamics of these equations as:

˙̃z = X(z̃) + Ũ − ξz̃x (4.90)

where z̃(x, t) = z(x − g, t) lies in the slice Sz̃s . Similarly, Ũ is the control term U
expressed in the traveling frame. The speed ξ in (4.90), analogous to (4.17), is

ξ =
〈X(z̃) + Ũ , z̃′s〉
〈z̃′, z̃′s〉

=
〈X(z̃), z̃′s〉
〈z̃′, z̃′s〉

+
〈Ũ , z̃′s〉
〈z̃′, z̃′s〉

def
= ξo + ξc. (4.91)

Thus, ξ is the closed loop speed, and ξo and ξc are the contributions of the open-loop
vector field and the control inputs to it. The assumption made in equation (4.17)
in section 4.2.1 that Y ∗(z̃s)Y (z) is invertible is the same as assuming that the
denominator 〈z̃′, z̃′s〉 in (4.91) is non-zero.

Before presenting the results of our control design, we make a remark. In
order to obtain the feedback laws, we choose the template function to be the
fixed point of the slice dynamics itself. Clearly, we first need to calculate this
fixed point, for which we proceed as follows. We choose an arbitrary template
function z0 and use Newton’s method to find the fixed point of the slice dynamics
thus obtained. Instead of finding the fixed point of the DAE system (4.8, 4.10),
we substitute for ξ from (4.17) into (4.8) and find the fixed point of the resulting
equivalent differential system. Note that the Jacobian at each step of these Newton
iterations will be singular because of translational invariance. However, we have
an additional constraint (4.10) that each iteration should belong to the slice Sz0 .
We use this constraint to reduce the number of unknowns in the Newton iterations
by one. This constraint is similar to the pinning conditions commonly used in the
computation of traveling waves or limit cycles, or equivalently it is similar to the
phase condition used in Doedel et al. (1991) to tackle the issue of a singular Jacobian
while computing periodic solutions of ODEs. Then, we use the fixed point z̃s thus
obtained as a new template to derive feedback laws.

Now we present some results for the two different control methodologies to
illustrate their differences. First, we describe the numerical scheme for integrating
the closed loop equations.
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Numerical scheme

Here we outline the numerical scheme used to integrate the close loop K-S equa-
tion (4.87) for the case of equivariant actuation; the scheme is very similar for the
amplitude-phase control case. We first write the closed loop K-S equation (4.87) as

ż = L(z) +N(z) +
M∑
i=1

bi(x)ui, (4.92)

where, the inputs are given by

ui = h ·Ki(h
−1 · z − zs) (4.93)

and h is given by

〈h−1 · z − zs, z′s〉 = 0. (4.94)

Here, L(z) and N(z) are the linear and nonlinear terms of the open loop vector field.
The time-stepping scheme uses the implicit trapezoidal rule for the linear terms and
the explicit Adams-Bashforth for the nonlinear terms:

zn+1 − zn
∆t

=
1

2
(L(zn+1) + L(zn)) +

1

2
(3N(zn)−N(zn−1)) +

M∑
i=1

bi(x)
uni + un+1

i

2
,

(4.95)

where,

uni = hn ·Ki(h
−1
n · zn − zs) (4.96)

and hn+1 given by

〈h−1
n+1 · zn+1 − zs, z′s〉 = 0. (4.97)

Equations (4.95, 4.96, 4.97) are solved iteratively for hn+1 and zn+1.

Stabilization of traveling waves

First, we consider ν = 4/20 and stabilize unstable traveling waves. We consider
the closed loop equation to be (4.87) (where the actuator is equivariant) and the
actuator to be simply the first Fourier mode; that is, m = 1 and the control term
is u1e

ix. We derive a feedback law that minimizes the cost function (4.37). Unless
specified otherwise, here and in what follows, the weight matrices Q and R in
the cost are chosen to be the identity. In order to derive the feedback law, we
need to evaluate various terms in the linearized slice dynamics (4.19), which we
do numerically. The controllability tests mentioned in section 4.3.1 are satisfied in
this case. The resulting LQR problem is (2n − 1)-dimensional and is solved using
standard Matlab routines. The results are presented in figures 4.6 and 4.7. As shown
in Fig. 4.6(b), the eigenvalues of the linearized open-loop slice dynamics include a
complex conjugate pair in the right half complex plane. Both the open and closed

86



loop cases have one eigenvalue at the origin, which corresponds to translational
invariance. The initial condition, which is set to be a perturbation of the steady
shape of the traveling wave, is shown in Fig. 4.6(a). As shown in Fig. 4.7(b), the
control is turned on at t = 15. Since the traveling wave is unstable, this causes the
perturbations to grow and as seen in Fig. 4.6(c), the residual ‖z̃−z̃s‖2 initially grows
away from 0; once the control is turned on, it starts to decay. It asymptotically
approaches zero, which implies convergence to the correct open loop shape of the
traveling wave. Fig. 4.6(d) shows the evolution of the closed loop speed ξ as well
as the contribution of the control input ξc to it. This contribution is initially non-
zero, which means that the optimal control has a non-zero component in the group
direction. However, as the dynamics approach the right shape, ξc goes to zero
asymptotically. This means that the dynamics approach the correct open loop
speed of the traveling wave. Thus, the controller stabilizes the traveling wave to
the right shape and the right speed. Fig. 4.7(e) is a 3-D plot of the spatiotemporal
evolution of z(x, t) and shows convergence to the traveling wave. The input term
can also be written as a sin(x + φ), where φ and a are the equivalent phase and
amplitude; these are plotted in Fig. 4.7(c,d) and will be used for comparison with
the next case.

