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Abstract

This thesis tackles challenges in feedback control design for fluid flows, from multiple angles and
approaches. It covers three major facets—stability theory, control, and reduced-order modeling—
and it investigates three major challenges of these facets: nonlinearity, high dimensionality, and
non-normality.

The dissertation begins with a discussion of global stability via linearized Navier–Stokes eigen-
decompositions, including numerical algorithms for this analysis. This section then investigates the
global stability of a pipe flow through a T-shaped bifurcation at mid-hundred Reynolds numbers,
which exhibits vortex breakdown. The recirculation and sensitivity regions closely coincide, which
we explain using an inviscid short-wavelength perturbation theory. We also discuss the stability
and receptivity properties of this flow.

The second part discusses feedback control design for fluid flows, including optimal actuator and
sensor placement. It presents an algorithm that computes the gradient of a control measure with
respect to such placements, allowing an efficient gradient-based optimization. The implementation
on the linearized Ginzburg–Landau and the Orr–Sommerfeld/Squire models of fluid flow reveals
that common methods for placement, such as global mode analysis, are suboptimal. We discuss
heuristics, including sensitivity, that may predict optimal placements.

The third part covers reduced-order flow modeling. It examines previously unknown properties
of dynamic mode decomposition (DMD)—a data-based modeling technique—including the unique-
ness of the numerical algorithm and the boundary conditions of DMD-based models. We also
propose an “optimized” DMD that produces less spurious decompositions, and gives the user con-
trol over the number of output modes. We show examples from the two-dimensional laminar flow
over a cylinder. This part also investigates the stability and performance of high dimensional (e.g.,
fluid) systems in closed-loop with reduced-order controllers, since such control design is typically
necessary for computational tractability. Theorems based on the normalized coprime factorization
and ν-gap metric provide sufficient conditions for stability and performance. These conditions
can also determine model reduction orders for which the stability or performance of reduced-order
control is guaranteed. We demonstrate this on the control of the linearized Ginzburg–Landau
system.
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Preface

This dissertation contains two parts. The first part provides a concise review of stability, control
theory, and dynamical systems analyses of fluid flow. It discusses multiple aspects and ideas that
are critical to the successful design of feedback flow control systems. These ideas include local and
global theories of flow stability, optimal and robust control, model reduction and control design
for high-dimensional systems, and dynamical systems approaches to flow modeling. I present this
material toward an audience that does not necessarily have expertise in these subjects. Although
the material in this dissertation is interdisciplinary by nature, I write specifically with a fluid
mechanics audience in mind. Therefore, some of the control theory discussion begins from a more
elementary standpoint.

This first part provides fundamental ideas needed for the second part, which contains published
and submitted papers. I have reformatted the articles for this dissertation, but their content is
essentially unchanged from the published versions. I outline my individual contributions to these
papers in Chapter 6. Finally, the bibliography for the entire thesis, including the attached papers,
is printed in the final pages of this dissertation.
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Chapter 1

Introduction

1.1 Overview

Although researchers have independently studied fluid mechanics and control theory for a consider-
able time, serious efforts to apply the latter in the former have only been prominent more recently.
This synergy has yielded new physical insights into the behavior of fluid flows, as well as new
control and dynamical systems approaches that are also applicable to other physical systems.

Techniques for flow control typically fall in three categories: passively placing structures in
a flow, actively running an actuator in the flow in an open-loop sense, and closed-loop feedback
mechanisms where mathematical controllers dictate actuator behavior based on sensor information.
(See Figure 1.1.) Historically, many seminal flow control results focused largely on fluid physics,
and utilized passive control (e.g., Strykowski and Sreenivasan, 1990) or very basic open-loop or
closed-loop active control (e.g., Roussopoulos, 1993). Despite the successes of such studies, modern
feedback control theory may facilitate significant improvements in flow control, such as increased
robustness and wider operating ranges. For this reason, this dissertation focuses on topics related
to feedback flow control.

Although there now exists a plethora of academic studies in feedback flow control, real-world
applications currently remain limited. The potential that feedback flow control carries, however,
should not be underestimated. With advanced research, we may be able to achieve drag reduction,
acoustic noise reduction, and increased aerodynamic performance on vehicles of all types and scales.
The reduction of skin-friction drag by using feedback control to smooth out turbulence, for example,
could drastically cut fuel consumption. These benefits could translate into reduced pollution,
billions of dollars in fuel savings, and the preservation of finite natural resources (Kim and Bewley,
2007). Furthermore, feedback flow control could substantially increase the performance of micro air
vehicles (MAVs) and other unmanned aircraft, and even wind turbines for clean energy generation.

Why, then, has the penetration of feedback flow control in the aerospace industry been so
limited? The union of fluid mechanics and control has been a decidedly difficult one to research
and develop, because of significant challenges that the governing equations of fluid mechanics pose.
Among the greatest of these are nonlinearity, high dimensionality, and non-normality. Individually,
each of these issues is notably difficult to manage. The combination of these—as well as numerous
other issues—enormously magnifies the challenge.

In this dissertation, we discuss these three issues in detail, and we present research that addresses
these issues from varied approaches. These approaches include the effect of non-normality on
stability analysis—an important precursor for control—as well as on control itself. We also discuss
model reduction approaches for the computational tractability of high-dimensional control, as well

2



76 

Y 
D 
- 

0 -  

P. J .  Strykowski and K .  R. Sreenivasan 

X l D  

FIGURE 1. Hydrogen-bubble picture of vortex shedding behind a circular cylinder at Re = 80. 

1 
Control cylinder, 
diameter d 

Vortex shedding cylinder, 
diameter D 

0 1 2 

X l D  

FIQURE 2. Schematic of the arrangement for control of vortex shedding; Dld < 20 

cylinder place on either side of the wake can be effective. At Re = 80, the largest 
value of the diameter ratio which was capable of vortex suppression was Dld = 20 
for conditions in figure 5 ;  in this case the region of control shrinks essentially to a 
point. 

We should remark that the control cylinder effects are negligible except when it is 
positioned in the near-wake region (not farther than approximately 3.5 to  4 
diameters downstream of the vortex shedding cylinder). The subtle changes 
produced near the main cylinder in this region can be seen qualitatively by a 
comparison of figure 6 (which is the natural vortex shedding case) with figures 7 and 
8 corresponding to complete suppression ; the Reynolds number in all these figures is 

Rotary oscillation control of a cylinder wake 79 
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FIGURE 1.  Rotating cylinder flow geometry. 

Reynolds number based on cylinder diameter of Re = 1.5 x 104. I n  addition, wake 
mean and r.m.s. velocity profiles were measured at a single streamwise station, 
located 4.5 diameters downstream of the cylinder axis. See figure 1. 

3.1. Displacement thickness and drag coeficient estimation 
In  order to provide a quantitative measure of the effects of forcing on the flow over 
a cylinder and the resulting wake, the cylinder drag and wake displacement thickness 
were estimated from wake streamwise mean and r.m.s. velocity profiles. For flow 
that is two-dimensional, we can define the displacement thickness in terms of the 
integral 

In  this expression, 7 = y / h  is the normalized vertical (cross-stream) position, u(y) is 
the mean streamwise velocity, y and h are the vertical position and water channel 
depth respectively, and Uo is the velocity in the (free-stream) region outside the 
cylinder wake and water channel boundary layers. See figure 1. By analogy, we may 
define the ‘displaced area’ for a three-dimensional flow, i.e. 

where A is the test-section cross-sectional area, and 5 = z / b  is the normalized 
spanwise coordinate, with z the spanwise coordinate, and b the water channel span. 
Continuity then yields for U,, the free-stream velocity far ahead of the cylinder, 

( 7 )  

Using (6) and (7) we then find 

This expression is useful in that i t  provides information about the flow over an entire 
cross-section of the water channel, while requiring only the measurement of U, and 

In order to remove the contribution of the initial boundary layer (in the absence 
of the cylinder) to leading behaviour, i t  is useful to compare Uo (with the cylinder in 
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FIGURE 2. Geometry of short span used to investigate shedding in a single cell (originally used 

by Papangelou 1991, 1992a). Lld = 19, D j d  = 4. 
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FIGURE 3. Arrangement of cylinder, hot-wire sensors and loudspeakers in wind tunnel 
(not to scale). 

diameter 6.35 mm, illustrated in figure 2, was used to perform experiments on a short 
span. Papangelou (1991, 1992a) investigated the behaviour of this device a t  low 
Reynolds numbers. A solid brass cylinder of diameter 6.3 mm and aspect ratio 50 was 
used for experiments at higher Reynolds numbers. The brass cylinder was bolted 
directly to the tunnel wall; the other bodies were rigidly mounted to lengths of 
studding bolted to the tunnel walls. There was no discernible vibration of the 
samples, and no tendency for vortex shedding to ‘stick’ at preferred frequencies 
(which might have betrayed a mechanical resonance) ; a t  the low Reynolds numbers 
and flow velocities of the experiments the fluid mechanical forcing is tiny, and the fan 
was structurally isolated from the working section by a tunnel section made of 
flexible PVC. 

Xensors and actuation 
Velocity measurements were made with two Dantek miniature hot-wire probes 

and constant-temperature anemometry equipment. The hot wires were of type 
55P14, of nominal wire length 1.25 mm, and were mounted as illustrated in figure 3;  
it was found that this configuration minimized the interference of the probes with 
each other and with the wake. Each hot wire was generally positioned near the edge 
of opposite sides of the wake. The wires were aligned with the axis of the test 
cylinder. One hot wire (the ‘control sensor’) was used as the actuator for the control 
loop ; the other (the ‘second sensor ’) was used for investigating the wake at other 
locations. The hot wires were conditioned with Dantek 55M01 constant-temperature 
anemometer bridges. 

Actuation was by means of an identical pair of I0  W, 14 x 5 cm elliptical 
loudspeakers - one mounted at the top of the tunnel working section and one on the 
bottom, as illustrated in figure 3, and with the major axes of the ellipses aligned with 
the test cylinder axis. The speakers were driven in opposite phase (unless otherwise 
stated), so they moved up and down together. The cylinders were mounted centrally 
in the tunnel so the velocity flux due to actuation could be assumed by symmetry to 

Figure 1.1: Three different control techniques, from least to most complex, for the canonical problem of
reducing cylinder wake oscillations. Top: passive control by placing a small control cylinder to the upper
right (Strykowski and Sreenivasan, 1990). Bottom left: open-loop active control by prescribing the cylinder
angular displacement (Tokumaru and Dimotakis, 1991). Bottom right: closed-loop (i.e., feedback) control
by determining the loudspeaker signals based on sensor information (Roussopoulos, 1993).

as control stability and performance with reduced-order control. Finally, we tackle nonlinearity in
the discussion of dynamic mode decomposition (DMD) as a modeling technique for fluid flows.

In Section 1.2, we give a brief overview of recent research in flow stability, control, and modeling.
Section 1.3 summarizes the difficulties of nonlinearity, high dimensionality, and non-normality; it
discusses both previous successes and outstanding issues in these areas. Next, Section 1.4 describes
the contributions that the research in this dissertation has made to these broad fields. Finally,
Section 1.5 outlines the organization of the remaining chapters in Part I.

1.2 Brief survey of flow stability, control, and modeling

An overview of research and applications of flow stability, control, and modeling would be far too
expansive to give here. Instead, throughout the following discussion, we highlight review articles
and examples that lay out the general background of these topics.

Much of the early work in flow stability relied on a parallel or local flow approximation, in which
we assume that streamwise variations in the flow occur over large length scales, or do not occur
at all. Therefore, we assume that the fluid at any streamwise point behaves as if the flow were
everywhere governed by the flow conditions at that point. Although this assumption is quite severe
and restrictive, it is significantly computationally cheaper, since it generally reduces the number of
spatial dimensions required for computation. This analysis has been able to predict the stability
characteristics of many flows; see Huerre and Monkewitz (1990) and Chomaz (2005). It has even
been successful in more complex flows, such as viscosity-stratified flows (Govindarajan and Sahu,
2014).

More recently, the focus of flow stability research has shifted somewhat to a global analysis,
which makes no assumptions about streamwise variations in the flow. This approach, which Chomaz
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(2005) and Theofilis (2011) review, is far more computationally expensive, but it gives a truer rep-
resentation of the dynamics. In general, the only admissible assumption is that of linearization
about a fixed point or trajectory. The linear analysis is based largely on direct and adjoint eigen-
decompositions of the linearized flow operators, which yield information about long-term growth,
receptivity to initial conditions and external forcing (Luchini and Bottaro, 2014), and sensitivity to
spatially localized dynamical perturbations. Some recent work, which Schmid (2007) reviews, has
considered alternate analyses such as pseudospectra for highly non-normal flows. In these flows,
traditional eigenmode analyses are unable to explain behavior such as large transient growths and
eigenvalue sensitivity.

Stability analysis is, in some sense, a precursor for flow control, even if research in the former
does necessarily not come chronologically before research in the latter. Much of feedback control
theory is based on the stability of systems in open-loop, or under closed-loop control (Skogestad
and Postlethwaite, 2005). Although early research in feedback flow control has successfully applied
classical control theory to fluid flows with limited models of flow dynamics (e.g., Roussopoulos,
1993), more recent work has focused on control design based on relatively faithful linear models of
fluid flow. The review by Kim and Bewley (2007) discusses control theory concepts that researchers
have effectively employed in linear fluid flow models.

Many reviews have also discussed successful implementations of control in specific flow applica-
tions. Lumley and Blossey (1998) and Kim (2003) discuss important factors relevant to the control
of turbulence, a problem that remains open to this day. Rowley and Williams (2006) provide a
treatise of cavity flow oscillations, as well as passive, open-loop, and closed-loop feedback control
techniques to reduce these oscillations. Choi et al. (2008) survey various aspects of bluff body flow
control, including vortex, separation, and wake effects. Choi et al. (2014) focus specifically on the
aerodynamics of large vehicles such as trucks, buses, and trains, and explore passive techniques for
drag reduction. Researchers have made progress on the feedback control of combustion oscillations
(Dowling and Morgans, 2005), and research on spike-type stall control is improving the engineering
of axial compressors (Tan et al., 2010). Cattafesta and Sheplak (2011) discuss the broad range of
flow actuators that are applicable in real-life scenarios.

As previously suggested, the design of modern feedback flow control systems requires faithful
models of the flow dynamics. The conception of these models itself is rather nontrivial, and has
received notable attention in the flow control community. Traditional modeling techniques drawn
from the general control theory community (e.g., balanced truncation and optimal Hankel norm
reduction; see Skogestad and Postlethwaite 2005) are not immediately applicable because of the
prohibitively large size of fluid dynamics operators in computations.

Perhaps the most venerable of the fluid modeling techniques is proper orthogonal decomposi-
tion (POD; Sirovich, 1987; Holmes et al., 1996), also known as principal component analysis and
Karhunen–Loève analysis. This method decomposes experimental or computational data snapshots
into orthogonal modes, from which we may derive low-dimensional fluid models via the computation
of mode coefficients. A more recent method known as balanced POD (Rowley, 2005) approximates
balanced truncation (see Skogestad and Postlethwaite, 2005), a modeling technique known to be
generally effective for linear systems. This method, along with a related technique known as the
eigensystem realization algorithm (ERA; Juang and Pappa, 1985), is based on the computation of
input–output impulse responses. Lastly, Schmid (2010) introduced DMD as a numerical algorithm
that “curve-fits” snapshots of experimental or computational data to linear trajectories, even if
nonlinear dynamics generate the data. This method is a numerical approximation of a Koopman
operator method (Rowley et al., 2009; Mezić, 2013) rather than linearization, and may soon yield
accurate reduced-order fluid models.
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The study of flow stability, control, and modeling is far from solved. In particular, a number
of issues have consistently posed formidable challenges in this field. The following section outlines
the nature of these difficulties.

1.3 Challenges of feedback flow control

As aforementioned, three of the key challenges in successful feedback flow control are nonlinearity,
high dimensionality, and non-normality. Put together, the whole of these difficulties is perhaps
greater than the sum of their parts. For feedback flow control systems to be successful in wide
operating conditions and applications, they must typically address all three.

The source of nonlinearity is well-known to those familiar with the governing laws of fluid
mechanics. The most general expression of the momentum conservation law for a velocity field u,
density field ρ, pressure field p, deviatoric stress tensor τ , and body force field γ is

∂(ρu)
∂t

+∇ · (ρuu) = −∇p+∇ · τ + γ, (1.1)

where the second term on the left-hand side is clearly nonlinear. This poses a great challenge for
control, because linear control theory is a far more mature field of study than nonlinear control
theory. In fact, it is difficult or impossible to apply control techniques generally and universally
across nonlinear systems.

By far the most common method for handling the nonlinearity in feedback flow control is to
linearize the fluid dynamics about a base flow, and to use the linearized dynamics in the control
design (see Kim and Bewley, 2007). This approach tends to be successful, and there exist too
many examples to cite here. It understandably only works up to a limited extent, however, since
the linearized equations are only accurate when perturbations away from the base flow are very
small. An alternative to simply ignoring the nonlinear terms is to cast them as forcing terms in
otherwise linear equations (e.g., Landahl, 1967, 1975). A number of authors (e.g., Trefethen et al.,
1993; Farrell and Ioannou, 1993; Bamieh and Dahleh, 2001; Jovanović and Bamieh, 2005) have
made key connections between the behaviors of nonlinear shear flows and their forced linearized
counterparts. Others (e.g., Sharma et al., 2011) have successfully implemented linear control by
retaining nonlinear terms as exogenous forcing. Nevertheless, there does not—and might not ever—
exist a universally applicable method for implementing linear control in nonlinear fluid equations.
As far as reduced-order modeling is concerned, some techniques such as POD-based Galerkin mod-
eling and DMD are able to represent the fluid equations’ nonlinearities with reasonable success.
Nevertheless, the successful control and modeling of the nonlinear fluid equations remains an open
research problem.

The high dimensionality of feedback flow control arrives from the numerical spatial discretization
of the flow equations into a finite number of grid points. Such discretization is not strictly necessary;
as an example, there exist methods for the boundary control of simple partial differential equations
(see Aamo et al., 2005, 2007). For sophisticated equations such as Navier–Stokes equations, how-
ever, domain discretization is the most universally applicable way of applying model-based linear
control theory. In this approach, we recast the partial differential equations governing the flow
(e.g., (1.1)) into ordinary differential equations of a large number of states. The states contain the
relevant flow variables on the discrete grid points, and we cast the partial derivatives as operations
on a vector of these states. From this approach, it should be clear how the high-dimensionality
arises. Over the last few decades, numerical meshes for fluid simulations have increased from 14 ×
14 two-dimensional grids (totaling 196 cells; Winters, 1987) to the extreme of 8,192 × 8,192 × 8,192
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three-dimensional grids (totaling 5.5 ·1011 cells; Yeung and Sreenivasan, 2013). The dimensionality
of discretized fluid flow equations, then, is typically this number of cells or grid points multiplied
by the number of scalar flow variable fields needed to represent the dynamics.

Such a dimensionality is problematic for model-based control design. Many optimal and robust
control techniques, for instance, rely on the solution of quadratic matrix equations known as con-
tinuous algebraic Riccati equations (CAREs; Doyle et al., 1989). Simple scaling experiments show
that the execution time of a CARE solution in the MATLAB software scales by approximately
n2.5, where n is the state size. A notebook computer with an Intel Core i7-4960HQ processor could
solve a 400-state double-precision CARE in 0.6 seconds. Yet, a simple extrapolation shows that
the solution of a 105-state CARE would require 1 week, and the solution of a 1010-state CARE
would require 4.4 times the current age of the universe! Even the storage of such matrix systems
is prohibitive. The 105-state system would involve matrices 75 GB in size—large, but manageable
with some difficulty, by today’s standards. On the other hand, the 1010-state system would involve
matrices 8 · 1020 bytes in size. No computer in the present date can store anywhere near this
much data. Therefore, it is typically necessary to derive reduced-order approximations of the fluid
dynamics to maintain the computational tractability of control design.

The essence of ongoing research in reduced-order modeling and control is the design of algo-
rithms that are computationally cheap, yet yield effective control. Although countless papers have
successfully used POD, this decomposition is not without fault. A key outstanding issue is that the
POD modes that are dominant in the data are not necessarily the ones that are dynamically im-
portant for reduced-order modeling. Therefore, the selection of POD modes to retain in modeling
is often arbitrary, and it is generally unclear how to arrive at a “best” set of modes. Although bal-
anced POD remedies this issue by sorting its modes in order of controllability and observability, it
requires the data from direct and adjoint impulse responses of the fluid system (Rowley, 2005). This
computation is expensive, and experiments cannot provide adjoint data. The ERA approach is able
to replicate balanced POD without the need for adjoint impulse responses (Ma et al., 2011), but it
may be difficult to obtain direct impulse response data from experiments. Furthermore, balanced
POD and ERA are restricted to linear fluid models. Finally, we note that DMD shows promise
in potentially yielding physically meaningful nonlinear reduced-order models (e.g., Schmid, 2010;
Rowley et al., 2009; Schmid, 2011; Schmid et al., 2011; Chen et al., 2012; Jovanović et al., 2014),
but to the best of our knowledge, no one has accomplished such a task to date. In addition, like
in POD, the selection of dynamically meaningful DMD modes may not always be straightforward.
Furthermore, DMD exhibits a particular sensitivity to output noise because of its mathematical
construction. To this date, model reduction techniques that are consistently effective, generally
applicable, and easy to compute do not yet exist.

We also comment that a smaller body of research has been dedicated to the design of controllers
directly from high-dimensional fluid models. These methods (see Kailath, 1973; Pralits and Luchini,
2010; Bewley et al., 2011; Semeraro et al., 2013) are generally computationally expensive, but may
be able to yield higher-performing controllers than control design based on reduced-order fluid
models.

Finally, we conclude this section with a few remarks on non-normality. A linear operator L is
said to be non-normal if, given the adjoint L ∗, L L ∗ 6= L ∗L . This condition has many important
implications. Perhaps the most relevant of these to flow control is that the eigenvectors of L may
be nearly parallel, which can give rise to large transient growths—even when L is stable in the
infinite-time sense. Figure 1.2 shows an example of a large transient growth in the stable wake
of a cylinder. Most shear flows at respectably large Reynolds numbers are highly non-normal,
where transient growths can trigger significant nonlinearities, leading ultimately to the failure of
linear control. Furthermore, the eigenvalues and eigenmodes of L do not individually predict
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Fig. 1 shows the deformation of the white streak line caused
by the evolution of this wave packet. As can be seen, the dye
filament presents first a slight undulation in the near wake
and finally is rolled up by the flow. For a very small pertur-
bation !less than one-tenth of a millimeter", we can realize a
real-time video analysis, unimpeded by this roll-up. For this
purpose, an analog device was built in order to record di-
rectly the shape of the dye streak #25$. The output analog
signal is composed of a succession of dye filament profiles.
These profiles, each consisting of 256 data points in the lon-
gitudinal X direction, corresponding to a total length of 18.2
cm, are recorded by a microcomputer by a standard acquisi-
tion chain. One of these profiles is given in Fig. 2, where it
can be noted that the dye filament deformation wave grows
linearly with space and where the wavelength evolves from
18 mm near the cylinder to 21 mm in the far wake. By piling
up these successive profiles, space-time diagrams can be eas-
ily constructed. Figure 3 shows such a diagram representing
the evolution of the wave packet for a series of video images
having a total duration of 24 sec. The gray level represents
the amplitude A(X ,t) of the dye deformation. The convec-
tive nature of the wake is made clearly. As the Reynolds
number approaches the global instability threshold, this rear
front would be expected to propagate more slowly !its angle
with the vertical time axis will be smaller". When reaching
the Bénard–von Kàrmàn instability threshold, the phase ve-
locity of this edge should then vanish. We emphasize that the
recorded pattern is relative to the deformation of the streak
line and not to the velocity field directly, in contrast to the

numerical simulation results presented in #17$. In particular,
although the amplitude of the streak-line deformation is ob-
viously linked to the amplitude of the velocity fluctuations, a
direct relation between these two fields is far from being
established. However, the analysis of the pattern determines
a shedding frequency f!0.75 Hz, which corresponds to a
Strouhal number close to 0.08. The phase velocity evolves
from 13 mm/s near the cylinder to 16 mm/s !90% of the fluid
velocity" in the far wake. This feature generates a very slight
curvature of the isophase lines, as can be observed in Fig. 3.
We remark also that no waves are generated at the leading
edge of the wave packet, as observed in the numerical simu-
lation of Delbende and Chomaz #17$, in the case of a non-
confined wake.

We are grateful to S. Le Dizès for stimulating discussions
and to A. Morand for the photographic work.

FIG. 2. Dye streak profile at time t!14.5 s. Re!35. The am-
plitude A of the dye filament deformation is in arbitrary units.

FIG. 3. Space-time diagram A(X ,t) of the dye streak pattern of
the impulse response of the cylinder wake. Re!35. Time is in
seconds.

FIG. 1. Visualization of the spatiotemporal impulse response of the cylinder wake. Re!35. There is a time lapse !vertical axis" between
each photograph of around 3 sec.

PRE 62 4425BRIEF REPORTS

Figure 1.2: The response to an impulse in the cylinder’s displacement, at Re = 35; from Le Gal and
Croquette (2000). Although the flow is stable at this Reynolds number, non-normality causes a significant
transient growth.

the behavior of transient growths. (See Schmid and Henningson (2000); Schmid (2007) for more
detailed discussions.)

Following the early investigation of non-normality by Butler and Farrell (1992), we now pos-
sess tools such as pseudospectra (Trefethen et al., 1993; Trefethen and Embree, 2005), sensitivity
analyses (Giannetti and Luchini, 2007), impulse responses, optimal growth (see Schmid, 2007),
and other analyses that better describe transient growths in non-normal flows. In addition, there
have been observations that non-normality decreases the stabilizability of flows (Lauga and Bewley,
2003), and that certain feedback control techniques may be able to reduce non-normality (Lauga
and Bewley, 2004). Nevertheless, the understanding of effective control techniques for non-normal
flows remains an open research question.

In this dissertation, we present ideas that address nonlinearity, high dimensionality, and non-
normality in specific ways. It is our hope that these studies will open doors for further research in
these topics.

1.4 Contributions of this dissertation

This dissertation includes four separate studies that analyze specific topics in flow stability, control,
and modeling.

Section 2.6 and Chapter 7 present a linear global stability analysis of the flow through a T-
shaped pipe bifurcation. The laminar flow through this pipe element is very sophisticated, and the
mathematical stability analysis is intrinsically connected to the physical mechanisms underlying the
flow, including the breakdown of vortices in the junction. The chief contribution of this study is
the three-dimensional demonstration of recirculation and dynamical sensitivity regions coinciding.
Although prior studies have shown this phenomenon, the T-junction flow is—to the best of our
knowledge—by far the most complicated flow for which anyone has observed this behavior.

Section 3.3 and Chapters 8–10 investigate the optimal placement of actuators and sensors in
fluid flow models. This is one of comparatively few studies in the literature that have looked
beyond controller design, and have specifically targeted actuator and sensor placement. This study
improves a placement optimization technique that researchers in flexible structure control have
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previously developed. It also demonstrates that certain placement techniques in the flow control
literature are actually suboptimal and conceptually flawed. Finally, it explores heuristics based on
tools from stability and control theory that may be able to predict optimal placements.

Section 4.4 and Chapter 11 explore previously unknown properties of DMD. First, this research
reveals necessary and sufficient conditions for the numerical DMD algorithm to produce a unique
decomposition. Next, it analyzes methods for computing DMD modes with homogeneous boundary
conditions, since such modes are often necessary for reduced-order model design. This analysis
reveals that the DMD of mean-subtracted data is analytically identical to the discrete Fourier
transform. On the other hand, subtracting an equilibrium point prior to the DMD computation
roughly preserves the DMDmodes and eigenvalues, while giving the modes the needed homogeneous
boundary conditions. Finally, this study presents an “optimized” variant of the DMD algorithm,
which yields less spurious results than the original DMD algorithm.

Section 4.5 and Chapter 12 consider the stability and performance of high-dimensional plants
(e.g., fluid dynamical systems) under feedback control by a reduced-order controller. This type of
design is very common in feedback flow control, because the large dimensionality of fluid represen-
tations renders direct modern control design intractable. Using the normalized coprime stability
margin and the ν-gap metric, this research reveals theorems that provide sufficient conditions for
the stability or performance of such closed-loop systems. These conditions allow researchers to
compute, a priori, the model reduction orders for which stability or performance is guaranteed.

1.5 Organization of Part I

Part I of this dissertation presents the fundamental theories of global stability, control, and reduced-
order modeling, and it also summarizes the key results from the papers in Part II.

Chapter 2 briefly covers fundamental concepts of local stability theory, as a precursor to the
global stability theory. Next, it reviews stability, receptivity, and sensitivity as important ideas
that direct and adjoint eigendecompositions of the linearized Navier–Stokes operators reveal. This
chapter also reviews computational methods for performing global linear stability analyses of high-
dimensional systems, and it concludes by applying these methods and ideas to the pipe flow through
a T-shaped bifurcation. Chapter 3 outlines general theories of linear optimal and robust control.
It then analyzes the optimal placement of actuators and sensors in fluid systems. This chapter also
discusses stability margins and the ν-gap metric, which play important roles in robustness analyses
and robust control design. Chapter 4 summarizes reduced-order models for general linear systems,
as well as for high-dimensional (e.g., fluid) systems. It then discusses recent advances in DMD
theory. This chapter concludes by using the stability margin and ν-gap theory of Section 3.4 to
examine the closed-loop stability and performance of high-dimensional systems in closed-loop with
reduced-order controllers. Finally, Chapter 5 provides brief concluding remarks.
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Chapter 2

Global stability theory of fluid flows

2.1 Overview

The rigorous investigation of fluid flow stability dates back to the famed pipe flow experiments of
Reynolds (1883). Since then, studies in flow stability have typically started from a simple question:
given some prescribed flow, will a small perturbation experience decay, drawing the flow back to
its original state? Alternatively, will the perturbation grow, ultimately leading the flow away from
this state?

A common conceptual visualization of this idea is that of a ball on a potentially uneven surface,
under the effects of gravity and friction. A steady-state solution is Lyapunov stable if any infinites-
imally small perturbation in the state results in a trajectory that is at most infinitesimally small.
As shown in Figure 2.1(a, b), a ball in a bowl or on a flat surface is therefore Lyapunov stable. A
Lyapunov stable steady-state solution is further said to be asymptotically stable if any infinitesimal
perturbation in the state specifically results in a trajectory that approaches the steady-state solu-
tion. Therefore, the ball in a bowl (Figure 2.1(a)) is asymptotically stable. Finally, a steady-state
solution that is not Lyapunov stable, such as the ball on top of an inverted bowl in Figure 2.1(c),
is unstable.

Beyond the issue of perturbation growth and decay, the study of flow stability has spawned
many more questions. What factors or flow features can trigger instabilities? What are the effects
of initial conditions or external forcing on the flow behavior? How do transient growths appear,
and what is their effect on the flow stability? What are the effects of nonlinearity, and how does
nonlinearity alter linear stability results? Where is the flow most sensitive to perturbations in
the underlying dynamics? The reviews by Huerre and Monkewitz (1990), Chomaz (2005), Schmid
(2007), and Theofilis (2011) discuss these and many other related topics.

Historically, a major focus in the study of flow stability has been the use of a parallel or local flow
approximation (Huerre and Monkewitz, 1990; Chomaz, 2005), where we assume that streamwise
flow variations have large length scales, or that the flow is streamwise constant. This approximation

(a) (b) (c)

Figure 2.1: Conceptual picture of stability, using a ball under the effects of gravity and friction. (a) Lyapunov
and asymptotically stable. (b) Lyapunov stable. (c) Unstable.
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vastly simplifies the computation and analysis of the flow stability, since it is generally possible
to represent instabilities using a reduced number of spatial dimensions. This research in this
dissertation does not this use local stability theory, but Section 2.2 presents an overview for the
purpose of historical perspective.

Instead, the focus of this chapter is on the linear global theory of flow stability. In this theory,
we make no assumptions other than the linearization of the underlying flow equations about a fixed
point. The relaxation of the parallel flow assumption allows us to investigate flows where instability
mechanisms may have a nontrivial streamwise dependence. The global theory stems primarily from
the direct and adjoint eigendecompositions of the linearized flow operators. This yields information
about multiple facets of flow, including the stability of the nonlinear and linearized dynamics, the
long-term behavior of the linearized dynamics, the receptivity of the dynamics to external forcing
and the choice of initial conditions, and the sensitivity of the flow behavior to localized perturbations
in the linearized dynamics.

The eigendecomposition of linearized flow operators is typically a very computationally intensive
task. Since computers at this time do not have sufficient power to perform these computations
directly, it is necessary to use certain iterative techniques that converge toward the most important
global stability solutions. A treatise of the various available computational methods would be
too consuming to provide here. Instead, this chapter focuses on a particular set of methods: the
Newton–GMRES iteration with the Armijo rule for seeking steady-state solutions, followed by the
Arnoldi iteration for seeking leading eigenvalues and eigenmodes.

In this chapter, we apply these algorithms to investigate the linear global stability of a pipe
flow through a T-shaped bifurcation at Re ≈ 560. This investigation locates the regions of the
geometry relevant to flow’s long-term behavior, as well as the flow’s receptivity to initial conditions
and external forcing. This study also probes vortex breakdown regions in the flow, providing
a complex three-dimensional example of a recent observation that regions of recirculation and
sensitivity often coincide (Giannetti et al., 2010).

In this chapter, Section 2.2 briefly reviews local stability theory, and Section 2.3 reviews the
flow operators that linear global stability theory utilizes. Section 2.4 then relaxes the parallel flow
assumption and reviews this linear global stability theory, whose computational methods Section 2.5
discusses. Finally, Section 2.6 presents original research that applies the global stability theory to
the flow through a pipe T-junction.

2.2 A prelude: local stability theory

As aforementioned, the key assumption in local stability theory is that the base flow varies slowly,
or not at all, in the streamwise direction. This greatly simplifies the stability analysis and often
still produces correct predictions of physical behavior.

This theory, which Huerre and Monkewitz (1990) and Chomaz (2005) review, typically analyzes
the behavior of modal perturbations superimposed on top of a base flow. It decomposes flow per-
turbations into a linear combination of waves Aφ(y, k, ω) exp(i(kx−ωt)), where A is an amplitude,
φ is an eigenfunction, x is the streamwise direction, y is the transverse direction, k ∈ C is a spatial
wavenumber, and ω ∈ C is a temporal frequency. (In three spatial dimensions, it is common to
assume a wave-like form in the spanwise dimension as well.) The insertion of these waves into
the governing flow equations yields a dispersion relation D(k, ω;Re) = 0. Two special cases of the
dispersion relation are worthy of mention. First, if we select some k ∈ R, then the perturbations
are streamwise constant, and one may solve the dispersion relation for the unknown ω. By the
Hartman–Grobman theorem, if Im(ω) < 0, then the wavenumber-k mode is asymptotically stable;
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sive, harmonic, and stochastic forcing will be considered, and the
concepts of controllability and observability will be introduced. In
Sec. 4, we review the projection method of model reduction using
global eigenmodes, proper orthogonal decomposition !POD"
modes, and balanced truncation. Section 5 deals with the control
design for the Ginzburg–Landau equation. We present a detailed
derivation of the linear quadratic Gaussian !LQG" control frame-
work, raise the important issue of actuator and sensor placement,
and conclude by discussing robust control. Concluding remarks
and a summary of the presented material are offered in Sec. 6.

2 Asymptotic and Transient Behaviors

2.1 Parallel Flows: Fundamental Concepts. Before apply-
ing modern techniques of hydrodynamic stability theory #7$ to the
full Ginzburg–Landau model describing spatially varying flows,
we will first introduce and analyze a simpler version of the
Ginzburg–Landau equation. By neglecting the spatial dependence
of the flow, thus arriving at the parallel !i.e., constant-coefficient"
Ginzburg–Landau equation, we will apply concepts of linear sta-
bility analysis to describe the growth and decay of disturbances in
time and/or space.

The parallel Ginzburg–Landau equation on the infinite interval
−!"x"! reads

!q

!t
= Aq = %− #

!

!x
+ $

!2

!x2 + %&q !1a"

q!x,t" " ! as x → & ! !1b"

with initial condition q!x ,0"=q0!x" and A as the Ginzburg–
Landau operator. The solutions q!x , t" are functions in C with the
inner-product defined as 'f ,g(=)−!

! g!fdx. We occasionally refer
to this norm as the energy norm. The superscript “*” denotes the
complex conjugate. The convective and the dissipative nature of
the modeled flow are represented by the complex terms #=U
+2icu and $=1+ icd, respectively. The above equation is of
convection-diffusion type with an extra real-valued term %=%0
−cu

2 to model the presence of exponential instabilities. The signifi-
cance of the complex terms cd and cu will become clearer when
we decompose the system into wavelike solutions.

We first investigate the linear stability of the parallel Ginzburg–
Landau equation, i.e., the spatiotemporal evolution of the pertur-
bation q!x , t" about the basic state qB!x , t"=0. As introduced by
Briggs #37$, this spatiotemporal evolution of perturbations in fluid
flow can be described by three basic types of local behavior: !i"
stable, !ii" convectively unstable, and !iii" absolutely unstable.
Our model equation, in fact, has by construction the minimum
number of required terms to give rise to a successive transition
through the three types of instability.

The three types of disturbance behavior can be probed by com-
puting the response to a spatially and temporally localized pulse
as this pulse evolves in space and time. Figure 2 demonstrates the
three types of responses that may be observed. First, the amplitude
may asymptotically decay in time throughout the entire domain
!see Fig. 2!a"". In this case, the basic flow is deemed linearly
stable. Second, a convectively unstable flow is shown in Fig. 2!b";
in this case, the perturbation grows in time but is convected away
from the location at which it was generated, so that the response
eventually decays to zero at every spatial location. Finally, for an
absolutely unstable flow !see Fig. 2!c"" the perturbation is ampli-
fied both upstream and downstream of the location; it was gener-
ated and thus contaminates the entire spatial domain over time.

The response behavior to a '-function applied at !x , t"= !0,0" is
equivalent to the Green’s function or impulse response of the
complex Ginzburg–Landau equation. We will return to this con-
cept in Sec. 3 of this review. In what follows, we will first exploit
the homogeneity in space and time and seek solutions in the
wavenumber/frequency !Fourier" space. The dispersion relation
linking wavenumber and frequency then fully describes the evo-
lution of wavelike !and by superposition" nonwavelike solutions.
Criteria for stability or instability of the solutions, as well as the
type of instability, follow easily from the dispersion relation.

Fig. 1 Overview of the open-loop and closed-loop analyses
performed in this review. The response in terms of the flow
state, kinetic energy, and sensor signal to impulse, and har-
monic and stochastic inputs of the parallel, nonparallel, con-
vectively unstable, and globally unstable Ginzburg–Landau
equation is investigated in Secs. 2 and 3. Model reduction of
the system is performed in Sec. 4 followed by optimal „LQG…,
robust „H!…, and reduced-order control design in Sec. 5.

Fig. 2 Local stability concepts based on the linear response of the parallel Ginzburg–Landau equation to a temporally
and spatially localized pulse at t=0 and x=0, displayed in the x-t-plane. „a… Stable configuration "0(0: The solution at
t= t1>0 is damped everywhere. „b… Convectively unstable configuration 0<"0<"t: The solution at t= t1 is amplified but is
zero along the ray x / t=0. „c… Absolutely unstable configuration "t("0: The state is amplified at t= t1 and nonzero along
the ray x / t=0.
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Figure 2.2: Green’s function examples of a (a) stable, (b) convectively unstable, and (c) absolutely unstable
partial differential equation of one spatial dimension. From Bagheri et al. (2009).

if Im(ω) > 0, then that mode is unstable. In the degenerate case where Im(ω) = 0, the mode is
neutrally stable in the linearized dynamics, but further tools are needed to determine its stability
in the nonlinear dynamics. Second, if we select ω ∈ R, then the perturbations oscillate in time,
and one may solve the dispersion relation for the unknown k. If Im(k) < 0, then the perturbation
grows in the streamwise direction, and if Im(k) > 0, then it decays. The degenerate case Im(k) = 0
is as before.

An important feature of the parallel flow assumption is the categorization of flows as stable, con-
vectively unstable, and absolutely unstable (see Huerre and Monkewitz, 1990). This determination
stems from the nature of the system’s response to an impulse forcing. Suppose a set of linearized dy-
namics are given for the perturbation variable u(x, t) by the equation L u(x, t) = 0. Now, consider
the Green’s function G(x, t)—that is, the impulse response—satisfying LG(x, t) = δ(x− ξ)δ(t) for
the Dirac delta function δ and impulse location x = ξ. The flow is considered

• stable if lim
t→∞

G(x, t) = 0 for x− ξ = ct, for all c ∈ R (see Figure 2.2(a));

• convectively unstable if lim
t→∞

G(ξ, t) = 0, but lim
t→∞
|G(x, t)| = ∞ for x − ξ = ct, with some

c ∈ R \ {0} (see Figure 2.2(b)); and

• absolutely unstable if lim
t→∞
|G(ξ, t)| =∞ (see Figure 2.2(c)).

In practical terms, a flow is stable if all perturbations decay with time, convectively unstable if
there exists an unbounded growth that convects away from the perturbation source, and absolutely
unstable if the unbounded growth does not convect away from the source.

By using a “weakly nonparallel” assumption, the local theory of flow stability allows the inves-
tigation of slowly varying flows. This formulation assumes that the dynamics at any given point
behave as if the flow were everywhere like at that point. A key example is the investigation of
the Ginzburg–Landau equation in Chomaz et al. (1988) and Cossu and Chomaz (1997). Given a
streamwise spatial variable x ∈ R, an amplification and decay function µ(x) : R→ R, an advection
speed ν = U + 2icu (with U, cu ∈ R), and a diffusion γ = 1 + icd (with cd ∈ R), the linearized
equation is

dq

dt
= L q, (2.1a)

where
L = µ(x)− ν ∂

∂x
+ γ

∂2

∂x2 , (2.1b)

subject to some choice of boundary conditions. Following Bagheri et al. (2009) and Chen and
Rowley (2011), we choose U = 2, cu = 0.2, and cd = −1, and we require limx→±∞ q(x, t) = 0.
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Figure 2.3: The stable (S), convectively unstable (CU), and absolutely unstable (AU) regions of the linearized
Ginzburg–Landau example. The green line (at µ = −c2u) indicates the threshold for convective instability,
and the red line (at µ = µt − c2u) indicates the threshold for absolute instability.

In the parallel analysis, we consider a constant µ ∈ R. Following Cossu and Chomaz (1997)
and Bagheri et al. (2009), the entire flow is stable if µ + c2

u ≤ 0. If 0 < µ + c2
u < µt, where

µt = (U + 2cdcu)/(4|γ|2), then the entire flow is convectively unstable. Finally, if µ+ c2
u ≥ µt, then

the entire flow is absolutely unstable. In the weakly nonparallel analysis, we now suppose that µ(x)
has a small dependence on x; in this example, we choose µ(x) = µ0 − c2

u + µ2x
2/2, with µ0 = 0.41

and µ2 = −0.01; thus, µt = 0.32. The weakly nonparallel assumption allows us to consider the
regions where µ(x) + c2

u ≤ 0, 0 < µ(x) + c2
u < µt, and µ(x) + c2

u ≥ µt, and respectively identify
those regions as stable, convectively unstable, and absolutely unstable. (See Figure 2.3.) If the
streamwise dependence of the flow is indeed small, then the local behavior of impulse responses in
a region will roughly match the stability type identified with that region.

