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Abstract

This work develops low-order models for the unsteady aerodynamic forces on a wing
in response to agile maneuvers at low Reynolds number. Model performance is as-
sessed on the basis of accuracy across a range of parameters and frequencies as well
as of computational efficiency and compatibility with existing control techniques and
flight dynamic models. The result is a flexible modeling procedure that yields accu-
rate, low-dimensional, state-space models. The modeling procedures are developed
and tested on direct numerical simulations of a two-dimensional flat plate airfoil in
motion at low Reynolds number, Re = 100, and in a wind tunnel experiment at the
Illinois Institute of Technology involving a NACA 0006 airfoil pitching and plunging
at Reynolds number Re = 65, 000. In both instances, low-order models are obtained
that accurately capture the unsteady aerodynamic forces at all frequencies. These
cases demonstrate the utility of the modeling procedure developed in this thesis for
obtaining accurate models for different geometries and Reynolds numbers.

Linear reduced-order models are constructed from either the indicial response
(step response) or realistic input/output maneuvers using a flexible modeling pro-
cedure. The method is based on identifying stability derivatives and modeling the
remaining dynamics with the eigensystem realization algorithm. A hierarchy of
models is developed, based on linearizing the flow at various operating conditions.
These models are shown to be accurate and efficient for plunging, pitching about
various points, and combined pitch and plunge maneuvers, at various angle of attack
and Reynolds number. Models are compared against the classical unsteady aerody-
namic models of Wagner and Theodorsen over a large range of Strouhal number and
reduced frequency for a baseline comparison. Additionally, state-space representa-
tions are developed for Wagner’s and Theodorsen’s models, making them compatible
with modern control-system analysis.

A number of computational tools are developed throughout this work. Highly un-
steady maneuvers are visualized using finite-time Lyapunov exponent fields, which
highlight separated flows and wake structures. A new fast method of computing
these fields is presented. In addition, we generalize the immersed boundary projec-
tion method computations to use a moving base flow, which allows for the simulation
of complex geometries undergoing large motions with up to an order of magnitude
speed-up.

The methods developed in this thesis provide a systematic approach to identify
unsteady aerodynamic models from analytical, numerical, or experimental data.
The resulting models are shown to be reduced-order models of the linearized Navier-
Stokes equations that are expressed in state-space form, and they are, therefore,
both efficient and accurate. The specific form of the model, which separates added-
mass forces, quasi-steady lift, and transient forces, guarantees that the resulting
models are accurate over the entire range of frequencies. Finally, the models are
low-dimensional linear systems of ordinary differential equations, so that they are
compatible with existing flight dynamic models as well as a wealth of modern control
techniques.
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Chapter 1

Introduction

1.1 Motivation for improved aerodynamic models

The unsteady aerodynamic forces and moments associated with time-varying fluid
flows are ubiquitous in modern engineering. The design of cars, boats, and planes all
involve careful optimization to streamline the body, improving efficiency by minimiz-
ing the amount of flow separation and drag. Modern sky-scrapers and bridges are
also susceptible to unsteady aerodynamic forcing from gusting wind, and they must
be designed to avoid aeroelastic resonance. Perhaps the most striking illustration
of the potential of unsteady aerodynamics for engineering design comes from bio-
logical propulsion. It is observed that birds, bats, insects and fish routinely harness
unsteady fluid dynamics to improve their propulsive efficiency, maximize thrust and
lift, and increase maneuverability. As unmanned aerial vehicles (UAVs) become
smaller and lighter, unsteady aerodynamic forces become increasingly important
during agile maneuvers and gust disturbances. The most important parameter for
quantifying this trend is the dimensionless Reynolds number, Re = cU∞/ν, where
c is the chord length of the wing, U∞ is the free-stream velocity, and ν is the kine-
matic viscosity. An example of the unsteady separated flow behind a flat plate at low
Reynolds number (Re = 100) is shown in Figure 1.1. This system is characterized
by strong leading and trailing edge separation and a complex wake.

θ

Flow

WakeSeparated flow

Plunging motion

Figure 1.1: Unsteady flow field for airfoil in downward stroke of sinusoidal plunge
at fixed inclination θ = 20◦ and Reynolds number Re = 100. (finite-time Lyapunov
exponent flow visualization is discussed in Chapter 4)
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Figure 1.2: Schematic showing unsteady aerodynamic model in the context of flight
dynamics and flight control.

The need for accurate, efficient aerodynamic models has been a key motivation
in research efforts over the past century. Aerodynamic models are necessary tools
in the design of aircraft as well as the evaluation of aeroelastic and flight dynamic
stability. Many studies indicate that the enhanced performance in bio-locomotion [5,
123] is due to utilization of unsteady aerodynamic mechanisms. These biological
observations coupled with advances in small-scale manufacturing techniques and
feedback control design have opened up new and interesting problems in unsteady
aerodynamic research.

This thesis develops low-dimensional models for the unsteady aerodynamic forces
on a small-scale wing in agile motion. It is critical that the reduced-order models
obtained are both accurate and efficient. Moreover, models must be expressed in
state-space form for compatibility with the standard framework for feedback control
design. Figure 1.2 is a schematic illustrating how an unsteady aerodynamic model
coupled with a flight dynamic model fits into the modern control framework.

Accurate state-space aerodynamic models are particularly important when the
flight dynamic and aerodynamic time scales are comparable. In this case, modern
control techniques such as H∞ synthesis are necessary for robust performance. Be-
cause small, lightweight aircraft have shorter flight dynamic time-scales, we seek
models for small vehicles and bio-flyers at low Reynolds number, between 102−105.

1.2 Previous work on unsteady aerodynamics

Historically, the development of aerodynamic theory has been closely related to ad-
vances in technology. Currently, the rapid miniaturization of unmanned aircraft is
driving research into unsteady aerodynamics. At the same time, improved compu-
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tational resources have made it possible to analyze complex fluid dynamical systems
using direct numerical simulations and model reduction. Finally, advances in state-
space control theory techniques are making it possible to extend the unsteady flight
envelop using coupled unsteady aerodynamic and flight dynamic models.

1.2.1 Aerodynamic models for flight control

Most aerodynamic models used for flight control rely on the quasi-steady assump-
tion that forces and moments depend in a static manner on such parameters as
relative velocity and angle of attack. While these models work well for conventional
aircraft [110, 100, 27], they do not describe the unsteady aerodynamic forces that are
important for small, agile aircraft to avoid obstacles, respond to gusts, and track po-
tentially elusive targets. Small, light weight aircraft have a lower stall velocity, and
therefore, gusts and rapid motions excite large reduced frequencies, k = πfc/U∞,
where f is the frequency of motion, which results in an unsteady flow field.

There is, however, a wide range of unsteady aerodynamic models in the liter-
ature [60]. The classical unsteady models of Wagner [125] and Theodorsen [114]
remain widely used and provide a benchmark for the linear models that follow
them. Wagner’s model constructs the lift in response to arbitrary input motion
by convolving the time derivative of the motion with the analytically computed
step response. Theodorsen developed an equivalent model in the frequency domain
using the same model assumptions of an incompressible, inviscid, planar wake. Al-
though Theodorsen’s model applies only to sinusoidal input motion, it was suitable
for the analysis of flutter instability with the tools available at the time. However,
with modern tools, it is possible to construct a state-space realization based on
Theodorsen’s model that is useful for time domain analysis, as will be demonstrated
in Chapter 6. Even so, both models are limited by the inviscid assumption that
allow for them to be solved in closed form with analytic techniques.

Sophisticated models for the unsteady fluid dynamics, and resulting aerodynamic
forces, may be obtained using direct numerical simulations (DNS) [29, 112, 113],
computational fluid dynamics (CFD) [107, 108, 74, 3, 93], wind tunnel experi-
ments [82, 129], and water channel experiments [77, 54, 15, 39]. Each of these
methods may provide accurate estimates of the viscous fluid dynamic interactions
that lead to transient unsteady aerodynamics. However, these methods are ex-
tremely expensive, both in time and equipment. It is important, therefore, to obtain
low-dimensional models from these complex model systems [24, 106, 73, 33].

Linear indicial response models are a general class of aerodynamic models, which
may be constructed based on analytical, experimental, or numerical step response
information [65, 92, 118]. Indicial response models are a mainstay of the unsteady
aerodynamics [57, 60] and aeroelasticity communities [71, 90, 70, 81, 89]. They have
been used for a wide range of problems ranging from understanding the effect of
control surfaces [58], to the modeling of gusts [59], and the suppression of shedding
on bridges and buildings [98, 21, 20, 16, 119]. Because these models may be formed
from CFD or wind tunnel data, they are able to capture limited viscous effects, such
as stable laminar boundary layer separation. Wagner’s model is an indicial response
model based on an analytically computed step response. A fundamental limitation
of indicial response models is their formulation based on the convolution integral,
which does not fit into the modern framework for feedback control design.
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The application of feedback control design to problems in unsteady fluid dy-
namics has been both challenging and rewarding. Because of the wealth of powerful
linear control techniques, one generally applies flow control using a linear model
of the Navier-Stokes equations around a given fixed point or attractor; a review
of the work in this field is found in Kim & Bewley [55]. However, complex fluid
systems are typically high dimensional, making them computationally expensive to
simulate and intractable for many control techniques. This motivates the need for
accurate reduced-order models. One method for obtaining reduced-order models
that accurately represent the input/output dynamics is balanced proper orthogonal
decomposition (BPOD) [94]. BPOD has been successfully applied to a number of
systems including channel flow [46], the Blasius boundary layer [4], and the peri-
odically shedding flat plate [1]. It has recently been shown that the eigensystem
realization algorithm (ERA) [52, 51] produces the same reduced-order models as
BPOD, but without the need for adjoint simulations [68].

1.2.2 Models based on nonlinear flow physics

The unsteady aerodynamics of small-scale wings at a high angle of attack is at
the focus of efforts to study bird and insect flight as well as to develop advanced
controllers for high-performance micro air vehicles (MAVs). The short time scales
involved in gusts and agile maneuvering make small wings susceptible to unsteady
laminar separation, which can either enhance or destroy the lift depending on the
specific maneuver. For example, certain insects [5, 99, 131] and birds [123] use the
shape and motion of their wings to maintain the high transient lift from a rapid pitch-
up, while avoiding stall and the substantially decreased lift that follows. Moreover,
at smaller sizes, added-mass forces become increasingly important. The enhanced
performance observed in bio-locomotion relies on unsteady mechanisms that will be
important for model-based control of MAVs [2]. The effect of Reynolds number and
aspect ratio on small wings is discussed in Ol et al. [77, 54]. Nonlinear separated
flow effects, such as dynamic stall [34, 69, 72, 109, 56] and vortex shedding [76, 9] are
important for larger amplitude maneuvers at high angle of attack. Figure 4.1 shows
a large amplitude maneuver with leading edge vortex and periodic vortex shedding.

Figure 1.3 shows the lift coefficient versus angle of attack for a flat plate at low
Reynolds number (Re = 100) [12]. At a critical angle, αcrit = 28◦, the flow undergoes
a supercritical Hopf bifurcation, after which the flow is characterized by laminar,
periodic vortex shedding [1]. A hierarchy of models including linear reduced order
models at various angle of attack and extended to include nonlinear separated flow
effects, such as dynamic stall [34, 69, 109] and vortex shedding [76, 9], is ideal for
capturing the effects of agile maneuvers and gusts on small-scale wings. In this
thesis, a common framework is developed for this hierarchy of models, and model
identification techniques and maneuvers are used to develop linear unsteady models
for sub-critical angle of attack.

Additionally, unsteady separated flows are investigated using finite-time Lya-
punov exponent (FTLE) fields [41, 102]. For an unsteady flow field, it is not pos-
sible to identify separated regions with streamlines alone [41]. However, ridges in
the FTLE field identify regions of separated flow and wake structures. FTLE fields
have also been useful for understanding nonlinear flow mechanisms underlying the
breakdown of classical linear unsteady models [9].
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Figure 1.3: Lift coefficient vs. static angle of attack for flat plate at Re = 100. Hopf
bifurcation occurs at αcrit = 28◦, after which the flow is characterized by laminar,
periodic vortex shedding.

1.3 Organization and contribution

A principal contribution of this work is to provide a number of methods to obtain
accurate low-dimensional models linearized about various angle of attack. In partic-
ular, we develop low-dimensional models that combine the best attributes of indicial
response (accurate, flexible, time-domain) and Theodorsen’s model (physically mo-
tivated, parameterized by pitch axis location) in a state-space realization. Models
are obtained for angle of attack up to the Hopf bifurcation angle.

Chapter 2 provides a brief review of background material. This includes classical
unsteady aerodynamic models 2.1, model reduction and system identification tech-
niques 2.2, and dynamical systems tools for visualizing unsteady separated flows 2.4.
Additionally, Galerkin projection is reviewed 2.3, and the added-mass forces aris-
ing from unsteady potential flow are discussed 2.5. A canonical pitch maneuver is
presented in Section 2.6.

Chapters 3 and 4 describe computational tools developed during this thesis to
simulate and visualize unsteady fluid dynamics. Chapter 3 involves a modification of
the immersed boundary projection method to solve the two-dimensional incompress-
ible Navier-Stokes equations in the body-fixed frame, yielding better accuracy and
computational efficiency for moving-wing simulations. Chapter 4 develops a number
of algorithms for fast computation of finite-time Lyapunov exponent fields in un-
steady flows based on particle flow map approximations. The finite-time Lyapunov
exponent (FTLE) field is useful for visualizing unsteady fluid coherent structures.
In particular, we have used the FTLE field to show how the classical unsteady model
of Theodorsen breaks down at large reduced frequency and Strouhal number [9].

Chapter 5 provides the theoretical foundation and algorithms for developing
unsteady aerodynamic models that are used extensively in later chapters. In this
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chapter, aerodynamic models are seen as a nonlinear dynamical system related to
the unsteady Navier-Stokes equations with body motion as an input, and forces and
moments are the nonlinear outputs (as computed from either the velocity or vorticity
field state). It is then shown that under certain assumptions and linearization
about various operating conditions, one recovers a very general linear unsteady
aerodynamic model.

Chapters 6, 7, and 8 provide specific instances of how the modeling techniques
from Chapter 5 may be used in practice. Chapter 6 shows that the classical models
of Wagner and Theodorsen may be cast into the general state-space form, and may
be modified to reflect empirically determined dynamics. Chapter 7 provides results
for models of a flat plate airfoil at Reynolds number Re = 100 at various angle of
attack. Chapter 8 provides models based on wind tunnel measurements at Reynolds
number Re = 65, 000.

1.4 Assumptions, conventions, and notation

A number of coordinate systems and notations are used in this thesis. Aerodynamic
forces and moments are fluid dynamic in nature, but they are referenced to a coordi-
nate system that is relevant to flight dynamic considerations. In particular, lift and
drag are the forces perpendicular and parallel to the flight path vector, which is the
velocity vector of the aircraft center of mass. However, throughout this work, and
indeed in many previous works, we are interested in the aerodynamics of the wing
isolated from the flight dynamic body, and there is no uniquely defined flight path
vector. Therefore, there is a choice of the aircraft center of mass, or other relevant,
special aerodynamic point, such as pitch axis, aerodynamic center, center of gravity,
etc. There is also a choice of whether to use lift and drag coefficients, referred to the
velocity vector, or to use the force coefficient components normal and tangential to
the wing (body axes), or to use the force coefficients in the earth-relative z and x
directions, the former being the force counteracting gravity. There are advantages
and disadvantages to each choice, and each is valid for different problems of interest.

Lift and drag are measured in reference to the free stream velocity. Flight
dynamic coordinates are used when applicable, but in general, models are formu-
lated using aerodynamic coordinates consistent with Theodorsen, as discussed in
Section 5.1.1. In particular, unless specifically stated, translational motion of the
airfoil is measured in reference to the center of rotation. On occasion, models will
be derived with translational motion referred to the mid-chord of the wing, since
this simplifies the added-mass forces. Finally, this work concentrates on modeling
the two-dimensional, longitudinal lift aerodynamics, although the methods are suf-
ficiently general for the development of models for the drag and moment coefficients
for more complicated motions.

Unless otherwise stated, lengths are nondimensionalized by the chord c, and
velocities are nondimensionalized by the free-stream velocity U∞. This results in
dimensionless time t′ = tc/U∞ and frequency f ′ = fU∞/c. Note that the early
work of Theodorsen and Wagner nondimensionalize lengths using the half-chord
b = c/2. However, nondimensionalizing by the full chord c is more common in
current literature [126, 79, 18].
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Chapter 2

Background

This chapter provides an overview of tools that are used in this thesis. We discuss
quasi-steady aerodynamics, the classical unsteady aerodynamic models of Wagner
and Theodorsen, and linear indicial theory in Section 2.1. These models are the
inspiration for the more general class of models derived in Chapter 5. In Section 2.2
we present two system identification tools, the eigensystem realization algorithm
(ERA) and observer Kalman/filter identification (OKID). Both methods are used
extensively in Chapters 7 and 8 to identify models of the form derived in Chapter 5.
Section 2.3 illustrates the Galerkin projection of the Navier-Stokes equations onto a
set of basis modes. Next, Section 2.4 introduces the finite-time Lyapunov exponent
and its use in visualizing separated flows. Section 2.5 addresses added-mass forces,
which arise from the theory of unsteady potential flow. Finally, a canonical pitch-up,
hold, pitch-down maneuver is introduced in Section 2.6.

2.1 Linear unsteady aerodynamic models

This section provides a brief review of the most frequently used linear unsteady
aerodynamic models in the literature. First, we begin with the simplest steady and
quasi-steady models in Section 2.1.1. Next, the linear indicial theory is discussed in
Section 2.1.2. Finally, the classical unsteady models of Wagner and Theodorsen are
presented in Section 2.1.3. These models are the basis for the improved models in
Chapter 5, and they provide a benchmark for comparison.

In all of the models that follow, the goal is to predict the lift force on an airfoil
that may be rapidly pitching or plunging vertically in addition to its forward motion.
It is convenient to use the non-dimensional lift coefficient,

CL =
2L

ρU2
∞S

(2.1)

where L is the dimensional lift force, ρ is the fluid density, U∞ is the free-stream
velocity, and S is the wing surface area for a three-dimensional airfoil or chord
length c for a two-dimensional airfoil. The lift coefficient depends on the geometry,
configuration, and motion of the wing. The wing configuration is given by the angle
of attack, α, which is the angle of inclination of the airfoil with respect to the free-
stream velocity, and the vertical position of the pitch axis, h. The dependence of
CL on α and h will be elaborated on in the following sections.
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2.1.1 Quasi-steady lift models

The simplest steady model of the lift coefficient for a two-dimensional airfoil in an
inviscid fluid is linear in α:

CL = 2πα (2.2)

Angle of attack and plunge motion, given by α̇ and ḣ, respectively, may be
included in a quasi-steady model by introducing the effective angle of attack, αe.
A small downward plunge velocity results in a change in angle of attack equal to
∆α = tan−1(ḣ/U∞) ≈ ḣ/U∞. Similarly, angle of attack motion, α̇, results in local
vertical velocities along the airfoil, and hence a distribution of local angle of attack
that may be modeled as an effective camber. This contributes to a change in angle
of attack equal to ∆α = cα̇(1 − 2a)/4U∞, where a is the pitch axis location with
respect to the 1/2-chord1. This yields the quasi-steady model:

CL = 2π

(
α+

ḣ

U∞
+
c

2
α̇

U∞

(
1
2
− a
))

= 2παe (2.3)

2.1.2 Linear indicial theory

Linear indicial response models are mainstays of the unsteady aerodynamics [115,
57, 58, 59, 65, 92] and aeroelasticity [81, 70, 90, 71, 89, 119, 20] communities. The
indicial response is defined as the output response to a step control input.

Linear indicial models are orders of magnitude more computationally efficient
than direct numerical simulations (DNS) or computational fluid dynamic (CFD) so-
lutions, and they are flexible in that they may be constructed from analytic numeri-
cal or experimental step response data. However, the convolution integral approach
to indicial response models does not fit into the linear system framework required
for feedback control.

The method of linear indicial response is based on the assumption that the flow
can be linearized with respect to a given boundary condition or forcing function.
The method is used to reconstruct an output measurement y (aerodynamic forces
and moments) given an arbitrary input u (wing motion or control surface deflection).
In general, the flow field is a smooth nonlinear function of boundary conditions and
forcing functions away from bifurcation points. For example, the lift coefficient CL
depends smoothly on angle of attack α until a bifurcation occurs at a critical angle
αcrit, after which the flow is characterized by periodic vortex shedding. Away from
the critical point, it is possible to linearize the flow field about some input u0:

y(t) = y(u0, t0) +
∂y

∂u

∣∣∣∣
u0

∆u+O(∆u2) (2.4)

The function ∂y/∂u is the impulse response, and it does not depend on u, but only
on the time t after the step. It is then possible to write the linearized equation as

y(t) = y(t0) +
dy

du
(t)∆u = y(t0) + ỹ(t)∆u (2.5)

1Pitching about the leading edge corresponds to a = −1, whereas the trailing edge is a = 1.
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u̇(t)

τ1 τ2 τ3 t

input

output

τ1

τ2

τ3

step-response

t0

ỹ(t− τ1)

ỹ(t− τ2)

ỹ(t− τ3)

y(t) = ỹ ∗ u̇

ỹ(t− t0)

Figure 2.1: Schematic of linear indicial response model obtained by convolution.

The indicial response ỹ(t) is the output in response to a step input, u̇ = δ(t), where
δ(t) is the Dirac delta function. An indicial response model reconstructs the output
response y(t) to an arbitrary input, u(t) by linear superposition (convolution):

y(t) = ỹ(t)u(0−) +
∫ t

0
ỹ(t− τ)u̇(τ)dτ (2.6)

Often, the indicial response is broken up as ỹ(t) = dy/du · φ(t), where dy/du is a
generalization of the lift slope (when y = CL and u = α), and φ(t) is a normalized
indicial response with limt→∞ φ(t) = 1. Figure 2.1 illustrates the convolution inte-
gral in Eq. (2.6), where time-shifted copies of the indicial response ỹ are integrated
to obtain the response to a general input.
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The indicial response may be obtained analytically or empirically from exper-
iments or simulations. The only assumption is that of linear time invariance. A
more general approach based on functionals has been developed to extend this the-
ory for nonlinear indicial response [115, 117, 116, 118, 91]. More examples of indicial
response are found in Reisenthel [91] and Leishman [60].

2.1.3 Classical models of Wagner and Theodorsen

Among the wide range of unsteady aerodynamic models in the literature [60], the
classical models of Wagner [125] and Theodorsen [114] remain widely used and pro-
vide a benchmark for the linear models that proceed them. Indeed, these models
have been remarkably successful for over three-quarters of a century, in part be-
cause they are derived from first principles using clear assumptions. Wagner’s and
Theodorsen’s theories are derived analytically for an idealized two-dimensional flat
plate airfoil moving through an inviscid, incompressible fluid. The motion of the flat
plate is assumed to be infinitesimal, leaving an idealized planar wake. Both theories
refine the quasi-steady theory in Eq. (2.3) by including the effect of the wake history
on the induced circulation around the airfoil.

The same simplifying assumptions that make Wagner’s and Theodorsen’s models
analytically tractable also limit the ability of these models to capture the viscous
effects that become increasingly important for lower Reynolds number flows. In
addition, the models were formulated before the widespread use of control theory,
and are not in state-space form. The first issue motivates the more general models
developed in Chapter 5. Additionally, Chapter 6 addresses the problem of casting
Wagner’s and Theodorsen’s models into a modern state-space framework. Because
both models are discussed in considerably more detail in Chapter 6, this section only
provides the basic model formulations, along with some relevant historical details.

Wagner’s model

In 1925, Wagner [125] developed a model by computing analytically the effect of
idealized planar wake vorticity on the circulation around the airfoil in response to
a step in angle of attack. Therefore, Wagner’s model is an indicial response model,
and his expression for the circulatory lift CcL is of the form of Eq. (2.6):

CcL(t) = 2π
(
α(0)φw(s) +

∫ s

0
α̇(σ)φw(s− σ)dσ

)
(2.7)

s = 2U∞t/c is time normalized by half-chord convection time, φw is Wagner’s indicial
response function, and the inviscid lift slope CLα = 2π has been factored out.

A distinct advantage of Wagner’s model is that it is formulated in the time
domain, making it useful for arbitrary input maneuvers. However, the convolution
integral model is not in a form that is easily incorporated into state-space models
for use with modern control theory.

Theodorsen’s model

Ten years later, in 1935, Theodorsen [114] derived a related model to study the
aeroelastic problem of flutter instability. Theodorsen’s model consists of added-mass
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terms that account for the reaction force due to the mass of fluid directly accelerated
by the airfoil, and circulatory terms that account for lift due to viscous forces. The
circulatory terms consist of the effective angle of attack from the quasi-steady theory
above, Eq. (2.3), multiplied by Theodorsen’s transfer function C(k), which relates
sinusoidal inputs of reduced frequency k = ωc/2U∞ to their aerodynamic response.

CL =
π

2

[
ḧ+ α̇− a

2
α̈
]

︸ ︷︷ ︸
Added-Mass

+ 2π
[
α+ ḣ+

1
2
α̇

(
1
2
− a
)]

C(k)︸ ︷︷ ︸
Circulatory

(2.8)

Lengths have been nondimensionalized by chord length c, and time is nondimen-
sionalized by c/U∞, where U∞ is the free stream velocity. C(k) is expressed in terms
of Hankel functions H(2)

ν = Jν − iYν in the following way:

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

(2.9)

where Jν and Yν are Bessel functions of the first and second kind, respectively.
Theodorsen’s model is particularly attractive since the various forces are iso-

lated. With the exception of Theodorsen’s function C(k), which is expressed in the
frequency domain, the model is an ordinary differential equation. However, this
hybrid notation limits Theodorsen’s model to sinusoidal input motions, which are
sufficient for flutter analysis but not for use with modern control techniques. This
model is extended to a state-space formulation in Chapter 6.

It is important to note that Theodorsen’s original paper [114] addresses more
than just the unsteady lift coefficient in response to angle of attack and vertical
plunge motion. In particular, Theodorsen also computes the moment coefficient,
includes the effect of an aileron, and analyses aeroelastic stability. The related
problem of a sinusoidal gust is explored by von Kármán and Sears [124].

2.2 System identification with ERA/OKID

The eigensystem realization algorithm (ERA) was developed by Juang and
Pappa [52, 51] to extend the minimal realization theory of Ho and Kalman [43]
to systems with noisy data. The ERA produces reduced order models of a linear
time-invariant system based on its Markov parameters Hi, which are the output
history from impulse-response experiments. When these parameters decay slowly,
as in lightly damped systems, the ERA involves the inversion of a large input ma-
trix. For this reason, the ERA is often used in conjunction with Observer/Kalman
Filter Identification (OKID) [53, 88, 17, 87, 51] that constructs an asymptotically
stable observer to identify the system. A major benefit of OKID is that Markov
parameters may be identified for a system using input/output data from realistic
maneuvers, such as actual flight data, as in Valasek et al. [120].