Now, we consider the closed loop equations of the form (4.88), where the actuator
is not equivariant but can be translated in the group direction, that is, along the
domain [0, 2π]. We first consider the control term to be u sin(x + α), with the
inputs being u and α. The phase α is chosen such that the control does not act
in the group direction, that is ξc = 0. The other input u is then chosen such that
the cost function (4.54) is minimized. The results are presented in Fig. 4.8. The
initial condition is the same as that considered in the previous case and the control
is again turned on at t = 15. Fig. 4.8(b) shows that ξc indeed stays zero, which
confirms that the resulting control acts only on the shape space. Fig. 4.8(a,b) show
convergence to the right shape and speed of the traveling wave. Fig. 4.8(c) is a plot
of the control input u, and Fig. 4.8(d) is a plot of the amount of translation g(t) that
makes z̃(x, t) = z(x− g, t) to lie in the slice Sz̃s . Now, the other input α = g(t) + c;
that is, it differs from the phase of z(x, t) by a constant c chosen to impose the
condition ξc = 0.

We note that the range of possible actuation for the two cases considered so far is
actually identical, but the two cases differ in the way the control inputs appear and
in the selection of the feedback laws. In the first case, the inputs are the amplitudes
of sin(x) and cos(x), both of which are chosen such that a given cost function is
minimized. In the second case, the inputs are the amplitude and phase of sin(x).
Here, the phase is chosen by imposing a different type of constraint; given this
constraint on the phase, the amplitude is chosen using LQR. We can now compare
the inputs in the second case with the equivalent phase and amplitude of the inputs
in the first case plotted in Fig. 4.7(c,d). We see that, unlike in the second case, the
phase φ in the first case does not differ from g by a constant. So, the actuator is
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(a) (b)

(c) (d)

Figure 4.6: Stabilized traveling wave solution for ν = 4/20 with the control term u1 sinx+u2 cosx,
where u1 and u2 are the control inputs. Control is turned on at t = 15, as indicated by the arrows.
Plot (a) shows the fixed point z̃s of the slice dynamics (solid line) and the initial condition of the
closed loop equations (dashed line). Plot (b) shows the open and closed loop eigenvalues (in ‘×’
and ‘�’) of the linearized slice dynamics. Plot (c) shows that the L2-error ‖z̃ − z̃s‖2 decays to
zero. Plot (d) shows the the closed loop speed ξ, and the contributions of the open loop vector
field (ξo) and the control term (ξc) to it.

not stationary in the traveling or symmetry reduced frame of reference, which is
also reflected in the fact that the control has a non-zero component in the group
direction. Since the controller in the second case results in no actuation in the group
direction, it implies that the choice of phase in the second case is sub-optimal.

The advantage of the second procedure is that it allows a broader class of
actuators, whereas in the first case we are restricted to the Fourier modes for
actuation. We illustrate this advantage as follows. As is common practice in control
of PDEs (Hagen & Mezić, 2003; Lou & Christofides, 2003; Dubljevic et al., 2004),
we consider an actuator that has finite support. Physically, such actuators could be
injectors on the circumference of a compressor (Hagen & Mezić, 2003), a laser beam
for temperature control of catalytic surfaces, or an array of actuators for flow control
(references in Dubljevic et al. (2004)). As shown in Fig. 4.9(a), we approximate this
actuator by a narrow Gaussian. This actuator is not translationally invariant, hence
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(a) (b)

(c) (d)

(e)

Figure 4.7: Plots for the same case as considered in Fig. 4.6. Plot (a) is a plot of g vs. t where
g(t) (modulo 2π) is the amount of translation that makes z(x, t) lie on the slice Sz̃s

. The straight
line portion represents a wave traveling at a constant speed. Plot (b) shows the control inputs u1

and u2, while plots (c) and (d) show the equivalent phase φ and amplitude a: a sin(x + φ) =
u1 sin(x) + u2 cos(x). Plot (e) is a 3-D plot of the spatiotemporal evolution of z(x, t).
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(a) (b)

(c) (d)

(e)

Figure 4.8: ν = 4/20. Plots analogous to those in figures 4.6 and 4.7. The control term is u1 sin(x+
α), and the inputs are u1 and α. Again, the control is turned on at t = 15, as indicated by the
arrows. In plot (b), the solid and dashed lines coincide.
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we have to resort to the second control methodology. The results are presented in
Fig. 4.9. The initial condition is shown in Fig. 4.9(b), and the rest of the plots show
convergence to the correct traveling wave. In the plots of the residual, the control
input, and the speed, we observe extensive oscillations in the transient approach to
the steady state. This implies insufficient damping which is also evident from the
proximity of the two closed loop eigenvalues to the imaginary axis in Fig. 4.9(d).
We tried some simulations with the phase α still given as g(t) + c, where c is a
constant. But now instead of being chosen from the criterion ξc = 0, c was varied
arbitrarily. We observed that for certain values of c, the performance of the resulting
controller was better: considerably fewer oscillations in the transients were observed
as compared to those in Fig. 4.9. It would be interesting to pursue optimal choices
of c, but we leave this for future studies.