The weakly parallel analysis has an important consequence related to global stability: Chomaz
et al. (1991) showed that the existence of an absolute instability region is necessary for global
instability. In the nonparallel example above, the linearized Ginzburg–Landau operator L is
unstable when µ0 > µc, where µc = µt + |

√
−2µ2γ| cos((arg γ)/2)/2 > µt. For the values assigned

above, µc = 0.40, and absolute instability locally occurs at µ0 > µt = 0.32. The choice of µ0 = 0.41
causes L to have exactly one unstable complex eigenvalue.

The local stability analysis of fluid flows has been a powerful tool for many decades, and it
has yielded successful predictions in wakes, jets, and even stratified flows. Nevertheless, we cannot
escape the fact that the crux of the analysis is a crude and typically incorrect assumption on
streamwise variations. Furthermore, this analysis is wholly incapable of determining the stability
of flows with nontrivial streamwise dependence. With recent advances in computational power,
the flow stability community has gradually been shifting its attention toward the global stability of
fluid flows. The following sections focus on the linear formulation of such an analysis.

2.3 Flow operators

The linear global theory of flow stability is rooted in eigendecompositions of linearized flow oper-
ators. The direct and adjoint eigendecompositions of such operators yield information about the
operator stability, the receptivity to initial conditions and external forcing, and the sensitivity to
spatially localized perturbations. Adjoint-based analyses, in particular, have received notable at-
tention in the fluid mechanics community; see Luchini and Bottaro (2014). This section discusses
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the direct and adjoint linearizations of the Navier–Stokes equations, and it reviews the consequences
of their eigendecompositions.

In the framework of incompressible, constant-density, constant-viscosity flows of Newtonian
fluids, we define the nonlinear Navier–Stokes equation for a nondimensional velocity field u(x, t) :
Rn×R→ Rn (with n = 2 or 3, typically), nondimensional pressure field p(x, t) : Rn×R→ R, and
Reynolds number Re > 0 by

∂u
∂t

= N u, (2.2a)

where

N : Rn → Rn (2.2b)

u 7→ −u · ∇u−∇p+ 1
Re
∇2u, (2.2c)

subject to the mass balance
∇ · u = 0. (2.2d)

The boundary conditions on u and p depend on the choice of the geometry. If there exists {u0, p0}
such that N u0 = 0, then {u0, p0} is said to be an equilibrium, steady-state solution, or fixed point
of N .

We can then introduce velocity and pressure perturbations u′(x, t) : Rn×R→ Cn and p′(x, t) :
Rn × R→ C such that

u = u0 + u′ (2.3a)
p = p0 + p′, (2.3b)

and ‖u′‖ � 1 and ‖p′‖ � 1 everywhere in the domain. The linearization of N about {u0, p0} is
then

∂u′

∂t
= L u′, (2.4a)

where

L : Cn → Cn (2.4b)

u′ 7→ −u′ · ∇u0 − u0 · ∇u′ −∇p′ + 1
Re
∇2u′ (2.4c)

subject to the mass balance
∇ · u′ = 0. (2.4d)

The boundary conditions on u′ and p′ are typically homogeneous variants of the conditions on u
and p.

To define the adjoint linearized Navier–Stokes operator L ∗, we first define the velocity inner
product over a control volume Ω by

〈·, ·〉 : Cn × Cn → C (2.5a)

u1,u2 7→
∫

Ω
ū2 · u1 dV, (2.5b)

where (·) denotes the complex conjugate, and the integrand contains the standard pointwise dot
product. The adjoint operator L ∗ must therefore satisfy 〈L u′, û′〉 = 〈u′,L ∗û′〉. Integration by
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parts reveals that the adjoint operator for the adjoint velocity and pressure perturbations û′(x, t) :
Rn × R→ Cn and p̂′(x, t) : Rn × R→ C is

L ∗ : Cn → Cn (2.6a)

û′ 7→ −(∇u0) · û′ + u0 · ∇û′ −∇p̂′ + 1
Re
∇2û′, (2.6b)

where, in indicial notation, ((∇u0) · û′)i = (∂u0,j/∂xi)û′j . This operator is subject to the mass
balance

∇ · û′ = 0. (2.6c)

Also, denoting the boundary of the volume Ω by ∂Ω and the normal vector on ∂Ω by n, L ∗ is
subject to the boundary conditions∮

∂Ω

(
−(u′ · û′)u0 − û′p′ + u′p̂′ + 1

Re

(
(∇u′) · û′ − (∇û′) · u′

))
· n dS, (2.7)

as a result of the integration by parts.
We briefly remark, firstly, that the derivation of the adjoint linearized Navier–Stokes operator

may be clearer if we consider the expanded operators

Le : Cn+1 → Cn+1 (2.8a)[
u′
p′

]
7→
[

L u′
∇ · u′

]
(2.8b)

and

L ∗
e : Cn+1 → Cn+1 (2.8c)[

û′
p̂′

]
7→
[
L ∗û′
∇ · û′

]
, (2.8d)

where the expanded inner product

〈·, ·〉e : Cn+1 × Cn+1 → C (2.9a)[
u1
p1

]
,

[
u2
p2

]
7→
∫

Ω
(ū2 · u1 + p̄2p1) dV (2.9b)

sets the required adjoint relation〈
Le

[
u′
p′

]
,

[
û′
p̂′

]〉
e

=
〈[

u′
p′

]
,L ∗

e

[
û′
p̂′

]〉
e
. (2.10)

Secondly, the above derivation is similar to the one found in Giannetti and Luchini (2007), who
use a variant of these steps.

As is the case with most linear operators, the eigendecompositions of these operators yield
particularly useful information about the underlying dynamics. The next section reviews this
eigenmode-based analysis.
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2.4 Eigenmode analysis: stability, receptivity, and sensitivity

In some sense, the eigendecomposition of a linearized flow operator is no different from that of other
operators—it identifies modes that remain invariant (except in complex amplitude) under the action
of the operator, along with associated growth rates and frequencies. The utility of linear global
flow stability analysis, however, is that the eigendecomposition has the power to reveal structures
that are intrinsically tied to the underlying flow physics.

The eigendecomposition of the linearized Navier–Stokes operator L given in (2.4) reveals
information about the flow stability. If we compute the eigenvalues λj ∈ C and eigenmodes
φj(x) : Rn → Cn such that

Lφj = λjφj , (2.11)

then a basic result comes from the Hartman–Grobman theorem, which Section 2.2 mentioned for
local stability. In the case of global stability, the theorem states that if Re(λj) > 0 for any j,
then L and the nonlinear operator N (2.2) are both unstable; if Re(λj) < 0 for all j, then L
and N are both stable. In the degenerate case where Re(λj) = 0 for some j, then a nonlinear
analysis is required to determine the stability of N . Furthermore, the eigendecomposition (2.11)
yields information about the long-term behavior of L . When t→∞, the linearized fluid flow will
be dominated by the eigenmode φj whose corresponding eigenvalue λj has the largest real part.
As an example, Figure 2.4(a) shows the stability region—where φj is large—of a two-dimensional
cylinder flow’s first instability at Re = 50.

Given adjoint eigenmodes ψj(x) : Rn → Cn, the eigendecomposition of the adjoint linearized
Navier–Stokes operator is

L ∗ψj = λ̄jψj . (2.12)

The direct and adjoint eigenmodes satisfy the biorthogonality condition 〈φj ,ψk〉 = 0 for j 6= k.
Furthermore, the eigenvalues λj are the same in (2.11) and (2.12). This adjoint eigendecomposition
reveals the dynamics’ receptivity to initial conditions in the following sense. If L has a full set
of eigenmodes, then the solution to the linearized Navier–Stokes equations (2.4) from some initial
condition u′(0) (where the dependence on x is implied) can be written as a sum of eigenmodes and
coefficients

u′(t) =
∑
j

aj(t)φj , (2.13a)

where
aj(t) = 〈u

′(0),ψj〉
〈φj ,ψj〉

eλjt. (2.13b)

Therefore, a nontrivial overlap between the initial condition and the jth adjoint eigenmode indicates
that the jth direct eigenmode plays a nontrivial role in the linearized solution u′(t). Figure 2.4(b)
shows the receptivity region of the cylinder flow’s first instability, where ψj is large.

The adjoint eigendecomposition also reveals the dynamics’ receptivity to external forcing. If we
consider a forced linearized Navier–Stokes equation

∂u′

∂t
= L u′ + f(t) (2.14a)

with f(t) representing an external forcing, then the solution is once again (2.13a), where

daj
dt

= λjaj(t) + 〈f(t),ψj〉
〈φj ,ψj〉

(2.14b)
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Figure 8. Spatial distribution of the velocity field modulus ‖û(x, y)‖ at Re =50.

become important and substantially modify the St − Re relationship away from the
linear result of figure 7.

6.1. Direct and adjoint mode characteristics

Figures 8 and 9 show the modulus of the velocity ‖û(x, y)‖ and pressure |p̂(x, y)| of
the perturbation at Re = 50, a value corresponding to a weakly unstable configuration.
The dashed line in the pictures indicates the boundary of the separation bubble, while
the solid lines are the isolines corresponding to the tick values in the grey-level scale.
In the neighbourhood of the critical point, the maxima of q̂ are located far downstream
of the recirculating region. A surprising fact, in the light of this result, is that
both Zebib (1987) and Hill (1992) obtained converged results with a computational
domain too short to capture the maxima of the direct eigenfunctions. In their case,
the choice of a small domain was mainly dictated by the use of cylindrical coordinates
with the ensuing degradation of the spatial resolution with radial distance. The
numerical approach used here, on the other hand, allowed us to perform the calcula-
tions on a much larger domain: in this way we were able to resolve the details of

(a)

184 F. Giannetti and P. Luchini

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

x

y

–4 –3 –2 –1 0 1 2 3 4

–2

–1

0

1

2

Figure 10. Receptivity to momentum forcing and initial conditions (‖ f̂
+
(x, y)‖) at Re= 50.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

x

y

–4 –3 –2 –1 0 1 2 3 4

–2

–1

0

1

2

Figure 11. Receptivity to mass injection (|p̂+(x, y)|) at Re= 50.

Both studies, however, predict a shift of xmax towards the bluff body as the Reynolds
number is increased.

The adjoint mode, on the other hand, shows that the regions of maximum receptivity
to momentum forcing and mass injection are localized in the near wake of the
cylinder, close to the upper and lower sides of the body surface. This can be seen in
figures 10 and 11, which display the spatial distribution of the functions ‖ f̂

+
(x, y)‖

and |m+(x, y)| at Re =50: darker regions are where the forcing terms f̂ and m̂ in
(3.2) are most effective, i.e. give rise to a mode with the largest amplitude. In striking
contrast with the results for the direct mode, the receptivity decays rapidly both
upstream and downstream of the cylinder. As discussed in § 3 (and clearly shown
in (3.10)), the adjoint field f̂

+
(x, y) also represents the sensitivity of the mode to

the initial conditions used to solve the corresponding temporal stability problem.
In particular, modes with large amplitude are produced when the initial conditions

(b)
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Figure 17. Receptivity to spatially localized feedbacks at Re =50.

perturbation. In a sense, a similar mechanism can be considered as the ‘wavemaker’
of the asymptotic theory. In a linear theory approach, the feedback process can be
mathematically described through a relation of the form

f = C(x, y) · u (8.8)

where C is the 2×2 matrix of the coupling coefficients, while u and f are the velocity
and the force fields in (2.6). Generally, the coupling coefficients in the matrix are
functions of the coordinates (x, y). However, if the feedback is localized in space, we
can simplify the model by assuming

C(x, y) = δ(x − x0, y − y0)C0, (8.9)

where C0 is here a constant coefficient matrix, (x0, y0) indicates the position where the
feedback acts and δ(x − x0, y − y0) denotes the Kronecker delta function. A bound
for the eigenvalue drift due to the localized feedback mechanism can be derived
by considering the Laplace transform of (8.8) and taking δH(û, p̂) = C(x, y) · û and
δR(û, p̂) = 0 in (8.7). In this way, using (8.9), we obtain

|δσ1| =

∣∣∣∣
∫

D

f̂
+ · C(x, y) · û dS

∣∣∣∣
∣∣∣∣
∫

D
f̂

+ · û dS

∣∣∣∣
! ‖C0‖λ(x0, y0) (8.10)

where we have defined the function λ(x, y) as

λ(x, y) =
‖ f̂

+
(x, y)‖‖û(x, y)‖∫

D
f̂

+ · û dS

∣∣∣∣∣∣∣∣
. (8.11)

Equation (8.10) shows that the product between the direct and adjoint fields gives
the maximum possible coupling among the velocity components. The function λ(x, y)
can therefore be used to determine the locations where the feedback is stronger,
identifying in this way the regions where the instability mechanism acts. Figure 17
shows that large values of λ(x, y) are attained in two lobes located symmetrically
across the separation bubble. Note that both close to the cylinder and far from it,
the product of the adjoint and direct modes is small, showing that these areas of the
flow are not really important for the instability dynamics.

(c)

Figure 2.4: The (a) stability, (b) receptivity, and (c) sensitivity regions of the two-dimensional flow over a
cylinder, with the free stream flowing from left to right at Re = 50. From Giannetti and Luchini (2007).
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with some choice of initial conditions aj(0). Similarly to before, the overlap between the forcing
and the jth adjoint eigenmode indicates the contribution of jth direct eigenmode to the solution
u′(t). The external forcing of the linearized Navier–Stokes equations is a well-studied topic with
far-reaching consequences in transition and turbulence (Trefethen et al., 1993; Farrell and Ioannou,
1993; Bamieh and Dahleh, 2001; Jovanović and Bamieh, 2005).

Finally, the idea of the sensitivity to localized perturbations is derived from the combination
of the direct and adjoint eigendecompositions. In particular, it is well-known that the direct
and adjoint eigendecompositions do not individually provide intuitive explanations of dynamical
trajectories from non-normal operators (Trefethen et al., 1993). Following the weakly nonparallel
analysis of Section 2.2, regions of absolute instability in the flow can behave as “wavemakers” that
shed waves both downstream and upstream (Chomaz, 2005). In the framework of global stability,
the ideas of wavemakers and sensitivity are closely related. Furthermore, the sensitivity of linear
operators to perturbations can be very large when the underlying dynamics are strongly non-normal
(Chomaz, 2005).

We can formulate the sensitivity problem using a slight simplification of Giannetti and Luchini
(2007). Suppose we perturb the linearized Navier–Stokes operator (2.4) from L to L + dL . The
perturbation of the linearized Navier–Stokes eigendecomposition (2.11) is then

dLφj + L dφj = dλjφj + λjdφj . (2.15)

The inner product of the above with ψj yields

〈dLφj ,ψj〉+ 〈L dφj ,ψj〉 = 〈dλjφj ,ψj〉+ 〈λjdφj ,ψj〉 . (2.16a)

Note, however, that 〈L dφj ,ψj〉 = 〈dφj ,L ∗ψj〉 =
〈
dφj , λ̄jψj

〉
= 〈λjdφj ,ψj〉; therefore, (2.16a)

simplifies to
〈dLφj ,ψj〉 = 〈dλjφj ,ψj〉 . (2.16b)

If we now assume that dL is a spatially localized perturbation of strength ds at the location x = ξ,
that is,

dL = δ(x− ξ) ds (2.17)

with δ the Dirac delta function, then (2.16b) simplifies to

dλj
ds

= ψ̄j(ξ) · φj(ξ)
〈φj ,ψj〉

. (2.18a)

Therefore, we may define the sensitivity function

ζ(x) = ψ̄j(x) · φj(x)
〈φj ,ψj〉

(2.18b)

dictating the change in the jth eigenvalue as a result of a perturbation in L localized at x.
Figure 2.4(c) shows the sensitivity region of the cylinder flow’s first instability, where ζ is large.

Since the numerical representations of the nonlinear flow operator N , linearized flow operator
L , and adjoint linearized flow operator L ∗ are typically very high-dimensional, the computation
of steady states and eigendecompositions is a nontrivial task. The next section reviews a particular
set of computational methods that iterate toward these solutions.
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Algorithm 2.1: One-dimensional Newton’s method
Data: Initial condition u1 ∈ R, function f : R→ R, small tolerance ε > 0
Result: u0 such that |f(u0)| ≤ ε

1 for j = 1, 2, . . . do
2 if |f(uj)| ≤ ε then
3 return uj
4 end
5 uj+1 ← uj − f(uj)/f ′(uj)
6 end

u1u2u3u4u0

f(u1)

f(u2)

f(u3)

f(u0)

Figure 2.5: An example of the one-dimensional Newton’s method with f(u) = − log(−x) and u1 = −0.05,
where the sequence u1, u2, . . . converges to the true root u0 = −1.

2.5 Computational methods

The computation of the linear global stability analysis consists of two parts: the steady-state
solution and the eigendecomposition. Although there exist many iterative algorithms for these
calculations, we focus on one particular set that tends to be robust, fast, and accurate. Here, we
discuss the Newton iteration with the Armijo rule, using the generalized minimal residual (GMRES)
method for linear systems solving and a time-stepping approach. Later, we discuss the Arnoldi
algorithm for estimating the leading eigenvalues and eigenmodes of the linearized flow operators.

Newton’s method is a powerful tool that allows us to iterate towards solutions u0 satisfying
N u0 = 0 (see (2.2)). The one-dimensional Newton’s method is a classic example of an iterative
root-solving method, dating back to the 17th century. This method, which most texts in single
variable calculus cover, seeks a solution u0 ∈ R such that f(u0) = 0 for a given nonlinear function
f : R → R. It iterates toward the solution by using the derivative at a given iterate to trace a
tangent from the iterate to zero, where the location of the tangent’s root provides the next iterate.
Algorithm 2.1 presents the one-dimensional Newton’s method, and Figure 2.5 shows an example.
Excepting certain ill conditions, Newton’s method converges quadratically (Kelley, 1995).

The representation of velocity fields u and nonlinear Navier–Stokes operators N , however,
typically requires a very large number of dimensions. If the scalar ujk is the value of the jth
velocity component in the kth computational cell, then a common vector representation of a three-
dimensional velocity field u over q cells is the vector

u =
[
u11 u21 u31 u12 u22 u32 · · · u1q u2q u3q

]T
. (2.19)
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Therefore, in the context of solving for Navier–Stokes equilibria in three spatial dimensions, we
must typically solve N u0 = 0, where numerically, u0 ∈ R3q and N : R3q → R3q. Presently, q is
commonly in the thousands to billions. Fortunately, the multi-dimensional Newton’s method is little
more than a generalization of the one-dimensional case. Instead of using derivatives to compute
tangent lines, it uses gradients. Algorithm 2.2 presents the multi-dimensional Newton’s method,
which Kelley (1995, 2003) present in greater detail. When searching for nonlinear Navier–Stokes
equilibria, we set f = N .

When implementing the multi-dimensional Newton’s method, however, at least two major dif-
ficulties remain. The first is that line 5 of Algorithm 2.2 is computationally intractable when the
dimension n of u is very high. A fairly robust remedy for this problem is the use of the GMRES
algorithm (Saad and Schultz, 1986; Trefethen and Bau, 1997) to solve line 5. The GMRES al-
gorithm estimates the solution x to the linear system Ax = b by identifying, after k iterations,
the vector xk ∈ span{b,Ab, . . . ,Ak−1b} that minimizes ‖Axk − b‖. Here, ‖ · ‖ is the standard
Euclidean 2-norm, and span{b,Ab, . . . ,Ak−1b} is known as a Krylov subspace. The utility of the
GMRES algorithm is hidden in the above formulation: the algorithm never requires an explicit
representation of A; instead, it only requires the ability to compute Ab from some input vector b.
Therefore, we may compute line 5 of Algorithm 2.2 by setting A = ∂f/∂u|uj , x = h, and b = f(uj)
in the GMRES algorithm.

Before presenting the GMRES algorithm, we first outline the Arnoldi iteration (see Trefethen
and Bau, 1997), which approximates the high-dimensional matrix decomposition A = QHQH, with
Q unitary, H upper Hessenberg (that is, zero beneath the first subdiagonal), and (·)H denoting
the complex transpose. Algorithm 2.3 presents this method, which GMRES requires. A careful
observation of this algorithm reveals the mechanics of the Arnoldi iteration. In this procedure,
the outer iteration advances the Krylov subspace by providing one more application of the linear
operator A, whereas the inner iteration projects the previously computed orthogonal directions out
of the result.

With the Arnoldi iteration in place, we can define the matrices

Qk =
[
q1 · · · qk

]
(2.20a)

Hk =


h1,1 h1,2 · · · h1,k
h2,1 h2,2 · · · h2,k

. . . . . . ...
hk,k−1 hk,k

0 hk+1,k

 , (2.20b)

which are “in-progress” versions of the unitary Q and upper Hessenberg H that the Arnoldi iteration
builds, such that AQk = Qk+1Hk. Also, let e1 =

[
1 0 · · · 0

]
be the first unit vector in Rn.

The GMRES algorithm for solving Ax = b is then given by Algorithm 2.4. Note also that the
Givens rotation solves line 4 of this algorithm more efficiently than standard least-square solvers,
because of the upper Hessenberg matrix Hk’s special structure (Trefethen and Bau, 1997). We
also comment that preconditioning can accelerate the convergence of the Arnoldi and GMRES
algorithms, but we do not apply such methods here.

Even with the GMRES algorithm, the computation of the Jacobian–vector product ∂f/∂u|uj ·qk
(see line 3 of Algorithm 2.3) is usually not directly possible because of the large state dimension.
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Algorithm 2.2: Multi-dimensional Newton’s method
Data: Initial condition u1 ∈ Rn, function f : Rn → Rn, small tolerance ε > 0
Result: u0 such that ‖f(u0)‖ ≤ ε

1 for j = 1, 2, . . . do
2 if ‖f(uj)‖ ≤ ε then
3 return uj
4 end

5 Solve ∂f
∂u

∣∣∣∣
uj

· h = f(uj) for h

6 uj+1 ← uj − h
7 end

Algorithm 2.3: The Arnoldi iteration
Data: A ∈ Rn×n, random vector b ∈ Rn
Result: Approximate upper Hessenberg decomposition A ≈ QHQH such that H = QHAQ

1 q1 ←
b
‖b‖

2 for k = 1, . . . , p with p < n do
3 v← Aqk
4 for m = 1, . . . , k do
5 hm,k ← 〈v,qm〉
6 v← v− hm,kqm
7 end
8 hk+1,k ← ‖v‖
9 qk+1 ←

v
hk+1,k

10 end
11 Q←

[
q1 · · · qp

]

12 H←


h1,1 h1,2 · · · h1,p
h2,1 h2,2 · · · h2,p

. . . . . . ...
0 hp,p−1 hp,p


Algorithm 2.4: The GMRES algorithm
Data: A ∈ Rn×n, b ∈ Rn, small tolerance ε > 0
Result: xk ∈ span{b,Ab, . . . ,Ak−1b} minimizing ‖Axk − b‖, with ‖Axk − b‖ ≤ ε‖b‖

1 q1 ←
b
‖b‖

2 for k = 1, . . . , p with p < n do
3 Perform lines 3–9 of Algorithm 2.3
4 Find y ∈ Rk that minimizes rk = ‖Hky− ‖b‖e1‖
5 if rk ≤ ε‖b‖ then
6 return Qky
7 end
8 end
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Algorithm 2.5: Multi-dimensional Newton–Armijo method
Data: Initial condition u1 ∈ Rn, function f : Rn → Rn, small tolerance ε > 0, small constant

α > 0, minimum step multiplier σ0 ∈ (0, 1), maximum step multiplier σ1 ∈ (0, 1)
Result: u0 such that ‖f(u0)‖ ≤ ε

1 for j = 1, 2, . . . do
2 if ‖f(uj)‖ ≤ ε then
3 return uj
4 end

5 Solve ∂f
∂u

∣∣∣∣
uj

· h = f(uj) for h

6 λ1 ← 1
7 for k = 1, 2, . . . do
8 if ‖f(uj − λkh)‖ < (1− αλk)‖f(uj)‖ then
9 break

10 else
11 if k = 1 then
12 λ2 ← σ1λ1
13 else
14 Estimate λk+1 ∈ [σ0λk, σ1λk] minimizing ‖f(uj − λk+1h)‖
15 end
16 end
17 end
18 uj+1 ← uj − λkh
19 end

Instead, it typically suffices to compute the finite difference approximation

∂f
∂u

∣∣∣∣
uj

· qk = 1
ε

(f(uj + εqk)− f(uj)) +O (ε) , (2.21)

with ε small, via a time-stepping approach in the Arnoldi algorithm.
The GMRES algorithm tackles the first difficulty in implementing the multi-dimensional New-

ton’s method, which is the linear systems solution. A second difficulty is that this method has no
guarantees on numerical convergence. A poor initial condition, a lack of sufficient smoothness near
the solution, and errors in the function and derivative evaluations can individually cause the iter-
ation to diverge. A way to improve the convergence of the Newton iteration is the implementation
of the Armijo rule (Armijo, 1966; Kelley, 1995, 2003). In this variant of Newton’s method, we use
the solution h from line 5 in Algorithm 2.2 to determine the Newton step direction. In addition,
we allow the possibility of scaling the Newton step size by λk ∈ (0, 1] so that the step provides a
sufficient decrease in ‖f(uj)‖. The calculation of an appropriate λk is iterative.

Algorithm 2.5 outlines the Newton–Armijo method, based on Kelley (1995, 2003). In this
procedures, typical values (as specified in Kelley (2003)) are α = 10−4, σ0 = 0.1, and σ1 = 0.5.
The (1− αλk) term in line 8 helps prevent oscillations that occasionally occur in Newton iteration
(Kelley, 1995). The constants σ0 and σ1 set lower and upper bounds on the allowable step size
reduction at each Armijo iteration. Furthermore, the estimation in line 14 is possible using an
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Algorithm 2.6: Arnoldi iteration for eigendecomposition
Data: A ∈ Rn×n, random vector b ∈ Rn
Result: Estimates of {λj}pj=1 and {φj}pj=1 such that Aφj = λjφj

1 Perform Algorithm 2.3
2 Compute the eigendecomposition Hvj = λjvj
3 φj ← Qvj for j = 1, . . . , p

efficient three-point parabolic model based on the previous, current, and zero values of λk, along
with the corresponding values of ‖f(uj − λkh)‖.

Once the Newton’s method has identified the steady state solution u0 satisfying N u0 ≈ 0, we
may employ the Arnoldi iteration once more to estimate the eigendecompositions of the direct and
adjoint linearized operators, L and L ∗. Because the Arnoldi iteration relies on the formation of
a Krylov subspace, with repeated applications of the linear operator, it is generally preferable to
eigendecompose the discrete-time versions of these operators. These results then transform easily
back to the framework of continuous time. Therefore, define the discrete-time operators

Ld : Cn → Cn (2.22a)
u′(t) 7→ u′(t+ ∆t) (2.22b)

L ∗
d : Cn → Cn (2.22c)

û′(t) 7→ û′(t+ ∆t). (2.22d)

(Note that the numerical computation performs these discrete-time operators simply by advancing
the perturbations a prescribed number of time steps.) Algorithm 2.6 estimates the leading eigen-
values and eigenmodes of the spatially discretized Ld and L ∗

d . Once we have approximated the
discrete-time eigendecompositions

Ldφj = µjφj (2.23a)
L ∗
dψj = µ̄jψj , (2.23b)

the usual relation λj = (logµj)/∆t recovers the continuous-time eigenvalues. The convergence
of the Arnoldi iteration toward the leading eigenvalues and eigenmodes of Ld and L ∗

d is a topic
beyond the scope of this discussion, but Lecture 34 of Trefethen and Bau (1997) describes this in
detail.

Altogether, the application of Newton’s method, the GMRES linear solver, the finite-difference
approximation of the Jacobian–vector product, the Armijo line rule, and the Arnoldi eigendecom-
position involves multiple layers of iteration and a large amount of approximation. Even so, a
careful selection of initial conditions and numerical tolerances usually leads to successful calcula-
tions of steady-state solutions and eigendecompositions. Further steps, such as preconditioning the
GMRES iteration, can further improve performance, but we do not explore this here. The next
chapter presents an application of these numerical techniques to a fluid system with three velocity
components and up to 7 · 106 grid cells, totaling a vector dimension of over 2 · 107.
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Figure 2.6: (a) The T-junction geometry. (b) A level set of the Q-criterion (yellow) with overlaid velocity
streamlines (white: high speed; blue: medium speed; black: low speed) at Re = 560, with R = 0.4L.
Repeated from Figure 7.1.

2.6 An example: application to an impacting pipe T-junction flow

This section demonstrates the application of the linear global stability analysis on a complex laminar
three-dimensional flow. The discussion below is, in part, a concise summary of Chapter 7, which
discusses vortex breakdown and sensitivity in greater detail.

The example in this section is the flow through a T-shaped pipe bifurcation, at a Reynolds
number at or near 560. Impacting T-junction flows are rather ubiquitous in both natural and man-
made systems, with examples including industrial pipe networks, microfluidic channels, and the
pulmonary and basilar arteries in the human body. Specifically, the geometry under investigation is
a pipe with a square cross section, with two 90◦ bends diverting the flow to two outlets. Figure 2.6(a)
shows the geometry and the dimensions used in the computational model, where typically, R = 0.4L
to match accompanying experimental apparatuses. Given the pipe dimensions, as well as the
average inlet flow speed U and the fluid kinematic viscosity ν, the Reynolds number is Re = UL/ν.
In this example, the laminar flow first loses stability at Re = 556, where it encounters a supercritical
Hopf bifurcation. Figure 2.6(b) shows velocity streamlines for the steady-state solution at the
nearby Re = 560. To aid in the visualization of the vortical behavior, this figure also shows a
level set of the Q-criterion Q = (‖Ω‖2F − ‖S‖2F)/2, where Ω = (∇u + (∇u)T)/2 is the velocity
rotation tensor and S = (∇u − (∇u)T)/2 is the velocity rate-of-strain tensor, and ‖ · ‖F indicates
the Frobenius norm.

A major feature of interest in the impacting T-junction flow is the appearance of vortex break-
down and the subsequent formation of recirculation regions at Re ≥ 320, when the steady-state
solution is still stable. Figure 2.7(a) depicts the vortex breakdown in the flow at Re = 560. The
downward momentum from the inlet flow produces a pair of outlet-oriented vortices in each outflow
pipe. The four resulting vortices contain features common to breakdown phenomena: a very high
swirl angle, approaching 90◦ near the breakdown points and near the center plane between the
outlets; an adverse pressure gradient in the vortex core; and a streamline convergence toward the
vortex core just upstream of the breakdown point (Hall, 1972). In addition, the vortex breakdown
creates at least six stagnation points in the interior of the flow. Four of these are at the vortex
breakdown points, with one in each quadrant of the outlet–depth plane; two additional stagnation
points are on the center plane between the outlets, in the vortex core.
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(a) (b)

Figure 2.7: The vortex breakdown at Re = 560. (a) The four recirculation regions (cyan), with streamlines
as in Figure 2.6(b). (b) An outer (cyan) and inner (orange) streamline from a single recirculation region.
The cyan streamline’s left end is the vortex breakdown point, and its right side is flush with the T-junction’s
center plane. Repeated from Figure 7.3.

(a) (b)

Figure 2.8: (a) A level set of the first instability’s sensitivity magnitude |ζ1| in magenta, with streamlines of
the recirculation regions in cyan. Here, Re = 560. (b) As (a), but with the second instability’s sensitivity
magnitude |ζ2|. Repeated from Figure 7.4.

The stability regions (i.e., direct eigenmodes) and receptivity regions (i.e., adjoint eigenmodes)
of the impacting T-junction flow are consistent across different eigenmodes of the linearized Navier–
Stokes operator. Figure 2.9(a) visualizes these regions for the first instability (i.e., the center mode)
at Re = 560, near the supercritical Hopf bifurcation, and Figure 2.9(b) depicts the regions for the
second least stable mode. The stability regions of the flow are most significant in the outflow pipes.
In particular, the neutrally stable mode in Figure 2.9(a) is a modal representation of the corkscrew
oscillations that the large vortices in Figure 2.6(b) undergo slightly above Re = 556 because of
the supercritical Hopf bifurcation. The second least stable mode in Figure 2.9(b) resides further
downstream, but all stability regions are effectively limited to these areas only.

Interestingly, the regions of receptivity to initial conditions and external disturbances have very
little variation among the modes of the adjoint linearized Navier–Stokes operator. These regions
are significant only in the junction and slightly above in the inlet; specifically, they are nontrivial
only near the front and back walls of the junction. Since these regions are particularly compact, this
flow only has a narrow area where the choice of initial conditions and the introduction of external
disturbances would have a very large effect.

In the T-junction flow, the regions of sensitivity to spatially localized perturbations—where the
direct and adjoint eigenmodes overlap—is of particular interest. Figure 2.8 shows the sensitivity
regions, along with recirculation regions that Figure 2.7 previously showed. It is immediately
evident that these two regions coincide in a nontrivial way. To close approximation, if not exactly,
each recirculation region’s outer shell is a two-dimensional manifold that is stable at the vortex
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Figure 2.9: (a) The neutrally stable direct and adjoint eigenmodes of the linearized Navier–Stokes operator
at Re = 560, shown as level sets of the direct modes’ real (orange) and imaginary (red) velocity magnitudes,
as well as the adjoint modes’ real (green) and imaginary (purple) velocity magnitudes. Streamlines are
overlaid, as in Figure 2.6(b). (b) As (a), but for the second least stable mode.
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breakdown point and unstable at the fixed point on the center plane. The vortex core, on the other
hand, is a backward-facing streamline (i.e., one-dimensional manifold) that is unstable at the vortex
breakdown and stable at the center plane. Figure 2.7(b) depicts a single recirculation region from
a different angle, as well as an interior streamline that may densely fill a two-dimensional torus if
extended infinitely. The discussion of whether manifolds of different fixed points coincide or intersect
is beyond the scope of this study, and would minimally require a very precise mesh refinement
(Sotiropoulos et al., 2001). Nevertheless, the recirculation regions are at least approximately orbits
where fluid particles roughly return to their starting point after one cycle.

The appendix of Giannetti et al. (2010) discusses the connection between recirculation and
sensitivity. According to the inviscid short-wavelength approximation of Bayly (1988) and Lifschitz
and Hameiri (1991), infinitesimally small flow perturbations advect with the underlying velocity
field in the absence of viscosity. Our analysis does not consider infinitesimal perturbations, nor is
the fluid inviscid. Nonetheless, this approximation presents the possibility that perturbations may
positively feed back upon a complete recirculation, giving rise to a self-amplification mechanism.
This, in turn, can cause a large sensitivity to localized perturbations in the recirculation regions, as
Figure 2.8 shows. Previous research has demonstrated this connection between recirculation and
sensitivity in bluff body wakes (Giannetti and Luchini, 2007; Giannetti et al., 2010) and cavity
flows (Luchini et al., 2013). To the best of our knowledge, however, the T-junction flow is by far
the most complex flow to date for which anyone has observed this connection.

This section presented original research in the stability, receptivity, and sensitivity regions of the
flow through a square pipe with a T-shaped bifurcation. Chapter 7 extends the physical analysis of
this flow. Among other topics, it discusses the effects of the radius of curvature R at the junction
corners, as well as the separation regions near these corners.
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Chapter 3

Feedback control theory of fluid flows

3.1 Overview

The use of engineering strategies for the automatic regulation of a system’s behavior dates back
many centuries. In the 18th century centrifugal (i.e., “flyball”) governor, for instance, a rapidly
spinning engine shaft would cause two masses to shift outward, reducing the throttle to the engine.
This, in turn, would help maintain a particular engine speed. The centrifugal governor utilizes a
control strategy similar to what we now know as proportional control.

The formal study of control theory has progressed significantly, especially in the last several
decades. This dissertation focuses specifically on linear time invariant (LTI) control theory, where
we assume that plants (i.e., systems to be controlled) and controllers have linear dynamics that do
not change with time. Although the LTI assumption is restrictive, this branch of control theory
is very mature. More specifically, LTI control is split into “classical” and “modern” theories.
The key difference between the two is the representation and analytical approaches for dynamical
systems, with classical theory relying on frequency-domain representations, and modern theory
relying on time-domain representations. These system representations are related by a simple
Laplace transform.

In the typical state space representation of a finite-dimensional LTI input–output dynamical
system, we assume n state variables, q actuator inputs, and p sensor outputs. Using the state
variables x(t) : R → Cn, actuation signals u(t) : R → Cq, and sensor signals y(t) : R → Cp, along
with the dynamical operator A ∈ Cn×n, actuation-to-dynamics matrix B ∈ Cn×q, dynamics-to-
sensing matrix C ∈ Cp×n, and direct-feedthrough matrix D ∈ Cp×q, the state space is

ẋ(t) = Ax(t) + Bu(t) (3.1a)
y(t) = Cx(t) + Du(t). (3.1b)

For the purpose of notation, we may call this system G. The Laplace transform of G (3.1), using
an argument s ∈ C and transformed vectors x̂(s), û(s), and ŷ(s) in place of x(t), u(t), and y(t), is

sx̂(s) = Ax̂(s) + Bû(s) (3.2a)
ŷ(s) = Cx̂(s) + Dŷ(s), (3.2b)

that is,
ŷ(s) = G(s)û(s) (3.3a)
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with the transfer function G(s) given by

G(s) = C(sI−A)−1B + D. (3.3b)

In the special case of real frequency analyses, it is then common to substitute s = iω, with ω ∈ R.
In this case, the G(iω) dictates the steady-state gain from the input to the output if the system
is stable (i.e., in state space form, all the eigenvalues of the A matrix have a negative real part).
Since the time-domain (3.1) and frequency-domain (3.3b) representations are equivalent, the label
“G” may refer to either.

In the feedback control of fluid flows, many early studies (e.g., Roussopoulos, 1993) only em-
ployed classical control methods, in part because these controllers are easier to design without
high-accuracy fluid flow models. More recently, advanced research in feedback flow control has
heralded a shift to modern methods, because of their generally superior ability to create high-
performing and robust control. Kim and Bewley (2007) review the fundamentals of state space
control methods for fluid flows. The time-domain and frequency-domain approaches, however, are
not entirely separable. For instance, it is often natural to analyze the robustness of modern state
space controllers from a transfer function perspective, identifying frequencies most likely to cause
a system to lose stability or performance.

A review of modern control methods for feedback flow control would be far too large to provide
here. Instead, this chapter focuses on particular concepts with far-reaching consequences for fluid
flows. In particular, this chapter addresses optimal control, from the perspectives of both control
design and control system architecture. Afterwards, it discusses robust control methods and anal-
yses. This robustness discussion is particularly crucial for the real-life implementation of feedback
flow control, since closed-loop control systems must be able to maintain stability and performance,
even in the presence of modeling errors and other adverse external factors.

Section 3.2 reviews basics of optimal control, with a focus on H2 theory. Section 3.3 extends
the H2 optimal theory by presenting original research on the simultaneous optimization over all
LTI controllers, actuator placements, and sensor placements. Section 3.4 discusses robustness from
the point of view of the normalized coprime stability margin and the ν-gap metric, which together
form a powerful tool for general robustness analysis. Section 3.5 extends this discussion by briefly
reviewing the robustifying H∞ loop-shaping controller.

3.2 H2 optimal control

The key idea in LTI optimal control is the design of the controller K that—out of all possible
LTI controllers—achieves the best control performance, for some choice of the control performance.
This section first discusses the linear quadratic regulator (LQR) as the optimal full-state feedback
controller and the Kalman filter as the optimal state estimator. Next, this section reviews the
linear quadratic Gaussian (LQG)—which combines the LQR and the Kalman filter—as a special
case of H2 optimal control. It also briefly comments on general H2 optimal control. Since optimal
control is a standard topic in many texts (e.g., Skogestad and Postlethwaite, 2005, Section 9.3), we
only provide a brief overview. Doyle et al. (1989) also provide a concise treatise on this topic.

The linear quadratic regulator is the full-state feedback matrix that, out of all possible matrices,
minimizes a cost function based on the size of the state and actuator signals. Consider the input–
state dynamics

ẋ(t) = Ax(t) + Bu(t) (3.4)
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ẋ = Ax + Bu
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(a)

˙̂x = Ax̂ + Bu + L(y−Cx̂) x̂u
y

(b)

Figure 3.1: (a): Full-state feedback system. (b): Observer.

(repeated from (3.1a)). Given a cost matrix Q ∈ Cn×n with Q ≥ 0 (i.e., positive semidefinite) and
an input cost matrix R ∈ Cq×q with R > 0 (i.e., positive definite), the LQR is the constant matrix
F such that full-state feedback u(t) = −Fx(t) minimizes the cost

J =
∫ ∞

0
(xH(t)Qx(t) + uH(t)Ru(t)) dt. (3.5)

Therefore, the matrices Q and R determine how the cost function penalizes various components of
the state and actuator inputs. The design of the LQR matrix is conceptually simple. First, solve
the continuous algebraic Riccati equation (CARE)

AHX + XA−XBR−1BHX + Q = 0 (3.6)

for the matrix X ∈ Cn×n satisfying X > 0. Most computational algorithms solve this quadratic
equation using a Schur decomposition of a Hamiltonian representation of (3.6). The LQR matrix
is then

F = R−1BHX. (3.7)

In the closed-loop feedback system (Figure 3.1(a)), the dynamics become ẋ(t) = (A−BF)x(t).
Although the LQR controller has guarantees on the stability and robustness of the closed-

loop system, its direct implementation is usually impossible. In most control systems (and almost
certainly, in real-life fluid systems), it is not feasible to feed the controller the full knowledge of the
entire state x(t). Therefore, it is typically necessary in optimal control to design and implement
a state observer that estimates the state x(t) based on knowledge of the plant, actuator inputs
u(t), and sensor outputs y(t). The typical observer formulation assumes an expansion of the plant
(3.1) by the inclusion of state disturbances d(t) and sensor noise n(t), along with respective scaling
matrices W1/2 and V1/2. That is, we define the plant

ẋ(t) = Ax(t) + Bu(t) + W1/2d(t) (3.8a)
y(t) = Cx(t) + V1/2n(t), (3.8b)

where we further assume the typical case D = 0. In this formulation, d(t) and n(t) are white noise
signals satisfying E(ddH) = I and E(nnH) = I, where E denotes the expected value. The observer
is then a dynamical system for the estimate x̂(t) of x(t) given commonly by

x̂(t) = Ax̂(t) + Bu(t) + L(y(t)−Cx̂(t)) (3.9)

(see Figure 3.1(b)). Thus, it mimics (3.4), but also includes an error correction determined by the
difference between the estimated sensor output Cx̂(t) and the actual sensor output y(t).
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Figure 3.2: (a) The linear quadratic Gaussian controller (red) in closed-loop with a plant. (b) The lower
linear fractional transform G, with a plant P and controller K in closed-loop; repeated from Figure 8.1.