Recently, Ma et al. [68] have shown that the ERA efficiently produces the same
reduced order models as the method of snapshot-based balanced proper orthog-
onal decomposition (BPOD) [128, 94], without the need for adjoint simulations.
Balanced models have been effectively used for feedback control on a number of
physical applications including the flat-plate boundary layer [4], flat plate at high
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incidence [1], cavity resonances and combustion oscillations [47], and the transitional
channel flow [46]. The work of Silva et al. [106, 105] has used the ERA and OKID
to obtain reduced-order models from CFD for the unsteady aerodynamics excited
by aeroelastic modes. In many of the examples above, balanced models have better
performance at lower model order, compared against models obtained by Galerkin
projection onto POD modes.

2.2.1 The eigensystem realization algorithm (ERA)

The eigensystem realization algorithm (ERA) identifies a reduced-order, discrete-
time, state-space realization for a physical system based on snapshots Hk = y(k∆t)
from an impulse response. ERA is a powerful tool for obtaining reduced-order
models for linear dynamical systems of high dimension.

Consider a stable, discrete-time system with state vector x(k) ∈ Rn and multiple
inputs u(k) ∈ Rp and outputs y(k) ∈ Rq:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

(2.10)

The order of the system refers to n, the dimension of the state vector x. For
fluid systems, the system order may be in the millions or larger. High-dimensional
systems are expensive to simulate and are intractable for use with modern control
techniques, which motivates the the need for approximate models of lower order.

The goal of model reduction is to obtain an approximation to the model in
Eq. (2.10), in terms of a low-dimensional state vector xr ∈ Rr, where r � n. The
resulting model, Eq. (2.11), approximates the original system in the sense that it is
close with respect to a given operator norm.

xr(k + 1) = Arxr(k) +Bru(k)
y(k) = Crxr(k) +Dru(k)

(2.11)

Typically, one measures the agreement of the models in Eqs. (2.10) and (2.11)
using the infinity norm, ‖G − Gr‖∞, where G and Gr are the transfer function
representations of the models above: G , C(sI −A)−1B +D.

ERA is a method of model reduction based on impulse-response parameters that
may be collected from experimental data or from numerical simulations. Following
closely to Ma et al. [68], we review the main steps. First, collect data from an
impulse response, which is defined as the output in response to setting u(k) = 1
for k = 0 and u(k) = 0 for k ∈ Z+. The measured output of the impulse response
are called Markov parameters, Hk, and are readily obtained by substituting the
impulsive u(k) into Eq. (2.10) above:

u(k) =
{

1, k = 0
0, k ∈ Z+ =⇒ Hk , y(k) =

{
D, k = 0

CAk−1B, k ∈ Z+ . (2.12)

1. The first term in the impulse response is the D matrix, or feed-through term.

2. Gather the next (mc + mo) + 2 output measurements from the impulse re-
sponse, where mc and mo are integers representing the number of snapshots
for controllability and observability. The Markov parameters Hk = CAk−1B

12



are synthesized into generalized Hankel matrices, H and H ′, where the ele-
ments of H ′ are shifted forward by one time step.

H =


CB CAB · · · CAmcB
CAB CA2B · · · CAmc+1B

...
...

. . .
...

CAmoB CAmo+1B · · · CAmc+moB

 (2.13)

H ′ =


CAB CA2B · · · CAmc+1B
CA2B CA3B · · · CAmc+2B

...
...

. . .
...

CAmo+1B CAmo+2B · · · CAmc+mo+1B

 (2.14)

3. Compute the singular value decomposition of H from Eq. (2.13):

H = UΣV ∗ =
[
U1 U2

] [Σ1 0
0 0

] [
V ∗1
V ∗2

]
= U1Σ1V

∗
1 (2.15)

4. If r is the desired model order, let Σr be the first r × r block of Σ1, and let
Ur, Vr be the first r columns of U1, V1. The Ar, Br, and Cr matrices in the
reduced-order model in Eq. (2.11) are then given as follows:

Ar = Σ−1/2
r U∗rH

′VrΣ−1/2
r (2.16)

Br = first p columns of Σ1/2
r V ∗1 (2.17)

Cr = first q rows of UrΣ1/2
r (2.18)

It is important to note that ERA is not only useful for model reduction when
Eq. (2.10) is known. ERA is also useful for system identification when only the
Markov parameters from Eq. (2.12) are known. This observation relies on the fact
that the algorithm, in particular steps 2 and 3, only require knowledge of the Hankel
matrices H and H ′, which are based on output measurements only.

Since it is often difficult to obtain an impulse response in experiments, it is useful
to construct an estimate of the Markov parameters from a more realistic set of input-
output data. Thus, the ERA is often used in conjunction with the observer/Kalman
filter identification (OKID) method, which estimates the system Markov parameters
from noisy input-output measurements.

2.2.2 Observer/Kalman filter identification (OKID)

The observer/Kalman filter identification (OKID) method was developed in part to
compliment the ERA for lightly damped experimental systems with noise [53, 88,
17, 87, 51, 35]. In this section, the general problem of identifying Markov parameters
from arbitrary input-output data is posed. After identifying a number of numerical
complications, the OKID method is introduced to address these issues.
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Recall that the response of the discrete system in Eq. (2.10) to an arbitrary
input signal, with zero initial condition x(0) = 0, may be written in terms of the
Markov parameters Hi from Eq. (2.12):

[
y(0) y(1) · · · y(n)

]
=
[H0 H1 · · · Hn

]


u(0) u(1) · · · u(n)
0 u(0) · · · u(n− 1)
...

...
. . .

...
0 0 · · · u(0)


︸ ︷︷ ︸

U

(2.19)

It is often possible to invert the matrix of control inputs, U , to solve for the Markov
parameters. However, U may be sparsely populated, so that either it is un-invertible,
or inversion is ill-conditioned. In addition, U is large for lightly damped systems,
making inversion computationally expensive. Finally, experimental noise is not op-
timally filtered by simply inverting U to solve for the Markov parameters.

The OKID method addresses each of these issues. Markov parameters Hi are
computed by the following algorithm based on the work of Juang et al. [53]:

1. Choose the the number of observer Markov parameters to identify p.

2. Construct the data matrices below:

y =
[
y(0) y(1) y(2) · · · y(p) · · ·y(l − 1)

]
(2.20)

V =


u(0) u(1) u(2) · · · u(p) · · · u(l − 1)

v(0) v(1) · · · v(p− 1) · · · v(l − 2)
v(0) · · · v(p− 2) · · · v(l − 3)

. . .
...

. . .
...

v(0) · · · v(l − p− 1)

 (2.21)

where v(i) =
[
u(i) y(i)

]T .

The matrix V resembles U , except that it has been augmented with the outputs
y(i). In this way, we are working with a system that is augmented to include
a Kalman filter. Analogous to Eq. (2.19), we are now identifying the Markov
parameters of the augmented system, H̄, using the equation y = H̄V .

3. Identify the matrix H̄ of observer Markov parameters by solving y = H̄V for
H̄ using the right pseudo-inverse of V .

4. Recover system Markov parameters Hk from the observer Markov parameters.

Hk = H̄(1)
k + H̄(2)

k D +
k−1∑
i=0

H̄(2)
i Hk−i−1 (2.22)

where D = H̄−1. The formula in Eq. (2.22) is derived in Juang et al. [53].
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Thus, the OKID method identifies the observer Markov parameters of a system
augmented with an asymptotically stable Kalman filter. The system Markov pa-
rameters are then extracted from the observer Markov parameters using Eq. (2.22).

The ERA and OKID methods will both be used extensively to identify unsteady
aerodynamic models of the form given in Chapter 5. In Chapter 7 models are
obtained from direct numerical simulations using the ERA. In Chapter 8 models are
obtained from wind tunnel measurements using the combined ERA/OKID methods.

2.3 Galerkin projection of Navier-Stokes equations

The two-dimensional incompressible Navier-Stokes equations with an immersed
boundary that satisfies no penetration and no slip are given by:

∂u
∂t

+ (u · ∇) u = −∇p+
1

Re
∇2u +

∫
S

f (ξ(s, t)) δ(ξ − x)ds (2.23)

∇ · u = 0 (2.24)

u(ξ(s, t)) =
∫
x

u(x)δ(x− ξ)dx = uB(ξ(s, t)) (2.25)

The output equation of interest is the vector of forces resulting from the velocity
field u, which may be expressed using the surface stress, Si:

Fi =
∮
∂B
Si dξ =

∮
∂B

[−pn + µ∇u] dξ (2.26)

=
∮
∂B

[
∆−1 (∇u : ∇u) n + µ∇u

]
dξ (2.27)

The pressure is a quadratic function of velocity, which may be seen by taking the
divergence of both sides of the NS equation and using the incompressibility of u.

It is possible to write this in the following dynamical systems notation:

ẋ = L1x+Q1(x, x) + f (2.28)

y = L2x+Q2(x, x) (2.29)

where L1, L2 are linear operators and Q1, Q2 are bilinear quadratic forms.
The dynamics near an equilibrium x̄ may be approximated by expanding the

velocity field as a sum of x̄ and a number of orthonormal basis modes {ϕi}ri=1, as
in Eq. (2.30). Typically r is chosen to be large enough that the approximation is
good, yet small enough that the resulting system is of a significantly lower order.

x ≈ x̄+ aiϕi (2.30)
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Substituting this into the dynamical system in Eq. 2.28, we find:

ȧkϕk = L1 (x̄+ aiϕi) +Q1 (x̄+ aiϕi, x̄+ ajϕj) (2.31)

= L1x̄+ aiL
1ϕi +Q1(x̄, x̄) + ajQ

1(x̄, ϕj) + aiQ
1(ϕi, x̄) + aiajQ

1(ϕi, ϕj)

= L1x̄+Q1(x̄, x̄)︸ ︷︷ ︸
=0

+ai
[
L1ϕi +Q1(x̄, ϕi) +Q1(ϕi, x̄)

]︸ ︷︷ ︸
=L̃1ϕi

+aiajQ1(ϕi, ϕj)

Finally, because the modes ϕi are orthonormal, we take the inner product of
both sides with ϕk:

ȧk = ai〈L̃1ϕi, ϕk〉+ aiaj〈Q1(ϕi, ϕj), ϕk〉 (2.32)

= L̂1
ikai + Q̂1

ijkaiaj (2.33)

where L̂1
ij and Q̂1

ijk are new linear and bilinear operators on mode coefficients.
Plugging Eq. 2.30 into the output equation, Eq. 2.29 results in:

y = L2(x̄+ aiϕi) +Q2(x̄+ aiϕi, x̄+ ajϕj) (2.34)

= L2x̄+Q2(x̄, x̄)︸ ︷︷ ︸
=ȳ

+ai
[
L2ϕi +Q2(x̄, ϕi) +Q2(ϕi, x̄)

]︸ ︷︷ ︸
=L̃2ϕi

+aiajQ2(ϕi, ϕj) (2.35)

Finally, the output y is given by:

yk = ȳk + L̂2
ikai + Q̂2

ijkaiaj (2.36)

The subscript k represents the k-th coordinate of y, and has nothing to do with the
time step in a discrete-time formulation.

2.4 Finite-time Lyapunov exponents

To characterize the unsteady fluid dynamics of airfoils at low Reynolds numbers,
it is important to identify regions of separated flow and wake structures. For an
unsteady flow field, it is not possible to identify separated regions with instantaneous
streamlines alone [41]. Lagrangian coherent structures [40, 41, 102, 37] (LCS) are
unsteady analogues of the stable and unstable manifolds from dynamical systems
theory. LCS are ridges in the field of finite-time Lyapunov exponents (FTLE) that
satisfy an additional hyperbolicity condition [41]. The FTLE indicates the amount
of stretching between neighboring particles, and is typically computed by integrating
a grid of particles through a time-resolved sequence of velocity snapshots from an
unsteady flow. A strength of the method is that the LCS are robust to noisy data
as might be obtained using PIV measurements [41, 38].

FTLE fields may be computed using either forward or backward time integration
of particle grids, in which case the LCS represent repelling or attracting material
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Stationary,                  

Pitch

Plungeα = 35◦

Stationary,                  α = 25◦

Figure 2.2: Canonical maneuvers of flat plate at Re = 100. (top left) Stationary α =
25◦, (bottom left) stationary α = 35◦, (top right) sinusoidal pitch (20◦ amplitude,
f = 0.4 frequency), (bottom right) sinusoidal plunge (20◦ offset, f = 0.4 frequency).

lines, respectively. These material lines isolate regions of separated flow around the
airfoil as well as the sluggish flow in the wake. Figure 2.2 shows the FTLE field
for various configurations of a flat plate airfoil that are chosen to isolate individual
motions and unsteady flow features [9]. The ridges, plotted in blue, indicate the
separation bubble and wake regions. For the case of a stationary plate at α = 25◦

the velocity field is steady, and, therefore, the ridges are also steady and coincide
with streamlines. However, each of the other three flows are unsteady, and the
FTLE ridges do not coincide with streamlines.

Lagrangian coherent structures, and more generally ridges in the FTLE field, are
transport barriers in forward and backward time. This fact is consistent with the
view that LCS generalize the concepts of stable and unstable manifolds in finite-time
to unsteady flow fields. Figure 2.3 shows a grid of particles advected with the flow,
with the dominant FTLE ridge superimposed [13]. As time passes the particles on
the exterior of the ridge rapidly flow by, from left to right, leaving the slow particles
conglomerated on or in the interior of the ridge boundary. The bottom two flows
do not have an interior region, and are qualitatively different than the first flow.

A detailed discussion of the standard computation of FTLE fields is given in
Section 4.2.

2.5 Added-mass forces

Added-mass forces, which appear in Theodorsen’s model in Eq. (6.2), are important
unsteady fluid reaction forces in response to an accelerating body. Simply put, when
a body is accelerated in a surrounding fluid, the fluid must accelerate out of the way
of the body. This additional mass of fluid that is accelerated is referred to as the
apparent or added mass due to the surrounding fluid. Figure 2.4 is a schematic
depiction of the added mass of the fluid.
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Figure 2.3: Validation of Lagrangian coherent structures as material lines with a grid
of points integrated forward along velocity field snapshots. (left) Plate at α = 35◦,
(middle) pitching plate, (right) plunging plate.

A simple and intuitive example of added mass arises in the physics of gas bubbles
rising in a carbonated beverage. Based on the relative density of the displaced
liquid and the gas bubble, we expect the buoyant force of the displaced liquid to
cause a large acceleration of the gas bubble, on the order of hundreds of times the
acceleration of gravity. However, because the bubble must accelerate liquid out of
its way, equal to half of the volume of the bubble, the added-mass of the liquid
greatly reduces the bubble’s acceleration to about two times the acceleration due
to gravity. There is a long and interesting history of the added-mass effect in rising
bubbles [66].

Under certain assumptions, such as potential or Stokes flow, the added-mass
formulation simplifies considerably. Consider the kinetic energy of a fluid accelerated
by a body; for now, consider an ideal fluid that is inviscid and irrotational. Because
of the linearity of the potential flow equations, it follows that the fluid velocity field
induced by a moving body will be linearly proportional to the velocity of the body.
Therefore, we may write the kinetic energy as

Tφ = ρ
I

2
‖U‖2 where I =

∫
V

u
‖U‖ ·

u
‖U‖ dV (2.37)
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Figure 2.4: Schematic illustrating the added-mass effect. (left) Moving airfoil.
(right) Moving airfoil and “added-mass”.

Again, u is the fluid velocity field, and U is the velocity of the body. For a fixed
motion, I is constant.

dTφ
dt

= −F ·U =⇒ Fi = −ρIijU̇j (2.38)

The tensor Iij is not isotropic, since it depends on the direction of the flow.
There are many detailed and thorough derivations of the theory of added-mass for
potential flow [104, 75, 7].

2.6 Canonical pitch-up, hold, pitch-down maneuver

A canonical pitch-up, hold, pitch-down maneuver has been developed by the AIAA
fluid dynamics technical committee (FDTC) on low-Reynolds number aerodynamics
discussion group (2010-2011) [26, 79]. The purpose of this maneuver, given by
Eq. (2.39), is to compare and study various experiments, simulations and models.

Gα(t) = log
[

cosh(a(t− t1)) cosh(a(t− t4))
cosh(a(t− t2)) cosh(a(t− t3))

]
, α(t) = αmax

Gα(t)
max(Gα(t))

(2.39)

The time t1 is the start of the pitch-up, t2 is the end of the pitch-up and the
beginning of the hold period, t3 is the end of the hold and the beginning of the
pitch-down, and t4 is the end of the pitch-down, and consequently, the maneuver.
αmax is the angle of attack during the hold, and a is a parameter that determines
how gradual (a small) or sharp (a large) the corners are at t1, t2, t3 and t4.

Figure 2.5 shows a simulation of the maneuver for a flat plate at Re = 100
pitching about the leading edge. In this example, t1 = 1, t2 = 3, t3 = 4, and t4 = 6,
a = 11 and αmax = 45◦. There are a number of features in the flow field and
lift measurement that make this an interesting maneuver. First, the sharp corners,
linear ramps, and hold period separate the effects of α̈, α̇ and α on the lift output.
Additionally, a large leading edge vortex forms and sheds during the maneuver.
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Figure 2.5: Canonical pitch-up, hold, pitch-down maneuver. (top) Angle of attack
and (bottom) lift coefficient from simulation at Re = 100.
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Chapter 3

Direct numerical simulations
with unsteady base flow

The numerical results in this thesis are based on direct numerical simulations (DNS)
of the incompressible 2D Navier-Stokes (NS) equations, using the multidomain im-
mersed boundary projection method (IBPM) of Taira and Colonius [111, 19]. This
chapter addresses a modification to the immersed boundary method to solve the NS
equations in the body-fixed frame of a moving airfoil. In particular, the motion of
the body is transferred to an unsteady base flow motion.

For a stationary body the boundary conditions are fixed, and it is possible to
solve the projection equations in the IBPM by first computing a single Cholesky
factorization at the beginning of the simulation [19], after which the equations may
be solved rapidly for each subsequent timestep. When the body is in motion, the
boundary conditions vary with time, and it is more efficient to use an iterative
conjugate gradient method rather than to recompute the Cholesky factorization at
each timestep. However, in the body-fixed frame of a moving airfoil, the boundary
conditions are fixed, and it is possible to use a single Cholesky factorization, as in
the case of the stationary body. This is more accurate than the iterative conjugate-
gradient method and more efficient for a large number of timesteps. Additionally, it
is possible to simulate large amplitude motions in the body-fixed frame that would
otherwise leave the computational domain.

An overview of the immersed boundary projection method is presented in Sec-
tion 3.1. Section 3.2 provides a description of the body-frame coordinate system and
how the motion of the body may be transferred to an unsteady base flow. Section 3.3
describes the implementation, and in Section 3.4 the modified code (IBPM-UBF) is
validated and benchmarked against the original code. This chapter is also intended
to supplement the IBPM user manual.

3.1 Immersed boundary projection method

This section provides a brief overview of the immersed boundary projection method
(IBPM) [111, 19]. The numerical method has been rigorously validated in two-
dimensions on a number of example problems, as well as in three-dimensions against
an oil tow tank experiment at Re = 100 for a flat rectangular wing with low aspect
ratio (AR = 2) at α = 30◦ [111, 19].
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All of the numerical experiments presented here are based on the motion of a
2D flat plate at Reynolds number Re ≡ cU∞/ν ∈ [100, 1000]. The computational
domain consists of five nested grids, the finest covering a domain of 4c× 4c and the
coarsest covering a domain of 64c × 64c, where c is the chord length of the plate.
Each grid has resolution 400× 400, which is sufficiently fine for results to converge.

The 2D incompressible Navier-Stokes equations with an immersed boundary that
satisfies no penetration and no slip are given in Eqs. (3.1−3.3):

∂u
∂t

+ (u · ∇) u = −∇p+
1

Re
∇2u +

∫
S

f (ξ(s, t)) δ(ξ − x)ds (3.1)

∇ · u = 0 (3.2)

u(ξ(s, t)) =
∫
x

u(x)δ(x− ξ)dx = uB(ξ(s, t)) (3.3)

Here u is the fluid velocity field, p is the pressure, uB is the velocity of the immersed
body, and f is the force on the body. Variables have been suitably nondimensional-
ized by the chord length c and free-stream velocity U∞.

Figure 3.1 shows the vorticity contours and boundary layer profiles for a two-
dimensional flat plate at various angle of attack. The flow is attached for α = 0◦

and α = 10◦. At α = 20◦, there is flow reversal and a stable separation bubble.
For α = 30◦ and α = 40◦, the flow is fully separated and exhibits unsteady vortex
shedding; the instantaneous vorticity field at a single phase is shown for these cases.

3.2 Body frame and flight dynamic coordinates

Consider a two-dimensional airfoil moving in a uniform flow field, as in Figure 3.2.
The uniform base flow has magnitude UBF at an angle αBF and the airfoil’s position is
specified as an element g ∈ SE(2), where SE(2) =

{
(A, b) |A ∈ SO(2) and b ∈ R2

}
is the special Euclidean group of rotations and translations in R2. The motion of the
airfoil is specified as an element (g, ξ) ∈ TSE(2) with coordinates (x, y, θ, ẋ, ẏ, θ̇).
TSE(2) = {(g, ξ) | g ∈ SE(2) and ξ ∈ TgSE(2)} is the tangent bundle of SE(2),
and TgSE(2) is the tangent space to SE(2) at a point g ∈ SE(2).

In flight dynamics, it is typical to represent the airfoil motion in a frame that
is moving with the base flow, as shown in Figure 3.3. It is convenient to introduce
the airfoil’s velocity vector V and flight path angle γ, as well as the angle of attack
α = −θ − γ, as in [110].

V =
[
ẋ− UBF cos(αBF)
ẏ − UBF sin(αBF)

]
, γ = tan−1

(
ẏ − UBF sin(αBF)
− (ẋ− UBF cos(αBF))

)
(3.4)

The flight path angle and the angle of attack are measured in the clockwise direction.
Figure 3.4 shows the airfoil in the body-fixed frame. The free stream velocity

has magnitude ‖V‖ and angle α, as well as a rotational component −θ̇ about the
origin, which is the original center of rotation:

Vrot(x, y, t) =
[
urot

vrot

]
=
[
θ̇(t) · (y − yC)
−θ̇(t) · (x− xC)

]
(3.5)
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Figure 3.2: Moving airfoil in laboratory reference frame.
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Figure 3.3: Moving airfoil in body center-of-mass frame.
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Figure 3.4: Moving airfoil in body-fixed frame.
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(xC , yC) is the center of rotation.
This yields the unsteady base flow velocity field:

u(x, y, t) = ‖V‖ cos(α) + θ̇(y − yC) (3.6)

v(x, y, t) = ‖V‖ sin(α)− θ̇(x− xC) (3.7)

with constant vorticity everywhere, given by

ω = ∇× [u v
]T = vx − uy = −θ̇ − θ̇ = −2θ̇ (3.8)

Thus, an immersed body with motion given by (g, ξ) ∈ TSE(2) may be viewed
in the body-fixed reference frame with the induced unsteady base flow velocity field
given by Eqs. (3.6) and (3.7). Note that the unsteady base flow at any instant is the
superposition of a uniform flow and a solid body rotation, which have zero vortic-
ity and constant vorticity everywhere, respectively. Using the immersed boundary
method of Colonius and Taira [19], which is formulated with a nullspace approach
and multi-domain far-field boundary conditions, it is possible to solve the NS equa-
tions (3.1−3.3) in the body-fixed frame by simply using Eqs. (3.6) and (3.7) in the
place of a uniform base flow. This approach has been used in [18] for a flat plate
plate accelerating in the x-direction. Demonstrating the validity of this approach
rigorously using a symmetry reduction of SE(2) to the body-fixed frame will be an
interesting extension of this work.

3.3 Software implementation

The goal of this code is to solve the equations of motion in the body-fixed frame by
transferring the motion of a given body to a motion of an unsteady base flow. In the
IBPM code, an instance of the Geometry class may consist of multiple RigidBody
objects, each with its own Motion, as in Figure 3.5, and the following pseudo-code:

Geometry:
RigidBody1->Motion1 [Primary]
RigidBody2->Motion2
...
RigidBodyN->MotionN

The first element in the list, RigidBody1, is considered the primary rigid body;
the body-frame coordinates are referenced to this body. There must be a method
to transfer the motion from the primary rigid body to the base flow. Currently the
unsteady base flow is only implemented for a single rigid body; however, if there are
multiple rigid bodies, they must each be transformed into the body-fixed frame of
the primary body.

The following pseudo-code describes the transferMotion method of the
Geometry class. It is currently not possible to perform group operations on Motion
elements, and so it is not trivial writing each of the other body motions in a frame
fixed to the first body. This is the subject of ongoing work.

Motion* Geometry::transferMotion() {
vector<RigidBody>::iterator body;
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RigidBody1 RigidBody2

Figure 3.5: Schematic of multiple rigid bodies, as represented in code.

Motion* _bfMotion = NULL;
body = _bodies.begin();
_bfMotion = body->getMotion();
for(body=_bodies.begin();body!=_bodies.end();++body) {

body->setMotion(body->getMotion() - _bfMotion)
}
return _bfMotion

}

3.3.1 Unsteady base flow usage

To use the unsteady base flow functionality, the user adds -ubf True to the ibpm
command line call. This makes it possible to reuse existing scripts and geometry
files with minimal modification, as in the following example:

>> ./build/ibpm -Re 100 -geom cylinder.geom -dt 1.e-2 -ubf True

# cylinder.geom
body Cylinder
circle_n 0 0 0.5 314
motion PitchPlunge 0, 0, 1, 1

end

3.3.2 Lift measured from flight path angle

In the new IBPM-UBF code, the lift force is the component of force perpendicular to
the velocity vector V from Eq. (3.4), as in [110]. The original IBPM code does not
correct for the change in V when the body is in motion, (ẋ, ẏ) 6= (0, 0). Therefore,
in the original IBPM code, the lift and drag forces are simply the force components
in the vertical and horizontal directions in the lab frame.
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Figure 3.6: Comparison of lift coefficient for stationary plate at α = 45◦.

3.4 Validation and benchmarks

In this section, the IBPM-UBF code is validated against the IBPM code on a number
of test cases. In Section 3.4.1, the codes are compared for an impulsively started flat
plate at fixed angle of attack α = 45◦. In Section 3.4.2, the codes are compared for
a large amplitude pitching maneuver at various pitch axis locations. Section 3.4.3
summarizes the computation time of both methods. In the psuedo-code that follows,
developedBL.bin is a binary file containing the State (fluid state) for a flat plate
with a fully developed boundary layer. The other command line options may be
found in the IBPM manual.

3.4.1 Stationary, α = 45◦, Re = 300

The following code is used to simulate the flow past an impulsively started flat plate
at 45◦ inclination:

>> ./build/ibpm -nx 200 -ny 200 -ngrid 5 -length 4 -xoffset 1.5
-yoffset -2 -geom stationary_a45.geom -Re 300 -ic developedBL.bin
-dt .01 -nsteps 700 -ubf True

# stationary_a45.geom
body Plate

line 0 0 1 0 0.02 # points on a line, spaced approximately 0.02
center 0.25 0 # center at quarter-chord
motion FixedPosition 0 0 45. # x, y, theta (deg)

end

Figure 3.6 shows the lift coefficient from the IBPM and IBPM-UBF simulations.
The vorticity fields are plotted in Figure 3.7. The agreement of the IBPM and
IBPM-UBF simulations in both the lift coefficient and the vorticity fields confirms
the accuracy of the new IBPM-UBF method.
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Figure 3.7: Comparison of IBPM (left) and IBPM-UBF (right) for a two-dimensional
flat plate at α = 45◦ (Re = 300). From top to bottom: t = 1.0, t = 3.0, t = 5.0,
and t = 7.0. Vorticity contours are plotted, and the IBPM-UBF solution is rotated
by 45◦.
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Figure 3.8: Canonical pitch-up, hold, pitch-down maneuver about quarter chord.

