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Abstract

This work makes advances in the delay of boundary layer transition from laminar to
turbulent flow via feedback control. The applications include the reduction of drag over
streamline bodies (e.g., airplane wings) and the decrease of mixing and heat transfer (e.g.,
over turbine blades in jet engines).

A difficulty in many fields is designing feedback controllers for high-dimensional systems,
be they experiments or high-fidelity simulations, because the required time and resources
are too large. A cheaper alternative is to approximate the high-dimensional system with a
reduced-order model and design a controller for the model. We implement several model re-
duction algorithms in modred, an open source and publicly available library that is applicable
to a wide range of problems.

We use this library to study the role of sensors and actuators in feedback control of
transition in the 2D boundary layer. Previous work uses a feedforward configuration in
which the sensor is upstream of the actuator, but we show that the actuator-sensor pair
is unsuitable for feedback control due to an inability to sense the exponentially-growing
Tollmien-Schlichting waves. A new actuator-sensor pair is chosen that more directly affects
and measures the TS waves, and as a result it is effective in a feedback configuration. Lastly,
the feedback controller is shown to outperform feedforward controllers in the presence of
unmodeled disturbances.

Next, we focus on a specific type of actuator, the single dielectric barrier discharge
(SDBD) plasma actuator. An array of these plasma actuators is oriented to produce stream-
wise vorticity and thus directly cancel the structures with the largest transient growth (so-
called stream-wise streaks). We design a feedback controller using only experimental data
by first developing an empirical input-output quasi-steady model. Then, we design feed-
back controllers for the model such that the controllers perform well when applied to the
experiment.

Lastly, we also simulate the plasma actuators and determine a suitable numerical model
for the forces they create by comparing with experimental results. This physical force model
is essential to future numerical studies on delaying bypass transition via feedback control
and plasma actuation.
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Chapter 1

Introduction

Boundary layers are prevalent in engineering applications. For example, the boundary layers
formed by the flow of air over wind turbine blades and airplane wings play a critical role
in their operation and efficiency. Similarly, the drag over automobiles and ships is largely
determined by the properties of the surrounding boundary layer. In industrial processes,
heat transfer and chemical mixing are influenced by the boundary layer. The flow of air over
the Earth’s surface is a boundary layer on a massive scale, and understanding it is critical
for predicting the weather and climate.

Boundary layers are classified as laminar or turbulent. Each classification is characterized
by different properties, and certain applications benefit more from one type of boundary layer
than another. In the case of streamlined bodies such as airplane wings, turbine blades, and
boat hulls, skin friction drag is often the largest source of drag, and so laminar flow, with
its smaller spatial velocity gradients, is desirable. However, in stall conditions, flow can
separate around a wing and pressure drag becomes important. Since turbulent flow is less
susceptible to separation, turbulent flow is often intentionally created for such flows to reduce
the total drag. Generally, turbulent flow is characterized by swirling eddies that increase
mixing and transport, in contrast to laminar flow, which is stratified and smooth. In some
cases, this increased mixing is advantageous, for example in expediting chemical reactions
among multiple reagents. Turbulent mixing also increases heat transfer, which could be a
benefit or a detriment in different applications, or even at different times within a single
process.

Due to the different properties of laminar and turbulent flow, it is advantageous to be
able to control the flow and choose between the two, depending on which is more desirable.
This area of research falls under the broad category of flow control, and in this case is
built on an understanding of the primary mechanisms underlying the physics of transition.
At high enough Reynolds numbers, Re, (defined in (2.4)), disturbances can cause laminar
flow to transition to turbulence, which then remains turbulent. Research continues to be
conducted on how to use this understanding to delay transition and preserve laminar flow,
and multiple approaches will be discussed shortly. Alternatively, creating turbulent flow is
simple to achieve by disturbing laminar flow in any number of ways.

This thesis focuses on reducing drag (skin friction) and mixing by preventing laminar
flow from transitioning to turbulent flow. We consider a flat wall geometry, and the flow is
incompressible with zero pressure gradient. This geometry is found in many applications and,
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more generally, serves as a first step towards more complicated cases encountered in practice.
Further, we demonstrate useful techniques and approaches and identify key principles that
carry over to practical applications.

In this thesis, we delay transition via active control, i.e., we measure flow quantities with
sensors then use that output information to determine the actuation input. We examine
the effects of different types of sensors and actuators on the effectiveness of the control. In
simulations of 2D flow, we measure a localized velocity near the wall as the output and use
localized forcing near the wall as the inputs, and both are meant to be similar to what could
be used in a physical experiment or application. In the full 3D case, we both simulate the flow
and collaborate with experimentalists and so we use physical, wall-mounted shear sensors
as outputs and plasma actuators as inputs. Plasma actuators present unique advantages for
control, creating small forces very near the wall. Some major practical advantages include
that they do not alter the flow when turned off because they are very thin, they require little
maintenance because there no moving parts, they can be affixed to existing wings/bodies,
and their operation simply requires applying a voltage.

This research is novel for the model-based and rigorous design of controllers from both
experimental and simulation data, and yields important insights into the physical fluid sys-
tem for effective control of transition. The models are based on the aspects of the flow that
matter from a control perspective—the input-output dynamics. That is, all of the fluid dy-
namics are not resolved by the model, only the components that play a role in the dynamics
between the inputs and outputs. The benefit of such models is that they have much lower di-
mensionality than the original fluid system, and so it is cheaper (with regard to wind-tunnel
time, computation, etc.) to analyze and design controllers for the models than the original
system.

1.1 Previous work on transition control

There are many approaches to flow control. One is known as passive control and no mea-
surements are made, the flow is simply manipulated either by actuators with a predefined
time signal or by slightly altering the geometry to achieve a desired effect. For example,
airplane wings are often outfitted with vortex generators to trip turbulence and thus prevent
separation and stall. Also, many airfoil shapes are carefully designed to achieve high lift,
low drag, and to avoid the detrimental effects of separation and transition.

Often, active control, sensing the flow and using this information to determine the actu-
ation, outperforms passive control. As is the case for passive control, many active control
techniques are based on fluid dynamic understanding and/or models of the most important
low dimensional structures to make control design easier. For example, in [20], the authors
reduce the drag in a turbulent boundary layer by 20-30% with physical insight and without
a model. They test various controller schemes, including blowing/suction at the wall with
an amplitude proportional to the instantaneous velocity slightly above the wall, and explain
the physical mechanism for drag reduction. The physical mechanism is further explained in
[36] as a “virtual wall” above the wall through which almost no fluid passes.

The work presented in [106] uses active wave cancellation to cancel Tollmien Schlichting
(TS) waves that lead to transition. They perform experiments in which the TS waves are
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sensed upstream by multiple sensors, and this information is used so that the downstream
actuators act out of phase with the TS waves. This is demonstrated using two different types
of actuation, both located at the wall. This type of control is called feedforward because the
upstream sensors measure the disturbance, which informs the downstream actuation, but the
sensors do not measure the effect of the actuation (this is feedback and discussed later). In
another example of feedforward control, upstream wall-mounted sensors measure the shear
stress in experiments [77]. As in other works, no model is used. Instead, when measured
shear stress is above a certain threshold, the controller waits a predefined time delay before
applying suction through holes in the wall. The time delay corresponds to the time it takes
for the flow to convect from the sensors to the actuators. The result is a decreased amplitude
of disturbances that could trigger transition, and this decrease in amplitude exists over a
prolonged downstream distance.

Better controllers can be found by first finding a model of the fluid system’s inputs-
output behavior. The system can be an actual experiment, a high-fidelity fluid simulation,
or a simplified model, as long as the inputs and outputs are well-defined. The model at least
serves as an efficient testbed to try many types of ad hoc controllers or to tune gains, rather
than expending large amounts of resources on large simulations or experiments. This is the
approach taken in [69], in which experimental data is used to find an empirical model of
the input-output relationship. This model is simplified to essentially just a time delay, and
use the model to design a controller, then using the controller on the model, then on the
original experiment. The result is a significant reduction of random upstream disturbances
downstream of the actuators.

Beyond using models as testbeds, control theory tools can be applied to them to develop
more advanced and effective controllers. The work of [55] does this by linearizing and
discretizing the Navier-Stokes equations to come up with a linear input-output model of
plane Poiseuille flow. This system decouples by stream-wise wavenumber, yielding a set of
one-dimensional systems. The authors then analyze the poles and zeros of the systems, which
helps them choose the physical locations of their outputs (shear-stress sensors) to avoid non-
minimum-phase zeros, which complicate controller design. They find an effective feedback
proportional-integral controller which determines the actuation (blowing/suction at the wall)
and stabilizes the unstable open-loop system. The work in [13] expands on these results.
Using a similar model, they use more advanced control design techniques: both optimal
(H2) and robust (H∞) controllers. They demonstrate that they can not only stabilize the
system, but increase performance and robustness to model uncertainty, as compared to the
proportional-integral control used in [55]. A 3D study is done in [44] in which the model is
composed of 1D systems for each pair of stream-wise and span-wise wavenumbers. Here, the
controllers are again designed on a wavenumber pair basis. The controllers make use of an
optimal Linear Quadratic Regulator, which provides the actuation signal for blowing/suction,
and a Kalman filter to estimate the state from the shear stress measurements. The resulting
controllers are effective, significantly damping a few types of disturbances.

The models in the previous works are based on approximations and simplifications to
the governing equations primarily based on physical insights. The order of the original
system can be reduced even when there are no further physical approximations to be made.
This is done in [30], where the model is found by keeping the components which are most
important for reconstructing the input-output behavior of the original system, a method
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known as balanced truncation. They demonstrate this method’s utility for fluid systems by
applying it to Couette flow, showing that it accurately reproduces the original system. In
[67], reduced-order models are also found via balanced truncation, in this case a model is
found for each stream-wise wavenumber in the wall-normal direction. The authors design
an H2-optimal controller for each wavenumber based on the corresponding reduced-order
model. The span-wise variations are controlled in an ad hoc matter, and the drag is reduced
by about 10% from the drag in the original turbulent nonlinear boundary layer.

Balanced truncation is not computationally tractable for very large systems, but it can be
approximated with a method called balanced Proper Orthogonal Decomposition (BPOD).
The resulting model from BPOD is a close representation of the input-output behavior of
the original high-dimensional linear system. This method is used in [7] to find a model from
localized forcing inputs to localized average velocity outputs in the 2D spatially-evolving
boundary layer. Linear Quadratic Gaussian (LQG) feedforward controllers are developed
based on the model and are effective at canceling the growth of TS waves. This work is
extended to three dimensions in [101]. Here, several independent BPOD models and LQG
controllers are designed for sensor-actuator pairs aligned in the stream-wise direction where
the sensor is directly upstream from the actuator (i.e. at the same span-wise position). This
distributed, feedforward, scheme is effective at reducing the growth of disturbances, and is
also shown to be robust to changes in flow conditions. Our work is related to these two,
using BPOD and similar methods to find models which we use as the basis for control design
and analysis.

Other methods exist as well. For example, in [3] a model based on the eigenfunctions of
the linearized 2D Navier-Stokes is developed and used for controller design. This method
has limitations though since the resulting models may not accurately approximate the effect
of inputs on the outputs.

1.2 Organization and contributions

Chapter 2: The governing equations for the incompressible boundary layer are given.
The mechanisms for transition are explained in terms of the linearized versions of these
equations. Since the equations and their numerical solution are closely related, the numerical
algorithm and software we use to simulate the flow are discussed. The main contribution
here is substantial improvements to the original version of this software, particularly related
to the control aspects. We also develop an extensive post-processing suite for analysis and
visualization, and explain its functionality.

Chapter 3: Chapter 3 focuses on the new Python model reduction library modred. This
library is used in this thesis, but it is also designed to be used in many other applications.
Currently it is used by other members of our research group and by researchers at other
universities. The beginning of the chapter (Sections 3.1, 3.2, and 3.3) also serves to introduce
the model reduction techniques used in later chapters.

The author of this thesis is responsible for the majority of the concept, design, and
implementation. J. H. Tu and C. W. Rowley participate in all phases of the design and J. H.
Tu implements parts of the library, including the Dynamic Mode Decomposition algorithm.
The work is submitted for publication in ACM Transactions on Mathematical Software [10].
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Chapter 4: Here, we control the transitional two-dimensional boundary layer by
damping the growth of TS waves. Previous work on this problem uses a feedforward controller
to achieve good performance. We illustrate the difference bewtween feedforward and feedback
configurations based on the relative position of the actuator and sensor. The role of the
actuator and sensor on feedback control are investigated, and we show that the original
actuator and sensor are poorly suited for damping the growth of TS waves. We find a better
choice of actuator and sensor.

The author is responsible for conducting the simulations, model reduction, control design,
and sensor and actuator analysis. O. Semeraro and D. S. Henningson provide both the
software to simulate the system and useful insights into the flow physics. These results are
published in Physics of Fluids [9].

Chapter 5: This chapter focuses on controlling bypass transition in experiments, in
collaboration with R. E. Hanson and P. Lavoie at University of Toronto, and K. Bade and A.
M. Naguib at Michigan Statue University. Three-dimensional stream-wise streaks of stream-
wise velocity are created by roughness elements upstream on the wall to mimic the process of
transition in a predetermined way. These streaks are then significantly damped via plasma
actuation and feedback control.

The author’s contribution is primarily in the design of a model and controller which
improve the performance from the previous ad-hoc approach. R. E. Hanson and K. M. Bade
conduct the wind-tunnel experiments. R. E. Hanson fabricates the plasma actuators and K.
M. Bade implements of the roughness elements that disturb the laminar flow. This work is
submitted for publication in Physics of Fluids [38].

Chapter 6: While it is useful to find models from limited experimental measurements,
as done in Chapter 5, access to the entire velocity field from simulations could result in more
insights and better models. Simulating plasma actuators is challenging, though, because
they operate at much smaller spatial and temporal scales than those of the surrounding
fluid, making it computationally inefficient to resolve both the plasma and fluid scales in
the same simulation. Instead, we approximate the effect of the plasma actuators as a body
force. This chapter validates our approximation by comparing simulations to experiments.

The author is responsible for conducting the simulations, adjusting the models, and
validating the models against experimental measurements. Former undergraduate summer
researchers K. Meidell and M. Popova also conduct some of the simulations under the author’s
guidance. The experimental measurements are taken by R. E. Hanson. Portions of this work
are published in a conference article [? ].

Chapter 7: We summarize our results and possible future directions for this research.
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Chapter 2

Numerical simulation of boundary
layers with feedback control

2.1 Governing equations

The physical system of interest is the three-dimensional incompressible boundary layer over
a flat wall with zero pressure gradient, as shown in Figure 2.1. This system is governed by
the incompressible Navier-Stokes equations

ρ
∂v′

∂t′
= −∇′p′ − ρ(v′ · ∇′)v′ + µ∇′2v′ + f ′ (2.1)

∇′ · v′ = 0 (2.2)

where (2.1) is the momentum equation, (2.2) is the continuity (mass) equation, v′ is the veloc-
ity with components [u′, v′, w′], t′ is time, ∇′ is the spatial derivative operator [ ∂

∂x′
, ∂
∂y′
, ∂
∂z′

],
p′ is the pressure, and f ′ is an arbitrary volume force. The quantities µ and ρ are the shear
viscosity and density, respectively, and both are constant throughout space [x′, y′, z′] and
time t′. The prime, ( )′, denotes that these are dimensional quantities.

It is useful to non-dimensionalize these equations by characteristic length, time, and mass
scales. There is no single obvious choice of length scale, and in practice many different length
scales are used. In this research, we use the displacement thickness of the boundary layer,
defined as

δ∗0 =

∫ ∞
0

(U ′∞ − u′|x′0)dy
′ (2.3)

where U ′∞ is the stream-wise component of the free-stream velocity and u′|x′0 is the stream-
wise component of velocity at a particular x′0 location. (We choose the computational inlet
as the reference location.) The non-dimensional Reynolds number, Re, defined as

Re = δ∗0U
′
∞ρ/µ, (2.4)
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u = 0.99U∞

Figure 2.1: Laminar boundary layer velocity profiles. There is no variation in the z dimen-
sion.

arises as a function of the dimensional quantities. The non-dimensional variables are

[x, y, z] =
[x′, y′, z′]

δ∗0
, v =

v′

U ′∞
, U∞ = 1, t =

t′U ′∞
δ∗0

p =
p′

ρU ′2∞
, ∇ =

∇′
δ∗0
, f =

f ′δ∗0
ρU ′2∞

.

Substitution into the governing equations results in

∂v

∂t
= −∇p− (v · ∇)v +

1

Re
∇2v + f (2.5)

∇ · v = 0. (2.6)

We work with the non-dimensional form of the equations ((2.5) and (2.6)) rather than
the dimensional form ((2.1) and (2.2)) throughout the rest of the chapter and the thesis.
The boundary conditions are dictated by the boundary layer geometry and are discussed in
Section 2.3.

2.2 Transition from laminar to turbulent flow

Fluid flows can generally be classified as either laminar, which is relatively smooth, or tur-
bulent, which is characterized by larger velocity gradients and swirling eddies. At higher Re,
fluid can undergo a transition from laminar flow to turbulent flow. This research focuses
primarily on preserving laminar flow by sensing and controlling the early stages of transi-
tion. Applications include the reduction of drag and mixing over streamlined bodies, such as
turbine blades and wings. In these cases, laminar boundary layers are more desirable than
turbulent ones because the flow is more stratified and has less mixing. The reduced mixing
also lowers the velocity gradient near the wall, resulting in lower skin friction drag. Since
this is the largest source of drag in the absence of other effects such as separation, the total
drag is less in laminar boundary layers.

There are multiple mechanisms by which a laminar flow can transition to turbulent flow.
The first, classical transition, is predicted by a linear stability analysis of the governing

7



equations (2.5) and (2.6). The equations are simplified by the use of periodic boundary
conditions in the x direction, and the parallel flow assumption. The resulting linear system
is further reduced by assuming the solution has no variation in the z direction, yielding the
Orr-Sommerfeld equations, which are unstable for high Re [115]. The unstable eigenvectors
are known as Tollmien-Schlichting (TS) waves, and they are constant in the spanwise (z)
direction and vary in the stream-wise (x) direction. TS waves can arise in the presence of
very small magnitude perturbations to laminar flow, such as vibrations, surface roughness,
or free-stream turbulence. The amplitude of the TS waves grows exponentially, eventually
becoming large enough that nonlinear effects become important. At this point, the TS
waves breakdown into secondary structures. Turbulent spots appear and eventually merge,
resulting in fully turbulent flow. This type of transition is the focus of Chapter 4, where we
detect TS waves and prevent their growth with active feedback control.

A second transition mechanism is called bypass transition because it bypasses the classical
path to turbulence. In this case, larger disturbances trigger algebraic transient growth along
stable directions. This is possible because the eigenvectors of the Orr-Sommerfeld equation
are non-normal. As with any stable linear system with non-normal eigenvectors, algebraic
growth can occur before the exponential decay dominates, sending solution towards the
stable equilibrium. The fluid structures which undergo transient growth are elongated in
the stream-wise direction and consist of stream-wise vorticity with alternating sign in the
spanwise direction. The structures can also be described as a spanwise array of streaks that
alternate between high and low streamwise velocity. For a purely linear system, these streaks
would grow in magnitude and eventually decay, since they are stable. However, in the full
Navier-Stokes equations, the streaks can grow large enough that nonlinear effects dominate,
precluding their exponential decay. Instead, the streaks break down into other structures
and eventually form turbulent spots and fully turbulent flow.

These streaks are fundamentally three-dimensional, as opposed to the essentially two-
dimensional TS waves. The algebraic growth, as triggered by larger disturbances, is initially
faster than the exponential growth of TS waves, and therefore bypass transition path is
more common for larger disturbances. Further, this algebraic growth occurs at stable Re, so
bypass transition can result in turbulence at subcritical (stable) Re. Bypass transition, and
preventing it via active feedback control, is the focus of Chapter 5.

2.3 Numerical solution

This research uses both experiments and simulations to find effective ways to control tran-
sition and gain physical insights. The simulations provide the ability to quickly change and
explore different parameters and control strategies. For example, in Chapter 4 we vary the
sensor and actuator position and types over a wide range of possibilities relatively easily.
This same task, in experiments, could be extremely costly. The simulations also provide the
entire velocity field, making more types of analysis and modeling possible. In Chapter 6,
we use this information to verify the simulation of plasma actuators and compare some flow
quantities to experimental measurements.

There are many ways to simulate fluid flows with varying levels of approximations and
assumptions. Here we directly numerically simulate the system, resolving all relevant length

8



scales, with spectral methods. In spectral methods, the solution is approximated as a finite
sum of spectral basis functions that have known analytical derivatives and provide high-order
spatial accuracy. Generally, spectral methods are applicable to a limited class of problems.
They are applicable here because the solution is smooth (no shocks) and the domain is a
simple rectangular shape that does not vary in time and is discretized on a Cartesian grid.

2.3.1 Existing flow simulation software

To simulate the flow, we use existing software called SIMSON (pseudo-spectral solver for
incompressible boundary layers) that has been developed and extensively used by Dan
Henningson’s group at the Royal Institute of Technology Sweden (KTH) since the early
1990s [12]. It is written in Fortran 77/90 and is parallelized for distributed and shared mem-
ory architectures via MPI and OpenMP. We make several contributions to this software to
perform our studies, particularly related to control (Section 2.3.2).

The algorithm it implements is described in [63] and follows a wall-normal vorticity-
velocity formulation. These two quantities are first advanced via time evolution equations,
then the two other components of velocity are solved for via boundary-value problems derived
from the definition of vorticity, ω = ∇ × v, and the continuity equation. The pressure is
eliminated when taking the curl of the momentum equation to find the vorticity equation,
and it is not needed in the solution procedure. It can be solved for in post-processing, but
this is unnecessary in this research.

We outline this procedure now. The equations to advance in time, after manipulation,
are

∂ωy
∂t

=
∂Nx

∂z
− ∂Nz

∂x
+

1

Re
∇2ωy (2.7a)

∂(∇2v)

∂t
=

(
∂2

∂x2
+

∂2

∂z2

)
Ny −

∂2Nx

∂x∂y
− ∂2Nz

∂y∂z
+

1

Re
∇4v (2.7b)(

∂2

∂x2
+

∂2

∂z2

)
u =

∂ωy
∂z
− ∂2v

∂y∂z
(2.7c)(

∂2

∂x2
+

∂2

∂z2

)
w = −∂ωy

∂x
+

∂2v

∂y∂z
(2.7d)

where N = (v · ∇)v is the nonlinear convective term, and subscripts x, y, and z denote
components of vectors.

The boundary conditions for these equations are handled in a careful way to facilitate
the numerical method. The solution variables, v and ωy, are expressed as Fourier series in
the stream-wise and spanwise directions and as Chebyshev polynomials in the wall-normal
direction. However, Fourier series require periodicity to avoid a dramatic loss of accuracy
(due to Gibb’s phenomenon) and the boundary layer evolves in the stream-wise direction
(Figure 2.1) making it clearly aperiodic. To remedy this, a non-physical “fringe” region is
appended to the downstream end of the domain [12]. In this fringe region, a body force is
imposed to drive the boundary layer to the specified, laminar, inlet velocity at the outlet.
In this way, the solution over the entire extended domain is artificially made to be periodic,
while still satisfying the governing equations ((2.5) and (2.6)). The flow is continuously
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FringePhysical

Figure 2.2: The laminar boundary layer velocity in the computational domain, including the
non-physical fringe region. Contours of the stream-wise component of V(x, y) are shown.

x

S

(a) S(x) as in (2.8)

x
λ

(b) λ(x) as in (2.9)

Figure 2.3: Weighting functions in the fringe region.

forced over the fringe region towards a prescribed velocity profile, V ,

V(x, y) = V(x, y)(1− S(x)) + V(x0, y)S(x) (2.8)

where S(x) is a smooth weighting function that increases from zero to one in the fringe
region and x0 is located at the computational inlet. Figure 2.2 shows V and Figure 2.3a
shows S(x), see [19] for the definition of S(x). The force in the fringe region acts like a
proportional controller

f = λ(x)(V − v) (2.9)

where the gain, λ(x), is shown in Figure 2.3b. The shapes of S(x) and λ(x) are carefully
designed and tuned to prevent the effect of the artificial force from contaminating the solution
outside of the fringe region.