The Kalman filter (or linear quadratic estimator, or LQE) is specifically the design of L that
minimizes the mean square error E((x̂(t)−x(t))(x̂(t)−x(t))H). The design of the Kalman filter is
the dual of the LQR design (that is, it is the LQR of the adjoint plant). Solve the CARE

AY + YAH −YCHV−1CY + W = 0 (3.10)

for the matrix Y ∈ Cn×n with Y > 0. The Kalman filter matrix, then, is

L = YCHV−1. (3.11)

When a feedback system consists of a LQR gain and the Kalman filter, the controller is called
the linear quadratic Gaussian. Figure 3.2(a) shows this configuration. A key feature of the LQG
controller is that it can stabilize any plant that is detectable and stabilizable (that is, the actuators
can control and the sensors can observe all unstable eigenmodes of A). The controller may not be
robust, however; in certain cases—including in non-normal flows (see Lauga and Bewley, 2003)—
LQG-controlled systems may be very close to unstable. Section 3.5 discusses control strategies that
specifically attempt to improve the robustness of closed-loop systems.

The LQG controller is a special case of a more general class of optimal control known as H2
optimal control. This theory builds on the general control setup, also known as the lower linear
fractional transform, shown in Figure 3.2(b). As previously, the plant outputs sensor signals y to
the controller, which computes actuator signals u from y and sends the signal back to the plant.
In general, we also assume that exogenous inputs w affect the plant. This encompasses all factors
that are outside the direct control of the system designer, and could include state disturbances
and sensor noise. In addition, we assume that we can measure some exogenous outputs z from the
plant, which we want the controller to minimize optimally. Thus, in the LQG controller, we set

w(t) =
[
d(t)
n(t)

]
, z(t) =

[
Q1/2x(t)
R1/2u(t)

]
. (3.12)

In the general H2 theory, we consider the Frobenius norm ‖ · ‖F and the transfer function
representation G(s) of a system, and define the H2 norm as

‖G‖2 =
√

1
2π

∫ ∞
−∞
‖G(iω)‖2F dω. (3.13a)
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Therefore, the H2 norm is a measure of the average control performance over all frequencies, input
directions, and output directions. Equivalently, if w(t) is a white noise input with unit intensity,
then

‖G‖2 = E

 lim
T→∞

√
1

2T

∫ T

−T
‖z(t)‖22 dt

 . (3.13b)

Hence, the H2 norm can also be thought of as the root-mean-square of the gain provided by G for
a white noise input.

The H2 optimal controller is the controller K that, out of all LTI controllers, minimizes the
H2 norm ‖G‖2 of the closed-loop system G from w to z, as Figure 3.2(b) shows. If the expanded
plant P in Figure 3.2(b) is  ẋ

z
y

 =

 A B1 B2
C1 0 D12
C2 D21 0


 x

w
u

 , (3.14)

and necessary conditions are met (see Doyle et al., 1989; Skogestad and Postlethwaite, 2005, Sec-
tion 9.3.1), then the solutions of the CAREs

AHX + XA−XB2(DH
12D12)−1BH

2 X + CH
1 C1 = 0 (3.15a)

AY + YAH −YCH
2 (D21DH

21)−1C2Y + B1BH
1 = 0 (3.15b)

for X > 0 and Y > 0 yield the matrices

F = (DH
12D12)−1BH

2 X (3.16a)
L = YCH

2 (D21DH
21)−1. (3.16b)

The H2 optimal controller K is then given by[
˙̂x
u

]
=
[

A−B2F− LC2 L
−F 0

] [
x̂
y

]
. (3.17)

The H2 norm ‖G‖2 of the closed-loop system G (Figure 3.2(b)) is given by

‖G‖22 = tr(CH
1 C1Y) + tr(C2YXL) (3.18a)

= tr(XB1BH
1 ) + tr(FYXB2). (3.18b)

This section briefly reviewed the fundamentals of the LQG and H2 optimal controllers. This
theory optimizes the choice of the controller K given the plant dynamics, which include the effects
of exogenous inputs and the calculation of cost functions. The next section extends this theory by
including the placement of actuators and sensors in the space of optimization parameters.

3.3 Optimal actuator and sensor placement

Although the idea of optimal control has traditionally referred to the optimization of the feedback
controller K given the plant P and a choice of weights, this is not the only parameter that a
control designer can optimize. In every study or application of localized feedback control in partial
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differential equation systems, the designer must decide—by some means or another—where he or
she should physically place the actuators and sensors.

A survey of the literature in feedback flow control would reveal that researchers have utilized
seemingly every reasonable placement possible: on an upstream, midstream, or downstream bound-
ary (e.g., Roussopoulos, 1993; Aamo et al., 2007); in a near or far wake (e.g., Roussopoulos, 1993;
Cohen et al., 2004); or anywhere else where an actuator or sensor would intuitively seem to be
effective. Such a survey would also show, perhaps surprisingly, that few studies have rigorously
analyzed which actuator and sensor locations would be most effective, and what the implications
of any particular placement would be (e.g., Lauga and Bewley, 2003; Belson et al., 2013). A very
large number of studies simply employ a guess-and-check or ad hoc procedure (e.g., Roussopoulos,
1993; Gillies, 2001), and fewer others employ relatively untested heuristics, such as placement by
global direct and adjoint eigenmodes (e.g., Åkervik et al., 2007; Bagheri et al., 2009).

The original research in this section—which Chapters 8–9 and Chen and Rowley (2011) describe
in greater detail—shows that the placement of actuators and sensors in a fluid flow can be just as
important as the controller design itself. This section extends Section 3.2 by considering a closed-
loop system G, as in Figure 3.2(b), and demonstrating a perturbation technique that computes
the gradient of the H2 norm ‖G‖2 with respect to actuator and sensor locations. This allows a
control designer to implement an efficient gradient-based local optimization procedure for iteration
toward the optimal placement. This section then demonstrates the procedure on the linearized
Ginzburg–Landau and the Orr–Sommerfeld/Squire models of fluid flow.

The perturbation technique for computing ∇‖G‖2 is an improvement in computational effi-
ciency on a method that Hiramoto et al. (2000) propose. In the general framework of H2 optimal
control, we suppose that the actuation matrix B2 is a known function of the actuator positions
{xaj}

q
j=1. Therefore, an infinitesimal perturbation δxaj in the jth actuator position induces a calcu-

lable perturbation δBj in B2, which by (3.15a) induces a perturbation δXj in X by the Lyapunov
equation

(A−B2F)HδXj + δXj(A−B2F) = X δB2 F + FH δBH
2 X. (3.19)

After solving for δXj , the perturbation of (3.18a) yields

∂‖G‖22
∂xaj

= tr(C2Y δXjL)
δxaj

. (3.20)

In this formulation, we must solve (3.19) for each actuator in the system. Colburn et al. (2011)
improved this computation by employing an adjoint so that we need only solve one Lyapunov
equation. Define the linear operators

S(δXj) = (A−B2F)HδXj + δXj(A−B2F) (3.21a)
T(δBj) = X δBj F + FH δBH

j X, (3.21b)

so that (3.19) simplifies to
S(δXj) = T(δBj). (3.22)

Given the trace inner product 〈Z1,Z2〉tr = tr(ZH
2 Z1), the adjoint of S is

S∗(Φ) = (A−B2F)Φ + Φ(A−B2F)H. (3.23)
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Thus, if we solve the Lyapunov equation

S∗(Φ) = LC2Y (3.24)

exactly once for Φ, then it follows from (3.20) that

∂‖G‖22
∂xaj

=
〈S∗(Φ), δXj〉tr

δxaj
(3.25a)

=
〈Φ,S(δXj)〉tr

δxaj
(3.25b)

=
〈Φ,T(δBj)〉tr

δxaj
. (3.25c)

Note that for different actuator indices j, we retain the matrix Φ. The computation of the deriva-
tive with respect to a different actuator only involves matrix multiplication, addition, conjugate
transpose, and trace operations.

The procedure for computing the gradient of ‖G‖22 with respect to sensor positions is exactly
analogous. Given a perturbation δxsk of the kth sensor position, compute the corresponding per-
turbation δCk in C2. Solve

(A− LC2)HΨ + Ψ(A− LC2) = XB2F (3.26)

for Ψ. The derivative of ‖G‖2 with respect to the kth sensor position is

∂‖G‖22
∂xsk

=

〈
Ψ,Y δCH

k LH + L δCk Y
〉

tr
δxsk

. (3.27)

Even without the above procedure for computing ∇‖G‖2, it is always possible to approximate
such a result with finite differencing. What have we gained by this gradient formulation, then?
There are two chief advantages. First, the gradient algorithm is analytically exact. An approxi-
mation of ∇‖G‖2 by finite differencing, on the other hand, will necessarily suffer from truncation
error if the step ε in the actuator or sensor position is too large, and round-off error if ε is too small.
Second, the algorithm is computationally cheaper than finite differencing. Using the adjoint-based
procedure above, for any number of actuators and sensors, the computation of ‖G‖2 requires the
solution of two CAREs, and the computation of ∇‖G‖22 requires the solution of two Lyapunov
equations. If we were to estimate ∇‖G‖22 for a system with na actuators and ns sensors by finite
differencing, we would have to solve na + ns CAREs. In the MATLAB software on a particular
computer, the CARE and Lyapunov solvers have the same polynomial scaling with matrix size,
with the former about 3.9 times slower than the latter. Therefore, the analytic gradient method is
approximately 2.0(na + ns) times faster than finite differencing.

The examples below compute the optimal actuator and sensor placements for two linear models
of fluid flow, each given by a linear operator L in some domain. In the extended plant (3.8a), A
is the discretization of L , and B and C are skinny Gaussian functions modeling point actuation
and sensing. Also, the state cost and state disturbance matrices Q and W are weighting matrices
so that the LQR cost function (3.5) and the state disturbances in (3.8a) weight every spatial point
in the domain x equally. The input cost and sensor noise matrices R and V are identity matrices
scaled down to be very small compared to Q and W. In these examples, the chief concern is the
minimization of the state perturbation, and we do not pay particular attention to sensor noise.
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Figure 3.3: (a) Optimal actuator and sensor placements in the Ginzburg–Landau system. Each row shows
the solution for a different number of actuators and sensors. The amplification region is shaded gray. Values
of ‖G‖2 are shown on the right. (b) As (a), but with flow disturbances introduced only at xd = −11.0. The
top row has two collocated actuators. Repeated from Figure 9.3.

The first demonstration of this procedure is on the linearized complex Ginzburg–Landau equa-
tion, which models perturbations in the streamwise direction for a shear flow. For the state variable
q(x) : R→ C, this equation is q̇ = L q, where

L = µ(x)− ν ∂
∂x

+ γ
∂2

∂x2 (3.28)

and q → 0 as x→ ±∞. As in Section 2.2, µ(x) = 0.37−5 ·10−3x2, ν = 2+0.4i, and γ = 1− i. The
spatially discretized version of this equation uses Hermite pseudospectral derivatives and collocation
points on 100 nodes. Figure 3.3(a) shows the optimal placements for various numbers of actuators
and sensors in the system, where the gray region indicates the amplification region µ(x) > 0.
Figure 3.3(b) shows the optimal placement in the special case where the state disturbance matrix
W1/2 only introduces a single-channel disturbance at the upstream point x = −11.

The second demonstration is on the combined Orr–Sommerfeld/Squire equations. These equa-
tions model the transverse variation of transverse velocity mode amplitudes v(y, t) : R × R → C
and transverse vorticity mode amplitudes ω(y, t) : R × R → C, where the modes are sinusoidal in
the streamwise and spanwise directions. Let y be the transverse direction, α ∈ R be the stream-
wise wavenumber, β ∈ R be the spanwise wavenumber, k =

√
α2 + β2, u0(y) be the velocity of

the base flow in the streamwise direction, and Re be the Reynolds number. The combined Orr–
Sommerfeld/Squire operator is

L :
[
∂2/∂y2 − k2 0

0 1

] [
v
ω

]
7→
[

LOS 0
−iβu′0 LS

] [
v
ω

]
, (3.29a)

where

LOS = iα

(
u′′0 − u0

(
∂2

∂y2 − k
2
))

+Re−1
(
∂4

∂y4 − 2k2 ∂
2

∂y2 + k4
)

(3.29b)

LS = −iαu0 +Re−1
(
∂2

∂y2 − k
2
)
. (3.29c)
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Table 3.1: Orr–Sommerfeld/Squire optimal two-actuator, two-sensor placement

Orr–Sommerfeld Squire
Re α β actuator sensor actuator sensor
104 1 0 ±0.709 ∓0.017 0 0
104 0 1 ±0.443 ∓0.486 ∓0.485 ±0.481

5 · 103 1 1 ±0.628 ±0.293 ∓0.728 ∓0.399
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Figure 3.4: (a) Leading direct (center peak, blue) and adjoint (side peaks, red) modes of the Orr–Sommerfeld
system, at Re = 104, α = 1, and β = 0, for which the Orr–Sommerfeld and Squire systems decouple. Real
and imaginary parts are shown respectively as dashed and dotted lines, and the magnitude is shown as a
solid line. (b) As (a), but for the Squire system. The two real parts overlap, as do the two magnitudes.
Repeated from Figure 9.5.

At the endpoints of the domain, v = v′ = ω = 0. The base flow in this example is the plane
Poiseuille flow through a channel bounded by y = ±1, with a velocity profile u0(y) = y2 − 1. To
compute the discretized equations, we use Chebyshev pseudospectral differentiation on 125 nodes.
Table 3.1 shows the optimal placement for different values of the Reynolds number, streamwise
wavenumber, and spanwise wavenumber. In every case, the plant has one actuator for each of the
vertical velocity and the vertical vorticity, and one sensor for each as well.

A common heuristic for placing actuators and sensors in a fluid flow is to put sensors where
global direct eigenmodes are large, and actuators where global adjoint eigenmodes are large (e.g.,
Åkervik et al., 2007; Bagheri et al., 2009). This placement makes intuitive sense in light of the
stability analysis in Section 2.4, and it ensures that the input–output system is stabilizable and
detectable. The eigenmode approach, however, only predicts the optimal placement when the flow
operator L is close to normal. This is the case, for instance, in the Orr–Sommerfeld/Squire system
when α = 1 and β = 0; see Figure 3.4. In the other Orr–Sommerfeld/Squire experiments and in
the Ginzburg–Landau equation (see Figures 3.3 and 3.5(a)), the eigenmode analysis poorly predicts
the optimal placement. This is likely because of two factors. First, the eigenmode analysis fails to
predict non-normal transient growth that the control ought to suppress. Secondly, non-normality
produces a large separation between direct and adjoint eigenmodes. A large separation between
actuators and sensors can introduce a nontrivial time delay for strongly convective systems.

Others have also suggested a controllability or observability analysis for actuator or sensor
placement (e.g., Ma et al., 2011). We do not comment on this in detail here, besides to say that
this analysis decouples actuator placement from sensor placement. This may once again lead to a
large physical separation between actuators and sensors, ultimately giving rise to undesirable time
delays. Chapters 8–9 and Chen and Rowley (2011) comment on this further.
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Figure 3.5: (a) Leading direct (right, blue) and adjoint (left, red) mode of the Ginzburg–Landau system.
Real and imaginary parts are shown respectively as dashed and dotted lines, and the magnitude is shown
as a solid line. The amplification region is shaded gray. (b) The corresponding sensitivity magnitude |ζ(x)|
(see (2.18b)). Repeated from Figure 9.6.

In the Ginzburg–Landau example, the sensitivity region of the flow, shown in Figure 3.5(b), is a
better predictor of the optimal placements shown in Figure 3.3(a). This is in good agreement with
Strykowski and Sreenivasan (1990), Roussopoulos (1993), Gillies (2001), Lauga and Bewley (2003,
2004), and Giannetti and Luchini (2007), who reported effective control by applying control in the
sensitivity, wavemaker, or absolutely unstable regions of the flow. This approach is not effective for
Orr–Sommerfeld/Squire control, however. In this system, it is not optimal to collocate actuators
and sensors, so the localized feedback analysis breaks down.

This section briefly reviewed recent original research in optimal actuator and sensor placement.
It presented an algorithm for computing the gradient of the closed-loop system’s H2 norm with
respect to actuator and sensor positions, allowing for efficient optimization of the positions. It also
demonstrated the procedure on the control of the Ginzburg–Landau and Orr–Sommerfeld/Squire
models of fluid flow. Chapters 8–9 discuss the algorithm, basic results, and analyses in greater
detail, and Chapter 10 describes characteristics of effective placement.

3.4 Stability margins and the ν-gap metric

Section 3.2 presented a branch of optimal control theory whose impact on engineering has been
immeasurable. In academic studies and practical development, the number of successful optimal
control applications is practically uncountable. Nonetheless, optimal control is far from a final and
definitive control strategy. Real-life control systems will always contain modeling inaccuracies, as
well as other disturbances and perturbations that are unaccounted for. This is especially the case
in fluid systems, where LTI control ignores nonlinearities, and the use of reduced-order models
can introduce further errors. Practically, a control strategy can only be successful if the feedback
system can maintain stability and performance in the presence of these perturbations.

This section focuses on the normalized coprime stability margin and the ν-gap metric, which
form a very powerful and generalizable framework for analyzing the robustness of feedback control
systems. The essence of this theory boils down to two closely related questions. First, when a
plant P and controller K are in a stable feedback system, how large of a perturbation can P or
K withstand before the feedback system loses stability? Second, how far apart are a system P
(e.g., the fluid dynamics) and a perturbed system Pp (e.g., the reduced-order fluid model) from the
perspective of closed-loop stability? This section emphasizes the key results of Vinnicombe (1993)
and Vinnicombe (2001), which provide more complete analyses.
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To motivate this discussion, we pose the second question again, but this time more broadly:
how different—in general terms—are a system P and its perturbed version Pp? A natural and
frequently used answer is to consider the H∞ norm of Pp−P. Given the maximum singular value
function σ, the H∞ norm of a transfer function G(s) is

‖G‖∞ =

max
ω∈R

σ(G(iω)), G stable

∞, otherwise;
(3.30)

Therefore, the H∞ norm gives the worst-case gain of G over all frequencies, input directions, and
output directions. (This is contrasted with the H2 norm, which gives an average gain; see (3.13)).
Figure 3.6 shows a visual interpretation of ‖Gp − G‖∞ for a scalar system on a Nyquist plot,
displaying G(iω) and Gp(iω) on the complex plane for −∞ < ω <∞. For a stable system Gp−G,
the norm ‖Gp−G‖∞ is the maximum distance on the complex plane, for any ω ∈ R, between G(iω)
and Gp(iω).

The H∞ norm of Gp−G is a simple and natural open-loop metric in the space of LTI systems.
Nevertheless, a simple example can demonstrate its inadequacy as a closed-loop metric, in the
presence of feedback control. Consider the three single-input, single-output (SISO) differential
equations with corresponding scalar transfer functions below:

P1 :


dx

dt
= −0.2x+ 20u

y = x
=⇒ P1(s) = 100

5s+ 1 (3.31a)

P2 :


dx

dt
= 0.2x+ 20u

y = x
=⇒ P2(s) = 100

5s− 1 (3.31b)

P3 :


d

dt

[
x

ẋ

]
=
[

0 1
−1 −5

] [
x

ẋ

]
+
[

0
100

]
u

y =
[
1 0

] [x
ẋ

] =⇒ P3(s) = 100
s2 + 5s+ 1 . (3.31c)

Figure 3.7(a) shows their open-loop Nyquist plots. It is clear in this case that P3 is more similar to
P1 in open-loop than P2; in fact, ‖P2 − P1‖∞ = ∞, since P2 is unstable. Yet, let us now consider
the simple negative feedback system with unity gain in Figure 3.7(b), where u inserts a unit step
signal. Figure 3.7(c) shows the resulting step responses. In closed-loop, we find that P1 and P2
behave quite similarly, but P3 is very different from the two. As this example makes clear, the
H∞ norm of the difference between two systems may not reveal very much about how different the
systems are under feedback control.

To formalize the discussion of closed-loop stability, we first define [P,K] to be stable if the eight
transfer functions from v1, v2, v3, and v4 to u and y in Figure 3.8 are stable. These eight transfer
function relations are[

y
u

]
=
[
P
I

]
(I−KP)−1

[
−K I

] [v2
v1

]
+
[

I
K

]
(I−PK)−1

[
I −P

] [v4
v3

]
(3.32)

(see Definition 12.1).
The development of a better closed-loop measure begins with the normalized coprime factor-

ization. The normalized right coprime factorization is a particular construction of the system
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Figure 3.6: Nyquist plot of an example system G(iω) (blue) and a perturbed version Gp(iω) (red). The H∞
norm of Gp −G is indicated above.
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Figure 3.7: (a) The Nyquist plots of P1 (blue), P2 (green), and P3 (red). (b) The closed-loop step response
block diagram. (c) Their step responses in the time domain.
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Figure 3.8: The standard feedback interconnection (repeated from Figure 12.2).
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Figure 3.9: The normalized right coprime factorization P = NM−1.
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Figure 3.10: The normalized right coprime factorization uncertainty Pp = (N + ∆N)(M + ∆M)−1 (green)
in closed-loop with a controller K. (C.f. Figures 3.8 and 3.9.)

decomposition
P(s) = N(s)M−1(s) (3.33)

(see Figure 3.9). In particular, we require that N and M are both stable and bounded on iR
(even if P is not), and NH(s)N(s) + MH(s)M(s) = I. (For more details, see Definition 12.2,
as well as Vidyasagar (1984), Meyer and Franklin (1987), Vidyasagar (1988), and Skogestad and
Postlethwaite (2005, Section 4.1.5).) There also exists a normalized left coprime factorization, for
which P = M−1N and NNH + MMH = I. In either formulation, all the right half-plane poles of
P(s) (i.e., unstable eigenvalues of the A matrix in state space form) are zeros of M (i.e., values of
s for which M(s) is rank-deficient), and all the right half-plane zeros of P(s) are contained in N.

The utility of this decomposition is that it readily allows the representation of a perturbed plant
Pp by

Pp(s) = (N(s) + ∆N(s))(M(s) + ∆M(s))−1 (3.34)

in the case of the right factorization, where ∆N and ∆M model the perturbation; see Figure 3.10.
Specifically, ∆M models right half-plane pole uncertainties in P, and ∆N models right half-plane
zero and time delay uncertainties in P. It is for this reason that the normalized coprime factorization
is a highly versatile method for modeling system uncertainties.
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The key result that ties the normalized coprime uncertainty together with closed-loop uncer-
tainty is that if [P,K] is stable and∥∥∥∥∥

[
∆N
∆M

]∥∥∥∥∥
∞
<

∥∥∥∥∥
[
P
I

]
(I−KP)−1

[
−K I

]∥∥∥∥∥
−1

∞
(3.35)

(along with other conditions involving the representation of right half-plane poles in the system),
then [Pp,K] must be stable as well. This inequality—which is derived by analyzing the relation
among z, v3, and v4 in Figure 3.10—provides strong hints as to how large a system perturbation can
be before it destroys closed-loop stability, as well as how we may be able to construct a closed-loop
measure of distance between systems. The inequality motivates the definition of the normalized
coprime stability margin as

bP,K =


∥∥∥∥∥
[
P
I

]
(I−KP)−1

[
−K I

]∥∥∥∥∥
−1

∞

, [P,K] stable

0, otherwise
(3.36)

(see Definition 12.3). By construction, bP,K ∈ [0, 1] and bP,K = bK,P. A greater bP,K indicates a
better ability of [P,K] to reject external disturbances and to maintain robustness in the face of
system uncertainties. Given the normalized coprime uncertainty representation of Pp, the inequal-
ity (3.35) also motivates the ν-gap metric,

δν(P,Pp) = inf
∆N,∆M

∥∥∥∥∥
[
∆N
∆M

]∥∥∥∥∥
∞
. (3.37)

(See Definition 12.4 for a more rigorous definition.) The ν-gap metric, which satisfies δν(P,Pp) ∈
[0, 1] and δν(P,Pp) = δν(Pp,P) by construction, is both an open- and a closed-loop measure of
the difference between two systems. In the open-loop sense, we may remove the controller from
Figure 3.10 and only consider the size of ∆N and ∆M perturbing the plant. In the closed-loop
sense, however, we have the result from (3.35) that [Pp,K] must be stable if δν(P,Pp) < bP,K.

An even stronger statement relating the normalized coprime stability margin and the ν-gap
metric, is possible. Notably, the most important relation governing the perturbation of systems is
that

sin−1 bPp,K ≥ sin−1 bP,K − sin−1 δν(P,Pp); (3.38a)

equivalently, since the inputs to the normalized coprime stability margin and the ν-gap metric
commute,

sin−1 bP,Kp ≥ sin−1 bP,K − sin−1 δν(K,Kp). (3.38b)

These inequalities are tight, in that it is possible to construct plants and controllers for which these
relations are equalities. We remark that mathematically, a simpler but weaker set of statements is
that

bPp,K ≥ bP,K − δν(P,Pp), (3.39a)
bP,Kp ≥ bP,K − δν(K,Kp); (3.39b)

(3.38) directly implies (3.39).
Returning to the previous example (3.31), we can compute specifically that ‖P2 − P1‖∞ = ∞

(with maxω∈R σ(P2(iω) − P1(iω)) = 200) and ‖P3 − P1‖∞ = 3.93; yet, δν(P1, P2) = 0.02 and
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δν(P1, P3) = 0.702. The ν-gap metrics are in agreement with Figure 3.7(c), which showed that in
the closed-loop sense, P2 is much closer to P1 than P3 is.

This section laid out the basic theory of stability margins and the ν-gap metric, which Section 4.5
and Chapter 12 implement to analyze closed-loop stability with the use of reduced-order modeling.
Since reduced-order models of fluid systems are effectively perturbations of full-order systems, (3.38)
can provide sufficient conditions for the stability of real fluid dynamical systems in closed-loop with
reduced-order controllers. The next section briefly discusses H∞ loop-shaping, a robust control
design that is based on this section’s theory, and which Section 4.5 and Chapter 12 implement as
well.

3.5 H∞ robust control

The discussion of the normalized coprime stability margin (3.36) and the ν-gap metric (3.37) in
Section 3.4 further motivates a particular control design. Since the normalized coprime stability
margin bP,K is a general measure of robustness in closed-loop, can we design a controller K that
maximizes bP,K for a given P? The answer is yes, and this control design is known as H∞ robust
stabilization, which constitutes part of the H∞ loop-shaping technique. Since nonlinearity, non-
normality, and the need for model reduction can all limit the accuracy of system models in feedback
flow control design, H∞ loop-shaping is a technique that may be particularly useful for fluid flows.
This brief section reviews this design, which McFarlane and Glover (1992), Vinnicombe (2001), and
Section 9.4 of Skogestad and Postlethwaite (2005) present in greater detail.

First, for an n-state stable system G with the standard state space representation (3.1), we
briefly introduce the controllability and observability Gramians as the matrices Wc,Wo ∈ Cn×n,
Wc,Wo ≥ 0 given by

Wc =
∫ ∞

0
eAtBBHeA

Ht dt (3.40a)

Wo =
∫ ∞

0
eA

HtCHCeAt dt. (3.40b)

These Gramians obey the Lyapunov equations

AWc + WcAH + BBH = 0 (3.41a)
AHWo + WoA + CHC = 0, (3.41b)

which aid substantially in their computation. The Hankel norm of a stable G is defined as the max-
imum ratio, over all input signals, between an output signal norm and the given input signal norm.
With eig(·) indicating the eigenvalues of a matrix, this is given by ‖G‖H =

√
max eig(WcWo) =√

max eig(WoWc). Returning now to H∞ robust stabilization, given a plant P with normalized
right coprime factorization NM−1, the greatest bP,K—out of all choices of K—is

sup
K
bP,K = bopt(P) =

√√√√1−
∥∥∥∥∥
[
M
N

]∥∥∥∥∥
2

H
. (3.42)

The computation of controllers optimizing bP,K is a standard procedure which we do not describe
here. Robust control toolboxes (e.g., in MATLAB) often contain routines for this computation,
and Glover and McFarlane (1989) describe suboptimal state space formulations.
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Figure 3.11: The use of weighting functions in H∞ loop-shaping design, emphasizing (a) the weighted plant,
and (b) the final controller.

An important addition in H∞ loop-shaping, however, is the inclusion of weighting functions in
the design procedure. In this approach, the control designer first picks a precompensator W1 and
a postcompensator W2—often by classical design techniques—so that the weighted plant Pw =
W2PW1 has an open-loop frequency response providing favorable performance; see Figure 3.11(a).
The H∞ robust stabilization on Pw then robustifies the loop shape by computing the controller
K∞ maximizing bPw,K∞ . To obtain H∞ loop-shaping controller K, simply move the weights W1
and W2 into the robust stabilization controller, yielding K = W1K∞W2; see Figure 3.11(b).
The selection of weights W1 and W2 is a topic in many texts, including Vinnicombe (2001) and
Skogestad and Postlethwaite (2005, Section 9.4.2). The example in Sections 4.5 and 12.4 uses the
LQG as a weight; in this case, the H∞ loop-shaping can be thought of as a method of robustifying
an optimal control.

This section briefly reviewed the fundamentals of H∞ robust stabilization and loop-shaping.
Although H∞ robust stabilization is not an especially common controller choice for fluid flows, the
maximization of robustness provides powerful safeguards for maintaining stability and performance.
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Chapter 4

Reduced-order modeling of fluid flows

4.1 Overview

In LTI control theory, the idea of reduced-order modeling often applies specifically to controller
reduction. Many modern control designs, such as H2 optimal control (see Section 3.2), H∞ opti-
mal control (a variant employing H∞ norms instead of H2 norms), and H∞ robust control (see
Section 3.5) create controllers that have at least as many states as the plant to be controlled. This
kind of complexity is actually often unnecessary, and potentially burdensome in practical imple-
mentations. In many applications, it is sufficient to implement a controller approximation that
has one or multiple orders of magnitude fewer states than the original controller does. With a
good choice of a model reduction, a full-order controller and a reduced-order approximation can
be nearly indistinguishable from a frequency response point of view. The reduced-order modeling
of LTI systems is a mature field, and many rigorous results—including lower and upper bounds on
errors between full- and reduced-order models—are available.

The mechanics of fluids, however, present particular challenges to the study and application of
model reduction. To begin, direct modern control design from high-dimensional fluid models tends
to be overwhelmingly computationally intractable. Because of modern control design algorithms’
typical O

(
n2)–O (n3) computational complexity, there is an enormous difference between the 100–

250-state control of one-dimensional fluid models in Section 3.3, and a hypothetical control of the
20 million-state three-dimensional T-junction flow in Section 2.6. Therefore, the application of
reduced-order modeling in fluid flows typically revolves around the construction of low-order fluid
dynamical approximations, from which the construction of approximately equal-order controllers
would be tractable. Yet, even though model reduction techniques are designed precisely for high-
dimensional systems, fluid models are typically so high-dimensional that modern computers cannot
even compute these reductions at all!

Therefore, research in fluid flows has created a unique branch in the general study of reduced-
order modeling, focusing specifically on systems so large that explicit representations of flow oper-
ators may not even be available. To date, there does not exist a single modeling technique that is
vastly superior to all others, nor does there exist a single unifying approach for designing modeling
techniques. Nevertheless, these methods are typically data-driven, meaning that they require little
more than “snapshots” of flow fields from experiments or simulations.

In this chapter, Section 4.2 reviews standard reduced-order modeling techniques from LTI con-
trol theory, and Section 4.3 reviews some of the main reduced-order modeling techniques for high-
dimensional fluid dynamics. Section 4.4 discusses one such technique, DMD, in greater detail.
This section includes original research in mathematical properties of DMD, as well as a variant
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of the original DMD algorithm. Finally, Section 4.5 presents original results on the stability and
performance of feedback control systems that utilize reduced-order controllers.

4.2 Standard reduced-order modeling techniques

This section discusses a few standard techniques and results for the model reduction of LTI systems,
including modal truncation, balanced truncation, optimal Hankel norm reduction, and normalized
coprime factor model reduction. The primary purpose of this review is to place the latter sections
of this chapter in the context of more firmly established theory. Section 4.5 and Chapter 12,
however, implement balanced truncation and its error upper bound, which this section describes.
Many standard texts in control theory, including Skogestad and Postlethwaite (2005, Chapter 11),
provide a more thorough discourse on this topic.

Before discussing any particular model reduction methods, however, we first describe a con-
cept known as Hankel singular values, which are prevalent through model reduction theory. Sec-
tion 3.5 described the Hankel norm of a stable state-space system G as

√
max eig(WcWo) or√

max eig(WoWc), where Wc and Wo are respectively the controllability and observability Grami-
ans of G. More generally, the jth Hankel singular value σj(G) is the square root of the jth eigen-
value of WcWo or WoWc, with the ordering σ1(G) ≥ σ2(G) ≥ · · · . Conceptually, the Hankel
singular values of a system are the singular values of the system’s Hankel operator, which maps
input signals for t < 0 to output signals for t > 0.

A very important and universal result for stable systems G is that if G has n states and Gr is
a different system with r < n states, then the H∞ norm of the difference between the two obeys

‖G−Gr‖∞ ≥ σr+1(G). (4.1)

This is a model reduction error lower bound that applies to all model reduction techniques. The
fact that model reduction error has a lower bound, computed only from the original system, has
very important implications. It means that no matter how faithful of a modeling technique anyone
may be able to develop, reduced-order models can only be as good as the original system and the
reduction order permit them to be.

Modal truncation is one of the simplest methods for the model reduction of stable systems.
We first produce a state space representation (A,B,C,D) of G such that A is diagonal, if such a
diagonalization is possible. Given the representation

A =

λ1 0
. . .

0 λn

 , B =

bH
1
...

bH
n

 , C =
[
c1 · · · cn

]
(4.2)

of G with Re(λ1) ≥ · · · ≥ Re(λn), the truncation of order r < n yields the reduced-order system
Gr given by

Ar =

λ1 0
. . .

0 λr

 , Br =

bH
1
...

bH
r

 , Cr =
[
c1 · · · cr

]
. (4.3)
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The matrix D remains unchanged. This process, which eliminates the dynamics, actuation, and
sensing of the most stable eigenvalues of A, has the error upper bound

‖G−Gr‖∞ ≤
n∑

j=r+1

σ(cjbH
j )

|Re(λj)|
. (4.4)

Although the truncation of the most stable modes is an intuitive approach to model reduction, it
is usually far from the best procedure in terms of minimizing the reduction error.

A generally preferable approach, called balanced truncation (Moore, 1981), removes the states
of stable systems that correspond to the lowest Hankel singular values. To do this, the state
space is first expressed as the balanced realization (A,B,C,D) such that the controllability and
observability Gramians of the realization are

Wc = Wo =

σ1(G) 0
. . .

0 σn(G)

 . (4.5)

As in the case of modal truncation, the balanced truncation retains the upper left r × r corner of
A, the first r columns of B, the first r rows of C, and the unchanged D. Therefore, the balanced
truncation of order r conceptually retains the r most equally controllable and observable modes of
G. Safonov and Chiang (1989) provide a numerical algorithm for computing balanced truncation.

In broad terms, we may intuitively expect this method to produce more accurate reduced-
order models than modal truncation, because it specifically considers the action of the dynamics,
actuation, and sensing together. Modal truncation, on the other hand, only considers the system
dynamics and may retain modes that are difficult to actuate or sense. Balanced truncation has the
analytical error upper bound

‖G−Gr‖∞ ≤ 2
n∑

j=r+1
σj(G) (4.6)

(see Glover, 1984). Since the Hankel singular values of systems tend to fall quickly, (4.1) and (4.6)
provide fairly tight a priori bounds on balanced truncation error, using only G.

We remark briefly that the aforementioned truncation methods also have residualization vari-
ants, in which we force the extraneous states to have a zero time derivative, instead of setting
their values to zero. Residualization forces the reduced-order model to have the same steady-state
gain as the original dynamics, and is generally superior at maintaining low-frequency accuracy.
Truncation, on the other hand, is generally superior at maintaining high-frequency accuracy.

A more advanced model reduction method worthy of mention is optimal Hankel norm reduction
(Glover, 1984). Given a stable system G and a desired order r, this technique finds the Gr that
obtains the minimum ‖G − Gr‖H = σr+1(G). The optimal Gr, however, is not unique. There
exists a choice of Gr, computed using an extension of balanced truncation, that has the error upper
bound

‖G−Gr‖∞ ≤
n∑

j=r+1
σj(G). (4.7)

Another common algorithm (Safonov et al., 1990) does not use balanced truncation and is better
conditioned, but has the worse upper bound (4.6).

In the case of unstable systems, there are at least two common methods for model reduction.
The first is to decompose the unstable G into G = Gs+Gu, where Gs is stable and Gu is anti-stable
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with p unstable poles. After applying any model reduction method of order r−p on Gs to obtain the
approximation Gsr, the final reduced-order model of order r is simply Gr = Gsr + Gu. Section 4.5
and Chapter 12 use this approach to reduce an unstable Ginzburg–Landau equation. A second
common method is normalized coprime factor model reduction (McFarlane et al., 1990), in which
we first compute the normalized right or left coprime factorization G = NrM−1

r or G = M−1
l Nl

(see Section 3.4). By computing the model reduction of either

Gr =
[
Nr

Mr

]
or Gl =

[
Nl Mr

]
, (4.8)

the reduced left and right factors can recombine to form the reduced system Gr.
This section reviewed well-established results in the model reduction of LTI systems. Section 4.5

and Chapter 12 use some of these results to establish sufficient conditions for the stability and
performance of systems in feedback with reduced-order controllers. The next section also extends
this discussion by considering the case when the state size of systems is so large that this section’s
methods are computationally intractable.

4.3 Techniques for very high dimensional systems

Historically, the fluid mechanics community has been chiefly responsible for developing very-high-
dimensional reduced-order modeling techniques. Extremely high state sizes are necessary in the
conversion of partial differential equations to ordinary differential equations such as (3.1) via spatial
discretization. Of the many applications of feedback control, fluid mechanics is a unique example
that consistently requires state sizes in the thousands, millions, and billions, and quite likely beyond
in the future.

Unfortunately, very-high-dimensional model reduction is a far less mature field of study that
the model reduction that Section 4.2 presented, and there generally exist fewer unifying themes
among the existing techniques. This section briefly describes proper orthogonal decomposition
(POD), balanced POD, and the eigensystem realization algorithm (ERA), which are reasonably
well-established techniques. This dissertation does not use these techniques in detail, however, so
the purpose of this section is only to present a context for the remaining chapters.

Proper orthogonal decomposition (see Sirovich, 1987; Holmes et al., 1996, Chapter 3) is perhaps
the most venerable of the fluid model reduction techniques. This method, also known as principal
component analysis and Karhunen–Loève analysis, is akin to a multi-dimensional linear regression.
In this process, the model designer first collects a sequence of flow data from experimental or
computational data, typically consisting of scalar or vector fields of flow variables from a domain of
interest. We normally view this data on a vector space centered at the data mean. This serves two
purposes: first, it removes any bias that the data mean may otherwise introduce into the modes, and
second, it ensures that the data, and therefore the POD modes, will have homogeneous boundary
conditions. Barring more sophisticated boundary conditions, the latter purpose gives the control
designer the flexibility to superimpose any linear combination of POD modes on top of the data
mean, with guaranteed satisfaction of the boundary conditions. With the mean subtracted from
the data, POD finds orthogonal modes (i.e., vector directions) such that the orthogonal projection
of the data onto the span of the first j modes is maximized in a least-squares sense, for any
j. Figure 4.1 shows a two-dimensional example, in which the first POD captures the dominant
direction of the data, and the second POD mode—which is orthogonal to the first—captures the
remaining direction.
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Figure 4.1: Example of POD on 100 data points in R2. Black dots show the data points, and the blue line
segment and square represent the data mean. The first POD mode is shown in red, and the second in green.

In mathematical notation, we assume a data set {xj}mj=1, with xj ∈ Cn for j = 1, . . . ,m. Given
the data mean x̄ = (1/m)

∑m
j=1 xj , we first construct the mean-subtracted data x′j = xj − x̄. With

an inner product 〈·, ·〉, an induced norm ‖ · ‖, and an orthogonal projection Pp onto the span of the
first p POD modes, these modes {vj}mj=1 satisfy 〈vj ,vk〉 = 0 for j 6= k, and maximize

∑m
j=1 ‖Ppx′j‖2

for p = 1, . . . ,m.
When 〈vj ,vk〉 = vH

k vj , the numerical algorithm for computing POD is very simple. We assemble
the data matrix K =

[
x′1 · · · x′m

]
and compute the economy-sized singular value decomposition

(SVD) K = UΣWH. If the diagonal of Σ is sorted by descending singular values, then the jth
column of U is the jth POD mode. We point out two remarks. First, if the inner product is
〈xj ,xk〉 = xH

k Hxj for some H ∈ Cn×n—as is typically the case for meshes with variable cell
volumes—then the orthogonality condition requires an SVD of H1/2K, and the POD modes are
the columns of H−1/2U. Second, the method of snapshots is a more computationally efficient
variant when n� m. Here, we compute the eigendecomposition or SVD of the small m×m matrix
KHK = WΣ2WH, and recover U = KWΣ−1.

After computing the POD modes, the typical approach for constructing a reduced-order fluid
model is a Galerkin projection (see Holmes et al., 1996, Chapter 4). In this process, we restrict the
domain of the fluid dynamics to the data mean plus a linear combination of the POD modes. That
is, given p < m POD modes, we approximate the data x(t) by

x̂(t) = x̄ +
p∑
j=1

aj(t)vj . (4.9)

By inserting this approximation into the flow dynamics, the Galerkin projection yields a (typically
nonlinear) ordinary differential equation for the coefficients {aj(t)}pj=1. Since typically p� n, this
reduced-order system is far easier to iterate in time than the original dynamics.

Despite the fact that POD has been a favorite model reduction tool for many decades, it is
not without fault. In particular, it suffers from two significant problems. First, although the POD
procedure creates modes that maximize the “energy”

∑m
j=1 ‖Ppx′j‖2 of the projected data, these

are not necessarily the modes with the greatest dynamical significance. As a result, the “best”
choice of POD modes to retain in Galerkin models is often difficult to determine (see, e.g., Ilak and
Rowley, 2008). For a desired number j < m of modes, the j modes corresponding to the greatest
singular values may not yield the most accurate reduced-order model, and the selection of the j
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best modes typically requires guess-and-check. Second, there is no guarantee on the stability of
POD-based reduced-order models. Often, certain combinations of POD modes yield stable models,
while other combinations lead to unstable models (see, e.g., Aubry et al., 1993). In these cases,
there is typically little or no intuition as to which specific combinations yield unstable models.