3.4.2 Pitching about various points

The following large amplitude pitching maneuvers are based on the canonical ma-
neuver from Eq. (2.39) in Section 2.6. Figure 3.8 shows the lift coefficient from both
codes for pitching about the quarter-chord, and Figure 3.9 is for pitching about the
mid-chord.

Pitching about quarter-chord, αmax = 45◦

>> ./build/ibpm -nx 200 -ny 200 -ngrid 5 -length 4 -xoffset -1.5
-yoffset -2 -geom canonical_p25_a45.geom -Re 100 -ic developedBL.bin
-dt .01 -nsteps 700 -ubf True

# canonical_p25_a45.geom
body Plate

line 0 0 1 0 0.02 # points on a line, spaced approximately 0.02
center 0.25 0 # center at quarter-chord
motion Canonical 45 11 1. 3. 4. 6. # AMP (deg), a, t1, t2, t3, t4

end

Pitching about mid-chord, αmax = 10◦

>> ./build/ibpm -nx 400 -ny 400 -ngrid 5 -length 4 -xoffset -1.5
-yoffset -2 -geom canonical_p50_a10.geom -Re 100 -ic developedBL.bin
-dt .01 -nsteps 700 -ubf True
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Figure 3.9: Canonical pitch-up, hold, pitch-down maneuver about mid chord.

# canonical_p50_a10.geom
body Plate

line 0 0 1 0 0.01 # points on a line, spaced approximately 0.01
center 0.50 0 # center at mid-chord
motion Canonical 10 11 1. 3. 4. 6. # AMP (deg), a, t1, t2, t3, t4

end

3.4.3 Computational speed-up

The IBPM-UBF code is 24X faster than the IBPM code for the canonical pitch-up,
hold, pitch-down maneuver about the quarter-chord with grid resolution 200× 200
and 700 timesteps with ∆t = 0.01, shown in Figure 3.8. The IBPM-UBF code ran
in 00:04:40, while the IBPM code ran in 01:51:20. For the canonical maneuver about
the middle-chord with higher resolution 400× 400, the IBPM-UBF code requires a
smaller timestep, ∆t = .005 for stability, while the IBPM code uses ∆t = .01. In
this case, the IBPM-UBF code is 12X faster.

The reason for this speed-up is that in the body-fixed frame the boundary condi-
tions are fixed, and it is possible to use the same Cholesky factorization to efficiently
solve the projection equations at each timestep. At a given timestep, computing the
Cholesky factorization is more expensive than solving the projection equations us-
ing a conjugate-gradient iteration. However, if the body is stationary relative to the
grid, a single Cholesky factorization may be computed at the beginning of the sim-
ulation, and each subsequent timestep is computed more rapidly than when using
conjugate-gradient iteration.
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3.5 Summary of numerical methods

This chapter extends the immersed boundary projection method to simulate un-
steady flow fields in the body-frame of a moving wing. The modified code, based
on an unsteady base flow formulation, is more accurate and an order of magnitude
faster than the original code when solving for the fluid flow over a moving body.
Additionally, the new IBPM-UBF code is able to solve for large amplitude wing
motions that would have left the computational domain in the IBPM code.
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Chapter 4

Fast computation of finite-time
Lyapunov exponent fields for
unsteady flows

Finite-time Lyapunov exponent (FTLE) fields are useful for visualizing unsteady
aerodynamic flows, such as those studied in this thesis, since they identify regions
of separated flow as well as wake structures. Figure 4.1 shows the lift and drag
coefficients for a rapid pitch-up maneuver about the middle-chord to an angle of
α = 32◦ for a two-dimensional flat plate airfoil at low Reynolds number, Re =
300. The FTLE fields in this figure illustrate flow structures associated with the
transient high and low lift configurations. Additionally, FTLE fields are useful for
understanding the breakdown of classical unsteady aerodynamic models at large
reduced frequency and Strouhal number, as shown in [9].

Lagrangian coherent structures (LCS) are hyperbolic material lines or surfaces
that provide a useful analogue of invariant manifolds for unsteady flow fields. LCS
are often determined as ridges of the field of FTLE that satisfy an additional hyper-
bolicity criterion. Since the FTLE field is computed using velocity field snapshots
from the full nonlinear Navier-Stokes equations, the resulting LCS reveal the in-
variant manifold structure of the underlying nonlinear dynamical system. However,
FTLE fields are expensive to compute due to the large number of particle trajec-
tories that must be integrated to construct a particle flow map. Moreover, it is
often necessary to compute a sequence of FTLE fields in time to visualize unsteady
events. The methods presented here speed-up the computation of a sequence of
FTLE fields by removing redundant trajectory integrations between neighboring
particle flow maps. There are two categories of methods that approximate the par-
ticle flow map. The unidirectional method composes intermediate flow maps of the
same time direction, and the bidirectional method composes intermediate flow maps
of opposite time directions. It is shown that the unidirectional method is both fast
and accurate, providing orders of magnitude computational savings over the stan-
dard method, when computing a sequence of FTLE fields in time to visualize the
coherent structures of an unsteady flow. These methods have been published in [10].
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4.1 Introduction

Coherent structures are important for understanding and modeling the underlying
physical mechanisms of complex fluid flows [45]. In particular, Lagrangian coherent
structures (LCS) are defined using particle trajectories and are Galilean-invariant,
unlike Eulerian criteria [42]. LCS are hyperbolic material lines or surfaces [41] that
extend the notion of invariant manifolds from dynamical systems theory to unsteady
flows. Ridges of the finite-time Lyapunov exponent (FTLE) field provide candidate
material lines that are LCS if and only if the Lagrangian rate of strain is nonzero
along the ridge, distinguishing true hyperbolic material lines from regions of high
shear [41]. A ridge of the FTLE field can refer to either a curvature or second deriva-
tive ridge, although the latter is more convenient for practical computation [102].
FTLE fields provide a measure of the stretching between nearby particles in a given
flow and are important in determining transport mechanisms and separatrices in
unsteady flows.

The theory and computation of finite-time Lyapunov exponents (FTLE), also
known as direct Lyapunov exponents (DLE), is a relatively modern development [41,
102], with extensions to 3-dimensional [37, 40] and n-dimensional [64] flows. FTLE
analysis has been widely applied in a number of branches of fluid mechanics, in-
cluding fluid transport [97, 28, 101], bio-propulsion [83, 130, 36], flow over air-
foils [67, 13, 9], plasmas [80], and geophysical flows [62, 63].

FTLE analysis is particularly useful for time-varying flows, where it becomes
necessary to compute a sequence of FTLE fields in time. As flows become more
complex, computations become increasingly expensive. In particular, FTLE cal-
culations are expensive because a large number of particle trajectories must be
integrated in order to obtain a particle flow map, often from stored velocity fields.
When computing a sequence of FTLE fields in time, it is possible to speed up the
computation considerably by eliminating redundant particle integrations. One ap-
proach that has been developed uses adaptive mesh refinement to reduce the number
of integrations [31, 32, 96, 103].

The approach here is to construct an approximate flow map by composing in-
termediate flow maps from FTLE field calculations at neighboring times. The first
class of flow map approximation, denoted bidirectional composition, constructs a
flow map by composing intermediate flow maps that are aligned in both positive
and negative-time. The second class, denoted unidirectional composition, composes
intermediate flow maps that are all aligned in the same time direction. The methods
are compared using analytic estimates for accumulated error and computation time
as well as benchmarks on a number of example flows.

4.1.1 Main results

In this chapter we demonstrate that the unidirectional method is both fast and accu-
rate, although it requires significantly more memory than the bidirectional method.
Orders of magnitude speed-up may be achieved over the standard method, and
computational improvement scales with the desired time resolution of the FTLE
animation.

The bidirectional method suffers from significant error. In particular, the errors
in the positive-time LCS (pLCS) align with the negative-time LCS (nLCS) and
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vice versa. To understand this coherent error, we provide an error analysis for both
methods, and uncover an important relationship between the pLCS and nLCS, which
correspond to finite-time unstable and stable manifolds, respectively. In particular,
in the neighborhood of a time-dependent saddle, particles near the pLCS flow into
particles near the nLCS in positive time.

4.2 Standard computation of finite-time Lyapunov ex-
ponents

Consider a time-dependent velocity field u on Rn and a particle trajectory x(t)
which satisfies

ẋ = u (x(t), t) . (4.1)

The velocity field, u, may be an unsteady solution of the Navier-Stokes equation,
although it is only assumed that u is at least continuous, C0, in time and con-
tinuously differentiable, C1, in space. However, to extract Lagrangian coherent
structures from the Hessian of the FTLE field, u must be twice continuously differ-
entiable, C2, in space [102]. The velocity field may be analytically defined, but is
more often obtained from experiments or direct numerical simulation that produce
velocity field data at discrete snapshots over a finite range of time. A method of
computing finite-time Lyapunov exponents (FTLE) on a finite amount of discrete
velocity field data was developed in [41, 102].

Computing an FTLE field typically involves four steps. First, a grid of particles
X0 ⊂ Rn is initialized over the domain of interest. The particles are advected (i.e.,
integrated) with the flow from initial time 0 to final time T , resulting in a time-T
particle flow map, ΦT

0 , defined as:

ΦT
0 : Rn → Rn; x(0) 7→ x(0) +

∫ T

0
u(x(τ), τ)dτ. (4.2)

Next, the flow map Jacobian, DΦT
0 is computed, usually by finite-differencing,

to obtain the Cauchy-Green deformation tensor,

∆ =
(
DΦT

0

)∗
DΦT

0 (4.3)

where ∗ denotes transpose. Finally, the largest eigenvalue, λmax, of this symmetric
tensor is evaluated at each grid location, resulting in the FTLE field:

σ(ΦT
0 ; x0) =

1
|T | log

√
λmax(∆(x0)). (4.4)

The bottleneck in this procedure is the large number of particle integrations required
to obtain the particle flow map, ΦT

0 . Moreover, if the velocity field is time-varying,
it is necessary to compute a sequence of FTLE fields in time to visualize unsteady
events, as shown schematically in Fig. 4.2.
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Exact Flow

Redundant

Essential

ΦT
0

Φh+T
h

Φ2h+T
2h

Φ3h+T
3h

Time

3h2hh0 T . . .. . .

Figure 4.2: The standard method for computing a sequence of FTLE fields. Flow
maps Φkh+T

kh for k ∈ {0, 1, 2, 3} (solid black arrow) are broken into essential (blue
dotted) and redundant (red dashed) particle integrations.

4.3 Flow map approximation

As seen in Fig. 4.2, the standard method of computing a sequence of FTLE fields
involves inefficient re-integration of particles. The unidirectional and bidirectional
methods outlined below streamline the computation of neighboring FTLE fields by
approximating the time-T flow map, Φt0+T

t0
, which can be written as:

Φt0+T
t0

= ΦtN
tN−1

◦ · · · ◦ Φt2
t1
◦ Φt1

t0
(4.5)

where tN = t0 + T .
Because the flow maps are obtained numerically on a discrete grid of points,

X0 ⊂ Rn, it is necessary to interpolate the maps at points x /∈ X0. Consider a flow
map Φ : Rn → Rn, and the same flow map restricted to X0, Φ|X0 : X0 → Rn. The
interpolation operator I takes the discrete map Φ|X0 and returns the interpolated
map, IΦ : Rn → Rn, which approximates Φ on Rn:

I : Φ|X0 7→ IΦ. (4.6)

Here we use the shorthand IΦ , I (Φ|X0). We now obtain an approximation to the
flow map in Eq. (4.5):

Φ̃t0+T
t0

(X0) = IΦtN
tN−1

◦ · · · ◦ IΦt2
t1
◦ Φt1

t0
(X0)

≈ Φt0+T
t0

(X0)
(4.7)

The bidirectional method approximates the time-T flow map Φt0+T
t0

by first inte-
grating backward to a reference time, t = 0, then interpolating forward through
a previously computed time-T map, ΦT

0 , and finally integrating forward to time
t0 +T . The unidirectional method approximates the time-T flow map by composing
a number of smaller time flow maps, Φti+h

ti
, which all have the same time direction.

Additionally, the chain rule may be applied to each of the methods, resulting in an
approximation to the flow map Jacobian, DΦt0+T

t0
.
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Exact Flow Map

Integrate

Approximate

Interpolate
Integrate

Time
3h2hh0 . . .. . . T

ΦT
0

Figure 4.3: Schematic for bidirectional method (a). Given a known flow map ΦT
0

(solid black arrow), it is possible to approximate the flow map at later times Φ̃kh+T
kh

(dashed black arrow) by integrating backward in time to t = 0 (black left arrow),
flowing forward through the interpolated map IΦT

0 that was already computed (gray
double arrow), and integrating trajectories forward to the correct final time (black
right arrow).

4.3.1 Bidirectional composition

Bidirectional approximation eliminates redundancy from neighboring FTLE field
computations by using the information from a known flow map at a given time, ΦT

0 ,
to calculate an approximation to the flow map at future times, Φt0+T

t0
. First, X0

is integrated backward from t0 to the reference time 0. The distorted grid Φ0
t0(X0)

is then flowed forward through the interpolated map, IΦT
0 , and finally integrated

forward an amount t0 to the desired time t0 + T :

Φt0+T
t0

= Φt0+T
T ◦ IΦT

0 ◦ Φ0
t0 . (4.8)

The flow ΦT
0 is stored as a reference solution to compute an approximation to the

flow map at later times Φ̃kh+T
kh ≈ Φkh+T

kh by

Φ̃kh+T
kh = Φkh+T

T ◦ IΦT
0 ◦ Φ0

kh k ∈ Z (4.9)

This is referred to as bidirectional method (a), and it is shown in Fig. 4.3.
Instead of using ΦT

0 as the reference solution for every future time, it is convenient
to use the new approximate flow map Φ̃kh+T

kh as the reference solution for the next
iteration, Φ̃(k+1)h+T

(k+1)h :

Φ̃(k+1)h+T
(k+1)h = Φ(k+1)h+T

kh+T ◦ IΦ̃kh+T
kh ◦ Φkh

(k+1)h. (4.10)

Errors compound more quickly because approximate flow maps are used as the
reference solutions for later approximations. However, fewer total integration steps
are required, since the reference map advances with every iteration. This is referred
to as bidirectional method (b), and is shown in Fig. 4.4.
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Integrate

Approximate

Interpolate
Integrate

Time

Exact Flow Map

3h2hh0 . . .. . . T

ΦT
0

Iteration 3

Iteration 2

Iteration 1

Figure 4.4: Schematic for bidirectional method (b). As in Fig. 4.3, a known flow
map (solid black arrow) is used to approximate the flow map at a later time Φ̃kh+T

kh

(dashed black arrow). The approximate flow map (double gray arrow) is used as
the known map for the next step.

Time

Exact Flow Map

. . .

3h2hh0 . . .. . . T+hT

Φh+T
h

Figure 4.5: Schematic for unidirectional method. Time-h flow maps (short double
arrows) are stored and composed to approximate the time-T flow map (long black
arrow). The next flow map only requires integrating one new time-h flow map (gray
double arrow).

4.3.2 Unidirectional composition

The basis of the unidirectional method is to eliminate redundant particle integrations
by only integrating particle trajectories through a given velocity field a single time.
If a sequence of FTLE snapshots is desired at a time spacing of h, for example as
frames in an animation, then it is convenient to break up the time-T flow map into
smaller time-h flow maps, where T = kh:

Φ̃kh
0 = IΦkh

(k−1)h ◦ · · · ◦ IΦ2h
h ◦ Φh

0 (4.11)

This method is called unidirectional because particle flow maps of the same time
direction are used, as opposed to the bidirectional method that composes both
positive-time and negative-time flow maps.

The simplest approach is to compute a number of time-h flow maps and store
them in memory. Then, to construct an approximate Φt0+T

t0
, it remains only to

compose the sequence of interpolated time-h flow maps. The next iteration in-
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Time

Exact Flow Map

. . .

. . .

. . .

. . .

3h2hh0 . . .. . .

Φh+T
h

T h+T

Figure 4.6: Schematic for unidirectional method with multiple tiers. The bottom
tier of time-h flow maps is computed as in Fig. 4.5. Pairs are composed to form the
next tier of time-2h flow maps, and so on. This method requires more storage, but
fewer total compositions when computing a series of FTLE fields for an animation.

volves integrating one more time-h flow map and composing the next sequence, as
in Fig. 4.5.

To further improve efficiency by reducing the total number of flow map compo-
sitions, it is possible to construct a multi-tiered hierarchy of flow maps for reuse in
neighboring flow map constructions. With enough memory, it is possible to reduce
the number of interpolated compositions by increasing the number of tiers of flow
maps, each tier being constructed as the composition of two of the flow maps in the
next tier lower, as in Fig. 4.6.

4.3.3 Chain rule of compositions

As seen in Eq. (4.3), once the flow map Φt0+T
t0

is obtained, it is necessary to com-
pute the flow map Jacobian in order to extract the FTLE. Applying the chain rule
to Eq. (4.5), it is possible to express the flow map Jacobian as a product of the
Jacobians of intermediate flow maps:

D(ΦtN
t0

)(x) = D
(

ΦtN
tN−1

◦ · · · ◦ Φt2
t1
◦ Φt1

t0

)
(x) (4.12)

= DΦtN
tN−1

(
ΦtN−1

t0
(x)
)
× · · · ×DΦt1

t0
(x)

Applied to the bidirectional methods, this yields:

Φh+T
h =Φh+T

T ◦ ΦT
0 ◦ Φ0

h

=⇒ DΦh+T
h (x) =DΦh+T

T

(
ΦT

0 ◦ Φ0
h

)
(x)×DΦT

0

(
Φ0
h

)
(x) ◦DΦ0

h(x), (4.13)

and applied to the unidirectional methods, this yields:

ΦT
0 =ΦT

T−h ◦ · · · ◦ Φ2h
h ◦ Φh

0

=⇒ DΦT
0 (x) =DΦT

T−h

(
ΦT−h

0 (x)
)
× · · · ×DΦ2h

h

(
Φh

0(x)
)
×DΦh

0(x). (4.14)
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Problem Dim. BCs Velocity Field Time Periodic
Double Gyre 2D Closed Analytic Yes

Pitching plate 2D Open Data files (DNS) Yes
ABC flow 3D Periodic Analytic No

Table 4.1: Attributes of each example vector field.

This method adds significant complexity to the computation of the flow map
Jacobian. However, it may be useful to compute the Jacobian of intermediate flow
maps for a detailed stability analysis or to decide on an integration time, T .

4.4 Example velocity fields

A number of velocity fields are used in the following sections to test the fast meth-
ods. The attributes of each example velocity field is given in Table 4.1. Below
is a description of how to compute the given velocity fields and an image of each
corresponding FTLE field.

Double gyre

The double gyre is an analytically defined velocity field that is time-periodic on the
closed and bounded domain, [0, 2]× [0, 1]. The stream-function is

ψ(x, y, t) = A sin (πf(x, t)) sin(πy)

f(x, t) = ε sin(ωt)x2 + x− 2ε sin(ωt)x,
(4.15)

which yields the following vector field

u = −∂ψ
∂y

= −πA sin (πf(x)) cos(πy)

v =
∂ψ

∂x
= πA cos (πf(x)) sin(πy)

df

dx

(4.16)

The positive-time FTLE field for the double gyre is shown in Fig. 4.7. The light
blue ridges are regions with high FTLE, and are candidates for repelling pLCS.

Pitching flat plate

The second example is the unsteady velocity field of a flat plate pitching in a uniform
flow at low Reynolds number, Re = 100. The plate pitches about its leading edge
according to the following angle of attack motion:

α(t) = αmax sin(2πft) (4.17)
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Figure 4.7: FTLE field for double gyre with A = 0.1, ω = 2π/10, ε = 0.25, T = 15.

Figure 4.8: FTLE field for pitching plate at Re = 100, St = 0.274, and T = −15.

with maximum angle of attack, αmax = 20◦, and frequency f = 0.4. The Strouhal
number, St, is a dimensionless pitching frequency given by:

St =
fA

U∞
= 0.274 (4.18)

where A = 2 sin(20◦) is the amplitude of the plate’s excursion, and U∞ = 1 is the
free stream velocity of the uniform flow.

The motion of the plate is simulated with the multi-domain immersed boundary
method of Taira & Colonius [19], which uses a second-order Adams-Bashforth time-
stepper. The output of the direct numerical simulation (DNS) is a time-sequence
of velocity fields spaced 0.05 apart in non-dimensional time units. Each velocity
field snapshot is defined on five nested grids. The finest grid covers a 4× 4 domain
and the coarsest grid covers a 64×64 domain, non-dimensionalized by chord length.
Each grid has resolution 200 × 200. This provides a large computational domain
for integrating particle trajectories. Velocity fields from the DNS are stored on disk
and are loaded for use in FTLE field computations.

The negative-time FTLE field for the pitching plate is shown in Fig. 4.8. The
regions with large FTLE are brightly colored to indicate that they are candidates
for attracting nLCS. In this example, regions of large FTLE clearly outline the wake
and separated flow around the plate.
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Figure 4.9: FTLE field for unsteady ABC flow (A =
√

3, B =
√

2, C = 1, T = −8).

Unsteady ABC flow

The unsteady ABC flow is a 3D flow that is aperiodic in time, has spatially periodic
boundary conditions, and whose velocity field is defined analytically as follows:

ẋ = (A+
1
2
t sin(πt)) sin z + C cos y

ẏ = B sinx+ (A+
1
2
t sin(πt)) cos z

ż = C sin y +B cosx

(4.19)

All FTLE fields are computed on the periodic cube X,Y, Z ∈ [0, 1), where x = 2πX,
y = 2πY , and z = 2πZ. The negative-time FTLE field for the unsteady ABC flow
is shown in Fig. 4.9. Ridges of the FTLE field that are candidates for the attracting
nLCS are colored in red and yellow.

4.5 Comparison of methods to compute approximate
finite-time Lyapunov exponent fields

Each method from Section 4.3 is implemented and tested on three example problems:
the periodic double gyre, 2D flow over a pitching flat plate at Reynolds number 100,
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and 3D unsteady ABC flow. These examples are chosen because they cover a range
of cases, including two-dimensional and three-dimensional vector fields. In addition,
vector fields are either defined analytically or obtained from data files from DNS.
Open, closed, and periodic domains are each investigated.

Each example problem is discussed more in Section 4.4, including details such as
how the velocity field is defined, and on what domain. In the pitching plate example,
velocity field snapshots are all loaded up-front before applying the methods.

!"#$%%&'()* !"+$%,-./.01)*.2-(3 !"4$%5./.01)*.2-(3 !"6$%&'()*%!27728.*19*.:1$

!;#$%%<2=>31%?@01

!;+$%%A.*)B.-C%A3(*1

!;4$%%A.*)B.-C%A3(*1

!;6$%%,-8*1(/@%D5"

Figure 4.10: Graphical comparison of each method on four examples: (top row)
positive-time FTLE of double gyre, (second row) positive-time FTLE of 2D pitching
plate, (third row) negative-time FTLE of 2D pitching plate, (bottom row) negative-
time FTLE of 3D ABC flow. Each figure shows the FTLE field after a number
of iterations of the given method. The number of iterations k was chosen so that
kh ≈ T to magnify the effect of bidirectional error. The column of FTLE fields
calculated using unidirectional composition, (C2), agree well with the exact FTLE
fields computed using the standard method, (C1). The column of FTLE fields
calculated using bidirectional composition, (C3) all have significant error that is
aligned with the opposite-time coherent structures. The opposite-time FTLE fields
are shown in the rightmost column, (C4), for comparison with the bidirectional
method. FTLE fields computed for positive-time flow maps are blue and those
computed for negative-time flow maps are red.
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Table 4.2 summarizes the results comparing each method on the three exam-
ple fluid flows. In each comparison, the standard, unidirectional and bidirectional
methods are used to compute a sequence of FTLE fields, which are frames in an
unsteady animation. The flow map duration used to compute an FTLE field is
T , and the time-spacing between neighboring FTLE fields is h, so the number of
animation frames per flow map duration is T/h. As demonstrated in Section 4.5.2,
this is an upper bound on the speed-up of the unidirectional method.

In each comparison, the unidirectional method accurately reproduces the FTLE
field and offers the greatest speed-up over the standard method. However, it also
requires more memory than any other method. The bidirectional method is fast and
uses less memory than the unidirectional method, but is prone to large errors in the
approximate flow map and does not accurately reproduce the FTLE field. Accuracy
is assessed both visually and with the L2 error norm.

Contour plots of the FTLE fields computed after a number of iterations of each
method are shown in Fig. 4.10. The FTLE fields computed with the unidirectional
method agree with those computed using the standard method, as seen by com-
paring the first and second columns of Fig. 4.10. FTLE fields computed using the
bidirectional method, shown in the third column, have large errors. It is interesting
to note that these errors are aligned with coherent structures found in the opposite-
time FTLE field, shown in the fourth column. An analysis of this coherent error is
provided in Section 4.6.

4.5.1 Example - double gyre

Figure 4.11 shows the L2 and L∞ error of the forward-time FTLE field for the
double gyre computed using the standard method with T = 16, as time-step ∆t
and grid spacing ∆x are varied. At a given grid spacing, a reference FTLE field is
computed using a sufficiently small time-step, ∆t = 10−4, so that the FTLE field
may be considered exact. For small enough time-step ∆t ≈ .001, the FTLE field
error converges. All integrations are performed using a fixed time-step, fourth order
Runge-Kutta scheme.

The flow map approximation methods are only faster than the standard method
when used to compute a sequence of FTLE fields in time, as in the construction of
frames for a movie. Figure 4.12 compares computation time and L2 error vs. frame
number (iteration #) for a sequence of FTLE fields of the double gyre, computed
using the standard, unidirectional, and bidirectional methods. Each iteration pro-
duces an FTLE field that is a single frame in an animation of the unsteady FTLE
field. In this example, the flow map duration is T = 16, the time spacing between
each FTLE field is h = 1, and the time-step of integration is ∆t = 0.01. The
multi-tier unidirectional method uses four tiers.

The first FTLE field takes roughly the same time to compute using each of the
methods. However, for subsequent iterations, the unidirectional and bidirectional
methods are significantly faster. The computation time of bidirectional method (a)
increases with the number of iterations, k, because integrating back from t = kh
to the reference time t = 0 becomes more costly as k increases, as seen in Fig. 4.4.
After T/2h = 8 iterations of bidirectional method (a), it is advantageous to compute
a new reference flow map using the standard method. This explains the breaks in
the solid red curve in part (b) of Fig. 4.12, as the bidirectional method is exact
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Figure 4.11: Convergence tests for L2 and L∞ error of the FTLE field vs. integration
step and grid spacing on double-gyre.

at these iterations. Bidirectional method (b) overcomes this increasing cost vs.
iteration by using the flow map from the current iteration as the reference flow map
at the next iteration. However, using an approximate flow map to compute the next
approximation causes bidirectional method (b) to accumulate error more quickly
than method (a). The unidirectional method is both the fastest and most accurate
method in this comparison.