Returning to the boundary conditions, they are periodic in x (v|outlet = V |inlet = v|inlet)
and z. The theoretical physical boundary conditions in y are v = V and ωy = 0 both at the
wall and infinitely far from the wall. However, it is computationally expensive to use the
infinitely far boundary condition, and so the boundary conditions are approximated as

∂v

∂y
=
∂Vy

∂y
at the wall and top of domain; and (2.10)

ωy = 0 at the wall and top of domain. (2.11)

The domain is chosen to extend far enough in the wall-normal y direction to be far from the
top (where u = 0.99U∞) of the boundary layer so that these approximations have limited
impact lower in the boundary layer.
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Table 2.1: Time discretization scheme coefficients

Type an/4 t bn/4 t cn/4 t

3-stage 8/15 0 0
5/12 -17/60 8/15
3/4 -5/12 2/3

4-stage 8/17 0 0
17/60 -15/68 8/17
5/12 -17/60 8/15
3/4 -5/12 2/3

To solve these equations, first (2.7a) and (2.7b) are advanced in time. The time discretiza-
tion of the nonlinear term uses an explicit third-order-accurate Runge-Kutta scheme, while
the time discretization of the linear term uses the implicit second-order-accurate Crank-
Nicolson scheme. The implicit treatment of the linear term increases the length of the time
step allowable for numerical stability. In general, this time discretization is written as

∂ψ

∂t
= N(ψ) + L(ψ)

ψn+1 = ψn + anN(ψn) + bnN(ψn−1) + (an + bn)(L(ψn+1) + L(ψn))/2
(2.12)

for any variable ψ, where N is a nonlinear function and L is a linear function, n is the Runge-
Kutta substep, and the coefficients are given in Table 2.1. Solving these equations involves
solving a linear system of equations (of Helmholtz form) due to the implicit treatment of
the linear term. In Fourier space (in x and z), these systems of equations decouple by
wavenumber pair into nx/2×nz one-dimensional Helmholtz equations discretized in y, which
are solved efficiently (for example, see [92] Chapter 3). By breaking apart homogeneous and
inhomogeneous solutions for ∇2v, boundary conditions on ∇2v are not explicitly needed,
only on v. See Section 5 of [19] for details.

After the time advancement of ωy and v, (2.7c) and (2.7d) are solved at the new time
step for u and w. These equations also decouple by wavenumber in x and z in Fourier space,
resulting in a set of one-dimensional Poisson-like problems in the y dimension, which can be
efficiently solved with spectral accuracy.

2.3.2 Contributions to flow control in SIMSON

Over the course of SIMSON’s development, it’s primary purpose has been to solve the fluids
equations in a computationally efficient manner. The inclusion of active flow control is
relatively recent. As a result, the inherited version of SIMSON has some control capabilities,
but they are ad-hoc and need to be improved and extended to perform the research in this
thesis. Therefore, the control aspects are reorganized, rewritten, expanded, and generally
improved. More modern aspects of the Fortran language are utilized, such as built-in matrix
multiplication and variable names exceeding six characters, and general software design
principles are followed.

11



Calculation inner products

In the SIMSON, the inner products between vectors are computed as spatial integrals over
the domain Ω,

〈v1, v2〉 =

∫
v∗1v2 dΩ. (2.13)

Inner products are used for control when sensors are represented as spatial distributions. In
this case, inner products are taken of sensors’ spatial distributions and the velocity to find
the measurement signal.

To numerically compute the inner products with discretized variables, the integral is
approximated by the trapezoidal rule in the y direction in the inherited version of the code.
This is only second-order accurate. We replace the trapezoidal rule weights with spectral
weights to achieve high-order accuracy [37].

Further, the computation of the integral in the x and z directions is also changed. The
inner products in the inherited version were taken in physical space in the x and z direc-
tions. However, the velocities are in Fourier space for most of the steps in the algorithm,
and are only in physical space when computing the nonlinear term (the products are more
computationally efficiently computed in physical space). In the code, this transformation to
physical space and back to Fourier space happens deep in subroutines originally designed
only to compute the nonlinear term and these subroutines have nothing to do with control.
The inherited version contains modified versions of these subroutines which also compute
inner products, but the organization and implementation is unnatural and thus error-prone.
Instead, in our modified version, we move the inner product computation to a more natural
location in the code with the rest of the control-related computations. The velocity is not
in physical space though, and so we perform inner products in Fourier space by exploiting
Plancherel’s theorem in both the x and z dimensions, which states:

N−1∑
n=0

vnw
∗
n =

1

N

N−1∑
k=0

ṽkw̃
∗
k (2.14)

where v and w are 1D arrays composed of N complex numbers, and ṽ and w̃ are the
corresponding Fourier coefficients. In 2D, this becomes

nx−1∑
i=0

nz−1∑
j=0

vi,jw
∗
i,j =

1

nxnz

nx−1∑
k=0

nz−1∑
l=0

ṽk,lw̃
∗
k,l. (2.15)

Since the velocity is purely real, half the Fourier coefficients are complex conjugates
and thus not stored for efficiency. Taking this into account in equation (2.15) yields the
computationally efficient form

nx/2∑
i=0

nz−1∑
j=0

vi,jw
∗
i,j =

1

nxnz

2

nx/2∑
k=0

nz−1∑
l=0

real(ṽk,l)real(w̃∗k,l) + imag(ṽk,l)imag(w̃∗k,l) +
nz−1∑
l=0

ṽ0,lw̃0,l

 .

(2.16)
(Note that ṽ0,: and w̃0,: are purely real.)
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The Fourier coefficients of the velocity are distributed among all of the processors, and
so to compute the sum in (2.16) each processor computes the contributions to the total sum
with the coefficients in its local memory. These contributions are summed together with a
call to MPI allreduce.

Inclusion of general control architecture

The inherited version of SIMSON implements only one particular type of control law, Linear
Quadratic Gaussian, with limited support for multiple inputs and outputs. We rewrite this
for a more general class of controllers. In the new control implementation, multiple inputs
and outputs of different types are supported. The inputs are distinguished, as in Figure
4.3, as either a disturbance signal (w) or a control signal determined by a control law (u).
Similarly, the outputs are distinguished as either offline sensors (z) which are not available
to the controller or sensor measurements (y) which are available to the controller.

Fluid system

Controller

w z

u y

Figure 2.4: Control architecture implemented.

We implement the controller as an arbitrary continuous-time state-space system with an
arbitrary number of states, independent of the way the controller was designed,

∂qc
∂t

= Acqc + Bcy

u = Ccqc,
(2.17)

where qc is the internal state of the controller. In the inherited version, a more restrictive
form of the controller system is used that requires a model of the open loop system with
controller and observer gains. The new approach and implementation makes it easier to
switch between different types of controllers, and the new implementation is particularly
valuable in the study presented in Chapter 4.

2.3.3 Post-processing and visualization

SIMSON saves the velocity in raw binary format and discrete Fourier transformed in the x
and z directions. While useful for some computational purposes, this format is not readily
accessible by external languages or programs for visualization and analysis. Thus, an exten-
sive suite of post-processing tools for reading, writing, visualizing, and analyzing the data is
developed.
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The vast majority of this code is written in Python, a general-purpose, object-oriented,
and dynamically-typed programming language with similarities to Matlab. The primary
functions performed in post-processing are

• Loading and saving SIMSON format binary files

• Transforming SIMSON’s data between Fourier and physical space

• Loading and saving HDF5 files (useful for visualization and cross-platform compatibil-
ity)

• Converting SIMSON-format binary files to HDF5, and vice-versa

• Performing inner products

• Adding and multiplying, enabling manipulation of velocity fields as objects

• Changing units (dimensional and different non-dimensionalizations)

• Reading SIMSON parameter files and generating the grid points

• Automated unit testing of all of the above

HDF5 (hierarchical data format version 5, http://www.hdfgroup.org/HDF5/) is a self-
describing binary format that is widely-used in high-performance computing. It is easy to
work with, and can be read from and written to in Matlab, C++, Fortran, and Python. It
also is not architecture dependent, as raw binary files can be.

HDF5 files can also be read by many visualization programs, such as the one we use,
VisIt (https://wci.llnl.gov/codes/visit/). We select VisIt because it is free, widely
supported, and runs on multiple cores remotely. Thus, we can run our simulations on a
large remote cluster, then run VisIt on the cluster and see the graphical interface on a local
machine, all without transferring the data. Since each time-sampled velocity field can be
gigabytes in size, this is important.

Most one and two dimensional plotting (as well as all control design) is done locally in
Matlab.

2.3.4 Portability

The inherited version of SIMSON code works only with certain compilers. In particular, it
does not compile with gfortran, a common, free, fortran compiler, and the only one available
on our local computers. Thus, the new version of SIMSON uses more standard practices
and is compatible with Intel, PGI, and gfortran compilers.

2.4 Summary

In summary, we present the governing equations of motion, the non-dimensional Navier-
Stokes equations. Analysis of these equations, and experimental observation, tells us there
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are two mechanisms for transition from laminar to turbulent flow: classical transition and
bypass transition. The different characteristics of these two mechanisms are described in
detail as they are important in future chapters. In chapter 4, we delay classical transition
using a reduced-order model of the system and a feedback controller. Chapter 5 focuses
on the delay of bypass transition in experiments using a quasi-steady feedback controller in
which the shear stress is measured at several spanwise locations and the flow is controlled
via plasma actuation. In chapter 6, we develop a body force model for plasma actuators
that will be useful for future numerical studies on the control of bypass transition.

This chapter also covers the numerical algorithms and software we use to simulate the
fluid system. The software is developed by D. S. Henningson’s group at KTH, and is a
pseudo-spectral solver called SIMSON. The version of SIMSON we are provided had limited
specific control functionality. To perform the control study in Chapter 4, we add significant
functionality. This functionality includes improving the accuracy of the inner product by
making use of the spectral representation of velocity. Further, we add a more general control
architecture that allows many types of controllers with multiple inputs and outputs, whereas
the original version of SIMSON had only LQG control implemented with limited support for
multiple inputs and outputs. In addition to its use in Chapter 4, SIMSON is used for larger
3D simulations of the effect of plasma actuators on the velocity in Chapter 6.

Lastly, this chapter describes a post-processing suite we use to analyze the resulting
datasets from SIMSON. Among the many features of this suite, it reads and writes SIMSON
binary files, visualizes the data (using VisIt), and simplifies manipulation of velocity fields.
It is used heavily throughout Chapters 4 and 6.
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Chapter 3

Model reduction on large data

Simulating the boundary layer, even in 2D, is computationally expensive because the sys-
tem is high dimensional. The number of independent variables is the number of points at
which each quantity is sampled, and is often O(105) to O(109). However, by isolating the
important low-dimensional dynamics, we can approximate high-dimensional systems using
low-dimensional models, which can be cheaply simulated, saving significant resources. This
process is known as model reduction.

Model reduction is of course not unique to the problem at hand; it has uses in engineer-
ing, physics, environmental science, and biology. However, the implementations of model
reduction methods tend to be for a specific problem and are only applicable to relatively
small systems and datasets. Recognizing the need for model reduction in many fields and
for large datasets, we write a new Python library, modred. It implements several impor-
tant algorithms in model reduction, modal analysis, and system identification for both small
and large datasets. Careful attention to software design principles are followed, including
ease of use, modularity, automated unit testing, parallelization, and easy-to-read code and
documentation. The library is available at http://pypi.python.org/pypi/modred.

The work in this chapter is submitted to the ACM Transactions on Mathematical Soft-
ware journal for publication [10]. Section 3.1 reviews the different model reduction algorithms
and prominent usages in different fields of study. Section 3.2 gives an overview of the modal
decompositions for two different computational approaches: matrix-based and vector-based.
Short code samples are presented for the implementations of these two approaches, and the
advantages of each are discussed. In Section 3.3, we summarize how to find reduced-order
models both based on projecting the governing equations onto existing modes and also via
impulse responses, and provide more code samples. Section 3.4 describes the software design
principles we employ. Section 3.5 explains the parallelization of the modal decompositions,
and the theoretical and observed scaling of parallelization of modred.

3.1 Introduction

One method we include is the Proper Orthogonal Decomposition (POD). From an arbitrary
set of data, POD yields a set of orthonormal modes which represent the dominant directions,
in the L2 sense, in the original data. The modes are ranked and typically few are necessary
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to accurately reproduce the original dataset. The method originated as a way to analyze
random data, and is known by various alternative names, such as principal component
analysis (PCA) [90] and the Karhunen-Loève (KL) decomposition [61, 73]. In a wide range
of fields, it has proven to be a useful tool for identifying important coherent structures and for
developing reduced-order models via Petrov-Galerkin projection. POD has a long history
of applications in fluid dynamics [5, 46, 75, 103]. POD has also been used for studying
vibrations, oscillations, and microelectromechanical systems [6, 70]. In geophysics, POD
modes are often called empirical orthogonal functions (EOF), and are used to observe strong
climate patterns [47]. POD is also used in image processing, chemical engineering, control
theory, and dynamical systems.

Balanced POD (BPOD) is a variant of POD that has desirable properties for construct-
ing reduced-order models of large, linear input-output systems. It produces two sets of
bi-orthogonal modes, and projecting the original linear system onto these modes results in
a model that accurately reproduces the input-output dynamics of the original system [96].
BPOD is designed to approximate balanced truncation [82], a model reduction technique
commonly used in control theory that has good a priori error bounds. BPOD is particularly
useful when the original system is too large for standard control design techniques (or model
reduction techniques) to be applied: the algorithm is tractable even when the state dimen-
sion is large, and control design can then be done using the reduced-order model. BPOD
is applicable to any system of linear ordinary differential equations (ODEs), including dis-
cretizations of partial differential equations (PDEs). The method has been applied to several
fluid dynamics systems for control purposes [2, 24, 53]. Our library includes methods to find
BPOD modes and also to project a linear system onto these modes to find a reduced-order
model.

Another modal decomposition technique included in modred is the Dynamic Mode De-
composition (DMD) [100], which identifies modes that oscillate at fixed frequencies. For sys-
tems with oscillatory dynamics, these structures may be more indicative of the flow physics
than the most energetic (POD) modes, which may contain mixed frequency content. DMD
has been applied to both computational and experimental data, for instance to a jet in cross-
flow and the wake behind a flexible membrane [97, 100]. Connections between the DMD
and Koopman operator theory suggest that DMD modes may be useful for capturing the
behavior of nonlinear systems [80, 97].

Finally, modred also includes system identification techniques: the Eigensystem Real-
ization Algorithm (ERA) and Observer/Kalman Filter Identification (OKID). ERA takes
a series of Markov parameters (defined in (3.21)) and from them produces a reduced-order
input-output model. The resulting models are theoretically equivalent to those produced
by BPOD, but computing them does not require computing adjoint simulations or finding
two sets of modes, making ERA computationally cheaper by orders of magnitude for large
systems [58, 78]. Its primary application is control design for high-order systems. It also can
be applied to experimental data since it does not require data from an adjoint system.

OKID estimates Markov parameters from arbitrary, noisy, input-output data from any
linear system [59]. This is especially useful for experimental data since it is often difficult
to directly measure the Markov parameters. The output from OKID is suitable for input to
ERA to form a reduced-order model from experimental data [16, 49].

All of these methods are applicable in a broad range of fields, and the goal of the modred
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library is to provide a flexible, efficient, and scalable package that implements them. The
library is written in Python because Python is easy to learn, freely available, and can easily
interface with existing code, including compiled C/C++ and Fortran. Users can supply
functions that interact with their data (for instance, reading from files), making modred

compatible with any type of data. modred is object-oriented and has been carefully designed,
making it easy to use and easy to extend to new algorithms in the future. Automated tests
are included for all of its functionality, and the library has already been effectively used
on several datasets. The code is parallelized with MPI (using the mpi4py library) and
demonstrates excellent scalability up to hundreds of processes. A key reason for this is the
abstract vector-space approach described in Section 3.2.

3.2 Modal decompositions

In this section, we describe three algorithms for decomposing a given dataset into its domi-
nant components. The inputs to each algorithm are vectors, for instance from a set {xi ∈ V },
where V is a vector space, and the outputs of each are modes, for instance from a set
{ϕj ∈ V }, usually computed as a linear combination of the xi, as

ϕj =
∑
i

[T]i,jxi, j = 1, . . . , r, (3.1)

where [T]i,j denotes the element in row i and column j of the matrix T. Note that by vector,
we do not necessarily mean a one-dimensional array—a vector could be a one-dimensional
array, multi-dimensional array, or another representation. We use bold symbols to represent
vectors and matrices. When xi represents a frame of data taken at an instant of time i, as
is very often the case, it is referred to as a snapshot. Here, we occasionally refer to input
vectors as snapshots even when they are not necessarily sampled in time. The resulting
modes serve as a low-order basis to approximate a vector via linear combinations.

The three algorithms we discuss produce modes with different properties: Proper Orthog-
onal Decomposition (POD) extracts the most energetic structures from the data, and the
resulting modes are orthogonal; Balanced POD (BPOD) is based on input-output dynamics
and produces two sets of modes that are bi-orthogonal; and Dynamic Mode Decomposition
(DMD) separates structures by frequency content, producing modes that are not necessarily
orthogonal. Since both the snapshots and the modes are elements of a vector space V , we
refer to them as vectors.

While the modal decompositions produce different modes, the algorithms to compute the
modes share the same general procedure. First, the vector space V is established by defining
an inner product, vector addition, and scalar multiplication. (Of course, these operations
need to satisfy the properties of a vector space.) Then a decomposition (e.g., a singular value
decomposition) is done to compute the matrix of coefficients T in (3.1). The last step is to
form the modes via equation (3.1).

We will show two different approaches to all of the algorithms. The first is based on
matrix multiplications and is only suited for smaller and simpler datasets because it requires
that all of the vectors be flattened into one-dimensional arrays (mapping V to Rn or Cn) and
be stacked into large data matrices. When the datasets are small enough to be stacked into
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matrices, this matrix multiplication is computationally efficient thanks to highly-optimized
matrix libraries.

However, sometimes all of the data is too large to fit entirely into a single node’s memory
simultaneously. For these cases, we adopt a second approach that is based solely on vector
space operations and therefore does not require vectors to be flattened into one-dimensional
arrays or coerced into any particular data structure. Instead, it requires only vector addition,
scalar multiplication, and inner products between vectors. Since each operation requires
only one or two vectors in memory simultaneously, this approach is ideal for larger and more
complicated datasets, and is parallelized for distributed memory architectures via MPI. This
vector space approach is mathematically equivalent to the matrix multiplication approach
and is not novel from a mathematical point of view. However, what is novel is our recognition
that implementing this approach is valuable, and then implementing it in a way that opens
model reduction to a wide audience of potential users with varied problems.

In the upcoming sections we describe the steps for finding POD modes using the matrix
multiplication and vector space approaches, highlighting the differences and showing code
samples. We also explain the steps for finding BPOD and DMD modes, omitting some
matrix multiplication steps that easily follow from the description of POD.

3.2.1 POD

Mathematically, the Proper Orthogonal Decomposition (POD) of a dataset {xi ∈ V | i =
1, . . . ,mx} arises when solving for the projection Pr of rank r that minimizes the error

error =
mx∑
i=1

‖xi −Prxi‖2. (3.2)

The operation ‖ · ‖ is the induced norm from the inner product 〈·, ·〉 on V (linear in the
second argument, conjugate linear in the first). The projection in Equation (3.2) is written
as

Prxi =
r∑
j=1

〈ϕj,xi〉ϕj, (3.3)

where ϕi ∈ V is the orthonormal basis of rank r such that the projection onto them minimizes
the error in Equation (3.2). The elements of this basis are called the POD modes, and we
describe two closely related and mathematically equivalent ways of deriving and computing
them in the upcoming paragraphs.

The first way uses matrix representations of the vectors. It is common for a generic
vector x ∈ V to be represented as a two- or three-dimensional array of data, and if V has
dimension n, a vector can be “flattened” into a column vector x̂ ∈ Rn (or Cn). (More
precisely, the n components of x̂ are the coordinates of x with respect to some chosen basis
of V .) We can easily express the inner product on the flattened vectors as 〈x1, x2〉 = x̂∗1Wx̂2,
where W is the inner product weighting and, therefore, is a Hermitian positive definite
matrix. For many physical applications, the norm is chosen so that minimizing the error
corresponds physically to optimally capturing the kinetic energy.

For the present illustrative purposes, we assume W is the identity so it can be removed
from the equations. Minimizing the error in Equation (3.2) by calculus leads to the n × n
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eigenvalue problem
XX∗Φ = ΦΣ (3.4)

where X has columns x̂i

X =

 | | |
x̂1 x̂2 . . . x̂mx

| | |

 (3.5)

and Φ has POD modes ϕ̂i as columns

Φ =

 | | |
ϕ̂1 ϕ̂2 . . . ϕ̂r
| | |

 (3.6)

Matrix Σ is diagonal and filled with the corresponding eigenvalues. The first r POD modes,
ranked by largest eigenvalues, define Pr in Equation (3.3).

Methods that involve forming the n×n matrix XX∗ are commonly called direct methods,
and are appropriate to use when n is small. If n is large then Equation (3.4) is computation-
ally expensive to solve, but there is a theoretically equivalent alternative method known as
the method of snapshots that bypasses forming XX∗, and instead forms a mx ×mx matrix
and finds its eigenvalues and eigenvectors [103]. The method of snapshots is well-suited for
large data for which, typically, mx � n. We summarize the steps to this method below, and
no longer assume that W is identity. For further details see [46, 103].

1. Collect and store vectors xi ∈ V , for i = 1, . . . ,mx from a simulation or experiment.

2. Flatten vectors into columns x̂i ∈ Rn (or Cn), where n is the dimension of V , and stack
them in X, as in Equation (3.5) so X is n×mx.

3. Compute the mx ×mx correlation matrix via H = X∗WX.

4. Compute the eigenvalues and eigenvectors of H, writing HU = UΣ, where Σ is diag-
onal and real, and U is orthogonal (or unitary), since H is symmetric (or Hermitian).
Sort the eigenvalues (and corresponding eigenvectors) by largest magnitude.

5. Select the number of modes to keep, r. Truncate the matrices, keeping the first r
columns of U to obtain Ur, and the first r rows and columns of Σ to obtain Σr.

6. Compute the matrix T = UrΣ
−1/2
r .

7. Compute the matrix Φ = XT, which has modes ϕ̂i as columns as in Equation (3.6).
Unflatten all ϕ̂i ∈ Rn to obtain modes ϕi ∈ V .

The code to use modred to find the leading ten POD modes is shown below. The variable
weights is a 1D or 2D numpy array and corresponds to the inner product weight matrix W,
vecs is a 2D numpy array and corresponds to X that is loaded from a text file. The variables
eig vecs, eig vals, and modes correspond to U, Σ, and Φ, respectively, and all are numpy

arrays.

vecs = numpy.loadtxt(’vec_array.txt’)

modes, sing_vals = modred.compute_POD_matrices_snap_method(vecs, range(10),

inner_product_weights=weights)

20



When the data are small enough, modred can use a variation on the direct method that
involves taking a singular value decomposition (SVD) of X directly. This has the numer-
ical advantage of not “squaring up” the eigenvalues, which can cause numerical roundoff
errors in modes which correspond to very small eigenvalues. In some cases, these modes
are important, and so we provide another function which implements directly taking the
SVD of X, compute POD matrices direct method. (See the online documentation for more
information on using this function.)

Now we present the vector space approach, which eliminates the need to flatten the
vectors and stack them as columns of X. In fact, the matrix X is never formed.

1. Collect and store vectors xi ∈ V , for i = 1, . . . ,mx from simulations or experiments.

2. Compute each entry of the mx ×mx correlation matrix H via [H]i,j = 〈xi, xj〉.
3. Compute the eigenvalues and eigenvectors of H, writing HU = UΣ, where Σ is diag-

onal and real, and U is orthogonal (or unitary), since H is symmetric (or Hermitian).
Sort the eigenvalues (and corresponding eigenvectors) in descending order.

4. Select the number of modes to keep, r. Truncate the matrices, keeping the first r
columns of U to obtain Ur, and the first r rows and columns of Σ to obtain Σr.

5. Compute the matrix T = UrΣ
−1/2
r .

6. Construct modes ϕj individually via

ϕj =
mx∑
i=1

xi [T]i,j, j = 1, . . . , r. (3.7)

The code to find the leading ten POD modes is shown below. The first argument to
PODHandles is a function (callable) that takes two vectors and returns their inner product.
The variables vec handles and mode handles are lists of so-called vector handles which are
responsible for loading and saving vectors to disk. In this example, the vector handles would
load data from Python’s “pickle” binary format. Vector handles use very little memory and
allow modred to load/save the large vectors so they are in memory only as they are needed.
This is crucial for this size of data where not all vectors can be in memory simultaneously.

vec_handles = [PickleVecHandle(’vec%d.fmt’ % i) for i in range(100)]

mode_handles = [PickleVechandle(’mode%d.fmt’ % i) for i in range(10)]

POD = modred.PODHandles(inner_product)

eig_vecs, eig_vals = POD.compute_decomp(vec_handles)

POD.compute_modes(range(10), mode_handles)

The most important difference between the two procedures is that the vector space ap-
proach involves no flattening and stacking of vectors. As a result, in step 3 of the matrix
multiplication, the inner products involve the data matrix X, but in step 2 of the vector
space approach the inner products are computed one-by-one without data matrices. Simi-
larly, step 7 of the matrix multiplication method results in a large matrix Φ of modes, but
step 6 of the vector space method finds each mode independently via scalar multiplication
and vector addition.
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These two approaches each have advantages and disadvantages, and so modred includes
implementations of both. As previously mentioned, for smaller and simpler datasets, the
matrix multiplication approach and corresponding PODArrays class is both more computa-
tionally efficient and easier to use. For larger and more complicated datasets, the vector
space approach and corresponding PODHandles class is easier to use and is parallelized. See
Section 3.4.1 and Section 3.5 for an in-depth discussion of these topics.