Stabilization of steady states

Next, we consider the case of ν = 4/15 and attempt to stabilize the unstable,
spatially nonuniform steady state of the KS. The linearization of the open loop
dynamics about such steady states has one one eigenvalue in the right-half of the
complex plane; see Fig. 4.10(b). Note that, because of translational invariance, there
exists a one-parameter family of steady states given by a translation of z̃s (which is
a fixed point of the slice dynamics). Our control procedure retains this invariance;
that is, the initial conditions that are simple translations of each other result in
trajectories that are the same translations of each other. We consider the closed
loop equation to be (4.87) and again, the actuator is the first Fourier mode eix. The
controllability tests are satisfied. The closed loop results are presented in Fig. 4.10
and Fig. 4.11. The initial condition, shown in Fig. 4.10(a), is set to be a random
perturbation of z̃s. Here too, Fig. 4.10(c) shows convergence to the right shape.
Fig. 4.10(d) shows that the speeds ξ and ξc approach zero, implying convergence to
a steady state. Non-zero transients for ξc show that here too, the optimal control
has a non-zero component in the group direction.

Fig. 4.12(b) shows the evolution of g, which represents the shift of z(x, t) that
aligns it with the slice Sz̃s , for different initial conditions. Fig. 4.12(a) shows the
initial conditions in the corresponding line styles. All the plots converge to a
constant value of g, which means convergence to another, but different, translation
of z̃s. Furthermore, the initial conditions in dots is simply a translation by two units
of that in dashes. Correspondingly, the resulting trajectories of g are also simply
translations of each other by the same two units.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: ν = 4/20. Plots analogous to those in figures 4.6 and 4.7, except for plot (a). The
control term is u b(x + α), where b(x) is the actuator, shown in plot (a) with a solid line, and u
and α are the control inputs. The dashed line in plot (a) shows the actuator in the traveling frame
of reference, where it appears stationary. Plot (b) shows the fixed point z̃s of the slice dynamics
(solid line) and the initial condition of the closed loop equations (dashed line).
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(a) (b)

(c) (d)

Figure 4.10: Stabilized steady state solution for ν = 4/15 with the control term u1 sinx+u2 cosx,
where u1 and u2 are the control inputs. Plots analogous to those in Fig. 4.6. Control is turned on
at t = 20 (indicated by an arrow), where the state is in the vicinity of the stable traveling wave.
Plot (a) shows the fixed point z̃s of the slice dynamics (solid line) and the initial condition of the
closed loop equations (dashed line).

4.6 Summary

We have presented two approaches to stabilizing relative equilibria of general non-
linear systems with symmetry, using the template-based technique of Rowley et al.
(2003) and Rowley & Marsden (2000) to obtain equations in a symmetry-reduced
frame. As the relative equilibria are fixed points in this frame, simple tools from
linear systems theory could be used to derive feedback laws. The reduced dynam-
ics have an invariant subspace orthogonal to the group orbit through the chosen
template, and it is this subspace that we require to be controllable.

We considered two types of actuators. In the first case, we assumed the actuation
to be equivariant under the symmetry group action. For this case, we used LQR to
derive locally optimal feedback laws and demonstrated with a numerical example
that, in general, these control laws have a component in both the group and the
shape directions. In the second case, we considered arbitrary actuators, but assumed
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(a) (b)

(c)

Figure 4.11: Plots for the same case as in Fig. 4.10. Plots are analogous to those in Fig. 4.7.
Plot (a) shows that, with control, the dynamics approach a translation of z̃s.

that the actuator can be translated in the symmetry direction. For this case, which
we called the phase-amplitude actuation, the phase of the actuator was chosen such
that the control has a zero component in the group direction. In the numerical
example with Gaussian actuators, we mentioned that different choices of phases
indeed yield better closed loop performance.

94



(a) (b)

Figure 4.12: ν = 4/15. Plot (b) shows the evolution of g(t) for different initial conditions, shown
in corresponding line styles in plot (a). The solid bold line in plot (a) represents the steady state z̃s

used to define the slice dynamics.
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this work, we presented dimension reduction techniques for obtaining reduced-
order models of the input-output dynamics of fluid flows. We demonstrated these
techniques by stabilizing an unstable steady state in the flow past a flat plate at a
large angle of attack and a low Reynolds number. We presented symmetry reduction
techniques for stabilizing unstable relative equilibria such as traveling waves and self-
similar solutions. Potential application for control of fluid flows was demonstrated
by stabilizing unstable traveling waves of the translationally invariant Kuramoto-
Sivashinsky equation.

The model reduction techniques presented in chapter 2 were based on balanced
truncation, which was developed in the control theory community. Balanced trun-
cation is attractive as it accurately captures the effect of both actuation and sensing.
The resulting low-order models capture the dynamics of the original system with
provable a-priori bounds on the error and are guaranteed to retain its stability
properties. In comparison, proper orthogonal decomposition (POD) provides en-
ergetically optimal modes, but the models resulting from the subsequent Galerkin
projection do not always capture the dynamics accurately and do not always retain
the stability properties of the original system; for instance, the models of a full
stable system could even be unstable.