4.5.2 Computational resources

Again, consider a sequence of time-T flow maps spaced h apart, as might be required
for an unsteady visualization. When there are many integration time-steps of size
∆t between each neighboring flow map, i.e. ∆t � h, then the added cost of flow
map composition becomes relatively small compared with the cost of integrating a
time-h flow map.

All methods take about the same amount of time to compute the first FTLE field
in the sequence. For subsequent iterations, the standard method involves (T/h) ×
(h/∆t) integration steps for each new FTLE field, whereas the unidirectional method
only requires h/∆t integration steps, and bidirectional method (b) requires 2h/∆t
integration steps. Assuming ∆t � h, the speed-up of the unidirectional method

46



! " #! #" $! $" %!
#!

!"

#!
!&

#!
!%

#!
!$

#!
!#

'()*+(,-./0

1
$
/2
**
-
*

/

/

3.,4,*)5(,-.+6/78,.96)/(,)*:

3.,4,*)5(,-.+6/7;<6(,!(,)*:

=,4,*)5(,-.+6/7+:

=,4,*)5(,-.+6/7>:

! "# "! $# $! %#

"#
$

"#
%

"#
&

'()*+(,-./0

1
-
2
3
4
(+
(,
-
.
/5
,2
)
/6
7
8

/

/

9(+.:+*:

;.,:,*)<(,-.+=/67,.>=)/(,)*8

;.,:,*)<(,-.+=/624=(,!(,)*8

?,:,*)<(,-.+=/6+8

?,:,*)<(,-.+=/6@8

!"#

!$#

Figure 4.12: Comparison of methods for computing the FTLE field of the double
gyre with resolution 1024× 512. Each method is iterated to compute a sequence of
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Iteration.
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over the standard method will increase as the number of frames in the animation
per flow map duration, T . In other words, as ∆t/h→ 0, the computation of Φt0+T

t0
using the unidirectional method is T/h times faster than using the standard method,
and twice as fast as the bidirectional method.

In the examples above, all intermediate flow maps were stored in memory until
no longer useful for future computations. Regardless of any parameters of the FTLE
field animation, the standard and bidirectional methods must store a fixed number
of flow maps. The standard method stores the single flow map Φt0+T

t0
, while the

bidirectional method stores three maps: Φ0
t0 , ΦT

0 , and Φ̃t0+T
t0

. The unidirectional
method, however, stores every intermediate time-h flow map Φkh

(k−1)h, of which there
are T/h. Therefore, the memory requirement of the unidirectional method scales
linearly with the upper-bound on its speed-up, T/h.

The memory usage of the unidirectional method scales with the dimension of
the flow D, the spatial resolution R, and the possible computational speed up of the
method S, given by T/h:

Memory (GB) ∼ S ×D ×RD (4.20)

=
8 B/double
10243 B/GB

× T

h
×D ×RD (4.21)

For example, a series of two dimensional, high-definition (1920 × 1080 resolution)
FTLE fields may be computed using the unidirectional method with up to 100×
speed up using approximately 3.1 GB of RAM. A three dimensional FTLE field
with resolution 512 × 256 × 64 may be computed with up to 100× speed up with
approximately 19 GB of RAM.

In the double gyre and ABC flow examples, the velocity field is defined ana-
lytically, according to Eqns. (4.16) and (4.19). Thus, in these two examples, the
velocity field is calculated analytically at every time, and no velocity fields need
to be stored in data files. However, in the pitching plate example, velocity fields
are obtained from data files that are the output of a direct numerical simulation.
Because loading velocity fields from a hard disk is slow, it is important to minimize
the number of file loads. In the pitching plate example, all of the velocity fields are
loaded up-front and stored in memory throughout the computation. However, veloc-
ity fields are often too large to store them all in memory, for example in large 2D or
3D simulations, so that subsequent iterations of the methods require re-loading the
same velocity field data from previous iterations. In practice, although loading data
files is time consuming, it represents a fraction of the cost of particle integration.

4.6 Error analysis of flow map approximation

The aim of this section is to explain why the method of unidirectional composition
is accurate while bidirectional composition is prone to large errors. Moreover, why
are the errors in the bidirectional method found in regions of high FTLE of the
opposite-time flow map, as illustrated in the third and fourth columns of Fig. 4.10?

For a given particle in a flow, larger finite-time Lyapunov exponent indicates
greater stretching between neighboring particles and more sensitive dependence on
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initial conditions. Thus, the trajectories of particles with large FTLE are more
sensitive to errors in their initial conditions.

The set Σα(Φ), defined as the set of points x with FTLE above a threshold value
α,

Σα(Φ) = {x | σ(Φ; x) > α}, (4.22)

is the collection of points where error will magnify the most through the map Φ.
The flow map approximations above all involve composing intermediate flow maps,

Φ2 ◦ Φ1, (4.23)

so it is important to know what points flow into Σα(Φ2) through the map Φ1. In
other words, we want to describe the set Φ−1

1 (Σα(Φ2)) = {x | Φ1(x) ∈ Σα(Φ2)},
and this is the subject of Section 4.6.1.

If the flow map Φ2 is defined on a regular grid X0, it is necessary to pass tra-
jectories of Φ1 through the interpolated map I(Φ2|X0). This is the source of error
in the flow map approximations, and this error is significant when the trajectories
of Φ1 pass into the set Σα(Φ2), where FTLE is large. Using a nearest neighbor
interpolation, the interpolation error becomes particularly simple:

Φ2(Φ1(x)) ≈ I(Φ2|X0)(Φ1(x)) = Φ2(Φ1(x) + ε) (4.24)

where x ∈ X0, and ε is the difference between Φ1(x) and its nearest neighbor in
X0. However, each approximate method has been tested using nearest neighbor,
linear, and bicubic spline interpolations with no significant qualitative change in
results. The propagation of interpolation error using unidirectional and bidirectional
composition is the subject of Section 4.6.2.

4.6.1 Accumulation of particles

The main result of this section is that particles near the positive-time LCS (pLCS)
flow into particles near the negative-time LCS (nLCS) in forward time, and vice-
versa. This is consistent with the fact that pLCS and nLCS correspond to finite-time
unstable and stable manifolds, respectively; it is observed in Figs. 4.13 and 4.14 for
the pitching plate and double gyre examples.

Figure 4.13 shows particles in the set Σ0.14(ΦT
0 ), defined in Eq. (4.22), near

the pLCS of the pitching plate example. As the particles convect downstream,
they attract onto the nLCS. Compare this figure with the first and last panel of
the second row of Figure 4.10 to see what the pLCS and nLCS look like for this
example. Similarly, Fig. 4.14 shows points in Σ0.3(Φ−T0 ) near the nLCS of the double
gyre example being integrated in negative time until they attract onto the pLCS.
Compare this figure with the first and last panel of the first row of Fig. 4.10 to see
the pLCS and nLCS of the double gyre.

The bottom panel of Fig. 4.14 is a zoom-in of the tangle of particles near a time-
dependent saddle point at T = −10. A point x(t) is a time-dependent saddle if it is
at the transverse intersection of the pLCS and the nLCS. It is numerically observed
that these saddles mediate transport of particles near the pLCS into particles near
the nLCS in positive time.
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T = 0. (a) (b) (c) (d) (e) T = -5.

T = 0. T = 2.5 T = 5. T = 7.5 T = 10. T = 15. T = 3. T = 6. T = -5.

T = 0. T = 2.5 T = 5. T = 7.5 T = 10. T = 15. T = 3. T = 6. T = -5.

T = 0. T = 2.5 T = 5. T = 7.5 T = 10. T = 15. T = 3. T = 6. T = -5.

Figure 4.13: Particle trajectories of the set Σ0.14(Φ15
0 ) for the pitching flat plate.

Particles near the pLCS are integrated forward until they attract near the nLCS.
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T = -10. T = -15.

T = 0. (a) (b) (c) (d) (e) T = -5.T = 0. (a) (b) (c) (d) (e) T = -5.

T = -10. T = -15.(a)

(b)

Figure 4.14: (top) Particle trajectories of the set Σ0.3(Φ−15
0 ) for the double gyre. As

particles on the nLCS are integrated backward they adhere to the pLCS. (bottom)
The time-dependent saddle (intersection of pLCS and nLCS) at T = −10 is blown-
up to show the heteroclinic tangle.

Further, suppose that x(t) persists as a time dependent saddle over a range of
time t ∈ (t0 − T − ε, t0 + T + ε), where ε > 0 ensures uniform hyperbolicity. The
positive and negative-time FTLE properties of this point establish an exponential
dichotomy, which implies that x(t) is a time-dependent hyperbolic trajectory [127].
This trajectory now carries with it all of the regular theory about saddles, including
Hartman-Grobman and Stable/Unstable Manifold Theorems. In particular, we may
consider the pLCS (resp. nLCS) to be the time-dependent stable (resp. unstable)
manifold of x(t).

Applying the Lambda lemma [44], it follows that a disk that intersects the pLCS
transversely will attract arbitrarily C1 close to a disk on the nLCS in positive-time,
eventually. In the examples shown above, we observe a similar phenomena, namely,
that in the neighborhood of a time-dependent saddle, the particles near the nLCS
came from particles near the pLCS at an earlier time.

Similarly, it is possible to flow particles with large positive-time FTLE backward
in time, and vice-versa, resulting in a set that resembles a positive-time LCS com-
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T = 0. (a) (b) (c) (d) (e) T = -5.T = 0. (a) (b) (c) (d) (e) T = -5.

Figure 4.15: Particle trajectories of the set Σ0.3(Φ−15
0 ) for the double gyre. Particles

on the nLCS are flowed forward, shown in (a), resulting in a longer time nLCS,
shown in (b).

ΦT

=⇒
ES

WS

WU

EU

ES

WS

WU

EU

Figure 4.16: Schematic of time-dependent saddle point mediating the transport
of material near the stable manifold, WS , (left) into material near the unstable
manifold, WU , (right) after a time−T map.

puted using a longer integration time. This is observed in Fig. 4.15, where particles
in Σ0.3

(
Φ−15

0

)
are flowed forward along Φ15

0 , resulting in a set that accumulates on
the nLCS of the longer-time flow Φ−15

15 .
A simplified schematic of the ideas above is shown in Figure 4.16.

4.6.2 Propagation of interpolation error

Consider the bidirectional composition of a positive-time flow map ΦT with a
negative-time flow map Φ−T , where error ε is introduced due to interpolation:

ΦT
(
Φ−T (x) + ε

) ≈ ΦT
(
Φ−T (x)

)
+ DΦT

(
Φ−T (x)

) · ε
= x + DΦT

(
Φ−T (x)

) · ε (4.25)
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The composition error is largest for points x ∈ X0 where DΦT
(
Φ−T (x)

)
is large.

From Eqns. (4.3) and (4.4), we have the following relationship:

‖DΦT (y)‖ ≥ eα|T | for y ∈ Σα(ΦT ) (4.26)

where ‖A‖ = max
x

‖Ax‖2
‖x‖2 is the maximum singular value of A. Thus, composition

error is large at points x, where y = Φ−T (x) is in the set Σα(ΦT ), for large α and
T .

Moreover, the results of the previous section indicate that points x satisfying
Φ−T (x) ∈ Σα(ΦT ) originate in the set Σβ(Φ−T ) near the nLCS, in a neighborhood
of a time-dependent saddle. Therefore, it is seen that the composition error will be
largest at points x ∈ Σβ(Φ−T ), near the nLCS.

Now, consider the unidirectional composition of two positive-time flow maps,
with interpolation error ε:

ΦT
(
ΦT (x) + ε

) ≈ ΦT
(
ΦT (x)

)
+ DΦT

(
ΦT (x)

) · ε
= Φ2T (x) + DΦT

(
ΦT (x)

) · ε (4.27)

Here the error is largest for points x ∈ X0 where DΦT
(
ΦT (x)

)
is large. Again,

DΦT (y) is large when y ∈ Σα(ΦT ), for sufficiently large α and T .
In unidirectional composition, because the pLCS is repelling in positive time,

points x ∈ X0 must be exactly in Φ−T
(
Σα(ΦT )

)
, or else they will repel away from

the regions where error is magnified. Similarly for bidirectional composition, because
the pLCS is attracting in negative time, points will attract toward the regions where
error magnifies. For this reason, the unidirectional method is robust to interpolation
error, while the bidirectional method amplifies this error.

4.7 Summary of fast methods

A number of methods have been developed for the efficient computation of finite-
time Lyapunov exponent (FTLE) fields in unsteady flows. In particular, the methods
speed up the computation of a sequence of FTLE fields in time, used for frames of a
movie, by approximating the particle flow map with information from neighboring
times. The methods fall into two categories of flow map approximation based on
composition of intermediate flow maps of the same time direction (unidirectional) or
of both positive and negative-time directions (bidirectional). The main result is that
the unidirectional method is both fast and accurate: the computational savings over
the standard method are proportional to the number of FTLE fields being computed
per time T . The unidirectional method provides one or two orders of magnitude
computational savings over the standard method on the three example flows, as
summarized in Table 4.2.

The bidirectional methods are also fast and use less memory than the unidi-
rectional methods; however, bidirectional methods suffer from large errors that are
concentrated along regions where the opposite-time FTLE field is large, in the vicin-
ity of time-dependent saddle points. This coherent error was unexpected, but it is
explained by dynamical systems theory. Particles close to the pLCS near a time-
dependent saddle will map into particles close to the nLCS in positive time. This
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result extends the relevance of Lagrangian coherent structure analysis to near iden-
tity maps in general.

The fast methods are implemented on three example velocity fields, chosen to
represent typical fluid flows. The performance of each method is compared on the
basis of computation time, accuracy and memory usage. The results of the method
comparisons are summarized in Table 4.2 and Fig. 4.10. The unidirectional algo-
rithm works well on 2D and 3D domains with either compact or spatially periodic
domains. For open domains, as in the example of the pitching plate in a free stream
velocity, the unidirectional method accurately computes the negative-time FTLE
fields corresponding to the attracting set, or nLCS. However, error is introduced
when computing the positive-time FTLE field, as particle trajectory information is
lost downstream of the FTLE domain. This loss of information is not a problem
when computing the nLCS because trajectory information upstream of the plate is
well approximated using uniform flow. In experiments, however, velocity field data
might only be available on a restricted domain, limiting the size of the FTLE do-
main. In this case, the unidirectional and standard methods will produce matching
positive-time FTLE fields.

There are a number of future directions that might arise from this work. First,
FTLE algorithms lend themselves to parallelization, so it is conceivable that with
further optimization, it will be possible to obtain real-time FTLE visualizations for
interesting problems. It would also be interesting to extend the above methods to
incorporate adaptive mesh refinement (AMR) as well as complex domain geometries.
Additionally, it is important to more precisely determine how and when particles
near the pLCS flow into particles near the nLCS in positive-time.
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Chapter 5

Unsteady aerodynamic models
based on the Navier-Stokes
Equations

This chapter develops the reduced order modeling framework that is used extensively
in later chapters. Section 5.1 provides an overview of the models and clarifies the
coordinate systems that are used throughout. Section 5.2 presents linear state-
space models for the lift coefficient in response to pitching, plunging, and surging
motion. Section 5.3 contains the algorithms used to construct these linear models
from numerical or experimental data. System identification maneuvers are specially
developed in Section 5.4 for either wind tunnel simulations or experiments.

The models in this chapter are obtained from the linearized Navier-Stokes equa-
tions, and they capture the viscous fluid dynamic forces that are important at low
Reynolds number. The quasi-steady and added-mass forces are isolated in these
models, and the reduced order modeling effort targets intermediate frequencies.
This results in accurate models of low order. These reduced order models may be
obtained from expensive high fidelity simulations and wind tunnel tests.

5.1 Overview

Aerodynamics involves the study of forces and moments on a body moving through
a fluid. In particular, the unsteady Navier-Stokes equations describe a nonlinear
dynamical system for the evolution of an unsteady fluid velocity field interacting
with itself and with immersed bodies according to Newton’s second law of motion.
In addition, we assume incompressibility, and impose a boundary condition u = uB
on the body surface. The input to this dynamical system is the motion of the
immersed body, which enters as a time-varying boundary condition. Additionally,
if we are interested in the unsteady aerodynamic forces and moments on the body,
the output is a nonlinear function of the fluid velocity field. In particular, we seek
unsteady aerodynamic models of the form:

ẋ = f(x,u;µ)
y = g(x,u;µ)

(5.1)

55



where x ∈ Rn contains relevant information about the aerodynamic state (vorticity
or velocity field, angle of attack, amount of separation, etc.), u ∈ Rp contains the
inputs to the system (wing kinematics, actuators, etc.), y ∈ Rq are the outputs of
interest (forces, moments, pressure, etc.), and µ ∈ Rk are the bifurcation parameters
(Reynolds number Re, etc.). f is related to the nonlinear Navier-Stokes equations,
for example as the discretized equations from a fluid solver, or the equations resulting
from Galerkin projection onto a set of basis modes.

For a model of the unsteady lift given pitching motion, a general state x will
include information about the fluid state x (a vector containing either the vorticity
ω or velocity u at each grid point), as well as the angle of attack α, and the rate α̇:

ẋ ,
d

dt

xα
α̇

 =

fNS(x, α, α̇, α̈)
α̇
α̈

 (5.2)

y = glift(x, α, α̇, α̈)
= gν(x, α, α̇) + gφ(α̇, α̈)

(5.3)

The output is split into the viscous forces gν and the added-mass forces gφ, which
depend linearly on α̇ and α̈. The input to Eq. (5.1) could also be vertical plunging
motion ḧ or horizontal surging motion g̈, which will be considered in Section 5.2.2.

5.1.1 Coordinate systems

The coordinate system used throughout this chapter is chosen to be consistent with
the notation used in Theodorsen’s seminal paper [114]. This notation is still widely
used in the unsteady aerodynamics community [78]. Unless explicitly stated, co-
ordinates are referenced to an inertial wind frame where the wind velocity has a
constant magnitude U∞ and is positive right and horizontal. The angle of attack
α is the angle of inclination of the airfoil with respect to the wind velocity, and it
follows a left-hand rule convention; motion in this direction is called pitch. The ver-
tical position of the axis of rotation is given by h and is positive downward; motion
in this direction is called plunge. The horizontal position of the axis of rotation is
given by g, and is positive left; motion in this direction is called surge. Therefore,
the configuration of the airfoil is given uniquely by (g, h, α). This is different than
the coordinate system typically used for flight dynamics, where α is the difference
between the body x-axis angle (θ) and the velocity vector angle (γ) [110]. However,
aerodynamicists typically introduce the effective angle of attack αe, which takes into
consideration the contribution of surge g and plunge h motion to the flight path an-
gle. Therefore, (g, h, α, αe) are equivalent to (−x,−y,−θ, α) from Chapter 3.

It will also be useful to consider the non-inertial body frame where coordinates
(ξ, η, α) are referenced to the body: ξ is motion parallel to the airfoil, η is motion
normal to the airfoil, and α is pitch motion. ξ is called slice and η is called normal
plunge, distinguishing it from vertical plunge h. Note that the variables g, ξ, and η
and the names slice and normal plunge are not standard, but are introduced here.

Finally, the models in Eq. (5.5), (5.6), and (5.7) are constructed for pitching
motion about a specific pitch axis location p, measured in downstream chord lengths
from the leading edge. Thus, if g = h = constant, then θ = α = αe.
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5.2 Linearized aerodynamic models

The models in this section are linearizations of Eqs. (5.1) about an equilibrium x̄.
Translating x̄ to the origin, x = x− x̄, yields the standard state-space system:

ẋ = Ax +Bu

y = Cx +Du
(5.4)

where A = ∂f/∂x|x̄, B = ∂f/∂u|x̄, C = ∂g/∂x|x̄, and D = ∂g/∂u|x̄.
For the models below, the output is y = CL where CL = 2L/ρU2

∞S is the non-
dimensional lift coefficient; L is lift, ρ is density, U∞ is free-stream velocity, and S
is wing surface area. The input u will either be pitch α̈ in Section 5.2.1, plunge ḧ
or surge g̈ in Section 5.2.2, or some combination

[
α̈ ḧ g̈

]T
in Section 5.2.3.

5.2.1 Pitch models

Linearizing Eqs. (5.2) and (5.3) about an equilibrium x̄(α0) at a base angle of attack
α0 < αcrit yields a model for the lift coefficient CL in response to pitch motion α̈:

d

dt

xα
α̇

 =

A B1 B2

0 0 1
0 0 0

xα
α̇

+

B3

0
1

 α̈
(5.5)

CL =
[
C Cα Cα̇

] xα
α̇

+ Cα̈α̈

where A = ∂fNS/∂x, B1 = ∂fNS/∂α, B2 = ∂fNS/∂α̇, B2 = ∂fNS/∂α̈, C = ∂gν/∂x,
Cα = ∂gν/∂α, Cα̇ = ∂(gν + gφ)/∂α̇, and Cα̈ = ∂gφ/∂α̈. This model, and all pitch
models that follow, are linearized about an equilibrium state x̄(α0) at a base angle
of attack α0. The models in Eq. (5.6), (5.7), and (5.10) are developed for pitching
about a specific pitch axis location p, measured in downstream chord lengths from
the leading edge (e.g., p = 0.0 is the leading edge, and p = 1.0 is the trailing edge).
Eq. (5.5) is consistent with Theodorsen’s model in Eq. (6.18) with B3 = 0.

The model in Eq. (5.5) is in a general form with no assumption made about the
fluid state x. However, from Section 2.5, the flow responds instantaneously to pitch
acceleration α̈ with an unsteady (irrotational) potential flow, resulting in the added
mass forces Cα̇α̇ and Cα̈α̈. Thus, if the fluid state x represents vorticity, B3 = 0, so
that α̇ is the input to the transient fluid dynamics given by (A,B,C) in Eq. (5.6).

d

dt

xα
α̇

 =

A 0 B
0 0 1
0 0 0

xα
α̇

+

0
0
1

 α̈
(5.6)

y =
[
C Cα Cα̇

] xα
α̇

+ Cα̈α̈
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The term B1 has been set equal to 0 in Eq. (5.6). This is possible if A is invertible
by introducing the new state variable x̃ = x + A−1B1α. Thus, A and C are the
same in Eqs. (5.5) and (5.6), and B = B2 +A−1B1. The coefficient Cα in Eq. (5.6)
is equal to Cα −CA−1B1 in terms of Eq. (5.5). However, CA−1B1 is equal to zero.

Similarly, if the fluid state x represents the velocity, then B3 is nonzero, so that
α̈ is the input to the transient fluid dynamics given by (A,B,C) in Eq. (5.7).

d

dt

xα
α̇

 =

A 0 0
0 0 1
0 0 0

xα
α̇

+

B0
1

 α̈
(5.7)

y =
[
C Cα Cα̇

] xα
α̇

+ Cα̈α̈

It is important to show how the models in Eq. (5.6) and Eq. (5.7) are related to
each other and to the linearized model in Eq. (5.5). The primary difference between
these models is in how the wing motion (α, α̇, α̈) enters into the x-dynamics. In
particular, consider the system

ẋ = Ax+Bu

y = Cx
⇐⇒ Y (s) = G(s)U(s) (5.8)

whereG(s) = C(sI−A)−1B is the transfer function relating the Laplace transformed
input U(s) and output Y (s) signals. It is possible to construct an equivalent system
(Ã, B̃, C̃, D̃) with input ũ =

∫
u dt, since G(s) is strictly proper (i.e., D = 0). The

new transfer function G̃(s) = sG(s) is proper, and D̃ = −CA−1B if A is invertible.
Each of the models in Eqs. (5.5), (5.6), and (5.7) are useful in various contexts.

This will be discussed in Section 5.2.4.

5.2.2 Plunge and surge models

Models for plunge and surge are closely related to the pitch models above, except
that there is no steady-state force associated with a specific horizontal position g or
vertical position h; thus, there are no Cg or Ch coefficients in the model. Because g̈
and ḧ contribute to the rate of effective angle of attack, α̇e, these generate vorticity
and are considered to be the inputs to the transient dynamics x. A simple plunge
model is given in Eq. (5.9).

d

dt

[
x

ḣ

]
=
[
A 0
0 0

] [
x

ḣ

]
+
[
B
1

]
ḧ

(5.9)

CL =
[
C Cḣ

] [x
ḣ

]
+ Cḧ ḧ

Surge is identical, with g replacing h.
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5.2.3 Combined pitch, plunge and surge models

It is possible to combine the pitch, plunge and surge models above. We may use
either pitch formulation above (with either α̇ or α̈ as input to the state x). Com-
bining the pitch model in Eq. (5.7) with plunge and surge models in Eq. (5.9) yields
the following multiple-input single-output (MISO) model:

d

dt


x
α
α̇

ḣ
ġ

 =


A 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



x
α
α̇

ḣ
ġ

+


B1 B2 B3

0 0 0
1 0 0
0 1 0
0 0 1


α̈ḧ
g̈


(5.10)

CL =
[
C Cα Cα̇ Cḣ Cġ

]

x
α
α̇

ḣ
ġ

+
[
Cα̈ Cḧ Cg̈

] α̈ḧ
g̈



The model in Eq. (5.10) is linearized about a base angle of attack α0 and a
specific pitch axis location p. However, it is possible to obtain a more general MISO
model that is parameterized by the pitch axis location p. All pitch motions about a
given pitch point p may be considered a combination of pitch about the mid-chord
(or any point of interest) and an induced plunge and surge motion. The magnitude
of the induced plunge and surge motions at the middle-chord location are aC0α̈/2
and aS0α̈/2, respectively, where a = −1 + 2p, C0 = cos(α0), and S0 = sin(α0).
Note that this is not an approximation but an exact kinematic transformation; this
idea is used in Theodorsen’s model in Chapter 6. The case of mid-chord pitching
is particularly interesting, at least for a symmetric flat plate airfoil, because the
added-mass forces proportional to α̈ are zero. A model that is parameterized by the
pitch axis location p, via a = −1 + 2p, is given in Eq. (5.11).

d

dt


x
α
α̇

ḣ
ġ

 =


A 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



x
α
α̇

ḣ
ġ

+


B1 + a(C0B2 + S0B3)/2 B2 B3

0 0 0
1 0 0

aC0/2 1 0
aS0/2 0 1


α̈ḧ
g̈


(5.11)

CL =
[
C Cα Cα̇ Cḣ Cġ

]

x
α
α̇

ḣ
ġ

+
[
Cα̈ + a(C0Cḧ + S0Cg̈)/2 Cḧ Cg̈

] α̈ḧ
g̈



Here, (A,B1, B2, B3C) are from the model in Eq. (5.10) for the case of pitch about
the mid-chord. Alternatively, it is convenient to use body-frame coordinates (ξ, η, α),
as discussed in Section 5.1.1. This results in the slightly simpler model in Eq. (5.12)
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because at any base angle α0, the induced acceleration of the mid-chord point is
entirely in the normal plunge direction η. In the case of α0 = 0◦, the models in
Eqs. (5.11) and (5.12) are equivalent. It is often the case that the dynamics in the
ξ or slice direction are negligible, so that this term may sometimes be removed.

d

dt


x
α
α̇
η̇

ξ̇

 =


A 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



x
α
α̇
η̇

ξ̇

+


B1 + aB2/2 B2 B3

0 0 0
1 0 0
a/2 1 0
0 0 1


α̈η̈
ξ̈


(5.12)

CL =
[
C Cα Cα̇ Cη̇ Cξ̇

]

x
α
α̇
η̇

ξ̇

+
[
Cα̈ + aCη̈/2 Cη̈ Cξ̈

]α̈η̈
ξ̈



5.2.4 Summary of models

The models developed in this section isolate the asymptotic low-frequency and high-
frequency behavior due to the configuration variables (i.e., Cα, Cα̈, etc.) from the
transient fluid dynamic effects, which are captured by the state x. Recall that the
state x is a large vector corresponding to either the velocity or vorticity at each grid
point of the discrete Navier-Stokes equations, Eq. (5.1), and the transient dynamics
will capture viscous effects that are neglected in the classical theory. This approach
allows us to focus our reduced order modeling effort, detailed in the next section,
to a narrow range of frequencies where the transient dynamics dominate.