3.2.2 Balanced POD

As mentioned in the introduction, Balanced POD (BPOD) is useful for finding reduced-order
models of large linear input-output systems. A general form of a discrete-time linear system
is

xi+1 = Axi + Bui

yi = Cxi
(3.8)

where xi ∈ V is the state vector, ui ∈ U is regarded as an input, and yi ∈ Y as an output.
Here, U and Y are vector spaces with respective dimensions p and q (i.e., p inputs and q
outputs), and A, B, and C are linear operators between the appropriate spaces. As is often
the case for large systems, BPOD is most useful when p and q are much less than n (the
dimension of V ). The above represents a discrete-time formulation, but the equations are
easily adapted to a continuous-time formulation, and the modred library handles both.

BPOD is an approximation of balanced truncation [82], a model reduction procedure that
linearly transforms the state xi such that the new coordinates are ranked in decreasing order
of importance to the input-output dynamics. Truncating the lower ranked states results
in a system that closely approximates the original system. We begin describing balanced
truncation by defining the adjoint system that corresponds to the system in Equation (3.8),

zi+1 = A†zi + C†vi

wi = B†zi,
(3.9)

where zi ∈ V , vi ∈ Y , and wi ∈ U . The adjoint operator, denoted (·)†, depends on the inner
product in the appropriate spaces: for instance, if V = Rn, U = Rp, and Y = Rq and the
inner product on V is 〈z,x〉 = z∗Wx, where W is Hermitian positive definite and

A† = W−1A∗W B† = B∗W C† = W−1C∗. (3.10)

The balanced truncation algorithm takes the controllability and observability Gramians,
Wc and Wo, as inputs. As for POD, we represent xi and zi as column matrices x̂i and
ẑi. The controllability Gramians is used to quantify the controllability of a particular state
x̂, i.e., how much the state is excited by previous inputs, via x̂∗Wcx̂. Analogously, the
observability of a particular state, i.e., how much the state excites future outputs, is given
by x̂∗Wox̂.

The Gramians can be computed by solving the corresponding Lyapunov equations. How-
ever, this can be computationally expensive, and another way is to approximate them empir-
ically. To approximate them, we take snapshots from the impulse responses for each input
for the systems in (3.8) and (3.9). We collect a total of mx “direct” (non-adjoint) snapshots
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xi for i = 1, 2, . . . ,mx and mz adjoint snapshots zi for i = 1, 2, . . . ,mz. Therefore there
are mx/p snapshots from each direct impulse response and mz/q from each adjoint impulse
response. The vectors are stacked to form X as in Equation (3.5) and, analogously, define
an n ×mz matrix Z that has columns ẑi. The Gramians can be written in terms of these
matrices as

Wc = XX† Wo = ZZ†. (3.11)

Linearly transforming the state as x̂ = Tx̂T also transforms the Gramians

Wc 7→ T−1Wc(T
−1)† Wo 7→ T†WoT. (3.12)

The balancing transformation is the transformation T that makes the Gramians equal and
diagonal, Wc = Wo = diag(σ1, σ2, . . . , σn) where σ1 ≥ σ2 ≥ . . . ≥ 0. (The diagonal entries
are called the Hankel singular values). Such a balancing transformation is only possible if
the system in Equation (3.8) is both controllable and observable. The transformation is
found by solving the eigenvalue problem

WcWoT = TΣ (3.13)

with appropriately scaled eigenvectors, as explained in [26] (Proposition 4.7).
Truncating the resulting system keeps only those elements of the balanced state x̂T that

are most controllable and observable and thus significant in the input-output dynamics. The
truncation is trivial; the first r elements of x̂T and corresponding components of the balanced
versions of A, B, and C are retained and the rest discarded. The truncated reduced-order
system has a priori error bounds that are generally very low—not much higher than the
theoretical limit for any reduced-order system [26].

Unfortunately, for systems with a large state dimension n it becomes computation-
ally prohibitive to compute the Gramians and solve the eigenvalue problem in Equation
(3.13). BPOD approximates the reduced-order system given by balanced truncation using
the method of snapshots [103]. Instead of solving the n× n eigenvalue problem in Equation
(3.13), we find the SVD of the mz ×mx Hankel matrix

H = Z†X = UΣV∗, (3.14)

which is computationally cheaper when mz and mx are smaller than n, as is typically the
case. The diagonal matrix Σ is filled with the largest Hankel singular values. Two sets of
bi-orthonormal modes, the direct (or primal) and adjoint modes, are formed via

Φ = XVrΣ
−1/2
r Ψ = ZUrΣ

−1/2
r (3.15)

where Vr and Ur are V and U with only the first r columns and Σr is Σ with only the first
r rows and columns. The bi-orthonormality implies that Ψ†Φ = Ir. The ith columns of Φ
and Ψ correspond to modes, ϕi and ψi, respectively. These modes are the states that are
most controllable and observable, and they are ranked by index. To form the reduced-order
model, the system in Equation (3.8) is projected onto these modes as described in Section
3.3.1.

Now we describe the procedure for the vector space approach for computing BPOD
modes. This procedure is mathematically equivalent to the matrix approach shown above,
but, as for POD, has advantages when implemented for larger datasets. For more details on
BPOD, see [96].
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1. Collect and store snapshots xj, for j = 1, . . . ,mx, and zi, for i = 1, . . . ,mz from
simulations.

2. Compute each entry of the Hankel matrix H via [H]i,j = 〈zi, xj〉.
3. Compute the singular value decomposition (SVD) H = UΣV∗.

4. Select the number of modes to keep, r. Truncate the matrices, keeping the first r
columns of U and V to obtain Ur and Vr, and the first r rows and columns of Σ to
obtain Σr.

5. Compute the matrices Tx = VrΣ
−1/2
r and Tz = UrΣ

−1/2
r .

6. Find the direct modes via ϕj =
∑mx

i=1 xi [Tx]i,j and the adjoint modes via ψj =∑mz

i=1 zi [Tz]i,j for j = 1, . . . , r.

The code to perform BPOD with this approach is shown below. The primary difference
from the POD case is there are now two sets of vector handles and mode handles that
correspond to xi, zi, ϕi, and ψi.

BPOD = BPODHandles(inner_product)

L_sing_vecs, sing_vals, R_sing_vecs = BPOD.compute_decomp(

direct_vec_handles, adjoint_vec_handles)

BPOD.compute_direct_modes(range(10), direct_mode_handles)

BPOD.compute_adjoint_modes(range(10), adjoint_mode_handles)

3.2.3 DMD

Dynamic Mode Decomposition (DMD) is useful for analyzing a series of data uniformly
sampled in time, xi = x(ti) for i = 1, . . . ,mx and ti = i4t. The DMD modes ϕi and Ritz
values λi are vectors and complex numbers, respectively, such that

xj =
mx−1∑
i=1

λj−1
i ϕi j = 1, . . . ,mx − 1

xmx =
mx−1∑
i=1

λmx−1
i ϕi + r r ⊥ span{x1, . . . ,xmx−1}.

(3.16)

If the vectors {xi | i = 1 . . . ,mx} are linearly independent, such ϕi and λi always exist,
and are unique [18]. We observe that the above equation is the discrete-time equivalent of
an eigenvector decomposition for the evolution of a linear system, with all multiplicative
constants subsumed in the scaling of the modes ϕi. As such, the Ritz values λi tell us the
growth rate and frequency associated with each mode. For linear systems, this information
can be used to perform a stability analysis. For nonlinear systems, we can identify oscillatory
structures on an attractor. DMD is not used elsewhere in this thesis and so we do not go
into more details about the theory. See the works cited for examples [97, 100].

The algorithm for computing the DMD modes and Ritz values can be implemented in
a way that is closely related to the POD algorithm [100]. Previous work described a new

24



variant that is especially suitable for our library due to its low memory requirements [111].
Here, we improve upon this algorithm by further eliminating unnecessary inner products
and linear combinations (see App. A for details). Our implementation of the vector space
approach to the algorithm is summarized below. The matrix multiplication approach is
very similar to that of POD (both via the method of snapshots and direct SVD), and so is
omitted.

1. Collect and store snapshots xi, for i = 1 . . . ,mx from simulations or experiments.

2. Compute each entry of the correlation matrix via [H]i,j = 〈xi,xj〉, using all but the
last snapshot (i and j have range 1, . . . ,mx − 1).

3. Compute the eigenvalues and eigenvectors of H, writing HU = UΣ, where Σ is diag-
onal and real, and U is orthogonal (or unitary) since H is symmetric (or Hermitian).
Sort the eigenvalues (and corresponding eigenvectors) in descending order.

4. Define sub-matrix H′ = [H]1:mx−1, 2:mx−1 (i.e., H with the first column removed), mak-
ing use of the previously computed correlation matrix H.

5. Form the column matrix H′′, via [H′′]j = 〈xmx , xj〉, for j = 1, . . . ,mx − 1.

6. Compute M = Σ−1/2U∗
[
H′ H′′

]
UΣ−1/2. Solve the eigenvalue problem MV = VΛ,

where the diagonal entries of Λ are the Ritz values λi.

7. Compute the matrix T = UΣ−1/2VD, where D is a diagonal matrix with diagonal
d = (V∗V)−1V∗Σ−1/2U∗H[1:mx−1,1].

8. Construct modes individually via ϕj =
∑mx

i=1 xi [Tx]i,j.

The code to use modred to perform DMD in this fashion is shown below. The vari-
ables are analogous to the POD case, with the exception of ritz vals, mode norms, and
build coeffs, which are all numpy arrays and correspond to λi, ‖ϕi‖, and T, respectively.

DMD = modred.DMDHandles(inner_product)

ritz_vals, mode_norms, build_coeffs = DMD.compute_decomp(vec_handles)

my_DMD.compute_modes(range(10), mode_handles)

3.3 Reduced-order models and system identification

3.3.1 Petrov-Galerkin projection for linear systems

In the case that the snapshots are taken from a linear time invariant (LTI) system such
as (3.8), a reduced-order model can be found by projecting the full dynamics onto the
reduced set of modes via Petrov-Galerkin projection. We outline this technique now, first
for the matrix approach.

First, we approximate the full state vector x ∈ V as a linear combination of the modes
ϕj, denoted as follows:

x ≈
r∑
j=1

qjϕj = Φq, (3.17)
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where q = (q1, . . . , qr) ∈ Rr and Φ : Rr → V . Φ is, again, a matrix whose columns are the

modes ϕ̂i and (̂·) denotes the representation of the mode as a one-dimensional vector in Rn.
A second set of modes is needed, Ψ, which has columns ψ̂i and has the property Ψ† :

V → Rr, i.e.,
[Ψ†x]j = 〈ψj,x〉, j = 1, . . . , r. (3.18)

In POD and DMD, the second set of modes is the same as the first set, Φ = Ψ. In BPOD, the
second set of modes is the set of adjoint modes. Inserting (3.17) into (3.8) and multiplying
by Ψ† then gives the reduced-order model

qi+1 = Arqi + Brui

yi = Crqi + Dui,
(3.19)

where
Ar ≡ (Ψ†Φ)−1Ψ†AΦ, Br ≡ (Ψ†Φ)−1Ψ†B, Cr ≡ CΦ, (3.20)

and Ar : Rr → Rr is an r × r matrix, Br : U → Rr, and Cr : Rr → Y . For instance, if
U = Rp, then Br is an r × p matrix, and similarly for Cr. Also note that for POD and
BPOD, the matrix Ψ†Φ is simply the identity matrix because the modes are orthonormal
(for POD) or bi-orthogonal (for BPOD). In cases like these, a flag can be set in modred to
avoid the unnecessary computation of this matrix and its inverse.

Below we summarize the steps to form the reduced-order matrices in (3.19) using the
vector space approach, where the input space U = Rp and the output space Y = Rq:

1. Advance each balancing mode, ϕi, one time step, resulting in ϕ′i = Aϕi.

2. If doing a non-orthonormal projection, then compute [Ψ†Φ]i,j = 〈ψi, ϕj〉 via individual
inner products, then invert it to obtain the matrix (Ψ†Φ)−1.

3. Compute matrix Ar by first computing M where [M]i,j = 〈ψi, ϕ′j〉. Then Ar =
(Ψ†Φ)−1M.

4. Compute matrix Br by first computing M where [M]i,j = 〈ψi, bj〉 and bj denotes the
jth column of B (in the abstract setting, bj = Bej, where ej is a standard basis vector
of Rp). Then Br = (Ψ†Φ)−1M.

5. Compute matrix Cr, where the jth column is Cϕj.

Code to compute the Petrov-Galerkin projection onto a set of modes with the vector
space approach is shown in the code below. As in previous examples, inner product is
a function to take the inner product of two vectors. The variable mode handles[i] corre-
sponds to the mode ϕi, A on modes handles[i] to Aϕi, B on basis handles[i] to bi, and
C on modes[j] to Cϕj. To do so with the matrix multiplication approach is very similar
and omitted.

Galerkin_proj = modred.LTIGalerkinProjectionHandles(

inner_product, mode_handles)

A_reduced, B_reduced, C_reduced = Galerkin_proj.compute_model(

A_on_mode_handles, B_on_basis_handles, C_on_modes)
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3.3.2 OKID

The Observer/Kalman Filter Identification (OKID) estimates the Markov parameters of
any system based on arbitrary and noisy input-output signals [59], and has been used in a
wide range of applications. The input-output dynamics of a linear system are completely
characterized by its Markov parameters, and so these are useful for other system identification
methods, including the Eigensystem Realization Algorithm discussed in the next section.
For the system (3.8), where we now let U = Rp and Y = Rq, the Markov parameters,
{Mi | i = 1, . . . ,m}, are defined as

M0 = D, Mi = CAi−1B for i = 1, 2, . . . ,m. (3.21)

The (r, c)th entry of Mi corresponds to the rth output and cth input and each Mi has
dimensions q × p. For large systems, the Markov parameters can be computed efficiently as
impulse responses to each input individually.

Given arbitrary input-output signals, ui and yi, for i = 1, . . . ,m, a misguided approach
would be to solve the matrix problem

[
y0 y1 . . . ym

]
=
[
M0 M1 . . . Mm

]

u0 u1 . . . um

u0 . . . um−1

. . .
...
u0


︸ ︷︷ ︸

U

. (3.22)

There are several reasons directly solving this equation is impractical. First, the matrices may
be ill-conditioned. Secondly, the noise is not filtered and can significantly reduce accuracy.
Lastly, it may require a long time-series of data to accurately capture the Markov parameters,
increasing the computational cost.

OKID addresses all of these drawbacks. In short, the system is augmented with an
asymptotically stable Kalman filter. One solves for the Markov parameters of this modified
system, {M̄i | i = 1, . . . ,m}, and then for the Markov parameters of the original system.
The matrix equation which must be solved, rather than (3.22), is[

y0 y1 . . . ym
]

=
[
M̄0 M̄1 . . . M̄m

]
V (3.23)

where V is defined later in (3.24). We reproduce the outline of the procedure below. For
more details see [57].

1. Collect inputs {ui | i = 1, . . . ,m} and outputs {yi | i = 1, . . . ,m} as in (3.22).

2. Select the number of Markov parameters to estimate, s.

3. Construct the V matrix as defined below

V =


u0 u1 u2 . . . us . . . um

v0 v1 . . . vs−1 . . . vm−1

v0 . . . vs−2 . . . vm−2

. . .
...

...
v0 . . . vm−s

 , (3.24)
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where vi =

[
ui
yi

]
, column vectors with dimensions (p+q)×1. Matrix V has dimensions

(p+ (p+ q)s)× (m+ 1).

4. Solve, via least squares, for the Markov parameters of observer system (transpose of
(3.23))

VT
[
M̄0 M̄1 . . . M̄m

]T
=
[
y0 y1 . . . ym

]T
(3.25)

5. Solve for the Markov parameters of original system:

M0 = D = M̄0, Mi = M̄
(1)
i −

i∑
k=1

M̄
(2)
k Mi−k for k = 1, 2, . . . , s

where for i ≥ 1 the Markov parameters of the observer system are composed of two

submatrices, M̄i =
[
M̄

(1)
i −M̄

(2)
i

]
. Submatrix M̄

(1)
i has dimensions q × p and M̄

(2)
i

has dimensions q × q.

The code to estimate Markov parameters is shown below. The variable Markovs cor-
responds to {Mi | i = 1, . . . ,m} and is a three-dimensional array with dimensions that
correspond to the time-step, output, and input so that Markovs[i] is Mi. Variables inputs
and outputs are two-dimensional arrays such that inputs[i] is ui and outputs[i] is yi.
The last argument to OKID is m, the number of Markov parameters to estimate.

Markovs = modred.OKID(inputs, outputs, 20)

3.3.3 ERA

The Eigensystem Realization Algorithm (ERA) is a method for finding reduced-order input-
output models from a system’s Markov parameters [43, 58]. The resulting models are the-
oretically equivalent to those from BPOD, and therefore when a sufficiently long series of
Markov parameters is taken the models are balanced [78]. The states are ordered by input-
output importance and can be truncated just as in BPOD. However, ERA does not require
adjoint vectors, full-state information, or the computation of modes, thereby reducing the
computation time by orders of magnitude. This also makes ERA useful for finding linear
input-output models from estimated Markov parameters (e.g., from OKID and experimental
data) and from expensive, high-dimensional simulations. The linear models are amenable to
control design.

The procedure to compute ERA models is summarized below. The Hankel matrix H is
theoretically the same as in BPOD.

1. Collect 2N Markov parameters (N pairs) in the following series

M1, M2, MP+1, MP+2, . . . , M(N−1)P+1, M(N−1)P+2 (3.26)

where Mi is defined in (3.21). The integer P is the number of time steps between pairs
of Markov parameters.
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2. Construct (generalized) Hankel matrices, H and H′, where

H =


M1 MP+1 . . . Mmc+1

MP+1 M2P+1 . . . M(mc+1)P+1
...

...
. . .

...
MmoP+1 M(mo+1)P+1 . . . M(mc+mo)P+1

 (3.27)

and

H′ =


M2 MP+2 . . . Mmc+2

MP+2 M2P+2 . . . M(mc+1)P+2
...

...
. . .

...
MmoP+2 M(mo+1)P+2 . . . M(mc+mo)P+2

 . (3.28)

The parameters mc and mo determine how much relative weight is placed on control-
lability and observability, respectively. Often one uses all data and lets mc be equal to
mo, i.e., mc = mo = (N − 1)/2.

3. Compute the SVD such that H = UΣV∗.

4. Select order of reduced-order model, r. Truncate the matrices, keeping the first r
columns of U and V to obtain Ur and Vr, and the first r× r block of Σ to obtain Σr.

5. Compute reduced system matrices:

Ar = Σ−1/2
r U∗rH

′VrΣ
−1/2
r

Br = the first p columns of Σ1/2
r V∗r

Cr = the first q rows of UrΣ
1/2
r .

(3.29)

The reduced system is then the same as in (3.19).

Code to compute an ERA reduced-order model is shown. A reduced, B reduced, and
C reduced correspond to Ar, Br, and Cr. The argument Markovs is the same format as in
OKID, a three-dimensional numpy array such that Markovs[i] is Mi. The singular values,
Σ, are stored in the variable sing vals.

ERA = modred.ERA()

A_reduced, B_reduced, C_reduced = ERA.compute_model(Markovs, 50)

sing_vals = ERA.sing_vals

3.4 Software design

3.4.1 Use with data of different size and complexity

Careful thought has been given to design of modred and the types of users and problems
for which it is used. We distinguish between three cases, delineated by the size of the
dataset. The first case has datasets which are smaller, meaning that they fit on a single
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node, and simpler, in terms of inner products and data format. While not always true,
we observe that small data and simple data often coincide, and so we consider them one
case. For example, such datasets might be generated from experimental measurements or
small simulations on a personal computer. Here, the matrix multiplication approach has
a few advantages. Since the data fits in memory, we stack it all into data matrices and
use matrix multiplication for inner products, taking advantage of the efficiency of highly
optimized libraries such as BLAS, LAPACK, and Intel MKL. The added complexity of
defining an inner product weighting and flattening the data into columns of a matrix is
often not difficult or computationally demanding for this type of data. The classes which
implement this approach are not parallelized for distributed memory and are most efficient
when the numpy backend makes use of multiple cores.

In the second case, the dataset is larger so that data matrices such as X and Φ are too
large to fit in memory and thus a direct implementation of the steps (as in the POD section
3.2.1) is not possible. Still, the individual vectors are small enough that a few can be in a
single node’s memory simultaneously. Often the inner product is more complicated because
the data might be multi-dimensional, defined over a non-uniform grid, and generated by a
large simulation performed on computer cluster. Similarly, the data may be saved in some
more complicated format. For this case, the vector space approach is ideal because each step’s
computations require only two individual vectors in memory simultaneously. Additionally,
it preserves the mathematical abstraction between vectors (represented as objects in the
sense of object-oriented programming) and functions which operate on vectors. In this
approach, modred operates on vector objects, independent of the underlying implementation,
resulting in high-level, general, modular, testable, code that is easily applied to any data
format. Further, since the inner products and linear combinations require only a few vectors
in memory at once, we are able to parallelize the computations for distributed memory
architectures and achieve excellent scaling (see the parallelization section 3.5). It is possible
to use this approach for smaller data as well, but we find it can be significantly slower than
the matrix multiplication implementation.

The third and final case is datasets with vectors too large to fit in a single node’s memory,
and it is not yet available in modred. See section 3.5.4 for more details.

3.4.2 Library-wide design principles

We incorporate other elements of software design throughout modred. The first, and most
important, is an object-oriented, high-level, easy-to-use, and flexible interface. This interface
ensures that the user never needs to modify or be aware of anything deeper than the carefully-
chosen inputs and outputs of each function, as shown in the code samples in previous sections.
Users can focus on the science of their particular application rather than implementation
details. In addition to saving users’ time, the ease of use opens up model reduction to a
larger audience who can use model reduction as a tool without understanding exactly how
the algorithms work, just their inputs and outputs.

The library is carefully parallelized for distributed memory machines, not only for per-
formance (as described in section 3.5), but also for modularity and usability. After a user
writes a script that uses modred in serial, in almost all cases the same script can be used
in parallel with no changes. The user does not need to know how to write parallel code to
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run in parallel, making modred accessible to a wide audience. Parallel execution requires
the freely available MPI Python module mpi4py, but the library works seamlessly in serial
without it. Secondly, all of modred’s non-trivial parallelized functions (inner products and
linear combinations) are isolated to a lower-level class used by all of the higher-level classes.
This modularity greatly simplifies implementation and future extensions of modred.

The library has a modular organization of classes and functions. Every function’s inputs
and outputs are carefully chosen to be intuitive and reflect the mathematical structure. The
details of the implementation are irrelevant to other classes and functions, and therefore
improvements that change the implementation, for example to increase efficiency, have little,
if any, effect on other code that uses modred, including users’ scripts. This organization also
enables modred to have comprehensive unit tests for each class method and function. This
is a major advantage over “home grown” numerical packages, which typically have, at best,
regression checks of a few known results. Instead, by testing all functions and steps of
algorithms independently for a variety of inputs and expected outputs, the results are much
more likely to be correct. This type of testing is widely employed for large projects, and it
greatly improves reliability and eases debugging by isolating potential problems. In addition,
we unit test all parallelized functions in serial and in parallel.

The computational overhead of modred is quite low since its primary purpose is to call
numpy in the matrix multiplication case and orchestrate calls of the user-supplied functions
in the vector space case. Simply put, if numpy and the user-supplied functions are fast,
then so is modred. A common concern is that user-supplied functions, written in Python,
are not executed fast in comparison to compiled languages such as C/C++ and Fortran.
With appropriate usage of Python and numpy (e.g., avoiding loops), the speed limitations
of Python are often acceptable. For cases where the speed limitations are severe, there
are several packages which make it easy to mix compiled languages with Python, including
Cython and SWIG for C/C++ and f2py for Fortran. Using these, one can write the inner
product, loading, and saving functions in a compiled language, wrap them into a Python
module, and use them with modred. In cases where these functions already exist, for example
as part of simulation software, users can wrap the existing functions into a Python module
and save themselves from tedious and mistake-prone duplication and/or translation.

3.5 Parallelization

In this section we describe how we parallelize the vector operations used in the vector space
approach and corresponding implementations of POD, BPOD, DMD, and Petrov-Galerkin
projections for a distributed memory architecture via MPI. There are two main steps in
each decomposition: computing inner products and taking linear combinations of the input
vectors to form the modes. The matrix multiplication and array-based implementations are
not parallelized and operate best when numpy is installed with a shared memory backend such
as Intel’s MKL. Similarly, the system identification methods OKID and ERA are generally
not computationally intensive and thus are not parallelized.
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3.5.1 Inner product matrices

The computation of inner products of vectors is often the most expensive step of modal
decompositions. However, it is easily parallelized since each element of H depends only on
the inner product of two vectors, [H]i,j = 〈zi, xj〉. Throughout this section, the rows of H
are indexed by i and there are nr of them. Similarly, the columns are indexed by j and there
are nc of them.