The exact balanced truncation is intractable for large systems and an approx-
imate algorithm was developed by Rowley (2005), for stable systems. We ex-
tended this algorithm to unstable systems, assuming a small number of unstable
eigenvalues. The method presented was to project the full dynamics onto the
stable subspace, using the unstable eigenmodes, and then obtaining its reduced
models using the procedure for stable systems. The projection technique has also
proven useful for obtaining balanced models of time-periodic systems, obtained from

96



linearizing the nonlinear dynamics about a periodic orbit. Such linearizations have
a neutral eigenmode, given by perturbations in the direction of the periodic orbit.
In this case, the full dynamics are projected onto the stable subspace using the
neutral (instead of unstable) eigenmodes; see Ma et al. (submitted).

Another attractive method, which results in the same reduced models as balanced
truncation, is the eigensystem realization algorithm (ERA). We showed that the
advantage of ERA is that it does not require adjoint simulations, and as a result
can be used in experiments, at least for stable systems. We also showed that, when
used in simulations, ERA requires an order of magnitude smaller computational
effort than approximate balanced truncation.

The dimension reduction techniques developed in this work were applied to the
two-dimensional flow past a flat plate at a low Reynolds number. The control
actuation was modeled as a localized body force close to the leading or trailing edge
of the flat plate, while sensing was through velocity measurements in the near-wake
of the plate. We used time-stepper based techniques in combination with Krylov
methods for bifurcation and linear stability analysis of the flow, varying the angle
of attack from 0◦ to 90◦. We developed reduced-order models of the input-output
dynamics of the flow linearized about an unstable steady state at a large angle of
attack. We used these models to develop reduced-order compensators, which were
included in the full linear and nonlinear simulations. We showed that the controllers
stabilized the unstable steady state, and more importantly, the models accurately
reproduced the full system dynamics. When included in the nonlinear system, the
controllers were able to suppress the periodic vortex shedding, implying a large
domain of attraction of the stabilized steady state.

For the class of systems with a continuous symmetry, we used a symmetry-
reduction procedure for control design; in particular, we extended the template-
based procedure developed in Rowley et al. (2003) to systems with a control input.
The method resulted in reducing the equations to a frame of reference in which
the symmetry is factored out. The control goal was to stabilize unstable relative
equilibria, which are simple steady states in the reduced frame. The reduced
equations were then linearized about the steady state to obtain standard state-
space equations. The formulation, obtained by reduction followed by linearization,
was appealing as it allowed the use of standard tools from linear control theory. We
considered two different actuators, which when included, retained the symmetry of
the original system. In the first case, the actuation was assumed to be equivariant
to the action of the symmetry group, and in the second case, arbitrary actuation
was considered, while equivariance resulted from the freedom to move the actuator
in the symmetry direction. In both cases, we derived optimal control techniques
to stabilize unstable equilibria. Potential application of the developed methods
towards control of fluid flows was demonstrated by stabilizing unstable traveling
waves in the translationally invariant Kuramoto-Sivashinsky equation.
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5.2 Future work

This dissertation has developed various techniques useful for obtaining reduced
models of fluid flows that are suitable for feedback control design. However, many
other areas remain to be explored, some of which are discussed here.

Model reduction of nonlinear systems. While the focus of this work was
to develop models of linear state-space systems, most fluid flows in nature are
essentially nonlinear. A natural step towards extending linear models to nonlinear
systems would be to project the full nonlinear equations onto the balancing modes.
Another interesting direction is development of algorithms to compute nonlinear
balanced models, for instance based on the theoretical work of Scherpen (1993).
There has been some effort on obtaining nonlinear models by balancing empirical
Gramians or input and output coavariance matrices (Lee et al., 2000; Lall et al.,
2002; Hahn et al., 2003), although most of these directions involve computing many
impulse response simulations and require large computational effort. Alternately,
the balanced models of the linear system, which accurately capture the transient dy-
namics, could be combined with the POD-based models using shift-modes of Noack
et al. (2005) which accurately capture vortex shedding and some of the transient
dynamics.

Extend parameter range. The controllers present here are designed to operate
at a fixed set of parameters (such as Reynolds number and angle of attack), and an
important direction is to obtain models that are accurate over a range of off-design
parameter values. In an initial study, Ilak & Rowley (2008) showed that the models
of the linearized channel flow obtained at a fixed Re had a greater range of validity
and better stability at off-design Re, as compared to POD models.

Optimal placement of sensors and actuators. The selection of both actua-
tors and sensors was ad-hoc and not practically realizable. Numerically validated
models of physically realistic actuation mechanisms such as wall blowing and suction
should be developed, and more practical sensors such as surface pressure probes or
shear stress sensors need to be considered. The actuation that was successful in
suppressing vortex shedding was found after manual experimentation with various
different choices. The combination of the fast immersed-boundary solver, two-
dimensional flow, and ERA allowed a quick computation of reduced-order models
and made it possible to explore a wide range of actuators and sensors. However,
this iterative process can become expensive and laborious for three-dimensional
simulations, which require more computational power. Hence, it is important to
develop a systematic approach for optimizing actuator and sensor locations, and
various parameters such as the width and strength of actuation. An extensive
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literature on selection of sensors and actuators is provided in van de Wal & de Jager
(2001) and chapter 10 of Skogestad & Postlethwaite (2005), mostly with applications
to chemical process control, vibration control in flexible structures and flight control.
Most of these methods are limited to small-dimensional systems, and it would be
useful to integrate the selection process with developing reduced-order models. For
fluid flows, the recent works of Giannetti & Luchini (2007) and Marquet et al.
(2008), which provided methods for identifying regions of the flow that acts as a
wavemaker for exciting instabilities and are most receptive to external forcing, seem
relevant for effective actuator selection.