Each of the pitch models in Eqs. (5.5), (5.6), and (5.7) may be useful, depending
on the specific problem. The model in Eq. (5.5) is in a general form, and a variant
is used to represent Theodorsen’s model in state-space in Chapter 6. However,
it is difficult to separate the effects of α, α̇, and α̈ on the x-dynamics using the
system identification techniques in Sections 5.3 and 5.4. The models in Eqs. (5.6)
and (5.7) are both well suited for models based on simulations, as demonstrated in
Chapter 7, and each model has its relative strengths. For example, the algorithm in
Section 5.3.2 for obtaining a reduced order model of the form in Eq (5.6) is simple
and accurate. However, the model in Eq. (5.7) may be constructed using realistic
input maneuvers with the observer/Kalman filter identification (OKID) method, as
discussed in Section 5.3.4. This is particularly useful in Chapter 8 for models based
on wind tunnel measurements.

The multiple input models in Eqs. (5.10), (5.11), and (5.12) have pitch dynamics
of the form in Eq. (5.7), although they could equally well have been formulated using
the pitch models in Eqs. (5.5) or (5.6). Although the models parameterized by pitch
axis location, Eqs. (5.11) and (5.12), are quite general, it is often the case that a
model about a single pitch axis is sufficient.

It is worth noting that the matrices A,B1, B2, B3, and C in Eqs. (5.5), (5.11),
and (5.12) are not equal, although they are the same for Eqs. (5.10) and (5.11).
Additionally, the matrices A,B, and C in Eqs. (5.5), (5.6), (5.7), and (5.9) are not
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necessarily equal to each other. The A,B, and C matrices and the coefficients Cα̇
and Cα̇ in Eqs. (5.5), (5.6), (5.7), and (5.10) depend on the pitch axis location p.
The matrix A has dimension n× n, the B matrices have dimension n× 1, and the
matrix C has dimension 1× n, where n is the dimension of the fluid state, x ∈ Rn.
Finally, the matrices and constants for every model in this chapter depend on the
base angle of attack. α0.

5.3 Algorithms for obtaining linearized models

The algorithms in this Section provide a methodology for obtaining low-order models
for Eqs. (5.6), and (5.7) from either numerical or experimental data. There are three
basic algorithms that may be extended or modified as necessary. These methods are
presented for the case where the input is pitch acceleration α̈ and the output is the
lift coefficient CL. However, they may be generalized to include plunge and surge
input motions, as well as drag and moment coefficient outputs.

In all of the models that follow, the quasi-steady and added-mass forces are
identified first, guaranteeing correct behavior in the limit of low and high frequency
motion. Then, the eigensystem realization algorithm (ERA) is used to identify the
unsteady aerodynamics at intermediate frequencies due to the transient dynamics
of the viscous fluid. This allows us to focus the reduced order modeling effort in the
frequency range where the transient dynamics are important.

It may appear at first glance that it would be simplest to use the ERA/OKID
method from Section 2.2 to identify a reduced order model for the entire model in
Eq. (5.6) or Eq. (5.7). However, the structure of the model, with added-mass forces
proportional to α̈ and quasi-steady forces proportional to α, makes it important
to subtract these off before modeling the remaining transient dynamics with ERA.
There are two reasons: First, the input should be α̈ for the system to be proper, and
identifying an ERA model with input α̈ from OKID, without modification, yields
an unstable system. Second, if OKID/ERA is applied assuming that the input is
α̇, a large model order is required to approximate the derivative, α̈, and the model
will be inaccurate at high frequencies. This concept is illustrated on an example in
Section 5.3.5.

5.3.1 General procedure for all methods

All of the algorithms below share some common features, and they are each based
on an impulse response in either α̇ or α̈, which corresponds to a step response in
either α or α̇, respectively. The step response may be obtained directly or esti-
mated from a frequency-rich input/output maneuver using the observer/Kalman
filter identification (OKID) method. An overview of the OKID method is presented
in Section 2.2.2.

The next step is to identify the quasi-steady and added-mass coefficients Cα, Cα̇,
and Cα̈ from the impulse response in either α̇ or α̈. After subtracting off these effects,
the last step is to identify the remaining transient dynamics using the eigensystem
realization algorithm (ERA), which is reviewed in Section 2.2.1. The transient
portion (A,B,C) of the model in Eqs. (5.6) and (5.7) is approximated by the ERA
model (Ar, Br, Cr) of order r � n = dim(A); the input is either α̇ or α̈, and the
output is CL. This splitting of quasi-steady, added-mass, and transient effects is
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+ CL

G(s)

quasi-steady & added mass

transient dynamics

α̈

Cα̈

Cα̇

s

Cα

s2

Figure 5.1: Schematic for transfer function of reduced order model (5.7) based on
indicial response. G(s) = C(sI −A)−1B where (A,B,C) are given in Eq. (5.7).

illustrated in Figure 5.1 for Eq. (5.7), where G(s) = C(sI − A)−1B is the transfer
function for the transient dynamics. The general procedure is summarized as follows:

1. Obtain the impulse response in either α̇ or α̈, possibly via OKID.

2. Determine the coefficients Cα and Cα̈, which guarantee correct low frequency
and high frequency behavior of the model, respectively.

3. Identify remaining dynamics by the eigensystem realization algorithm (ERA).

Identification of Cα and Cα̈ is discussed in Section 5.3.2. Determining Cα̇ is
an important step in Section 5.3.2, but is optional in the other algorithms. When
α̈ is the input to (A,B,C), as in Eq. (5.7), the Cα̇ contribution is captured by
lims→0C(sI −A)−1B = −CA−1B.

Before providing details of each specific method, it is helpful to consider a typical
step response for an unsteady aerodynamic system modeled by Eq. (5.6) or Eq. (5.7).
The actual aerodynamic step responses used in later chapters have many temporal
and spatial scales, due to the order of magnitude difference in various forces at
different frequencies. Therefore, to make the individual features more apparent, we
use a slower version of the step maneuver from Section 5.4.1 on a modified system
with many of the same features as the aerodynamic systems we seek to model.

Figure 5.2 shows a sketch of a typical step response in α for a wing pitching
about a point in front of the mid-chord. The top plot shows the lift coefficient
history throughout the step, and the bottom three plots show the angle of attack
and its derivatives throughout the maneuver. The step response is characterized
by large added-mass forces during the step (1 and 2), followed by a transient lift
(3), which decays to a steady-state value (4) after a large number of convective
times. The added-mass forces are a combination of terms proportional to α̇ (B)
and α̈ (C), and may be written as Cα̇α̇ + Cα̈α̈. The steady-state lift is given by
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Figure 5.2: Aerodynamic response for step in angle of attack about the leading edge.

Cαα, where Cα is the lift coefficient slope. Finally, the transient lift in region (3)
comes from unsteady fluid dynamic effects. The fluid dynamic transients include
separation bubble dynamics and other boundary layer effects, which are observed
in experiments and simulations. These transients are represented by Cx, where x
represents the generalized fluid dynamic state. This gives the following expression:

CL(α, α̇, α̈, x) = Cαα+ Cα̇α̇+ Cα̈α̈+ Cx. (5.13)

The coefficient Cα in Eq. (5.13) is equal to the stability derivate CLα , and the
expression is generalized to include fluid dynamic transients via the state x. Because
the transient dynamics arise from viscous fluid interactions, it is not possible to
model them in terms of coefficient expansions of derivatives of the configuration
variables.

For all of the methods that follow, let ∆tf be the time step for the time-resolved
measurements and ∆tc be the time step for coarse sampling and for the resulting
discrete-time model. Further, let Y =

[
Y0 Y1 . . . YN

]T be a vertical vector of

lift coefficient outputs Yk = CL(k∆tf ) and U =
[
U0 U1 . . . UN

]T be a vertical
vector of inputs Uk = α̈(k∆tf ) measured at times k∆tf .
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Figure 5.3: Illustration of method 1. (top) Lift coefficient in response to smoothed
ramp-step in α. (middle) Lift coefficient after subtracting Cαα (low-frequency
asymptote). (bottom) Lift coefficient after subtracting Cαα + Cα̈α̈ (low and high-
frequency asymptotes). Circles indicate coarse sampling of time-resolved data.

5.3.2 Method 1: Model (5.6) from a ramped step response in α

This method is based on the lift output in response to a step maneuver in α from
α0 to α0 + ∆α. It is used primarily in Chapter 7 to identify models of the form
in Eq. (5.6). The step maneuver described in Section 5.4.1 is a smoothed linear
ramp function that may be viewed as a time-resolved, smoothed approximation to
a discrete-time impulse in α̇ of magnitude ∆α/∆tc, where ∆tc is the duration of the
step maneuver. In Chapter 7, ∆α = 0.1◦ and ∆tc = 0.01 convective time.

The lift slope Cα(α0) is approximated by (YN−Y0)/∆α, where YN is the steady-
state lift, measured many convective time intervals after the step, and Y0 is the initial
lift at a fixed angle α0 before the step. We subtract Cαα(k∆tf ) from each Yk.

The added-mass coefficient Cα̈ may be solved for in the equation Y ≈ Cα̈U ,
which is approximately true during the step maneuver when U is large. This
amounts to finding a least squares fit for Y in terms of U by using the pseudoin-
verse: Cα̈ = Y \U , U∗(UU∗)−1Y . It is important to use only portions of Y and U
restricted to the step maneuver. We may now subtract Cα̈Uk from each Yk.
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After subtracting Casymptotic
L , Cαα+Cα̈α̈ from the step response, the remaining

transient dynamics can be modeled using ERA. Recall from Section 2.2.1 that in
order to determine a model using ERA, we require Markov parametersHi, which are
the outputs yk from a discrete-time impulse response. It is possible to obtain Hi by
sampling the signal with time step ∆tc starting from the middle of the impulse, as
shown in Figure 5.3. With this set of Markov parameters, it is possible to identify the
remaining portion of the model corresponding to the terms Ctransient

L , Cα̇α̇+ Cx:

• H0 = ∆αCα̇/∆tc, (since the magnitude of the discrete pulse in α̇ is ∆α/∆tc),

• {Hj/∆α | j ≥ 1} → (Ar, Br, Cr) using ERA (divide by ∆α for unit step).

Finally, the resulting discrete-time model (Ar, Br, Cr) can be converted to a
continuous-time model, since the dynamics at very high frequencies are dominated
by added-mass terms.

As an aside, it is possible to refine the estimate for Cα̈ by subtracting off Cα̇α̇
and correcting for the change in angle of attack during the step: Cα̈ = Ỹ \U where
Ỹ =

[
Ỹ0 Ỹ1 . . . ỸS

]T and Ỹk = (Yk − Cα̇α̇(k∆tf ))/ cos(α(k∆tf )). However, the
effects of Cαα and Cα̇α̇ are generally orders of magnitude smaller than the added-
mass force Cα̈α̈ during the step, and may be neglected in practice.

5.3.3 Method 2: Model (5.7) from step response in α

There are instances when it is useful to represent the aerodynamics with a model
of the form in Eq. (5.7). For example, in Chapter 8, transient aeroelastic effects
are not well modeled by Eq. (5.6), since the they are excited directly by α̈. This
method identifies models of the form in Eq. (5.7) from a step response in α.

The first step is to identify the lift coefficient slope Cα and subtract Cαα(k∆tf )
from each Yk, as in Section 5.3.2. Next, the coefficient Cα̇ may be identified by
sampling the measured lift during the middle of the impulse in α̇, when α̈ is zero. To
identify Cα̈, the remaining signal is integrated to give the step response in α̇ (impulse
response in α̈), less the Cα and Cα̇ contributions. Sampling the remaining signal
yields the Markov parameters Hi, which are synthesized into Cα̈ and a low-order,
discrete-time model (Ar, Br, Cr) for the transient dynamics (A,B,C) in Eq. (5.7):

• H0 = ∆αCα̈/∆tc, (since the magnitude of the discrete pulse in α̈ is ∆α/∆tc),

• {Hj/∆α | j ≥ 1} → (Ar, Br, Cr) using ERA (divide by ∆α for unit step).

This method is shown in Figure 5.4.
Note that there may be a steady-state value after integrating the signal, cor-

responding to −CA−1B in terms of the matrices in Eq. (5.6); this may either be
removed and lumped in with Cα̇, or not. An alternative is to not identify and re-
move Cα̇ before integrating. Then, the steady-state value for the step in α̇ would
all be lumped into Cα̇; in this case, it is important to remove the Cα̇α̇(k∆tf ) from
each Yk before using ERA.

To understand the method above, consider the Laplace transforms of the lift
coefficient, Y (s) = L[CL(t)], and angle of attack, U(s) = L[α(t)]. This results in
the following transfer function representation of Eq. (5.7),

Y (s) =
[
Cα
s2

+
Cα̇
s

+ Cα̈ +G(s)
]
s2U(s), (5.14)
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Figure 5.4: Illustration of method 2. (top) Lift coefficient in response to smoothed
ramp-step in α. (second) Lift coefficient after removing Cαα. (third) Lift coefficient
after removing Cαα + Cα̇α̇. (bottom) Integrating third panel gives lift in response
to ramp-step in α̇. Circles indicate coarse sampling of time-resolved data.
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where G(s) = C(sI − A)−1B, and (A,B,C) are matrices from Eq. (5.7). G(s) is a
stable, strictly proper transfer function for the additional transient dynamics. The
procedure is summarized as follows:

1. Given a unit step input in α, U(s) = 1/s, the output signal is
Y (s) =

[
Cα
s2

+ Cα̇
s + Cα̈ +G(s)

]
s

2. By the final value theorem, Cα is the steady state value, lims→0 sY (s) = y(∞)

3. Subtract Cα from y(t) and integrate, yielding ỹ(t) =
∫ t

0 [y(τ)− Cα] dτ . The

corresponding signal is Ỹ (s) =
[
Cα̇
s + Cα̈ +G(s)

]
4. By the final value theorem, Cα̇ is the steady state value, lims→0 sỸ (s) = ỹ(∞).

5. Subtract Cα̇ from ỹ(t), leaving ˜̃y(t) , ỹ(t)− Cα̇ = ˜̃Y = Cα̈ +G(s)

6. Sample ˜̃y(t) to identify the Markov parameters.

This procedure is more involved than the method in Section 5.3.2, but it demon-
strates the equivalence of Eq. (5.6) and Eq. (5.7).

5.3.4 Method 3: Model (5.7) from impulse response in α̈ (OKID)

This method develops models of the form in Eq. (5.7) from realistic input/output
maneuvers, such as those described in Section 5.4.2. In particular, the ob-
server/Kalman filter identification (OKID) method from Section 2.2.2 is used to
obtain the Markov parameters for the impulse response in α̈ of the linearized
system. From the impulse response, one may identify the parameters Cα, Cα̇, and
Cα̈ as well as a low-dimension ERA model, (Ar, Br, Cr), using a technique similar
to the method in Section 5.3.3. This method is used extensively in Chapter 8 to
identify models based on wind tunnel measurements.

The OKID method provides Markov parameters for an impulse response in α̈
given the input/output data for a frequency-rich maneuver, such as the maneuvers in
Section 5.4.2. Typically the input/output pair used with OKID have been sampled
from the time-resolve input motion α̈(t) and lift signal CL(t). The sample time ∆tc is
the desired coarse time step for the discrete-time model of the transient dynamics.
For wind tunnel experiments, the time step ∆tc = 0.1 convective time units has
been determined to be sufficiently small to capture the relevant frequencies for the
transient dynamics. Higher frequency motions are dominated by added-mass forces,
which are accurately captured by the coefficient Cα̈ in the continuous-time model,
Eq. (5.7).

Figure 5.5 illustrates the time-resolved impulse response in α̈ for a linearized
system of the form in Eq. (5.7). Because an impulse in α̈ is a step in α̇ and a ramp
in α, there is a linear growth in the lift coefficient as the angle of attack increases
linearly with time. Clearly it is not possible to obtain this linear impulse response
from a step in α̇ in a real experiment, since the linear growth in α would quickly
excite nonlinear phenomena; this is one motivation for the OKID method, which
estimates the linear impulse response from a bounded maneuver in a region where
the linear approximation is valid. The discrete-time Markov parameters Hi for the
flat plate at Reynolds number 100 linearized about α0 = 0◦ are shown in Figure 7.14.
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Figure 5.5: Illustration of method 3. (top) Lift coefficient in response to smoothed
ramp-step in α̇. (middle) Lift coefficient after removing Cαα. (bottom) Lift coeffi-
cient after removing Cαα+ Cα̇α̇. Circles indicate coarse sampling of data.

To identify a model of the form in Eq. (5.7), we must first identify the lift coeffi-
cient slope Cα, which is the slope of the impulse response in Figure 5.5 after all tran-
sients have died out. After subtracting off Cαα, Cα̇ is the steady-state value (since
this is a step in α̇). After these modifications, the first Markov parameter is Cα̈,
and the remaining parameters are passed to the ERA to obtain a low-dimensional,
discrete-time model (Ar, Br, Cr) for the transient dynamics (A,B,C) in Eq. (5.7).

5.3.5 Caution against incorrect use of ERA/OKID

One may be inclined to try and identify the entire model in Eq. (5.6) or Eq. (5.7)
using the ERA directly on the Markov parameters from OKID. However, if one
incorrectly applies the ERA to the impulse response in α̈, shown in the top plot
of Figure 5.5, the resulting model will be unstable, because of the linear growth
in CL. In addition, if one incorrectly applies OKID/ERA to an impulse in α̇ (i.e.,
to identify a model of the indicial response), the resulting model will not capture
the correct added-mass forces. This is why it is important that the input to the
system is α̈, and the Cα and Cα̈ terms must be identified and removed in advance
of applying ERA.
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Figure 5.6: Example of correct and incorrect use of OKID/ERA to model the pitch-
up, hold, pitch-down maneuver.

Examples of these systematic failures are shown in the the response to the canon-
ical maneuver from Section 2.6 in Figure 5.6, and in the Bode plot in Figure 5.7.
In these plots, the model based on the method in Section 5.3.4 is labeled “modified
OKID (ddu)”. The two incorrect uses of OKID/ERA are labeled “incorrect OKID”.
In Figure 5.7, “IR model” is the correct model based on the indicial response.

5.3.6 Identifying multi-input, multi-output models with ERA

It is possible to extend each of the methods above to identify models with multiple
inputs and multiple outputs (MIMO), such as a model with both pitch and plunge
inputs, as in Eq. (5.10). As with the single-input, single output (SISO) case, we
start with individual impulse-response data for both pitch and plunge, possibly
estimated using OKID. All of the steps remain identical for each step response,
including pulling off the quasi-steady and added-mass coefficients, and formatting
the remaining dynamics into a sampled discrete-time impulse. At the step where
ERA is used to identify a model for the remaining dynamics, we construct a general
Hankel matrix from the MIMO Markov parameters that have size outputs × inputs.
The ERA algorithm will then identify the remaining dynamics as before. It is shown
that MIMO models do not require a significant increase in model order.

5.3.7 Relationship to indicial response models

The algorithms in Sections 5.3.2 and 5.3.3 above are based on the step response in
α, which is also known as the indicial response. Therefore, the resulting low-order
models for Eq. (5.6) and Eq. (5.7) may be viewed as reduced-order, state-space
representations of the indicial response model in Eq. (2.6). It is possible to use the
time-resolved step response from any of the above methods for the indicial response.
It is important to include the α̈ coefficient if using the method in Algorithm 1.
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Figure 5.7: Bode plot of correct and incorrect use of OKID/ERA to model leading-
edge pitch dynamics. Input is either α̇ or α̈ and output is CL.

5.4 System identification maneuvers

The maneuvers in this section are used in the algorithms in Section 5.3 to develop
models of the form in Section 5.2 from either numerical or experimental data. The
algorithms in Sections 5.3.2 and 5.3.3 rely on the step response of α (or ġ, ḣ). Two
smoothed step functions that are useful in simulations are discussed in Section 5.4.1.
Section 5.4.2 presents a set of maneuvers that are used with the OKID method in
Section 5.3.4 to obtain the impulse response in α̈ (or g̈, ḧ) from a more realistic
input maneuver. The pseudo-random maneuvers in the second part of Section 5.4.2
are particularly useful for experiments, where it is important to have an aggressive
maneuver that excites varies frequencies to overcome noisy measurements.

The measurements from a direct numerical simulation (DNS) of the Navier-
Stokes (NS) equations or from a wind tunnel experiment are necessarily a discrete-
time signal. Typically, a fine time step ∆tf is required for the DNS to remain stable
and for the discrete-time signal to approximate the continuous-time NS equations.
The transient aerodynamic effects, however, are modeled as a discrete-time system
with a coarse time step ∆tc � ∆tf . Therefore, we will command maneuvers defined
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by a coarse discrete-time signal uk, but simulate a corresponding smoothed discrete-
time signal ũj with time step ∆tf .

5.4.1 Smoothed step functions

For a number of reasons, an actual step response is non physical. First, it is im-
possible to command in experiments or simulations, because it would correspond
to a body instantaneously dematerializing and then rematerializing it in another
location. An alternative is to use a smoothed step maneuver and approach the limit
as the maneuver becomes very rapid. As the maneuver becomes increasingly rapid,
the added-mass forces begin to dominate; in fact, a good rule of thumb is to choose
a maneuver rapid enough that the lift response for the duration of the maneuver is
dominated by added-mass forces.

There are a number of choices for a smoothed step-up maneuver. In this thesis,
results are based on a smoothed linear ramp-up maneuver, discussed in 5.4.1. It is
also possible to use a sigmoidal step-up [11], discussed in 5.4.1.

The duration of the step maneuvers used for simulations in later chapters is
T = 0.01 convective time units. The amplitude is either ∆α = 0.1◦ ≈ 0.001745 rad
in the case of pitching or ∆α = 0.0017451 chord lengths per convection time in the
case of vertical velocity, corresponding to 0.1◦ change in effective angle of attack.
This is sufficiently rapid for the added-mass forces to dominate for the duration of
the maneuver. To obtain a model for plunging, we start with a step-up in vertical
velocity, which is then differentiated in time, resulting in the corresponding step-up
in vertical position.

Linear ramp maneuver

The linear ramp maneuver is based on the pitch-up, hold portion of a pitch-up, hold,
pitch-down maneuver first introduced as a canonical pitching maneuver to compare
and study various experiments, simulations and models [26, 79]. The equations for
u and u̇ are given in Eq. (5.15). For a step in angle of attack, u = α,

u(t) = ∆α
G(t)

maxG(t)
, u̇(t) = ∆α

tanh(a(t− t1))− tanh(a(t− t2))
maxG(t)

(5.15)

where

G(t) = log
[

cosh(a(t− t1))
cosh(−at2)

· cosh(−a(t− t2))
cosh(−at1)

]
. (5.16)

The maneuver is shown in Figure 5.8. The start of the maneuver is t = t1 and
the duration of the ramp-up is T = t2 − t1. The parameter a effects how gradual
or abrupt the ramp acceleration is; this a is different than the pitch axis parameter
in Section 5.2. By choosing a large, such as a = 1000, it is possible to obtain a
maneuver where the ü acceleration effects are localized near time t1 = 0 and t2 = T ,
and the velocity u̇ is constant throughout much of the maneuver. This yields an
approximately piecewise linear ramp, with smooth transitions at t1 = 0 and t2 = T .

The linear ramp maneuver has a number of characteristics that make it a natural
choice for the smoothed step maneuver. First, the boxy profile of the velocity u̇
resembles the shape of a discrete-time impulse in u̇ with time step T . Thus, it is
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ü

Time

0

t1 t2 t3

M

Figure 5.8: Linear ramp-step in u, approximating u̇ = ∆α/∆tc for ∆tc = t2 − t2.
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Figure 5.9: Diagram showing the discrete-time system arising from pitch-ramp step.

possible to run simulations with a fine time step ∆tf that fully resolve the maneuver
in time, and then down-sample to obtain a coarse discrete-time signal with sample
time ∆tc = T . This is shown schematically in Figure 5.9.

Sigmoidal step maneuver

Alternatively, a sigmoidal step is given by Eqs. (5.17-5.18), shown in Figure 5.10.

u(t) =
∆α
T

12√
π

exp

[
−
(

12
T

(t− T/2)
)2
]

(5.17)

∫ t

−∞
u(τ)dτ =

∆α
2

[
1 + erf

(
12
T

(t− T/2)
)]

(5.18)

In the limit of infinitesimal variance, a Gaussian function will become a delta
function. However, the fine resolution discrete-time system arising from this maneu-
ver has large oscillations about the desired coarse resolution discrete-time signal, as
seen in Figure 5.11. Moreover, the sigmoidal step poses difficulty in sampling the
fine resolution output to obtain a coarse resolution output signal.
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Figure 5.11: Diagram showing the discrete-time input uj (grey) and the resulting
time-resolved signal ũk (black) arising from sigmoidal step.

5.4.2 Maneuvers for OKID method

As discussed in Section 2.2.2, the observer/Kalman filter identification (OKID) algo-
rithm is useful for obtaining the Markov parameters (impulse response parameters)
from more realistic input/output data. For example, in an experiment, it may be
difficult to obtain an impulse response in α̈ because of the accompanying linear
growth in α. Therefore, it is desirable to use a realistic maneuver with bounded α
and estimate what the impulse response would be for the linearized system. Because
we are interested in identifying models of the form in Eq. (5.7) with α̈ as the input,
it is important that the maneuvers have rich frequency content in α̈ to excite a large
range of unsteady flow phenomena.

Gaussian white noise in α̈

A good choice for a maneuver is to use a Gaussian white noise process as the input to
α̈, since this maneuver is rich in frequency content. The wing kinematics are shown
in the first three subplots in Figure 5.12, and the lift coefficient response is plotted
in the fourth subplot. The sample time for the white noise process is ∆tc = 0.1
convective time.

This maneuver is primarily used with simulations, since the lift effect from vari-
ous parts of the maneuver are subtle and may be swamped by noise in an experiment.
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Figure 5.12: System ID maneuver used with OKID to produce Markov parameters
for impulse in α̈. Random input to α̈ is chosen because of rich frequency content.

Pseudo-random pulse train

The system identification (ID) maneuver for the wind tunnel experiments in Chap-
ter 8 was chosen with a number of criteria in mind. Because the input to the model
is α̈, we ultimately need a maneuver with rich α̈ content. Also, because we are
identifying various stability derivatives, we need the contribution from individual
changes in α̈ to be distinguishable in the measured lift force. Finally, because the
experimental measurements have noise, we require the system ID maneuver to be
sufficiently aggressive so that the change in force is measurable in response to the
maneuver.