Two attractive alternatives to POD for linear (or nearly linear) systems are balanced POD
(Rowley, 2005) and ERA (Juang and Pappa, 1985), which are high-dimensional approximations of
balanced truncation (see Section 4.2). Since the details of the numerical algorithms do not provide
intuitive insight quite as readily, we only describe the procedures in general terms. Balanced POD—
like balanced truncation, and unlike POD—assumes an input–output model (e.g., (3.1)), and it
specifically considers the actions of actuators and sensors on the system dynamics. The algorithm
requires an impulse response of the linear dynamics for each actuator, and an impulse response of
the adjoint dynamics for each sensor. (If the number of sensors is large, then a method known as
output projection can approximate this process with a smaller number of impulse responses.) The
algorithm computes the SVD of a matrix of inner products between direct and adjoint impulse
responses, and uses the decomposition to construct modes that transform the high-dimensional
dynamics into a reduced-order approximation of the balanced realization. Tu and Rowley (2012)
improve the numerical algorithm by using predictive techniques to reduce the amount of impulse
response data needed for accurate modeling.

We briefly remark that the ERA technique is analytically equivalent to balanced POD (Ma
et al., 2011), but has the advantage that it does not require adjoint impulse responses. Therefore,
unlike balanced POD, it is theoretically possible to use ERA on experimental impulse response
data to approximate balanced truncation. Furthermore, Ma et al. (2011) show that ERA can be
less computationally expensive than balanced POD. A particular disadvantage of ERA, however, is
that ERA does not reveal adjoint modes, which may otherwise be useful for observability analyses.
Therefore, the choice of balanced POD and ERA depends on the system designer’s requirements.
In general, however, balanced POD and ERA outperform POD when the fluid dynamics are ap-
proximately linear. Furthermore, balanced POD and ERA provide estimates of the full system’s
Hankel singular values (see Section 4.2). As a result, these models obey the upper bounds on
balanced truncation error (4.1, 4.6), not including any additional errors that the high-dimensional
approximations may have added.

This section provided basic descriptions of POD, balanced POD, and ERA as established meth-
ods for fluid model reduction. These techniques are, in a historical sense, precursors to the novel
dynamic mode decomposition, which the next section presents.

4.4 Dynamic mode decomposition

Section 4.3 discussed model reduction techniques for high-dimensional (e.g., fluid) systems that
have been established in the literature. As previously mentioned, these methods typically do
not apply universally—stable and faithful POD models can be difficult to construct, and balanced
POD and ERA assume linear models. These restrictions can be quite limiting in practice. Dynamic
mode decomposition (DMD), however, is a novel numerical technique that may be more generally
applicable than other model reduction techniques. This section reviews the DMD theory that
Schmid and Sesterhenn (2008) and Schmid (2010) introduced, and Rowley et al. (2009) expanded.
It also presents original research that Chapter 11 and Chen et al. (2012) describe in greater detail.

Dynamic mode decomposition has at least two major interpretations. In the context of Schmid
(2010), it is a numerical technique that approximates a time series of data by a linear system
comprised of eigenvalues and eigenmodes. This approximation is akin to a curve fit, and is different
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Algorithm 4.1: Companion matrix algorithm for DMD
Data: Data series {xk}mk=0, xk ∈ Cn
Result: Modes {vj}mj=1, vj ∈ Cn and eigenvalues {λj}mj=1, λj ∈ C satisfying (4.10)

1 K←
[
x0 · · · xm−1

]
2 c← K+xm, with (·)+ the Moore–Penrose pseudoinverse

3 C←


0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 0 c2
... . . . ...
0 0 1 cm−1

, with c =


c0
c1
c2
...

cm−1


4 Solve the eigenvalues {λj}mj=1 of C
5 Construct T ∈ Cm×m such that Tjk = λk−1

j

6 V =
[
v1 · · · vm

]
← KT−1

from linearization about a fixed point. An important factor in this interpretation is that the fitting
is possible even if nonlinear dynamics generated the data. In the second interpretation of DMD,
which Rowley et al. (2009) present, the algorithm numerically approximates the decomposition of
an observable function into Koopman eigenfunctions and modes. In this dissertation, we focus on
the first interpretation.

Given a data series {xk}mk=0 evenly spaced in time, with xk ∈ Cn, the DMD of the data is the
modes (or Ritz vectors) {vj}mj=1, vj ∈ Cn and eigenvalues (or Ritz values) {λj}mj=1, λj ∈ C such
that

xk =
m∑
j=1

λkjvj , k = 0, . . . ,m− 1 (4.10a)

xm =
m∑
j=1

λmj vj + r, r ⊥ span(x0, . . . ,xm−1), (4.10b)

(repeated from (11.6)). This representation “curve-fits” the potentially nonlinearly generated data
to the linear model by enforcing an exact representation for all data points but the last (4.10a),
and allowing an orthogonal residual on the last data point (4.10b).

There are many algorithms for computing of DMD. Algorithm 4.1, which uses a companion
and a Vandermonde matrix, is perhaps the most intuitive in light of the structure of (4.10), but
can be ill-conditioned in practice. Algorithm 4.2 uses an SVD and is better conditioned. Finally,
Algorithm 4.3 is a less computationally expensive version of Algorithm 4.2 that uses a method of
snapshots approach. We provide two remarks. First, as in the case of POD (see Section 4.3), uneven
cell sizes in discretized partial differential equations often lead to the inner product 〈x1,x2〉 =
xH

2 Hx1 representing a volume integral, where H ∈ Cn×n is a weighting matrix. In this case, the
orthogonality condition (4.10b) requires an application of the DMD algorithms on H1/2K, in which
case the modes are the columns of H−1/2V. Second, the algorithms prove the existence of DMD
formulation by construction. Chapter 11 and Chen et al. (2012) further prove that the choice of
{λj}mj=1 and {vj}mj=1 in (4.10) is unique up to a reordering in j, if and only if {xk}m−1

k=0 are linearly
independent and {λj}mj=1 are distinct.
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Algorithm 4.2: SVD algorithm for DMD
Data: Data series {xk}mk=0, xk ∈ Cn
Result: Modes {vj}mj=1, vj ∈ Cn and eigenvalues {λj}mj=1, λj ∈ C satisfying (4.10)

1 K←
[
x0 · · · xm−1

]
2 Solve the SVD K = UΣWH

3 Truncate the parts of U, Σ, and W corresponding to trivial singular values
4 K∗ ←

[
x1 · · · xm

]
5 Solve the eigendecomposition UHK∗WΣ−1 = YΛY−1

6
[
λ1 · · · λm

]
← diag(Λ)

7 V =
[
v1 · · · vm

]
← UY

Algorithm 4.3: SVD method of snapshots algorithm for DMD
Data: Data series {xk}mk=0, xk ∈ Cn
Result: Modes {vj}mj=1, vj ∈ Cn and eigenvalues {λj}mj=1, λj ∈ C satisfying (4.10)

1 K←
[
x0 · · · xm−1

]
2 Solve the eigendecomposition or SVD KHK = WΣ2WH

3 Truncate the parts of W and Σ corresponding to trivial eigenvalues or singular values
4 U← KWΣ−1

5 Complete Algorithm 4.2, starting at line 4

There exists at least some evidence that—unlike POD and balanced POD—DMD may be able
to represent dynamics in linear regimes, in periodic orbits, between these two, and perhaps in
nonlinear dynamical systems in general. Rowley et al. (2009) demonstrates that in linear systems,
the Koopman modes (which DMD numerically approximates) are exactly the system’s eigenmodes,
and in periodic orbits, the Koopman modes are exactly the discrete Fourier modes. To demonstrate
DMD’s ability to represent dynamics more generally, we may consider the fluid flow over a two-
dimensional cylinder, as the flow gradually evolves from a linear regime to a limit cycle regime.
Figure 4.2 shows that in this example, the DMD of a window of data also gradually morphs from
a linear mode to a Fourier mode. This suggests that DMD may be broadly applicable.

With this versatile modal decomposition, then, is it possible to construct a Galerkin model as
Section 4.3 did for POD? Since DMD modes have dynamical significance, and the significance is
not restricted to specific dynamical regimes, we may expect such models to yield better Galerkin
models than POD. The answer to this question is yes, but there is an important subtlety. In
Section 4.3, we ensure that the Galerkin model (4.9) satisfies boundary conditions correctly by
constructing a linear superposition of modes with homogeneous boundary conditions, on top of a
data mean. Chapter 11 and Chen et al. (2012), however, show that the DMD of a mean-subtracted
data set is analytically identical to the discrete Fourier transform (DFT). Given a data set {xk}mk=0,
the DMD of the set

x′k = xk −
1

m+ 1

m∑
j=0

xj (4.11)
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Figure 4.2: The movement of the primary unstable Ritz value near the equilibrium of a flow over a cylinder
(see Figures 11.3(a)a and 11.4(c–e)) to the primary oscillatory Ritz value near the limit cycle (see Fig-
ures 11.3(e) and 11.7(a–c)), as a window of roughly one period traverses the data. The unit circle is shown
as a thick solid curve, and the movement of the Ritz value is shown as a thin solid curve with circles.
Repeated from Figure 11.8.

for k = 0, . . . ,m always returns the eigenvalues

λj = exp
( 2πij
m+ 1

)
, j = 1, . . . ,m (4.12)

(repeated from (11.31)), and thus, the DMD reconstruction (4.10) becomes the DFT

x′k =
m∑
j=1

exp
( 2πijk
m+ 1

)
vj , k = 0, . . . ,m (4.13)

(repeated from (11.32)). This is generally undesirable—the DFT assumes that all modes have
neither growth nor decay, and it assumes that frequencies are evenly spaced on the unit circle
by (4.12). In some sense, this defeats the original intention of DMD as a means of computing
growth rates and frequencies for nonlinearly generated data. A seemingly better alternative for
ensuring that modes have homogeneous boundary conditions is to subtract a stable or unstable
fixed point from the data. This is akin to the affine transformation used in linearization, but does
not otherwise alter the data. As examples in Chapter 11 will show, the equilibrium subtraction
appears to preserve the DMD eigenvalues and the qualitative features of the DMD modes.

The DMD equations in (4.10) also inspires a question about the formulation itself. Why should
we place a residual on the reconstruction of the last data point (4.10b), and not any other (4.10a)?
Conceptually, it is not as if the last data point has any unique importance attached to it. An
alternate setup that does not place a bias on the last data point is the optimized DMD of Chapter 11
and Chen et al. (2012). In this decomposition, the model designer can pick the number of desired
output modes. The decomposition then produces a set of modes and eigenvalues such that the
reconstruction of every data point may contain a residual, but the overall residual is minimized.
Figure 4.3 shows a conceptual comparison between the reconstructions provided by DMD and
optimized DMD.

In quantitative terms, suppose that there exist p data vectors, evenly sampled, given by {xk}p−1
k=0,

with xk ∈ Cn. If the desired number of modes is m < p, then the optimized DMD consists of the
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Figure 4.3: Conceptual picture of DMD (blue) vs. optimized DMD (red). DMD requires an exact represen-
tation at every point except the last, which typically has a residual. Optimized DMD allows a residual at
every point, but minimizes the overall residual.

Algorithm 4.4: Iterative algorithm for optimized DMD
Data: Data series {xk}p−1

k=0, xk ∈ Cn
Result: Modes {vj}mj=1, vj ∈ Cn and eigenvalues {λj}mj=1, λj ∈ C satisfying (4.14)

1 Guess an initial condition {λj}mj=1, e.g., by DMD
2 K←

[
x0 · · · xp−1

]
3 repeat
4 Construct T ∈ Cm×p such that Tjk = λk−1

j

5 J ← tr(T+TKHK), with (·)+ the Moore–Penrose pseudoinverse
6 Update {λj}mj=1 to maximize J , e.g., by Powell’s Method or global optimization
7 until J maximized
8 V =

[
v1 · · · vm

]
← KT+

modes {vj}mj=1, vj ∈ Cn and eigenvalues {λj}mj=1, λj ∈ C such that

xk =
m∑
j=1

λkjvj + rk, k = 0, . . . , p− 1, (4.14a)

and

Γ =
p−1∑
k=0
‖rk‖22 (4.14b)

is minimized (repeated from (11.35)). At present, there does not exist an analytical algorithm for
computing the optimized DMD. Algorithm 4.4 presents a technique that uses an unconstrained
optimization approach. Sparsity-promoting DMD—as introduced by Jovanović et al. (2014)—
solves a problem similar to optimized DMD using convex optimization, and as such, is more readily
applicable.

Optimized DMD has a number of significant advantages over the original DMD formulation.
First, it allows the user to choose the number of output modes and eigenvalues. On the other
hand, DMD must necessarily output a number of modes one less than the number of data vectors.
For model reduction, this gives rise to a problem where—as with POD—the selection of modes to
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retain may be rather arbitrary. Second, because of the first point, optimized DMD results are often
less spurious than DMD results. Schmid (2010) and Bagheri (2013) report that DMD spectra often
contain parabolic arrangements of eigenvalues where a single mode should exist. Such a spread of
modes may arise from convective and diffusive processes, as well as noise and nonlinearity. The
advantage of optimized DMD is that the restriction of the decomposition to a small number of
modes allows the decomposition to “hone in” on the chief modes of interest, without cluttering the
spectra with extraneous modes. Third, optimized DMD is more robust to sensor noise than DMD.
The conceptual comparison between the DMD algorithms and polynomial fitting makes the reason
clear. Optimized DMD is a global trajectory analysis, whereas DMD is chiefly concerned with the
relation between data pairs {xk,xk+1}, for k = 0, . . . ,m−1. Therefore, in the case of DMD, sensor
noise can easily obfuscate the dynamics driving xk to xk+1. Furthermore, the perfect fit required
by (4.10a)—like the order m polynomial fit over m+ 1 data points—can be meaningless for noisy
data. On the other hand, if the sensor noise is unbiased, then optimized DMD can filter it out, as
a low-order polynomial fit would.

Optimized DMD, however, also has a few disadvantages compared to DMD. The most serious
concern is that there does not exist a direct algorithm for its computation. The iterative algorithm
(Algorithm 4.4) can be slow, and if the user does not choose the iteration parameters well, it can
converge to a globally suboptimal solution. Another disadvantage is that optimized DMD is more
sensitive to process disturbances than DMD. The reason for this is, in some sense, the same reason
that DMD is more sensitive to sensor noise. In the case of DMD, the comparison between data
pairs {xk,xk+1} for k = 0, . . . ,m − 1 can filter out zero-mean process disturbances. Optimized
DMD, however, may fail to yield meaningful results, because process noise can alter the global
trajectory of the data set.

This section reviewed the fundamentals of DMD, as well as specific contributions to the theory
relating to uniqueness, boundary conditions and base flow subtraction, and algorithmic improve-
ments. Since the numerical examples for these concepts are involved, we do not include them
here. Instead, Chapter 11 and Chen et al. (2012) analyze these concepts for the fluid flow over a
two-dimensional cylinder at a Reynolds number of 60. To the best of our knowledge, very few—
possibly none—have successfully constructed and analyzed reduced-order fluid models based on
DMD modes. Nevertheless, DMD shows great promise because of its ability to apply generally to
nonlinear dynamics.

4.5 Stability and performance with reduced-order controllers

So far, this chapter has discussed model reduction techniques from standard LTI theory, as well as
research in high-dimensional systems. As aforementioned, the typical application of these methods
in feedback flow control is the construction of low-order approximations for fluid dynamics, from
which control design is tractable. Presumably, a controller ought to stabilize the plant it is designed
to control; yet, can a controller designed from a reduced-order plant successfully control the full-
order plant? Most studies in feedback flow control simply assume so (or they do not discuss failed
attempts at control design!), but a better understanding of this issue can streamline feedback flow
control design. This section uses an analytical approach to answer this question.

Previously, Section 3.4 discussed the normalized coprime stability margin as a quantity that
describes the performance and robustness of plants in closed-loop with controllers. That section
showed that the ν-gap metric is a closed-loop measure of the difference between two systems, in
that it provides tight bounds on the normalized coprime stability margin between a perturbed plant
and a controller (3.38). This result has far-reaching effects, particularly in that if the closed-loop

53



KP
r

KK
rPrred. order

P

model

full order K

controller

design

reducereduce

design

Figure 4.4: Two approaches for arriving at different reduced-order controllers Kr from a full-order model P,
as used in this study (c.f. Obinata and Anderson, 2001, Figure 3.1.1). Repeated from Figure 12.1.

system [P,K] is stable, then the ν-gap metric δν(P,Pp) between P and a perturbed plant Pp can
potentially predict, a priori, if [Pp,K] will be stable as well.

Although the ν-gap theory makes no particular assumptions about the relation between a system
G and its perturbation Gp, a natural interpretation in the context of this chapter is that one of the
systems is a reduced-order approximation of the other. In this context, the ν-gap metric δν(G,Gp)
is a closed-loop measure of how “different” a system and its reduced-order model are. In turn, this
metric can potentially predict if a controller designed from a reduced-order plant can stabilize the
full plant, or alternatively, if a reduced-order approximation of a full-order controller can stabilize
a plant (see Figure 4.4). Further results are available if the model reduction technique has known
upper bounds on the approximation error, as Sections 4.2–4.3 describe. In this case, the ν-gap
theory and the error upper bounds can reveal model reduction orders that are sufficient for the
stability or performance of a full-order plant in closed-loop with a reduced-order controller.

This section summarizes the key results of Chapter 12 and Chen and Rowley (2013). The
discussion picks up directly from Sections 3.4–3.5, and it omits the proofs of its results. In addition,
it only examines the “reduce-then-design” approach (see Figure 4.4), which is the common feedback
flow control method in which a designer constructs a controller KP

r from a reduced-order fluid
model Pr approximating the full fluid dynamics P. The “design-then-reduce” results are exactly
analogous.

An important result on the ν-gap metric is that

δν(G,Gp) =
∥∥∥(I + GpGH

p )−
1
2 (G−Gp)(I + GHG)−

1
2

∥∥∥
∞

(4.15)

(repeated from (12.4)), if certain conditions on boundedness and right half-plane poles are satisfied.
The first and third terms in the H∞ norm are conceptually like matrix versions of a scalar expression
1/
√

1 + |g|2 < 1; some linear algebra can therefore reveal that

δν(G,Gr) ≤ ‖G−Gr‖∞ (4.16)

(repeated from (12.6)). In light of the model reduction error bounds in Sections 3.4–3.5, this
relation is the key to the guaranteed stability or performance of feedback systems with reduced-
order controllers. If the model reduction technique has an upper bound on ‖P − Pr‖∞ (e.g.,
as balanced truncation and optimal Hankel norm reduction do, and balanced POD and ERA
approximately do), then (4.16) provides a generally loose upper bound on δν(P,Pr) as well. This,
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in turn, can provide a lower bound on bP,KP
r
via (3.38a), if we consider P to be a perturbation of

the model Pr from which we compute the controller KP
r .

In more technical terms, if Pr is an approximation of P that satisfies ‖P−Pr‖∞ ≤ β for some
β ∈ [0, 1), and δν(P,Pr) < 1, then the condition

sin−1 bPr,KP
r
> sin−1 β + sin−1 bd (4.17)

is sufficient for satisfying the performance criterion bP,KP
r
> bd for the desired bd ∈ [0, 1) (repeated

from Theorem 12.4). In practice, β is the model reduction error upper bound; for instance, in the
case of balanced truncation, β = 2

∑n
j=r+1 σj(G). In addition, we also remark that because Pr and

KP
r are typically small systems (with an order usually less than 100 in feedback flow control), the

inequality (4.17) is much easier to compute than bP,KP
r
itself. It is in this sense that this theorem

can save significant computational effort, since it predicts the minimum performance of [P,KP
r ]

without ever needing to test [P,KP
r ] itself.

A corollary to this result is immediately evident if we take the desired performance level to be
bd = 0. In this case, the criterion bP,KP

r
> 0 becomes one of stability, as per the definition of the

normalized coprime stability margin (3.36). This result, repeated from Corollary 12.2, states that
if Pr is an approximation of P that satisfies ‖P−Pr‖∞ ≤ β for some β ∈ [0, 1), and δν(P,Pr) < 1,
then the condition

bPr,KP
r
> β (4.18)

is sufficient for the stability of [P,KP
r ]. There is a stronger statement on robust stability, however,

which follows from Obinata and Anderson (2001, Chapter 3.2). This theorem, repeated from Theo-
rem 12.5, states that if [Pr,KP

r ] is stable, Pr is an approximation of P that satisfies ‖P−Pr‖∞ ≤ β
for some β ∈ [0, 1), and P and Pr have the same number of right half-plane poles, then∥∥∥(I−KP

r Pr)−1KP
r

∥∥∥−1

∞
> β (4.19)

is sufficient for the stability of [P,KP
r ]. This is a stronger theorem, because an inspection of the

normalized coprime stability margin in (3.36) will reveal that (4.18) directly implies (4.19). We
remark briefly that P and Pr will typically have the same number of right half-plane poles, since
it is common to reduce unstable plants P by decomposing them into additive stable and unstable
parts, and reducing only the stable part before recombining (see Section 4.2).

To demonstrate these results, we use the same linearized complex Ginzburg–Landau equation
and parameters as in Section 3.3. In summary, q̇ = L q, where L = µ(x) − ν∂/∂x + γ∂2/∂x2,
µ(x) = 0.37 − 5 · 10−3x2, ν = 2 + 0.4i, and γ = 1 − i, and the boundary conditions are that
q → 0 as x → ±∞. A single actuator and sensor are respectively at xa = −1 and xs = 1,
which is the optimal placement for LQG control. The plant P is the 100-state discretization of the
resulting input–output system. We implement an H∞ loop-shaping controller Kwr = wKP

r (see
Section 3.5), where the weight w is given by a negative-feedback LQG controller nearly identical
to that of Section 3.3, and KP

r is the H∞ robust stabilization controller for Pw = Pw. Therefore,
the controller is a robustified H2 optimal controller designed from Pw.

This example uses balanced truncation for model reduction. The analytical results above provide
two important tests. First, given a desired model reduction order r, the ν-gap metric between Pw
and the order-r approximation Pwr can provide a lower bound on bPwr,KP

r
as per (3.38a). Second,

the balanced truncation error upper bound is calculable from the Hankel singular values of Pw.
Therefore, a comparison between β = 2

∑n−1
k=r σk(Pw) and the robustness of [Pwr,KP

r ] can predict
r for which [Pw,KP

r ] (that is, [P,Kwr]) is guaranteed to be stable or to have good performance.
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Figure 4.5: (a) Robust stability quantities as the balanced truncation order of the weighted plant Pw varies.
Dashed line:

∥∥(I −KP
r Pwr)−1KP

r

∥∥−1
∞ , where Pwr is the order r balanced truncation of Pw; solid line:

bPwr,KP
r
; ◦: β = 2

∑n−1
k=r σk(Pw); ×: δν(Pw, Pwr). (b) Robust performance quantities as the balanced

truncation order of the weighted plant Pw varies; here, bd = 0.4. Solid line: sin−1 bPwr,KP
r
; ◦: sin−1 β +

sin−1 bd; ×: sin−1 δν(Pw, Pwr) + sin−1 bd. Repeated from Figures 12.6–12.7.

Figure 4.5 shows these results. In the case of robust stability, (4.18) and (4.19) both predict that
[P,Kwr] is stable when r ≥ 4, but the direct application of the ν-gap metric in (3.38a) yields the
tighter bound r ≥ 3. If we actually tested the stability of [P,Kwr] for each r, we would find that
the closed-loop system is in fact stable if and only if r ≥ 3. If we required not only stability, but
also a minimal performance level of bd = 0.4, then Figure 4.5(b) predicts robust performance for
r ≥ 5, using both (4.17) and (3.38a). This bound is tight, in that [P,Kwr] does in fact meet the
desired performance level if and only if r ≥ 5.

This section showed how the normalized coprime stability margin and the ν-gap metric relate
to error upper bounds on model reduction. The model reduction error upper bound is generally not
the best indicator of robust stability or performance, since it is essentially an open-loop measure.
In fact, many model reduction techniques try to fit approximations to original systems over a
larger frequency range than is necessary for closed-loop stability or performance. Nonetheless, the
model reduction error leads to theorems that guarantee the stability or performance of closed-loop
systems containing a full-order plant and a reduced-order controller, when the controller design
involves model reduction. These theorems can then provide model reduction orders sufficient for
stability or performance, without the need to test the closed-loop system itself. Chapter 12 and
Chen and Rowley (2013) describe this theory in greater detail.
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Chapter 5

Conclusion

5.1 Summary

In the study of feedback control, fluid mechanics is far from “just another application” of existing
theory. Problems in fluid mechanics pose significant and unique challenges that are typically absent
in other control applications. This dissertation outlined nonlinearity, high dimensionality, and non-
normality as three of the most imposing challenges. These challenges pose difficulties in the broad
elements of feedback control—stability theory, control design, and modeling—in different ways.

In the study of fluid stability theory, powerful results are available using a purely linear analy-
sis. The eigenvalues of the linearized flow equations reveal the growth rates of direct eigenmodes,
indicating the stability of the nonlinear flow systems in all but a few singular cases. The ad-
joint eigenmodes, on the other hand, reveal the receptivity of the linearized dynamics to external
disturbances and the choice of initial conditions. Individually, these eigenmodes tend not to be
particularly revealing for non-normal flows. In these flows, eigenmodes are nearly parallel, so they
do not readily predict transient growths that occur even in globally stable flows. On the other
hand, the theory of sensitivity to spatially localized dynamical perturbations can often yield rele-
vant results in non-normal flows. Regions of sensitivity—which are related to regions of absolute
instability and to wavemakers—often indicate the parts of the physical domain where perturbation
growth can be large, and the dynamics respond in nontrivial ways to modifications. This disserta-
tion did not discuss nonlinear stability theory, but Chomaz (2005) discusses nonlinear extensions
of both local and global linear stability.

Computational methods for stability analysis are well-established at this point, even for high-
dimensional systems. It is generally possible to solve for steady states of high-dimensional dynamical
systems using Newton’s method, where an inner iteration such as GMRES or the biconjugate
gradient stabilized method solves the linear Jacobian–vector equation that reveals the Newton
step. It is further possible to stabilize Newton’s method using the Armijo line rule, and to speed
up the convergence of linear solvers using preconditioning. After Newton’s method has revealed
the steady-state solutions of a dynamical system, the Arnoldi method iterates toward the most
unstable eigenvalues and eigenmodes of the linearization.

In this dissertation, we apply linear stability theory to the flow through a T-shaped pipe bi-
furcation, at Reynolds numbers in the mid-hundreds. The iterative techniques reveal the stability,
receptivity, and sensitivity regions of this highly non-normal flow. In particular, the sensitivity
regions coincide closely with recirculating regions undergoing vortex breakdown. This coincidence
likely occurs because the recirculation causes certain perturbations in the flow to feed back posi-
tively, leading to self-amplification.
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These stability results have important consequences for fluid flow control, at the very least
because successful control must stabilize unstable modes and transient growths. This dissertation
does not discuss nonlinear control, which tends to be a somewhat fragmented theory. In LTI control,
however, the theory of H2 optimality yields powerful controllers that many have widely used for a
few decades. The LQG—a particular H2 optimal controller—optimally minimizes a cost function
based on the size of state variables and actuator inputs, in the presence of system disturbances and
sensor noise.

Although optimal controller design is nearly ubiquitous in LTI control theory, comparatively few
have previously studied the optimization of actuator and sensor placements in partial differential
equation systems. This dissertation presents an algorithm that computes the gradient of a closed-
loop H2 norm—e.g., from state disturbances and sensor noise to the state and input size—with
respect to actuator and sensor locations. This gradient allows a control designer to implement a
gradient-based local minimization that simultaneously optimizes over all LTI controllers, all actu-
ator placements, and all sensor placements. In addition, the computation of the gradient is faster
than the computation of the H2 norm itself. The optimization of actuator and sensor placements
in the linearized Ginzburg–Landau and the Orr–Sommerfeld/Squire models of fluid flow reveal
that eigenmode analyses can successfully predict optimal placements when the system dynamics
are close to normal. When the flow contains significant non-normality, however, eigenmode and
Gramian analyses fails to predict the optimal placement. The sensitivity region may be a more vi-
able heuristic for optimal placement in certain systems. Ongoing research is attempting to establish
firmer conclusions.

Next, this dissertation discussed stability margins and closed-loop system metrics that arise from
the normalized coprime factorization. The normalized coprime stability margin also motivates H∞
robust stabilization and loop-shaping, which are easy-to-use methods of designing optimally robust
controllers. This robustness theory, based heavily on the ν-gap metric, is particularly powerful in
its ability to predict closed-loop stability and performance in the presence of plant or controller
perturbations. These perturbations may include the effects of reduced-order modeling, which is
typically required in high-dimensional control. In this interpretation, the comparison among the
normalized coprime stability margin, the ν-gap metric, and upper bounds on model reduction
error is a particularly powerful one. This dissertation presents theorems that use these quantities
to determine sufficient conditions for the a priori stability or performance of full-order plants in
feedback with reduced-order controllers. Not only does this save time and effort by eliminating the
need to analyze such feedback loops in detail, but it also predicts the model reduction orders that
are sufficient for the given control objectives.

The study of reduced-order modeling for specifically high-dimensional systems, however, tends
not to be straightforward. Reduced-order models based on proper orthogonal decomposition are
not easy to design well, and balanced POD and ERA assume that systems are linear. Furthermore,
there does not exist a unifying theory of high-dimensional model reduction. The advent of dynamic
mode decomposition takes a significant step in this direction by “curve fitting” time series of data
to linear trajectories comprised of eigenvalues and eigenmodes, even if the data arise from nonlinear
dynamics. The Koopman operator decomposition—which DMD approximates—accurately models
both linear and periodic trajectories, and recent evidence suggests that DMD is general in its
applicability to nonlinear systems. This thesis proves that the DMD of a given data set is unique
under certain conditions. It also analyzes methods for constructing DMD modes with homogeneous
boundary conditions, since Galerkin modeling typically requires such modes. This investigation
reveals that subtracting the data mean from a time series actually reduces DMD to the DFT, which
is generally undesirable. On the other hand, the subtraction of a steady-state solution appears to
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preserve the DMD. Finally, the “optimized” variant of DMD better tailors the decomposition to a
desired number of modes.

5.2 Future outlook

The system-based feedback control of fluid flows is, in many ways, a young field. On one hand,
many decades have passed since the earliest applications of feedback control on fluid flows. Yet,
the research community is still making large strides toward the understanding of high-dimensional
and possibly nonlinear stability, control, and modeling of typically non-normal flows. The constant
increase in computational power plays a critical role in this research progress, but it is not the
sole driving factor, either. (If it were, we researchers might be better off taking an extended
vacation while waiting for computers to become more powerful!) Pseudospectra (Trefethen et al.,
1993), global sensitivity analyses (Giannetti and Luchini, 2007), and faithful modeling techniques
for nonlinear systems (Schmid, 2010) are just a few examples of recent advances—not directly
stemming from increased computational power—that may make high-performance feedback flow
control a closer reality.

In the field of feedback flow control, many consider the laminarization of turbulent flow to be
the “trophy” unsolved problem. Kim (2003) reviews significant progress toward this goal. More
recently, Sharma et al. (2011) propose a control method that provably reduces the magnitude of
flow perturbations monotonically. Yet, many of these computational studies assume actuation and
sensing over a large domain (such as an entire surface or volume), which may not be physically
realistic. The laminarization of turbulent flow in an experimental setting, then, is in some sense
the ultimate goal. The feedback flow control community likely still has major strides to take before
it could accomplish such a task.

Robustness, for instance, is a critically important property that feedback flow control design-
ers must seek to increase. So long as computers are not powerful enough to design controllers
directly from fluid models, there will exist approximations in light of which the feedback system
must remain stable. The extreme non-normality of high Reynolds number flows can also amplify
tiny perturbations by many magnitudes, potentially leading to nonlinear effects that—again—the
feedback system must tolerate. Therefore, flow control research targeting non-normality, nonlinear
terms in partial differential equations, and robustness must continue.

The placement of actuators and sensors in a fluid flow is also far from solved. At this point,
the literature only contains very rough heuristics and simplified studies for optimal placement. Of-
tentimes, actuator and sensor placement can be just as important—if not more so—than controller
design in fluid flows (see, for instance, Belson et al., 2013). A large amount of research in placement
for optimal robustness and for high-dimensional fluid systems must take place before there could
be any hope of controlling high Reynolds number flows in an experimental setting via feedback.

The design of reduced-order models for fluid flows is also tremendously important for successful
feedback flow control. The model reduction techniques that are common in flow control design
have significant shortcomings such as general applicability, convergence, model accuracy, and the
ability to model nonlinearity. Therefore, there is still a need to develop modeling methods that can
yield effective controllers for fluid flows. This can be a particularly difficult task, since there does
not currently exist an encompassing or general theory for high-dimensional reduced-order model
design.

The examples in this section do not at all comprise a comprehensive list of major unsolved
problems in feedback flow control. This field is a highly complex one where every theoretical or
applied study presents just another facet of the larger problem. Nevertheless, feedback flow control
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has heralded complete transformations of many engineering applications, and the day may yet come
when applications in fluid mechanics experience such a shift.
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Chapter 6

Overview

Part II of this dissertation contains articles that are either in the literature, or likely will be in
the near future. Only minor modifications (e.g., related to formatting) are present between the
published articles and the chapters here. The papers are organized into chapters as follows.

• Chapter 7 presents a global stability analysis of a pipe flow through a T-shaped bifurcation
at mid-hundred Reynolds numbers, which is a commonly-occurring flow in natural and man-
made systems. It focuses on the relation between vortex breakdown and dynamical sensitivity
to spatially localized perturbations.

• Chapter 8 discusses the placement of actuators and sensors in feedback flow control systems. It
presents an algorithm that computes the gradient of an H2 optimal control performance with
respect to actuator and sensor locations, allowing for an efficient gradient-based optimization
of the placement. The paper applies the algorithm to the control of the linearized Ginzburg–
Landau system, and it evaluates the efficacy of placement techniques used in the literature.

• Chapter 9 extends Chapter 8 by discussing an adjoint-based improvement to the original
gradient algorithm, as Colburn et al. (2011) proposed. It also applies the algorithm to the
control of the Orr–Sommerfeld and Squire models of shear flow perturbations.

• Chapter 10 extends Chapters 8 and 9 by discussing heuristics and qualities that characterize
optimal and other effective actuator and sensor placements in feedback flow control.

• Chapter 11 analyzes previously unknown properties of dynamic mode decomposition (DMD),
a novel method for reduced-order flow representation. This paper proves the uniqueness of
the decomposition and addresses boundary conditions in DMD-based reduced-order models.
It also proposes an “optimized” algorithm that produces less spurious decompositions and
gives the user control over the number of output modes.

• Chapter 12 investigates the stability and performance of high-dimensional (e.g., fluid) systems
in closed-loop with reduced-order controllers. Theorems based on the normalized coprime
factorization and the ν-gap metric provide sufficient conditions for stability and performance.
These conditions, which are applicable with typically known upper bounds on model reduction
error, can determine adequate model reduction orders for reduced-order control.
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6.1 Author contributions

In the following chapters, I developed most of the in-house software and most directly executed the
theory development, analyses, and writing. Clarence W. Rowley advised me on nearly all aspects of
the research, and revised and edited these papers. I outline specific contributions from co-authors
below; most unlisted contributions are from myself.

• In Chapter 7, Howard A. Stone initially proposed the investigation of the pipe T-junction,
and I proposed the stability and bifurcation analysis of the flow. Rowley advised me on the
computational, stability, and bifurcation analyses; Stone advised me on the flow physics, and
in particular, the vortex breakdown phenomenon. Stone also planned the layout of the paper,
and Rowley wrote an early version of the Newton’s method software that I further developed.

• In Chapter 8, I initially proposed the investigation of optimal actuator and sensor placement.
Rowley proposed the use of closed-loop H2 norms as a control performance measure, as
well as the computation of H2 norm gradients via perturbations. Rowley also proposed the
investigation of Gramians and wavemakers as heuristics for actuator and sensor placement,
and he proposed the general experimentation of Ginzburg–Landau control.

• In Chapter 9, I proposed the use of the Orr–Sommerfeld/Squire equations as a transverse-
direction test bed.

• In Chapter 10, Rowley proposed the use of optimal growth theory for characterizing effective
actuator and sensor placements.

• In Chapter 11, Rowley and Jonathan H. Tu proposed original concepts that would evolve into
the optimized DMD algorithm. Rowley also developed the portions of the optimized DMD
algorithm involving least-squares calculations, and I developed the rest of the algorithm.
Tu performed a portion of the mean subtraction analyses. Lastly, Rowley proposed the
investigation of DMD as a means of bridging linear modes and limit cycle modes.

• In Chapter 12, Rowley proposed the use of the ν-gap metric as a means of measuring distance
from the perspective of closed-loop systems. Rowley also proposed the use of this metric to
investigate the stability of closed-loop systems with reduced-order controllers.
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Chapter 7

Vortex breakdown in a T-junction:
recirculation and sensitivity

Kevin K. Chen, Clarence W. Rowley, and Howard A. Stone
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

To be submitted to Physics of Fluids.

Pipe bifurcations are a ubiquitous configuration in fluid flows. In this study, we explore the flow
through T-shaped bifurcations with square cross-sections, at Re varying between approximately
320 and 650. When Re ≥ 320, vortex breakdown occurs in four locations in the junction. The
associated recirculation regions are particularly sensitive to spatially localized perturbations of the
linearized Navier–Stokes operator. We explain this phenomenon using a physical interpretation of
an inviscid Lagrangian short-wavelength approximation.

7.1 Introduction

The flow through pipe bifurcations is a common occurrence in both natural and man-made sys-
tems, including blood vessels, industrial pipe networks, and microfluidic channels. T-shaped pipe
bifurcations, such as the one shown in Figure 7.1(a), are one of the most common and universal
flow configurations across both natural and man-made systems. In the former category, familiar
examples include the pulmonary and basilar arteries in the human body. The basilar artery is a
particularly intriguing case, since aneurysms may occur at artery junctions when the artery walls
are weak (Ropper and Samuels, 2009). Among man-made systems, examples include industrial pipe
networks, microfluidic channels, and even surgeries such as the Norwood procedure for hypoplastic
left heart syndrome patients (Norwood et al., 1980).

A distinguishing feature of the geometry is that the T-junction must curve flow streamlines.
Historically, many studies have focused on numerical solutions of a simpler curved-streamline flow:
the fully-developed Dean flow through a slowly bending pipe (see Winters (1987) and the references
within). Although the Dean flow contains a rich set of solutions and bifurcations, it only roughly
captures the physics of the T-junction flow. For instance, it correctly predicts the existence of
multi-vortex solutions in the T-junction. Nonetheless, this essentially two-dimensional analysis
cannot predict complex three-dimensional behavior such as vortex breakdown, which we document
here.
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Figure 7.1: (a) The T-junction geometry. (b) Velocity streamlines (white: high speed; blue: medium
speed; black: low speed) at Re = 560, with R = 0.4L. Given the Frobenius norm ‖ · ‖F, we also define
Q = (‖∇u− (∇u)T‖2F−‖∇u + (∇u)T‖2F)/8 and depict a single level set of Q (yellow; see Chakraborty et al.
(2005) for a discussion of vortex identification).

Despite the universality of the impacting T-junction flow and the closely related L-bend (Kock-
mann et al., 2005; Haller et al., 2009), a large gap in the physical understanding of these flows
still persists. Many previous studies (Senn and Poulikakos, 2004; Kockmann et al., 2005; Haller
et al., 2009; Doorly and Sherwin, 2009) offer detailed images and basic physical insight, particularly
as they relate to microchannel flows. Yet, few provide quantitative characterizations tied to the
physical behavior in these flows.

A recent insight in the study of impacting T-junction flows, however, is the discovery of re-
circulation regions arising from vortex breakdown (Vigolo et al., 2014). The flow traps bubbles,
which are suspended in the liquid, in vortical structures near stagnation regions in the “T” when
the Reynolds number is above approximately 350. The trapping occurs because of the vortex
breakdown, as well as large pressure gradients and drag forces in the junction.

This bubble trapping phenomenon merits a further investigation of the single-phase T-junction
flow. Of particular interest is a recent observation that simple closed particle trajectories may
give rise to an increased sensitivity in the linearized dynamics to spatially localized perturbations
(Giannetti et al., 2010). According to an inviscid short-wavelength theory (Bayly, 1988; Lifschitz
and Hameiri, 1991), perturbations advect with the velocity field in the limit that the perturbation’s
wavelength and the fluid viscosity approach zero. This local theory, based on the Wentzel–Kramers–
Brillouin–Jeffreys approximation, has been used to study instabilities in two-dimensional flows (see
the references contained in the Appendix of Giannetti et al. (2010)). The key observation in
Giannetti et al. (2010) is that local perturbations may self-amplify after they have traversed a
closed orbit, depending on the phase of the returned perturbation. In turn, the amplification gives
rise to a notable increase in dynamical sensitivity to localized perturbations near closed orbits.

In this letter, we investigate the connection between recirculation and dynamical sensitivity in
the T-junction flow, at Reynolds numbers where the steady-state solution loses stability, but the
flow remains laminar. We employ a global linear analysis (Giannetti and Luchini, 2007) and show
that the recirculation and sensitivity regions essentially coincide. Also, we briefly comment on the
lack of appreciable effects from the junction corners’ radius of curvature and the associated flow
separation on the dynamical sensitivity to localized perturbations.
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7.2 Global stability theory

To define the sensitivity, we use a linear analysis framework. Given the average inlet fluid speed
U , the pipe width L (see Figure 7.1(a)), and the fluid kinematic viscosity ν, we assume that there
exists some steady-state velocity field u0 for the given Reynolds number Re = UL/ν. That is,
given a velocity field u, a pressure field p, the nonlinear Navier–Stokes equation

u̇ = N u = −u · ∇u−∇p+Re−1∇2u, (7.1)

and the continuity equation ∇ · u = 0, we require N u0 = 0. We then linearize the operator N
about u0 to derive the linearized Navier–Stokes equation for the velocity and pressure perturbations
u′ and p′. This equation is

u̇′ = L u′ = −u′ · ∇u0 − u0 · ∇u′ −∇p′ +Re−1∇2u′, (7.2)

subject to ∇ ·u′ = 0; these together define L . Given the complex conjugate operator (·) and some
control volume Ω, we define the inner product

〈u1,u2〉 =
∫

Ω
ū2 · u1 dV, (7.3)

from which we can define the adjoint L ∗ of the operator L . Denoting the adjoint velocity and
pressure perturbations by û′ and p̂′, subject to ∇ · û′ = 0, the adjoint equation is

˙̂u = L ∗û′ = −(∇u0) · û′ + u0 · ∇û′ −∇p̂′ +Re−1∇2û′. (7.4)

We define the sensitivity of the linearized dynamics to spatially localized feedback using a
global mode analysis (Giannetti and Luchini, 2007). If the direct and adjoint eigendecompositions
are Lφj = λjφj and L ∗ψj = λ̄jψj , respectively, then an infinitesimal perturbation of the former
yields

dLφj + L dφj = dλjφj + λjdφj . (7.5)

Following the definition in (7.3), the inner product of (7.5) with ψj leads to a cancellation of the
second terms on the left- and right-hand sides, i.e.,

〈dLφj ,ψj〉 = 〈dλjφj ,ψj〉 . (7.6)

Let us further restrict dL to be a spatially localized perturbation. Given the Dirac delta function
δ, some perturbation location ξ, and some perturbation size ds, we have dL = δ(x − ξ) ds. This
perturbation could be, for instance, the application of feedback control with a collocated actuator
and sensor (Giannetti and Luchini, 2007). From (7.6), it follows that

ψ̄j(ξ) · φj(ξ) ds = dλj 〈φj ,ψj〉 . (7.7)

Therefore, we may define a sensitivity function

ζj(x) = dλj
ds

= ψ̄j(x) · φj(x)
〈φj ,ψj〉

, (7.8)
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which dictates the change in the jth eigenvalue as a result of a perturbation in L localized at x
with strength ds. The physical locations where |ζj(x)| is large are the regions where the dynamics
are especially sensitive to these spatially localized perturbations.