Now we outline the parallelization of computing the inner product matrix. First, the rows
and columns of H (and corresponding vectors zi and xj) are assigned to the np processors.
Thus, the first nr/np rows and nc/np columns are assigned to the first processor, the second
nr/np rows and nc/np columns are assigned to the second processor, and so on.

Often there are too many vectors to fit in memory simultaneously, so we load only subsets
at one time. We define the maximum number of vectors which can be in memory as nv.
Thus each subset consists of nv − 2 vectors, where the 2 comes from also loading a vector
corresponding to a column and to an extra spot as a buffer for MPI send and receives
(upcoming). In the first, outermost, loop, each processor iterates over subsets of modes, of
which there are nr/(np(nv − 2)). The processors load the vectors that correspond to their
current subset of rows, zi.

In the first nested loop, each processor loads a single vector corresponding to a column,
xj. At this point, nv − 1 vectors are in each processor’s local memory. In the second
nested loop, the inner products are computed. On the first iteration, the inner products are
computed between the vectors corresponding to the loaded rows, zi, and the newly loaded
vector xj. On subsequent iterations, all of the processors exchange xj via MPI sends and
receives in a circular pattern. During the MPI send and receives, there are at most nv vectors
in each processor’s local memory. Then processors compute the inner products of the loaded
vectors zi (unchanged) and the newly received vector xj, filling in new parts of a column in
matrix H. This process is repeated until the circular pattern of MPI sends and receives is
completed.

After the completion of these three loops, each processor has a portion of the H matrix
filled in. Finally, an MPI all reduce sums each processor’s H with all others’, resulting in
the completed H matrix in each processor’s local memory.

This procedure’s scaling is shown in Table 3.1. Overall, it scales linearly with np. The
number of loads has a term which scales quadratically with np and corresponds to nc. This
quadratic term exists because increasing np decreases the number of total loads. To exploit
the quadratic scaling, we always use nc > nr by switching the rows and columns when
necessary. We also note that when there is a fixed amount of memory (i.e., nvnp is constant),
as is the case for multiple processors on a node, it is typically advantageous to use all available
processors (also see the section 3.5.3 on hybrid parallelization).

Benchmark results are summarized in Figure 3.1a. The vectors are composed of 9, 000
random double-precision floating-point numbers, and are saved to file in Python’s binary
“pickle” format. The number of rows and columns is nr = nc = 8000, and the maximum
number of vectors in each processor’s local memory is nv = 5. Typically nv would be larger
for this size vector, but we use this lower value just for demonstration. The figure shows
that increasing the number of processors results in a roughly linear speedup. The slope
of this speedup is greater than one, meaning increasing the number of processors is highly
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Table 3.1: Scaling of inner products.

Operation No. operations per processor Wall time scaling

Loads

(
nr

(nv − 2)np

)(
nc
np

)
+
nr
np

O

(
ncnr
nvn2

p

)
+O

(
nr
np

)
Send-receives (np − 1)

(
nc
np

)(
nr

(nv − 2)np

)
O

(
nrnc
nvnp

)
Inner products

nrnc
np

O

(
nrnc
np

)

advantageous. This is due to the quadratic scaling in the number of loads.
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(b) Linear combinations.

Figure 3.1: Measured scaling of parallelized vector operations. “Workers” is equivalent to
processors.

When H is symmetric, as in POD and DMD, the number of inner products to compute
is nearly halved. We use a more complicated parallelization to take advantage of this, but
the scaling is the same and so we omit the details.

3.5.2 Linear combinations

The second parallelized portion of the code is the computation of the modes from linear
combinations of the snapshots, following (3.1). In this section we let ns be the number of
snapshots and nm be the number of modes.

First, the snapshots and modes (not yet computed) are assigned to the np processors.
Thus, the first ns/np snapshots and nm/np modes are assigned to the first processor, the
second ns/np bases and nm/np modes are assigned to the second processor, and so on. In
the outermost, first, loop, each processor computes nv − 2 modes. In the first nested loop,
each processor loads one snapshot xj from the set it is responsible for (so ns/np iterations).
In the second nested loop, the snapshots are summed to form the modes ϕj. On the first
iteration, the newly loaded snapshot’s contribution (xi[T]i,j) is summed to the subset of
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modes currently in memory. It can help to think of these contributions to the modes as
“layers”, and the sum of all layers is the mode. On subsequent iterations, all of the processors
exchange their snapshots via MPI sends and receives in a circular pattern. During the send
and receives, there are at most nv vectors in each processor’s local memory. After exchanging
snapshots, each processor computes a new subset of mode layers that correspond to the
newly received snapshot. This process is repeated until the circular pattern of MPI sends
and receives is completed.

At the completion of first nested loop, each processor has a completed subset of modes
and saves them to disk. Then a new subset of modes is begun (another iteration of the
outermost loop), until all modes are computed and saved.

Table 3.2: Scaling of operations for computing linear combinations.

Operation No. operations per processor Wall time scaling

Loads

(
ns
np

)(
nm

(nv − 2)np

)
O

(
nsnm
nvn2

p

)
Send-receives (np − 1)

(
ns
np

)(
nm

(nv − 2)np

)
O

(
nsnm
nvnp

)
Scalar multiplications

nsnm
np

O

(
nsnm
np

)

This procedure scaling is shown in Table 3.2. The overall scaling is very similar to the
scaling of the inner products. First, the scaling is linear with np. Again, loading (usually the
most time-consuming operation) scales quadratically because additional processors reduce
the total number of snapshot loads. As is also the case for inner products, when there is a
fixed amount of memory, i.e., nvnp is constant, as is the case for multiple processors on a
node, it is typically advantageous to use all available processors (also see the section 3.5.3
on hybrid parallelization).

The scaling results for a dataset similar to the one used for the inner product computa-
tions are shown in Figure 3.1b. The figure shows that increasing the number of processors
results in a roughly linear speedup. The slope of this speedup is greater than one, and as
for the inner product case, this is due to the quadratic scaling of the loading.

3.5.3 Hybrid parallelization

The modred library itself is only parallelized for distributed memory (via MPI). However, it
is possible to achieve speedups by using shared memory within a node. Each “processor”
can be an entire node. Then, the user-supplied functions for inner products, loading, and
saving can be written for a shared memory architecture (e.g., via OpenMP) and use all of
the processors on each node. This approach could improve efficiency, but would depend on
the type of data, the operations involved, and the particular computer hardware being used.
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3.5.4 Very large data parallelization

Currently modred cannot operate on vectors so large that three cannot fit in a node’s memory
simultaneously. A work-around is to use so-called “fat” nodes – nodes with large amounts
of memory, thereby increasing nv to at least three. The algorithms’ speeds are limited more
by memory than processing speed, so fat nodes are generally a good choice. In the future,
modred could be extended to operate on this data, for example by generalizing processors to
be MPI communicators and allowing the user-provided vector class to itself be distributed
across multiple nodes. The modular design makes this extension simpler.

3.6 Example results

In this section we show two example usages of modred on real problems of interest and all the
intricacies associated with such real problems. The modred library performs well, reproducing
existing model-reduction results that accurately describe the governing systems.

3.6.1 Smaller data: complex Ginzburg-Landau equation

In this case the system is the linearized complex Ginzburg-Landau (CGL) equation, a partial
differential equation in time, t, and one spatial dimension, x

∂q

∂t
= −ν ∂q

∂x
+ γ

∂2q

∂x2
+ µq + Bu (3.30)

where q is the state and is a function of x and t, u is the input and is a function of t.
Parameters ν and γ are complex constants, and parameter µ is a function of space

µ = (µ0 − c2
u) + µ2x

2/2. (3.31)

The parameters µ0, µ2, and cu are all constants. This system displays many physical phe-
nomena, including convection and diffusion, and thus is frequently used as a model for in-
stabilities in fluid systems [50]. We demonstrate that our library is effective by reproducing
the calculation of BPOD modes and reduced-order model of the subcritical case in previous
work [52]. We use the same numerical approach as in previous work, based on spectral differ-
entiation and Hermite polynomials, translated from the MATLAB library described in [112]
to Python. All of the code is provided in the library’s examples for convenience. Figure 3.2
shows the time evolution of an impulse response to the direct and adjoint systems.
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Figure 3.2: Left: Real part of snapshots of impulse response of the direct system to the
optimal disturbance input. Right: Real part of snapshots of impulse response of the adjoint
system to the optimal disturbance input.

The system is relatively small, with the complex solution discretized over 220 points.
Thus the matrix multiplication and array implementations are appropriate. The grid is
non-uniform and so there is a weighted inner product. The resulting BPOD modes are
shown in Figure 3.3, and the impulse response of the reduced-order model is shown to be
indistinguishable from that of the full system in Figure 3.4. The same result is shown in
the original work, and so the results obtained with modred are consistent with peer-reviewed
results.
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Figure 3.3: Absolute value of the BPOD direct (solid lines) and adjoint (dashed lines) modes
with the optimal disturbance and a sensor centered about x = 8.24.
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Figure 3.4: The real component of the impulse responses of full and reduced systems. The
maximum difference between the two is 2.0 · 10−6.

3.6.2 Larger data: boundary layer

This example is drawn from the work in Chapter 4, and is briefly summarized here. The phys-
ical system is a spatially-evolving boundary layer over a flat plate in two spatial dimensions
(x and y) and is governed by the linearized incompressible Navier-Stokes partial differen-
tial equations. The application is to use feedback control to dampen the natural growth
of disturbances. To do so, the controller is designed to minimize the energy in the flow,
as approximated by the projection of the state onto the most energetic (POD) modes [9].
The flow is directly numerically simulated with a pseudo-spectral solver [19]. Figure 3.5
shows the snapshots from an impulse response in the inputs (located along the horizontal
axis at 35 and 400). Approximately 4000 snapshots are used, each of which contains the
two components of velocity at 768× 101 grid points and occupies roughly two megabytes of
memory.
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Figure 3.5: Snapshots of the response to an impulse in the disturbance input sampled at
intervals of 500 convective time units.

In this case, the size of the data and computer’s memory make it impossible to fit all
of the vectors in memory simultaneously. Furthermore, the inner product is a complicated
function involving discrete Fourier transforms and is more easily represented as a function
of two vectors than as a weighted matrix. Thus the POD modes are computed using the
vector space approach and the PODHandles class and custom vector and vector handle classes
(including the inner product). The original simulation software is written in Fortran, so the
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Figure 3.6: Leading four POD modes.

f2py package is used to wrap existing subroutines to make them accessible to Python [91].
Figure 3.6 shows the resulting POD modes.

Without modred, performing POD on this data would likely be accomplished by flattening
and stacking all of the vectors into matrices, and performing a large matrix multiplication.
However, this could require writing the inner product weights explicitly rather than as a
function, which is laborious. It also would require a computer with more memory—enough
to have all of the snapshots in memory simultaneously. Furthermore, the results without
modred would be prone to many subtle errors that can go undetected even when results look
reasonable, but modred is tested and so the results are more trustworthy.

3.7 Summary

As datasets have grown larger, so has the need for approximating them with low-dimensional
models. We present a new Python library for model reduction, modal decompositions, and
system identification. A few modal decomposition methods, along with Petrov-Galerkin
projection of linear systems onto modes, are implemented. This library fills a need of a
publicly available implementation of these algorithms.

Two implementations of the modal decomposition algorithms are provided for different
categories of data. One implementation follows the common matrix multiplication approach
and is suited for smaller and simpler data. The vectors are flattened and stacked into matrices
to make use of highly optimized matrix multiplication algorithms. A second implementation
follows a vector space approach and is well-suited for larger and more complicated data. This
approach can handle any data format since the user provides a vector handle for loading and
saving vector objects. Since Python is dynamically typed, the only requirements of the vector
objects are to satisfy the properties of a vector, namely addition, scalar multiplication, and
inner products. These vectors are loaded and saved only as needed within modred by user-
supplied vector handles, which themselves use very little memory. As a result, modred can
handle large datasets and is parallelized for a distributed memory architecture with favorable
scaling.

The library itself is lightweight, and the computational speed is limited only by the
speed of the SVDs, eigenvalue decompositions, and user-supplied functions. Additionally, it
is easy for users to wrap compiled code (e.g., C/C++ and Fortran) into Python modules for
increased speed. Thus the speed limitations of Python can be bypassed as necessary.

The system identification methods ERA and OKID are also implemented. These two
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methods are not computationally intensive and so are not parallelized. To our knowledge,
this is the first widely available implementation of these commonly used methods.

The library is written in a modular way to make it easier to use, test, and extend in
the future. All of the classes and member functions are carefully designed to mirror the
mathematical algorithms, promoting clarity and understanding. Each function is tested
independently for a range of cases, checking sources of programming errors. Thus, when the
tests pass, one can have confidence in the results. This is in contrast to most home-grown
codes that are often not thoroughly tested on the level of individual functions. Instead, they
only test that a few previously computed cases match (regression tests), and thus there is a
chance of misunderstanding and subtle mistakes and inefficiencies.

The modular, object-oriented, design makes it easy for a user to use any or all of the
aspects of modred. A user does not need to know all of the details of the underlying algorithm
and implementation, only a few function calls, and we hope this will make model reduction
a tool accessible to a broader audience.

In the future, we anticipate others will contribute additional useful model reduction
techniques and collaborate with the development of the library. It is available under the
“Free BSD” license at http://pypi.python.org/pypi/modred.

The ERA and POD algorithms implemented in the library are used in the upcoming
chapter (Chapter 4) on modeling and control of the 2D boundary layer. The POD modes
are used for output projection, i.e., as an approximation of the total energy in the flow. ERA
is used to find a reduced-order linear model from the actuator to the outputs, which include
a sensor and the projection of the velocity onto the POD modes.
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Chapter 4

Selection and placement of sensors
and actuators

The previous chapter describes a model reduction library. In this chapter, we use that
library’s implementations of the Proper Orthogonal Decomposition (POD) and Eigensys-
tem Realization Algorithm (ERA) to help address a challenging topic in fluid dynamics
and control—the effect of different actuators and sensors on a controller’s performance and
robustness. In particular, we consider the case of delaying transition in the 2D Blasius
boundary layer.

This chapter begins, in Section 4.1, reviewing previous control studies of the boundary
layer. Section 4.2 defines the physical fluids problem and the input forcing and output
measurements. In Section 4.3, we recast the fluids equations as a linear time-invariant
system for control, and show the equivalent block diagram. We explain the control design
techniques, and how we achieve an approximation of these controllers using reduced-order
models. In Section 4.4, we form the reduced-order model and observe that it accurately
approximates the input-output dynamics of the original high-order system. In Section 4.5,
we analyze the performance of the controllers with different actuator-sensor configurations,
and explain why we need to use different actuators and sensors for an feedback controller.
Lastly, we demonstrate that feedback control outperforms feedforward in the presence of
unmodeled disturbances. The work in this chapter is published in Physics of Fluids [9].

4.1 Introduction

As discussed in Chapter 2, the drag on a streamlined body increases as the surrounding flow
transitions from laminar to turbulent, and delaying this transition can increase performance
in many applications, such as airplanes and turbines. Many passive control techniques have
been developed to delay transition, but active control, in which actuation is based on sensor
measurements, has the potential to delay transition in the presence of unknown disturbances
and noisy measurements while also using less actuation energy [62]. In the present study,
we focus our attention on boundary layer flows developing over a flat plate, emphasizing the
influence of actuator and sensor placement on the performance and robustness of the device.

Control design for the boundary layer requires special care because the governing equa-
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tions are high-dimensional and nonlinear. We begin by linearizing about the laminar convec-
tively unstable equilibrium, since our intention is to drive the flow towards this state. Many
control design techniques exist for linear systems, but they are computationally expensive to
apply directly. Ideally, one would like to design a controller for the high-dimensional system,
and then form a reduced-order approximation of this controller for actual implementation [4];
however, for fluids problems, computing the controller from the high-dimensional model is
usually not computationally tractable. A common solution, and the one we adopt, is to first
find a reduced-order model that approximates the original high-dimensional system, and
then apply standard control design techniques on the model.

A variety of methods exist for finding reduced-order models for the purpose of control
design. Perhaps the earliest such method is that of Aubry [5], which used Proper Orthogonal
Decomposition (POD) to obtain a very low-dimensional nonlinear model capturing many
relevant features of the boundary layer. These POD-based approaches have been effective
for some flow control problems such as wake flows [34], but for shear flows with large non-
normality, they often require physical insight or tuning to make the models accurate and
amenable to control [53]. Much of the recent work on controlling boundary layers has
focused on linear models, including models based on global eigenmodes [3, 69]. From a
control perspective, it is most appropriate to project the governing equations onto a set of
modes such that the input-output dynamics are well captured; these modes are then the most
controllable and observable. As discussed in Chapter 3, a method known as the Eigensystem
Realization Algorithm (ERA) [58, 78, 82] does approximately this, and yields a new set of
states which are ranked by controllability and observability. Less controllable and observable
states are easily truncated as desired, and there are a priori error bounds on the amount
the truncated model differs from the original system.

Previous studies [7, 69, 101] have demonstrated effective control of Tollmien-Schlichting
(TS) waves in the boundary layer using active control. In [27], adaptive filters and active
wave cancellation were used for feedback control of a compressible boundary layer. Other
studies [7, 101] used a modeling technique that is equivalent to ERA (balanced POD) [78].
Our intention is to build on these previous results by intentionally using a similar geometry in
order to remove unnecessary differences and ease comparison. In previous works, the sensors
were placed upstream of the actuators without rigorously exploring other choices. However,
the positions of the actuator and sensor can have a significant effect on the performance and
robustness of the active control. For example, for the complex Ginzburg-Landau equation
(a system similar to that of bluff body wakes), it was found that the optimal actuator and
sensor configuration significantly increased performance in damping the targeted structures
[17].

The main contribution of this work is to analyze the effect of different actuators, sen-
sors, and their positions on the active control of the instabilities that lead to transition in
the 2D spatially evolving Blasius boundary layer. This parametric analysis can be crucial
when considering implementing control in experiments and applications; indeed, numerical
simulations allow us to investigate the influence of many actuator and sensor positions that
would be difficult and costly in physical experiments and applications, if possible at all.

We demonstrate how the relative position of the sensor and the actuator determines the
controller’s properties. In particular, when the sensor is located upstream of the actuator,
the arrangement results in a disturbance feedforward controller, in which the effect of the
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downstream actuator is not detected by the upstream sensor due the convective nature of the
boundary layer. This is the same setup used in previous works [7, 101] and we show that the
best rejection of known disturbances is achieved with this configuration. However, the per-
formance of feedforward controllers often degrades in the presence of additional disturbances
and unmodeled dynamics, while feedback controllers are usually much less sensitive to these
uncertainties. For this reason, a different setup may be desirable, in which the sensor does
detect the effects of the actuator: i.e., a feedback configuration with the sensor downstream
of the actuator.

We shall see that the original choices of actuators and sensors are ineffective in feedback
configurations. By using different actuators and sensors, however, a simple proportional-
integral feedback controller performs well at rejecting disturbances and is robust to unmod-
eled disturbances as well. We show that the feedforward controller’s performance is degraded
by an additional disturbance, while the feedback controller’s performance is essentially un-
affected.

4.2 Physical problem

The objective of active control is to delay the transition to turbulence in the two-dimensional
Blasius boundary layer by suppressing the (convectively) unstable growth of propagating
disturbances. The governing equations are the incompressible Navier-Stokes equations, lin-
earized about the zero-pressure-gradient laminar base flow, V:

∂v

∂t
= −(V · ∇)v − (v · ∇)V −∇p+

1

Re
∇2v + f

∇ · v = 0.
(4.1)

Here, v is the deviation from the laminar base flow, and p is the pressure. The Reynolds
number is defined as Re = Uδ∗0/ν where U is the free-stream velocity, ν is the kinematic
viscosity, and δ∗0 is the displacement thickness at the inlet of the computational domain.
We use Re = 1000 in all cases and non-dimensionalize all lengths by δ∗0. The incompressible
linearized Navier-Stokes equations are convectively unstable at this Re, and the physical form
of the instability is exponentially growing Tollmien-Schlichting (TS) waves. We consider the
linearized equations because the controllers force the flow towards the laminar base flow,
and so we expect the truncated nonlinear terms to be small. This approximation also allows
us to use existing control, modeling, and analysis techniques available for linear systems.

A representative schematic of the problem is shown in Figure 4.1. Note that this arrange-
ment is the same as in [7] for ease of comparison. The momentum equation (4.1) is forced
with

f = Bw(x, y)w(t) + Bu(x, y)u(t), (4.2)

where w(t) is a random disturbance, sampled from a normal distribution with zero mean and
unit variance, and u(t) is the actuator signal, provided by the controller. The terms Bw and
Bu are the spatial distributions of the disturbance and actuator. In the case that the force
is not divergence-free, then, as shown in [14], only the component of f that is divergence-
free directly affects the velocity. The other component affects the pressure, which is not of

42



Flow 30
800

Figure 4.1: Overview of boundary layer, inputs and outputs. The grey box denotes the
computational domain. The upstream disturbance is w(t), applied at xw = 35, and the
control input is u(t), applied at xu = 400. The output z(t) is a low-order approximation of
the velocity, v(t). Output signal y(t) is from a localized velocity sensor, includes noise, and
its location, xy, is varied.
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Figure 4.2: Spatial distribution of original actuator and sensor, S(0, 0). Left: stream-wise
component. Right: wall-normal component.

interest in this work. The original choice of the forcing spatial distribution is drawn from
previous work [7] (called “original” because it is drawn from this previous work) and is

Bw = S(35, 1), Bu = S(400, 1), where (4.3)

S(x0, y0) =

[
(y − y0)σx/σy
−(x− x0)σy/σx

]
exp

(
−
(
x− x0

σx

)2

−
(
y − y0

σy

)2
)

(4.4)

and σx = 4 and σy = 1/4, shown in Figure 4.2. All of Bu, Bw, and S(x0, y0) are functions
of x and y. Later (Section 4.5.2), we choose a different form of actuation, Bu. We fix the
location of the actuator at x0 = 400 and vary only the sensor position because we find that,
for this flow, the relative positions of the sensor and actuator are far more important than
their absolute positions (also see [15]).

The output spatial distributions are Cz and Cy (functions of x and y), and the corre-
sponding output signals are given by

y(t) =

∫
Ω

Cy · v dx + n(t) (4.5)

z(t) =

∫
Ω

Cz · v dx, (4.6)

where Ω is the computational domain. The original choice of Cy uses the same localized
spatial distribution as the actuator, Cy = S(xu, 1), where the stream-wise location of the
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sensor, x0, is a key parameter investigated in later sections. Physically, the single sensor
measurement is a sum of spatial integrals of both components of velocity. The signal y(t)
also explicitly includes noise, n(t), with zero mean and a variance of 0.1, a few percent of
the magnitude of the noiseless signal. Our focus is not on the effect of sensor noise, hence
our choice of a relatively small amount. Higher noise levels have little effect on the results
presented later.

The second output signal z(t) is used to approximate the disturbance energy in the flow,
for use in a cost function for optimal control design. The details of this method, called
output projection, are explained in Section 4.3.2. The spatial support of Cz is global but
primarily downstream because the disturbance energy grows as it convects. While it is not
realistic to construct a physical sensor to measure Cz, this does not preclude the resulting
controllers from use in experiments because z(t) is not supplied to the controller; it is used
only in the design of the controller.

4.3 Methods

4.3.1 Numerical flow solver

Simulations are conducted using a pseudo-spectral solver code for incompressible boundary
layer flows, as previously described in Chapter 2. The domain shown in the grey box in Figure
4.1 excludes the non-physical fringe region, which extends another 200 δ∗0 to the right. The
grid size is 784×101, and is chosen based on a resolution study for these boundary conditions
and this Re = 1000.

4.3.2 Modeling and control

In this section we cast the flow control problem in terms of linear control theory. The
discretized linearized Navier-Stokes equations (4.1) are expressed as a linear time-invariant
system

vi+1 = Avi + Bwwi + Buui

zi = Czvi

yi = Cyvi + ni,

(4.7)

where A, Bw, Bu, Cz, and Cy are linear operators, and the subscript denotes the discrete
time step. As previously mentioned, only the divergence-free component of the inputs di-
rectly affects the velocity, and so the inputs in (4.7) are assumed to be projected onto the
divergence-free space. The discrete-time formulation is used for consistency with the time-
discretization of flow solvers. Note that we use the same symbols for both discrete and
continuous time variables, and rely on context for distinction. We also cast the fluid system
in Figure 4.1 as a generic plant and draw an equivalent block diagram in Figure 4.3.

For each position of the sensor, we design controllers to limit the growth of the distur-
bance energy, ‖v‖2 with efficient use of input energy u2. To do this on the full system is
computationally expensive. Instead, we find a reduced-order model that approximates the
full linearized Navier-Stokes equation and serves as the plant in Figure 4.3. Then we find
controllers that are effective for the model, and apply these controllers to the original system.
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Plant

Controller

Figure 4.3: Control architecture. In Figure 4.1, the plant is the linearized Navier-Stokes
equation (4.7).