Three-dimensional flows. The motivation for the choice of our model problem
of the control of the two-dimensional flow past a flat plate was to develop tools
towards manipulating wakes of micro-air vehicles. Recently, Taira & Colonius
(2009b) performed a numerical study for understanding the physics of the three-
dimensional flow past low-aspect-ratio plates, and showed that as the angle of attack
is increased beyond the Hopf-bifurcation point, the flow undergoes a secondary
bifurcation to an aperiodic regime. An interesting direction would be to to perform
a detailed continuation study of this flow in order to determine the nature of this
secondary bifurcation and also to explore the existence of high-lift unstable steady
states in this 3-D flow.

Balanced truncation of systems with symmetry. The second class of systems
considered in this work was those with a continuous symmetry, for which we devel-
oped feedback controllers to stabilize unstable relative equilibria. The dimensions
of the system were small enough for direct application of linear control techniques.
However, the dimensions would be much larger for systems arising from discretiza-
tion of PDEs describing phenomena in two or three spatial coordinates. Using the
idea of Rowley & Marsden (2000), the symmetry and dimension reduction ideas
presented in this work could be easily combined to deal with such systems. First,
symmetry could be factored out to obtain reduced dynamics, which have relative
equilibria as steady states. The symmetry-reduced dynamics could be linearized
about their steady states (which are relative equilibria) to obtain linear state-
space equations. Dimension reduction could then be used to obtain reduced-order
models and develop reduced-order controllers. The method could have interesting
applications in pattern formation, for example, stabilizing spiral waves (Golubitsky
& Stewart, 2002) and traveling or periodic structures (Postlethwaite & Silber, 2007).

Equation-free approach. An interesting direction would be to extend the reduc-
tion ideas to systems modeled at the fine or microscopic scales, while the dynamics
of interest (say, for control) occurs at much larger or macroscopic scales. In the
traditional approach, the effect of the microscopic scales on the macroscopic scales
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is analytically derived and used to obtain a closed-form equation describing the
macroscopic dynamics. However, such a derivation is not possible in many cases,
for which the equation-free approach of Theodoropoulos et al. (2000); Kevrekidis
et al. (2003) is useful as it effectively solves for the large scale dynamics without ever
deriving their equations in closed form. The method also allows the performance of
various computational tasks such as bifurcation analysis and control design directly
at the coarse level (Aronson et al., 2001; Armaou et al., 2004). An interesting
direction would be to extend the symmetry and dimension reduction methods
presented in this work to the equation-free framework.

Symmetry reduction ideas have been applied in the equation-free setting in Kavou-
sanakis et al. (2007) and could be combined with this work for stabilizing relative
equilibria of the macroscopic dynamics. Sirisup et al. (2005) used POD modes and
the equation-free framework to integrate reduced-order models without deriving
them in closed form; computational savings over the direct numerical solver were
demonstrated for the flow past a cylinder. For capturing input-output dynamics,
model dimension reduction using ERA could also be applied in this setting, since it
requires only the input-output data from impulse response simulations. However,
the approximate balanced truncation procedure requires adjoint simulations of the
effective coarse dynamics, which in general are not available.

Control of group dynamics. In this work, symmetry reduction was performed
to decompose the dynamics into two components, one related to the symmetry
variable and the other to the remaining variables called shape variables. The
resulting controllers were designed to stabilize only the dynamics associated with the
shape variables. A natural extension would be to also control the group dynamics to
achieve complete stabilization in full phase space by breaking the symmetry, as was
done in Bloch et al. (2001). For systems with translational symmetry, this would
imply stabilizing a particular steady state or a particular shift of a traveling wave
profile from the one-parameter family.
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Appendix A

Balancing transformation for
unstable systems

Without loss of generality, the transformation T (and its inverse) that decouples
the stable and unstable dynamics of (2.1, 2.2) can be written as:

T =
(
Tu Ts

)
, T−1 =

(
S∗u
S∗s

)
, (A.1)

where the columns of Tu and Ts span the unstable and stable right eigenspaces
of A, while the columns of Su and Ss span the unstable and stable left eigenspaces
of A. Further, these matrices are scaled such that S∗uTu = Inu and S∗sTs = Ins . The
transformation (A.1) decouples the dynamics of (2.1) as given in (2.40) with the
various matrices defined as follows:

Au = S∗uATu, Bu = S∗uB, Cu = CTu, (A.2)

As = S∗sATs, Bs = S∗sB, Cs = CTs. (A.3)

Using (A.1) in (2.42, 2.43), the Gramians of the original system (2.1, 2.2) are

Wc = TuW
u
c T
∗
u + TsW

s
c T
∗
s , (A.4)

Wo = S∗uW
u
o Su + S∗sW

s
oSs, (A.5)

where, W s
c and W s

o are the Gramians corresponding to the system defined by
the triplet (As, Bs, Cs), while W u

c and W u
o are the Gramians corresponding to

the system defined (−Au, Bu, Cu). Let Φ̃u ∈ Rnu×nu be the transformation that

balances the Gramians W u
c and W u

o , while Φ̃s ∈ Rns×ns be the transformation that
balances W s

c and W s
o . Then, it can be verified that the transformation that balances

the Gramians Wc and Wo is given by

Φ =
(
TuΦ̃u TsΦ̃s

)
def
=
(
Φu Φs

)
. (A.6)