The maneuver is constructed as a pseudo-random sequence of ramp-up, hold
and ramp-down, hold maneuvers, related to the canonical maneuvers in Eldredge
et al.[26, 79]. The equations for u and u̇ for a single pitch-up, hold are given in
Eq. (5.15), with u = α. The building block for our maneuver is shown in Figure 5.8.

The duration of the ramp τr = t2 − t1 and hold τh = t3 − t2 are bounded
Gaussian white noise processes. Similarly, the step amplitude ∆α is sampled from a
normal distribution, with the constraint that the maneuver amplitude never exceeds
±10◦. A maneuver of this type is attractive for a number of reasons. First, the
signal α̈ consists of pseudo-randomly spaced pulses at the beginning and end of
each ramp. The result is that the large added-mass forces are similarly spaced
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Figure 5.13: Aggressive maneuver for identifying pitch dynamics.

pulses. Additionally, having a pseudo-random train of pulses in α̈ is ideal for the
OKID method. Finally, having large aggressive ramp-up and ramp-down maneuvers
will result in forces large enough to measure.

Similarly, a pseudo-random maneuver is generated for plunging motion. Because
there is no steady-state lift associated with a fixed vertical position h, unlike the case
of pitching, it is unnecessary for the maneuver to sample different vertical positions
during the hold periods.

5.5 Summary

We have presented a general form of the unsteady aerodynamic model, and its
linearization for the cases of pure pitch, pure plunge, and combined pitch plunge.
In addition, we have presented three distinct computational algorithms for obtaining
such a linearization, which are used extensively in later chapters. These algorithms
produce reduced order models using system identification maneuvers developed for
direct numerical simulations and wind tunnel experiments.

The models in this chapter have a number of advantages. It is shown that the
models are reduced order representations of the linearized Navier-Stokes equations,
and they may be viewed as low-order, state-space realizations of the corresponding
indicial response model. The models may be obtained from a variety of sources,
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Figure 5.14: Aggressive maneuver for identifying plunge dynamics.

including analytical expressions, direct numerical simulations, and wind tunnel ex-
periments; therefore, they capture the transient fluid dynamic forces of the real
viscous flow. There are a number of features that are inspired by Theodorsen’s
model, including pitch-axis parameterization. In addition, the low and high fre-
quency asymptotes are isolated from the transient dynamics. This means that the
reduced order modeling is targeted to the intermediate frequencies where the tran-
sient fluid dynamic effects are important, so that the model is more accurate at a
lower order.

The algorithms in this chapter are designed to be flexible, yielding model real-
izations from either step-response data or pseudo-random-input data. A number of
maneuvers have been specifically developed for use with these algorithms. These
maneuvers excite the unsteady aerodynamic system over a range of frequencies so
that the asymptotic effects may be isolated from the transient dynamics.

Although the models in this chapter have been derived for pitch and plunge
inputs and lift coefficient output, the methods are sufficiently general to include
additional inputs, such as surge motion, as well as additional outputs, such as drag
and moment coefficients. The models have been developed in a coordinate system
that is especially convenient for aerodynamics, where the translational motion of the
wing is in reference to the center of rotation. This is consistent with the notation
used in Theodorsen’s work, which is used extensively in the field.
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Chapter 6

Classical unsteady models of
Wagner and Theodorsen

This chapter addresses state-space realizations for the classical unsteady models
of Wagner [125] and Theodorsen [114]. After a brief overview, the models of
Theodorsen and Wagner are presented in Section 6.2, with an emphasis on the
underlying assumptions and physical interpretations. In Section 6.3 a number of as-
sumptions are relaxed, and Theodorsen’s model is cast in a general form that allows
for the introduction of empirically determined quasi-steady and added-mass coeffi-
cients as well as an empirical Theodorsen function. These terms may be determined
empirically from simulations or experiments, as is demonstrated on numerical data
for a flat plate at low Reynolds number, Re = 100. Next, a low-dimensional, state-
space realization is developed in Section 6.4 that is useful for either the classical
Theodorsen model or the empirical model. The resulting models are parameterized
by pitch axis location and have physically meaningful states that isolate the effect
of added-mass and quasi-steady forces, as well as the effect of the wake. State-space
realizations for Wagner’s model are briefly discussed in Section 6.5 for completeness.
Although Theodorsen’s model includes the effect of an aileron and also describes mo-
ment calculations, we consider only the lift coefficient output for pitch and plunge
motion.

6.1 Overview

Among the wide range of unsteady aerodynamic models in the literature [60], the
classical models of Wagner [125] and Theodorsen [114] remain widely used and
provide a benchmark for the linear models that proceed them. Theodorsen’s model
is particularly attractive for a number of reasons. Foremost, the model is derived
from first principles using clear assumptions. The resulting model is broken down
into physically meaningful components, including the added-mass and quasi-steady
contributions as well as the effect of the wake, captured by Theodorsen’s transfer
function. It is then clear how the model changes as certain assumptions are relaxed.
Additionally, the model is parameterized by the pitch center p. Finally, the model
is already extensively used, which carries its own inherent value.

Theodorsen’s lift model was developed in 1935 to explain flutter induced insta-
bility that occurs in aircraft at high velocity. The theory is based on incompressible,
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inviscid assumptions, and the resulting model is expressed in the frequency domain.
This formulation limits the usefulness of Theodorsen’s model, both for predict-
ing the lift response in the time-domain, as well as for designing modern control
laws [23, 22, 121, 61]. In addition, the inviscid assumption becomes less accurate for
flows at low Reynolds number, which are characterized by a thick, laminar boundary
layer [9]. Unsteady aerodynamics at low Reynolds number is of particular recent
interest to understand insect and bird flight [5, 123] as well as to develop advanced
controllers for high performance micro-aerial vehicles [131, 78].

We address both of these issues in this chapter. First, we develop an empirical
generalization to Theodorsen’s model, extending the model to various geometries
and Reynolds numbers. In particular, empirical models from simulations or ex-
periments [12, 14] are cast into the form of Theodorsen’s model using empirical
added-mass and quasi-steady lift coefficients, as well as an empirical Theodorsen
function. The method of obtaining an empirical Theodorsen model is demonstrated
for a flat plate pitching at low Reynolds number, Re = 100.

Next, state-space representations are developed for either the classical
Theodorsen model or the empirical model. These state-space models are ideal
because they fit naturally into existing flight models, and they are useful for the
design of optimal controllers. The models developed in this section are constructed
to isolate the effect of added-mass and quasi-steady forces, as well as the effect
of the wake, as in Theodorsen’s original model. In addition, the models maintain
the original pitch-axis parameterization. It is important to note that although
Theodorsen’s model includes the effect of an aileron and also describes moment
calculations, we consider only the lift coefficient output for pitch and plunge motion.

6.1.1 Previous work on representation of Theodorsen’s model

The literature contains a number of rational function approximations to Theodorsen’s
transfer function [48, 122, 121, 8], Eq. (6.3), and Wagner’s indicial response func-
tion [48, 50, 30, 23, 121], many of which are based on Padé approximation. Breuker
et al. [8] and Dinyavari and Friedmann [22] constructed state-space realizations
for Theodorsen’s transfer function, and Leishman and Nguyen [61] used R. T.
Jones’s approximation to derive a state-space realization for the circulatory lift.
Edwards [25] derived a state-space realization for the coupled aeroelastic equations,
which he used to construct a linear-quadratic-regulator for flutter suppression.

Peters et al. [86, 85, 84] developed a general potential flow theory in state-space
based on the Glauert expansion of inflow states, of which Theodorsen’s model is a
special case. However, Peters’s model requires eight states for close agreement with
Theodorsen’s model, while the other approximations require between two and four
states. With the exception of Peters, none of the above references develop state-
space models for the full unsteady model, Eq. (6.2), including added-mass forces.

6.2 Model statement

This background review is based closely on material in Leishman [60]. A thorough
derivation and review of Theodorsen’s theory may be found in Bisplinghoff and
Ashley [6] and Newman [75]. Theodorsen and Wagner both make the assumptions
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of a 2D flat plate airfoil in an inviscid, incompressible flow. Moreover, the motion
of the airfoil is assumed to be infinitesimal in amplitude, resulting in a planar wake.

6.2.1 Theodorsen’s model

Theodorsen’s model is an unsteady extension of the quasi-steady thin airfoil theory.
Thin airfoil theory assumes that the vertical center of mass h and angle of attack
α motion of the airfoil is relatively slow and small, so that the flow field locally
equilibrates to the motion. Thus, ḣ and α̇ effects manifest as a varying local angle
of attack along the airfoil, which may be integrated into an effective angle of attack
for the entire airfoil. This results in a quasi-steady expression for the lift coefficient:

CL = 2π
(
α+ ḣ+

1
2
α̇

(
1
2
− a
))

= 2παe (6.1)

Lengths are nondimensionalized by the chord length c and time is nondimension-
alized by c/U∞, where U∞ is the free stream velocity. a is the pitch axis location
with respect to the 1/2-chord (e.g., pitching about the leading edge corresponds to
a = −1, whereas the trailing edge is a = 1).

For rapid maneuvers, it is necessary to include added-mass terms to account
for the reaction force due to the mass of fluid that is accelerated by the airfoil.
Additionally, one must account for the induced vorticity on the airfoil due to the
effect of the wake. Theodorsen’s model, Eq. (6.2), includes these added-mass forces
and multiplies the circulatory lift from thin airfoil theory by a transfer function C(s)
to account for lift attenuation by the wake vorticity.

CL =
π

2

[
ḧ+ α̇− a

2
α̈
]

︸ ︷︷ ︸
Added-Mass

+ 2π
[
α+ ḣ+

1
2
α̇

(
1
2
− a
)]

︸ ︷︷ ︸
Circulatory

C(s) (6.2)

Each of the CL, α, and h terms, and their derivatives, are expressed in the frequency
domain, and depend on the Laplace variable s.

Theodorsen’s transfer function C(s) is given by Eq. (6.3) and is expressed in
terms of Hankel functions H(2)

ν = Jν − iYν , where Jν and Yν are Bessel functions of
the first and second kind, respectively:

C(s) =
H

(2)
1 (−is/2)

H
(2)
1 (−is/2) + iH

(2)
0 (−is/2)

(6.3)

Note that Theodorsen’s function C(s) is a complex valued function expressed in
terms of the Laplace variable s. Historically, C is expressed in terms of the reduced
frequency k, which is frequency nondimensionalized by half chord; however, in the
remainder of the thesis, we present models nondimensionalized by full chord, so
for consistency, we nondimensionalize by the full chord here. When s = 2ik, C(s)
gives the amplitude and phase of the response to a sinusoidal input with reduced
frequency k.

Figure 6.1 shows the frequency response of Theodorsen’s model, Eq. (6.2). The
input motion is ḧ for the case of plunging and α̈ for the case of pitching, and the
output is lift coefficient CL. The magnitude plot(top) shows the ratio of output
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Figure 6.1: Frequency response of Theodorsen’s model, Eq. (6.2). Input is ḧ for
plunging motion and α̈ for pitching motion about various locations p along the
chord. The output is lift coefficient CL.

magnitude (CL) to input magnitude (α̈ or ḧ) in decibels (dB) for sinusoidal forcing
at various fixed frequencies. Similarly, the phase plot (bottom) shows the phase
difference of the output and input signal in degrees. Theodorsen’s model for pitching
motion is parameterized by a = −1+2p, where p is the pitch axis location measured
in positive chord lengths c from the leading edge.

The frequency response in Figure 6.1 undergoes a qualitative change as the pitch
point is moved aft of the mid-chord, after which the effect of added-mass terms on
high frequency motions becomes negative; i.e., the phase approaches −180◦ for large
frequency. To understand this, it helps to analyze how the poles and zeros of the
system change as pitch point is varied. Using the transfer function representation
Eq. (6.8) derived in the next section, it is clear that the pitch point a only enters
the numerator, meaning that the poles are the same regardless of pitch center.
Figure 6.2 shows how the zeros move as the pitch axis varies. In particular, as the
pitch axis moves aft of the mid-chord, the branch of real zeros exits at negative
infinity and re-enters at positive infinity. The appearance of a zero in the right half
plane makes the system non-minimum phase. A direct result is that given a positive
step in angle of attack, the lift initially moves in the negative direction, because of
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Figure 6.2: Zeros of Theodorsen’s lift model as pitch axis moves from the leading
edge (p = 0) to the trailing edge (p = 1). The zero at s ≈ −4 moves to negative
infinity as p→ 0.5 and reappears at positive infinity for p > 0.5.

negative added-mass forces, before the circulatory forces have a chance to catch up
and the system relaxes to a positive steady state.

6.2.2 Wagner’s model

Wagner’s model is similar to Theodorsen’s, except that it is formulated in the time
domain, making it useful for arbitrary input maneuvers. The model rests on a similar
set of fundamental assumptions, including a planar wake, inviscid, incompressible
flow, and infinitesimal motion. The formulation is based on convolution with the
indicial (step) response function φ(t), where t is time dimensionless time. At time
t = 0 the aerodynamic center is at the mid-chord, and it shifts to the 1/4 chord for
all future time t > 0. The lift due to the step is then written as

CδL =
π

2
δ(t) + 2παφ(t) (6.4)
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The first term is the added-mass for a step in angle of attack about the mid-chord.
The circulatory terms for an arbitrary maneuver α(t) are given by

Ccirc
L = 2π

(
α(0)φ(t) +

∫ t

0
α̇(σ)φ(t− σ) dσ

)
= 2παe(t) (6.5)

where αe(t) is the effective angle of attack due to the induced circulation from the
wake history. Wagner originally expressed the indicial response in terms of time
nondimensionalized by half-chord, and he used the variable s (for semi-chords);
however, we use t so that the dimensionless time is not confused with the Laplace
variable s that is used throughout.

6.2.3 Relationship between Wagner’s and Theodorsen’s functions

It was noted early on by Garrick [30] and R.T. Jones [48] that Theodorsen’s transfer
function and Wagner’s indicial response function are related by a Laplace transform
pair:

C(s) = s

∫ ∞
0

φ(t)e−st dt (6.6)

There are a number of approximations to Theodorsen’s transfer function C(s),
shown in Table 6.2, and to Wagner’s indicial response function φ(t), shown in Ta-
ble 6.1. Figure 6.3 shows a comparison between the exact Theodorsen function in
Eq. 6.2 and the R.T. Jones approximation for C(s) and φ(t) from Tables 6.2 and
6.1. These will be useful in Section 6.4 for obtaining state-space realizations.

6.3 Generalized Theodorsen model

It is possible to generalize Theodorsen’s model by replacing the coefficients π/2
and 2π, which are obtained using linearized potential flow theory, with generalized
coefficients C1 and C2. The new coefficients may be obtained empirically, either
through simulation or experiment, at a given Reynolds number and wing geometry.
This will yield better performance in the limit of low and high frequency motions.
Additionally, it is possible to use an empirically determined function Ĉ(s), which
plays the same role as Theodorsen’s C(s). Eq. (6.2) becomes:

CL = C1

[
ḧ+ α̇− a

2
α̈
]

+ C2

[
α+ ḣ+

1
2
α̇

(
1
2
− a
)]

Ĉ(s). (6.7)

We now take the Laplace transform, L, of both sides to obtain a transfer function.
For the case of pitch, u = α̈,

L [CL]
L [α̈]

= C1

(
1
s
− a

2

)
+ C2

[
1
s2

+
1
2s

(
1
2
− a
)]

Ĉ(s) (6.8)

where s is the Laplace variable, which is twice the reduced frequency if c = U∞ = 1.
The transfer function 1/s corresponds to integration in the time domain. Equa-
tion (6.8) is represented schematically in Figure 6.4.
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Figure 6.4: Empirical Theodorsen’s model, Eq. (6.8), for a pitching airfoil.
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Approximate indicial response, φ(t)

R.T. Jones [48] φ(t) ≈ 1.0− 0.165e−0.091t − 0.335e−0.6t

W.P. Jones [50] φ(t) ≈ 1.0− 0.165e−0.082t − 0.335e−0.64t

Garrick [30] φ(t) ≈ t+ 1
t+ 2

Venkatesan et al. [121] φ(t) ≈ 1.0− 0.309e−0.193t − 0.191e−0.991t

Venkatesan et al. [121] φ(t) ≈ 1.0− 0.203e−0.144t − 0.236e−0.501t

−0.06e−1.6t

Table 6.1: Approximations for Wagner’s indicial response function φ(t). Time t is
nondimensionalized by chord c; in references, time t′ = 2t is used.

The case of plunging, u = ḧ, has a simpler transfer function:

L [CL]

L
[
ḧ
] = C1 +

C2

s
Ĉ(s)

These transfer functions will be used to construct state-space representations in
the next section.

6.3.1 Determining coefficients C1 and C2

Theodorsen’s function C(s) is 1 at low frequencies and 1/2 at high frequencies. It is
convenient to decompose C(s) = 1− C ′(s), resulting in the following pitch model:

CL = −a
2
C1︸ ︷︷ ︸

Cα̈

α̈+
[
C1 +

C2

2

(
1
2
− a
)]

︸ ︷︷ ︸
Cα̇

α̇+ C2︸︷︷︸
Cα

α− C2C
′(s)

[
α+

1
2
α̇

(
1
2
− a
)]

︸ ︷︷ ︸
transient dynamics

(6.9)

Equating the coefficient of the α̈ and α terms in Eqs. (5.13) and (6.9) yields ex-
pressions for the coefficients in terms of stability derivatives, C1 = −2Cα̈/a and
C2 = Cα, which may be determined empirically using methods in Chapter 5. There
are a number of ways to model the additional transient dynamics. The simplest ap-
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Approximate transfer function, C(s)

R.T. Jones [48] C(s) ≈ 0.5s2 + 0.5616s+ 0.0546
s2 + 0.691s+ 0.0546

Vepa [122] C(s) ≈ 0.5s2 + 1.5s+ 0.75
s2 + 2.5s+ 0.75

Vepa [122] C(s) ≈ 0.5s3 + 3.5s2 + 5.425s+ 1.875
s3 + 6.5s2 + 8.5s+ 1.875

Venkatesan et al. [121] C(s) ≈ 0.5(s+ 0.270)(s+ 1.302)
(s+ 0.193)(s+ 0.911)

Venkatesan et al. [121] C(s) ≈ 0.5(s+ 0.176)(s+ 0.74)(s+ 1.844)
(s+ 0.144)(s+ 0.522)(s+ 1.60)

Breuker et al. [8] C(s) ≈ 0.5177s2 + 0.5504s+ 0.06404
s2 + 0.6828s+ 0.06328

Modified from [8] C(s) ≈ 0.5s2 + 0.547s+ 0.06328
s2 + 0.6828s+ 0.06328

Table 6.2: Approximate Theodorsen’s transfer function C(s), where s = 2ik.
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Figure 6.5: Theodorsen’s function C(s) from theory (black) and empirical Ĉ(s) for
a flat plate pitching at the leading edge, p = 0.0, at Re = 100 (red). The input is
quasi-steady lift and the output is circulatory lift attenuated by the wake.

proach is to use the analytic Theodorsen function C(s); in this case, the empirically
determined C1 and C2 still guarantee the correct high and low frequency behav-
ior. For better performance at intermediate frequencies, it is possible to obtain an
empirically determined Theodorsen function Ĉ(s), as discussed in the next section.

6.3.2 Empirical Theodorsen function Ĉ(s)

Starting with an accurate state-space model for a given Reynolds number and geom-
etry, for example based on the methods from Chapter 5, it is possible to determine
an empirical Theodorsen function, Ĉ(s). Starting with a transfer function model
G(s) from α̈ to CL it is possible to solve for Ĉ(s) in Eq. (6.8) by first subtracting
off the added-mass terms and then dividing through by the quasi-steady terms:

Ĉ(s) =
G(s)− C1 (1/s− a/2)

C2 [1/s2 + 1/2s (1/2− a)]
(6.10)

This is demonstrated in Figure 6.5 for a model of a plate pitching about the leading-
edge at Re = 100. The empirical model has order r = 2; the resulting lift coefficient
model is shown in Figure 6.6.
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Figure 6.6: Theodorsen’s lift model (black) and empirical lift model for a flat plate
pitching at the leading edge, p = 0.0, at Re = 100 (red). Direct numerical simula-
tions (×) are included for validation. The input is α̈ and the output is lift coefficient.

Based on inviscid theory, one would expect that the empirical Theodorsen func-
tion Ĉ(s) is the same regardless of pitch center. This is not the case for a flat plate
pitching at Re= 100, as seen in Figure 6.7. In a viscous fluid, angle of attack and
plunge motions have different effects on the wake, thus, two different C(s) for pitch
and plunge.

6.4 State-space realizations for Theodorsen’s model

Starting with Theodorsen’s model, Eq. (6.2), or the empirical model, Eq. (6.8), we
construct a state-space representation of the form:

ẋ = Ax+Bu

y = Cx+Du
⇐⇒

[
ẋ
y

]
=
[
A B

C D

] [
x
u

]
(6.11)

u ∈ Rq is the input, y ∈ Rp is the output, and x ∈ Rn is the state; the matrix
notation is shorthand. These representations are constructed to retain the favorable
properties of Theodorsen’s model. The model is parameterized by the pitch-axis
location, and the added-mass and quasi-steady forces are isolated from the effect of
the wake. Moreover, the states of the model are physically meaningful quantities.
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Figure 6.7: Theodorsen’s transfer function C(s) from theory (black) and empirical
Ĉ(s) for a flat plate pitching about various locations at Re = 100 (red). The input
is quasi-steady lift and the output is circulatory lift attenuated by the wake.

Consider state-space realizations for the quasi-steady (QS) and Theodorsen
transfer function C(s) blocks in Figure 6.4:

Quasi-steady: ẋ = Ax+Bu

y = Cx
(6.12)

Theodorsen: ˙̃x = Ãx̃+ B̃ũ

ỹ = C̃x̃+ D̃ũ
(6.13)

The output of the quasi-steady model is the input to Theodorsen’s transfer
function, y = ũ, resulting in:

d

dt

[
x̃
x

]
=
[
Ã B̃C
0 A

] [
x̃
x

]
+
[

0
B

]
u

ỹ =
[
C̃ D̃C

] [x̃
x

] ⇐⇒
 Ã B̃C 0

0 A B

C̃ D̃C 0

 (6.14)
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Note that C is the output matrix for the quasi-steady model, not Theodorsen’s
transfer function, C(s). State-space realizations (Ã, B̃, C̃, D̃) for Theodorsen’s func-
tion will be presented in Section 6.4.4.

6.4.1 Pure pitch model

For the case of pure pitching motion, u = α̈, the quasi-steady transfer function from
Eq. (6.8) is given by

QS(s) = C2

[
s−2 + s−1(1− 2a)/4

]
(6.15)

A state-space realization for Eq. (6.15) may be constructed by introducing a state,
x =

[
α α̇

]T , input u = α̈, and output y = CQS
L :

d

dt

[
α
α̇

]
=
[
0 1
0 0

] [
α
α̇

]
+
[
0
1

]
α̈

(6.16)

CQS
L =

[
C2 C2

(
1
2 − a

)
/2
] [α
α̇

]
The quasi-steady lift coefficient, CQS

L , depends on α and α̇, which comprise the state,
x. The added-mass transfer function is AM(s) = C1

[
s−1 − a/2]. With state x = α̇,

input u = α̈, and output y = CAM
L , a state-space realization for the added-mass

portion is:

d

dt
α̇ = 0 · α̇+ 1 · α̈

(6.17)

CAM
L = C1 · α̇− C1

a

2
· α̈

Both the quasi-steady and added-mass models share a state α̇, so we may rep-
resent the total lift in a compact model:

d

dt

x̃α
α̇

 =

Ã B̃C2 B̃C2

(
1
2 − a

)
/2

0 0 1
0 0 0

x̃α
α̇

+

0
0
1

 α̈
(6.18)

CL =
[
C̃ D̃C2 C1 + D̃C2

(
1
2 − a

)
/2
] x̃α
α̇

− C1
a

2
α̈

In this model, we have combined the quasi-steady model in Eq. (6.16) with the
model of Theodorsen’s function in Eq. (6.13) according to the formula in Eq. (6.14),
and we have included the additional added-mass forces from Eq. (6.17). Note that
the model in Eq. (6.18) has the same form as the model in Eq. (5.5) with B3 = 0.
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6.4.2 Pure plunge model

For plunge, u = ḧ, the quasi-steady transfer function is QS(s) = C2s
−1 and the

added-mass is C1ḧ. This results in the following combined model

d

dt

[
x̃

ḣ

]
=
[
Ã B̃C2

0 0

] [
x̃

ḣ

]
+
[
0
1

]
ḧ

(6.19)

CL =
[
C̃ D̃C2

] [x̃
ḣ

]
+ C1ḧ

This model is simpler than the corresponding pitch model because there is no de-
pendence on the vertical height, h, only on its derivatives.

6.4.3 Combined pitch and plunge model

For combined pitch and plunge, u =
[
ḧ α̈

]T
, the model is:

d

dt


x̃

ḣ
α
α̇

 =


Ã B̃C2 B̃C2 B̃C2(1− 2a)/2
0 0 0 0
0 0 0 1
0 0 0 0



x̃

ḣ
α
α̇

+


0 0
1 0
0 0
0 1

[ḧα̈
]

(6.20)

CL =
[
C̃ D̃C2 D̃C2 C1 + D̃C2(1− 2a)/2

] 
x̃

ḣ
α
α̇

+
[
C1 −C1a/2

] [ḧ
α̈

]

This realization is not minimal, since the state
[
0 1 −1 0

]T is unobservable.
This is consistent with the fact that in Theodorsen’s framework, ḣ contributes to
an effective angle of attack after proper nondimensionalization. It is possible to
construct a minimal realization by introducing the state variable αe = α+ ḣ.

d

dt

 x̃αe
α̇

 =

Ã B̃C2 B̃C2(1− 2a)/2
0 0 1
0 0 0

 x̃αe
α̇

+

0 0
1 0
0 1

[ḧ
α̈

]
(6.21)

CL =
[
C̃ D̃C2 C1 + D̃C2(1− 2a)/2

]  x̃αe
α̇

+
[
C1 −C1a/2

] [ḧ
α̈

]

This representation is particularly attractive because the pitch and plunge models
share the same dynamics, Ã, resulting in a compact model.

6.4.4 State-space realizations for Theodorsen’s function C(s)

To obtain the Ã, B̃, C̃, and D̃ from Eq. (6.13), there are a number of rational approx-
imations to Theodorsen’s function C(s), Eq. (6.3), including the approximation by
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Figure 6.8: Frequency response for pitching about leading-edge, p = 0.0, Eq. (6.2),
with α̈ as input and CL as output. Exact model (black) and state-space model based
on Jones approximation (red).

Jones [48] and a Padé approximation [8]. For each of these transfer functions, given
in Table 6.2, it is possible to obtain a state-space realization in controller canonical
form. These realizations are presented in Table 6.3. Note, we have converted the
reduced frequency k to the Laplace variable s = 2ik. The resulting model agrees
very well with the exact model as seen in the frequency response in Figure 6.8.

6.5 State-space realization for Wagner’s model

This section is included for completeness, although realizations based on R.T.
Jones’s approximation [48, 49] have been previously developed [22, 61].