For control design, the plant is simply a map from inputs u and w (the noise is relevant
to the control, not the model) to outputs y and z as shown in Figure 4.3. Therefore, we seek
a reduced-order model that approximates the input-output behavior of the full linearized
Navier-Stokes plant; it does not necessarily need to approximate the internal state, the
velocity v. In control terminology, such a model is said to retain the most controllable
and observable states and neglect the others. A state is considered highly controllable if
it is easily excited by an input, and analogously, a state is considered highly observable if,
when taken as an initial condition, it excites large future outputs (in the absence of inputs).
We use the Eigensystem Realization Algorithm (ERA) and modred library, described in
Chapter 3, that reduces the order of the system by truncating the (approximately) least
controllable/observable states. We use a slightly modified set of steps for computing many
models efficiently; see Appendix B for details.

The original state v, and thus the disturbance energy ‖v‖2 = 〈v,v〉, is not accessible from
only the reduced-order model state q, but is important for evaluating the effectiveness of a
controller. To reproduce the full velocity would require a very large Cr and would defeat the
purpose of the model by dramatically increasing the computational cost of control design. It
is appropriate to approximate v by its projection onto a low-order basis with a method known
as output projection [96]. This basis is spanned by the POD modes, such that Cz projects
the velocity onto the POD modes, i.e. z = Czv where z are the POD mode coefficients. The
disturbance energy is optimally approximated as ‖z‖2

2. We compute the POD modes via the
method of snapshots [103], and again make use of the modred library from Chapter 3.

The models are used for two different types of control design: H2-optimal control and
proportional-integral (PI) feedback (see a standard textbook) [104]. Many other types of
control design exist, but these are selected because they are common, have clear physical
meanings, and are the simplest that demonstrate our results. To facilitate both types of
control design, we return to continuous time and write the plant transfer function, P(s), as

[
z′

y

]
= P(s)

wn
u

 =

[
Pw,z′(s) Pn,z′(s) Pu,z′(s)
Pw,y(s) Pn,y(s) Pu,y(s)

]wn
u

 (4.8)

where z′ =
[
z u

]T
is used as the objective to keep small, and s is the complex frequency (the

Laplace transform of time). The noise is only in the sensor, so Pn,z′(s) = 0 and Pn,y(s) = 1.
We do not place weights on z or u as our focus is primarily on the feasibility of feedback
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Figure 4.4: Stream-wise velocity of the leading POD modes. Dark corresponds to negative
and light to positive, ranging from −0.08 to 0.08.

control, not specific performance goals. The controller transfer function is Ky,u, u = Ky,uy.
The closed-loop transfer function from exogenous inputs w and n to objective z′ is given by
the linear fractional transform,

Fl(P, Ky,u) = Pwn,z′ + Pu,z′Ky,u(1− Pu,yKy,u)
−1Pwn,y. (4.9)

The first type of control, H2-optimal, finds the controller, Ky,u, that minimizes the cost

cost = ‖Fl(P, Ky,u)‖2
2 = E(‖z′‖2

2)/E(w2 + n2), (4.10)

where E(·) denotes the expected value. Physically, this is the optimal tradeoff between
minimizing the disturbance energy and actuation energy. For more details, see a standard
textbook [104]. Relative weights can be placed on the noise, disturbance, and objective in
the cost function, and we explore this as well. The results change slightly, but the overall
trends remain the same. Therefore, for clarity, we discuss only the unweighted results.

The second type of control, PI, determines the input signal, u, based on the sum of the
sensor measurement and its integral: u(t) = kP y(t) + kI

∫ t
0
y(τ)dτ , where kP and kI are the

proportional and integral gains. The proportional term simply forces the flow proportion-
ally to the difference in y from undisturbed laminar flow. The integral term improves the
effectiveness by integrating all previous differences in y from undisturbed laminar flow. The
two gains are tuned, and will be chosen to effectively reduce E(‖z′‖2

2).

4.4 Model Reduction Results

The first ten POD modes capture over 90% of the disturbance energy and define Cz. Figure
4.4 shows the first four. The spatial support is concentrated downstream, where the energy
has been amplified by the flow. The modes appear in pairs because of the traveling structure
of the TS waves. Since the modes are real (no imaginary part), a pair is required to span
the different phases.

We find that the ERA reduced-order models are accurate with r = 70 states. This is
supported by the 70th singular value being several orders of magnitude smaller than the
first (Figure 4.5), and by the small amount of error between the model and DNS impulse
responses shown in Figure 4.6. More states are required than in previous studies [53] due to
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Figure 4.6: Comparison of impulse responses in both inputs to both outputs. Two sensor
positions are shown. The second row has Cy centered at xy = 250 and the third row has it
centered at xy = 405. The maximum difference between the full system (DNS) and model
amongst all plots is 9.1 · 10−3.

the large time delays present in this system. The delays exist because the spatially localized
inputs in w and u generate perturbations that must convect significantly downstream before
the output signals are non-zero. Approximations (such as Padè approximations) of time
delays typically need to be high order if the delay is large, as is the case here.

In Figure 4.6, showing input u to output y, the signal is essentially zero because the
sensor, Cy, is upstream of the actuator, Bu. This highlights an important difference be-
tween two classes of actuator-sensor configurations; if the sensor measures the effect of the
actuator, then this is a feedback configuration since the controller has information about its
effectiveness fed back to it. The flow is highly convective, so this can only occur when the
sensor is very near or downstream of the actuator. Conversely, if the sensor does not sense
the effect of the actuator, then this is a feedforward control configuration. Even though the
flow is incompressible and all effects are technically global, we observe that the effect of the
actuator is negligible at points significantly upstream of the actuator. This distinction is ex-
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Figure 4.7: Comparison of feedforward and feedback actuator-sensor configurations. The
dashed box denotes the plant, similarly to Figure 4.3.

plained mathematically in [116], where, within the output feedback control framework, this
special case is referred to as disturbance feedforward controller, because only the disturbance
is sensed.

The two categories of control types are depicted as block diagrams in Figure 4.7, which
are equivalent to the first (Figure 4.3), but broken into four components. The feedback
loop in Figure 4.7a between u and y does not exist in the disturbance feedforward case.
In previous works [7, 101] the sensor is upstream of the actuator (centered at xy = 300),
resulting in a disturbance feedforward control configuration.

The difference between feedforward and feedback control is more than semantics – the
two types of control have fundamentally different properties. For many systems, feedback
controllers offer advantages over feedforward controllers, such as increased effectiveness in the
presence of plant uncertainties and unknown disturbances. In the next section, we examine
the effects of sensor position and feedforward versus feedback control.

4.5 Improved actuators and sensors

4.5.1 Original actuators and sensors

We begin by varying the position (xy) of the sensor Cy. For each sensor position, the
positions of Bw, Bu, and Cz are unchanged, and we form a new ERA model from existing
snapshots (see Appedix B). We compute an H2-optimal controller for each model and apply
it to the full linearized Navier-Stokes system. The resulting performance of the controllers
as a function of sensor position is shown in Figure 4.8a.

First, we focus on the sensor positions in feedforward arrangements where Cy is centered
at x0 < 390. Figure 4.8a shows that these sensor locations result in controllers that reduce
the cost (Equation (4.10)) to less than 2% of the uncontrolled cost when applied to both
the model and the full system (DNS). It is clear that any sensor position upstream of the
actuator results in the same good performance. Physically, feedforward is effective because
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Figure 4.8: The actuator is centered at x0 = 400. The controlled full system is unstable for
Cy centered at x0 ≥ 390.

the TS waves retain their structure as they amplify and convect from the sensor to the
actuator. This is effectively approximated by the H2-optimal controller and the TS waves
are damped by the controller as they convect by the actuator.

The feedforward-controlled full system is excited by a stochastic disturbance and sensor
noise, and the input and output signals are shown in Figure 4.9. This case has the sensor
centered at xy = 250, and is representative of all feedforward configurations. The controller
effectively drives the approximate energy towards zero and uses relatively low levels of con-
trol, u, so the cost (Equation (4.10)) is low. The time delay of about 2000 time units between
when control is turned on and when the disturbance energy begins decreasing is due to the
convective nature of the boundary layer. The time delay is 2000 time units because the
domain is long (800δ∗0), and the convection speed in this near-wall region is less than one.
The same time delay is observed when the existing disturbed flow downstream of the sensor
exits the domain. There is no need to try other actuators, sensors, or control design tech-
niques for feedforward control because this choice is very effective and it has been explored
before [7, 69].

Figure 4.8a also shows that the controller is more effective when applied to the model than
the full system, and this is because the controller was computed specifically for the model.
The slight difference between the input-output behavior of the full system and model results
in slightly degraded performance. Since this is feedforward control, the stability is unaffected
by this small error in approximating the plant.

However, when the sensor is further downstream and in the feedback regime, i.e. where
the effect of Bu is sensed by Cy for xy ≥ 390, this small difference results in instability
for the full controlled system. Thus the full system’s controlled cost is infinite and omitted
from Figure 4.8a. The instability is due to a lack of robustness, and is an issue only for
feedback controllers in which the stability can be changed by the controller. Robustness can
be quantified as the infinity norm of the sensitivity transfer function S(s),

S(s) =
1

1− Pu,y(s)Ky,u(s)
(4.11)

where, for good stability margins, one generally seeks ‖S‖∞ to be less than 2.0 [104]. Figure
4.8b shows ‖S‖∞ versus sensor location. For upstream sensors, robustness is a non-issue
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Figure 4.9: Input and output signals of H2-optimal controlled full system with sensor Cy

centered at xy = 250 (feedforward). The control is on from t = 4000 to 12000, the grey
region.

(Pu,y(s) ≈ 0 and deviations from S(s) ≈ 1 are negligible). When feedback from u to y exists
and Pu,y becomes significantly non-zero, ‖S‖∞ is much greater than 2.0 and even small errors
between the model and the full system results in instability.

Physically, the actuation influences the flow field and sensor slightly out of phase with
how it is modeled. A measure of robustness related to ‖S‖∞ is the phase margin, the amount
of allowable phase error before instability. Typically it is designed to be a minimum of 45◦

but for these feedback controllers it is very low – less than 0.01◦. Therefore, when the
effect of the actuation is fed back to the controller, it actuates with a phase that adds to
the disturbance, and instability results. Sensor noise tends to expedite this process, but
instability is present in the absence of noise. The same low levels of phase error exist in
feedforward controllers, but because the error is not fed back, control is not destabilizing.

Generally, poor robustness has a variety of root causes. To identify the root causes here,
we divide the feedback configurations into two cases: when the sensor is far downstream
of the actuator (roughly xy > 415) and when the sensor is closer to the actuator (roughly
390 ≤ xy ≤ 415). In the first case, the sensor measures the effect of the actuator on the flow
after a significant time delay due to the highly convective nature of the boundary layer at
this Re. This results in right-half plane (RHP) zeros in the transfer function from actuator
to sensor, Pu,y. RHP zeros are problematic in control design because, following the “weighted
sensitivity integral” [104], the frequency at which they exist is the approximate maximum
bandwidth, or the maximum frequency that can be controlled with good performance and
robustness. Therefore, RHP zeros at low frequencies place severe restrictions on the tradeoff
between performance and robustness. Figure 4.10 shows that for the sensor at x0 = 450, the
most restrictive (minimum) RHP zero is at s = 0.03± 0.067i, or a frequency of |s| = 0.073.
In [7], it is shown that the disturbance is amplified at frequencies up to approximately
|s| = 0.12, thus requiring a bandwidth of at least 0.12, significantly higher than 0.073. Thus
it is impossible to find controllers with good performance and robustness for this actuator-
sensor pair.
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Figure 4.10: Zeros of transfer function Pu,y for four cases. (a): original actuator and sensor
at xy = 450 with minimum RHP zeros at s = 0.03±0.067i; (b): original actuator and sensor
at xy = 405 with no RHP zeros; (c): original actuator and point sensor at xy = 405 with
minimum RHP zero at s = 0.0065; (d): new actuator and point sensor at xy = 405 with
minimum RHP zeros at s = 0.13± 0.62i.

A physical interpretation is the sensor measures flow structures that convected past the
actuator at a previous time. The flow structures convecting over the actuator at any time
cannot be approximated well by the sensor’s outdated information. Thus the control signal
cannot be chosen so as to cancel the flow structures convecting over the actuator. This time
delay is present for any choice of localized actuator and sensor. Therefore, no controller
can perform well and have good robustness, and we restrict our focus to the second case:
feedback configurations with the sensor near the actuator.

Specifically, we focus on a feedback configuration with the sensor centered at xy = 405.
In this case, as we show over the remainder of this section and the next, the cause of the
controller’s lack of robustness is not a time delay but a property of this actuator-sensor pair.
We begin by noting that H2-optimal controllers have no guaranteed stability margins [25] and
in practice tend to lack robustness. A natural first thought, then, is that while H2-optimal
controllers are not robust, other controllers using this actuator-sensor pair may be robust
and perform well. This notion is not supported by the controllers we try. First, methods
to recover robustness from an H2-optimal controller, such as loop-transfer recovery, are not
effective here because there are zeros near the imaginary axis (Figure 4.10), which can result
in highly oscillatory dynamics and ineffective control [104].

In an effort to achieve better robustness, we consider tuning simple PI controllers. The
frequency response of Pu,y is shown in the Bode plot in Figure 4.11. Since TS wave dis-
turbances exist at low frequencies, we want the controller to respond aggressively to low
frequency signals. Thus the loop transfer function (Pu,yKy,u) should have a high magnitude
(gain) at low frequencies. A simple proportional controller (kP = 1 and kI = 0) achieves
this, since Pu,y is already large at low frequencies. With such a controller, the bandwidth
(frequency at which the magnitude is 0 dB) is greater than the required 0.12 and the phase
margin (phase at the same frequency) is greater than 45◦. We find that this controller is
robust but does not significantly reduce the disturbance energy as compared to the uncon-
trolled case, ‖Fl(P, Ky,u)‖2

2/‖Pwn,z′‖2
2 ≈ 0.9. The controller effectively forces y to be nearly

zero, but the disturbance energy is relatively unaffected, shown in Figure 4.12. For other
choices of gains kP and kI , the results are nearly unchanged; the sensor signal is forced to
zero and the energy is relatively unaffected. Forcing the sensor measurement to zero would
be desirable if the measurement was correlated with the structures one wants to diminish,
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Figure 4.12: Input and output signals of proportional feedback control of the full system
with the original actuator and original sensor centered at xy = 405 (feedback). The control
is on from t = 4000 to 12000 in the grey region. The disturbance signal, w, is the same as
in Figure 4.9.

as it often is. However, in this case the actuation only deforms the TS waves to be a slightly
different fluid structure – a structure that is poorly observed by these sensors. The controller
effectively cancels only the observable component of the deformed TS wave structure, but
that component contains little disturbance energy. Put another way, the deformed TS waves
are strongly controllable by the disturbance input, but weakly observable by the sensor.

The poor observability of the deformed TS waves (after actuation) is attributed to this
sensor, which measures a linear combination of localized stream-wise and wall-normal veloc-
ities (Figure 4.2). Figure 4.13 shows the effect of the actuation on the stream-wise velocity.
The plot on the left shows the uncontrolled TS wave, and the plot on the right shows the
deformed TS wave has two peaks of roughly equal magnitude. These peaks align with those
in the stream-wise component of the sensor’s spatial distribution (Figure 4.2), resulting in
a nearly zero sensor measurement (Equation 4.6). Only this linear combination of velocities
is nearly zero, and the deformed TS waves are not significantly damped, continuing to grow
downstream.

In the next section, we show that different actuator-sensor pairs have different properties
that make feedback control effective. Thus the reason we do not find a feedback controller

52



395 400 405 410 415
0

1

2

3

4

5

x

y

395 400 405 410 415
x

 

 

−10

−5

0

5

10

15

Figure 4.13: Instantaneous stream-wise velocity around sensor location xy = 405, denoted by
a cross. Left: Uncontrolled. Right: Proportionally controlled with original actuator-sensor
pair, at time t = 4876. Even though the sensor measurement is nearly zero (Figure 4.12),
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for this sensor-actuator pair with good performance and robustness is attributable to this
pair and the poor observability of the deformed TS waves.

4.5.2 New actuators and sensors for feedback

The previous actuator-sensor pair resulted in poor feedback controllers since the TS waves,
deformed by actuation, were poorly observable. By choosing new actuators and sensors, we
overcome this and design an effective feedback controller.

We begin by simplifying the sensor from the spatial distribution given in (4.3) to a
point sensor so that Cy measures only the stream-wise, dominant, component of velocity at
xy = 405 and yy = 1. We choose this sensor because it simplifies the input-output dynamics
for easier interpretation and controller design. It measures the TS wave structure more
directly than the original sensor does. Further, it is only a slight modification of the original
sensor, and it allows us to achieve our primary goal of comparing feedforward and feedback
control. Although a point sensor is impossible in experiments, the point sensor is likely
to be closer approximation to an experimental sensor than the original sensor because the
original sensor averages over a wide stream-wise distance. Further changes to the sensor (or
actuator) could potentially give even better performance, robustness, or increased ease of
practical implementation, but optimizing the sensor is not our primary goal here.

At first we do not change the actuators from those previously described. The new ERA
model is as accurate as those for the original sensors. We find though that the resulting
model has a transfer function from input u to output y with a real right-half-plane zero
at frequency s = 0.0065 (see Figure 4.10), which again is less than the required minimum
bandwidth of 0.12. Thus it is impossible to find a feedback controller with good performance
and robustness for this actuator-sensor pair.

We chose a different actuator that directly and immediately affects the TS waves, and
does not result in a plant with RHP zeros at low frequencies (disturbance input, Bw, is
unchanged). We use a Gaussian distribution that forces only in the stream-wise direction,
since this is the dominant direction of the flow, and the stream-wise disturbance velocity is
significantly larger than the wall-normal component:

Bu =
(

exp

(
−
(
x− x0

σx

)2

−
(
y − y0

σy

)2
)
, 0
)
. (4.12)
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Figure 4.14: Input and output signals of PI feedback controlled full system with the new
actuator, Equation (4.12), and a stream-wise velocity point sensor centered at xy = 405
(feedback). The control is on from t = 4000 to 12000, the grey region. The disturbance
signal, w, is the same as in Figure 4.9.

where, as before, x0 = xu = 400 and y0 = 1. By directly opposing the growth of the unstable
TS waves, we expect this actuator to have the simple and predictable effect of reducing
the magnitude of the TS waves. In contrast, more complicated actuators can create more
complicated actuator-flow interactions, which can result in undesirable behavior (such as
RHP zeros) in the input-output system, as seen with the previous choice of actuator. Figure
4.10 shows that there are RHP zeros at s = 0.13 ± 0.62i, but |s| = 0.63 is greater than
the required bandwidth, 0.12, and so the RHP zeros are not problematic. ERA models
with r = 70 states are again accurate. Generally, the choice of actuator and sensor requires
physical insight. A rigorous and general study would be valuable, but is not our intention.
Instead, we use knowledge about the flow to find a simple choice that is effective for feedback
control (as will be shown), and generally advocate this type of approach. Other choices of
actuator and sensor can be effective; for example, wall-normal actuation has been used in
related studies [13, 74].

The H2-optimal feedback controllers using this actuator-sensor pair suffers the same
drawbacks as the original pair – high performance but with unacceptably poor robustness.
Again, lack of robustness is a common drawback of H2-optimal controllers and methods to
recover robustness are not applicable due to many zeros near the imaginary axis and in the
RHP [104].

However, PI control has good performance and robustness. We begin by choosing gains
kP and kI that give an acceptable phase margin and high magnitude loop gain at low
frequencies. Tuning the gains results in a robust controller with ‖S‖∞ = 1.5, less than the
maximum guideline value of 2.0, and a phase margin of 70◦, above the minimum guideline
value of 45◦. Due to improved robustness, the control is not destabilizing when applied to
the original full system. The approximate disturbance energy, ‖z‖2

2, versus time is shown for
the full system in Figure 4.14, and the overall cost (Equation (4.10)) is less than 25% of the
uncontrolled case. While the performance is not as good as feedforward’s, which reduces the
cost to about 2% of the uncontrolled case, it is an effective controller. More interestingly, it
is robust to plant perturbations and unknown disturbances. More advanced robust control
design techniques might further improve the performance of feedback control.
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4.5.3 An unmodeled disturbance’s effect

To concretely demonstrate an instance where feedback is preferable to feedforward, we in-
clude a second random disturbance that is unaccounted for in the control design. Generally
speaking, any disturbance downstream of the actuator is impossible to damp since the flow
structures cannot be sensed and then influenced by the actuator because the flow is highly
convective. However, it is possible, and desirable, for any disturbance upstream of the actu-
ator to be damped by the controller.

We place an additional, unmodeled, disturbance at x = 300 (defined by S(300, 1)) and the
corresponding disturbance signal has a variance of 5.0. This is downstream of the feedforward
sensor at xy = 250. Thus the new disturbance’s effect is not sensed and the feedforward con-
troller is ineffective, only reducing the cost to 82% of the uncontrolled cost. The time signals
are shown in Figure 4.15. One could, of course, place the feedforward sensor downstream of
the new disturbance, for example at x = 350, but this is missing the issue. The location of
the unmodeled disturbance is unknown during the control design, and, as mentioned before,
we desire a controller that damps any disturbance upstream of the actuator.

A feedback controller, with a sensor downstream of the actuator, can damp any un-
modeled disturbance upstream of the actuator. In our example, we find that the feedback
controller reduced the cost to 20% of the uncontrolled case. This is much better than the
82% achieved by the feedforward controller, and also similar to the case with only the mod-
eled disturbance (25%). Overall we find that larger unmodeled disturbances worsen the
feedforward controller’s performance, but have almost no effect on the feedback controller’s
performance.

4.6 Summary

We use the Eigensystem Realization Algorithm (as described in Chapter 3) to model the 2D
linearized Blasius boundary layer flow, then design controllers for the reduced-order models
and apply them to the original high-order system. We investigate the role of placement and
choice of the actuator and sensor on performance, stability and robustness of the closed-loop.
Due to the highly convective nature of the system, an upstream sensor cannot significantly
sense the effect of the downstream actuator, even though this is incompressible flow. Thus
the relative positions of the sensor and actuator dictate whether control is feedforward or
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feedback. We confirm the physical intuition that a feedforward configuration performs best,
and that the particular upstream location is relatively unimportant.

However, feedforward controllers have many significant drawbacks. Their performance
depends on the accuracy of the model, and so they are ineffective in the presence of unmod-
eled disturbances and perturbations. Therefore, feedback configurations are attempted. Our
first finding is that the original choice of actuator and sensor was poor for feedback, both
with H2-optimal and proportional-integral (PI) controllers. The Tollmien-Schlichting waves
are deformed by the actuation in such a way that they were poorly observable due to the
choice of sensor, which outputs a localized linear combination of velocity components. The
H2-optimal controllers perform well on the model, but are not robust. The PI controllers
are robust and significantly reduce the sensor signal, y, but perform poorly at reducing the
disturbance energy. For feedback, this strict tradeoff between performance and robustness
renders this actuator-sensor pair ineffective.

We change the sensor to be a simple point sensor of the stream-wise velocity. This
actuator-sensor pair results in a transfer function from actuator to sensor, Pu,y, which has a
right-half-plane (RHP) zero at low frequency. This places severe limitations on performance
and robustness, preventing any controller from being developed.

We then change the actuator to be a Gaussian distributed force in the stream-wise direc-
tion so Pu,y has no RHP zeros. The H2-optimal controllers are again not robust. However,
the PI controller both performs well and is robust, reducing the objective cost to about 25%
of the uncontrolled cost. Thus feedback control is shown to be effective for the boundary
layer.

Feedback configurations where the sensor is far downstream of the actuator have large
time delays which also cause RHP zeros in the transfer function Pu,y, and this severely limits
the tradeoff between performance and robustness. Thus, for any localized actuator and
sensor, feedback control can be effective only when the sensor is near the actuator.

We demonstrate that feedback control outperforms feedforward control in the presence of
unmodeled disturbances. A second disturbance is introduced downstream of the feedforward
sensor. The feedforward controller reduces the cost to only 82% of the uncontrolled case,
while the feedback controller reduces the cost to 20% of the uncontrolled case. Thus for
cases where the unmodeled disturbances are known to be small, feedforward control is a
good choice; otherwise, feedback control is the better choice. This flow is only convectively
unstable (not absolutely unstable), and so the LTI system (4.7) is stable, and feedforward
control alone can potentially perform well. However, for absolutely unstable flows, such as
the wake behind a bluff body, the LTI system has unstable poles, and feedback control is
necessary, since feedforward control cannot change the pole locations.

In the upcoming chapter (Chapter 5), we control 3D bypass transition directly from
experimental data. As in the 2D TS-wave case, the sensors are placed downstream of the
actuators to achieve feedback control and better reject unmodeled disturbances. In contrast
to TS waves, which travel in the stream-wise direction, stream-wise streaks do not strongly
vary in the stream-wise direction. This allows us to use a simpler quasi-steady control law
in which the actuation updates only after the sensor measures a steady state.
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Chapter 5

Experimental models and control

While the previous chapter focuses on controlling classical transition in computations, this
chapter focuses on controlling bypass transition in experiments. We replicate the stream-
wise streak structures characteristic of bypass transition with a spanwise array of cylindrical
roughness elements. Plasma actuators, a particularly useful and practical type of actuator,
are arranged into a spanwise array to generate similar streaky structures, but of opposite
phase in order to attenuate the disturbance. To facilitate the design of a feedback controller,
we develop an input-output model of the system where the inputs physically correspond
to the roughness elements and plasma actuators. The output, computed from a spanwise
array of wall-mounted shear stress sensors, is carefully chosen to target the specific spanwise
wavenumber of the disturbance.