7.3 Computational methods

To approximate the steady-state solution u0 for a given Re, we employ a Newton–Armijo iteration
(Armijo, 1966; Kelley, 1995) on the operator N (7.1) over the vector space of spatially-discretized
velocity fields u. We compute the Newton solver’s initial condition by running either a time-
resolved flow solver for a long time, or a zeroth- or first-order extrapolation from solutions at other
Reynolds numbers. In the solver itself, we use GMRES (Saad and Schultz, 1986; Kelley, 1995) to
solve the Jacobian–vector equation ∂N /∂u|uk

·h = −uk for the Newton step h from the kth iterate
uk. In this approach, however, the large dimension prevents us from computing the Jacobian–
vector product ∂N /∂u|uk

· h directly. Instead, we use a “time-stepping” approach (Mamun and
Tuckerman, 1995), employing the finite difference ∂N /∂u|uk

·h = (N (uk + εh)−N uk)/ε+O (ε),
with ε = 10−3. We terminate the Newton–Armijo search when uk satisfies ‖N uk‖2/V < 10−6,
where ‖u‖2 =

√
〈u,u〉 (see (7.3)) and V is the volume of the domain Ω.

Once we have obtained a satisfactory approximation for u0, we employ an Arnoldi iteration
(Trefethen and Bau, 1997) with discrete-time variants of L (7.2) and L ∗ (7.4) to approximate
their leading eigenvalues and eigenmodes. In our computation, 100 Arnoldi iterations are more than
sufficient for good convergence of the relevant modes. Also, we remark that when we compute any
of the Navier–Stokes operators on a velocity field, we first solve the divergence of the corresponding
equation (7.1, 7.2, 7.4) for the pressure field.

We implement the Navier–Stokes operators (7.1, 7.2, 7.4) using software based on the Open-
FOAM suite’s icoFoam solver. This solver, which uses a finite-volume implicit pressure correction
(Ferziger and Perić, 2002) on an unstructured mesh, is more primitive than other available solvers,
but is sufficient for the Newton–Armijo, GMRES, and Arnoldi iterations. In our software, we in-
terface these iterators with the Navier–Stokes operators. With 64 Intel Xeon E5-2670 processor
cores on an FDR Infiniband network, the computation of a steady-state solution and its direct and
adjoint eigendecompositions collectively requires about one day.

The T-junction geometry we employ has a square cross-section to match accompanying exper-
iments (Vigolo et al., 2013, 2014), but our results may extend to other cross-sections as well. The
cross-section has dimensions L × L, and the inlet and two outlets are 5L long; see Figure 7.1(a).
A shortening of the inlet to 3L and an extension of the outlets to 10L individually show no visible
differences in the flow behavior and the eigenvalues of L and L ∗. In our investigation, we focus
on a junction corner radius of curvature R = 0.4L (see Figure 7.1(a)) to match our experimental
work, but we also examine the flow at R = 0 (i.e., a square corner) and R = L. The geometries
have 5,459,520 finite-volume cells at R = 0, 6,096,840 cells at R = 0.4L, and 7,435,776 cells at
R = L. The mesh is finer near the junction and the walls, where gradients are large, and coarser
near the inlet and outlets, where gradients in the inflow and outflow directions are small. Finer
meshes do produce small changes in velocity and pressure profiles, as well in the eigenvalues of L
and L ∗. The qualitative nature of our solutions, however, does not change.

In the nonlinear Navier–Stokes operator N , we impose the fully-developed velocity profile for a
square channel (White, 2005) at the inlet, as well as n ·∇p = 0, with n the normal vector. Although
this pressure condition is analytically incorrect, the solver corrects the pressure gradient within a
few downstream cells. We further impose u = 0 and n · ∇p = 0 at the walls, and n · ∇u = 0 and
p = 0 at the outlets. The linearized operator L has the same conditions on u′ and p′, except that
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Figure 7.2: The sensitivity function’s L2 norm ‖ζ‖2 = (
∫

Ω |ζ|
2 dV )1/2 (see (7.8)), as the center (i.e., neutrally

stable) mode at the first supercritical Hopf bifurcation numerically continues to lower and higher Re. Blue
dashed line: R = 0; green solid line: R = 0.4L; red dotted line: R = L. Supercritical Hopf bifurcations are
shown as squares.

u′ = 0 at the inlet. Finally, the adjoint linearized operator L ∗ has the same boundary conditions
as L on û′ and p̂′, except that (u0 · n)û′ + Re−1n · ∇û′ = 0 at the outlets; this condition arises
from the integration by parts in the derivation of L ∗.

7.4 Results

At Re = O
(
102), the flow is smooth in the inlet, and features a large counter-rotating vortex pair

in the junction, which extends toward the outlets. Figure 7.1(b) depicts these flow features with
streamlines and vortex visualization. Additional counter-rotating vortex pairs are also present in
the junction, such as the secondary and tertiary pair visible in Figure 7.1(b).

We primarily consider the first instability of the T-junction flow. The computed steady-state
solutions remain stable until the first supercritical Hopf bifurcation occurs at Re = 587 for R = 0,
Re = 556 for R = 0.4L, and Re = 552 for R = L; see Figure 7.2. In this laminar flow regime, an
increase in Re generally increases the sensitivity of the linearized dynamics to spatially localized
perturbations (Giannetti and Luchini, 2007). The increase in Reynolds number triggers an increase
in non-normality, thereby enlarging the ε-pseudospectrum of L where ε-scale perturbations in L
may shift its eigenvalues by considerably more than ε (Chomaz, 2005). We will see that the regions
of large sensitivity are intrinsically connected to recirculation regions in the flow.

At Re ≥ 320, when the steady-state solution of interest is still stable, four of these recirculation
regions appear in the junction, with one in each outlet–depth quadrant. This behavior, first reported
for a bubbly T-junction flow (Vigolo et al., 2014) and shown in Figure 7.3 near the first Hopf
bifurcation, arises as a result of vortex breakdown abruptly ending the tightly swirling vortex. The
recirculation gives rise to stagnation points in the interior of the flow. Four of these stagnation
points are found at the vortex breakdown points. On the center plane between the two outlets,
additional stagnation points also appear in the vortex cores. Streamlines running against the
primary direction of the outlet flow bring fluid from the breakdown point back to the center plane.

To a rough approximation, the recirculation regions resemble a Hill’s spherical vortex (Hill,
1894) with very high swirl, stretched in the outlet directions and further spatially distorted. As
with the endpoints of the Hill’s spherical vortex, the vortex breakdown point is a saddle-focus fixed
point with a two-dimensional stable manifold comprising a “shell” of the recirculation region, and
a one-dimensional unstable manifold carrying fluid either toward the outlet, or back toward the
center plane. The stagnation point on the center plane has the opposite behavior: a two-dimensional
unstable manifold comprising the shell, and a one-dimensional stable manifold carrying fluid from
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(a) (b)

Figure 7.3: The vortex breakdown at Re = 560 and R = 0.4L. (a) The four recirculation regions (cyan), with
streamlines as in Figure 7.1(b). (b) An outer (cyan) and inner (orange) streamline from a single recirculation
region. The cyan streamline’s left end is the vortex breakdown point, and its right side is flush with the
T-junction’s center plane.

(a) (b)

Figure 7.4: A level set of the sensitivity magnitude |ζ| (magenta), with recirculation streamlines (cyan).
Here, Re = 560 and R = 0.4L. (a) The first instability. (b) The second instability.

the breakdown points. We do not investigate whether the breakdown points’ manifolds coincide or
transversely intersect with those of the center plane’s stagnation points. Numerically, they appear
to coincide, but a thorough Lagrangian analysis would require a very careful mesh refinement
(Sotiropoulos et al., 2001) that we do not attempt here. Inside the recirculation regions, the flow
streamlines resemble the interior streamlines of the Hill’s spherical vortex with swirl—they swirl
downstream over an outer surface and swirl upstream over an inner surface. Figure 7.3(b) provides
a detailed visualization of a recirculation region, and Sotiropoulos et al. (2001) provide an in-depth
treatise of Lagrangian dynamics in a vortex breakdown scenario.

The qualitative nature of the T-junction flow’s recirculation streamlines has significant impli-
cations in the flow dynamics’ sensitivity, since there is—at least approximately—a dense family of
closed streamline orbits. In our research, we do not attempt to apply the inviscid short-wavelength
theory in its mathematically rigorous sense. At present, researchers have observed the connec-
tion between closed orbits and dynamical sensitivity in simple closed orbits, such as in stationary
(Giannetti and Luchini, 2007) and periodic (Giannetti et al., 2010) flows behind a cylinder. The
application of the technical theory has been restricted to such simple orbits, including driven cavity
flows (Luchini et al., 2013). In contrast, the orbits in Figure 7.3 are likely too complex for a rigorous
application of the theory. We argue, however, that the underlying idea is still physically applicable.
Figure 7.4 demonstrates that in the T-junction flow, the recirculation and sensitivity regions do
in fact coincide closely. This figure shows the sensitivity regions of the two least stable modes at
the first supercritical Hopf bifurcation (i.e., Re = 560) with R = 0.4. An examination of the next
several modes’ sensitivity regions shows very little qualitative change. The connection between
recirculation and sensitivity is in close agreement with the Appendix of Giannetti et al. (2010), but

69
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Figure 7.5: (a) As Figure 7.1(b) and 7.4, but with junction radii R = 0 and Re = 590 (left), and R = L and
Re = 550 (right). (b) As (a, left), with additional streamlines (cyan) depicting the flow separation at the
left square corner.

the recirculation in the T-junction flow is fully three-dimensional and far more complicated. To the
best of our knowledge, the T-junction flow is the most complex flow for which anyone has reported
a close relation between recirculation and sensitivity.

A comparison of Figures 7.1(b) and 7.4(a) reveals that the dynamical sensitivity is also nontrivial
in the secondary and tertiary counter-rotating vortex pairs that appear above the large primary
pair. Although these vortex pairs neither undergo vortex breakdown nor constitute recirculation
regions, the swirl in these pairs is very large compared to the axial velocity. We posit that this
swirl may contribute to the locally increased sensitivity in a similar way to the recirculation regions.
Also, we remark that the sensitivity of the second instability (Figure 7.4(b)), as well as the third
and fourth instabilities (not shown), is more pronounced away from the center plane between the
two outlets. The sensitivity in these modes is also nontrivial in lobes immediately outside the
recirculation regions.

At this point, it is clear that the recirculation regions and vortices in the junction and outlet
pipes are key aspects of the impacting T-junction flow. Nevertheless, what is the role of the sepa-
rated flow at the junction corners? Figure 7.5(a) shows the vortical flow and the first instability’s
sensitivity at the first supercritical Hopf bifurcation, for the square corner R = 0 and the large
radius R = L. In both of these cases, the qualitative nature of the sensitivity regions is nearly
identical to that of the medium radius R = 0.4L (Figure 7.4).

Additional insight may be possible if we visualize the velocity streamlines comprising the sepa-
ration regions at the square corners for R = 0. In Figure 7.5(b), a particular region of flow starts
near the walls of the inlet, navigates around the square corner of the junction, and encounters an
adverse pressure gradient in the outlet pipes. This pressure gradient causes these streamlines to
turn backward, forming a vertical vortex pair that flushes fluid downward between the two large
outlet-oriented vortices in the junction. The critical observation in this case is that the separa-
tion region is completely disjoint from the sensitivity region. Similar flow features also occur for
R = 0.4L and R = L (not shown), where the separation region is much smaller and bears some
resemblance to the flow in a diverging nozzle.

Since the separation and sensitivity regions are distinct, the flow separation at the corner is
“inert” in the sensitivity analysis. In other words, a linearized dynamical perturbation in the
separation region will not have a large effect on the stability of the steady-state flow. Physically,
this lack of an appreciable effect may be because the separation region is structurally stable, in
the sense that dynamical perturbations there may not significantly influence the flow structures.
In comparison, the recirculation regions in the junction may be less structurally stable, enabling
small perturbations in the dynamics there to have large effects on global stability.
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7.5 Conclusions

In this research, we employed a global linear sensitivity analysis and confirmed that recirculation
regions in the T-junction flow exhibit a high sensitivity to localized dynamical perturbations. Ac-
cording to the inviscid short-wavelength theory, the recirculation regions—which resemble a dense
family of closed orbits—approximately advect short-wave perturbations that can positively feed
back, causing a self-amplification mechanism. Secondary and tertiary vortex pairs also exhibit high
sensitivity, possibly because of high swirl. The junction corners’ radius of curvature does not exhibit
a significant effect on the flow sensitivity, however, and the flow separation at the junction corners
is physically disjoint from the sensitivity regions. This feature suggests that the flow separation
is structurally stable. In a future paper, we plan to discuss further aspects of the global stability
analysis, including the regions of stability and receptivity given by the linearized Navier–Stokes
operators’ direct and adjoint eigenmodes. These stability analyses will yield new insight into the
behavior of this very common, though complex and, at times, counterintuitive flow.
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Gallaire and Paolo Luchini for helpful discussions and guidance regarding vortex breakdown and
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The linearised complex Ginzburg–Landau equation is a model for the evolution of small fluid pertur-
bations, such as in a bluff body wake. By implementing actuators and sensors and designing an H2
optimal controller, we control a supercritical, infinite-domain formulation of this system. We seek
the optimal actuator and sensor placement that minimises the H2 norm of the controlled system,
from flow disturbances and sensor noise to a cost on the perturbation and input magnitudes. We
formulate the gradient of the H2 squared norm with respect to actuator and sensor placements, and
iterate toward the optimal placement. When stochastic flow disturbances are present everywhere
in the spatial domain, it is optimal to place the actuator just upstream of the origin and the sensor
just downstream. With pairs of actuators and sensors, it is optimal to place each actuator slightly
upstream of each corresponding sensor, and scatter the pairs throughout the spatial domain. When
disturbances are only introduced upstream, the optimal placement shifts upstream as well. Global
mode and Gramian analyses fail to predict the optimal placement; they produce H2 norms about
five times higher than at the true optimum. The wavemaker region is a better guess for the optimal
placement.

8.1 Introduction

Stability theory has been an active field of fluid mechanics research because of its prevalence in
physical phenomena. A common characteristic of stability theory is the simplification of the full
Navier–Stokes equations to an amplitude equation of reduced dimension. This is often done out
of practicality, since reduced-dimensional models are more tractable and easier to analyse. The
Ginzburg–Landau equation is one such model that is often used to study fluid instabilities in
spatially developing flows (Huerre and Monkewitz, 1990); it has been applied to bluff body wakes,
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jets, and other configurations (see Chomaz et al. 1988; Cossu and Chomaz 1997; Lauga and Bewley
2004; Bagheri et al. 2009).

The Ginzburg–Landau equation describes the temporal and spatial evolution of velocity per-
turbations in a given flow configuration. It is a complex partial differential equation first-order in
time and second-order in one spatial dimension, the streamwise direction. As such, it serves as a
convenient starting point for establishing a flow control model without the complexities of a full
two- or three-dimensional Navier–Stokes system. If flow field perturbations are sufficiently small,
then the equation’s cubic term can be truncated to form a linear partial differential equation.

The articles by Bagheri et al. (2009) and Lauga and Bewley (2004) employed a flow control
framework for the linearised Ginzburg–Landau equation. They modelled the flow dynamics, ac-
tuator effect, and probe sensing as a standard linear state space. This representation carries the
benefit that linear time-invariant (LTI) control theory is a highly developed field of study; results
from optimal control, robust control, and model reduction are directly applicable. These papers
analysed the transient and long-time stability of the Ginzburg–Landau system using a single-input,
single-output (SISO) feedback loop—that is, with one actuator manipulating the flow at one point
in space, acting on information from one sensor located at another point in space. Bagheri et al.
emphasised model reduction of the system and linear quadratic Gaussian (LQG) control (which is
a specific instance of H2 optimal control) in the presence of an upstream disturbance. Lauga and
Bewley, on the other hand, focused on H∞-based robust control.

The present study expands on the H2 optimal control framework by investigating where actu-
ators and sensors should be placed for maximum reduction of the flow perturbation and actuator
effort, given an exogenous flow disturbance. The current fluid mechanics literature has few an-
alytically rigorous studies on optimal actuator and sensor placement. Bagheri et al. (2009) and
Åkervik et al. (2007) stated that sensor locations should overlap with unstable global modes, and
actuator locations with corresponding adjoint modes; they placed their sensor and actuator at
the mode magnitude maxima. These detectability and stabilisability conditions are necessary for
the construction of the H2 optimal control solution (Doyle et al., 1989). As will become evident
in this paper, however, actuator and sensor placement by modal analysis yields suboptimal con-
trol. Although such a placement may be sufficient for preventing large-scale self-sustaining global
oscillations, it may be insufficient for applications where transient growth needs to be reduced.

In an early study, Strykowski and Sreenivasan (1990) placed a small secondary cylinder in the
wake of a larger primary cylinder, and plotted the placements where the secondary cylinder was
passively able to suppress vortex shedding for given Reynolds numbers. Giannetti and Luchini
(2007) showed that Strykowski and Sreenivasan’s placements corresponded with the wavemaker
region of the Navier–Stokes operator linearised about the unstable equilibrium wake. Gillies (2001)
similarly placed an actuator in the absolutely unstable part of the domain, and experimentally
showed that his controllers were successful only when the sensors were also in the absolutely unstable
domain. These results were consistent with those of Roussopoulos (1993), who experimented with
sensor placement in a wind tunnel and a water channel. Lauga and Bewley (2004) placed an
actuator and a sensor in the wavemaker region of the Ginzburg–Landau equation. In an earlier
study, Lauga and Bewley (2003) employed a linear quadratic regulator with full-state feedback;
they tracked the movement of the optimal actuator placement as the supercriticality parameter
increased.

Much of the analytically rigorous literature on optimal actuator and sensor placement is re-
lated to the vibration control of flexible structures. For instance, Moheimani and Ryall (1999)
placed collocated actuator and sensor pairs where they were able to control all important vibra-
tion modes. Kondoh, Yatomi, and Inoue (1990) employed Powell’s method of multidimensional
function minimisation to locate H2 optimal actuator and sensor positions, but reported that the
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iterative technique became difficult as the number of actuators and sensors increased. Hiramoto,
Doki, and Obinata (2000) formulated the gradient of the controlled system’s H2 norm with respect
to actuator and sensor locations, allowing the use of gradient-based minimisation techniques. The
framework developed, however, assumed collocation of the actuator and sensor.

Vibration control of flexible structures benefits from the fact that the dynamical evolution op-
erator is normal (Hiramoto et al., 2000), and eigenfunctions are orthogonal (Halim and Moheimani,
2003). On the other hand, the linearised Ginzburg–Landau and Navier–Stokes operators are non-
normal, and their global modes do not form an orthogonal basis (Cossu and Chomaz, 1997; Chomaz,
2005; Bagheri et al., 2009). Therefore, methods for optimal placement in the flexible structures
literature generally do not apply to fluid systems. Ideally, techniques should analytically or nu-
merically compute optimal placement without iteration. In the absence of such techniques, the
Powell’s method of Kondoh et al. (1990) and the gradient-based minimisation of Hiramoto et al.
(2000) serve as good starting points for the Ginzburg–Landau system.

In this paper, we seek the actuator and sensor placement that minimises the perturbation
magnitude and actuator effort of the Ginzburg–Landau system in an H2 sense. We investigate
cases in which a white noise flow disturbance is present everywhere in the domain, or only in the
upstream region. The underlying idea is that while H2 optimal control theory can provide the
“best” controller given an actuator and sensor placement, the “best” placement should ideally be
sought in conjunction. We develop an improved formulation of Hiramoto et al.’s H2 norm gradient.
We employ the conjugate gradient method of multidimensional function minimisation for SISO as
well as multiple-input, multiple-output (MIMO) control of the Ginzburg–Landau equation. For the
SISO cases, we compare the conjugate gradient results to brute force sampling results, where we
evaluate the H2 optimal controller and the corresponding system norm for a large test matrix of
actuator and sensor positions. Finally, we discuss the failure of global mode and Gramian analyses
to yield the optimal placement, and we suggest that the wavemaker region is a better indicator of
the optimal placement.

8.2 Complex Ginzburg–Landau equation

8.2.1 Continuous representation

A complete discussion of the Ginzburg–Landau equation is too expansive to be given here. For a
more comprehensive review, refer to the review article by Bagheri et al. (2009).

For a velocity or streamfunction perturbation amplitude given by the real part of q (x, t), the
complex Ginzburg–Landau equation is

∂q

∂t
+ ν

∂q

∂x
= µ (x) q + γ

∂2q

∂x2 − a |q|
2 q. (8.1)

We choose the spatial domain of q to be fully infinite, requiring q (±∞, t) = 0 (Cossu and Chomaz,
1997; Chomaz, 2005). This allows perturbations to grow and decay throughout the entire stream-
wise dimension. With this choice of a domain, we typically assume that the physical feature of
interest is at x = 0. The complex advection speed is ν = U +2icu, the complex diffusion parameter
is γ = 1 + icd, and the amplification factor is µ (x) = µ0 − c2

u + µ2x
2/2 (Bagheri et al., 2009). The

mean advection velocity is given by U > 0, and cu, µ0, and a are also positive quantities; µ2 and
cd are negative (Cossu and Chomaz, 1997; Chomaz, 2005). Numerical values of these parameters
are determined empirically (Williamson, 1996; Roussopoulos and Monkewitz, 1996).
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The nonlinear term −a |q|2 q causes a Hopf bifurcation expected in many geometrical configu-
rations (e.g. Sreenivasan, Strykowski, and Olinger, 1987). In a linear analysis, the flow is assumed
to be near the equilibrium state q = 0; thus, −a |q|2 q ≈ 0. The resulting linear equation is

q̇ = L q, (8.2a)

where
L , −ν ∂

∂x
+ µ (x) + γ

∂2

∂x2 (8.2b)

defines the linear operator L . From this point forward, we will always truncate the cubic term
and refer only to the linear system.

We now comment on the stability properties of the linearised Ginzburg–Landau system, drawing
from results found in Bagheri et al. (2009) and Cossu and Chomaz (1997). In the parabolic
construction µ (x) = µ0 − c2

u + µ2x
2/2, the region of amplification is the part of the domain where

µ (x) > 0; this corresponds to −
√
−2 (µ0 − c2

u) /µ2 < x <
√
−2 (µ0 − c2

u) /µ2. The quantity µ0− c2
u

is the greatest amplification factor present in the physical domain, occurring at x = 0; µ0 is derived
from the Reynolds number. If µ0−c2

u < 0, then the flow is stable everywhere, and all perturbations
decay with time. Otherwise, at least some part of the domain exhibits amplification (convective or
absolute instability), and cu is the most unstable spatial wavenumber.

In the analysis of parallel flows (where µ is constant), we construct a transitional value µt =
U2
max/

(
4 |γ|2

)
, with Umax = U + 2cdcu the group velocity. When 0 < µ + c2

u < µt,1 the domain
is convectively unstable. The response G (x, t) to an impulse δ (x) δ (t) blows up along x = kt for
at least one value of k as t → ∞, but limt→∞G (0, t) = 0. When µt < µ + c2

u,1 the domain is
absolutely unstable, and limt→∞G (0, t) =∞ (Schmid and Henningson, 2000).

Returning to the non-parallel case, where µ is parabolic in space, we also define a critical value
µc = µt + |h| cos ((Arg γ) /2) /2, where h =

√
−2µ2γ. Global stability is lost if and only if µ0 > µc;

this is a direct result of the eigendecomposition of L . Eigenvalues, eigenmodes, and adjoint modes
are given respectively by

λn = µ0 − c2
u −

ν2

4γ −
(
n+ 1

2

)
h (8.3a)

φn (x) = exp
(1

2

(
νx

γ
− χ2x2

))
Hn (χx) (8.3b)

ψn (x) = exp
(
− ν̄x
γ̄

)
φ̄n (x) , (8.3c)

where n = 0, 1, . . ., χ = (−µ2/ (2γ))1/4, Hn is the nth Hermite polynomial, and (·) indicates a
complex conjugate. If Re [λ0] > 0, then the system must be globally unstable. Otherwise, it is
globally stable and perturbations eventually decay with time, but transient perturbation growth
may still exist.

Finally, we note briefly that µ2 denotes how non-parallel the flow is; it is partly responsible for
determining the size of the amplification region. In addition, cd is a dispersion parameter, but we
will not discuss it further. See Bagheri et al. (2009) for additional details.

The Ginzburg–Landau parameters chosen for this study are drawn from Bagheri et al. (2009)
and are shown in Table 8.1. This study primarily investigates a supercritical, globally unstable

1In the published article, µ+ c2
u appears incorrectly as µ.
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Table 8.1: Ginzburg–Landau parameters. Subcritical parameters are shown in parentheses.

variable description value
U mean advection velocity 2.0
cu most unstable wavenumber 0.2
cd dispersion parameter -1.0
µ0 overall amplification 0.41 (0.38)
µ2 degree of non-parallelism -0.01
µt transitional µ 0.32
µc critical µ 0.40
a nonlinearity not used

x1, xN extent of discretised domain −56.06, 56.06
±
√
−2 (µ0 − c2

u) /µ2 extent of region of amplification ±8.60 (±8.25)
xd upstream disturbance location −11.0
σ Gaussian width 0.4

system, with µ0 = 1.03µc. When we consider subcritical, globally stable systems, however, we use
µ0 = 0.96µc. We always assume supercriticality unless stated otherwise.

8.2.2 Discrete representation

To model the Ginzburg–Landau equation as an LTI state space, we spatially discretise the physical
domain. We create a domain discretisation and a pseudospectral formulation of ∂/∂x and ∂2/∂x2

using weighted Hermite polynomials, as in Bagheri et al. (2009). We draw the discretisation and
associated differentiation operators from Weideman and Reddy (2000). The physical domain is rep-
resented using N = 100 grid points, and these points {x1, x2, . . . , xN} are the roots of HN (Re [χ]x).
With this choice of N , the discretised domain stretches from x1 = −56.06 to xN = 56.06. For the
globally unstable system studied, the region of amplification is −8.60 < x < 8.60. We choose
N = 100 because it achieves sufficient accuracy while maintaining problem tractability. To check
for convergence of results in N , we test systems with one actuator and one sensor, and with two
actuators and two sensors. In both cases, we introduce flow disturbances across the entire spatial
domain (see Section 8.3.1 for details). Increasing N from 100 to 200 changes the computed optimal
actuator and sensor placement by less than 1.0% of the amplification region’s length.

Using this discretisation scheme, we construct the state vector q =
[
q1 · · · qN

]T
, where

qj = q (xj) for j = 1, 2, . . . , N . Let D be the Hermite pseudospectral derivative matrix, and ∆
be the second derivative matrix. Also, let µ be µ (x) discretised in the same way as q. Then the
discrete representation of the linearised Ginzburg–Landau equation is

q̇ = Aq, (8.4a)

where
A , −νD + diag (µ) + γ∆ (8.4b)

is the discrete linearised Ginzburg–Landau operator.
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8.3 H2 optimal control and placement

In this section, we apply techniques developed in the control theory community, and we use these
methods to develop a gradient-based formulation for optimising the actuator and sensor placement.
The review article by Kim and Bewley (2007) provides a quick introduction to optimal control
theory and its application to fluid mechanics. A complete reference can be found in Skogestad
and Postlethwaite (2005). The seminal paper by Doyle et al. (1989) establishes the H2 optimal
control theory used in this section. Finally, Schmid (2007) reviews important concepts from linear
dynamics, such as transfer functions and stochastic dynamics, that we employ.

8.3.1 State space setup

Let us return momentarily to the continuous-space linearised Ginzburg–Landau equation. Instead
of implementing a particular type of flow actuator or sensing probe, we apply generic actuation
and sensing drawn from the standard state space setup. This way, we can easily take advantage of
available LTI tools. We also insert a white noise disturbance d, which may be present everywhere
in the spatial domain, or centred in the upstream domain. Assume a small sensor white noise n.
For a single actuator located at x = xa and a single sensor at x = xs, the state space is

∂q

∂t
(x, t) = L q (x, t) + exp

(
−(x− xa)2

2σ2

)
u (t) + d (x, t) (8.5a)

y (t) =
〈
q (x, t) , exp

(
−(x− xs)2

2σ2

)〉
+ n (t) , (8.5b)

where 〈f1, f2〉 ,
∫∞
−∞ f̄2f1 dx is an inner product. The state q, input signal u, output signal y,

disturbance d, and noise n are all complex, and we choose σ = 0.4.
In discretised form, with A given by (8.4b) and all other variables explained below, we recover

the standard state space

q̇ = Aq + B2u + W
1
2 d (8.6a)

y = C2q + V
1
2 n. (8.6b)

In SISO control, u and y are complex scalars, and B2 is an N -by-1 vector discretising the distribu-
tion exp

(
− (x− xa)2 /

(
2σ2)). For discretised sensing, note that a weighting matrix must be used

to carry out the integration implied by (8.5b). Let

M = 1
2diag

([
x2 − x1 x3 − x1 · · · xi+1 − xi−1 · · · xm − xm−2 xm − xm−1

])
(8.7)

be the weighting matrix corresponding to the trapezoidal integration operator, and let s be the
n-by-1 discretisation of exp

(
− (x− xs)2 /

(
2σ2)). Then the inner product in (8.5b) transforms

to 〈q, s〉, where 〈v1,v2〉 = v∗2Mv1 is the discrete inner product and (·)∗ indicates a conjugate
transpose. This yields C2 = sTM. In the case of MIMO control, suppose that there exist ma

actuators and ms sensors. Let bj be the discretisation of the jth actuator, and sk the kth sensor.
Then B2 =

[
b1 · · · bma

]
, and C2 =

[
s1 · · · sms

]T
M.

The disturbance and sensor noise are complex white noise stochastic processes. In the case
of a disturbance pervading the entire domain, d is an N -by-1 complex white noise signal with
covariance E (dd∗) = I (with E the expected value), and we choose W

1
2 = I. If the disturbance
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is upstream, then d is a complex white noise scalar with unit covariance, and W
1
2 is the N -

by-1 vector discretisation of exp
(
− (x− xd)2 /

(
2σ2)); xd is fixed at −11.0. We do not wish to

place any particular focus on sensor noise in this study, but the noise must be present for the LQG
formulation to be well-posed. Therefore, n is anms-by-1 complex white noise signal with covariance
E (nn∗) = I, and we choose V

1
2 = 2 · 10−4I so that the sensor noise is present but minimal. It will

be apparent later that the LQG controller remains well-behaved for this small choice of V
1
2 .

8.3.2 Linear quadratic Gaussian framework

Having set up the governing dynamics and input/output relations in (8.5–8.6b), we now design a
controller that determines the control signal u (t) from the sensor output y (t). In particular, we
seek the relation from y to u that minimises the perturbation magnitude

∫∞
−∞ |q (x, t)|2 dx. This

minimisation is the ultimate goal of Ginzburg–Landau control. Realistically, however, we must also
keep the input size |u (t)|2 within bounds; a very large input size may be non-physical. Therefore,
we establish a cost function

J = β2
∫ ∞
−∞
|q (x, t)|2 dx+ |u (t)|2 (8.8)

to minimise using the right choice of a controller. The positive scalar β controls the balance between
maintaining a small perturbation size and maintaining a small input size. In this study, we choose
β = 7. We discuss different choices of β in Section 8.4.3.

In discrete space, the cost function takes the form J = q∗Qq + u∗Ru, where Q and R are
user-specified penalties on the state and inputs sizes. To be consistent with (8.8), we use Q = β2M
and R = I. In vector form, the cost on the perturbation and input sizes are given by j1 = Q

1
2 q

and j2 = R
1
2 u, where the matrix square root Z

1
2 satisfies

(
Z

1
2
)∗

Z
1
2 = Z. Since the disturbance d

and sensor noise n are exogenous inputs, minimising J is equivalent to minimising the gain from d
and n to the cost vectors j1 and j2.

To establish the relation from d and n to j1 and j2, we first incorporate the cost vectors into
the state space in (8.6b) to yield

P :

q̇
z
y

 =

A B1 B2
C1 0 D12
C2 D21 0


q
w
u

 , (8.9a)

where
z =

[
j1
j2

]
w =

[
d
n

]
(8.9b)

and
B1 =

[
W

1
2 0

]
, C1 =

[
Q

1
2

0

]
, D12 =

[
0

R
1
2

]
, D21 =

[
0 V

1
2

]
. (8.9c)

Equation (8.9a) is called the “plant” or simply P. Figure 8.1 is a pictorial representation of the
control problem. The controller K determines the input signal u based on the sensor output y.
The external input to the system is the flow disturbance and sensor noise in w, and the system
output is the cost z to be minimised.

In the construction of the general LTI controller, we choose matrices KA, KB, KC, and KD
such that

K :
[

˙̂q
u

]
=
[
KA KB
KC KD

] [
q̂
y

]
(8.10)
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K

w z

yu

Figure 8.1: General control problem formulation G.

determines the actuation signal u based on the output signal y. The variable q̂ is the state of
the controller, and is typically an estimate of the plant state q. The LQG controller is the LTI
controller that minimises the H2 norm of the transfer function from d and n to j1 and j2. Suppose
that G (s) is that matrix transfer function. In other words, for s ∈ C and disturbance and sensor
noise inputs of the form est, [

j1
j2

]
= G (s)

[
d
n

]
(8.11)

dictates the gain and phase from d and n to j1 and j2. Then the H2 norm is defined as

γ2 , ‖G‖2 ,
√

1
2π

∫ ∞
−∞

tr (G∗ (iω) G (iω)) dω, (8.12)

and is an average (instead of a worst-case) measure of the gain provided by G. Thus, given exoge-
nous inputs, minimising the perturbation magnitude and actuator effort is equivalent to minimising
‖G‖2. We implement the LQG controller so that ‖G‖2 is automatically minimised.

To construct the LQG controller, solve the continuous algebraic Riccati equations

A∗X + XA−XB2R−1B∗2X + C∗1C1 = 0 (8.13a)
AY + YA∗ −YC∗2V−1C2Y + B1B∗1 = 0 (8.13b)

for X and Y, and set F = R−1B∗2X and L = YC∗2V−1. The LQG controller is then given by

K :
[

˙̂q
u

]
=
[
A−B2F− LC2 L

−F 0

] [
q̂
y

]
. (8.14)

The plant (8.9a) and LQG controller (8.14) can be combined to form a single system, known
as the linear fractional transformation (LFT) of G and K. One representation of the LFT isq̇

˙̂q
z

 =

 A −B2F B1
LC2 A−B2F− LC2 LD21
C1 −D12F 0


q

q̂
w

 . (8.15)

(Often, the LFT is expressed using an error e = q̂ − q instead of directly using the state estimate
q̂.) Denote the upper-left two-by-two matrix block by ZA, the upper-right two-by-one block by ZB,
and the lower-left one-by-two block by ZC. If we compute Gramians Wc and Wo by the Lyapunov
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equations

ZAWc + WcZ∗A + ZBZ∗B = 0 (8.16a)
Z∗AWo + WoZA + Z∗CZC = 0, (8.16b)

then the LQG-controlled system’s H2 squared norm is

Γ2 , ‖G‖22 = tr (ZCWcZ∗C) (8.17a)
= tr (Z∗BWoZB) . (8.17b)

The above formulations, however, require solutions of 2N -by-2N matrix equations. A simpler
N -by-N formulation is given by

Γ2 = tr (C1YC∗1) + tr
(
V−1C2YXYC∗2

)
(8.18a)

= tr (B∗1XB1) + tr
(
R−1B∗2XYXB2

)
. (8.18b)

8.3.3 Perturbation technique for optimal placement

Suppose that a choice of B2 and C2 is H2 optimal. That is, the choice of B2 and C2 provides
the best-performing H2 optimal controller, given matrix constraints described in Section 8.3.1. It
is necessary, but not sufficient, for an appropriately constrained perturbation δB2 6= 0 to produce
δΓ2 = 0; similarly, δC2 6= 0 must produce δΓ2 = 0. The constraint on δB2 is that it must equal
the change in B2 when an actuator position moves from xa to xa + δxa, for a small δxa. If there is
multiple actuation, then δB2 can be a perturbation along any one of the actuator positions. The
constraint on δC2 is completely analogous, except that it is necessary to pay careful attention to
the discretised integration operator M.

If the actuator location is perturbed from B2 to B2 + δB2, then we can define δX such that
(8.13a) produces a perturbed solution X + δX. The exact representation is

A∗ (X + δX) + (X + δX) A− (X + δX) (B2 + δB2) R−1 (B2 + δB2)∗ (X + δX)
+ C∗1C1 = 0. (8.19)

The O
(
δ0) component returns (8.13a), as expected. The O

(
δ1) component is(

A−B2R−1B∗2X
)∗
δX+δX

(
A−B2R−1B∗2X

)
−X

(
δB2 R−1B∗2 + B2R−1 δB∗2

)
X = 0, (8.20)

which is a Lyapunov equation for δX. The perturbation in X then produces the cost perturbation
δΓ2 = tr

(
V−1C2Y δX YC∗2

)
from (8.18a). At the optimal actuator location,

δΓ2 = tr
(
V−1C2Y δX YC∗2

)
= 0. (8.21)

In summary, given an appropriately constrained B2 and δB2, the H2 optimal B2 is one that
produces tr

(
V−1C2Y δX YC∗2

)
= 0, where δX is the solution to (8.20) and X is the solution

to (8.13a). For this choice of B2, the actuator position and the controller are simultaneously
optimised to minimise the magnitude of flow perturbations and actuator input. Additional steps
are required, however, to ensure that the B2 satisfying δΓ2 = 0 actually minimises Γ2, instead of
yielding a maximum or saddle point.
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The procedure for finding the optimal sensor location is similar to the previously described
steps. For an appropriate choice of C2 and δC2, the optimal C2 is the one that first yields Y by
(8.13b), then yields δY by the Lyapunov equation(

A−YC∗2V−1C2
)
δY+δY

(
A−YC∗2V−1C2

)∗
−Y

(
δC∗2 V−1C2 + C∗2V−1 δC2

)
Y = 0, (8.22)

and finally satisfies
δΓ2 = tr

(
R−1B∗2X δY XB2

)
= 0. (8.23)

Since the Riccati equations in (8.13) must typically be solved numerically, we do not propose
an analytical procedure for finding actuator and sensor placements yielding δΓ2 = 0. Instead,
we now create a framework where a gradient-based function minimisation can be used to iterate
toward the optimal placements. For a set of actuator positions

{
x1
a, . . . , x

ma
a

}
and sensor positions{

x1
s, . . . , x

ms
s

}
, Γ2 is obtained by solving (8.13) and (8.18). For a perturbation of the jth actuator

position xja by an amount δxja, solve (8.20) for δXj and set

δΓ2

δxja
= tr

(
V−1C2Y δXj YC∗2

)
δxja

. (8.24a)

For a perturbation of the kth sensor position xks by an amount δxks , solve (8.22) for δYk and set

δΓ2
δxks

=
tr
(
R−1B∗2X δYk XB2

)
δxks

. (8.24b)

Note that the Riccati solutions X and Y are computed while solving for Γ2, and can be reused
while solving the Lyapunov equations needed for ∇Γ2. Thus, we solve two Riccati equations for
every evaluation of Γ2, andma+ms Lyapunov equations for every evaluation of the (ma +ms)-by-1
vector ∇Γ2.

This technique for computing ∇Γ2 is similar to the method proposed by Hiramoto et al. (2000),
but is believed to be more computationally efficient. Because Hiramoto et al. computed Γ2 using
the LFT of the controlled system, each component of ∇Γ2 required the solution to a 2N -by-2N
Lyapunov equation; see (8.15–8.17). On the other hand, the method we propose reduces this size
to N -by-N . Using the Lyapunov equation solvers selected for this study, our proposed method
should provide a speedup by a factor of approximately six.

We employ a Polak-Ribière conjugate gradient method, using a modified Brent’s method of line
minimisation that uses derivative information. Brent’s method also requires a bracketing function
that provides bounds on the line minimum. These methods are robust in the sense that they are
unlikely to lose numerical stability, and they are generally efficient as well. Implementation details
can be found in Press et al. (2007).

8.4 Results

8.4.1 Brute force sampling

To understand the effect of SISO actuator and sensor positions more fully, we first perform a brute
force sampling of the LQG-controlled system’s H2 norm. Instead of implementing a minimisation
algorithm, we map out γ2 (xa, xs) over a test matrix spanning actuator and sensor positions in
{−15.00,−14.75, . . . , 15.00}. The results for a white noise disturbance present across the entire
spatial domain are plotted in Figure 8.2(a). In Figure 8.2(b), we run a simulation of the LQG-
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Figure 8.2: (a): Contours of log10 γ2 and the optimal placement (×), with disturbances introduced every-
where. The innermost contour is log10 γ2 = 2, and each subsequent contour increments by 0.5. (b): A sample
snapshot of the controlled perturbation q, shown as real (solid/blue) and imaginary (dashed/red) parts. The
actuator is at xa = −1.00 and the sensor is at xs = 1.00. In both plots, the region of amplification is shaded
grey.

controlled system and show a sample snapshot. Without control, the state would blow up because
the system would be globally unstable.

Some qualitative features are immediately obvious from Figure 8.2(a). First, the optimal place-
ment is approximately xa = −1.00 and xs = 1.00, at which γ2 = 46.1; we will refine these numbers
later through the use of iterative minimisation. Second, a penalty exists for placing the actuator
too far downstream. This is an intuitive result—since the flow in question is convection-driven, a
downstream actuator is able to influence less of the physical domain. Third, a similar penalty exists
for placing the sensor too far upstream. Recall that the amplification factor µ (x) is an inverted
parabola with roots at ±8.60. If the sensor is too far upstream, then the detected disturbances
naturally dampen before they reach the region of amplification. Thus, the disturbances amplified
in this region would not primarily be the ones observed by the sensor. Finally, excessive time delay
(positioning the sensor too far downstream of the actuator) has a detrimental effect on perturbation
control. This is also a result of the convection-driven nature of the system. If the sensor is too far
downstream of the actuator, then the information it receives will have already passed the actuator
for some time. Thus, the actuator would be acting on outdated information, and the feedback
would effectively result in a time lag.

Data for a flow disturbance introduced around xd = −11.00 are shown in Figure 8.3(a), with a
sample snapshot shown in Figure 8.3(b). The qualitative features of this γ2 (xa, xs) map are similar
to those of Figure 8.2(a), but we highlight a few differences. First, the optimal placement is now
approximately xa = −8.50 and xs = −5.50, which is much further upstream than in the previous
case. In the sample snapshot shown in Figure 8.3(b), we note that the controller is extremely
effective in reducing the perturbation magnitude within the region of amplification.