The Laplace transform of the indicial response function φ is the transfer func-
tion from α̇ to the circulatory lift coefficient Ccirc

L . Garrick’s approximation from
Table 6.1 is a simple expression, but it does not have a simple Laplace transform.
The other two expressions in Table 6.1 have the form φ(t) = 1− a1e

−b1t − a2e
−b2t.

The Laplace transform has the form:

Lφ(s) =
1
s
− a1

s+ b1
− a2

s+ b2
(6.22)
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Approximation
[
Ã B̃

C̃ D̃

]
, State-space realization of C(s)

R.T. Jones [48]

 −0.691 −0.0546 1
1 0 0

0.2161 .0273 0.5



Vepa [122]

 −2.5 −0.75 1
1 0 0

0.25 0.375 0.5



Vepa [122]


−6.5 −8.5 −1.875 1

1 0 0 0
0 1 0 0

0.25 1.175 0.9375 0.5



Venkatesan [121]

 −1.104 −0.1758 1
1 0 0

0.234 0.08786 0.5



Venkatesan [121]


−2.266 −1.141 −0.1203 1

1 0 0 0
0 1 0 0

0.247 0.3393 0.05995 0.5



Breuker et al. [8]

 −0.6828 −0.06328 1
1 0 0

0.1969 0.03028 0.5177



Modified from [8]

 −0.6828 −0.06328 1
1 0 0

0.2056 0.03164 0.5



Table 6.3: State-space realizations for approximate C(s).
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Approximation
[
Ã B̃

C̃ D̃

]
, State-space realization of φ(s)

R.T. Jones [48]


−0.691 −0.0546 0 1

1 0 0 0
0 1 0 0

0.5 0.5615 0.0546 0



W. P. Jones [50]


−0.722 −0.0525 0 1

1 0 0 0
0 1 0 0

0.5 0.5889 0.0525 0



Venkatesan [121]


−1.184 −0.1913 0 1

1 0 0 0
0 1 0 0

0.5 0.8409 0.1913 0



Venkatesan [121]


−2.245 −1.104 −0.1154 0 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0.501 1.368 0.8827 0.1154 0



Table 6.4: State-space realizations for approximate φ(s).

This yields the state-space realizations with input α̇ and output Ccirc
L in Table 6.4.

Because of the equivalence of Wagner’s function φ(t) and Theodorsen’s transfer
function C(s), it is not necessary to develop an explicit state-space realization for
Wagner’s full unsteady model. Wagner’s model imposes the additional constraints
that at t = 0 the aerodynamic center is at the mid-chord, and it shifts to the quarter-
chord for all time after. The aerodynamic center is located at the mid-chord at t = 0
to simplify the added-mass forces, since the term proportional to α̈ disappears when
pitching at the mid-chord.

6.6 Summary

In this chapter, a generalized Theodorsen model is developed and cast into a low-
dimensional, state-space representation. Using a number of approximations for
Theodorsen’s transfer function C(s) [48, 8], it is possible to obtain a rational trans-
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fer function and corresponding minimal state-space representation for Theodorsen’s
lift model, given by Eq. (6.18) for pure pitch, Eq. (6.19) for pure plunge, and
Eq. (6.21) for combined pitch and plunge. These models retain the positive at-
tributes of Theodorsen’s model, in that they are parameterized by pitch axis and
have physically meaningful states that isolate the effect of quasi-steady and added-
mass forces, as well as the effect of the wake.

Additionally, a method is presented to obtain empirical added-mass and quasi-
steady coefficients, C1 and C2, as well as an empirical Theodorsen function, Ĉ(s),
using either simulations or experiments. This guarantees agreement of the model
in the limit of high and low frequency motions, as well as in between. The method
of obtaining an empirically determined Theodorsen’s model has been demonstrated
for a flat plate pitching at low Reynolds number, Re = 100. The numerical example
presented indicates that at low Reynolds number, the effect of the wake is not the
same for each pitch center. Understanding the variation in the empirical Ĉ(s) with
pitch axis location may be an important avenue of future research.

Finally, Wagner’s model is included for completeness. In addition to a di-
rect comparison with Theodorsen’s model, a state-space realization is presented
for Wagner’s indicial response function, φ(t). However, because of the additional
constraints on Wagner’s model, as well as the equivalence of Wagner’s function,
φ, and Theodorsen’s function, C, via Laplace transform, this work has focused on
developing state-space representations of Theodorsen’s model.
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Chapter 7

Models of a flat plate airfoil at
Re = 100 from direct numerical
simulations

In this chapter, the modeling techniques from Chapter 5 are applied to develop
linear, reduced-order models for the unsteady lift coefficient on a flat plate airfoil
at low Reynolds number, Re= 100. The inputs to the model are pitch and plunge
motion (α̈ and ḧ, respectively), and the output is the lift coefficient CL. The results
are based on direct numerical simulations, the details of which are described in
Chapter 3. The flat plate airfoil has a thickness equal to 1% of the chord length.

The majority of the models in this chapter are of the form in Eq. (5.6) and are
constructed from a time-resolved step response using the algorithm in Section 5.3.2.
In the case of pitching, the step maneuver in Figure 5.8 is used with a step magnitude
of 0.1◦. For the case of plunging, the vertical velocity undergoes a step to a velocity
of ḣ = 0.001745 chords per convection time, which corresponds to a step in effective
angle of attack of 0.1◦. The step duration in both cases is 0.01 convective time.

These models may be considered to be low-order, state-space representations of
an indicial (step) response model from Section 2.1.2. However, models constructed
using algorithms in Sections 5.3.3 and 5.3.4 of the form in Eq. (5.7) are also inves-
tigated, and it is shown that models based on the algorithm in Section 5.3.3 are
nearly equivalent to those based on Section 5.3.2. Additionally, models for plunging
motion take the form in Eq. (5.9), and are constructed using a modified version of
the algorithm in Section 5.3.3. Finally, multiple-input, single-output (MISO) mod-
els are developed with both pitch and plunge inputs and take the form in Eq. (5.10).
A major result of this section is that MISO models do not require a higher-order
ERA model to capture the transient dynamics.

This chapter is organized into models linearized at zero angle of attack, α0 = 0◦,
and models linearized at non-zero angles of attack up to the critical bifurcation
angle, after which the flow is characterized by periodic vortex shedding and is in-
herently nonlinear. All models are compared with the indicial response model, as
well as direct numerical simulation (DNS) and the Theodorsen model for a number
of maneuvers. Small amplitude sinusoidal maneuvers are compared in Bode plots.
Additionally, models are used to re-compute the time-resolved step response data
that was used for the indicial response model. Finally, the models are compared on
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a moderate amplitude pitch/plunge maneuver with 10◦ amplitude motion in both
angle-of-attack and effective angle-of-attack based on plunging velocity.

7.1 Models linearized at α0 = 0◦

At zero angle of attack, step response simulations are obtained for a flat plate
pitching about various points (leading edge, quarter chord, and middle chord) and
plunging vertically. The lift coefficient history from the step response simulations
are synthesized into models of the form in Eqs. (5.6) and (5.9) with ERA models
(Ar, Br, Cr) for the transient dynamics of order r = 7. Additionally, a multiple-
input model is obtained using Eq. (5.10) that combines plunging with pitching
about various points. For the multiple-input case of combined pitch and plunge, the
ERA model still has order r = 7. It is shown in Figure 7.1 that a model of order
r = 5 (red) is sufficient for accurate Bode plots at low angle of attack. However, as
we shall see in Figure 7.13, a model of order r = 7 is required to capture a subtle
flow feature that develops into a vortex shedding mode at larger angle of attack.

7.1.1 Small amplitude motions

The reduced-order models presented are based on step-response simulations with a
small step magnitude; ∆α = 0.1◦ in the case of pitching motion, and ∆α = 0.1◦

effective angle of attack (ḣ = 0.00175) in the case of plunging motion. Therefore,
it is natural to compare the models with DNS for small amplitude motions. The
response of each model (ERA model, indicial response, Theodorsen, and DNS) are
computed for sinusoidal inputs u(t) = ∆α sin(ωt) with ∆α = 1◦ for pitch (u = α),
and ∆α = 0.01 for plunge (u = h). The input to the models in Eq. (5.6) and
Eq. (5.7) is ü = −∆αω2 sin(ωt), so the Bode plot is a frequency response from input
ü to CL.

Figures 7.2, 7.4, and 7.6 show the Bode plots comparing the reduced-order model
(5.6), indicial response (2.6), Theodorsen’s model (6.21), and DNS for pitching about
the quarter-chord and middle-chord and plunging, respectively. It is important to
gain a physical intuition for the frequency response (i.e., Bode) plots and how they
relate to the aerodynamic response. The low-frequency asymptote in each Bode
plot corresponds to the quasi-steady case when the lift coefficient depends only on
the angle of attack in the case of pitch, or effective angle of attack in the case of
plunge. For pitching motion, the low-frequency asymptote in the magnitude plot has
a slope of −40 dB/decade, consistent with the fact that α is obtained by integrating
the input α̈ twice. In the case of plunge, the low-frequency asymptote has a slope
of −20 dB/decade, since the effective angle of attack is related to ḣ, which is the
integral of the input ḧ. In all instances, the low-frequency asymptote of the model
is lower than that of Theodorsen’s model because Theodorsen’s model uses the ideal
2π lift slope, which over-predicts the true lift slope at Re= 100. The high-frequency
asymptote in the Bode magnitude plots corresponds to the case when there are large
accelerations and the lift coefficient is strongly influenced by added-mass forces. In
the case of pitch about the quarter-chord and plunge motion, there are added-mass
forces directly proportional to the inputs (α̈ and ḧ), so that the Bode plot has zero
slope at high frequencies. There are no added-mass forces proportional to α̈ in the
case of mid-chord pitching, but there are forces proportional to α̇, so the Bode plot

96



Figure 7.1: Frequency response (Bode plot) for reduced-order models with pitching
at leading edge. Various order ERA models are shown. The model input is α̈, and
the output is CL.
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has a slope of −20 dB/decade at high frequencies. This information is also reflected
in the Bode phase plot. Notice that the phase at low-frequency starts at −180◦ for
the pitching models, which is consistent with the fact that the angle of attack is the
second integral of the input (twice integrating a sinusoid results in another negative
sinusoid, hence the −180◦ phase).

Many of these properties are also reflected in the step-response data, shown in
Figures 7.3, 7.5, and 7.7. For example, it is seen in Figure 7.3 that there are added-
mass forces directly proportional to α̈, unlike the step-response in Figure 7.5, where
the added-mass forces are proportional to α̇. Even though the added-mass in the
plunge maneuver resemble those in the mid-chord pitching case, the maneuver is
slightly different (step in ḣ rather than h).

In all of the Bode plots and step response plots, the low-order ERA models
(single-input, single-output as well as the multi-input, single-output) accurately
reproduce the frequency response of the direct numerical simulations. Moreover,
the ERA model is nearly identical to the indicial response model, as they are both
based on the same numerical step response. Theodorsen’s model consistently over
predicts the quasi-steady lift slope, and is not as accurate in capturing the phase.
As is mentioned in Chapter 6, it is possible to hand-tune Theodorsen’s model to the
correct lift curve slope, but this does not improve the phase at moderate frequencies.

7.1.2 Large amplitude motions

The model in Eq. (5.6) has shown excellent agreement with the indicial response
model, Eq. (2.6), and DNS for small-amplitude maneuvers, and so it is natural to
investigate maneuvers with a larger amplitude. Because both the reduced-order
model and the indicial response method are linear, they should continue to agree
with each other for large amplitude motions. However, the actual flow physics is
nonlinear, and so comparison with DNS on a larger maneuver will provide a more
challenging test case for the models, and indicate whether the flow is linear enough
for these models to be valid. Additionally, comparison with a simplified model based
on quasi-steady and added-mass forces will highlight the advantages of the reduced-
order model; this simplified model may be considered to be the same as Eq. (5.6)
with no ERA component for the additional transient dynamics (i.e., set C = 0).

The large amplitude motion is a combined pitch/plunge maneuver based on
the canonical pitch-up, hold, pitch-down maneuver [26, 79] that is discussed in
Section 2.6. The pitching portion of the maneuver consists of a pitch-up, hold,
pitch-down about the leading edge with a maximum angle of 10◦. The plunging
portion of the maneuver consists of a step-down in vertical position that is the
negative integral of the step-up, hold, step-down maneuver, and is chosen to have
a maximum effective angle of attack based on vertical velocity of 10◦. This specific
maneuver is chosen because of its relationship to the canonical test case as well as its
physical significance as a perching maneuver. The motion is given by the following
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Figure 7.2: Frequency response of reduced order model (5.6) (7-mode ERA), indicial
response, Theodorsen and DNS for pitching at quarter chord. Multiple-input ERA
model (5.10) for pitch/plunge agrees well (diamond). Input is α̈ and output is CL.
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Figure 7.3: Step-response (left, middle) and Hankel singular values (right) for 0.1◦

pitch-up about the quarter chord. DNS is compared with a 7-mode ERA model.
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Figure 7.4: Frequency response of reduced order model (5.6) (7-mode ERA), indicial
response, Theodorsen and DNS for pitching at mid chord. Multiple-input ERA
model (5.10) for pitch/plunge agrees well (diamond). Input is α̈ and output is CL.
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Figure 7.5: Step response (left, middle) and Hankel singular values (right) for 0.1◦

pitch-up about the mid chord. DNS is compared with a 7-mode ERA model.
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Figure 7.6: Frequency response of reduced order model (5.9) (7- mode ERA), indicial
response, Theodorsen and DNS for plunging. Multiple-input ERA model (5.10) for
pitch/plunge agrees well (LE - diamond, MC - circle). Input is ḧ and output is CL.
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Figure 7.7: Step response (left, middle) and Hankel singular values (right) in plunge
velocity with αe = 0.1◦ . DNS is compared with a 7-mode ERA model.
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IBPM Simulation Convolution ERA Model
Time (s) 2.55× 103 2.13× 10−2 3.48× 10−3

Table 7.1: Computational time of each method.

expressions:

Gα(t) = log
[

cosh(a(t− t1)) cosh(a(t− t4))
cosh(a(t− t2)) cosh(a(t− t3))

]
, α(t) = αmax

Gα(t)
max(Gα(t))

; (7.1)

Gh(t) = log
[

cosh(b(t− t1)) cosh(b(t− t4))
cosh(b(t− t2)) cosh(b(t− t3))

]
, h(t) =

∫ t

0
ḣmax

Gh(τ)
max(Gh(τ))

dτ,

(7.2)

where a = b = 11, αmax = 10◦ and ḣmax = −0.1745, which corresponds to αe = 10◦.
For the pitching motion, t1 = 1, t2 = 3, t3 = 4, t4 = 6, and for the plunging motion,
t1 = 2, t2 = 4, t3 = 5, t4 = 7.

Figure 7.8 shows the performance of each model on the combined pitch/plunge
maneuver. The top plot is the maneuver itself, and the bottom plot shows the lift
coefficient of each model throughout the maneuver. There is excellent agreement
between the indicial response model and the reduced-order model (5.6). Addition-
ally, the multiple-input model (5.10) with ERA order r = 7 agrees well with the sum
of two individual models for pitching and plunging, each with ERA order r = 7.
Finally, the close agreement with DNS shows that the indicial response model, and
its reduced-order counterpart, outperform the Theodorsen’s model.

The computational time of the three accurate methods (DNS, convolution
Eq.(2.6), and the ERA model Eq. (5.6)) are provided in Table 7.1. The ERA model
is about 6 times faster than the indicial response model and on the order of 106

times faster than the direct simulation. The computation time required for the
DNS, ERA models, and the convolution integral scale linearly with the time of the
maneuver.

7.1.3 Model parameterized by pitch point

As was mentioned in Section 5.2.2 in Eq. (5.11), it is possible to construct a multiple-
input model for pitch and plunge that is parameterized by pitch axis location p.
In particular, pitching about any point may be considered equivalent to pitching
about the mid-chord with an additional plunging motion superimposed. Therefore,
having identified models for pitching at the mid-chord and plunging, it is possible
to reconstruct the model for pitch about the leading-edge and quarter-chord based
on a linear combination of these two models. The agreement is nearly exact, as
shown in Figure 7.9. This is also consistent with the pitch-point parameterization
in Theodorsen’s model in Eq. (6.2).
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Figure 7.8: Combined pitch/plunge maneuver. (top) The angle-of-attack and ver-
tical center of mass motions. (bottom) Lift coefficient response is shown for DNS,
indicial response, reduced-order model (multiple-input system (5.10) with r = 7 and
sum of two single-input systems for pitch (5.6) and plunge (5.9), each with r = 7),
quasi-steady plus added-mass, and Theodorsen.

7.2 Models linearized at large angles, α0 ∈ [0◦, αcrit)

As the plate’s angle of attack is increased, the flow physics becomes significantly
more involved. In particular, increasing the angle of attack results in an adverse
pressure gradient on the upper surface. This increasingly adverse pressure gradient
thickens the upper boundary layer until the flow reverses, resulting in a stable,
attached separation bubble. At a critical angle of attack, αcrit, the separation bubble
bursts, resulting in periodic, laminar vortex shedding. This progression is shown in
Figures 1.3 and 3.1

This section presents linearized models for a flat plate at various nonzero angle
of attack up to the critical angle, αcrit, at which a Hopf bifurcation occurs. These
cases provide a more challenging demonstration of our modeling procedure, because
the fluid dynamic interactions are increasingly complicated at larger angle of attack.
All models in this section are computed for pitch about the leading edge.

7.2.1 Frequency domain analysis

Using the method discussed in Chapter 5, we have computed reduced order models
linearized at α0 ∈ [0◦, 27◦]. Figure 7.10 shows the frequency response of models
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Figure 7.9: Bode plot illustrating that pitch about leading-edge and quarter-chord
points is linear combination of pitching about the middle-chord and plunging motion.
ERA model order is r = 7. The model input is either α̈ or ḧ, and the output is CL.
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Figure 7.10: Frequency response of models linearized at various angles from α0 = 0◦

to α0 = 20◦. Results from direct numerical simulation linearized at α0 = 0◦ and
α0 = 20◦ are included for comparison. The model input is α̈, and the output is CL.

linearized at various α0, and the corresponding data from DNS for α0 = 0◦ and
α0 = 20◦. As seen in Figure 1.3, the lift slope decreases for increasing angle of
attack, so it is not surprising that the low frequency magnitude in the Bode plot
decreases for increasing angle of attack. Additionally, we see that at larger angle of
attack the phase converges to −180◦ at lower frequencies, indicating that solutions
take longer to reach equilibrium in the time domain. This is consistent with the
fact that for larger angle of attack the system is closer to instability, and a pair
of eigenvalues of the system are moving closer to the imaginary axis, effecting the
time-scale of relaxation [1].
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Figure 7.11: Poles (left) and zeros (right) of models for pitch about the leading edge,
linearized at various angle of attack, from α = 0◦ to α = 27◦. (bottom) zoom in.

To see this more clearly, we plot the poles and zeros of the models for α0 ∈
[0◦, 27◦], shown in Figure 7.11. The model given by Eq. (5.6) always has two poles
at the origin because the input α̈ must be integrated twice to obtain the states α̇
and α. Because we use an ERA model of order r = 7 for the transient dynamics,
there are seven additional branches of poles, as indicated in the plot. Similarly,
there are nine branches of zeros.

The most striking feature of Figure 7.11 is that as angle of attack increases, a
pair of poles and a pair of zeros march towards the imaginary axis. This explains the
longer relaxation times (convergence of Bode plots to −180◦ at successively lower
frequencies). It also indicates that the models are capturing the dynamics as the
system approaches a Hopf bifurcation. It is also interesting to note that there is a
second set of poles and zeros that branch from the real axis and march toward the
imaginary axis for increasing angle of attack. This is consistent with the fact that
at larger angle of attack, there is more complicated limit cycle behavior. It is not
surprising that the flow may undergo several Hopf bifurcations as angle of attack or
Reynolds number is increased [95].
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Figure 7.12: Figure showing improved performance of models linearized at α0 = 15◦

over models linearized at α0 = 0◦ for a pitch maneuver from 15◦ to 25◦ and back.

7.2.2 Time domain analysis

The large amplitude pitch-up, hold, pitch-down maneuver from Eq. (7.1) is used
again, at an angle of attack starting at 15◦ and reaching a maximum angle of 25◦;
the pitch point is the leading edge. This specific maneuver is beneficial because it
involves large added-mass forces and leading-edge separation.

The comparison of various reduced-order models with DNS is shown in Fig-
ure 7.12. The Theodorsen/Wagner analytical model is included for a baseline com-
parison. Perhaps the most striking feature of this comparison is the nearly perfect
agreement of the OKID-based model with the DNS. Interestingly, the order of the
transient dynamics portion of the model is r = 1 for the OKID-based model and
r = 7 for the model from Eq. (5.6). Next, we notice that both models linearized
about α0 = 15◦ outperform the model linearized at α0 = 0◦. Although this is not
surprising, it is a validation of this approach. In addition to being closer in mag-
nitude to the DNS curve, the models linearized at α0 = 15◦ also have the correct
negative slope during the “hold” portion of the maneuver, which is characteristic at
larger angles of attack as seen in Figure 2.5. Finally, we see that even the indicial
response based model linearized at α0 = 0◦ outperforms the Theodorsen/Wagner
model, which is also linearized at α0 = 0◦.

Additionally, it is interesting to see the step-response simulations for the various
base angles from α0 = 0◦ to α0 = 27◦ in Figure 7.13. The lift coefficient at the
base angle is subtracted, and we are only plotting the transient dynamics after the
step, so added-mass is omitted. Notice that between one and five convective times,
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Figure 7.13: Simulations and model prediction for small step of ∆α = 0.1◦ from a
reference angle α0 to α0 + ∆α for α0 ∈ [0◦, 27◦]. The initial lift coefficient CL(α0)
is subtracted out, and α increases with the arrow. ERA model order is r = 7.

there is a dip in the lift coefficient followed by a rise to steady state. A 7-mode
ERA model is required to capture this feature accurately at α0 = 0◦. Interestingly,
a 7-mode model is also required to accurately capture the frequency and decay rate
of the oscillations in the large angle of attack cases.

7.3 OKID for system identification

An example maneuver that is used with OKID is shown in Figure 5.12. The maneu-
ver consists of Gaussian white noise in α̈. The input to the OKID method would be
the pair (α̈, CL), and the output of the method are the Markov parameters Hi for
the impulse response in α̈. OKID is reviewed in Section 2.2.2.

The impulse response parameters obtained from the maneuver in Figure 5.12 are
shown in Figure 7.14 for a base angle of α0 = 0◦. The first parameter corresponds
to the added-mass term Cα̈ in our state-space model (5.7). Because an impulse in
α̈ is a ramp in α, we see a linear increase in Hi, and the slope is the lift slope Cα
Subtracting off Cαα, the Markov parameters decay to a non-zero value corresponding
to Cα̇, since an impulse in α̈ is a step in α̇. Finally, after subtracting off each stability
derivative, a low order representation of the remaining transient response is obtained
using the ERA, as discussed in Section 5.3.4. It is important to note that without
subtracting off Cαα, the resulting ERA model is unstable. This system is used as
an example to demonstrate the correct procedure for using OKID in Section 5.3.5.

For the sake of clarity, we have omitted the reduced-order models based on
OKID in most of the figures. However, the general trends are also captured by the
OKID-based models. Figure 7.15 shows a comparison of the models (5.6) and (5.7)
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Figure 7.14: Markov parameters from OKID with (α̈, CL) as input/output pair.

based on the three algorithms in Section 5.3 linearized at α0 = 0◦ and α0 = 15◦.
The frequency response from DNS is included for comparison.

7.4 Summary of Re = 100 results

In this chapter, a number of models have been developed for the pitching and plung-
ing motion of a flat plate airfoil at Re = 100. The modeling procedures in Chapter 5
have been compared against direct numerical simulations as well as the indicial re-
sponse model, Eq. (2.6), and Theodorsen’s model, Eq. (6.2). The low-dimensional
models match both the indicial response model and DNS for a range of maneuvers,
pitch points, and base angle of attack.

There are a number of results. First, the reduced-order models match the in-
dicial response model and direct numerical simulation (DNS) for small amplitude
motions over a range of frequencies and base angle of attack α0, as shown in Fig-
ures 7.2, 7.4, 7.6, and 7.10. The reduced-order model and indicial response model
both agree with direct numerical simulations (DNS) for a moderate amplitude com-
bined pitch/plunge maneuver, as shown in Figures 7.8 and 7.12. They both outper-
form Theodorsen’s model as well as the model based on quasi-steady and added-mass
forces. Finally, a multiple-input model capturing both pitch and plunge dynamics
performs as well as individual models without an increase in the order of the ERA
model.

The modeling techniques are applied to study motion at various angles of attack
up to the critical angle, at which point the Hopf bifurcation occurs. It is shown in
Figures 7.10 and 7.12 that a model linearized at a given base angle α0 will outperform
other linear models for a maneuver in the neighborhood of α0. Finally, Figures 7.11
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Figure 7.15: Bode plot of models of leading edge pitch generated using algorithms
1, 2 and 3 from Section 5.3. Models are based at α0 = 0◦ (left) and α0 = 15◦ (right).
The model input is α̈, and the output is CL.

and 7.13 demonstrate that the linear models capture the relevant dynamics as the
angle of attack is increased and the system approaches the Hopf bifurcation.
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Chapter 8

Models of a NACA 0006 airfoil
at Re = 65, 000 from wind tunnel
experiments

In this chapter, unsteady aerodynamic models are developed for a NACA 0006 airfoil
at Reynolds number 65, 000 based on wind tunnel experiments. Pitch and plunge
models of the form in Eqs. (5.7) and (5.9) are constructed using the OKID/ERA
method described in Section 5.3.4. The family of system identification maneuvers
in the second part of Section 5.4.2 was developed specifically to extract relevant
unsteady information from phase averaged wind tunnel measurements. Two sets
of experimental results are presented, each involving pitching and plunging motion
about α0 = 0◦ and α0 = 10◦. It is shown that the low-order models identified from
experiments are more accurate than Theodorsen’s model for all maneuvers, espe-
cially those based at larger base angle of attack. This work was done in collaboration
with Professor David Williams at the Illinois Institute of Technology in the Andrew
Fejer Unsteady Flow Wind Tunnel.

Section 8.1 provides details about the wind tunnel experiment, as well as the
system identification maneuvers and the modeling procedure. Section 8.2 contains
the first set of results including maneuvers and models for pitching about α0 = 0◦

and α0 = 10◦ and for pure plunge; models in this section are based on the actual
measured position of the airfoil. Section 8.3 contains the second set of results after
modifications were made to improve the accuracy of wind tunnel measurements and
reduce aeroelastic effects and noise. The input to the models in Section 8.2 is either
the measured angle of attack or measured plunge position, so these models capture
purely aerodynamic and aeroelastic effects. Conversely, the input to the models
in Section 8.3 is the commanded angle of attack and plunge position, resulting in
models that include the actuator dynamics and associated time-delays. The second
set of models may be more relevant for designing feedback control experiments. All
results include comparison with Theodorsen’s model.
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Figure 8.1: (left) NACA 0006 model in wind tunnel. (right) Schematic of hinge
apparatus connecting pushrods to platform.