Thus, the balancing transformation consists of two parts Φu and Φs which respec-
tively balance the dynamics on the unstable and stable subspaces of A. As per
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the technique of Zhou et al. (1999), a reduced-order model can be obtained by
truncating the columns of Φ that correspond to the relatively uncontrollable and
unobservable states. As we will show now, the algorithm outlined in section 2.2.2
essentially computes the leading columns of Φs (and the corresponding rows of its
inverse). We show that the controllability Gramian of the stable dynamics of (2.1),
which are defined by (2.45), is the same as the “stable” part of the Gramian defined
in (A.5). Note that using (A.1) and the definition (2.44), the projection operator Ps
can be written as

Ps = I − TuS∗u = TsS
∗
s . (A.7)

Using the definition (2.16), the controllability Gramian of (2.45, 2.46) is

W̃ s
c =

∫ ∞
0

ePsAt(PsB) (PsB)∗e(PsA)∗t dt

=

∫ ∞
0

Ts e
S∗sATst S∗sB B∗Ss e

T ∗s A
∗Sst T ∗s dt using equation (A.7)

= Ts

( ∫ ∞
0

eAst BsB
∗
s e

A∗st dt
)
T ∗s using equation (A.3)

= TsW
s
c T
∗
s , (A.8)

which is the same as the stable part of Wc. Similarly, it can be shown that the
observability Gramian W̃ s

o of (2.45, 2.46) is the same as the “stable” part of the
observability Gramian Wo:

W̃ s
o =

∫ ∞
0

eP∗sA∗t(P∗sC∗) (P∗sC∗)∗e(P∗sA∗)∗t dt = S∗sW
s
oSs. (A.9)

Thus, balancing the Gramians W̃ s
o and W̃ s

c is identical to balancing the parts of the
Gramians Wc and Wo of the original system (2.1) that are related to the dynamics
on the stable subspace of A.
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Appendix B

Derivation of the adjoint equations

B.1 Adjoint formulation of the immersed bound-

ary method

In this appendix, we derive the adjoint of the linearized semi-discrete equations (3.16,
3.17). Let (ζ, ψ) be the weighting functions corresponding to (γ, f̃). Then, using
the inner product defined in equation (3.19), the weak form of (3.16, 3.17) is:∫ T

0

∫
Ω

ζ · (CTC)−1
(dγ
dt

+ CTET f̃ + βCTCγ − CTNL(γs)γ
)
dx dt

+

∫ T

0

∫
Ω

ψ · ECs dx dt = 0. (B.1)

Integrating by parts with respect to t and rearranging terms,∫ T

0

∫
Ω

γ·
(
− (CTC)−1dζ

dt
+ (CTC)−1CTETψ + βζ − ((CTC)−1CTNL(γs)

)T
ζ
)
dx dt

+

∫ T

0

∫
Ω

f̃ ·
(
EC(CTC)−1ζ

)
dx dt+ 〈γ, ζ〉

∣∣∣T
0

= 0. (B.2)

For linearization about stable steady states, γ → 0, as T → ∞, and if the adjoint
equations are integrated backwards in time, ζ(t = 0)→ 0. So, the last term on the
left hand side of equation (B.2) vanishes identically. If equation (B.2) is to hold for
all values of γ and f̃ , we get the following adjoint equations hold:

−dζ
dt

+ CTETψ = −βCTCζ + (CTC)NL(γs)
T qa, (B.3)

ECξ = 0, (B.4)

where ξ = (CTC)−1ζ and qa = Cξ can be thought of as the weighting functions
corresponding to the streamfunction s and the flux q respectively. Now, equa-
tions (B.3, B.4) have the same form as (3.16, 3.17) except for the nonlinear term.
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Thus, the same time-integration scheme can be used for both, with the appropriate
(linearized) nonlinear terms.

B.2 Adjoint of differential algebraic equations

Consider the state-space system defined in (2.1, 2.2)

ẋ = Ax+Bu, (B.5)

y = Cx, (B.6)

where although x ∈ Rn, it is constrained to evolve on a m-dimensional subspace;
for instance, in case of the immersed boundary formulation of the linearized Navier-
Stokes equations, it is restricted to evolve on the subspace defined by the velocity
fields that are divergence-free and satisfy the no-slip boundary conditions at the
body surface. Mathematically, x satisfies the constraint

Fx = 0, (B.7)

where the operator F ∈ Rm×n where m < n. The equations (B.5, B.6, B.7) form
a set of differential-algebraic equations. In order to find the adjoint of these equa-
tions, we obtain a minimal state-space representation defined by only differential
equations. We first construct a matrix H ∈ Rn×m, such that

FH = 0 and HTH = I, (B.8)

that is, the columns of H form an orthonormal basis spanning the null-space of F .
Since x satisfies (B.7), we can write

x = Hx̃. (B.9)

Substituting (B.9) in (B.5, B.6), left-multiplying by HT and using (B.8), we obtain
the minimal state-space realization:

˙̃x = HTAHx̃+HTBu
def
= Ãx̃+ B̃u, (B.10)

y = CHx̃
def
= C̃x̃. (B.11)