Intuitively, we might expect an optimal placement xs ≈ xd, so that the sensor placement
coincides with the disturbance source. Indeed, such a placement allows the state estimate q̂ to
match the true state q very closely in the disturbance region. This placement, however, is far from
optimal. As a result of the strong amplification downstream of the disturbance source, even the
smallest estimator error e = q̂ − q in the disturbance region can amplify significantly. By placing
the sensor downstream of the disturbance source, the estimator is better able to reduce the error e
in the region of amplification, where accurate state estimation is critically important.
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Figure 8.3: (a): Contours of log10 γ2 and the optimal placement (×), for the case of an upstream disturbance
introduced at xd = −11.00. The innermost contour is log10 γ2 = 1.0, and each subsequent contour increments
by 0.5. (b): A sample snapshot of the controlled perturbation q, shown as real (solid/blue) and imaginary
(dashed/red) parts. The actuator is at xa = −8.50 and the sensor is at xs = −5.50. In both plots, the region
of amplification is shaded grey.

The second difference in the case of upstream disturbances is that the optimal placement is
not robust. Although the optimal placement is unique, Figure 8.3(a) shows that a small upstream
shift in xs drastically increases γ2. The topography of the γ2 (xa, xs) function contains a cliff near
xs = −5.50 where the H2 norm increases suddenly. Holding xa = −8.50 but moving xs = −5.50
to −5.75, the H2 norm γ2 increases from 3.87 to 138. This occurs because the shift in the sensor
location causes a small zero of the u-to-y transfer function to move from the left-half-plane to the
right-half-plane. When this occurs, the small right-half-plane zero introduces significant bandwidth
limitations for disturbance rejection. A sensitivity function analysis indicates considerably inferior
disturbance rejection at frequencies ω < 10.

This non-robustness appears to indicate the importance of placing the sensor firmly within the
region of high amplification, lest estimator errors grow beyond acceptable limits. For instance, in
an actual two- or three-dimensional flow setup without a priori knowledge of the optimal sensor
placement, an experimenter could guess a sensor placement where amplification is expected. (Recall
that the dynamics of fluid systems are often strongly non-normal (Chomaz, 2005), so regions
of transient amplification may not correspond well with unstable eigenmodes of the linearised
dynamics.)

Besides these two major differences, the general form of the γ2 solution is similar to the case
where disturbances are present everywhere. Level sets of γ2 have a near-triangular form, with
penalties on placing the actuator too far downstream, placing the sensor too far upstream, and
creating excessive separation between sensors and actuators. The general similarities between
figures 8.2(a) and 8.3(a) indicate that it is possible to find an actuator and sensor placement that is
effective for both disturbance types. For example, if xa = −3.50 and xs = 0.00, then γ2 = 53.6 when
disturbances are present everywhere and γ2 = 5.90 when disturbances are concentrated upstream.
These are acceptably close to the respective optimal values of 46.1 and 3.86. If other disturbance
types retain the same qualitative nature of γ2 (xa, xs), then a “universally” optimal placement could
feasibly be sought.

We also perform brute force sampling for the two-actuator, two-sensor configuration with dis-
turbances present everywhere. The placement is optimal at about xa = −3.75, 2.75 and xs =
−2.75, 3.75, for which γ2 = 34.0. (Results are not plotted here.) As in the SISO case, these num-
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Figure 8.4: Optimal placement for different numbers of actuators and sensors. The H2 norm γ2 is tabulated
for each configuration, and the region of amplification is shaded grey. (a): Disturbances present everywhere.
(b): Disturbances introduced at xd = −11.0. The first row is the optimal placement for two actuators and
two sensors; the actuators are collocated.

bers are not precise, and are later refined using an iterative procedure. One common feature in
MIMO results is that if one actuator or sensor is placed near the optimal position, then the effect
of the other actuator or sensor placement on γ2 is generally not large.

8.4.2 Conjugate gradient minimisation

The optimal placement for different numbers of actuators and sensors, as found using conjugate
gradient minimisation, is shown in Figure 8.4(a) for disturbances present everywhere. The iterative
method more accurately puts the optimal SISO placement at xa = −1.03, xs = 0.98 and the
optimal two-actuator, two-sensor placement at xa = −3.78, 2.71, xs = −2.75, 3.74. An approximate
symmetry around x = 0 between actuator and sensor placement is apparent. Additionally, an simple
pattern exists for configurations with an equal number of actuators and sensors. The optimal
placement favors near-collocation of actuator and sensor pairs, with each actuator placed slightly
upstream of each sensor. This allows the sensors to measure the effect of the actuators without a
large time lag. As the number of actuators and sensors increases, the actuator-sensor pairs spread
out across the spatial domain, and the spacing within pairs becomes tighter. Figure 8.4(a) shows
that the placement of the pairs forms an orderly geometric pattern as the number of pairs increases.

A transfer function analysis of the controller gain K from y to u shows that the communication
between sensors and actuators primarily occurs within pairs, especially at higher frequencies. (See
(8.14) for the formulation of K.) This is illustrated in Figure 8.5, which supposes the optimally-
placed five-input, five-output system shown in the top row of Figure 8.4(a). These three plots show
the LQG gain from each sensor to each actuator, given that each sensor receives a signal exp (iωt).
At lower frequencies (Figure 8.5a), the gain from downstream sensors to upstream actuators is still
nontrivial. This feedback aids the performance of the upstream actuators. At higher frequencies,
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Figure 8.5: The LQG gain in the optimally-placed five-input, five-output system, shown in decibels. The
block in row j and column k shows the gain from a signal exp (iωt) in sensor k to actuator j, assuming that
the sensors and actuators are ordered from upstream to downstream. (a): At ω = 10−1; (b): at ω = 101;
(c): at ω = 103.

the primarily diagonal structure of the gain matrices indicates that communication outside the
pairs is weak. The diffusive nature of the Ginzburg–Landau operator dampens high frequency
oscillations, so such oscillations do not propagate effectively across large distances. Therefore,
high-frequency control is most effective within actuator-sensor pairs.

The optimal placements in the case of upstream disturbances are illustrated in Figure 8.4(b).
For the limited number of configurations tested, the optimal actuator and sensor placements are
upstream of the origin. In SISO control, the optimal placement is xa = −8.48 and xs = −5.55.
When employing one actuator and two sensors, the cost γ2 is very insensitive to the precise place-
ment of the downstream sensor. Moving that sensor’s location anywhere from x = −5 to 15 changes
γ2 by not more than 0.04%. Nevertheless, the combination of the upstream sensor near the distur-
bance source and the downstream sensor far in the wake allows for very accurate estimation in the
entire domain of interest. The optimal two-actuator, two-sensor placement collocates the actuators
and roughly reproduces the one-actuator, two-sensor placement. The fact that both actuators are
optimally placed near the disturbance source suggests that no other actuator location can be as
effective. Finally, we remark that the optimal two-actuator, one-sensor configuration is like the op-
timal SISO configuration, but it is possible to actuate near the disturbance source without causing
serious time delays.

For each actuator-sensor configuration, Figure 8.4 also tabulates the H2 norm γ2 from the
disturbances to the perturbation and input costs. As expected, γ2 decreases as the number of
actuators and sensors increases. This simply indicates that the control objective is easier to attain
when more actuators and sensors are available. In Figure 8.4(a), however, the decrease in γ2
tapers off when increasing the number of actuator-sensor pairs from one to five. Furthermore, in
Figure 8.4(b), the improvement to the base SISO case by adding one actuator is not as great as
the improvement by adding one sensor. In choosing the number of actuators and sensors to use,
an experimenter should consider a trade-off between how much the perturbation and input need
to be minimised, and how many actuators and sensors can be afforded. Other factors, such as the
way disturbances are introduced, also affect this decision. We may observe, for instance, that the
multiplicative reduction in γ2 from SISO to two-input, two-output control is more significant in
Figure 8.4(b) than in Figure 8.4(a).

8.4.3 Further remarks

When performing an iterative technique, it is important to note the computational effort required.
The linearised Ginzburg–Landau system presented here is accurately represented using only 100
states; however, iterating on higher-dimensional systems may be intractable if a large number of
function calls is required. A complete discussion on the computational effort required to minimise Γ2
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Table 8.2: Optimal placement, perturbation size, and input size for different β, with disturbances present
everywhere.

SISO two-actuator, two-sensor
β xa xs γq/β γu xa xs γq/β γu

1 −1.39 0.04 7.14 4.15 −3.25 3.17 −2.77 2.86 5.23 3.24
3 −1.02 0.92 6.59 6.33 −3.72 2.57 −2.79 3.65 4.86 4.69
7 −1.03 0.98 6.48 8.22 −3.78 2.71 −2.75 3.74 4.77 6.20
15 −1.04 1.01 6.44 11.1 −3.79 2.70 −2.73 3.77 4.74 8.30
50 −1.04 1.03 6.42 19.0 −3.80 2.70 −2.71 3.79 4.72 14.3

is beyond the scope of this paper. The effort would heavily depend on the choice of a minimisation
algorithm, its numerical tolerances, and the initial conditions chosen.

As previously mentioned, each evaluation of Γ2 requires solving two N -by-N Riccati equations
(8.13), and each evaluation of ∇Γ2 requires solving ma + ms N -by-N Lyapunov equations (8.20,
8.22). The bracketing function additionally requires a number of N -by-N Riccati solutions that
is generally a priori unknown. With the algorithms chosen, scaling experiments show that for
40 ≤ N ≤ 200, the CPU times of one Riccati solution and one Lyapunov solution both scale by
about N2.5. On a 2.66 GHz dual-core Core i7-620M processor, each Riccati solution requires about
150 milliseconds for N = 100, and each Lyapunov equation requires about 59 milliseconds. The
total number of equations to be solved depends heavily on the γ2 ({xa} , {xs}) topography and the
choice of tolerances and initial conditions. It suffices to state that the CPU time for convergence
increases significantly as the number of actuators and sensors increases.

For the results presented in this study, the γ2 ({xa} , {xs}) function topography is relatively
simple. Global minima can be found by guessing multiple initial conditions and checking for
common convergence. Performing a coarse brute force search also aids in picking good initial
conditions. Beyond these simple configurations, however, convergence to a global minimum can be
difficult. This is especially true when disturbances are only introduced upstream, or when unequal
numbers of actuators and sensors are used. Good initial conditions are particularly important in
these cases. Bad initial conditions may cause the iterator to converge very slowly, quit prematurely,
or fail to converge to the global minimum. A global minimisation technique such as simulated
annealing would then be necessary to ensure that a local minimum found is indeed the absolute
minimum.

The choice of cost matrices also affects the computed optimal placement. As aforementioned,
the vector costs used are j1 = Q

1
2 q and j2 = R

1
2 u, where Q

1
2 = βM

1
2 and R

1
2 = I. The positive

scalar β controls the balance between minimising q and minimising u. To quantify their sizes
individually, let γq be the H2 norm of the transfer function from w to j1, and let γu be the H2
norm of the transfer function from w to j2. These are calculated using the LFT formulation (8.15)
by respectively setting ZC =

[
C1 0

]
and ZC =

[
0 −D12F

]
, and computing

√
Γ2 by (8.16–8.17).

It can be shown that γ2
q + γ2

u = γ2
2 . A measure of the perturbation size is then given by γq/β, and

the input size by γu. For different choices of β, optimal positions and corresponding values of γq/β
and γu are listed in Table 8.2. (Note that the optimal controller and positions depend not on Q
and R individually, but rather only β.)

We immediately see that within a fairly large range of β, the optimal actuator and sensor
placement is robust to the exact choice of β. This is consistent with findings by Lauga and Bewley
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Figure 8.6: (a): Leading global and adjoint eigenmode magnitudes, for µ0 = 1.03µc. (b): Leading modes of
the observability and controllability Gramians (assuming full sensing and actuation), for µ0 = 0.96µc. The
region of amplification is shaded grey.

(2003). As expected, a larger β is more effective at reducing the perturbation magnitude, but
at a greater input expense. In practice, one would choose β based on this trade-off. We select
β = 7 because it maintains a small perturbation magnitude using reasonably-sized inputs. For a
discussion on the effect of β on the closed-loop eigenvalues of the Ginzburg–Landau system, consult
Lauga and Bewley (2004).

We also remark briefly that the controller designed from the linearised model is effective in the
full, nonlinear Ginzburg–Landau model. The cubic term in (8.1) always drives the state q towards
zero, aiding the controller in doing the same. Brief numerical experiments show, however, that the
optimal placement in the nonlinear model does not necessarily correspond with that of the linear
model. Further study is necessary to establish optimal placement in that case.

8.5 Comparison with previous approaches

We might naively believe that the optimal actuator and sensor placement could be determined
directly from a global mode analysis. In this analysis, we would place sensors where the most
unstable eigenmodes are large, so that growing disturbances would register a large output. Similarly,
we would place actuators where the most unstable adjoint eigenmodes are large. This is supported
by the fact that the LQG controller’s construction requires plant detectability and stabilisability
(Doyle et al., 1989). Bagheri et al. (2009) and Åkervik et al. (2007) used this approach for actuator
and sensor placement. While this method is plausible on intuitive grounds, it does not produce
optimal results. With global and adjoint modes given by equation (8.3), we find for µ0 = 1.03µc
that there is one unstable mode and one unstable adjoint mode (Bagheri et al., 2009). These
two mode magnitudes are bell curves, with peaks respectively at x = 7.28 and x = −7.28 (see
Figure 8.6(a)). If flow disturbances were introduced everywhere, and a sensor and actuator were
placed at these two points, then (8.18) would yield γ2 = 259. This is far from the optimal γ2 = 46.1
achieved by placing the actuator at xa = −1.03 and the sensor at xs = 0.98.

The global mode analysis fails to reveal the optimal placement because the linearised Ginzburg–
Landau operator is strongly non-normal. In general, the non-normality prevents global mode
analysis from accurately predicting transient growth (Bagheri et al., 2009). In this system, as
in Navier–Stokes systems, the disturbances that cause large transient growth are known not to
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correspond well with the most unstable eigenmodes (Trefethen et al., 1993). In principle, one
may be able to circumvent this issue in a stable system by placing an actuator where an optimal
harmonic forcing causes the greatest steady-state solution. The optimal harmonic forcing in the
adjoint system could also yield a sensor placement. Bagheri et al. (2009) performed a related
analysis in which the initial condition leading to the largest transient growth was sought. The
magnitude of this optimal initial condition was a bell curve centred near the upstream boundary
of the amplification region, and therefore would not yield the optimal actuator location. Consult
Trefethen et al. (1993) and Schmid and Henningson (2000) for more details.

A similar analysis could be done using controllability and observability Gramians of the uncon-
trolled system with full sensing and actuation. This system is governed by (A,B,C) representing

q̇ = Aq + Bd (8.25a)
y = Cq, (8.25b)

where B = I and C = M. The adjoint system is governed by
(
A+,C+,B+). Because of the uneven

grid spacing, the adjoint is not the same as the complex conjugate (Bagheri et al., 2009); rather,

A+ = M−1A∗M (8.26a)
B+ = B∗M (8.26b)
C+ = M−1C∗. (8.26c)

The controllability Gramian Wc and the observability Gramian Wo are the solutions to the Lya-
punov equations

AWc + WcA+ + BB+ = 0 (8.27a)
A+Wo + WoA + C+C = 0. (8.27b)

In this analysis, we expect the leading eigenvector of Wc to be large where the state is sensitive
to the disturbance d; this would appear to be a good place to put a sensor. Similarly, we expect
the leading eigenvector of Wo to be large where the uncontrolled dynamics are most sensitive to
perturbations; this would appear to be a good place to put an actuator. These eigenvectors are
shown in Figure 8.6(b) with µ0 = 0.96µc, since Gramians are only well-defined for globally stable
systems.

Once again, we find that this analysis does not correctly predict the optimal SISO placement.
For this subcritical Ginzburg–Landau system, the optimal placement is xa = −0.98 and xs = 0.95,
yielding γ2 = 42.8. The Gramian analysis, on the other hand, predicts xa = −7.0 and xs = 7.0,
yielding γ2 = 188. This analysis fails because Gramians, by construction, decouple actuation from
sensing. This is apparent from (8.27). When actuation and sensing are decoupled, the convective
nature of information propagation is completely ignored. Placing the sensor so far downstream of
the actuator effectively introduces a large time lag in the feedback control.

A method proposed by Giannetti and Luchini (2007) yields a better estimate of the optimal
actuator and sensor placement when disturbances are present everywhere. Giannetti and Luchini
define the “wavemaker” region as the part of the domain where

ζ (x) = φ0 (x) ψ̄0 (x)
〈φ0, ψ0〉

(8.28)
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Figure 8.7: The global and adjoint mode overlap |ζ (x)| for the unstable mode. The region of amplification
is shaded grey.

has a large magnitude, given a global mode φ0 and adjoint mode ψ0; see (8.3). They employed a
perturbation technique to show that in this wavemaker region, a change in A creates the largest
possible change in the corresponding eigenvalue λ0. As a validation of their theory, Giannetti and
Luchini showed good agreement between the wavemaker region of the unstable cylinder wake and
the effective placement of passive actuation in Strykowski and Sreenivasan (1990). Although we
do not seek to change A, the wavemaker region nevertheless indicates a region of high dynamical
sensitivity (Chomaz, 2005). In such a region, an actuator has a powerful influence on the flow, and
localised feedback is effective. Lauga and Bewley (2004) used the wavemaker to determine their
actuator and sensor placement, and reported effective H∞ control.

As shown in Figure 8.7, the unstable global mode has the largest overlap with its corresponding
adjoint mode at x = 0 when µ0 = 1.03µc. Therefore, we propose that placing actuators and sensors
near the origin is a sensible initial condition for iterative function minimisation. Although this
is a crude approximation for optimal placement, it remains more accurate than global mode and
Gramian analyses.

8.6 Conclusion

The linearised Ginzburg–Landau equation is a simple model describing the temporal and spatial
evolution of small flow perturbations. In this paper, we control the linearised Ginzburg–Landau
equation by establishing a standard LTI state space with some number of actuators and sensors. We
perform a perturbation analysis on the continuous algebraic Riccati equations that determine the
H2 optimal controller. From this, we derive a formulation for the gradient of the controlled system’s
H2 squared norm. This formulation, which is similar to but more efficient than the formulation of
Hiramoto et al. (2000), is applicable to any LQG-controlled system where actuation and sensing
matrices are to be optimised. We use conjugate gradient function minimisation to iterate toward
the linearised Ginzburg–Landau system’s optimal actuator and sensor placement. This is but one
example of how the perturbation theory can be used.

The conjugate gradient results agree with brute force mappings of the H2 norm over a large
domain. When one actuator and sensor are available, and flow disturbances are introduced every-
where, the optimal placement is xa = −1.03 and xs = 0.98 for the LQG cost matrices chosen. The
brute force mappings show that there exist penalties for placing the actuator too far downstream,
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the sensor too far upstream, or the actuator too far upstream of the sensor. When an equal num-
ber of actuators and sensors is employed, it is optimal to place actuators and sensors in distinct
pairs. Each actuator is slightly upstream of the corresponding sensor, and pairs are distributed
throughout the region of amplification. We show that the optimal placement is relatively robust to
the precise scaling of cost matrices.

When the disturbance is centred at xd = −11.0, the optimal placement is xa = −8.48 and
xs = −5.55. Optimal MIMO placements are upstream of the origin, but no clear patterns emerge.
Regardless of the way disturbances are introduced, the control system’s performance increases by
adding more actuators and sensors, but the increase may not be significant. When optimising the
control performance in an experimental setup, for instance, a greater improvement may be achieved
by tuning the existing actuator and sensor placements than by simply adding more actuators and
sensors.

The process of finding the optimal placement in the linearised Ginzburg–Landau system is
completely tractable on a modern computer. Convergence to the global optimum can be difficult,
however, when an unequal number of actuators and sensors is used, or when the flow disturbances
are only introduced upstream.

Although global mode and Gramian analyses are standard techniques in LTI systems, neither is
able to reproduce the optimal actuator and sensor placement. Both roughly suggest xa = −7 and
xs = 7, yielding an H2 norm four to six times larger than the true minimum when disturbances are
present everywhere. The global mode analysis fails because the underlying dynamics are strongly
non-normal, and the Gramian analysis fails because it inherently decouples actuation from sensing.
On the other hand, we propose that wavemaker analysis is a better way to seek the optimal
placement. Although it does not immediately yield the optimal placement, it provides a sensible
guess of xa = xs = 0.0. This is a good initial condition for iterative minimisation.

The methods and results presented may be extended to two- or three-dimensional flow control
problems. In such cases, the state size would likely be so large that Riccati and Lyapunov solutions
would be computationally intractable. Therefore, each evaluation of the H2 norm and its gradient
would likely require the construction of a reduced-order model, for instance using balanced proper
orthogonal decomposition or the eigensystem realisation algorithm (Ma et al., 2011). Alternatively,
iterative methods that bypass the model reduction process may be preferred (Bewley et al., 2011).
Potentially faster minimisation algorithms, such as quasi-Newton iteration, may also be substituted
(Press et al., 2007). We posit that with such techniques, optimisation of actuator and sensor place-
ment in Navier–Stokes systems should remain computationally tractable using high-performance
computing.

This work was supported by the National Science Foundation, grant CMMI-0932928, and K. K.
C. received support from the United States Department of Defense (DOD) through the National
Defense Science & Engineering Graduate (NDSEG) Fellowship Program. We thank Prof. Tim
Colonius, Prof. Paolo Luchini, Shervin Bagheri, and Miloš Ilak for guidance and advising.
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Chapter 9

Fluid flow control applications of H2
optimal actuator and sensor
placement
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In the control of distributed parameter systems, the problem of effective actuator and sensor place-
ment is not well understood, and the use of suboptimal placement methodology is common. We
discuss a technique we recently proposed that iterates toward the optimal actuator and sensor place-
ment for H2 synthesis, minimizing the closed-loop H2 norm from exogenous inputs to exogenous
outputs. The iteration is based on an efficient computation of the H2 norm’s gradient with respect
to actuator and sensor placements. We demonstrate the technique on the Orr–Sommerfeld/Squire
model of fluid flow, and review previous results from the linearized Ginzburg–Landau model. Fi-
nally, we use these results to analyze the validity of previous placement approaches.

9.1 Introduction

Historically, few studies have focused on actuator and sensor placement within distributed pa-
rameter systems, which can have as large an impact as controller design. Some work has focused
specifically on optimal actuator and sensor placement for flexible structure control; see, for instance,
Hiramoto et al. (2000). In vibration dynamics, however, the governing linear operator is typically
normal (i.e., it commutes with its adjoint). The techniques in that subset of literature tend not to
carry well into non-normal systems, of which fluid flows are a key example. Recent work, such as
Morris (2011) and Darivandi et al. (2013), discusses optimal linear quadratic actuator placement in
a more general setting, but these works also have limitations; for instance, they treat actuator and
sensor placement independently of each other. The latter article is based on a method (Geromel,
1989) that converts the generally non-convex placement problem into a convex one, but only if the
actuator location is modeled in a particular discrete way.

In flow control, an early study (Strykowski and Sreenivasan, 1990) placed a small cylinder in
the wake of a larger cylinder, and plotted the placements where the passive control stabilized wake
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Figure 9.1: Lower linear fractional transform G.

oscillations. Later, Giannetti and Luchini (2007) discovered that the placements in Strykowski and
Sreenivasan (1990) correspond to the so-called “wavemaker” region where the direct and adjoint
eigenmodes of the fluid dynamical operator overlap. Similar studies (Roussopoulos, 1993; Lauga
and Bewley, 2003) also obtained effective control with actuators and sensors in this general region.

Nonetheless, it is easy to overlook the rigorous methodology and justification of actuator and
sensor placement. Two studies employing linear quadratic Gaussian control (Åkervik et al., 2007;
Bagheri et al., 2009) each placed an actuator and sensor where the leading adjoint and direct eigen-
modes are respectively large. Although stabilizability and detectability are crucial requirements for
any control design, eigenmodes generally fail to predict optimal placements when the dynamical
operator is non-normal (Chen and Rowley, 2011).

This study discusses a technique for seeking the H2 optimal actuator and sensor placement in a
systematic way. The H2 optimal placement is defined as the actuator and sensor locations in space
that—given the H2 synthesis—minimizes the H2 norm of the closed-loop dynamics from exogenous
inputs to exogenous outputs. Therefore, it is the placement that minimizes the average closed-loop
response over all linear time-invariant controllers, actuator positions, and sensor positions.

Our computational technique, which Chen and Rowley (2011) introduced and Colburn et al.
(2011) improved, computes the gradient of the closed-loop H2 norm with respect to actuator and
sensor positions. This technique is a more efficient variation of Hiramoto et al. (2000), which focuses
on flexible structure control. It is also similar to Lou and Christofides (2003), which uses a more
primitive control design. The gradient allows efficient local optimizations of actuator and sensor
positions. We review the optimal placement results for the linearized Ginzburg–Landau model of
fluid flow from Chen and Rowley (2011), and present new results for the Orr–Sommerfeld/Squire
equations.

This paper is organized as follows. Section 9.2 presents the procedure for computing the H2
norm’s gradient. Section 9.3 demonstrates the technique on the two fluid flow models, and Sec-
tion 9.4 compares the results to approaches that others have previously used to justify actuator
and sensor placement. Finally, Section 9.5 summarizes the results of the paper.

9.2 Theory

9.2.1 H2 synthesis

Since H2 synthesis is a standard topic in many texts, we only provide a very concise review.
Following the standard matrix notation, we assume that the plant P in the lower linear fractional
transform (Figure 9.1) is  q̇

z
y

 =

 A B1 B2
C1 0 D12
C2 D21 0


 q

w
u

 , (9.1)
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and that the matrices in this system obey the standard conditions for H2 synthesis, i.e., as specified
in Doyle et al. (1989). To avoid rescaling w and z, however, we do not require that D12 and D21
be restricted to concatenations of the zero and identity matrices.

To solve the H2 synthesis, first solve for the positive-definite matrices X and Y in the continuous
algebraic Riccati equations (CAREs)

AHX + XA−XB2(DH
12D12)−1BH

2 X + CH
1 C1 = 0 (9.2a)

AY + YAH −YCH
2 (D21DH

21)−1C2Y + B1BH
1 = 0, (9.2b)

where (·)H denotes the conjugate transpose. With the matrices F = (DH
12D12)−1BH

2 X and L =
YCH

2 (D21DH
21)−1, the H2 synthesis controller K is[

ż
u

]
=
[

A−B2F− LC2 L
−F 0

] [
z
y

]
. (9.3)

The squared norm of the closed-loop system in Figure 9.1 is then

‖G‖22 = tr(CH
1 C1Y) + tr(C2YXL) (9.4a)

= tr(B1BH
1 X) + tr(FYXB2). (9.4b)

The objective of this research is to find the actuator and sensor placements that minimize this
quantity.

9.2.2 The gradient of the H2 norm

This section generalizes and expands our previous work (Chen and Rowley, 2011). We assume
that the actuation matrix B2 is a differentiable function of r continuous scalar parameters {ξj}rj=1.
Likewise, we assume the same for the sensing matrix C2 and p parameters {ηk}pk=1. The goal
of this theory is to compute the derivative of ‖G‖2 with respect to each ξj and ηk, to aid in the
minimization of (9.4). In the applications that follow, these parameters are the actuator and sensor
locations, but this assumption is not necessary in the general theory.

Using d(·)j as a shorthand notation for ∂(·)/∂ξj , the differentiation of (9.2a) by ξj yields the
Lyapunov equation

(A−B2F)HδX + δX(A−B2F) = X δB F + FH δBH X. (9.5)

This linear equation for the unknown δX is easier to solve than a CARE (9.2). The differentiation
of (9.4a) then yields

∂‖G‖22
∂ξj

= tr(C2Y δX L). (9.6)

The computation of ∂‖G‖22/∂ηk is exactly analogous.
This procedure requires the solution of r+ p Lyapunov equations per gradient. A related study

(Colburn et al., 2011) illustrated an improvement that reduces this number to two, regardless of r
and p. Define the linear operators

S(δX) = (A−B2F)HδX + δX(A−B2F) (9.7a)
T(δB) = X δB F + FH δBH X (9.7b)
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so that the Lyapunov equation (9.5) is S(δX) = T(δB). Define the trace inner product 〈Z1,Z2〉tr =
tr(ZH

2 Z1), so that the adjoint of S is

S∗(φ) = (A−B2F)φ+ φ(A−B2F)H. (9.8)

Thus, if we solve the Lyapunov equation

S∗(φ) = LC2Y (9.9)

exactly once for φ, then it follows from (9.6) that

∂‖G‖22
∂ξj

= 〈S∗(φ), δX〉tr (9.10a)

= 〈φ,S(δX)〉tr (9.10b)
= 〈φ,T(δB)〉tr . (9.10c)

Again, the procedure for ∂‖G‖22/∂ηk follows the same way.

9.2.3 Remarks

The above gradient formulation provides a tangible improvement over naive finite differencing in
the ξj-ηk space. It is about 2(r + p) times faster (independent of matrix size), and is exact up to
roundoff error.

We also remark that in the application of the H2 norm gradient to actuator and sensor place-
ments, (9.1) is typically a spatial discretization of a distributed parameter (i.e., partial differential
equation, or PDE) system. In this context, Jones and Kerrigan (2010) discuss a theory that deter-
mines if the spatial discretization is acceptable for control stability or performance.

Finally, the ‖G‖22({ξj}, {ηk}) surface tends to be non-convex in optimal placement applications.
In our examples, however, a coarse search of the ‖G‖22 space is sufficient for determining a good
initial condition for local minimization.

9.3 Examples

9.3.1 Overview

In this section, we use the theory of Section 9.2 to seek the optimal actuator and sensor placements
in the linearized Ginzburg–Landau and the Orr–Sommerfeld/Squire models of fluid flow. In the
discretized state space (9.1), A is the spatial discretization of the PDE operator L defining the
flow model q̇ = L q, and q is the value of the dependent variable q at discrete nodes. To obtain
accurate discrete-space models, we employ pseudospectral differentiation with software based on
Weideman and Reddy (2000).

Let us denote the r actuator positions by {xa
j}rj=1 and the p sensor positions by {xs

k}
p
k=1. In

the discretized state space models (9.1), the actuation matrix is B2 =
[
b1 · · · br

]
, where bj

represents exp(−(x − xa
j )2/(2σ2))/(

√
2πσ) at the polynomial nodes, and σ is a given Gaussian

width. Since the nodes are unevenly spaced, we also introduce the weighting matrix H so that
fH
2 Hf1 is the trapezoidal approximation of the inner product

〈f1, f2〉 =
∫

Ω
f̄2(x)f1(x) dx (9.11)
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over the domain Ω, where (·) denotes the complex conjugate. We set C2 =
[
c1 · · · cp

]H
H,

where ck represents exp(−(x − xs
k)2/(2σ2))/(

√
2πσ) at the polynomial nodes. We pick a small σ

to approximate point actuation and sensing.
We assume a standard linear quadratic Gaussian problem. Thus, with a state cost Q, input

cost R, state disturbance covariance W, and sensor noise covariance V,

B1 =
[
W1/2 0

]
, C1 =

[
Q1/2

0

]
, (9.12a)

D12 =
[

0
R1/2

]
, D21 =

[
0 V1/2

]
. (9.12b)

Here, we focus primarily on the general effects of external disturbances on the flow behavior. Thus,
we choose Q and W to be effectively constant in space, and R and V to be respectively small
compared to Q and W. As long as we weight the state cost and state disturbance more heavily
than we weight the input cost and sensor noise, the optimal placements in fluid flow models tend
to be robust to the actual weights we choose; see Chen and Rowley (2011).

9.3.2 The linearized Ginzburg–Landau system

This section is based on our earlier work (Chen and Rowley, 2011), which contains a more complete
discussion.

The linearized Ginzburg–Landau equation models the behavior of small fluid perturbations near
a Hopf bifurcation. Letting x ∈ R be the primary direction of the fluid flow, and choosing some
µ(x) : R→ R, ν ∈ C, and γ ∈ C, the linearized Ginzburg–Landau operator is

L = µ(x)− ν ∂
∂x

+ γ
∂2

∂x2 . (9.13)

The state variable is q(x, t) : R×R→ C, and Re(q) represents a velocity perturbation in the flow.
The boundary conditions are that q → 0 as x→ ±∞. For a comprehensive review of the equation
and its control, see Bagheri et al. (2009). We choose µ(x) = 0.37 − 5 · 10−3x2, ν = 2 + 0.4i (with
i the imaginary unit), and γ = 1 − i, as in Bagheri et al. (2009) and Chen and Rowley (2011).
This system is highly convective in the positive x direction, and the amplification region—where
µ(x) > 0—is [−8.60, 8.60]. The system is also strongly non-normal, which will be important in
Section 9.4. For this model, σ = 0.4.

To model L in discrete space, we compute nodes and differentiation matrices with Hermite
polynomials. Letting Dn denote the nth spatial Hermite pseudospectral derivative on the Hermite
nodes x1, . . . , xm, the discrete operator is A = diag(µ)−νD1+γD2. Also, we choose Q1/2 = 7H1/2,
R1/2 = I, W1/2 = I, and V1/2 = 2 · 10−4I. With m = 100 grid points, the leading eigenvalues of A
match the analytic eigenvalues of L presented in Bagheri et al. (2009), and the optimal placement
results are well-converged.

Figure 9.2(a) depicts values of ‖G‖2 in a “brute force” search for the optimal placement by dense
sampling, with one actuator and one sensor. The optimal placement is an actuator at xa = −1.03
and a sensor at xs = 0.98, yielding ‖G‖2 = 46.1. Figure 9.2(b) depicts a special case where the flow
disturbance is introduced only at an upstream point, xd = −11.0. Here, W1/2 is the m× 1 vector
discretizing exp(−(x−xd)2/(2σ2))/(

√
2πσ). The optimal placement in this case is xa = −8.48 and

xs = −5.55, yielding ‖G‖2 = 3.86.
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Figure 9.2: (a) Contours of log10 ‖G‖2 and the optimal placement (×) for the linearized Ginzburg–Landau
system. The contour levels are 2, 2.5, . . . . The amplification region is shaded gray. Direction vectors
of ∇‖G‖2 are overlaid as a demonstration. (b) As (a), but with flow disturbances introduced only at
xd = −11.0. The contour levels are 1, 1.5, . . . .
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Figure 9.3: (a) Optimal actuator and sensor placements in the linearized Ginzburg–Landau system. Each
row shows the solution for a different number of actuators and sensors. The amplification region is shaded
gray. Values of ‖G‖2 are shown on the right. (b) As (a), but with flow disturbances introduced only at
xd = −11.0. The top row has two collocated actuators.

In both cases, we point out three patterns. First, placing the actuator too far downstream leads
to poor control. Since the Ginzburg–Landau system is highly convective, the actuator would be
unable to influence much of the domain. Second, placing the sensor too far upstream also leads to
poor control, since the disturbances it would detect would not primarily be the ones undergoing
amplification. Third, placing the actuator too far upstream of the sensor is also detrimental,
because it would effectively introduce a time lag in P from u to y. With an upstream disturbance
(Figure 9.2(b)), the steep increase in ‖G‖2 upstream of the optimal sensor position indicates that
the optimal position is very non-robust. This phenomenon occurs because a plant zero crosses into
the right-half plane.

Although dense sampling yields insight into the efficacy of placements, it quickly becomes in-
tractable as the number of actuators and sensors increases. Employing the gradient of Section 9.2.2
in a Broyden–Fletcher–Goldfarb–Shanno quasi-Newton algorithm, we compute the optimal place-
ments for varying numbers of actuators and sensors; see Figure 9.3(a).
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The resulting pattern is immediately obvious: it is optimal to place actuators and sensors
in pairs—with each sensor slightly downstream of its corresponding actuator—and scatter these
pairs throughout the amplification region. With the flow disturbance injected only at xd = −11.0
(Figure 9.3(b)), the pattern is less obvious. Although it may seem intuitive to place a single sensor
at the disturbance source, this actually leads to very poor control, because small estimation errors
would enlarge greatly in the amplification region. Instead, it is more effective to put the single
sensor in the amplification region. Only if a second sensor is available should it be located close to
the disturbance source. As in Figure 9.3(a), actuators should not be too far upstream of sensors.

9.3.3 The Orr–Sommerfeld/Squire system

The Orr–Sommerfeld and Squire equations are also PDEs in one spatial dimension and in time. In
this case, however, the spatial direction is transverse to, not aligned with, the dominant direction
of the fluid flow. Let y ∈ R be the transverse direction, α ∈ R be a streamwise wavenumber, β ∈ R
be a spanwise wavenumber, and k =

√
α2 + β2. Also, let u0(y) be the streamwise velocity of a base

flow, and Re be the Reynolds number relating the velocity, length, density, and viscosity scales of
the flow. The Orr–Sommerfeld/Squire operator dictates the vertical velocity perturbation mode
amplitude v(y, t) : R×R→ C and the vertical vorticity (i.e., velocity rotation) perturbation mode
amplitude ω(y, t) : R× R→ C by

L :
[
∂2/∂y2 − k2 0

0 1

] [
v
ω

]
7→
[

LOS 0
−iβu′0 LS

] [
v
ω

]
, (9.14a)

where

LOS = iα

(
u′′0 − u0

(
∂2

∂y2 − k
2
))

+Re−1
(
∂4

∂y4 − 2k2 ∂
2

∂y2 + k4
)

(9.14b)

LS = −iαu0 +Re−1
(
∂2

∂y2 − k
2
)
. (9.14c)

The Orr–Sommerfeld and Squire systems are respectively the top and bottom rows of (9.14a). At
the endpoints of the domain, v = v′ = ω = 0. For more information about the equations and their
stability analyses, consult Schmid and Henningson (2000).

In this example, our base flow of interest is the “plane Poiseuille” flow through a channel
bounded by y = ±1, but is infinite in the streamwise and spanwise directions. The velocity profile
is u0(y) = y2 − 1, and we choose σ = 0.047.

We model the Orr–Sommerfeld/Squire systems in discrete space using Chebyshev polynomials
on the domain y ∈ [−1, 1]. With Dn representing the nth Chebyshev pseudospectral derivative
matrix, and U0, U′0, and U′′0 representing u0(y), u′0(y), and u′′0(y) on the Chebyshev nodes as
diagonal matrices, the discrete operator in (9.1) is

A =
[
(D2 − k2I)−1AOS 0

−iβU′0 AS

]
, (9.15a)

where

AOS = iα(U′′0 −U0(D2 − k2I)) +Re−1(D4 − 2k2D2 + k4I) (9.15b)
AS = −iαU0 +Re−1(D2 − k2I). (9.15c)
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Figure 9.4: (a) Contours of log10 ‖G‖2 and the optimal placements (+) for the decoupled Orr–Sommerfeld
system. The contour levels are 1.55, 1.6, 1.7, 1.8, 2.0, 2.2, 2.6, 3.0. (b) As (a), but for the decoupled Squire
system. The contour levels are 0.47, 0.48, . . . , 0.51.

Since the combined system includes both v(y, t) and ω(y, t), the discrete-space state vector is
q =

[
vH ωH

]H
, with v and ω respectively representing v(y, t) and ω(y, t). The actuation matrix

B2 is similarly vertically stacked, and the sensing matrix C2 is horizontally stacked; each actuator
and sensor acts on only one of v and ω. The state penalty matrix is

Q1/2 =
[
H1/2 0

0 H1/2

]
, (9.16)

and R1/2 = I, W1/2 = I, and V1/2 = 0.1I. With 125 nodes, the leading eigenvalues of A match
Fig. 3.1 of Schmid and Henningson (2000), and the optimal placements are well-converged.

We consider three sets of parameters in this section. When Re = 104, α = 1, and β = 0, (9.14)
models velocity and vorticity modes that oscillate in the streamwise direction, with no dependence
along the span of the flow. In this special case, (9.14a) decouples into the Orr–Sommerfeld (9.14b)
and Squire (9.14c) systems. Therefore, we treat the actuator and sensor placements separately for
each system.

In the decoupled Orr–Sommerfeld system (Figure 9.4(a)), the optimal placement is ya = ±0.709
and ys = ∓0.017, with ‖G‖2 = 31.8. (Note that the dynamics (9.14) are symmetric about y = 0.)
The actuator placement ya = 0 is ineffective because it has little or no authority over many of the
leading adjoint eigenmodes of (D2 − k2I)−1AOS. In the decoupled Squire system (Figure 9.4(b)),
the optimal placement is ya = ys = 0.000, with ‖G‖2 = 2.92. Simulations of the uncontrolled Squire
system show that the point y = 0 acts like a “wavemaker,” sending waves toward y = ±1. Since
waves propagate away from the origin, actuator and sensor placements away from this point are
ineffective. We also comment that in this decoupled case, the Orr–Sommerfeld system is somewhat
non-normal, but the Squire system is very close to normal.

In the next case, we consider Re = 104, α = 0, and β = 1. This corresponds to “streamwise
streaks” that oscillate in the spanwise direction, but are constant in the streamwise direction. Fur-
thermore, this system is strongly non-normal. Because the Orr–Sommerfeld/Squire systems (9.14a)
are now coupled, we place one actuator and one sensor in the Orr–Sommerfeld system, and an-
other of each in the Squire system. The optimal placement is ya = ±0.443 and ys = ∓0.486
in the Orr–Sommerfeld domain, and ya = ∓0.485 and ys = ±0.481 in the Squire domain; here,
‖G‖2 = 539.
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Figure 9.5: (a) Leading direct (solid blue) and adjoint (dashed red) mode magnitudes of the decoupled Orr–
Sommerfeld system, corresponding to the eigenvalue λ = 0.004 − 0.238i. (b) As (a), but for the decoupled
Squire system; λ = −0.007− 0.993i. The direct and adjoint parts overlap.

Finally, we consider Re = 5 · 103 and α = β = 1. The optimal placement is ya = ±0.628
and ys = ±0.293 in the Orr–Sommerfeld domain, and ya = ∓0.728 and ys = ∓0.399 in the Squire
domain; ‖G‖2 = 103 in this case.

9.4 Comparison with previous approaches

9.4.1 Eigenmode analysis

Naively, it may seem natural to place sensors where direct eigenmodes of L are large, and actuators
where the adjoint eigenmodes (as induced by (9.11)) are large. This seems reasonable in the sense
that all control requires detectability and stabilizability. This is the approach that Åkervik et al.
(2007) and Bagheri et al. (2009) use.

In the decoupled Orr–Sommerfeld/Squire system, where Re = 104, α = 1, and β = 0,
this method appears to be reasonably effective. As shown in Figure 9.5(a), it predicts an Orr–
Sommerfeld optimal placement of ya = ±0.85 and ys = 0, which is close to the true optimum
ya = ±0.709 and ys = ∓0.017. In the Squire system (Figure 9.5(b)), it exactly predicts the true
optimum ya = ys = 0.