8.1 Experimental Methods

8.1.1 Wind Tunnel Experiment

The following experimental data was collected in the Andrew Fejer Unsteady Flow
Wind Tunnel at the Illinois Institute of Technology. The dimensions of the wind
tunnel test section are 0.6m× 0.6m× 3.5m.

The model is a NACA 0006 airfoil, shown in Figure 8.1, with a chord length of
0.246 m and span of 0.598 m. The free stream velocity is 4.00 m/s, which results in a
Reynolds number of approximately 65, 000 and a convective time of 0.0615 seconds.
In all pitching experiments the pitch point is p = 0.11, or 11% chord.

Forces and moments are measured using the 6-axis ATI Nano25 force transducer
for the results in Section 8.2 and the more sensitive Nano17 force transducer for
Section 8.3. The free stream velocity is measured using a Pitot tube with a Validyne
DP-103 pressure transducer. The model is actuated using two Copley servo tubes
connected to individual pushrods, allowing for a full range of pitch and plunge
motions. The position of these pushrods is measured using linear potentiometers in
Section 8.2; however, they were removed before the results in Section 8.3 to prevent
stick-slip friction. This explains the different model input in each results section.

Because the force transducer moves with the body, forces are measured in the
body-fixed frame of the airfoil. Therefore, we rotate the normal (N) and parallel
(P ) forces in the z- and x- directions into the lift (L) and drag (D) forces relative
to the free stream velocity according to the following:[

L
D

]
=
[
cos(α) − sin(α)
sin(α) cos(α)

] [
N
P

]
(8.1)

The pushrods are connected to the airfoil and force balance via a platform with
a hinge constraint, as shown in Figure 8.1. It is then possible to command an
angle of attack α by varying the relative displacement of the two pushrods. For the
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Figure 8.2: Schematic of signals in wind tunnel experiment.
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Figure 8.3: Pitch maneuver; Command angle is αcmnd, and measured angle is αpot.

pitching experiments below, the front pushrod is held fixed, and the height of the
rear pushrod y1 is varied to vary α. The vertical displacement y1 may be solve for
a given α, and vice versa, using the following relationship:

(l3 cos(α)− l1)2 + (−l3 sin(α)− y1)2 − l22 = 0 (8.2)

where l1 = 2.1”, l2 = 1.25”, and l3 = 3” for the setup in Figure 8.1.
Finally, the inertia of the model, sting and pushrods introduces time lags, so the

measured angle is not exactly the same as the commanded angle. Additionally, the
Copley servo tube controller has its own PID dynamics. Figure 8.2 is a schematic
of the signals, and Figure 8.3 shows the commanded angle αcmnd and measured
angle αpot for a particular maneuver. In Section 8.2 the model input is the angle
of attack as measured by the potentiometer αpot, so that the model captures the
aerodynamics without the actuator or mechanical system. In Section 8.3, the model
input is the commanded angle of attack αcmnd, so that the models include the effect
of the actuator and the mechanical apparatus.

8.1.2 Modeling Procedure

The methods in Chapter 5 are used to develop pitch models of the form in Eq. (5.7)
and plunge models of the form in Eq. (5.9). In particular, the observer/Kalman
filter identification (OKID) method from Sections 2.2.2 and 5.3.4 is used with ex-
perimental measurements. For this method to produce accurate models, the input
maneuver must excite the unsteady aerodynamics across a full range of relevant
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Figure 8.4: Phase averaged force measurement for 5 degree step-up, step-down.

frequencies. The pseudo-random maneuvers shown in Figures 5.13 and 5.14 are
developed specifically for the pitch and plunge maneuvers in this experiment. The
maneuvers are sufficiently aggressive to overcome noise in the force measurements,
and they are generated by a train of distinct impulses in the input variable.

8.1.3 Phase Averaged Force Measurements

The force measurements are inherently noisy, and, therefore, we phase average over
a number of cycles. This means that we collect data from a number of identical
runs, and average the results to reduce the noise. The top of Figure 8.4 shows the
noisy force measurements, and the bottom shows the phase averaged force.

Before phase averaging, we use a 6-th order Butterworth low-pass filter at
2500 Hz. In addition, we coarsen the data by averaging the measurements inside
each interval [k∆t, (k + 1)∆t), where ∆t = 0.1 convective time unit, or 0.00615
seconds. Using this coarsened data as an input to the OKID method results in a
discrete-time model with time-step ∆t. Because the added-mass force appears as a
feed-through term, it is possible to convert this to a continuous time system without
loss of accuracy at high frequencies. This step is also important to ensure that the
angular acceleration α̈, as computed by finite differencing, is not too noisy.
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Figure 8.5: Schematic of models in Section 8.2.

8.2 Results I: Models based on measured position

In this section, experimental data and reduced order models are presented based on
the system ID maneuvers discussed in Section 5.4.2. The input to these models is
the angle of attack measured by the potentiometer, αpot, as shown in Figure 8.5. For
the case of pitching about α0 = 0◦ and α0 = 10◦, three pseudo-random maneuvers
are used to identify the reduced order models. For every maneuver, force and
positions measurements are taken for 100 identical instances of the maneuver and
phase averaged. After phase averaging the data, the measured force and angle of
attack measurements are discretized with ∆t = 0.1 convective time unit, as discussed
in Section 8.1.3.

8.2.1 Pitching, α0 = 0◦

Figure 8.6 shows the measured angle of attack and lift coefficient for one of the
pseudo-random test maneuvers, maneuver B. The black curve is the measured force,
the red curve is the low-order model (5.7), and the green curve is Theodorsen’s
model (6.2). Although Theodorsen’s model predicts the quasi-steady lift, it does
not adequately capture the large added-mass forces.

The modeling procedure is repeated with similar results for three pseudo-random
maneuvers, A, B, and C. It is possible to combine the measured response for each of
the three maneuvers and obtain a model based on the concatenated signal. Each of
the maneuvers has amplitude roughly ±5◦. The models obtained using each system
ID maneuver accurately reproduce the measured force for each of the other test
maneuvers, as seen in Figure 8.7.

The Bode plots of each of the reduced order models based on the three system
ID maneuvers, as well as the concatenated maneuver, is shown in Figure 8.8. All
three models have similar asymptotes, corresponding to the low-frequency quasi-
steady limit and high-frequency added-mass limit. In all of the models, there is a
prominent resonance at around 12 rad/s·c/U. In dimensional units, this corresponds
to a frequency around 30 Hz. It appears that this resonant peak is the result
of dynamics in the mechanical system and is not aerodynamic in nature. Similar
ringing can be seen in Figure 8.4 after the fast step-up and step-down maneuver.

Finally, the impulse response parameters identified using the OKID method are
shown in Figure 8.9. In contrast to Figure 7.14, the added-mass forces are not all
lumped into the first Markov parameter (equal to Cα̈), but are rather spread out
over the first few parameters. The mechanical ringing can be seen clearly in the
impulse response parameters, which contributes to the phase bump in the Bode
plot around 5 rad/s c/U. This bump is captured by the transient dynamics, since it
is not entirely governed by the Cα̈ term as in the case of theory and DNS.
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Figure 8.6: Measured force compared with models (bottom) for pseudo-random
maneuver B centered at α0 = 0◦ (top). A reduced order model (5.7) for transient
dynamics of order r = 3 outperforms Theodorsen’s model.
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Figure 8.7: Performance of each reduced order model obtained on separate system
ID maneuvers, applied to maneuver B.
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Figure 8.8: Bode plots of the reduced order models obtained using each of the three
system ID maneuvers, and concatenated maneuver at base angle of attack α0 = 0◦.
The model input is α̈, and the output is CL.
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Figure 8.9: Impulse response in α̈ identified using OKID, for system ID maneuvers
based around α0 = 0◦.
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Figure 8.10: Measured force compared with models (bottom) for pseudo-random
maneuver B centered at α0 = 10◦ (top). A reduced order model with transient
dynamics of order r = 3 outperforms Theodorsen’s model.

8.2.2 Pitching, α0 = 10◦

Here, the system identification maneuvers are repeated for a new base angle of
α0 = 10◦. In these experiments, the pitching amplitude is ±10◦, which is twice
as large as in the previous section. The 2π lift slope predicted by Theodorsen is
not exact for this airfoil and Reynolds number, and so there is a steady-state error
between Theodorsen’s predicted lift at α0 = 10◦ and the measured lift at α0 = 10◦.
This error is subtracted off in the plots.

Figure 8.10 shows the measured response for maneuver B, along with the model
prediction. The agreement of the model in Eq. (5.7) is not as close as in the α0 =
0◦ case, which is most likely due to nonlinear flow effects that are not modeled.
However, the model significantly outperforms Theodorsen’s model.

The Theodorsen model has relatively poor quasi-steady performance, which is
due to the fact that the lift slope decreases significantly for larger angles of attack.
This is seen in the decreased slope in the impulse response parameters in Figure 8.12
as well as in the low frequency asymptote in the Bode plot in Figure 8.11. It is
possible to tune Theodorsen’s model with the correct lift slope, and this is also
plotted. Again, there is a prominent resonant peak at around 30 Hz corresponding
to mechanical ringing. This can be seen in the Bode plot in Figure 8.11 as well as
the impulse response parameters in Figure 8.12.
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Figure 8.11: Bode plots of the models obtained using each of the three system ID
maneuvers, and concatenated maneuver at base angle of attack α0 = 10◦. The
model input is α̈, and the output is CL.
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Figure 8.12: Impulse response in α̈ from OKID. Maneuvers are based around a
nonzero angle of attack, α0 = 10◦.
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Figure 8.13: Comparison of Bode plots of models based at α0 = 0◦ and α0 = 10◦.
The model input is α̈, and the output is CL.

8.2.3 Comparison of Model at α0 = 0 and α0 = 10

Figure 8.13 shows the Bode plots of the pitch models linearized at α0 = 0◦ and
α0 = 10◦. The model based at α0 = 10◦ takes longer to reach steady state, as
illustrated by the convergence of low-frequency asymptotes at lower frequencies.
Additionally, this model has a smaller magnitude at the low frequency asymptote,
indicating that the airfoil has partially stalled. Both of these effects are observed
when comparing similar models at Reynolds number 100, for example in Figure 7.10.

It also appears that the resonant peak is somewhat attenuated at the larger
angle of attack. This may be the result of an aerodynamic cushioning effect from
the partially separated flow.

8.2.4 Model for Plunging

Figure 8.14 shows the model obtained for the case of pure plunge. The system ID
maneuver is essentially the same as in the pitching case, except both servo tube
controllers are sent the same signal, resulting in plunge motion. Figure 8.15 shows
the frequency response for the pure plunge model. Again, there is a resonance at
around 30 Hz. It is observed in Figure 8.14 that the lift response is dominated by
added-mass and ringing; this motivates the separate system identification maneuver
for plunge in the next section.
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Figure 8.14: Measured force and model prediction for plunge maneuver using re-
duced order model with transient dynamics of order r = 3.
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Figure 8.15: Bode plot of the model, Eq. (5.9), and Theodorsen’s model for plunge.
The input is ḧ, and the output is CL.
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Figure 8.16: Schematic of models in Section 8.3.

0 50 100 150 200 250 300 350 400 450 500

−50

−40

−30

−20

−10

0

 

 
X: 37.84
Y: 6.103

X: 77.39
Y: −1.583

X: 138.7
Y: −5.54

X: 38.09
Y: −22.2

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

no mass, flow off, servo off [BASELINE 1]
mass on, flow off, servo off [BASELINE 2]
wing on, flow off, servo off [IMPULSE]
wing on, flow off, servo off
wing on, flow off, servo on
wing on, flow on, servo on

Figure 8.17: Mechanical resonances involved in the wind tunnel experiment.

8.3 Results II: Models based on commanded position

After identifying significant mechanical ringing and aeroelastic effects in the results
from Section 8.2, efforts were made to rebuild the structural supports and retune
the PID controller for the servo motor to reduce sources of noise and vibration.
In addition, a more sensitive Nano17 force transducer is used to measure forces,
so that less aggressive maneuvers may be accurately measured. Finally, the linear
potentiometers were modified to reduce stick-slip, at the cost of accuracy in αpot.
Thus, the input to models in this section is the commanded position, so that the
actuator is included in the plant model. This is shown in Figure 8.16.

The Nano17 transducer has less sensor noise than the Nano25, so fewer samples
are required for phase averaging. Pitch maneuvers in this section the same as the
one in Figure 8.6. A new plunge maneuver is developed, shown in Figure 5.14.

8.3.1 Mechanical ringing

In the models from Section 8.2, there is a significant resonance due to mechanical
vibrations. Therefore, it is important to characterize more accurately and system-
atically the mechanical resonances involved in the system.
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Error Error Markov Model
(Theodorsen) (ERA Model) parameters order

Pitch, α0 = 0◦ 0.0604 0.0331 100 7
Pitch, α0 = 5◦ 0.0752 0.0430 50 5

Pitch, α0 = 10◦ 0.1279 0.0629 150 5
Plunge, α0 = 0◦ 0.1414 0.0701 100 5

Plunge, α0 = 10◦ 0.2028 0.0991 100 5

Table 8.1: Comparison of Theodorsen and ERA model error with wind tunnel mea-
surements for pitch and plunge maneuvers. Error is quantified by computing the
standard deviation of the error signal (measurement minus model).

Markov parameters 100 100 100 100
Model order 7 7 7 7

Time delay (∆t) 1 2 3 4
Error (ERA Model) 0.03591 0.03312 0.03313 0.07274

Table 8.2: Effect of time delay on model error. ∆t = 0.1 convective time units.

Figure 8.17 shows the power spectrum of the normal force measurement for a
number of control experiments to determine the source and frequency of the me-
chanical resonance. In one case, the bottom of the actuator assembly is struck with
a rubber mallet, resulting in a strong resonance at 77 Hz and at 139 Hz. When
power is fed to the servo motor controller, a significant resonant peak at 38 Hz de-
velops, regardless of whether or not the wind tunnel fan is on. It is likely that the
resonance peak at 38 Hz is a result of the internal PID dynamics of the servo motor
controller, partially explaining the peaks in the Bode plots at nearby frequencies.

8.3.2 Model benchmarks

The results of Sections 8.3.3 and 8.3.4 are summarized here. Table 8.1 shows the
error between the measured data and both Theodorsen’s model and the identified
model from OKID/ERA. The error is measured by integrating the square of the
difference between each model and the measured data for a given maneuver. In all
of the cases, the error in the ERA model is about half of the error in Theodorsen’s
model. It is also interesting to note that the error increases as the base angle of
attack α0 increases. This is reasonable, since the flow becomes increasingly nonlinear
for increasing angle of attack.

The inherent time delay between command signal and measured force is identified
by choosing the time delay that minimizes the model error. The results are shown
in Table 8.2. Recall from Section 8.1.3 that the coarse sample time is ∆t = 0.1
convective time. Since the error is the same for a time delay of 2∆t and 3∆t, it
helps to use other indicators, such as the frequency response or how closely the peaks
in α̈ line up with the added-mass peaks in the force measurement. Based on these
comparisons, it was determined that the time-delay is 3∆t (0.3 convective times).
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Figure 8.18: Experimental and modeled lift for pitch about a base angle α0 = 0◦.

8.3.3 Pitching experiments

The pitching experiments from Section 8.2 are repeated with the more sensitive
Nano17 force transducer. Figure 8.18 shows the measured and modeled response
linearized at α0 = 0◦. Both models, Eq. (5.7) and Theodorsen’s model, appear to
closely match the measured force; however, from Table 8.1, Theodorsen’s model has
nearly twice the error as the ERA model. It is reassuring that Theodorsen’s model
is accurate at α0 = 0◦, since this speaks to the accuracy of the experiments after
efforts were made to clean up the measurements and reduce ringing.

Figure 8.19 shows the same pitch maneuver performed at a base angle of α0 =
10◦. For this maneuver, Theodorsen’s model is significantly less accurate than in
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Figure 8.19: Experimental and modeled lift for pitch about a base angle α0 = 10◦.

the α0 = 0◦ case. This is not entirely surprising, considering that the flow physics
is increasingly nonlinear for larger angle of attack.

Figure 8.20 compares the Bode plots of the ERA models at α0 = 0◦ and α0 =
10◦ and Theodorsen’s model. The model linearized at α0 = 10◦ converges to the
low-frequency asymptote at a lower frequency than the α0 = 0◦ model, and the
magnitude is smaller at low frequencies, consistent with the shallower lift coefficient
slope. Additionally, since the new models include the effect of the actuator and
mechanical system, there is a strong new mechanical resonance at 30 rad/s c/U,
which corresponds to about 76 Hz. The model at α0 = 10◦ does not have a prominent
resonance at 10 rad/s c/U (38 Hz), unlike the model based at α0 = 0◦. It appears
that the aerodynamic damping has almost entirely eliminated this resonance.

125



10 2 10 1 100 101 102

60

40

20

0

20

40

60

M
ag

ni
tu

de
 (d

B)

 

 
Model, AoA=00
Model, AoA=10
Theodorsen

10 2 10 1 100 101 102
200

150

100

50

0

Ph
as

e 
(d

eg
)

Frequency (rad/s c/U)

Figure 8.20: Bode plots of pitch models at α0 = 0◦ and α0 = 10◦. The model input
is α̈, and the output is CL.

8.3.4 Plunge experiments

The new plunge maneuver in Figure 5.14 is modified from the plunge maneuver used
in Section 8.2.4. Since there is no Ch term in the plunge model (5.9), it is unnecessary
to have the “hold” portions of the maneuver at different heights. Therefore, the new
maneuver accelerates into linear ramps of different vertical velocity until a maximum
or minimum height has been reached, after which the height is held for a time and
then the direction is reversed. The different vertical velocities correspond to different
effective angle of attack.

Figure 8.21 shows the results for plunging about α0 = 0◦ and Figure 8.22 shows
the results for plunging about α0 = 10◦. At α0 = 0◦ Theodorsen’s model is quite
accurate, capturing the qualitative behavior. At α0 = 10◦, however, it is clear that
Theodorsen’s model is failing to predict the regions of constant vertical velocity,
which correspond to a constant effective angle of attack. In fact, during these
effective angle of attack holds, Theodorsen’s model rises to a steady state that is
larger in magnitude, while the actual lift decreases from a large initial lift. Although
the ERA model does a better job capturing this phenomena, it is clear from the
error signal that both models systematically underpredict the lift at the beginning
of these hold periods.

Figure 8.23 shows a comparison of the Bode plots for the plunge models linearized
at α0 = 0◦ and α0 = 10◦.
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Figure 8.21: Experimental and modeled lift for plunge about a base angle α0 = 0◦.
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Figure 8.22: Experimental and modeled lift for plunge about a base angle α0 = 10◦.
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Figure 8.23: Bode plots for plunge models based at α0 = 0◦ and α0 = 10◦. The
model input is ḧ, and the output is CL.

8.4 Discussion about experimental results

The modeling procedures from Chapter 5 have been applied to develop low-
dimensional models for the unsteady aerodynamic force on a NACA 0006 airfoil
from wind tunnel measurements. The wind tunnel is a more challenging test
case with the addition of plant disturbances and sensor noise. Additionally, the
experiment is performed at a moderate Reynolds number, Re = 65, 000, with a
three-dimensional wing with rounded leading edge, providing a more realistic model
of a micro aerial vehicle. The issue of plant disturbance and sensor noise motivates
the aggressive maneuvers used in this chapter, which excite strong unsteady aero-
dynamic responses across a range of relevant frequencies. These maneuvers are used
in conjunction with the algorithm in Section 5.3.4, based on OKID, to construct
pitch models (5.7) and plunge models (5.9).

The results in this chapter are based on two separate sets of experimental data.
The models identified from the first set of data exhibit a strong resonant peak at
around 30 Hz, which is caused by oscillations in the servo tube controllers exciting a
mechanical resonance in the system. This discovery led to a redesigned experiment,
and a cleaner second set of data. In both sets of results, at α0 = 0◦ and α0 = 10◦,
our reduced order model outperforms Theodorsen’s model. At larger base angle of
attack, α0 = 10◦, the difference with Theodorsen is more pronounced. However,
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at α0 = 10◦ the total error is larger in both models than in the α0 = 0◦ case,
presumably because of nonlinear flow effects that are not modeled. The fact that
the low-order model captures the additional mechanical effects indicates that these
methods may be applied more generally to problems in aeroelasticity. It is also noted
that there is an aerodynamic cushioning effect at α0 = 10◦, whereby the mechanical
resonance is attenuated and occurs at a slightly higher frequency.

The models in this chapter follow similar trends to those from Chapter 7. For
example, at larger base angle of attack, the model takes longer to equilibrate to
steady state, as reflected in the convergence to the quasi-steady asymptote at a
lower frequency. Additionally, at α0 = 0◦, the data and models exhibit a transient
rise to their steady-state values given a step in effective angle of attack, while at
α0 = 10◦, the data and models exhibit a transient decay to their steady-state values
from a larger initial value. It is believed that in the experimental data this is due to
the formation and convection of a leading edge vortex, as is the case in simulations.
The qualitative agreement with simulations suggests that the experimental flow field
is still dominated by large fluid coherent structures.
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Chapter 9

Conclusions

In this thesis, there are three major contributions toward advancing the state of
the art of unsteady aerodynamic modeling at low Reynolds number. First, I have
developed an efficient and accurate linear modeling framework, consisting of re-
duced order models, algorithms, and system identification maneuvers that may be
applied to data from high fidelity simulations and experiments. Next, I have applied
these techniques to obtain low-order models for the unsteady aerodynamics at low
Reynolds number using data from direct numerical simulations and wind tunnel
experiments. Finally, I have developed two computational tools that dramatically
improve our ability to compute and visualize fully resolved direct numerical sim-
ulations. These three points are addressed in the following sections, along with
suggestions for future work in this field.

9.1 Linear modeling framework and procedure

A main result of this work is the development of a set of general unsteady aerody-
namic models in Section 5.2. Moreover, a number of algorithms and maneuvers for
system identification have been developed to construct these reduced order aerody-
namic models, either from simulations or from experimental data.

These models are directly inspired by the classical models of Wagner [125] and
Theodorsen [114], but they have been significantly extended and modernized for
use with current control design and analysis techniques. In particular, the models
may be viewed as state-space realizations of the accurate indicial response models
obtained from direct numerical simulations and wind tunnel measurements. These
models, therefore, capture the transient, viscous fluid dynamic effects that are not
captured by inviscid theories.

Additionally, the models have explicit terms for the quasi-steady lift coefficient
slope and added-mass forces, which is reminiscent of Theodorsen’s model. Identify-
ing these terms separately has two positive outcomes. First, the model is guaranteed
to have the correct behavior in the limit of low and high frequency motion. Sec-
ond, the subsequent reduced order modeling effort is focused at the intermediate
frequencies where the transient fluid dynamic effects are important. The resulting
models are, thus, both accurate and efficient. Moreover, the models developed are
parameterized by the pitch axis location, as is Theodorsen’s model.
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9.2 Unsteady model results at low Reynolds numbers

In Chapter 6 the models of Wagner and Theodorsen are cast into a modern state-
space framework, and they conform to the general aerodynamic model presented in
Eq. (5.5). In Chapter 7, linear models are developed for direct numerical simulations
of a pitching and plunging flat plate at Reynolds number of Re = 100. It is shown
that for a relatively low order model, r = 7, the unsteady aerodynamic effects are
well captured for all angles of attack up to the Hopf bifurcation angle. Moreover,
the identified linear models are more accurate than Theodorsen’s model, because
they include viscous boundary layer effects. In Chapter 8, the modeling procedure
is applied to characterize the unsteady aerodynamics of a NACA 0006 airfoil at
Reynolds number 65, 000 in a wind tunnel experiment at the Illinois Institute of
Technology. In addition to providing a real-world validation of these methods, it is
interesting to note that the modeling procedure from Chapter 5 is sufficiently general
to capture aeroelastic effects, as well as the actuator dynamics in the experiment.

The models obtained in Chapters 7 and 8 provide quantifiable insights into the
physics of laminar separation that characterize flows at low Reynolds number. In
both the simulated results and the wind tunnel measurements, the resulting models
exhibit similar trends as the angle of attack is increased. The quasi-steady limit
is pushed to lower frequencies at larger base angle of attack, consistent with the
fact that a pair of imaginary eigenvalues moves toward the imaginary axis in the
low-order models. In addition, at large angle of attack, we see an attenuation of the
fluid-structure resonance, due to the cushioning effect of the separated boundary
layer.

Also, based on the model in Eq. (5.11), at a given angle of attack, all of the
models for pitch about various points and plunge have the same poles. The dif-
ferences are explained by the changing zeros. This is consistent with Theodorsen’s
framework.

9.3 Development of computational tools for unsteady
fluid dynamics

Two computational tools for simulating and visualizing unsteady fluid dynamics
have been improved upon as a result of this work. First, the immersed boundary
projection method was extended to simulate the Navier-Stokes equations in the
body-fixed frame of an airfoil. This provides an order of magnitude computational
improvement over the previous method for the case of a moving airfoil. In addition,
it is possible to simulate large amplitude wing motions that would have previously
left the domain.

Second, a number of methods are developed that improve the computation of
finite-time Lyapunov exponents (FTLE), which are useful for characterizing un-
steady fluid coherent structures and understanding unsteady flow mechanisms. The
new methods are orders of magnitude faster than the standard algorithm. In [9], we
used the FTLE field to understand how the classical model of Theodorsen breaks
down for large amplitude pitching and plunging motion with large reduced frequency
and Strouhal number.
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9.4 Future directions

There are a number of extensions and open problems related to this work. A few
promising directions include:

• H2 and H∞ optimal control based on models– It is of particular interest
to use the models developed in this thesis for control. The low-dimensional,
state-space form of these models will be ideal for use with modern control
techniques. Comparison of control methods based on Theodorsen’s model and
the more accurate models in this thesis would provide a valuable performance
metric. In particular, it will be interesting to compare the controllers devel-
oped for models at zero angle of attack, α0 = 0◦, where Theodorsen’s model is
most accurate, with controllers at larger angle of attack, where the appearance
of right half plane zeros make the control problem more challenging.

A preliminary control objective is to maintain a constant lift coefficient (or
track a reference lift) using pitch angle control while rejecting gust distur-
bances; vertical gust will be modeled by a plunge acceleration. It will then
be interesting to investigate the coupled flight dynamic/aerodynamic control
problem of trajectory tracking. The design of flight controllers for small MAVs
will be particularly interesting when the flight dynamic and aerodynamic time-
scales are comparable.

• Nonlinear aerodynamic models– Developing nonlinear models based on
the methods and models in this thesis will be a challenging and worthwhile
endeavor. In particular, extending the modeling techniques to the unstable
equilibria and stable periodic orbits for post-critical angle of attack will provide
valuable information about the form of the nonlinearity in the model. The goal
would be to develop a single model that yields the models from this thesis,
when linearized, and is more accurate for large amplitude maneuvers when
nonlinear effects are excited.

• Generalize for full 3D flight– The analysis in this thesis has concerned
modeling the unsteady lift coefficient for longitudinal wing motions. It is a
straightforward, though technically involved, generalization of the methods in
this thesis to obtain models from general kinematic inputs in three dimensions,
TSE(3), to all force and moment outputs. This will extend the scope of these
methods to include improved flight simulators and six degree-of-freedom flight
control.
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