Assuming L2− inner-products, the adjoint of (B.10, B.11) is simply given by

˙̃z = ÃT z̃ + C̃Tv, (B.12)

w = B̃T z̃, (B.13)

where z̃, v and w are dual to the state x̃, input u and output y. Then, left-multiply
(B.12) by H,

H ˙̃z = HHTATHz̃ +HHTCTv (B.14)

w = BT z̃ (B.15)
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and define the dual to the state x by z = Hz̃ to obtain the adjoint formulation of
the differential-algebraic equations (B.5, B.6, B.7):

ż = PHAT z + PHCTv
def
= A∗z + C∗v (B.16)

w = BT z
def
= B∗z, (B.17)

where, PH
def
= HHT (B.18)

is an orthogonal projection onto the columns ofH. The adjoint state z is constrained
to satisfy (B.7); that is, the adjoint field obtained in the immersed boundary
formulation, is divergence free and satisfies the no-slip boundary condition at the
body surface. Further, the adjoint of the output matrix is obtained by taking its
transpose, followed by a projection onto the columns of H.
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Appendix C

Linearization of slice dynamics

Let z̃ = z̃s + w, and ũ = 0 + v, where ‖w‖, ‖v‖ � 1. Substituting in (4.8), we get

ẇ =X(zs, 0) +Dz̃X(zs, 0)w +DũX(z̃s, 0)v − Y (z̃s + w)(ξ0 + ξ1) +O(2)

=X(zs, 0)− Y (z̃s)ξ0︸ ︷︷ ︸
O(0)

+

Dz̃X(zs, 0)w +DũX(z̃s, 0)v − Y (z̃s)ξ1 −Dz̃Y (z̃s)w · ξ0︸ ︷︷ ︸
O(1)

+O(2). (C.1)

Here, ξ0 and ξ1 are the zeroth and first order terms in the expansion of ξ. The
exact form of these terms follows. Let A = Dz̃X(z̃s, 0) and B = DũX(z̃s, 0).
Substituting z̃ = z̃s + w, ũ = v in (4.17),

ξ =
(
Y ∗(z0)Y (z̃s + w)

)−1

Y ∗(z0)X(z̃s + w, v)

=
(
Y ∗(z0)(Y (z̃s) +Dz̃Y (z̃s)w)

)−1

Y ∗(z0)(X(z̃s, 0) + Aw +Bv) +O(2)

=
(
Y ∗(z0)Y (z̃s)

)−1/2(
I − (Y ∗(z0)Y (z̃s))

−1/2Y ∗(z0)Dz̃Y (z̃s)w(Y ∗(z0)Y (z̃s))
−1/2

)
(
Y ∗(z0)Y (z̃s)

)−1/2

Y ∗(z0)(X(z̃s, 0) + Aw +Bv) +O(2)

=
(
Y ∗(z0)Y (z̃s)

)−1(
Y ∗(z0)(X(z̃s, 0)︸ ︷︷ ︸

O(0)

+Aw +Bv︸ ︷︷ ︸
O(1)

)−

Y ∗(z0)Dz̃Y (z̃s)w
(
Y ∗(z0)Y (z̃s)

)−1

Y ∗(z0)X(z̃s, 0)︸ ︷︷ ︸
O(1)

)
+O(2) (C.2)

def
=ξ0 + ξ1 +O(2). (C.3)
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That is, the terms at O(0) and O(1) in (C.2) define ξ0 and ξ1 respectively. Now,
define the following projection operator:

PSz0 = I − Y (z̃s)
(
Y ∗(z0)Y (z̃s)

)−1

Y ∗(z0) (C.4)

which is a projection onto the space orthogonal to the columns of Y (z0). Then,
combining (C.1, C.2, C.4), we get

ẇ = PSz0 (X(zs, 0) + Aw +Bv)

− PSz̃sDz̃Y (z̃s)w
(
Y ∗(z0)Y (z̃s)

)−1

Y ∗(z0)X(z̃s, 0) +O(2) (C.5)

def
=PSz̃s (Âw + B̂v) +O(2). (C.6)

Here, we have used the fact that since z̃s is a fixed point of the slice dynam-
ics, PSz0X(z̃s, 0) = 0.
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Beyn, W.-J. & Thümmler, V. 2004 Freezing solutions of equivariant evolution
equations. SIAM Journal on Applied Dynamical Systems 3 (2), 85–116.

Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of
the leading-edge vortex on insect wings. Nature 412, 729–733.

Bloch, A. M., Chang, D.-E., Leonard, N. E. & Marsden, J. E. 2001
Controlled lagrangians and the stabilization of mechanical systems ii: Potential
shaping. IEEE Transactions on Automatic Control 46 (10), 1556–71.

Bloch, A. M., Leonard, N. E. & Marsden, J. E. 2000 Controlled lagrangians
and the stabilization of mechanical systems i: The matching theorem. IEEE
Transactions on Automatic Control 45 (12), 2253–2270.

Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developmentsin
rayleigh-bénard convection. Annual Review of Fluid Mechanics 32, 709–778.

109



Brockett, R. W. & Willems, J. L. 1974 Discretized partial differential
equations: Examples of control systems defined on modules. Automatica 10, 507–
515.

Bullo, F. 2000 Stabilization of relative equilibria for underactuated systems on
riemannian manifolds. Automatica 36, 1819–34.

Cabell, R. H., Kegerise, M. A., Cox, D. E. & Gibbs, G. P. 2006
Experimental feedback control of flow-induced cavity tones. AIAA Journal 44 (8),
1807–1815.