Nonetheless, our previous work (Chen and Rowley, 2011) shows that this approach generally
leads to suboptimal placements. The most unstable direct and adjoint eigenmodes of the linearized
Ginzburg–Landau system are shown in Figure 9.6(a). This naive method predicts an optimal
placement of xa = −7.28 and xs = 7.28, which is far from the true optimum xa = −1.03 and xs =
0.98. In the coupled Orr–Sommerfeld/Squire systems, the leading direct and adjoint eigenmodes
also poorly predict the optimal placements, but we do not show these modes here.

There are at least two significant reasons for the eigenmode analysis’ typical failure. First,
eigenmodes of non-normal operators tend to be nearly parallel. As a result, they generally fail
to reveal the transient behavior of the operator (Schmid and Henningson, 2000). Thus, even if
control at the eigenmode-based actuator and sensor placements is able to stabilize the dynamics
for large times, they may not be able to suppress transient growths to any significant degree. This
explains why the eigenmode analysis works well for the almost-normal decoupled Squire system,
and somewhat well for the slightly-non-normal decoupled Orr–Sommerfeld system, but fails for the
strongly non-normal Ginzburg–Landau and coupled Orr–Sommerfeld/Squire systems.

The second reason for the eigenmode analysis’ failure is that actuator and sensor placement are
inherently coupled problems, and we should not expect to be able to solve them independently.
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Figure 9.6: (a) As Figure 9.5(a), for the leading mode of the Ginzburg–Landau system, corresponding to the
eigenvalue λ = 0.012 − 0.648i. The amplification region is shaded gray. (b) The corresponding sensitivity
magnitude |ζ(x)|.

This is particularly the case in the Ginzburg–Landau system, where x is in the direction of a highly
convective flow. The eigenmode analysis places the actuator 14.6 units upstream of the sensor,
because the non-normality creates a large separation between direct and adjoint eigenmodes. With
an advection velocity of Re(ν) = 2.0, this essentially creates a large time lag of 7.3 time units
between the actuator and the sensor in the plant P.

9.4.2 Gramian analysis

A Gramian argument similar to the eigenmode analysis is also possible (Ma et al., 2011). Consider
a modified plant q̇ = Aq + Bd, y = Cq, where A is stable, B = I, and C = H. Essentially, we
let external disturbances affect the uncontrolled plant uniformly, and the plant yields an integrated
measure of the state size. To construct the Gramians, we use the adjoint matrices A∗ (representing
L ∗, the adjoint of L by (9.11)), along with B∗ = BHH and C∗ = H−1CH.

Intuitively, the leading eigenmodes of the controllability Gramian would indicate the regions in
space where the state responds most to external disturbances, and this might yield a good sensor
placement. Similarly, the leading eigenmodes of the observability Gramian would indicate the
regions in space where perturbations in the state affect the integrated output the most, and this
might yield a good actuator placement.

We experiment with a stable Ginzburg–Landau system, with µ(x) = 0.34 − 5 · 10−3x2 and all
other parameters unchanged. We also test a stable decoupled Orr–Sommerfeld/Squire system, with
Re = 5 · 103, α = 1, and β = 0. In both cases, the leading Gramian eigenmodes are close to the
leading eigenmodes of L (cf. Figures 9.5, 9.6(a) with unstable parameters). Therefore, Gramian
eigenmodes are similarly unable to predict optimal placements. As with Section 9.4.1, the Gramian
analysis decouples the actuator and sensor placement problems; it ignores the way actuators feed
back into sensors via the plant dynamics.

9.4.3 Sensitivity analysis

We posit that an eigenvalue sensitivity analysis (Giannetti and Luchini, 2007; Schmid and Hen-
ningson, 2000, Ch. 3.3.2) may yield a viable heuristic for predicting optimal actuator and sen-
sor positions. If the direct eigendecomposition L φ(x) = λφ(x) and adjoint eigendecomposition
L ∗ψ(x) = λ̄ψ(x) are given, then an infinitesimal perturbation of L in the former yields

L dφ+ dL φ = λ dφ+ dλφ. (9.17)
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Taking an inner product (9.11) of the above and ψ, and rearranging the terms, we obtain the
eigenvalue sensitivity

dλ = 〈dL φ, ψ〉
〈φ, ψ〉

. (9.18a)

Let us assume that dL = δ(x − ξ) ds, i.e., the operator perturbation dL is a localized change in
the dynamics at the point x = ξ. For instance, the change could be the application of localized
feedback control. Then, we can define the sensitivity distribution

ζ(ξ) = dλ

ds
(ξ) = ψ̄(ξ)φ(ξ)

〈φ, ψ〉
. (9.18b)

Essentially, we expect localized feedback control to be effective in the “wavemaker”-like region
where ζ(x) is large, and less so where ζ(x) is small.

Following this analysis, we find that the function ζ(x) for the Ginzburg–Landau operator’s
unstable eigenvalue is largest at x = 0; see Figure 9.6(b). Given our foreknowledge that the
optimal placement in the Ginzburg–Landau system involves placing actuators and sensors in pairs
around x = 0, the sensitivity analysis appears to be successful.

The analysis is not as useful, however, on the Orr–Sommerfeld/Squire system. With the ex-
ception of the decoupled Squire equation, the optimal actuator and sensor placements are neither
collocated nor nearly so. Therefore, we cannot predict the optimal placement using the above
formulation. We are currently investigating heuristics that are applicable in this case.

9.5 Conclusion

In this paper, we consider the H2 optimal control of a distributed parameter system, where the
actuator and sensor locations can be tuned in space. We present an efficient technique for computing
the gradient of the closed-loop system’s squared H2 norm with respect to actuator and sensor
locations. The gradient requires the solution of two Lyapunov equations; therefore, it is easier to
solve than the H2 synthesis itself.

We then demonstrate the technique by iteratively solving the optimal actuator and sensor
placements in the linearized Ginzburg–Landau and the Orr–Sommerfeld/Squire equations. The
eigenmode and Gramian analyses are able to predict the optimal location only when the dynamics
are almost normal. On the other hand, the eigenvalue sensitivity analysis may be able to predict
the optimal location in some scenarios when actuators and sensors are collocated, or nearly so.

This work was supported by the National Science Foundation, and the first author was supported
by a Department of Defense National Defense Science & Engineering Graduate fellowship.
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sensor placement in feedback flow
control
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Actuator and sensor placement can be just as consequential for the performance of localized feed-
back flow control as controller design. Yet, effective placement is not well understood, and the use
of suboptimal placements is common. This manuscript reports descriptions and characteristics of
effective actuator and sensor placements for optimal flow control. We review H2 optimal placements
in the linearized Ginzburg–Landau and Orr–Sommerfeld/Squire models of fluid flow. We then ana-
lyze the feedback control of these models by relating physical observations with mathematical tools.
Although these tools do not fully predict optimal placements, they do reveal patterns that most
or all effective placements share. Most notably, effective actuator–sensor placements provide good
authority over unstable modes and transient growth, and avoid large time lags between inputs and
outputs.

10.1 Introduction

Every application of feedback flow control must address a basic question: where should the actuators
and sensors be located in the flow? This placement can impact the control performance just as
much as the controller dictating actuation signals from sensor signals. By and large, research in
actuator and sensor placement has trailed behind research in controller design. To fill this gap, this
manuscript attempts to characterize effective placements for flow control.

A full review of actuator and sensor placement would be too expansive to provide here. In-
stead, we discuss varying points of view from which different communities have tackled this problem.
Control theorists often approach placement theory in ways that are broadly applicable to partial
differential equation systems (van de Wal and de Jager, 2001). Much of this research focuses on
algorithms for optimizing actuator and sensor locations, but many key aspects are still unsolved.
For instance, Morris (2011) and Darivandi et al. (2013) provide algorithms for converging toward
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optimal actuator placements, but do not simultaneously solve for optimal sensor placements. The
flexible structures community has put forth a sizable body of research (e.g., Hiramoto et al., 2000;
Güney and Eşkinat, 2008), but the structures’ governing dynamics are typically described by normal
linear operators, and are therefore better behaved than those of fluid flows, for which the linearized
dynamics are often highly non-normal. In fluid mechanics, a number of researchers (Roussopoulos,
1993; Gillies, 2001; Lauga and Bewley, 2003; Giannetti and Luchini, 2007; Chen and Rowley, 2011)
have corroborated the hypothesis that control is especially effective when actuators and sensors
reside in absolutely unstable, or “wavemaker,” regions. Nevertheless, few have described effective
actuator and sensor placements in general frameworks, and guess-and-check (e.g., Roussopoulos,
1993; Gillies, 2001; Strykowski and Sreenivasan, 1990) and other suboptimal placement method-
ologies (e.g., Åkervik et al., 2007; Bagheri et al., 2009) remain common.

The purpose of this manuscript is to provide qualitative characterizations of effective actuator
and sensor placements in linear time-invariant (LTI) feedback flow control. We utilize a placement
optimization technique described in our previous work (Chen and Rowley, 2011, 2014) to solve for
H2 optimal placements in the linearized Ginzburg–Landau and the Orr–Sommerfeld/Squire models
of fluid flow. We then describe features common to these optimal control systems. This analysis is
based on mathematical concepts—such as right-half-plane poles and zeros, time lags, eigenmodes,
sensitivity to spatially localized perturbations, optimal transient growth and disturbances, and
impulse responses—as well as physical intuition.

We organize the manuscript as follows. Section 10.2 reviews H2 optimal control and placement.
Section 10.3 then reviews the linearized Ginzburg–Landau and Orr–Sommerfeld/Squire models of
fluid flow, along with the optimal placements in those systems. Section 10.4 describes common
features of optimal actuator and sensor placements, and Section 10.5 provides concluding remarks.

10.2 H2 optimal control and placement

The chief goal of the theory in this section is the simultaneous optimization of closed-loop control
performance over all actuator positions, sensor positions, and LTI controllers. This section is a
concise summary of Chen and Rowley (2011, 2014).

We assume a linear model q̇(x, t) = L q(x, t) of fluid flow for the state q (e.g., a velocity
perturbation), spatial variable or variables x, time t, and dynamical operator L . If the dynamics
are subject to the effects of r actuators with spatial effect bj(x) and input signals uj(t), as well as
some disturbances d(x, t), then

q̇(x, t) = L q(x, t) +
r∑
j=1

bj(x)uj(t) + d(x, t). (10.1)

Furthermore, if we assume p sensors with spatial form ck(x), sensor noise nk(t), and the inner
product 〈q1(x), q2(x)〉 =

∫
Ω q̄2(x)q1(x) dx over the domain Ω (where (·) is the complex conjugate),

then the sensor outputs yk(t) are

yk(t) = 〈q(x, t), ck(x)〉+ nk(t) (10.2)

for k = 1, . . . , p. In this setup, the objective of H2 optimal control is to minimize a cost function
on q and uj .

In discrete space, we let q(t) be a vector representation of q(x, t) over discrete points in the
domain. We then bundle the disturbances and sensor noise in the vector w(t), and we let z(t) be
the vector representation of the H2 optimal control cost function. We further let u(t) and y(t) be
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Figure 10.1: The closed-loop system G.

vectors respectively stacking the signals uj(t) and yk(t). The matrices A, B1, B2, C1, C2, D12,
and D21 then relate these variables via the “plant” P, given by q̇

z
y

 =

 A B1 B2
C1 0 D12
C2 D21 0


 q

w
u

 . (10.3)

We describe the values of these matrices in Section 10.3.
The H2 optimal controller is the LTI system K, arranged as in Figure 10.1, that minimizes the

H2 norm of the closed-loop system G. This H2 norm ‖G‖2 is essentially an average-case measure
of the gain provided by G from w to z. Given a unit white noise input w(t) and the expected value
operator E(·), the norm satisfies ‖G‖22 = E

(
limT→∞

∫ T
−T ‖z(t)‖22 dt/(2T )

)
. The computation of K

and ‖G‖2 is a standard procedure (see Skogestad and Postlethwaite, 2005).
Following Chen and Rowley (2011, 2014), we define the H2 optimal actuator and sensor locations

to be the placements (i.e., the choice of B2 and C2, given appropriate constraints) such that the
resulting ‖G‖2 is globally minimized. In Chen and Rowley (2011), we proposed an efficient method
for computing the gradient of ‖G‖2 with respect to actuator and sensor locations, allowing for
gradient-based optimization. This technique is a more efficient variant of Hiramoto et al. (2000),
but Chen and Rowley (2014) use adjoint operators to speed up the computation further. In this
manuscript, we first sample the entire domain of actuator and sensor placements. Local minima in
the sampling then serve as initial conditions for Broyden–Fletcher–Goldfarb–Shanno quasi-Newton
minimization; we take the best of these results to be the globally optimal placement.

10.3 Fluid flow models

10.3.1 Overview

For computational tractability, we analyze the optimal actuator and sensor placements in the lin-
earized Ginzburg–Landau and the Orr–Sommerfeld/Squire equations. These systems are comple-
mentary in the study of shear flows, as they respectively model streamwise and transverse variations
in flow perturbations.

In our fluid models, we actuate and sense the native state variables directly. Although this is
not particularly realistic, it simplifies the control problem and makes it generalizable. We model
point actuators in (10.1) with the Gaussian functions bj(x) = exp

(
(x− xa,j)2/(2σ2)

)
/
(√

2πσ
)
,

where xa,j is the jth actuator location, and σ is a small Gaussian width. Denoting the spatial
discretization of bj(x) by bj , we set B2 =

[
b1 · · · br

]
. Similarly, we model point sensors

in (10.2) with ck(x) = exp
(
(x− xs,k)2/(2σ2)

)
/
(√

2πσ
)
, where xs,k is the kth sensor location. If

the inner product in (10.2) is equivalently 〈q1,q2〉 = qH
2 Hq1—with (·)H the conjugate transpose,
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and with the weighting matrix H for trapezoidal integration—and ck is the discretization of ck(x),
then C2 =

[
c1 · · · cp

]H
H.

In our H2 optimal control setup, we assume a standard linear quadratic Gaussian (LQG)
problem. Thus, the objective of the control is to minimize E(qHQq+uHRu), given the disturbances
and sensor noise in (10.1, 10.2) and appropriate choices of the state cost matrix Q ≥ 0 (i.e., positive
semidefinite) and the input cost matrix R > 0 (i.e., positive definite). We pick Q such that qHQq
is the kinetic energy of the state. Furthermore, if d(t) is the discretization of the disturbance d(x, t)
in (10.1), and the sensor noise nk(t) (see (10.2)) is stacked in the vector n(t), then we define the
disturbance covariance W = E(ddH) ≥ 0 and sensor noise covariance V = E(nnH) > 0. We pick
W so that the disturbance is effectively a unit white noise uncorrelated in space and time. Finally,
in the plant (10.3), we assign w =

[
dH nH

]H
and

B1 =
[
W1/2 0

]
, C1 =

[
Q1/2

0

]
, D12 =

[
0

R1/2

]
, D21 =

[
0 V1/2

]
. (10.4)

The following sections describe the choice of L in (10.1)—and consequently, A in (10.3)—as
well as Q, R, W, and V for the fluid flow models. They also report the optimal actuator and
sensor locations in these systems. We employ pseudospectral differentiation with software based
on Weideman and Reddy (2000).

10.3.2 Linearized Ginzburg–Landau equation

This section is a brief summary of Chen and Rowley (2011, 2014). The linearized Ginzburg–
Landau equation models small fluid perturbations near a Hopf bifurcation (Cossu and Chomaz,
1997; Chomaz, 2005). Letting x ∈ R be the primary direction of the fluid flow, and choosing some
µ(x) : R→ R, ν ∈ C, and γ ∈ C, the linearized Ginzburg–Landau operator is

L = µ(x)− ν ∂
∂x

+ γ
∂2

∂x2 . (10.5)

The state variable is q(x, t) : R×R→ C, and Re(q) represents a velocity perturbation in the flow.
The boundary conditions are that limx→±∞ q = 0. For a comprehensive review of the equation
and its control, see Bagheri et al. (2009). We choose µ(x) = µ0 − 0.04 − 5 · 10−3x2, µ0 = 0.41,
ν = 2+0.4i (with i the imaginary unit), and γ = 1−i, as in Bagheri et al. (2009), Chen and Rowley
(2011), and Chen and Rowley (2014). This system is unstable, strongly non-normal, and highly
convective in the positive x direction. The amplification region—where µ(x) > 0—is [−8.60, 8.60],
and we choose σ = 0.4.

To compute A from L , we employ pseudospectral differentiation with Hermite polynomials.
Also, we choose Q = 49H, R = I, W = I, and V = 4 · 10−8I, thereby emphasizing the state
disturbance and state cost. With 100 grid points, the leading eigenvalues of A match the analytic
eigenvalues of L presented in Bagheri et al. (2009), and the optimal placement results are converged.

We employ the methodology of Chen and Rowley (2014) to solve for the H2 optimal actuator and
sensor positions, with varying numbers of each; see Figure 10.2 and Figure 10.3(a). Figure 10.3(b)
depicts the optimal positions for a system where the flow disturbance d(x, t) is a single-channel
white noise given over the shape exp

(
(x− xd)2/(2σ2)

)
/
(√

2πσ
)
, with the disturbance location

xd = −11.
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Figure 10.2: Snapshots of Re(q) (solid) and Im(q) (dashed) in a neutrally stable linearized Ginzburg–Landau
simulation (µ0 = 0.398) with white noise disturbances. In this and all following plots, the amplification region
is shaded gray. (a) Without control. (b) With sensor noise and LQG control at the optimal actuator ( )
and sensor placement (×), shown below.
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Figure 10.3: Optimal actuator and sensor placements in the linearized Ginzburg–Landau system. Each row
shows the solution for a different number of actuators and sensors, and values of ‖G‖2 are shown on the
right. (a) Flow disturbances everywhere. (b) Flow disturbances introduced only at xd = −11.0. The top
row has two collocated actuators.

10.3.3 Orr–Sommerfeld/Squire equations

In shear flows, the Orr–Sommerfeld and Squire equations model transverse variations in exponential
mode amplitudes (Schmid and Henningson, 2000). Let y ∈ R be the transverse spatial variable,
α, β ∈ R be streamwise and spanwise wavenumbers, and k =

√
α2 + β2. Also, let u0(y) be the

streamwise velocity of a base flow, and Re be the Reynolds number. With the vertical velocity and
vorticity perturbation mode amplitudes v(y, t) : R× R→ C and ω(y, t) : R× R→ C, we define

LOS = iα

(
u′′0 − u0

(
∂2

∂y2 − k
2
))

+Re−1
(
∂4

∂y4 − 2k2 ∂
2

∂y2 + k4
)

(10.6a)

LS = −iαu0 +Re−1
(
∂2

∂y2 − k
2
)
, (10.6b)

so that
L :

[
∂2

∂y2 − k2 0
0 1

] [
v
ω

]
7→
[

LOS 0
−iβu′0 LS

] [
v
ω

]
. (10.6c)
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Figure 10.4: Snapshots of Re(ω) (solid) and Im(ω) (dashed) in an Orr–Sommerfeld/Squire simulation with
white noise disturbances, using Re = 104, α = 0, and β = 1; v (not shown) is very small. (a) Without
control. (b) With sensor noise and LQG control at the optimal placement ( : v actuator; ×: v sensor; : ω
actuator; : ω sensor), shown below.

The Orr–Sommerfeld and Squire systems are respectively the top and bottom rows of (10.6c). At
the endpoints of the domain, v = v′ = ω = 0. Our base flow is the plane Poiseuille flow through a
channel bounded by y = ±1. Thus, u0(y) = y2 − 1, and we choose σ = 0.047.

We compute A from L using Chebyshev pseudospectral differentiation. The discrete-space
state vector is q =

[
vH ωH

]H
, with v and ω representing v(y, t) and ω(y, t). Similarly, we vertically

stack B2 and horizontally stack C2; each actuator and sensor acts on only one of v and ω. To
penalize the kinetic energy of the flow perturbation in the LQG design, we set Q = diag(DHHD +
k2H,H)/(2k2), where D is the Chebyshev differentiation matrix (Schmid and Henningson, 2000).
In addition, we assume that the flow disturbances are an uncorrelated unit white noise in all three
components of velocity; thus, W = diag(I, k2I) (Schmid and Henningson, 2000). Finally, R = I
and V = 0.01I. With 125 nodes, the leading eigenvalues of A match Fig. 3.1 of Schmid and
Henningson (2000), and the optimal placements are converged.

We consider three sets of parameters in this section. For the spanwise waves given by Re = 104,
α = 1, and β = 0, (10.6c) decouples into the Orr–Sommerfeld and Squire systems; we assume
single-input, single-output (SISO) control in each. We also consider the streamwise streaks given
by Re = 104, α = 0, and β = 1 (see Figure 10.4), as well as the oblique waves given by Re = 5 · 103

and α = β = 1. In these cases, we consider two-input, two-output (2I2O) control, where the
locations of the v-actuator and sensor are yva and yvs , and the locations of the ω-actuator and sensor
are yωa and yωs . The off-diagonal term in (10.6c) causes small changes in v to have large effects on
ω. Therefore, even when |v| � |ω| (e.g., Figure 10.4), the v-actuator and sensor placement is still
relevant.

Figure 10.5 shows the globally optimal actuator and sensor placements, as well as placements
that are locally, and nearly globally, optimal. We also remark that this Orr–Sommerfeld/Squire
system is symmetric about y = 0; for each optimal placement, we do not show the equivalent
solution reflected about y = 0.

10.4 Observations and heuristics

In this section, we discuss various considerations, observations, and traits we observe in feedback
flow control systems with effective actuator and sensor placements. These topics are not disjoint,
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Figure 10.5: As Figure 10.3, but for the Orr–Sommerfeld/Squire system. (a) The decoupled SISO systems
with Re = 104, α = 1, and β = 0. (b) The coupled 2I2O system with Re = 104, α = 0, and β = 1, showing
both globally (top row) and locally optimal solutions. (c) As (b), but with Re = 5 · 103 and α = β = 1.
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Figure 10.6: Optimal placement ( ) and log10 ‖G‖2 contours in the linearized Ginzburg–Landau system,
plotted against the actuator placement xa and the sensor placement xs. (a) With spatially uncorrelated flow
disturbances; the contour levels are 2, 2.5, . . . . (b) Disturbances only at xd = −11.0; the contour levels are
1, 1.5, . . . .

but are rather related in various ways. Each section within briefly describes a particular feature of
interest.

10.4.1 Fundamental requirements

In rigorous control theory, it is possible to identify and characterize plants for which good control
is never possible with any LTI controller. This section briefly summarizes ideas from Skogestad
and Postlethwaite (2005).

Two basic characteristics that all plants must possess for closed-loop stability are stabilizability
and detectability. That is, the actuators must be able to act on all unstable adjoint eigenmodes
of L , and the sensors must be able to observe all unstable direct eigenmodes. Comparing Fig-
ure 10.6(a) and Figure 10.7(a), for instance, we observe that the linearized Ginzburg–Landau
plant is stabilizable and detectable at the optimal actuator and sensor placement. If the sensor is
very far upstream or the actuator is very far downstream, however, they lose authority over the
unstable modes, leading to high values of ‖G‖2, and therefore, poor control. In the decoupled
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Figure 10.7: (a) Magnitudes of leading direct (solid magenta) and adjoint (dashed green) modes of the
linearized Ginzburg–Landau system; λ = 0.012 − 0.648j. (b) The corresponding sensitivity magnitude
|ζ(x)|.
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Figure 10.8: (a) The optimal placements (+) and log10 ‖G‖2 contours in the decoupled Orr–Sommerfeld
system, with Re = 104, α = 1, and β = 0. The contour levels are 2.04, 2.1, 2.3, 2.5, 3.0, 3.5, 4.0. (b) As (a),
but with contours of ‖G‖2 in the decoupled Squire system. The contour levels are 2.10, 2.15, . . . , 2.30.
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Figure 10.9: Magnitudes of leading direct (solid magenta) and adjoint (dashed green) modes. (a) The
decoupled Orr–Sommerfeld system; λ = 0.004 − 0.238i. (b) The decoupled Squire system; λ = −0.007 −
0.993i. The direct and adjoint eigenmodes overlap.

Orr–Sommerfeld and Squire systems, the optimal placement in Figure 10.8 has good actuator and
sensor authority over the unstable (or least stable) modes in Figure 10.9. Other placements lead
to poorer modal controllability and observability.
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Plant poles and zeros can also limit the efficacy of LTI control. Given the transfer function
P(s) = C2(sI−A)−1B2 of a plant (where we do not assume any direct feedthrough from u to y),
the poles and zeros are the values of s ∈ C for which P(s) diverges or is rank-deficient, respectively.
For good control to be possible, plant poles p and zeros z with positive real parts should satisfy
|p| < |z|/4 (Skogestad and Postlethwaite, 2005). In Figure 10.6(b), a small upstream perturbation
in the optimal sensor placement causes ‖G‖2 to rise extremely quickly. This likely occurs because
a plant zero crosses into the complex right half-plane, violating the pole–zero condition. Control
designers should place actuators and sensors so as to avoid small right-half-plane zeros, but this
discussion is beyond the scope of this manuscript.

Finally, if a system has right-half-plane poles p as well as time delays τ from actuators to
sensors, then τ < 1/(2|p|) is generally required for effective control (Skogestad and Postlethwaite,
2005). Although our fluid models do not strictly contain time delays, the Ginzburg–Landau model
does exhibit time lags, since convection predominantly drives the dynamics. Figure 10.6 confirms
that when the actuator is far upstream of the sensor—leading to large time lags—the control
performance decreases. In this system, it is generally preferable for the two to be nearly collocated,
as Figure 10.3 shows.

10.4.2 Eigenmode-based analyses

Direct and adjoint eigenmodes

As a direct extension of the stabilizability and detectability discussion in Section 10.4.1, it seems
natural to place actuators and sensors where the most unstable adjoint and direct eigenmodes are
respectively large. This approach is common (Åkervik et al., 2007; Bagheri et al., 2009), and it
works well for the decoupled Orr–Sommerfeld and Squire equations at Re = 104, α = 1, and β = 0.
Once again comparing Figure 10.8 and Figure 10.9, we confirm that the modal analysis exactly
predicts the optimal vorticity placement of yωa = yωs = 0. Observing the peaks Figure 10.9(a), we
also predict an optimal placement of yva = ±0.848 and yvs = 0, yielding ‖G‖2 = 109.6. This is not
far from the true optimum1 yva = ±0.789 and yvs = ±0.246, with ‖G‖2 = 109.2.

We must emphasize, however, that placement by eigenmode analysis is generally suboptimal
in fluid systems. It is well established (Schmid and Henningson, 2000) that the eigenmodes of
non-normal operators do not individually predict transient growth. Thus, even if a control system
can prevent the long-time blow-up of unstable modes, it may be very poor at controlling transient
growth. The linearized Ginzburg–Landau system’s eigenmodes predict an optimal SISO placement
of xa = −7.28 and xs = 7.28, with ‖G‖ = 259 (Figure 10.7(a)), but the true optimum is xa = −1.03
and xs = 0.98, with ‖G‖2 = 46.1 (Figure 10.6(a)). The analysis also fails in the coupled Orr–
Sommerfeld/Squire equations, where the comparatively large off-diagonal term in L (10.6c) causes
strong non-normality. The general failure of this approach necessitates alternate analyses, which
we describe below.

Sensitivity analysis

The sensitivity analysis (Giannetti and Luchini, 2007; Chomaz, 2005) determines how much a
certain eigenvalue of L will move in the complex plane if L experiences a point perturbation.
This is related to the ideas of absolute instability and wavemakers in local flow stability theory.
Given a perturbation strength ds and location x = ξ, and denoting the Dirac delta function by δ, we

1The computation reports that yv
a = ±0.970 and yv

s = ∓0.046 is the global optimum, with the slightly lower
‖G‖2 = 109.1 (see Figure 10.8(a)). This placement appears to violate the boundary conditions considerably, however,
so we reject this solution.
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suppose that dL = δ(x− ξ) ds. Furthermore, we consider the eigendecomposition L φj = λjφj , as
well as the eigendecomposition L ∗ψj = λ̄jψj of the adjoint operator L ∗. The sensitivity function
is then

ζj(ξ) = dλj
ds

(ξ) = ψ̄j(ξ)φj(ξ)
〈φj , ψj〉

. (10.7)

This analysis is particularly useful with collocated actuators and sensors, where the feedback
control exactly perturbs L in our prescribed way. Therefore, the parts of the spatial domain where
ζj(x) is large are the regions where feedback control can have a considerably favorable effect on the
eigenvalues of the closed-loop system. In the linearized Ginzburg–Landau SISO system, we predict
xa = xs = 0, with ‖G‖2 = 54.2 (see Figure 10.7(b)). This is close to the true optimum xa = −1.03
and xs = 0.98, with ‖G‖2 = 46.1 (see Figure 10.3(a) and Figure 10.6(a)).

The sensitivity analysis fails to predict the optimal placements in the Orr–Sommerfeld/Squire
system, however. Figure 10.5 reveals that these optimal placements generally do not involve nearly
collocating actuators and sensors, and this sensitivity analysis is therefore not directly applicable.
It is necessary to consider alternate means of evaluating effective placements in non-normal systems,
which the next section discusses.

10.4.3 Transient growth

Optimal growth and disturbances

The purpose of optimal growth theory (see Schmid and Henningson, 2000) is to analyze non-normal
transient growth in ways that the eigenmode analysis (Section 10.4.2) cannot. The optimal energy
growth g(t) dictates the largest energy amplification that a dynamical operator A (or equivalently,
L ) can provide out of all possible initial conditions. If—given some M—‖q‖E = ‖M1/2q‖2 is a
norm whose square is the state’s energy, then

g(t) = max
q(0)6=0

‖q(t)‖2E
‖q(0)‖2E

= ‖M1/2eAtM−1/2‖22. (10.8)

For the largest singular value of M1/2eAtM−1/2, the corresponding right singular vector is the
optimal initial disturbance giving rise to the optimal growth, and the corresponding left singular
vector is that disturbance at time t.

The optimal initial disturbances and the evolved disturbances hint at effective actuator and
sensor placements, respectively. The reason for this is intuitive: the optimal initial disturbance
indicates regions where actuation can have the largest short-term effect on the state, and the
evolved disturbance represents the transient growth that the sensor can most easily detect. This
is in contrast to the eigenmode analysis (Section 10.4.2), which only considers the infinite time
horizon.

The choice of t, however, is not clear-cut. In the Orr–Sommerfeld/Squire system in Figure 10.10,
it suffices to examine the time t that maximizes g(t). Defining a characteristic time tc = 1/minj |λj |,
we use the scaled time t̂ = t/tc in Figure 10.10(a) and find that the optimal growth is largest at
t̂ = 5.31. Observing the peaks in the optimal initial disturbance (Figure 10.10(b)), this predicts the
optimal placement yva = 0.77 or −0.77, and yωa = 0.70 or −0.70. Similarly, Figure 10.10(c) predicts
yvs = 0 and yωs = 0.75 or −0.75. The placement yva = ±0.77, yωa = ∓0.70, yvs = 0, and yωs = ±0.75
yields ‖G‖2 = 78.0, which is close to the optimal ‖G‖2 = 72.2 at yva = ±0.648, yωa = ∓0.725,
yvs = ±0.667, and yωs = ±0.361 (Figure 10.5(c)).
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Figure 10.10: The Orr–Sommerfeld/Squire system’s optimal growth with Re = 5 · 103 and α = β = 1. (a)
The optimal energy growth g(t̂). (b) The optimal initial disturbance for the optimal t̂ = 5.31, shown as |v|
(solid blue) and |ω| (dashed red). (c) The disturbance at t̂ = 5.31.
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Figure 10.11: The linearized Ginzburg–Landau system’s optimal growth. (a) The optimal energy growth
g(t̂). (b) The optimal initial disturbance for t̂ = 1, shown as real (dashed) and imaginary (dotted) parts,
and magnitude (solid). (c) The disturbance at t̂ = 1.

Our example linearized Ginzburg–Landau system is unstable, however, implying that g(t̂) must
diverge (Figure 10.11(a)). Nonetheless, we can still examine the optimal initial and evolved distur-
bance for the arbitrarily chosen t̂ = 1. The optimal initial disturbance (Figure 10.11(b)) predicts
xa = −1.55, and the disturbance at t̂ = 1 (Figure 10.11(c)) predicts xs = 1.55, yielding ‖G‖2 = 48.3.
This is very close to the true optimum xa = −1.03 and xs = 0.98, with ‖G‖2 = 46.1.

Impulse responses

Since we assume a linear framework in (10.1, 10.2), impulse responses from actuators and adjoint
impulse responses from sensors are effectively Green’s functions. For non-normal systems, the
impulse responses reveal each actuator’s ability to affect the state via the transient growth of its
impulse; the adjoint impulses also reveal each sensor’s ability to detect transient dynamics. The
impulse responses are given by (10.1, 10.2) with uj(t) = δ(t) for one value of j, and d(x, t), nk(t),
and all other uj(t) equal to zero. To compute the adjoint impulse responses, we use the adjoint
operator L ∗ instead of L , and we swap ck(x) and bj(x), as well as uj(t) and yk(t), with the impulse
now on yk(t).

The impulse responses do not directly predict optimal actuator and sensor placements, but they
do reveal why certain placements may be effective or ineffective. In the Orr–Sommerfeld/Squire
system shown in Figure 10.12(a), we find that the impulse from the v-actuator at the optimal
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Figure 10.12: Impulse responses of the Orr–Sommerfeld/Squire system with Re = 104, α = 0, and β = 1 at
the optimal placement, showing t̂ = 0, 0.04, . . . , 0.2. (a) Impulse in v from yva = 0.877 (solid blue: Re(v);
dashed red: Im(ω)). (b) Impulse in ω from yωa = −0.488 (Re(ω) shown). (c) Adjoint impulse in v from
yvs = −0.487 (Re(v) shown). (d) Adjoint impulse in ω from yωs = 0.483 (dashed blue: Im(v); solid red:
Re(ω)).
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Figure 10.13: Output traces in Figure 10.12. (a) Im(ω) sensor output at yωs = 0.483 from the actuator
impulse at yva = 0.877 (see Figure 10.12(a)). (b) Im(v) adjoint actuator output at yva = 0.877 from the
adjoint sensor impulse at yωs = 0.483 (see Figure 10.12(d)).

yva = 0.877 creates an extremely large transient growth in ω, as a result of the off-diagonal term
in (10.6c). This implies that the actuator has significant authority over ω, using very little effort.
Furthermore, the sensor at the optimal yωs = 0.483 registers a very large output from this impulse
(Figure 10.13(a)), indicating strong feedback. Although the impulse from the ω-actuator at yωa =
−0.488 (Figure 10.12(b)) does not appear to have a considerable effect, it does act in the y < 0
domain, where the v-actuator does not have as much authority over ω as in y > 0. We remark that
neither actuator has an appreciable effect on ω at y ≈ 0, but the underlying dynamics naturally
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suppress ω there. Finally, we reach similar conclusions from the adjoint impulse responses at
yvs = −0.487 and yωs = 0.483; see Figure 10.12(c, d) and Figure 10.13(b).

We also briefly mention that the input–output impulse responses in Figure 10.13 exhibit a nearly
nonexistent time lag. This is a favorable characteristic in light of the fundamental requirements
that Section 10.4.1 described.

10.4.4 Remarks

Physical intuition

Many of the conclusions we drew with mathematical tools are also possible using physical intuition.
We highlight a few examples here.

First, Section 10.4.1 explained effective and ineffective placements in the linearized Ginzburg–
Landau system (Figure 10.6) using stabilizability, detectability, and time lags. We intuit that in
a convection-driven system, downstream actuators cannot influence much of the domain, and up-
stream sensors cannot detect the most relevant disturbances. Furthermore, sensors far downstream
of actuators cannot detect actuator-induced growth until the growth has evolved and amplified for
many convective time units. These are all recognizably unfavorable conditions.

Next, Section 10.4.2 and Section 10.4.3 justified the optimal placement in the decoupled Orr–
Sommerfeld and Squire systems with Re = 104, α = 1, and β = 0 using eigenmodes and optimal
growth theory. Simulations with flow disturbances show that the dynamics propagate v waves from
near the boundaries to the center of the domain, and ω waves from the center to the boundaries.
This intuition supports the optimal placements shown in Figure 10.5(a). Section 10.4.3 also inves-
tigated the optimal placement in the Orr–Sommerfeld/Squire system with Re = 104, α = 0, and
β = 1 using impulse responses. Simulations (see Figure 10.4(a)) show that ω tends to be largest
roughly near y = ±0.5; this intuitively supports the placement of actuators and sensor near these
regions, as shown in Figure 10.5(b).

Other remarks

We briefly remark that in some optimal placements, certain actuators and sensors primarily exhibit
feedforward behavior. This is the case, for instance, with the ω-actuator and the v-sensor in the
globally optimal solution in Figure 10.5(b) and Figure 10.12. This is not necessarily detrimental, as
Belson et al. (2013) describe. These feedforward actuators and sensors have authority over physical
regions where other actuators and sensors do not, thereby improving the control performance.

Finally, we point out that it is common for the topography of ‖G‖2 with respect to certain
actuator and sensor placements to be relatively flat; see, for instance, the sensor placements in Fig-
ure 10.5(c). This affords the control designer additional flexibility in effective hardware placement.

10.5 Conclusion

This manuscript described several characteristics of effective actuator and sensor positions for the
feedback control of fluid models. The H2 optimal control of the linearized Ginzburg–Landau and
the Orr–Sommerfeld/Squire models served as test beds for this investigation.

Successful feedback control always requires actuator and sensor positions that allow the plant to
stabilize and detect unstable eigenmodes. In addition, placements that cause small right-half-plane
zeros, or large time lags or delays, typically lead to poor control. The placement of actuators and
sensors using leading eigenmodes can be effective, but only if the dynamics are close to normal. For
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non-normal dynamics with nearly collocated actuators and sensors, the sensitivity region better
predicts advantageous placements. Optimal growth and disturbances, on the other hand, can
predict optimal placements in non-normal systems without assuming collocation. Impulse responses
also reveal the individual actuators’ and sensors’ authority over the state. Finally, physical intuition
can often predict the same results that these mathematical tools reveal.

There currently does not exist a single, unifying method that is universally able to predict
optimal actuator and sensor positions. The heuristics and observations in this manuscript provide
some knowledge that may be useful in approaching this goal, however. The prediction of optimal
placements remains a topic of future research.

This work was supported by the National Science Foundation’s Graduate Research Fellowship
Program, and grant CMMI-0932928.
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Dynamic mode decomposition (DMD) is an Arnoldi-like method based on the Koopman operator. It
analyzes empirical data, typically generated by nonlinear dynamics, and computes eigenvalues and
eigenmodes of an approximate linear model. Without explicit knowledge of the dynamical operator,
it extracts frequencies, growth rates, and spatial structures for each mode. We show that expansion
in DMD modes is unique under certain conditions. When constructing mode-based reduced-order
models of partial differential equations, subtracting a mean from the data set is typically necessary
to satisfy boundary conditions. Subtracting the mean of the data exactly reduces DMD to the
temporal discrete Fourier transform (DFT); this is restrictive and generally undesirable. On the
other hand, subtracting an equilibrium point generally preserves the DMD spectrum and modes.
Next, we introduce an “optimized” DMD that computes an arbitrary number of dynamical modes
from a data set. Compared to DMD, optimized DMD is superior at calculating physically relevant
frequencies, and is less numerically sensitive. We test these decomposition methods on data from
a two-dimensional cylinder fluid flow at a Reynolds number of 60. Time-varying modes computed
from the DMD variants yield low projection errors.

11.1 Introduction

Scientists and engineers frequently employ data-based modal decomposition to investigate complex
dynamical systems. When dynamical operators are too sophisticated to analyze directly—because
of nonlinearity and high dimensionality, for instance—data-based techniques are often more prac-
tical. Such methods numerically analyze empirical data produced by experiments or simulations,
yielding modes containing dynamically significant structures. In fluid flow control, for example,
decompositions of an evolving flow field may identify coherent structures such as vortices and ed-
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dies that are fundamental to the underlying flow physics (Holmes et al., 1996). A subset of the
computed modes can then form the basis of a reduced-order model—that is, a low-dimensional
approximation of the original dynamical system—using Galerkin projection. This is often critical
in applications such as controller or observer design in a control system, where matrix operations
on a high-dimensional dynamical system could be computationally intractable.

One common decomposition, proper orthogonal decomposition (POD, otherwise known as prin-
cipal component analysis or Karhunen–Loève decomposition), generates orthogonal modes that
optimally capture the vector energy of a given data set (Holmes et al., 1996). This method, while
popular, suffers from a number of known issues. For instance, reduced-order models generated
by POD may be inaccurate, because the principal directions in a set of data may not necessar-
ily correspond with the dynamically important ones. As a result, the selection of POD modes
to retain in a reduced-order model is nontrivial and potentially difficult (Ilak and Rowley, 2008).
Improved methods are available, such as balanced truncation (Moore, 1981) or balanced POD (an
approximation of balanced truncation for high-dimensional systems; Rowley, 2005), but both of
these methods are applicable only to linear systems.

Dynamic mode decomposition (DMD) is a relatively recent development in the field of modal
decomposition (Rowley et al., 2009; Schmid, 2010). Dynamic mode decomposition approximates
the modes of the Koopman operator, which is a linear, infinite-dimensional operator that rep-
resents nonlinear, finite-dimensional dynamics without linearization (Mezić and Banaszuk, 2004;
Mezić, 2005), and is the adjoint of the Perron-Frobenius operator. The method can be viewed as
computing, from empirical data, eigenvalues and eigenvectors of a linear model that approximates
the underlying dynamics, even if those dynamics are nonlinear. Unlike POD and balanced POD,
this decomposition yields growth rates and frequencies associated with each mode, which can be
found from the magnitude and phase of each corresponding eigenvalue. If a linear dynamical oper-
ator generates the data, then the decomposition recovers the leading eigenvalues and eigenvectors
of that operator; if the data are periodic, then the decomposition is equivalent to a temporal dis-
crete Fourier transform (DFT) (Rowley et al., 2009). Applications of DMD to experimental and
numerical data can be found in Rowley et al. (2009), Schmid (2010, 2011), and Schmid et al. (2011).

In this paper, we present some new properties and some modifications of DMD, highlighting the
relationship with traditional Fourier analysis. Section 11.2 briefly reviews the Koopman operator,
DMD, and two algorithms for computing DMD. In Section 11.3, we prove the uniqueness of
the decomposition under specific conditions. Section 11.4 discusses applications to reduced-order
models of partial differential equations, and in particular compares methods to ensure that models
based on DMD satisfy boundary conditions correctly. We explore the subtraction of either the
data mean or an equilibrium point (commonly known as a “base flow” in fluid mechanics), and
examine the consequences of each. In Section 11.5, we present advances toward an alternate,
“optimized” DMD formulation, which tailors the decomposition to the user-specified number of
modes, and is more accurate than truncated DMD. We provide examples in Section 11.6 by
considering numerically generated data of a cylinder fluid flow, evolving via the nonlinear Navier–
Stokes equations from an unstable equilibrium to a limit cycle.