We limit our attention to quasi-steady control in which the controller updates are slower
than the convective time scale, thus ignoring most transient effects. The feedback controller
performs well, attenuating the stream-wise streaks both in the vicinity of the sensors and
further downstream. The controller remains effective for a range of off-design flow conditions,
such as when the free-stream velocity is varied.

5.1 Introduction

In recent years, there has been substantial progress in the use of model-based linear feedback
control in computational flow studies [13, 62]. Notably, in [45], linear optimal control theory
is applied to both classical and bypass transition. Important achievements using model
reduction to reduce computational cost of control design are given in [8, 53, 101]. Simulations
are best suited for these types of studies, however, it is crucial to bridge the gap between
the successful control strategies in simulations that have access to the entire velocity field
and experiments that have limited sensing and actuation.

Experimental boundary-layer control demonstrations are rare, but a few are successful.
For example, in [93], a linear controller based on stochastically estimated transfer functions
between the inputs and outputs is designed to reduce drag in a turbulent boundary layer.
The feedback-feedforward controller reduces the mean wall shear stress measurements by 7%.
In [54], a laminar boundary layer is disturbed with a stationary vortex pair and is effectively
controlled via a synthetic-jet actuator that creates a vortex pair of opposite sign. In another

57



work, [77], distributed suction attenuates streaks in a laminar boundary layer caused by
free-stream turbulence. The growth of the low-speed streaks is inhibited 40 boundary layer
thicknesses downstream. In a numerical simulation of a similar system, it is shown that
it may be possible to delay transition using an extensive spanwise sensor-actuator array
and improve effectiveness using a more sophisticated controller [76]. However, as mentioned
in [76], there are difficulties applying suction with solenoid valve arrangements, and future
efforts should develop durable, flexible, small, and inexpensive actuators.

Possessing many of these properties, single-dielectric-barrier-discharge (SDBD) plasma
actuators, herein referred to simply as plasma actuators, offer several major practical ad-
vantages: they have no moving parts, can be flush-mounted to the wall, and are relatively
easy and inexpensive to construct. In previous work, plasma actuators are used to create
stream-wise forces that attenuate TS waves in a laminar boundary layer under an adverse
pressure gradient [35] and prevent separation [51]. Plasma actuators can also create forces
in the spanwise direction. When two are separated in the spanwise direction and create
spanwise forces in opposite directions, a stream-wise vortex pair is generated. Arrays of such
actuator pairs are used to induce transition [95] and maintain attached flow [60, 65, 99]. An-
other configuration applies alternating spanwise forcing in a turbulent boundary layer [21],
and another creates jet vectoring [11]. Independent of the configuration, plasma actuators
operate by weakly ionizing the air near the actuator (termed plasma), which then experi-
ences a force due to the electric field. This results in a body force on the surrounding fluid
that is exploited for flow control purposes. Chapter 6 presents results on the operation and
modeling of these actuators. In-depth reviews [23] and [83] explain the operation, physics,
and applications.

In [42], a spanwise array of plasma actuators controls transient growth modes in a Blasius
boundary layer. The actuators are arranged to generate stream-wise oriented, counter-
rotating vortices, similar to those of [95], but with smaller magnitude forces such that streaks
are of comparable amplitude to the targeted disturbance. It is also shown that the control
effectiveness could be greatly affected by the actuator array geometry, which influences the
energy contained in spatial frequencies of the flow response. For all actuators employed, the
magnitude of the structure that has the targeted spanwise wavenumber is typically reduced
by over 95%. Later results show that the frequency and amplitude of voltage driving the
actuator also influence the energy contained in each spatial frequency [41, 88].

The goal of this study is to implement a feedback controller that inhibits transient growth
in the Blasius boundary layer. The control objective is to minimize the disturbance by
reducing the energy in the single spanwise wavenumber related to the streaks, as measured
by the wall shear stress sensors. We create streaks at a known location using arrays of
cylindrical roughness elements as also done in [33, 66, 113, 114]. This provides a tractable
first problem before the more complex case of streaks at unknown locations as would be
caused by free-stream turbulence.

To achieve this goal, we first develop a novel monotonic control objective as part of
an empirical model of the flow’s response to forcing. This model is then used to design
and analyze a proportional-integral controller before implementing it in experiments. The
effectiveness of the feedback controller is studied for both a steady and slowly time vary-
ing disturbance (i.e., where the time scale of variation is much larger than the convective
time scale). Although transient flow effects are not addressed, we highlight issues that have
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Figure 5.1: Schematic of the experimental arrangement.

not been examined previously and are critical for control at faster time scales. These in-
clude aliasing in the measurements (due to practical limitations on the number of sensors),
near-wall measurements providing limited information about the flow farther from the wall,
plasma actuator nonlinearity at the low voltage levels needed, and off-design performance of
controllers designed with empirical input-output models.

5.2 Experimental Details

The wind tunnel (at the University of Toronto) has a working section that is 1.2 m × 0.8
m and 5 m long. The free-stream turbulence intensity is less than 0.05% of the average
free-stream velocity, U∞ = 5 m/s. A schematic of the boundary layer plate is shown in
Figure 5.1. The plate is equipped with an asymmetric leading edge geometry designed to
minimize the adverse pressure gradient over the region of interest. (See [39].) The location
of the stagnation line is controlled using a flap at the downstream end of the plate.

Measurements of the stream-wise flow velocity, u are made by two hot-wire probes com-
prised of a 5 µm diameter copper-plated tungsten wire with an active length of approximately
1 mm. The hot-wire probes operate using a constant temperature anemometer with an over-
heat ratio of 1.5. Each velocity measurement consists of an average of 5 seconds of data
sampled at 5 kHz. The total uncertainty of the velocity measurements is within ±1.1%.
Errors are calculated using standard uncertainty analysis methodologies, see for example
[81] and [109]. The resolution of the traverse system is at least 2.5 µm and the minimum
precision of the traverse, based on the lead screw accuracy, is ±1 µm over a span of 10 mm.
Each velocity profile consists of measurements of the stream-wise velocity at 45 wall-normal
locations over the entire height of the boundary layer.

59



5.2.1 Base Flow

To verify the base flow is laminar, we compare measurements with the Blasius solution, and,
as shown in Figure 5.2, they have good agreement. The virtual leading edge is found to be 21
mm downstream of the geometric leading edge based on measurements of the displacement
thickness, and is shown in Figure 5.2, where x̂ denotes distance from the virtual leading
edge. (For information on the virtual leading edge, see [98].) The laminar boundary layer
has almost no pressure gradient because the shape factor, H12 = δ∗/θ, where δ∗ is the
displacement thickness and θ is the momentum thickness, remains near the Blasius value of
2.59 (Figure 5.2c).
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Figure 5.2: (a) Comparison of a measured boundary layer profile, where 〈 〉t denotes the time
average. (b) Comparison of the measured displacement thickness with the Blasius solution.
(c) Stream-wise variation of the shape factor, H12. The dashed line corresponds to the
Blasius solution, H12 = 2.59.

5.2.2 Control System Elements

Roughness Elements

The disturbance is generated by an array of cylindrical roughness elements. These arrays
generate streaks of spanwise periodic low- and high-stream-wise-velocity, replicating those
seen in bypass transition [33, 113, 114]. The array consists of nine cylindrical roughness
elements with heights we vary from a wall-flush position (k = 0) to a maximum height of
k = 1.75 mm.

Plasma Actuator

The actuator consists of 1 µm thick copper electrodes deposited on a 0.2 mm thick borosil-
icate glass dielectric layer as shown in Figure 5.3. The manufacturing method of these
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Figure 5.3: Schematic of spanwise plasma actuator (left) and shear-stress sensor array plug
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actuators is outlined in [48]. Two of the 60 mm square actuator tiles, each with three sur-
face mounded high voltage (HV) electrodes, are placed side-by-side to produce the spanwise
array of six evenly spaced HV electrodes shown in Figure 5.1. The electrodes are spaced
∆z = 20 mm apart, the same spacing as the roughness elements, and the width of the
exposed electrode is 8 mm. The width and spacing of the exposed electrodes are chosen to
most reduce the energy of the disturbance streaks [42].

Wall-Shear-Stress Sensors

A spanwise array of wall-mounted hot-wire sensors are used to measure the stream-wise
shear stress and thereby provide feedback information about the streaks [84]. A schematic
of the sensor arrangement is shown in Figure 5.3. The sensors are spaced uniformly ∆z/4
apart from one another over 2∆z = 40 mm at x = 500 mm (x̂ = 479 mm). The arrangement
provides four measurements per fundamental disturbance wavelength (λz = ∆z = 20 mm).
Therefore, the Nyquist wavenumber corresponds to a wavelength of ∆z/2 and the presence
of modes higher than the first harmonic of the fundamental produces aliasing (examined in
Section 5.4.2). The sensors are arranged such that the first, middle, and last sensors are
directly in-line with the roughness elements.

Each hot-wire is mounted across a pair of the support prongs (0.2 mm diameter jewellers’
broaches) protruding 1 mm from the plug surface, which is within the linear region of the
boundary layer. The sensing elements consists of 5µm diameter 1 mm long tungsten wires
that are shouldered by copper plated regions.

5.2.3 Control System

The measurements are averaged over 0.05 s to filter high-frequency noise, and are then fed
to the controller, which computes the actuator input voltage. Control iterations are made
every dt = 0.5 s to allow for the flow to reach equilibrium.
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5.3 Empirical Model and Controller Design

The control objective is to cancel the growth of stream-wise streaks triggered by the rough-
ness elements by generating counteracting structures with the plasma actuator array. To do
so, we devise an empirical input-output model, then devise a controller for this model. The
inputs are the roughness elements and plasma actuators and the output is a function of the
shear stress measurements, as in Figure 5.1.

5.3.1 Measurements available

Only certain measurements are available from the experiments for use in developing an input-
output model. We measure the effect of the roughness elements alone on the y-z plane of
stream-wise velocity and shear stress at x = 490 mm, at a variety of different deployment
heights k. An example of this data is shown in Figure 5.4, where u′ is the difference of the
stream-wise velocity difference from the Blasius value. Only the coarsely sampled shear stress
measurements are available to the controller; the other measurements are only available to
develop a model.

We also measure the effect of the plasma actuator alone on the velocity at the same y-z
plane. Shear stress measurements are not available for the plasma actuator case. As shown
by [42], this configuration will cause the fundamental disturbance, with wavelength defined
by the spacing of the HV electrodes λz = ∆z, to be of opposite phase to that produced by
the roughness element array. An example of this data is shown in Figure 5.5. We note that
below Vpp = 3.2 kV, the actuator does not consistently cause plasma formation.
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5.3.2 Choice of Output

In choosing the output, the spatial mode of the velocity that corresponds to the streak is of
primary interest. This can be isolated in frequency space as the component of velocity with
wavelength λz = ∆z. We refer to this component, or mode, by its wavenumber, κ = 1, where
the relationship between wavenumber and wavelength is λz = ∆z/κ. Both the roughness
element and plasma actuator arrays create structures that have most of their energy in κ = 1.
These κ = 1 modes have a fixed spanwise phase, so the streaks created by the roughness
elements can only be affected in κ = 1 at the fixed phase of the plasma actuators. With all
of this in mind, a suitable output for the model is related to the complex coefficient of κ = 1
from the Discrete Fourier Transform (DFT) of the velocity, averaged over the boundary
layer. Further, we are only concerned with the component of that coefficient that has the
same phase as the plasma actuator array because the other components are uncontrollable.
We call this component of the DFT coefficient the “projected velocity,” ϕCu. Since velocity
measurements are only available offline, we use an analogous quantity as the output, the
projected shear stress ϕCτ , and find that is proportional to ϕCu. (We denote the shear stress
as τ and the difference from the Blasius value as τ ′.)

Now we define the output ϕCτ mathematically. The shear stress measurements are Dis-
crete Fourier Transformed, and the κ = 1 coefficient is denoted τ̃1. This coefficient is
normalized by the average shear stress (roughly equal to that of the Blasius boundary layer)
at the same stream-wise location, yielding τ̃ ′1 = τ̃1/〈τ〉tz. Similarly, the Fourier coefficient for
κ = 1 of the velocity is 〈ũ′1〉y, averaged over the wall-normal direction to result in a single
complex number. These complex numbers physically represent the phase and magnitude of
the κ = 1 Fourier coefficient. The phase that can be controlled by the plasma actuators is
the angle of complex number 〈ũ′1〉y which is nearly identical to that of τ̃ ′1. Normalizing 〈ũ′1〉y
gives

C̃u =
〈ũ′1〉y
‖〈ũ′1〉y‖

, (5.1)

where the velocities on the right hand side of (5.1) result from plasma actuation (not the
roughness elements). Considering complex numbers as two-dimensional vectors, the pro-
jected shear output can be written as a dot product,

output = ϕCτ = dot(C̃u, τ̃
′
1) = real(C̃u) · real(τ̃ ′1) + imag(C̃u) · imag(τ̃ ′1). (5.2)

A similar quantity, projected velocity, is defined as

ϕCu = dot(C̃u, ũ
′
1). (5.3)

Due to the spanwise arrangement of the roughness elements relative to the plasma actuators,
the coefficient for κ = 1 caused by only the roughness element array has a negative value of
ϕCτ and ϕCu, whereas the one caused only by the plasma actuators is positive. The goal of
the controller can now be simply stated as driving ϕCτ towards zero by canceling the effect
of the roughness elements.

This choice of output, ϕCτ , is better suited for control purposes than the spanwise power
spectrum of τ ′ used previously in [40]. The power spectrum yields information only about
the strength of the spanwise sinusoidal shear stress variation without providing an indication
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of the spanwise spatial phase of the disturbance. Therefore, an ad hoc treatment is required
to detect the direction of the controller in [40]. The underlying issue is that controllers are
simpler to devise when the output varies monotonically with the input. The output used in
this work, ϕCτ , varies monotonically with the input voltage, as shown in Figure 5.6, while
the power spectrum is quadratic—not monotonic since ϕCτ can be negative.

5.3.3 Empirical Flow Model

We empirically find an input-output model from Vpp to ϕCτ from the data, and, for now,
set aside the effect of the roughness elements. First, the relationship between the actuator
voltage input and the intermediate variable, projected velocity ϕCu, is fit with an inverse
tangent function, as shown in Figure 5.6(a). In practice, any monotonic function that fits
the observed data is acceptable for the purposes of this model. Then, the relationship
between the projected velocity, ϕCu, and shear, ϕCτ , is determined from measurements of
the disturbance caused by the roughness elements, and found to be approximately linear, as
shown in Figure 5.6(b). The array of roughness elements is deployed from 0.75 to 1.75 mm
in increments of 0.25 mm. From these empirical fits, the following relationships are derived:

ϕCu = m · ϕCτ , (5.4a)

Vpp = c1 · tan−1(c2 · ϕCu) + c3, (5.4b)

where m = 1.25, c1 = 2734, c2 = 1.66, and c3 = 3120. Together, these equations define the
relationship between the input Vpp and the output ϕCτ .

5.3.4 Linearization and Control Model

The nonlinearity makes it difficult to perform control analysis directly [1]. Since the form of
the nonlinearity is known, the terms are regrouped into a modified plant which takes a new
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to Vpp, then outputs ϕCτ via Equation (5.6).

input f , given by

f ≡ tan

(
Vpp − c3

c1

)
. (5.5)

Equation (5.4) is then rewritten in terms of f ,

ϕCτ =
f

m · c2

, (5.6)

which is a linear relationship between the input f and output ϕCτ . Figure 5.7 is an illustra-
tion of the modified block diagram which takes the input f , and outputs ϕCτ .

Up to this point, the effect of the roughness elements has been set aside. That effect is
now included and assumed to act in the same way as the plasma actuators so that the input
to P ′ is the sum f + d, where d is the input that corresponds to the roughness elements.
The disturbance signal is shown as part of the closed-loop block diagram in Figure 5.8. This
is a common way to include disturbances for control purposes, and is physically motivated
in this case because the plasma actuators are specifically chosen to create the same streak
structures as the roughness elements. The time evolution of the output is given as

ϕi+1
Cτ =

f i + di

c2 ·m
, (5.7)

where i is the discrete time step. The time step corresponds to the time between mea-
surements, chosen to allow the flow to reach an equilibrium, and is dt = 0.5 seconds. In
comparison, the convective time scale, taken to be the time for the free-stream to travel from
the actuators to the sensors, is 0.04 seconds. The left-hand side of the equation is a time
step later because the measurement is taken one time step after the input is applied. The
system can be expressed in discrete time as a state-space system with one state,

xi+1
P ′ = 0 · xiP ′ +

f i + di

m · c2

ϕiCτ = xiP ′ ,

(5.8)

where the state, xP ′ , is only an intermediate variable. Equation (5.8) is the empirical input-
output linear model of the plant, P ′, and facilitates the design of a controller, K.
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5.3.5 PI Controller Design

In this section we design a proportional-integral-derivative (PID) controller for the model,
as depicted in Figure 5.8. Proportional-integral-derivative (PID) controllers are widely used
in feedback control for their good performance, robustness properties, and simplicity. The
integral term ensures that the system can reach the target value, whereas the derivative term
typically improves closed-loop stability. A proportional-integral (PI) controller is chosen for
this work because the derivative term is highly sensitive to noise and model uncertainty.
Moreover, the plant has only one state, so PI control is equivalent to pole placement.

To choose the PI controller gains, the performance and robustness are analyzed. A
measure of performance is how quickly the controller drives ϕCτ to zero, whereas robustness
is the ability of the controller to perform well in off-design conditions. The controller system,
K, evolves as

xi+1
K = xiK + dtϕiCτ , (5.9)

f i = −KIx
i
K −KPϕ

i
Cτ , (5.10)

where xK is the time integral of ϕCτ needed for integral feedback. The proportional and
integral gains are denoted by KP and KI , respectively. The time between controller updates,
as previously defined, is dt = 0.5 s. The plant and controller systems are combined to yield
the state-space equations of the controlled system(

xi+1
P ′

xi+1
K

)
=

[−KP

c2·m
−KI

c2·m
dt 1

](
xiP ′
xiK

)
+

[
1

c2·m
0

]
di, (5.11)

ϕiCτ =
[

1
c2·m 0

](xiP ′
xiK

)
. (5.12)

For the best performance, the state should decay to zero as quickly as possible. For this
discrete time system, this implies the eigenvalues of the 2×2 matrix in (5.11) should be zero,
i.e., we want a so-called dead beat controller. It is easily shown that KP = KI/dt = c2 ·m
makes both eigenvalues zero.

Robustness is considered by the infinity norm of the sensitivity function, ‖S‖∞, which is
a measure of robustness to plant model uncertainty (such as would be caused by a change
in free-stream velocity), and ‖ · ‖∞ is the infinity norm. The sensitivity function is given by

S ≡ 1

1 + P ′K
, (5.13)
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A general guideline is for the value of ‖S‖∞ to be small, typically in the range of 1.3 to 2.
The contour plots in Figure 5.9 demonstrate the performance (maximum eigenvalue) and
robustness (‖S‖∞) for a range of PI controller gains. The best performing KP and KI (zero
eigenvalues) result in ‖S‖∞ = 2. For convenience, we define KP = KI/dt = Gc · c2 ·m where
Gc is the gain coefficient. To accommodate a larger degree of uncertainty in the model of
the plant we set Gc = 0.5, yielding ‖S‖∞ = 1.33.

Results using various values of Gc are shown in Figure 5.10. At iteration 0, the system
is undisturbed. At the next iteration, a disturbance corresponding with the maximum value
considered in the experiments is applied. Control is applied in all subsequent iterations.
The case with the best performance corresponds with Gc = 1. Further increases in the gain
result in oscillation of the output. When Gc = 0.5, the controller effectively reduces ϕCτ to
zero after only a few iterations. Further decrease of the gain slows the controller’s response.
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Figure 5.10: Output of the feedback controlled model (not experiment) plant, demonstrating
the variation in the response of the PI closed-loop controller to a typical steady disturbance.
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5.4 Limitations of wall shear stress sensors

This section discusses the limitations of the shear stress sensors by comparing to measure-
ments over the entire thickness of the boundary layer.

5.4.1 Comparison with measured velocity planes

Now we quantify how representative the near-wall measurements are of the disturbance
higher in the boundary layer. To do so, we compare the energy in the fundamental and first
three harmonics obtained from velocity measurements at 1 mm above the wall (η = 0.85) to
that obtained by integrating the energy measured at all heights within the boundary layer.

Eκ
Et

=
(φ(u′))κ∑8
i=1 (φ(u′))i

, (5.14)

where Eκ is the energy in the wavenumber κ, and Et is the energy integrated over all
wavenumbers, φ(u′) is the power spectrum of u′ over all wavenumbers, and the subscript κ
denotes the value of the power spectrum corresponding to wavenumber κ. (For reference, a
non-dimensional quantity that is sometimes used is βκ = 2πδ/(κ∆z), where δ =

√
νx/U∞ is

the Blasius boundary layer thickness.) The boundary layer averaged disturbance is evaluated
over the thickness of the boundary layer,

〈φ(u′))κ〉y =

∫ 5δ

0
(φ(u′))κ dy

5δ
. (5.15)

The comparison of the near-wall and average energy ratios for different wavenumbers
is shown in Figure 5.11(a) for the roughness array disturbance, and (b) for the actuator.
These figures show distinctly different trends. As the roughness element deployment height
increases, the local and averaged energy ratios reach approximately the same constant value.
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In contrast, as voltage to the plasma actuators increases, the local and averaged energy ratios
differ. These results imply that at higher voltages the near-wall sensors under predict the
boundary-layer averaged energy. They also imply that the roughness elements and plasma
actuators induce slightly different spatial distributions in the flow, as seen before in Figures
5.4 and 5.5.

As we will see later in Section 5.5.4, this under prediction of shear stress results in slight
over actuation when higher voltages are needed. In short, the shear stress measurement
is driven to zero effectively by the controller, but the true contribution from the plasma
actuator to shear stress is larger, and thus the controller slightly over actuates.

5.4.2 Aliasing due to limited spanwise resolution

Due to hardware limitations, we employ four stream-wise shear stress measurement loca-
tions per fundamental disturbance wavelength. For this arrangement, the smallest resolved
wavelength is ∆z/2, and the corresponding (Nyquist) wavenumber is κ = 2. The contribu-
tion of higher, unresolved, wavenumbers alters the apparent (i.e., measured) content of the
first two modes. The influence of this aliasing on the shear stress measurements is found
by comparing more densely sampled velocity data (from the roving hot-wire) at the same
height above the wall as the shear sensor (η = 0.85).

Figure 5.12 shows the energy contained in the first four modes calculated by down-
sampling the 16 points per ∆z to 4 points per ∆z. These results are compared against
the alias-free modal energy content obtained without downsampling. More aliasing error
is present when measuring the reaction of the flow to roughness elements than to plasma
actuators, as shown in Figure 5.12(b). Significant aliasing occurs due to the large energy in
the unresolved third and fourth modes.

In summary, Sections 5.4.1 and 5.4.2 show that the effect of the actuator is measured by
the shear sensor array as being less energetic than if it is measured over the entire boundary
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layer. Further, it is shown that the plasma actuators effect on the κ = 1 mode (corresponding
to a wavelength of ∆z) is concentrated nearer the wall than is the effect of the roughness
elements. It is also shown that aliasing is more significant for the actuator disturbance. The
implications of these results are discussed in Section 5.5.4.

5.5 Experimental Flow Control Results

Experimental results regarding the performance and robustness of feedback control are dis-
cussed in this section. The effects of control for a range of gain values and free-steam
velocities are considered, including values different from the value at which the input-output
models are obtained. In the process, notable plasma actuator characteristics are exposed
and discussed.

5.5.1 Effect of Controller Gain

The gains of the controller, KP and KI , affect the performance of the closed-loop con-
trolled system. As shown in Figure 5.9, when KP = KI/dt good performance and ro-
bustness are achieved and therefore they are kept equal. Recall from Section 5.3.5 that
KP = KI/dt = c2 ·m optimizes performance, but KP = KI/dt = Gc · c2 ·m, where Gc = 0.5
(the gain coefficient), improves robustness to uncertainty in the input-output models and
flow conditions. Figure 5.13(a) shows the control results with roughness elements deployed
to a height of k = 1.25 mm, U∞ = 5 m/s, and several Gc.

Larger values of Gc lead to damped oscillation of the control response, as shown for
Gc = 1.5. Lowering Gc so it is less than one leads to an over-damped response, as shown
in Figure 5.13(a). The experiments deviate from the model for Gc < 0.5 due to the non-
monotonic actuator behavior in experiments at low voltage, which is discussed next.
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In Figure 5.13(b), the case of Gc = 0.125 has actuator voltages below 3.9 kV, the lowest
voltage we use in developing the model. During the first few iterations, the actuator has
a larger effect than the model predicts. This is seen in in Figure 5.13(a) where the output
ϕCτ is significantly closer to zero than it is for the model. This is caused by non-monotonic
behavior of the actuator at lower Vpp values.