Cattafesta, III, L. N., Garg, S., Choudhari, M. & Li, F. 1997 Active
control of flow-induced cavity resonance. AIAA Paper 97-1804.

Choi, H., Jeon, W.-P. & Kim, J. 2008 Control of flow over a bluff body. Annual
Review of Fluid Mechanics 40, 113–39.

Chowdhury, M. K. & Tuckerman, L. S. 1995 Asymmetry and hopf bifurcation
in spherical couette flow. Physics of Fluids 7 (1), 80–91.

Cliffe, K. A., Spence, A. & Tavener, S. J. 2000 The numerical analysis
of bifurcation problems with application to fluid mechanics. Acta Numerica pp.
39–131.

Cobb, J. D. 1981 Feedback and pole placement in descriptor variable systems.
International Journal of Control 33 (6), 1135–46.

Cobb, J. D. 1983 Descriptor variable systems and optimal state regulation.
International Journal of Control 28 (5), 601–611.

Coller, B. D. 1995 Suppression of heteroclinic bursts in boundary layer models.
PhD thesis, Cornell University.

Colonius, T. & Taira, K. 2008 A fast immersed boundary method using a
nullspace approach and multi-domain far-field boundary conditions. Computer
Methods in Applied Mechanics and Engineering 197 (25-28), 2131–46.

Corke, T. C., Glauser, M. N. & Berkooz, G. 1994 Utilizing low-dimensional
dynamical systems models to guide control experiments. Applied Mechanics
Reviews 47 (6), 133–138.

Cortelezzi, L. 1996 Nonlinear feedback control of the wake past a plate with a
suction point on the downstream wall. Journal of Fluid Mechanics 327, 303–324.

Cortelezzi, L., Chen, Y.-C. & Chang, H.-L. 1997 Nonlinear feedback control
of the wake past a plate: From a low-order model to a higher-order model. Physics
of Fluids 9 (7), 2009–2022.

110



Crawford, J. D. & Knobloch, E. 1991 Symmetry and symmetry-breaking
bifurcations in fluid dynamics. Annual Review of Fluid Mechanics 23, 341–387.

Dai, L. 1989 Singular control systems , Lecture notes in control and information
sciences , vol. 118. Berlin-Heidelberg: Springer-Verlag.

D’Andrea, R. & Dullerud, G. E. 2003 Distributed control design for spatially
interconnected systems. IEEE Transactions on Automatic Control 48 (9), 1478–
95.

Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A.
1991 Low-dimensional models for complex geometry flows: Application to grooved
channels and circular cylinders. Physics of Fluids A 3 (10), 2337–54.

Doedel, E. J., Keller, H. B. & Kernevez, J. P. 1991 Numerical analysis
and control of bifurcation problems, part II. International Journal of Bifurcation
and Chaos 1 (4), 745–772.

Dubljevic, S., Christofides, P. D. & Kevrekidis, I. G. 2004 Distributed
nonlinear control of diffusion-reaction processes. International Journal of Robust
and Nonlinear Control 14, 133–156.

Ellington, C. P., van der Berg, C., Willmott, A. P. & Thomas, A.
L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626–630.

Gaitonde, A. L. & Jones, D. P. 2003 Reduced order state-space models from
the pulse responses of a linearized cfd scheme. International Journal for Numerical
Methods in Fluids 42, 581–606.

Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability
of the cylinder wake. Journal of Fluid Mechanics 581, 167–197.

Gillies, E. A. 1998 Low-dimensional control of the circular cylinder wake. Journal
of Fluid Mechanics 371, 157–178.

Gloerfelt, X. 2008 Compressible proper orthogonal decomposition/galerkin
reduced-order model of self-sustained oscillations in a cavity. Physics of Fluids
20, 115105.

Golubitsky, M. & Schaeffer, D. G. 1985 Singlularities and Groups in
Bifurcation Theory I , Applied Mathematical Sciences , vol. 51. New York:
Springer-Verlag.

Golubitsky, M. & Stewart, I. 2002 The Symmetry Perspective: From
Equilibrium to Chaos in Phase Space and Physical Space, Progress in
mathematics , vol. 200. Basel: Birkh́’auser.

111



Golubitsky, M., Stewart, I. & Schaeffer, D. G. 1988 Singlularities and
Groups in Bifurcation Theory II , Applied Mathematical Sciences , vol. 69. New
York: Springer-Verlag.

Graham, W. R., Peraire, J. & Tang, K. Y. 1999a Optimal control of
vortex shedding using low-order models. part 1 - open-loop model development.
International Journal for Numerical Methods in Engineering 44 (7), 945–972.

Graham, W. R., Peraire, J. & Tang, K. Y. 1999b Optimal control of vortex
shedding using low-order models. part 2 - model-based control. International
Journal for Numerical Methods in Engineering 44 (7), 973–990.

Greenblatt, D. & Wygnanski, I. J. 2000 The control of flow separation by
periodic excitation. Progress in Aerospace Sciences 36, 487–545.

Grizzle, J. & Marcus, S. 1984 Optimal control of systems possessing
symmetries. IEEE Transactions on Automatic Control 29 (11), 1037–40.

Grizzle, J. & Marcus, S. 1985 The structure of nonlinear control systems
possessing symmetries. IEEE Transactions on Automatic Control 30 (3), 248–
258.
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