The non-monotonic behavior is clearly shown in Figure 5.14. For voltages less than
3.2 kV, the electric field is insufficient to ionize air and produce a body force. As voltage
increases from 3.2 and 3.8 kV, the strength of actuation, as quantified by ϕCτ , decreases.
Further increases in voltage result in increasing ϕCτ , as one expects. This low range of
voltage frequency and amplitude is not addressed in the literature, which instead focuses
on larger amplitudes. The work [88] shows that lowering the actuator voltage can shift the
location of the maximum disturbance velocity downstream. The shift of this location is
significantly greater for smaller voltages, corroborating the low-voltage behavior we see.

Nonetheless, the feedback controller is effective, as shown in Figure 5.13(a), because it
is designed to be robust to unmodelled behavior. This is a clear improvement over the ad
hoc controller in [40] that is destabilizing when lower voltages are needed. Note though that
further decreases in the free-stream velocity would destabilize this controller as well.

5.5.2 Effect of Aliasing

When the roughness element is higher, at k = 1.375 mm, and U∞ = 5 m/s, the aliasing
contributes to destabilizing the closed-loop system. This is shown in Figure 5.15. The
controller gains are KP = KI/dt = 0.5 · c2 ·m, as they are when control is effective at lower
roughness height k = 1.25 mm (Figure 5.13). For k = 1.375 mm, the controller increases
the actuator voltage beyond 5.3 kV, and in this regime, as seen in Figure 5.12(b), increasing
voltage decreases the measured energy in the κ = 1 mode, and thus ϕCτ , due to aliasing
from the κ = 3 mode. The controller compensates by increasing the voltage, which only
further decreases ϕCτ , and is therefore destabilizing.
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Figure 5.16: Influence of varying the free-stream velocity on the controller’s effectiveness for
k = 1.25 mm.

5.5.3 Effect of Free-Stream Velocity

Robustness to off-design conditions is shown by controlling the flow at different free-stream
velocities, 3, 3.5, 4, and 5 m/s. The controller gains are KP = KI/dt = 0.5 · c2 · m, as in
Section 5.3.5. The results for two different roughness element heights (k = 1.25 mm and
1.375 mm) are shown in Figures 5.15 and 5.16.

Reducing the free-stream velocity reduces the magnitude of the disturbance and, thus,
the required actuation voltage. For k = 1.25 mm and U∞ = 3.5, 4, and 5 m/s, the controller
quickly drives ϕCτ towards zero as shown in Figure 5.16(a). When U∞ = 3 m/s, the voltages
are low, in the range of the inverse behavior previously described and shown in Figure 5.14.
Thus, when the controller compensates for a positive ϕCτ by reducing the voltage, ϕCτ either
further increases at the next iteration, or, if the voltage is below 3.2 kV, the plasma does
not form at all and ϕCτ reduces significantly. This pattern is shown in Figure 5.16(a).

Results for k = 1.375 mm are shown in Figure 5.15. For the free-stream velocities of 3,
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Figure 5.17: The energy in the κ = 1 mode, as measured near the wall and over the entire
boundary layer and as a function of free-stream velocity. The response to roughness elements
is shown in (a) and the response to plasma actuators in (b). (There is no feedback control
in these plots.)

3.5, and 4 m/s, the controller drives ϕCτ towards zero in a few iterations, as shown in Figure
5.16(b). When U∞ = 5 m/s, the controller increases the actuator voltage beyond 5.3 kV, and
in this regime, as seen in Figure 5.12(b), increasing voltage decreases the measured energy
in the κ = 1 mode, and thus ϕCτ , due to aliasing from the κ = 3 mode. The controller
compensates by increasing the voltage, which only further decreases ϕCτ , and is therefore
destabilizing, just as it is for aliasing.

The effects of the roughness elements and plasma actuators on the flow change in opposite
ways with respect to changes in the free-stream velocity. Increased free-stream velocity
increases the magnitude of the streaks generated by the roughness elements, but increased
free-stream velocity decreases the magnitude of the counter-streaks generated by the plasma
actuators. This is demonstrated in Figure 5.17. In the case of the actuator, constant power
is imparted on the flow over the actuator length and an increase in free-stream velocity
decreases the residence time of the fluid over the actuator, thereby decreasing the total
energy imparted on a fluid particle.

5.5.4 Characterization of the Controlled Flow

In this section, we examine the effectiveness of the control over the entire boundary layer
thickness, not just near the wall. Figure 5.18(a) shows the uncontrolled flow and Fig-
ure 5.18(b) the controlled flow after reaching a steady state with a voltage of approximately
5 kV (k = 1.25 mm in both). The corresponding wall-normal energy distributions are shown
in Figures 5.18(c & d) for the uncontrolled and controlled flow, respectively. The energy in
the targeted mode 1 is substantially reduced. The remaining energy is located predominantly
in the lower half of the boundary layer and in the third spanwise mode. This distribution
of energy is similar to that created by only the actuator, as in Figure 5.11(a), and occurs
because the roughness element array produces almost no disturbance in the κ = 3 mode at
the measurement plane (Figure 5.11(b)).

The targeted κ = 1 mode is isolated via band-pass spatial filtering of u′/U∞ shown in

73



η

 

 

0

2

4

U ′

U ∞

0.1

0.05

0

0.05

0.1

η

z/∆z
1 0.5 0 0.5

0

2

4

0

2

4

η

0 0.5 1
x 10 3

0

2

4

η

φU ′(β i)/U 2
∞

 

 
1

2

3

a)

b)

c)

d)

u′

U∞

φ(u′)/U2
∞ · 10−3

κ = 1

κ = 2

κ = 3

Figure 5.18: Stream-wise velocity for (a) the uncontrolled flow with k = 1.25 mm, and (b)
the controlled flow with Vpp = 5.0 kV. Wall-normal disturbance energy profiles are shown
for the first three modes for (c) the uncontrolled and (d) the controlled flow.

z/∆z

η

 

 

1 0.5 0 0.5
0

1

2

3

4

5

U ′

U∞

0.02

0

0.02

u′

U∞

Figure 5.19: Targeted κ = 1 mode of the stream-wise velocity of the controlled flow.

Figure 5.19. Approximately 75% of the residual energy in the κ = 1 mode is contained in
the near-wall region, η < 2.5 where there are residual streaks (e.g., a low-speed streak at
z/∆z = 0). For η > 2.5, however, the residual streaks have opposite sign.

The cause for this behavior stems from earlier observations in Section 5.4.2. The wall-
based measurement of the κ = 1 mode energy is smaller than the measurement made over the
entire boundary layer height. This error is attributed to aliasing, which is more significant
for the actuator than the roughness disturbance, as shown in Figure 5.12. Based on these
measurements, the actuation is slightly too strong over the height of the boundary layer.
Since the plasma actuators generate more response in the κ = 1 mode in the near-wall
region (η < 2.5) and less far from the wall (η > 2.5) than do the roughness elements (as
suggested by Figure 5.11), we see the distribution in Figure 5.12. Again, despite these effects,
the control output indicates that the disturbance is attenuated (i.e., ϕCτ ≈ 0), because the
signal is based only on shear-stress measurements near the wall.
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5.5.5 Stream-wise Evolution of the Control Effect

In the previous sections, the control results are presented for a single measurement plane at
one stream-wise location. In this section, the effect of the control on the transient growth of
streaks is examined over multiple stream-wise locations. Three different flow conditions are
examined. In the first two, the free-stream velocity is 4 and 5 m/s and k = 1.25 mm. For
the third case, the free-stream velocity is 4 m/s and k = 1.375 mm.

For the case with U∞ = 5 m/s and k = 1.25 mm, contour plots of u′/U∞ for the
uncontrolled flow are shown in Figure 5.20. As the flow developed, energy in higher modes
decays and past x = 500 mm almost all that remains is the κ = 1 mode. The measurements
of the controlled flow are shown in Figure 5.21. The measurement planes upstream of the
plasma actuators are nearly identical to the uncontrolled case, and so they are omitted. The
controller effectively eliminates the energy in the targeted mode 1, and so it is predominantly
higher modes that remain downstream, consistent with the results shown in Figure 5.18.

The effectiveness of the control over the measurement region is quantified by the energy
in κ = 1 as φ(u′)1/U

2
∞, as shown in Figure 5.22. The actuator attenuated over 90% of the

energy contained in the target mode downstream of the measurement plane (x = 500 mm).
Further upstream, the controller is less effective, while further downstream the structures
exponentially decay.
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Figure 5.22: Effect of control as a function of downstream location.

5.5.6 Continuous Free-Stream Velocity Perturbation

We study the ability of the controller to reject the disturbance as the free-stream velocity
slowly varies in time. We categorize the variation of the free-stream velocity as slowly time
varying because the time scale of the variation is three orders of magnitude larger than the
period of time it takes for flow to convect from the actuators to the sensors.

The free-stream velocity is varied sinusoidally between 4 m/s and 5 m/s with period Tw =
50 s. To see how well the controller performs in response to different disturbance frequencies,
one would naturally vary Tw, but Tw is fixed due to wind tunnel constraints. Instead, we
vary the time step dt so the ratio dt/Tw is 0.01, 0.02, 0.04 and 0.08 (dt is 0.5, 1.0, 2.0, and
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Figure 5.20: Stream-wise evolution of the disturbance caused by a roughness array with
k = 1.25 mm and U∞ = 5 m/s.

u′

U∞

Figure 5.21: Stream-wise evolution of the flow shown in Figure 5.20 with control by the
plasma actuator operated at 5.05 kV.
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4.0 s). However, this has the additional effect of changing the control gains. We keep the
ratio of KI/dt constant (Equation (5.10)) so that KI/dt = Kp = Gcc2m and Gc = 0.5. This
keeps the measure of robustness constant at |S|∞ = 1.33, an acceptable level, for each dt,
but the performance varies. The experimental results for each of the four cases are shown
in Figure 5.23. We also find the frequency response of the open loop gain, P ′K, as shown
in Figure 5.24. There is a different Bode plot for each value of dt, and since the error in
rejecting disturbances is | 1

1+P ′K
| and |P ′K| is large at the frequency of the velocity variation,

2π/Tw = 0.13 Rad/sec, the disturbances are rejected effectively. At smaller dt the controller
responds faster, and the gain is higher at every frequency, resulting in better performance.
Controllers with smaller dt are also more robust, as seen from the gain and phase margins.
This supports what we see in the experiments where the deviations from ϕCτ = 0 are minimal
for all four controller update frequencies. As the ratio of dt/Tw is increased, the ability of
the control system to respond to the changing disturbance decreases. Still, the controller is
effective in all of these cases, and thus is practical for applications that have similar levels
of free-stream velocity variation.

5.6 Summary

We control bypass transition in the Blasius boundary layer using a model-based feedback
controller in experiments. The choice of feedback controllers is motivated by the results in
Chapter 4, in which unmodeled disturbances degrade the performance of purely feedforward
controllers. The stream-wise streaks of spanwise periodic low- and high-velocity charac-
teristic to bypass transition are created with an array of cylindrical roughness elements
upstream. Further downstream we use a spanwise array of plasma actuators, arranged to
generate streaks of opposite spanwise phase, to control the flow and attenuate the distur-
bance. Feedback measurements are taken with a spanwise array of wall-mounted shear-stress
sensors, located downstream of the plasma actuators. A novel control scheme is formulated
to reduce the energy in the particular spanwise wavenumber corresponding to the streaks
which undergo transient growth and lead to transition. Experimental data is used to find
an empirical quasi-steady input-output model of the experiments, where the inputs are the
roughness elements and plasma actuators, and the output is related to measured shear stress
and targeted spanwise frequency. This model is used to design and analyze a proportional-
integral controller prior to implementation in the wind tunnel.

The controller is quite effective; for on-design conditions, the energy of the targeted mode
is reduced by 94% at the stream-wise location of the feedback sensors. The total disturbance
energy of the boundary layer is reduced by 74% to 86%, leaving room for improvement
with more intricate actuator configurations or targeting multiple spatial frequencies. The
controller is also shown to attenuate the disturbance both upstream and downstream of the
measurement plane. To check the robustness of the controller, we operate it in off-design
conditions by varying the free-stream velocity. The controller remains highly effective, even
for slowly-time-varying disturbances, supporting its use in applications that have similarly
slowly time-varying conditions.

The effectiveness of this controller demonstrates that the use of near-wall sensing, feed-
back, and plasma actuators are all well-suited to the control of bypass transition. The next
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logical step is aimed at the development of low-order dynamic models of the pulsed actuator
and disturbance input. This work addresses issues that are relevant to this next step, includ-
ing the implementation of near-wall sensing and a suitable control objective. Another future
direction is to combine feedforward and feedback control to increase the bandwidth of the
controller. In addition, the optimal placement of actuators and sensors remains unknown,
and is best approached with numerical simulations.

The next chapter (Chapter 6) is on progress towards such a 3D numerical study of ac-
tuator and sensor optimization. Such a numerical study requires the inclusion of plasma
actuators in a fluid mechanics simulation, which is made challenging by the much smaller
length and time scales inherent to the plasma actuators relative to the surrounding fluid
dynamics. In Chapter 6, we develop and validate plasma body force models based on ap-
proximations to the underlying physics.
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Chapter 6

Plasma actuator body force models

The previous chapter discusses feedback control using plasma actuators in experiments. The
control is only quasi-steady and is based entirely on steady-state experimental measurements.
The next logical step is to control the transients. Controller design is easier with simula-
tions than with experiments where we have access to the entire velocity field rather than a
limited set of measurements. Simulations also allow for an in-depth analysis of sensor and
actuator arrangements that could result in better performing and more robust controllers.
Varying sensors, actuators, and other parameters in experiments takes significantly more
time and resources than it does in simulations. Thus, it is desirable to simulate the system
for controller design.

This research finds a physical model for plasma actuators that is easily understood, com-
putationally inexpensive, and simple to include in fluid simulations. The model approximates
the force from the plasma actuators on the surrounding fluid. The main contributions of
this chapter are choosing a suitable model for simulations and control studies, adapting it
to our geometry, and validating that model across a range of voltages. The simulations and
experiments, both in the steady-state and transients, are close to agreeing, but would likely
need to be improved to design a controller in a simulation and apply it to an experiment.

In the next section (6.1), we review notable body force models. We choose a model for
this work in Section 6.2, and modify the boundary conditions to suit the plasma actuator
geometry we use. The resulting force is calculated and applied in simulations in Section 6.3
where we fit the tunable parameters against experimental measurements. In Section 6.4, we
investigate the validity of the force models by comparing transient behavior in simulations
in analogous experiments.

6.1 Introduction

Plasma actuators, introduced in the previous chapter (5), consist of two electrodes separated
by a dielectric material as in Figure 6.1. Due to the intense electric field produced by an
alternating voltage source (of order kV and kHz), a local region of ionized air is produced
above the dielectric surface. The electrons and ions in the plasma are accelerated by the
electric field, colliding with neutral particles. The net effect, over a full excitation period, is
an electromechanical coupling to the fluid flow that causes a wall-jet away from the exposed
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Figure 6.1: Typical plasma actuator geometry.

electrode [32, 64, 94, 95]. The surrounding fluid is subsequently forced as well. Heating also
has an effect, however, at the low velocities in this research (free-stream 5 m/s), the primary
effect is the force [22, 29, 31].

In this work we only use alternating, sinusoidally time-varying, voltage. Other time
series, such as nano-second pulses, can produce different results, and this is an active area
of research [71, 85]. Since the voltage varies sinusoidally, there are two half-cycles. In
the forward-discharge half-cycle, the exposed electrode has a negative potential difference,
electrons collect over the covered electrode, and there is some discrepancy in the literature
on whether the force on the surrounding fluid acts primarily towards [31] or away from the
exposed electrode [32, 64]. In the backward-discharge half-cycle, the force is an order of
magnitude larger and directed away from the exposed electrode [31]. Since the time scale
of these half-cycles is much smaller than that of the surrounding fluid, only the average is
relevant for our purposes, and so the uncertainty of the forward-discharge half-cycle will be
safely ignored.

There are several approaches to simulating plasma actuators. The first involves simulat-
ing them from first principles and resolving all of spatial and time scales, keeping track of
individual species, ions, and recombinations. For well-designed simulations, the result is an
accurate description of the forces that can lead to insights about the physics governing the
plasma and the forces (for example, [71, 72, 86]). The drawback is that the spatial scales
are on the order of micrometers and the time scales nano-seconds, which is far smaller and
shorter than those associated with the surrounding fluid’s dynamics. Conducting a plasma
simulation within a fluid simulation would be computationally infeasible, and furthermore,
wasteful, since the small scales do not affect the fluid and that is our primary focus.

Instead, a practical way to include the effect of plasma actuation in fluid simulations is to
model the force, averaged over a full period and average out the smallest spatial variations
that have no influence on the fluids. There are many such models in the literature, each with
advantages and disadvantages. In [89], an effort is made to compare notable models from
several different categories, and it is shown that they all give different results and require
considerable tuning to give results that do not violate experimental observations.

The simplest type of model assumes a spatial force distribution and has a few adjustable
parameters to tune the strength and shape so it better approximates a particular plasma
actuator. A notable model in this category is proposed in [102], which prescribes a linearly-
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varying spatial force distribution with its peak at the corner of the exposed electrode. Its
most desirable feature is simplicity; no computations are necessary. Despite its simplicity,
it is effective for the original authors’ purposes. Among its drawbacks are that it does not
explicitly depend on the geometry of the plasma actuator, for example, the height of the
exposed electrode or length of the covered one. The multiple parameters allow for flexibility
and can be fit as functions of the geometry and applied voltage, but there are many of them,
making such a procedure potentially ambiguous, time-consuming, and highly dependent
on the particular plasma actuator, therefore requiring many independent fits. A second is
proposed in [105], and consists of an analytical approximation of the governing equations.
The electric field varies inversely proportionally with distance from the corner of the exposed
electrode. We find that adapting this model to the conditions we are interested in results in
a spatial distribution of force that has too small an area.

Another type of model is based on approximations to the governing Maxwell’s equations.
After manipulating the equations, generally there are boundary value problems to solve for
the electric potential (which is directly related to the electric field), and the charge density.
More approximations must be made to determine the boundary conditions, and it is here
that tunable parameters appear. The first such model is proposed in [108]. The boundary
conditions for the electric potential are straightforward, with the exposed electrode having
the value of the applied voltage. The charge density is prescribed to vary as a half-Gaussian
distribution, decaying from a maximum at the corner of the exposed electrode. This gives
rise to two tunable parameters: the maximum charge density and the rate at which the
Gaussian decays (i.e., the Gaussian spatial distribution’s width). We use this model later
because it gives force fields that appear roughly physical with only two parameters that have
clear physical meanings. A minor drawback, though, is that it predicts equal force in both
half-cycles, something we know to contradict experiments but we also know the half-cycles
are insignificant with respect to the surrounding fluid. A modification to this model is given
in [56] that slightly changes the boundary conditions on the charge density. The charge
density is assumed to vary sinusodially with the voltage, with a maximum value throughout
the entire covered electrode. This works well for the geometry in the original work, but as
we show later, does not adapt well to our slightly different actuator geometry.

Another, more complicated, model of this type involves many virtual sub-circuits running
from the dielectric surface to above the exposed electrode [79, 87]. Solving a series of ODEs,
one for each sub-circuit, gives boundary conditions for the electric potential on the dielectric
surface. Then a similar boundary value problem to that solved in [108] is solved. The charge
density is taken to be proportional to this electric potential, and the force is calculated
from these two quantities. One of the advantages of this model is the original authors show
that it accurately reproduces the maximum force generated is proportional to V

7/2
pp . The

disadvantages are that there are multiple parameters related to the sub-circuits that are
difficult to define and, one could argue, are further removed from the physics than in other
models.

A final model of this type, given in [68], combines the previous two. The sub-circuits are
used to find boundary conditions on the charge density as well as the electric potential. This
replaces approximating the charge density as a Gaussian or as being constant in the covered
electrode, as in [108] and [56], and replaces the approximation that the electric potential and
charge density are proportional as in [79, 87]. The advantage is the charge density is found
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explicitly, but the same drawbacks of the model in [79, 87] are present.

6.2 Model and adaptations to our geometry

The simplifications of the spatial distribution of the electric potential, charge density, and
force fields in the models in [102, 105] result in approximations that are too inaccurate for
our use. The multiple parameters in the models of [79, 87] makes them more difficult to use
without expert knowledge to guide the tuning of each parameter. Therefore, we decide to use
a model of the type in the works [56, 107, 108], which provide accurate approximations with
only a few simple physical parameters. Both models begin with the same approximations of
the governing equations, and we reproduce that here.

First, the body force is given by
f = ρcE. (6.1)

Faraday’s law of induction gives us

∇× E = −µ0
∂H

∂t
≈ 0, (6.2)

where the magnetic field H has a very small derivative in time for this plasma application
(and µ0 is the permeability of free space). Since the curl of the gradient is zero, we know
that there must exist an electric potential Φ such that

E = −∇Φ. (6.3)

Gauss’s law gives
∇ · (εE) = ρc (6.4)

where ε = ε0εr is the permittivity, ε0 the permittivity of free space, and εr the relative
permittivity of the material. Substituting for E from Equation (6.3) gives

∇ · (ε∇Φ) = −ρc. (6.5)

An approximation for the charge density in terms of the electric potential (given in [28])
is

ρc/ε0 = (−1/λ2
d)Φ (6.6)

where λd is the Debye length, which is the characteristic length over which a charge carrier’s
effect is significant. As in original works [56, 107], we approximate the Debye length as
a constant λd = 0.17 mm, despite the fact that it varies both spatially and temporally.
A physical justification for this approximation is lacking in the previous works, but the
resulting model accurately reproduces the actuators’ effect on the surrounding fluid, and
thus the results lend support that the approximation has at least some validity for the
purpose of an approximate force model. The differential equation for Φ (6.5) is linear, and
so we can use superposition to split the solution into two components

Φ = φ+ ψ. (6.7)
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This is useful because, as we will show, it allows us to split Equation (6.5) into two indepen-
dent equations for charge density and electric potential. To arrive at these two equations, we
first make an approximation. Assuming the Debye length is small and the charge density on
the surface of the electrodes is small relative to the charge density in the interior, as is the
case here, then we can approximate that the electric field is primarily due to the potential
difference between the electrodes:

E ≈ −∇φ. (6.8)

Another result of this approximation is that the charge density in Equation (6.5) (Gauss’s
Law) is approximately zero, yielding

∇ · (ε∇φ) = 0. (6.9)

Subtracting Equation (6.9) from (6.5) yields

∇ · (ε∇ψ) = −ρc. (6.10)

Next, we manipulate (6.6) and (6.7) into

ψ = −(ρcλ
2
d/ε0 + φ) (6.11)

and substitute into (6.10) to give

∇ · (εr∇(−ρcλ2
d/ε0 − φ)) = −ρc/ε0 (6.12)

which simplifies to
∇ · (εr∇ρc) = ρc/λ

2
d. (6.13)

After solving Equations (6.9) and (6.13), the force is given by

f = −ρc∇φ. (6.14)

Now we consider the boundary conditions. In the original works, the plasma actuator
geometry is similar to that in Figure 6.1, but we use a different geometry shown in Figure 6.2.
In [56], the boundary condition for charge density is ρc = ρmax

c h(t), where h(t) = sin(2πft)
and f is the frequency, on the covered electrode. When applied to our geometry, the resulting
charge density spatial distribution is not physical. It has no variation in the horizontal (z)
direction, but the charge density should be largest where the electric field is largest—near the
corners of the exposed electrode. Instead, we use the model in [108], in which the boundary
condition for the charge density is a half-Gaussian along the surface of the dielectric, defined

by G(z, σ) = exp
(
−
(
z−z0

2σ

)2
)

. Adapting these boundary conditions to our geometry gives

more physical results for the potential and charge density. Figure 6.2 shows the boundary
conditions, and it is clear that the charge density is largest near the corners of the exposed
electrode, as expected.

We solve the governing equations ((6.13) and (6.9)) subject to the boundary conditions in
Figure 6.2. Numerically, we approximate the derivatives with second-order finite-differences
on a uniform Cartesian grid in both the z and y dimensions. The solution is found iteratively
using the Successive Over Relaxation (SOR) method, a standard variant of Jacobi iteration
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Figure 6.2: Boundary conditions for the model that we adapt for our geometry. Function
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Figure 6.3: Potential (left) and charge density (right) solutions, normalized by Vpp/2 and
ρmax
c respectively.

with faster convergence. The accuracy is sufficient given the level of approximations already
included in the model.

The resulting electric potential φ and charge density ρc solutions are shown in Figure 6.3.
The charge density has its peaks around the corners of the exposed electrodes, as expected,
and appears to have reasonable decay away from these peaks. The strongest electric field is
also at the corners of the exposed electrode where the electrons and ions are concentrated in
experiments [31]. Lastly, the forces, calculated from Equation (4.2) are shown in Figure 6.4.

The spatial distribution of the force is fixed and its magnitude is determined by the two
tunable parameters—the maximum charge density ρmax

c and width σ.

6.3 Fit parameters

In this section, we find the tunable parameters for the model by comparing simulations to
previous experiments. In particular, we apply an AC voltage and compare measurements at
a single y-z plane at a downstream location after the flow has reached equilibrium. We do
not consider transients when tuning the parameters, but instead compare the transients of
the models and experiments as a form of validation.

85



Figure 6.4: Force components, in units of Newtons
ρmax
c Vpp/2

.

TS waves experiencing modal growth. In the context of this

work, however, the aim of the actuator is to superimpose an
out-of-phase disturbance on an existing disturbance expe-

riencing non-modal growth. In the laboratory, linear non-

modal disturbance growth can be adequately simulated
using a spanwise array of roughness elements (White 2002;

Fransson et al. 2004; Lavoie et al. 2008). The steady dis-

turbance caused by the roughness array is characterized by
an amplitude and wavenumber determined by the rough-

ness element geometry (height, diameter, etc) and spacing.
Thus, the effectiveness of the plasma actuator can be sys-

tematically studied before integration with a feedback

control system.
Plasma actuators typically consist of two electrodes

separated by a dielectric material. Owing to an intense

electric field, determined by the geometry of the electrodes
and potential difference (on the order of kV) across them,

local ionization of the surrounding air occurs. The resulting

migration of electrons and ions for each voltage cycle
causes a net body force on the neutrally charged sur-

rounding air. The induced force energizes the near-wall

fluid and creates a wall-jet. Corke et al. (2007) and Moreau
(2007) provide in-depth reviews of the operation, physics,

and application of these actuators. The ability of plasma

actuators to delay TS-induced transition of a laminar
boundary layer, under an adverse pressure gradient, using a

pair of asymmetrical plasma actuators was recently dem-

onstrated (Grundmann and Tropea 2007, 2008). In the
present experiment, owing to the difference in the type of

instability targeted, an array of actuators is aligned such

that they cause equal but opposite forces in the spanwise
direction and a spanwise periodic modulation of the

boundary layer resembling the disturbance caused by the

roughness array. While such arrays have a demonstrated
ability to cause streamwise vorticity for the purpose of

inducing transition (Roth et al. 2000), the aim here is to

apply a lower amplitude disturbance suitable for the pur-
pose of attenuating steamwise streaks.

The experimental setup including details of the bound-

ary layer plate, instrumentation, measurement techniques,
associated errors, and actuator design are discussed in Sect.

2. In Sect. 3, results are presented, involving three varia-

tions in geometry of an actuator array, varying only in the
width of the upper exposed electrode, both with and

without the roughness array. Conclusions follow in Sect. 4.

2 Experimental details

Measurements were made in a suction-type, open loop-

return wind tunnel with a 10.8:1 contraction ratio at

Michigan State University. The working section is 0.35 m
9 0.35 m and 2.77 m long and followed by a diffuser with

acoustic treatment. The turbulence intensity of the test

section is approximately 0.05% at U? = 5 m/s, the free-
stream velocity used in the present experiments. The test

section walls diverge by an angle of 0.13! with respect to

the centerline to minimize the pressure gradient along the
working section. A baseline laminar boundary layer was

established on the 0.635-m long and 12.7-mm thick acrylic

plate spanning the width of the test section. The plate was
mounted between 1/3 and 1/4 of the test section height to

minimize the potential effects from contraction-induced
secondary flows (Tropea et al. 2007, chap. 12). The 6.35-

cm long sharp leading edge was machined from aluminum

to a 15! edge such that the measurement side of the plate
was flat over the entire length. A 0.152-m long adjustable

flap was used to ensure the stagnation point was located on

the measurement side of the plate. A schematic of the
boundary layer plate is shown in Fig. 1. Small adjustments

to the angle of attack, using both the plate mounts and the

adjustable flap, were done iteratively until a zero-pressure
gradient was established.

Measurements of the flow velocity were made using a

single hot-wire probe, which was manufactured at Michi-
gan State University. The probe had 20-mm long prongs

spanned by a 4-mm long, 3.75-lm diameter tungsten wire

with a central 1 mm active region shouldered on either side
by copper-plated sections. Hot-wire data were taken using

a TSI 1750 anemometer operated at an overheat ratio of

1.5. The hot-wire was calibrated using a 12-point velocity
calibration ranging between 1.5 and 6.5 m/s. The free-

stream velocity was obtained from a Pitot-static tube con-

nected to a Setra Model 239, 0–0.5’’ water-column pressure
transducer. King’s law was fitted to the calibration points.

Each velocity measurement consisted of the average of

15 s of data sampled at 5 kHz with an A–D data acquisi-
tion card connected to a PC computer. Temperature cor-

rections based on the method proposed by Abdel-Rahman

et al. (1987) were applied to the hot-wire data using
measurements from a T-type thermocouple located in the

free-stream to account for the ambient temperature varia-

tion, typically within ±1!C. Calibration of the hot-wire
was performed immediately before and after each experi-

ment. The uncertainty of the velocity measurements was

Fig. 1 Schematic of the boundary layer model

Exp Fluids

123

Figure 6.5: Geometry of plasma actuators and boundary layer.

The experiments are conducted by Ronald Hanson at the University of Toronto. The
geometry is similar to that in Chapter 5, except the upstream roughness elements are not
used—they are retracted and flush to the wall. The conditions of the computational study
are based on the experimental setup used by [42] as shown in Figure 6.5. Summarizing,
the plasma actuator array is located 250 mm from the geometric leading edge, but the
virtual leading edge is a further 21 mm downstream (due to a pressure gradient), so, when
comparing to simulations, the plasma actuator array is 229 mm downstream from the virtual
leading edge. (See [110] chapter 12 for information on the use of a virtual leading edge.)
The actuators extend 40 mm in the stream-wise x direction and are spaced ∆z = 20 mm
apart from each other. At these conditions, Reδ∗ = Uδ∗/ν = 530, where δ∗ = 1.59 mm is
the displacement thickness at the plasma actuators, U = 5 m/s is the free-stream velocity,
and ν = 1.5 · 10−5 m2/s is the kinematic viscosity of air. Measurements of the stream-wise
velocity are taken of entire y-z planes at several stream-wise locations with hot wires. The
measurements are phase-averaged to reduce high-frequency variations.

The flow is simulated using the software described in Chapter 2. The computational
domain in this case is chosen to start 200 mm from the (virtual) leading edge and extends
670 mm, about 190 mm beyond the last measurement plane at x = 679 mm. This ensures
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that the fringe region is sufficiently far downstream to not interfere with the region of interest.
One of the purposes of this force model is for future use in real-time control of bypass

transition. The controller would vary the input voltage, and so it is important to find a
relationship between the input voltage and the two parameters ρmax

c and σ. We do not vary
the voltage frequency here, since it is harder to do with commonly used lab equipment, and
keep it fixed at f = 1.5 kHz. As previously mentioned, these two parameters are dependent
on the particular characteristics of the actuators in use. They are not specified by the
model, and therefore they are found empirically. We fit these two parameters by comparing
the steady-state stream-wise velocity produced by the plasma actuator array in experiments
at a y-z plane located at x = 479 mm from the virtual leading edge to analogous simulation
data. The parameters are iteratively adjusted based on the maximum velocity amplitude
and streak width until the simulations closely match the experiments. An example of the
comparison of experiments and simulations is shown in Figure 6.6. The relationship between
Vpp and ρmax

c is shown in Figure 6.7. We find that the same value of σ = 2.0 mm is appropriate
for the entire range of voltages, significantly simplifying the tuning process. This may or
may not be a good approximation for a wider range of voltages. It is worth noting that it
may be possible and preferable to more directly measure these parameters in experiments
with sensors specifically dedicated to this purpose.

The linear relationship between Vpp and ρmax
c is not the same as in previous works. In

[28], they find V
7/2
pp to be proportional to the maximum induced velocity Uinduced. The

quantity Uinduced is proportional to the maximum force, and the maximum force predicted
by the model we use is proportional to Vppρ

max
c . Therefore, the linear relationship we find

in Figure 6.7 predicts a quadratic relationship between Vpp and Uinduced, rather than the 7/2
relationship in [28]. However, our experiments are at lower voltages than those in [28], and
it is possible that at higher voltages the plasma actuators we use would also adhere to the
7/2 relationship. For that to happen, the relationship in Figure 6.7 would have to change to

be V
5/2
pp ∝ ρmax

c .
Figure 6.6 shows that, qualitatively, the spatial difference between the simulations and

experiments in Figure 6.6 is relatively small. The structure of the streaks is a close match
with the streaks of nearly the same magnitude and spatial distribution. More quantitatively,
however, Figures 6.6c and 6.6f show that there is error and it is primarily due to the span-
wise misalignment of the streaks. One possible cause of this error is inaccuracies in the
model. Another is inexact knowledge of where the experimental measurements are taken
in the spanwise direction. This error would likely result in destabilizing feedback control
if a controller developed exclusively from simulation results was applied to an experiment
because the two systems react significantly differently to actuation.

A simple way to eliminate this spanwise error would be to move the plasma actuators
in the spanwise direction in the simulations until the error is minimized. We do not do
this because such an approximation ceases to be an analysis of the simulation of the model
and the experiments, instead becoming a matter of curve-fitting. While useful for achieving
results, our intention is to illustrate the accuracy of the model, and so we leave it to future
practitioners to do such curve-fitting if no first-principle improvements to the model can be
found.
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Figure 6.6: The steady-state effect of plasma actuators on a downstream plane, x = 479
mm, for two representative voltage levels. The top row corresponds to Vpp = 4.52 kV with
a) simulation (ρmax

c = 5.0 · 10−4 C/m3), b) experiment, and c) error, the difference between
the simulation and experiment. Analogously, the bottom row corresponds to Vpp = 5.52 kV
with d) simulation (ρmax

c = 9.3 · 10−4 C/m3), e) experiment, and f) error.
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Figure 6.7: Linear fit of ρmax
c as a function of Vpp. Each data point represents an iterative

tuning of ρmax
c that makes the simulation closely match the experiment, as in Figure 6.6.

The fit is given by ρmax
c [C/m3] = 3.89 · 10−4Vpp[kV ]− 1.24 · 10−3.
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6.4 Validation with transients

To validate the model, we compare the transient response to plasma actuation at a stream-
wise location x = 487 mm. These comparisons are purposefully not used in finding the
model and fits so that they can be used as a form of validation. The actuator array is given
a sinusoidal voltage at a fixed frequency of 1.5 kHz and magnitude of 5.0 kV for 0.1 seconds,
then no voltage. The results are shown in Figure 6.8, which has y-z planes of stream-wise
velocity sampled in time.

The results are very similar to the steady case shown previously in Figure 6.6, and this is
the best possible result. The dynamic behavior is accurately reproduced in the simulations,
and only the spanwise misalignment error is significant. The high-speed fluid higher in the
boundary layer causes the plasma actuation to be first measured higher in the boundary
layer, and this effect is present in the simulations just as in the experiments. The first two
rows of Figure 6.8 demonstrate this. The simulation and model are also accurate both when
the plasma actuator is turned on and when it is turned off, which is important because
the plasma actuators can have residual effects for a short period of time after the voltage
is turned off. There is a small amount of error, as seen in the last row of Figure 6.8 near
z/∆z = 0.2, but we do not expect it to be significant in future control design. Lastly, we
anticipate that eliminating the spanwise error in the steady velocity field, as we discuss in
Section 6.3, would also eliminate the spanwise error in the transients seen in Figure 6.8.

6.5 Summary

In this chapter, we begin by reviewing the different methods by which plasma actuators can
be included in fluid simulations. The most appropriate choice for our purposes of controlling
an incompressible boundary layer is a body force model. There are several of these models
in the literature, which we discuss, and settle on the model in [108] because its results give
a reasonable spatial force distribution. Further, it has only two parameters that need to be
tuned, and these parameters have clear physical meanings. Thus, this model’s simplicity,
accuracy, and physical meaning make it an appealing choice.

The plasma actuators in the original paper do not have the same geometrical arrangement
as the array of actuators we use, and therefore we modify the boundary conditions for our
geometry. Additionally, the model’s two parameters, the magnitude ρmax and the shape
of the Gaussian distribution σ of the charge density, are tuned for our particular plasma
actuator. We do this by simulating the downstream effect of the plasma actuators given
a sinusoidal voltage with constant magnitude. We compare the steady-state velocity with
analogous measurements from experiments. Iteratively, the two parameters are varied until
the simulations closely approximate the experiments.

The two parameters can, in general, vary with the voltage magnitude, and we find these
relationships. The shape of the charge density boundary condition, σ, does not vary sig-
nificantly with voltage, and so we approximate it as a constant. The other parameter,
ρmax
c , varies linearly with voltage. This relationship is different than the commonly used
Uinduced ∝ V 7/2 [28], however, that relationship is found empirically at higher voltages than
we use. Therefore, it is possible that our results are consistent.
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As a form of validation, we compare the transient, dynamic, behavior of the simulations of
plasma actuators to experiments. The transients are important for real-time control since an
effective and fast-acting controller would operate almost entirely on the transient behavior.
We see that the error present in the transient velocities, a small mismatch in the spanwise
direction, is also present in the steady-state velocities. This is the only significant error in
the transients, further supporting the use of this model in control studies.

In the future, this model can be used as part of developing controllers from simulations,
where it is simpler and cheaper to vary parameters such as the actuator and sensor positions
and type of sensors. The simulations also provide more information for analyzing perfor-
mance and robustness. Then, the well-designed controllers can be applied to experiments.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis advances the modeling and control of transitional boundary layers using both
simulations and experiments. We make four main contributions: a model reduction library,
an analysis of the role of actuators and sensors in delaying classical transition, canceling
the growth of streaks in a wind tunnel, and simulating plasma actuators’ action on the
surrounding fluid as a body force.

The first main contribution is the model reduction Python library modred that imple-
ments several important modal decompositions and system identification algorithms, includ-
ing POD, BPOD, DMD, Galerkin projection for LTI systems, OKID, and ERA. Previously,
practitioners wrote their own implementations that were tightly coupled to their dataset
and were often not rigorously tested. Our library is designed to work with a wide range of
datasets and is unit tested to improve reliability.

The library has different interfaces and implementations that are most appropriate for
different sized data. For smaller data there is a simple Matlab-like interface—generally a
single function call is all that is required. For datasets that are too large be loaded into
memory simultaneously, there is an object-oriented interface that allows users to provide
functions that interact with their specific data. For this case, modred is parallelized for
distributed memory architectures with MPI. Other features include online documentation,
easy-to-use interfaces, and extendability to new algorithms.

The second contribution is an analysis of the role of actuators and sensors and their
positions in the control of TS waves in the 2D Blasius boundary layer. We show that sensors
upstream of the actuators constitute a feedforward configuration, and having the sensors
downstream of the actuators is a feedback configuration. Previous work uses feedforward
configurations, but we seek feedback configurations since they have the potential to better
reject unknown disturbances. A few combinations of different types of actuators, sensors, and
control design techniques are tried for feedback configurations. One sensor poorly measures
the TS waves after they are deformed by the actuation, and so is ill-suited for this control
problem. Other combinations are found to have right-half-plane zeros that fundamentally
limit a controller’s robustness and performance. By choosing an actuator that directly and
immediately affects the disturbance TS waves and a sensor which measures the TS waves, we
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find a controller with good performance and robustness. The previous feedforward controller
is ineffective in the presence of an unmodeled disturbance, but the new feedback controller
with different actuators and sensors is quite effective, reducing the control objective by 75%.

The third contribution is quasi-steady control of bypass transition in a wind tunnel.
Incoming flow is disturbed by roughness elements emanating from the wall, creating stream-
wise streaks of high and low stream-wise velocity that are inherent to bypass transition.
Further downstream plasma actuators create stream-wise streaks of opposite phase, thus
attenuating their growth. Wall-mounted shear stress sensors measure the effectiveness of the
plasma actuators and their signals are fed to a controller to determine the level of actuation.
The controller updates slower than the convective time scales, and so the control is quasi-
steady. To design the controller, we first empirically model the relationship from the inputs
(the roughness elements and plasma actuators) to the outputs (shear stress measurements)
using experimental data. Careful consideration is paid to the choice of output to facilitate the
control design and to target the specific span-wise wavenumber of the stream-wise streaks.
The nonlinearity in the original input-output model is inverted, resulting in a linear input-
output model that is easier to use in control design. We design a simple PI controller
that performs well, both in on-design flow conditions and off-design flow conditions such as
sinusoidally varying free-stream velocity.

The last main contribution is in modeling plasma actuators for fluid simulations. The
motivation is that it is beneficial to try different types of sensors and positions and to
analyze the effectiveness of corresponding controllers, and this iterative process is easier
in simulations. However, plasma actuators operate at smaller length and time scales than
the surrounding fluid, making direct simulation computationally prohibitive and wasteful.
Instead, we use a physics-based model that averages over the time and space, yielding forces
on scales that are appropriate for the fluid dynamics. The body force model we use has
two parameters that depend on the particular plasma actuator setup (geometry, materials,
etc.), and the driving voltage. We empirically fit these parameters as a function of voltage
magnitude using the steady results measured in the wind tunnel. Then we validate that the
transients in the simulations with those in the experiments. The transients match reasonably
well, and so this model could be a good choice for future numerical flow control studies.

7.2 Future work

• Eliminate dataset size limitations in modred. The model reduction library can
only be used when individual data elements (vectors) are small enough that at least
three can fit in a single node’s memory simultaneously. Eliminating this limitation
would allow modred to operate on the very high-dimensional datasets that stand to
benefit the most from model reduction. Such an improvement is possible by general-
izing the so-called MPI workers in modred to not be individual processors, but MPI
communicators (groups of processors). User-supplied functions would be called by
one MPI communicator and have access to all of its processors. Thus, users would
write functions that utilize all of the communicators processors. Careful analysis of
the scaling of speedup versus processors is necessary before such changes are made.
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• Actuator and sensor choice for high-dimensional dynamical systems. To
find an actuator-sensor pair that effectively and robustly delayed the growth of TS
waves in Chapter 4, we utilize knowledge of the physics and control theory. Even
with this knowledge, it takes some experimenting with different types of actuators and
sensors before we find a good combination. Progress on simplifying and generalizing
the process of choosing actuators, sensors, and their positions for large systems would
be useful in many applications.

• Perform time-resolved control on bypass transition in experiments. Extend-
ing the quasi-steady plasma-actuator control from Chapter 5 to controlling transients
would result in high performance in the presence of time-varying disturbances. To
capture the transient input-output behavior, a different approach to finding empirical
input-output models is needed. One approach is to use OKID and ERA, and both are
available in modred.

• Develop controllers for bypass transition with simulations. Simulations of
the experimental setup would allow for a relatively cheap simulation to guide control
strategies to implement in experiments. Unfortunately, simulating the roughness ele-
ments as they rise and fall is difficult (varying boundary conditions) and could require
a numerical approach that is more flexible than the pseudo-spectral approach of SIM-
SON. We consider an alternative pressure-correction approach on a collocated grid
with compact finite difference spatial derivatives in the stream-wise and wall-normal
directions. Some progress towards this is made but the work is incomplete and not
included.
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Appendix A

DMD algorithm derivation

The work in this appendix is a joint effort with Jonathan Tu. There are a number of
algorithms for computing DMD modes, each an improvement on its predecessor. While the
companion-matrix formulation provides a clear analogy to Koopman spectral analysis [97],
the SVD-based algorithm given in [100] is more computationally stable. A low-memory
variant of the latter algorithm requires as few as two vectors in memory at any given time,
making it suitable for large data [111]. It also eliminates a large number of unnecessary inner
products by reusing elements of the correlation matrix in later computations (about a 50%
reduction). Here, we improve on the low-memory algorithm by identifying and eliminating
additional redundancies, avoiding costly inner products and linear combinations of snapshots.
Specifically, whenever possible we replace operations involving snapshots with equivalent
operations using small matrices. For large data, this is much more efficient, as the small
matrices can be stored in memory and manipulated easily, whereas the snapshots require
careful memory management.

The original low-memory DMD algorithm is summarized below.

1. Collect and store snapshots xi, for i = 1 . . . ,mx.

2. Compute each entry of the correlation matrix via [H]i,j = 〈xi,xj〉, using all but the
last snapshot (i and j have range 1, . . . ,mx − 1).

3. Compute the eigenvalues and eigenvectors of H, writing HU = UΣ, where Σ is diag-
onal and real, and U is orthogonal (or unitary) since H is symmetric (or Hermitian).
Sort the eigenvalues (and corresponding eigenvectors) in descending order.

4. Construct the POD modes individually via ψj =
∑mx

i=1 xi [UΣ−1/2]i,j.

5. Define the sub-matrix H′ = [H]1:mx−1,2:mx−1 (i.e., H with the first column removed),
making use of the previously computed correlation matrix.

6. Compute each entry of H′′ via [H′′]i = 〈xi,xmx〉.

7. Compute M = Σ−1/2U∗
[
H′ H′′

]
UΣ−1/2 and solve the eigenvalue problem MV =

ΛV.

8. Construct intermediate (unscaled) modes individually via ϕ̃j =
∑mx

i=1ψi[V]i,j.
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9. Compute the elements of d′ via [d′]i = 〈ϕ̃i,x1〉.

10. Compute the vector d = (V∗V)−1d′.

11. Scale the DMD modes: ϕi = [d]iϕ̃i.

(Note that we have changed from the notation used in [111] to better match that used in
this work.)

In the above algorithm, there are five steps (2, 4, 8, 9, 11) that require manipulations
of snapshots (or equivalently large data). Many of these computations can be combined or
avoided completely. To see this, we first note that the “intermediate” modes in step 9 can
be written in terms of the original vectors as

ϕ̃j =
mx∑
i=1

ψi[V]i,j

=
mx∑
i=1

mx∑
k=1

xk [UΣ−1/2]k,i[V]i,j

=
mx∑
k=1

xk

mx∑
i=1

[UΣ−1/2]k,i[V]i,j

=
mx∑
k=1

xk[UΣ−1/2V]k,j. (A.1)

We achieve a savings by moving xk outside of one of the sums; to compute this linear
combination, the snapshots only have to be loaded and summed once. Previously, the
algorithm required two independent linear combinations (steps 4 and 8).

We achieve further savings by eliminating unnecessary inner products from the compu-
tation of d′. Substituting for ϕ̃i, we find

[d′]i = 〈ϕ̃i,x1〉

=

〈
mx∑
j=1

xj[UΣ−1/2V]j,i, x1

〉

=
mx∑
j=1

[UΣ−1/2V]j,i〈xj,x1〉.

The inner products 〈xj,x1〉 are simply elements of H, which has already been computed in
step 2. This eliminates the m inner products required in step 9. As such, we can write

d′ = V∗Σ−1/2U∗[H]1:mx−1,1, (A.2)

which is a product of small matrices. We can then compute d as

d = (V∗V)−1d′

= (V∗V)−1V∗Σ−1/2U∗[H]1:mx−1,1, (A.3)
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again using only previously computed matrices.
Finally, combining the above results, we can write

ϕj =
mx∑
i=1

xi [Tx]i,j, (A.4)

where
Tx = UΣ−1/2VD, (A.5)

and D = diag(d), a diagonal matrix with main diagonal d. Thus we can compute the scaled
DMD modes using a single linear combination operation; the original low-memory algorithm
required computing intermediate modes, computing a scaling, and then scaling the modes.
In summary, this improved formulation reduces the total number of linear combinations by
half and the total number of inner products by m. (We note that because the algorithm
requires O(m2) total inner products, the latter is a relatively minor savings.)
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Appendix B

Efficient calculation of many ERA
models

We make two slight modifications to the procedure from Section 4.3.2 for increased accuracy
and computational efficiency. The first accounts for the different amplitudes of the output
signals. The magnitude of output y is much smaller than that of z, and so ERA tends to
weight the observability space in favor of z, resulting in the truncation of states that improve
the accuracy of y, but y is vital for the controller. To remedy this, we normalize all of
the outputs before applying ERA, then adjust the resulting model. Specifically, we collect
the Markov parameters, then divide all yi by their maximum, ymax and all zi by the single
maximum of all ten signals, zmax. We then perform the rest of the ERA procedure, which
provides the reduced-order model matrices specified in Equation 3.29. Then Cy,r 7→ Cy,r ·ymax

and Cz,r 7→ Cz,r · zmax.
The second modification increases the computational efficiency of calculating of many

ERA reduced-order models. Each model depends on B and C, so each sensor location
requires a new model. However, in this work the inputs are mostly kept fixed and the
position of the outputs is varied, i.e. we primarily change Cy. Instead of simulating an
impulse response and collecting the series of Markov parameters CAiB for each choice of
Cy, we collect the full snapshots AiB. Then, for each choice of Cy, we compute CAiB as
post-processing. This means we do only two impulse responses for each B (one per input)
rather than two impulses per sensor location. The same series of snapshots, AiB, is also
used when finding the POD modes.
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