11.2 The Koopman operator and dynamic mode decomposition

In this section, we briefly review the results of Rowley et al. (2009). The Koopman operator U is
defined for a dynamical system

ξk+1 = f (ξk) (11.1)
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evolving on a finite-dimensional manifold M . (The dynamics need not be discrete in time, but we
retain this form since we presume that the data to be analyzed are such.) It acts on scalar functions
g : M → R or C according to

Ug (ξ) , g (f (ξ)) . (11.2)

Although the underlying dynamics are nonlinear and finite-dimensional, the Koopman operator
is a linear infinite-dimensional operator; the linearity is a result of the definition in (11.2), not
linearization. Given the eigendecomposition

Uφj (ξ) = λjφj (ξ) , j = 1, 2, . . . (11.3)

of U , we can generally express vector-valued “observables” g : M → Rn or Cn of our choice in
terms of the Koopman eigenfunctions φj by

g (ξ) =
∞∑
j=1

φj (ξ) vj , (11.4)

where {vj}∞j=1 is a set of vector coefficients called Koopman modes. (Here, we assume that each
component of g lies within the span of the eigenfunctions.) Using (11.3) and the definition in (11.2),
we can explicitly write

g (ξk) =
∞∑
j=1

λkjφj (ξ0) vj . (11.5)

The Koopman eigenvalues {λj}∞j=1 therefore dictate the growth rate and frequency of each mode.1
For simplicity, we will hereafter incorporate the constant φj (ξ0) into vj .

It is straightforward to show that if the dynamics (11.1) are linear, with f(ξ) = Aξ, then the
eigenvalues λj of A are also eigenvalues of the Koopman operator. Furthermore, if the observable
is g(ξ) = ξ, then the Koopman modes vj are the corresponding eigenvectors of A (Rowley et al.,
2009).

The practical idea behind the Koopman analysis is to collect a set of data {ξk}, identify an
observable g of interest from the data, and express the observable in terms of Koopman modes
and eigenvalues. For example, an experimenter may wish to collect fluid flow data from a wind
tunnel experiment, measuring three-component velocity fields in a spatial region of interest, and
decompose the fields into eigenvalues and modes containing spatial structures.

The DMD algorithm approximates Koopman modes and eigenvalues from a finite set of data.
The algorithm itself, described in Rowley et al. (2009) and Schmid (2010), is a variant of a standard
Arnoldi method, and we summarize it here. Suppose that the vector observable is g (ξk) = xk.
The algorithm operates on the real or complex data set {xk}mk=0 and identifies complex Ritz values
{λj}mj=1 and complex Ritz vectors {vj}mj=1 such that

xk =
m∑
j=1

λkjvj , k = 0, . . . ,m− 1 (11.6a)

xm =
m∑
j=1

λmj vj + r, r ⊥ span (x0, . . . ,xm−1) , (11.6b)

1In ergodic theory, we assume the map f is measure preserving, making the Koopman operator unitary (Petersen,
1983). Here, we make no such assumption, allowing for the analysis of dynamics not lying on an attractor. As such,
the growth rates given by |λj | may differ from unity.
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provided that {λj}mj=1 are distinct. This algorithm approximates the data—which a nonlinear
process may have potentially generated—as the trajectory of a linear system. The first m data
vectors are exactly represented by the Ritz values and vectors. Projecting the final data vector,
however, results in a residual r that is orthogonal to all previous data vectors, and hence to all Ritz
vectors as well.

The computation of DMD modes proceeds as follows. Let K ,
[
x0 · · · xm−1

]
be a data

matrix. Let c =
[
c0 · · · cm−1

]T
be a vector of coefficients that best constructs (in a least

squares sense) the final data vector xm as a linear combination of all previous data vectors. That
is,

xm = Kc + r, r ⊥ span (x0, . . . ,xm−1) . (11.7)

One solution for c is
c = K+xm, (11.8)

where (·)+ indicates the Moore-Penrose pseudoinverse. The solution for (11.7) is unique if and
only if K has linearly independent columns; in this case, we can use the pseudoinverse expansion
K+ = (K∗K)−1 K∗. Now construct the companion matrix

C ,


0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 0 c2
... . . . ...
0 0 1 cm−1

 . (11.9)

One possible diagonalization of this matrix is

C = T−1ΛT, (11.10)

where Λ is a diagonal matrix with λ1, . . . , λm on the diagonal, T is the Vandermonde matrix defined
by Tij , λj−1

i , and {λj}mj=1 are distinct. The matrix Λ yields the Ritz values. Finally, the matrix
V ,

[
v1 · · · vm

]
contains the Ritz vectors, where

V = KT−1. (11.11)

To understand how this algorithm yields the decomposition in (11.6), consider that we could
write an index-shifted data matrix K∗ ,

[
x1 · · · xm

]
as

K∗ = KC + reT (11.12a)
= KT−1ΛT + reT, (11.12b)

if e ,
[
0 · · · 0 1

]T
. Finally, using (11.11), we obtain

K = VT (11.13a)
K∗ = VΛT + reT, (11.13b)

which together are equivalent to (11.6).
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The algorithm above is analytically correct, but may be ill-conditioned in practice. This may
especially be the case when using noisy experimental data. Schmid (2010) recommends the following
alternate algorithm, which is exact when K is full-rank. Let K = UΣW∗ be the economy-sized
singular value decomposition (SVD) of K. Solve the diagonalization problem

U∗K∗WΣ−1 = YΛY−1 (11.14)

and set V = UY; Λ is as above. Finally, scale each column of V by the appropriate complex scalar
so that (11.6a) is satisfied.

For data sets with dim (xk) � m, we recommend a method of snapshots approach. In fluid
mechanics, for instance, K may (very roughly) have a row dimension O

(
105) to O

(
1010) and a

column dimension O
(
101) to O

(
103). In this case, K∗K is much smaller than K. The method

of snapshots requires less memory, and may be faster to compute. Evaluate the matrix K∗K, and
perform the diagonalization

K∗K = WΣ2W∗. (11.15)

The diagonal matrix Σ with positive entries and the unitary matrix W are as above. Complete
the algorithm of Schmid above, starting at (11.14), with the substitution U = KWΣ−1.

A key advantage of the SVD and method of snapshots approaches comes to light when K is
rank-deficient, or nearly so. In this case, we can approximate (11.6) with a smaller number of
modes by truncating the parts of U, Σ, and W corresponding to small singular values (Schmid,
2010).

11.3 Uniqueness of dynamic mode decomposition

Rowley et al. (2009) proved by construction that for a set of real or complex data {xk}mk=0, there
exist complex {λj}mj=1 and {vj}mj=1 such that (11.6) is satisfied, provided that {λj}mj=1 are distinct.
Here, we extend this result by showing that the decomposition is unique.

Theorem 11.1. The choice of {λj}mj=1 and {vj}mj=1 in (11.6) is unique up to a reordering in j, if
and only if {xk}m−1

k=0 are linearly independent and {λj}mj=1 are distinct.

Proof. We begin with the backward proof. Since λj are distinct, the Vandermonde matrix T is
full-rank. Recall that (11.6a) is equivalent to K = VT, and that we assume K is full-rank. It
follows that V is full-rank, and that {xk}m−1

k=0 and {vj}mj=1 must each be linearly independent bases
of the same space. Equations (11.6b, 11.7) therefore imply that xm can be decomposed into two
additive parts,

m∑
j=1

λmj vj = Kc ∈ span (x0, . . . ,xm−1) (11.16)

and r ⊥ span (x0, . . . ,xm−1).
Let us rewrite (11.16) as

V

λ
m
1
...
λmm

 = Kc (11.17a)

= VTc. (11.17b)
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Given that the columns of V are linearly independent, this then reduces toλ
m
1
...
λmm

 = Tc, (11.18)

from which we extract m scalar equations

λm1 = c0 + c1λ1 + c2λ
2
1 + · · ·+ cm−1λ

m−1
1

...
λmm = c0 + c1λm + c2λ

2
m + · · ·+ cm−1λ

m−1
m .

(11.19)

Therefore, the m distinct values of λj are precisely the m roots of the polynomial

p (λ; c) , λm −
m−1∑
k=0

ckλ
k. (11.20)

(By extension, we may also write p (λ; c) =
∏m
j=1 (λ− λj); this will be used later.) Note from (11.8)

that for linearly independent {xk}m−1
k=0 , {ck}m−1

k=0 exists and is unique. Thus, the m roots {λj}mj=1
of p (λ; c) must be unique as well, up to a reordering in j. Finally, the vectors {vj}mj=1 must be
unique, as a result of (11.11).

Next, we show that if {xk}m−1
k=0 are linearly dependent or {λj}mj=1 are not distinct, then the

choice of {λj}mj=1 and {vj}mj=1 is not unique, even beyond a reordering in j. The latter condition is
straightforward to prove—suppose that λq = λr for some q 6= r. Then for any arbitrary v∗ ∈ Cn,
vq may be replaced with vq + v∗, and vr with vr − v∗, and (11.6) will still hold.

Suppose now that {xk}m−1
k=0 are linearly dependent, so rank (K) < m. We maintain the condition

that the λj be distinct; otherwise we refer back to the statement just proven. Thus, the Vander-
monde matrix T is full-rank, so rank (V) = rank (K) < m; furthermore, span (x0, . . . ,xm−1) =
span (v1, . . . ,vm).

The remainder of this proof follows similarly to the backward proof. One difference, however, is
that c must be non-unique because K does not have full column rank. To be precise, dim (ker (K)) >
0; if some c satisfies (11.7), then c+c∗ does as well, for any c∗ ∈ ker (K). In addition, (11.18, 11.19)
are now sufficient but not necessary for (11.17). In other words, the m solutions to the polynomial
equation p (λ; c) = 0, along with V = KT−1, are sufficient for satisfying (11.6).

Since c is not unique, there must exist different coefficient sets {ck}m−1
k=0 and {dk}m−1

k=0 such that

λm −
m−1∑
k=0

ckλ
k =

m∏
j=1

(λ− λj) = 0 (11.21a)

µm −
m−1∑
k=0

dkµ
k =

m∏
j=1

(µ− µj) = 0 (11.21b)

produce roots {λj}mj=1 and {µj}mj=1 each satisfying (11.6). If {λj}mj=1 and {µj}mj=1 were identical,
then according to the above relations, {ck}m−1

k=0 and {dk}m−1
k=0 must also be identical. Since the

coefficient sets are different, however, there must exist distinct sets {λj}mj=1 and {µj}mj=1 satisfying
(11.6).
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Remark. The polynomial p (λ; c), defined in (11.20), is precisely the characteristic polynomial of the
companion matrix in (11.9) used to construct the DMD. Thus, as in (11.10), the scalars {λj}mj=1
are the eigenvalues of C.

11.4 Boundary condition handling

11.4.1 Overview

An important application of modal decompositions, such as POD or DMD, is to obtain low-
dimensional approximations of partial differential equations. When used in this setting, the govern-
ing dynamics (11.1) become infinite dimensional. Nevertheless, we often use approximate numerical
solutions (e.g., from finite-difference or spectral methods) in practice, and can treat these as sys-
tems with large, but finite, dimension. We may then use modal decompositions, such as POD and
DMD, to obtain further approximations of surprisingly low dimension, by expanding the solution
in terms of a linear combination of modes (Holmes et al., 1996).

Of course, partial differential equations differ fundamentally from initial value ordinary differen-
tial equations and maps in that they require boundary conditions. Subtleties of imposing boundary
conditions on such low-dimensional models are frequently overlooked, for instance, as Noack et al.
(2005) point out; in many cases, however, the situation is straightforward. For instance, in a fluid
flow, the boundaries of the domain are often at a physical boundary such as a wall. There, the
velocity is zero, and a simple Dirichlet boundary condition is appropriate. Other cases such as
inflow or outflow conditions can be more difficult, but in practice, a Dirichlet or Neumann bound-
ary condition often suffices for constructing low-dimensional models. When we use POD or DMD
modes in these situations, we must pay careful attention to ensure that the low-dimensional models
satisfy the boundary conditions, at least approximately.

In this section, we consider the case where the dynamics (11.1) represent an approximation of
a partial differential equation, discretized in both time and space, and the observable x = g(ξ)
consists of the dependent variables in some spatial region Ω. This is a common situation in fluid
flows, since we typically know flow information only in a limited region of space, whether we obtain
the data from experiments or numerical simulations. We consider boundary conditions of the form

B (x) = γ, (11.22)

whereB maps the observed variables x to certain values on the boundary ∂Ω. Suppose the boundary
condition also satisfies the linearity condition

B (α1x1 + α2x2) = α1B (x1) + α2B (x2) . (11.23)

Given a set of modes {vj}mj=1, we may construct a low-dimensional approximation of the solution
by expanding x as a linear combination of modes. Using x(k) to denote xk from the previous
section, we have the expansion

x(k) = xb +
m∑
j=1

aj(k)vj , (11.24)

where the constant offset xb is commonly called a “base flow” in the context of fluid mechanics. It
is then convenient to require that the base flow itself satisfy the boundary conditions, i.e.,

B(xb) = γ. (11.25)
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Equations (11.22–11.25) imply that for a set {x(k)}mk=0 of observations each satisfying (11.22),

B(x(k)− xb) = 0, k = 0, . . . ,m. (11.26)

That is, if each solution x(k) satisfies the boundary conditions, then the subtraction of the base
flow from each solution creates modified data with homogeneous boundary conditions. As a result,
modes decomposed from the base-flow-subtracted solutions also acquire homogeneous boundary
conditions.

Therefore, suppose we construct a set of modes {vj}mj=1 from base-flow-subtracted data; then
as long as the base flow xb satisfies (11.25), the expansion (11.24) will also satisfy the boundary
conditions (11.22), for any choice of aj(k). When employing DMD modes computed without first
subtracting a base flow, it is generally not possible to satisfy boundary conditions. The modes will
typically have nonzero boundary conditions, and any nonzero values along those mode boundaries
will be scaled by aj(k).

In the application of POD, it is common to use the mean of a data set as the base flow (e.g.,
Noack et al., 2003). We show in the following sections, however, that the use of the data mean as
the base flow exactly reduces DMD to the temporal DFT, and that this is typically undesirable. On
the other hand, using an equilibrium point as the base flow leads to better-behaved decompositions.

11.4.2 Mean subtraction

The data mean we describe here is

x̄ , 1
m+ 1

m∑
k=0

xk, (11.27a)

and the mean-subtracted data are

x′k , xk − x̄, k = 0, . . . ,m. (11.27b)

We note briefly that the mean must include the vector xm. Otherwise, the mean-subtracted data
would be equal to the rank-deficient matrix[

x0 −
1
m

m−1∑
k=0

xk · · · xm−1 −
1
m

m−1∑
k=0

xk

]
; (11.28)

according to Section 11.3, DMD would not be unique. Therefore, let K′ ,
[
x′0 · · · x′m−1

]
be the

mean-subtracted data matrix, with the mean given by (11.27a). Then

K′ =
[
x0 · · · xm

]


1− 1
m+1 − 1

m+1
. . .

− 1
m+1 1− 1

m+1
− 1
m+1 · · · − 1

m+1

 . (11.29)

The (m+ 1) × m rightmost matrix has a full column rank m. If
[
x0 · · · xm

]
also has a full

column rank, then K′ does as well.
Subtracting x̄ from the data vectors has the unexpected result of determining the Ritz values

in a way that is completely independent of the data vectors’ content. If c =
[
−1 · · · −1

]T
, then
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K′c reduces precisely to x′m. Therefore, the final snapshot x′m is exactly a linear combination of
the previous mean-subtracted snapshots in K′. With this value of c, an eigendecomposition of the
corresponding companion matrix C yields Ritz values that satisfy

0 =
m∑
k=0

λkj (11.30a)

=
1− λm+1

j

1− λj
. (11.30b)

(This is also evident from (11.20).) From here, it is easy to see that the Ritz values are the (m+ 1)th

roots of unity, excluding unity itself. We write this explicitly as

λj = exp
( 2πij
m+ 1

)
, j = 1, . . . ,m. (11.31)

Thus, the Ritz values are completely independent of the data; we can compute them with only one
parameter, m. Inserting this result into (11.6), we find

x′k =
m∑
j=1

exp
( 2πijk
m+ 1

)
vj , k = 0, . . . ,m. (11.32)

Note that the residual typically found on k = m is absent because of the perfect reconstruction of
that snapshot.

11.4.3 Equivalence with temporal DFT and harmonic average

We define the temporal DFT of the mean-subtracted data {x′k}
m
k=0 by

{x̂j}mj=0 = F
[{

x′k
}m
k=0

]
,

{
1

m+ 1

m∑
k=0

exp
(
− 2πijk
m+ 1

)
x′k

}m
j=0

, (11.33a)

and its inverse transform by

{
x′k
}m
k=0 = F−1

[
{x̂j}mj=0

]
,


m∑
j=0

exp
( 2πijk
m+ 1

)
x̂j


m

k=0

. (11.33b)

(In this representation, we move the scaling term 1/ (m+ 1) typically found on the inverse transform
to the forward transform.) Note that (11.33a) implies x̂0 = 0, since the set {x′k}

m
k=0 has a zero

mean. Thus, (11.33b) reduces to

x′k =
m∑
j=1

exp
( 2πijk
m+ 1

)
x̂j (11.34)

for k = 0, . . . ,m. The decompositions in (11.32, 11.34) are identical if we let vj = x̂j for j =
1, . . . ,m. Appealing to the uniqueness of DMD shown in Section 11.3, we conclude that if a
linearly independent data set has a zero mean, then DMD is exactly equivalent to a temporal DFT.
This is perhaps surprising, since the DMD algorithm and its derivation are largely unrelated to
those of the temporal DFT (see Section 11.2, Rowley et al. 2009, and Schmid 2010). Whereas the

124



temporal DFT model is based on a superposition of oscillating modes, the DMD model is based on
the linear combination of eigenvectors that grow or decay according to their eigenvalues.

Mean-subtracted DMD and the temporal DFT are also equivalent to harmonic averaging, for
the correct choices of averaging frequencies. Harmonic averaging is a concept that was applied
to Koopman analysis (Mezić and Banaszuk, 2004; Mezić, 2005) before the DMD algorithms of
Rowley et al. (2009) and Schmid (2010) were developed. Suppose we pick an oscillation rate
ωj = 2πj/ ((m+ 1) ∆t) for j ∈ {1, . . . ,m}, along with time values tk = k∆t, where ∆t is the
time interval between snapshots and k = 0, . . . ,m. Multiplying x′k by this discrete-time oscillation
exp (−iωjtk) and computing its average, we recover (11.33a). Hence, this choice of averaging
frequencies exactly reproduces the temporal DFT. Thus, it is also equivalent to DMD with mean-
subtracted data.

We also note briefly that if a data set has a nonzero mean, then a temporal DFT or a harmonic
average yields x̂0 = x̄. This is akin to a DMD analysis on mean-subtracted data, in which we
separately account for the data mean.

11.4.4 Implications of mean subtraction

To make a clear distinction between DMD and mean-subtracted DMD, we will hereafter refer to
the latter as a temporal DFT.

A key limitation of the temporal DFT is that its Ritz values depend only on the number of
data points and not the data content; see (11.31). Although a Ritz vector energy would still dictate
the degree to which that particular DFT mode is present in the data, the decomposition is only
capable of outputting a predetermined set of frequencies. To ensure that a particular frequency is
properly captured, the data must cover an integer number of corresponding periods. If multiple
frequencies are of interest, then this constraint may be prohibitive, especially if the frequencies are
unknown or are not related by a simple rational number.

In addition, this constraint implies that the longest period the temporal DFT can capture
is the time span of the data set. We will see in the discussion of the cylinder flow example
(Section 11.6.5) that DMD and a variant we will introduce in Section 11.5 are not subject to this
limitation. Although DMD and its variant are still subject to the Nyquist frequency constraint,
there is no theoretical lower bound on the frequencies they can compute.

Secondly, the temporal DFT is wholly incapable of determining modal growth rates. Equa-
tion (11.31) implies that all Ritz values have a unit magnitude. This—like the predetermined mode
frequencies—is an artifact of the mean subtraction, and is independent of the dynamics underlying
the data. Dynamic mode decomposition is predicated on the assumption that meaningful informa-
tion about a trajectory can be inferred from related linear dynamics. When the mean is removed,
important dynamical information is stripped away, and the modal decomposition necessarily yields
a periodic trajectory.

Finally, we stress the well-known fact that a temporal DFT on non-periodic data produces
a slow decay in the modal energy. We also demonstrate this on the cylinder flow example in
Section 11.6.5. In this example, many modes need to be retained to reproduce non-periodic data
correctly.

11.4.5 Subtracting an equilibrium

As an alternative to subtracting the mean from a given data set, one can consider subtracting
the observable corresponding to an equilibrium point of the dynamics. For instance, suppose the
dynamics are given by (11.1), with linear boundary conditions (11.22); suppose also that there is
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an equilibrium solution ξe satisfying f(ξe) = ξe, along with the boundary conditions B(g(ξe)) = γ.
This is often the case for fluid flows, for instance, in which the equilibrium solution is a steady
laminar flow, whereas the observed data consist of snapshots of an unsteady, possibly turbulent,
flow that satisfies the same inflow and wall boundary conditions.

If we choose the “base flow” xb to be the observable corresponding to this equilibrium (i.e.,
xb = xe = g(ξe)), then the base flow satisfies the boundary conditions (11.25). Thus, the modes
computed from base-flow-subtracted data will satisfy homogeneous boundary conditions, just as in
the case where the base flow is the mean of the data. However, using the equilibrium (xb = xe)
appears to have significant advantages over using the mean (xb = x̄, as in Section 11.4.2). The
DMD algorithm no longer reduces to a traditional DFT, and we can once again obtain frequency
and growth rate information from the data. We may view the equilibrium subtraction as merely
translating the coordinate system so that the equilibrium is at the origin. As we will see in
Section 11.6.6, this shift does not appear to change the DMD spectrum and modes in a significant
way.

11.5 Optimized dynamic mode decomposition

We can think of the DMD formulation in (11.6) as a way to “curve-fit” m+1 nonlinearly-generated
data vectors {xk}mk=0 to a linear model of m modes. The model achieves perfect accuracy for
k = 0, . . . ,m − 1, as in (11.6a), and minimizes the error at k = m, as in (11.6b). This model,
however, has potential pitfalls. First, if the user provides m+1 data points but requires fewer than
m modes, then it is not entirely clear how to truncate the mode set—especially when the governing
dynamics are not simple. This scenario is common in the construction of reduced-order models
from data-based decompositions, where the desired number of modes is typically much less than
the number of data vectors, and the dynamics are often quite complex.

Second, the DMD algorithm places a residual only on the final data vector xm, since the
algorithm is built upon the reconstruction of xm from {xk}m−1

k=0 . Numerical experiments show that
DMD results are more sensitive to variations in xm than to variations in other data vectors. This
is because the Ritz values are the eigenvalues of the companion matrix C (11.9), which dictates
this reconstruction. The presence of noise in xm could drastically change the contents, and hence
the eigenvalues, of the companion matrix.

To address these issues, we propose a new, optimized DMD, in which we fit p points on a
trajectory to a linear model of m modes. We must satisfy the inequality m < p, but m and p are
otherwise arbitrary. We allow the linear model to contain a residual at each of the p points, but
the overall residual is minimized for the values of m and p that we choose.

More formally, suppose that {xk}p−1
k=0 is a set of real or complex vectors. Given m < p, we seek

complex scalars {λj}mj=1 and vectors {vj}mj=1 such that

xk =
m∑
j=1

λkjvj + rk, k = 0, . . . , p− 1, (11.35a)

and we minimize

Γ ,
p−1∑
k=0
‖rk‖22 . (11.35b)

126



To construct the optimized DMD, define

K ,
[
x0 · · · xp−1

]
(11.36a)

V ,
[
v1 · · · vm

]
(11.36b)

T ,


1 λ1 λ2

1 · · · λp−1
1

1 λ2 λ2
2 · · · λp−1

2
...

...
...

...
1 λm λ2

m · · · λp−1
m

 (11.36c)

r ,
[
r1 · · · rp

]
. (11.36d)

We seek V and the Vandermonde matrix T such that K = VT + R, and we minimize the squared
Frobenius norm Γ = ‖R‖2F. This is essentially a least-squares problem for V. Of all the choices of
V that minimize ‖R‖2F, the one with the smallest Frobenius norm is

V = KT+. (11.37)

(If {λj}mj=1 are distinct and therefore T has full row rank, then T+ = T∗ (TT∗)−1.) The residual is
therefore R = K

(
I−T+T

)
. Using the trace expansion of the Frobenius norm, we then find that

Γ = tr (K∗K)− tr
(
T+TK∗K

)
(11.38a)

= ‖K‖2F −
∥∥∥KT+T

∥∥∥2

F
. (11.38b)

Although the second form is more intuitive, the first form is faster to compute, since we can
precompute and store the small matrix K∗K. The objective is to find a set of complex numbers
{λj}mj=1 that minimizes (11.38); (11.37) then provides the modes.

At present, we do not have an analytic algorithm for computing optimized DMD. To find
the choice of {λj}mj=1 that minimizes Γ, we employ a global optimization technique that combines
simulated annealing and the Nelder-Mead simplex method (Press et al., 2007). At each iteration, the
technique adds thermal fluctuations to the function evaluations at the points of the simplex. When
it tests a new point, it subtracts a thermal fluctuation from the function evaluation; therefore, there
is a calculable probability of accepting a worse point. As the annealing completes, the fluctuations
vanish, and the technique reduces exactly to the Nelder-Mead method of local optimization. We also
use the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton iterator for purely local minimization. In
this case, we apply the SVD-based DMD algorithm of Schmid (2010) and use select Ritz values as
the initial condition for the iterator. The two iterators produce consistent results for m = 3, which
we report in Section 11.6.4.

This minimization problem is similar to POD’s, which minimizes

‖K‖2F −
∥∥∥V (V∗V)−1 V∗K

∥∥∥2

F
, (11.39)

with the requirement that V be unitary. In optimized DMD, T is not unitary; rather, it obeys the
Vandermonde structure given in (11.36c).

Finally, we present a property of optimized DMD as a theorem below.

Theorem 11.2. Suppose the data {xk}p−1
k=0 are linearly independent. Then the Ritz values {λj}mj=1

resulting from optimized DMD are distinct.
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Proof. The key idea behind this proof is that an orthogonal projection onto the rows of a Van-
dermonde matrix attains the maximum norm only when the rows are distinct. We proceed by
contradiction.

Suppose that {λj}mj=1 are not distinct. In particular, suppose this set has q < m distinct ele-
ments {µj}qj=1. Let {µj}

m
j=q+1 be any set of distinct complex scalars not in {λj}mj=1, so that {µj}mj=1

is a distinct set of complex scalars. Construct the complex conjugate Vandermonde matrices

T∗ =


1 · · · 1
λ̄1 · · · λ̄m
...

...
λ̄p−1

1 · · · λ̄p−1
m

 S∗ ,


1 · · · 1
µ̄1 · · · µ̄m
...

...
µ̄p−1

1 · · · µ̄p−1
m

 (11.40)

and the corresponding orthogonal projection matrices PT∗ , T∗ (T∗)+ and PS∗ , S∗ (S∗)+. Also,
let {yk}nk=1 be the columns of K∗, so that

K∗ =


x∗0
...

x∗p−1

 =
[
y1 · · · yn

]
. (11.41)

Thus, each vector yk contains the time history of the data at a particular index in x.
First, for k = 1, . . . , n, consider the separation of yk into its projection onto the range of S∗

and the orthogonal complement,

yk = PS∗yk + ζk, ζk /∈ range (S∗) . (11.42)

Since range (T∗) ⊂ range (S∗), we deduce that PT∗ζk = 0. Thus, applying to the above equation a
projection onto the range of T∗, we obtain PT∗yk = PT∗PS∗yk. Using this fact to separate PS∗yk
into its projection onto T∗ and the orthogonal complement,

PS∗yk = PT∗yk + ηk, PT∗yk ⊥ ηk. (11.43)

Furthermore, the Pythagorean theorem states that

‖PS∗yk‖22 = ‖PT∗yk‖22 + ‖ηk‖22 . (11.44)

Define H =
[
η1 · · · ηn

]
; stack (11.43) and sum (11.44) to form

PS∗K∗ = PT∗K∗ + H (11.45a)
‖PS∗K∗‖2F = ‖PT∗K∗‖2F + ‖H‖2F . (11.45b)

The cost function in (11.38) is Γ = ‖K∗‖2F−‖PT∗K∗‖2F. By the construction of optimized DMD,
T∗ is the Vandermonde matrix that maximizes ‖PT∗K∗‖2F. That is, ‖PT∗K∗‖2F ≥ ‖PS∗K∗‖2F
since S∗ is also a Vandermonde matrix, and therefore H = 0. Equation (11.45a) reduces to
PS∗K∗ = PT∗K∗.

The rank property of Vandermonde matrices then yields

q = rank (PT∗) = rank (PT∗K∗) (11.46a)
m = rank (PS∗) = rank (PS∗K∗) ; (11.46b)
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Figure 11.1: Color fields of vorticity (i.e., velocity rotation), with overlaid velocity vectors, for the cylinder
flow at Re = 60. Clockwise vorticity is blue, and counterclockwise is red. An exterior uniform flow from left
to right is present. (a): The unstable equilibrium of the cylinder flow. (b): A snapshot from the limit cycle.

the right-most side comes from the fact that K∗ has full row rank. We arrive at a contradiction:
PS∗K∗ and PT∗K∗ are equal, yet they have different ranks. Therefore, {λj}mj=1 must be distinct.

11.6 Application to a cylinder flow

11.6.1 Overview

The two-dimensional incompressible flow past a cylinder is a canonical problem in fluid mechanics.
Its dynamics are relatively well-understood (see Williamson 1996), and real-life examples with
similar dynamics can be found in everyday objects such as flagpoles, smokestacks, and even entire
skyscrapers. A number of recent studies have focused specifically on dynamical modeling, modal
analysis, and flow control of the cylinder wake; see Roussopoulos (1993), Gillies (1998), Noack et al.
(2003), Giannetti and Luchini (2007), Marquet et al. (2008), and Tadmor et al. (2010) for a short
selection.

The continuity and Navier–Stokes equations,

∇ · u = 0 (11.47a)
∂u
∂t

+ u · ∇u = −∇p
ρ

+ ν∇2u, (11.47b)

govern the dynamics of the incompressible cylinder flow. We denote the horizontal (free-stream)
direction by x and the vertical (normal) direction by y. We assume the fluid density ρ and kinematic
viscosity ν are constant, and the velocity u =

[
ux (x, y, t) uy (x, y, t)

]T
and pressure p (x, y, t) vary

in space and time. Denoting the horizontal unit vector by ex, the boundary conditions are

u = Uex, x, y → ±∞ (11.48a)
p = p0, x, y → ±∞ (11.48b)

u = 0,
√
x2 + y2 = D

2 , (11.48c)

where Uex is the externally-imposed free-stream velocity, p0 is the constant far-field pressure, and
D is the cylinder diameter.

The qualities of the incompressible cylinder flow are characterizable by only one parameter,
the Reynolds number Re , UD/ν. At Reynolds numbers between 47 (Provansal et al., 1987) and
roughly 194 (Williamson, 1996), there exists one unstable equilibrium (Figure 11.1a), consisting
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Figure 11.2: (a): The lift coefficient magnitude as the cylinder flow evolves from the unstable equilibrium to
the limit cycle. (b): The corresponding instantaneous Strouhal number.

of a long separation bubble with two counter-rotating vortices. There also exists one stable limit
cycle (Figure 11.1b), known as a von Kármán vortex street, characterized by a periodic shedding
of vortices from the top and bottom surfaces. To test our decomposition methods, we generate
data from numerical simulations of a cylinder flow at Re = 60. We intentionally pick a Reynolds
number close to 47—where the Hopf bifurcation occurs—so that dynamical parameters such as the
shedding frequency do not change too drastically from the equilibrium to the limit cycle.

As the cylinder flow evolves from the unstable equilibrium to the limit cycle, we identify three
distinct regimes (see Figure 11.2). Near the equilibrium state, perturbations in the flow from the
equilibrium are small, and the dynamics are approximately linear. The flow oscillates at a frequency
f given by a nondimensional Strouhal number of St , fD/U = 0.126. The lift coefficient—defined
by CL , 2FL/

(
ρU2D

)
for a lift force per depth FL—increases in oscillation amplitude by 1.054t̂,

where t̂ , tU/D is the nondimensional advection time. In the transient regime, the Strouhal
number increases and the CL peaks grow more slowly than exponentially. Finally, near the limit
cycle, St = 0.141 and the CL peaks roughly reach their asymptotic values. This Strouhal number
is consistent with findings by Roshko (1954).

11.6.2 Numerical method

We generate the data using a multi-domain immersed boundary method; see Taira and Colonius
(2007) and Colonius and Taira (2008) for details. Each successively smaller domain covers half
the streamwise and normal length, and samples the space twice as finely. The coarsest domain
spans 48 diameters in the streamwise direction and 16 diameters in the normal direction. On the
third and finest domain, shown in Figure 11.1, the computational domain spans 12 diameters in
the streamwise direction and four diameters in the normal direction, with a resolution of 480 by
160 grid points. In this study, we only use velocity data from this innermost domain in DMD.
We use a time step of ∆t̂ = 0.01875, which satisfies the Courant–Friedrichs–Levy condition for
the numerical scheme implemented. The two references above have verified the convergence of the
scheme, as well as agreement with analytic models.
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We use selective frequency damping (SFD; see Åkervik et al., 2006) to solve for the unstable
equilibrium. This solution is used as the initial condition of the immersed boundary solver. Because
time derivatives are extremely small at the start of the fluid simulation, the computed equilibrium
is likely close to the true equilibrium. The numerical error in the SFD solution causes the trajectory
to depart from the equilibrium, and ultimately to approach the limit cycle. Only one simulation,
the one shown in Figures 11.1 and 11.2, is used in this study.

11.6.3 Dynamic mode decomposition of the cylinder flow

From each of the three regimes shown in Figure 11.2, we compute DMD on x- and y-velocity
data spanning approximately two periods of oscillation. We retain every 25th time step from
the immersed boundary solver, so the sampling time between successive data vectors is ∆t̂s =
25∆t̂ = 0.46875. The data samples from the near-equilibrium, transient, and limit cycle regimes
respectively cover 0 ≤ t̂ < 15.94, 95.63 ≤ t̂ < 111.09, and 210.94 ≤ t̂ < 225.00. To cover two
periods, we respectively require 34, 33, and 30 snapshots. Although we feed an integer number of
periods into DMD, our experience has been that DMD is generally insensitive to this condition.
This is in contrast to other methods such as POD, which may yield unintended results when using
non-integer periods of data.

Figure 11.3 shows the spectra of Ritz values. The Strouhal number is

St = arg (λ)
2π∆t̂s

, (11.49)

and we normalize vector energies ‖v‖2 by
∥∥∥[K xm

]∥∥∥
F
/
√
m+ 1, the root-mean-square 2-norm

of the data. The most energetic mode typically has a Ritz value of λ ≈ 1. This mode has the
resemblance of (but is not exactly the same as) the mean of the data set; see Figures 11.4(a, b)
and 11.6.

In the near-equilibrium regime (Figure 11.3a, b), where the dynamics are nearly linear, DMD
easily recognizes the complex conjugate pair of eigenmodes primarily responsible for the oscillating
exponential growth away from the unstable equilibrium. One mode from the pair is shown in
Figure 11.4(c–e). The spatial oscillations are the result of instabilities that convect downstream.
The velocity magnitude of this mode, as shown in Figure 11.4(e), attains its maximum value
far downstream of the cylinder. The qualitative nature of this unstable mode is consistent with
previous results, such as the eigenmode analyses of Giannetti and Luchini (2007) and Marquet
et al. (2008) of the linearized Navier–Stokes equations. An additional unstable pair of modes is
visible in Figure 11.3(a, b); we posit that this is a result of numerical noise.

We momentarily skip the transient regime and discuss the limit cycle, as shown in Figure 11.3(e,
f). The spectrum appears well-ordered; all but the least energetic modes lie very close to the unit
circle. The mode corresponding to λ = 1 (Figure 11.6) exhibits a shorter tail than the equivalent
mode from near the equilibrium. This is expected, and is the basis of “shift mode” analyses of
bluff body wakes, as in Noack et al. (2003) and Tadmor et al. (2010). Furthermore, the oscillatory
mode frequencies are nearly integral multiples of the base frequency St = 0.141. An aliasing effect
can be seen in Figure 11.3(f) as the multiples exceed the Nyquist frequency of 1.067. The integral
multiples suggest that the cylinder flow’s periodic orbit exhibits harmonic-like behavior. The first
and second harmonics are respectively shown in Figure 11.7(a–c) and (d–f). We observe that the
first harmonic is symmetric in vorticity about the horizontal axis, and the second harmonic is
antisymmetric. Thus, the former corresponds to the large-scale convection of fluid structures in the
wake, and the latter corresponds to the top-bottom oscillation visible in Figure 11.1(b).
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Figure 11.3: Ritz values λ computed from DMD on two periods of data. Top row: as the real and imaginary
parts; the normalized vector energies E =

√
m+ 1 ‖v‖2 / ‖[K xm]‖F are indicated by the color of the circles,

with darker colors indicating greater energies. Bottom row: as the normalized vector energy versus the
Strouhal number. Left column: near-equilibrium regime; middle column: transient regime; right column:
limit cycle regime. The arrows indicate Ritz values for which the corresponding modes are plotted in
Figures 11.4, 11.6, and 11.7.

We also observe that the DMD modes from the limit cycle match very closely with POD modes
(see Holmes et al., 1996). The parallel is not exact, because oscillatory DMD modes are complex,
whereas POD modes from real data are always real. Nevertheless, let us index DMD modes in order
of decreasing vector energy, so that v2 is the DMD mode corresponding to λ2 = 0.915 + 0.404i
(Figure 11.7a–c), and v4 is the mode corresponding to λ4 = 0.674 + 0.739i (Figure 11.7d–f).
Similarly, let φ1, . . . ,φ4 be the first four POD modes from the same data set. We find that∣∣∣∣∣ 〈v2,φ1 + iφ2〉

‖v2‖2 ‖φ1 + iφ2‖2

∣∣∣∣∣
2

= 0.9996 (11.50a)∣∣∣∣∣ 〈v4,φ3 + iφ4〉
‖v4‖2 ‖φ3 + iφ4‖2

∣∣∣∣∣
2

= 0.9999, (11.50b)

where 〈xj ,xk〉 , x∗kxj is an inner product. That is to say that in the limit cycle, POD modes are
extremely similar to the real and imaginary parts of DMD modes, up to a complex multiplicative
factor.

Of the three regimes, the transient one (Figure 11.3c, d) is the most difficult to analyze. Rowley
et al. (2009) showed that the analysis of the Koopman operator, on which DMD is based, yields
elegant solutions for linear dynamics and periodic dynamics. The transient regime, however, is
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Figure 11.4: Modes v computed from DMD on two periods of data in the near-equilibrium regime. Left
column: λ = 1.000; right column: λ = 0.956 + 0.371i (see Figure 11.3a, b). Top row: the real part Re [v];
middle row: the imaginary part Im [v]. Clockwise vorticity is blue, and counterclockwise is red. Note that
the mode corresponding to λ = 1.000 is real. Bottom row: the magnitude of the complex velocity, with zero
shown in white and the highest magnitude shown in black.

Figure 11.5: Modes v computed from two periods of data in the transient regime. Left column: DMD mode
at λ = 0.940+0.361i; right column: optimized DMD mode (m = 3) at λ = 0.940+0.378i (see Figure 11.10).
Top row: the real part Re [v]; middle row: the imaginary part Im [v]. Bottom row: the magnitude of the
complex velocity.
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Figure 11.6: The DMD mode corresponding to λ = 1.000, from two periods of data in the limit cycle regime
(see Figure 11.3e, f). (a): Velocity and vorticity color fields. (b): The magnitude of the velocity.

Figure 11.7: Modes v computed from DMD on two periods of data in the limit cycle regime. Left column:
λ = 0.915 + 0.404i; right column: λ = 0.674 + 0.739i (see Figure 11.3e, f). Top row: the real part Re [v];
middle row: the imaginary part Im [v]. Bottom row: the magnitude of the complex velocity.

134



0.91 0.92 0.93 0.94 0.95 0.96

0.37

0.38

0.39

0.4

0.41

ℜ [λ ]

ℑ
[λ
]

stable unstable

equilibrium

limit cycle

Figure 11.8: The movement of the primary unstable Ritz value near the equilibrium (see Figures 11.3a and
11.4c–e) to the primary oscillatory Ritz value near the limit cycle (see Figures 11.3e and 11.7a–c), as a
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Figure 11.9: Ritz values λ computed from DMD on the entire transient regime. (a): As the real and
imaginary parts. (b): As the normalized vector energy E =

√
m+ 1 ‖v‖2 / ‖[K xm]‖F versus the Strouhal

number.

neither. Rather, it is the part of the highly nonlinear post-Hopf-bifurcation dynamics between
the unstable equilibrium and the limit cycle. At Re = 60, a smooth “morphing” is visible in the
DMD results when a window of snapshots traverses the cylinder data from the equilibrium to the
limit cycle (Figure 11.8). Therefore, the Ritz values and vectors are loosely between those of the
near-equilibrium regime and those of the limit cycle. For instance, compare the most energetic
oscillatory mode, shown in Figure 11.5(a–c), to Figure 11.4(c–e) and Figure 11.7(a–c).

We obtain different results if we apply DMD to the entire transient regime, 78.21 ≤ t̂ <
167.33, instead of just two periods; see Figure 11.9. Interpreting this global analysis is especially
challenging, because as Figure 11.2(b) implies, the frequency of large-scale oscillation is no longer
approximately constant within this window. The most energetic mode exhibits a frequency of
St = 0.136, which is between the near-equilibrium frequency of St = 0.126 and the limit cycle
frequency of St = 0.141. In addition, each cluster of Ritz values in Figure 11.3(d) is now roughly
an inverted parabola; there is now a characterizable spread of modes around each major frequency.
Schmid (2010) observed a similar pattern of inverted parabolas when analyzing the flow of a jet
between two cylinders, at a Reynolds number of 3,000 based on the volume flux velocity and the
cylinder diameter. Although Schmid attributes the parabolas to the spread of spatial and temporal
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Figure 11.10: Comparison of the DMD (open black ◦) and optimized DMD (m = 3; filled red �) spectra from
two periods of data in the transient regime. (a): As the real and imaginary parts. (b): As the normalized
vector energy (E =

√
m+ 1 ‖v‖2 / ‖[K xm]‖F for DMD, E = √p ‖v‖2 / ‖K‖F for optimized DMD) versus

the Strouhal number. The DMD data are reproduced from Figure 11.3(c, d). The arrows indicate the DMD
Ritz value for which the corresponding mode is plotted in Figure 11.5(a–c). The nearby optimized DMD
mode is plotted in Figure 11.5(d–f).

scales in the modes of advective-diffusive flows (e.g., in Schmid and Henningson, 2000), we believe
that the increasing Strouhal number of the vortex shedding is the leading cause in this case.

11.6.4 Comparison with optimized DMD

Given a set of cylinder flow data, DMD and the m-mode optimized DMD typically yield very
similar results, when we truncate the former to retain only the m most energetic modes. For this
reason, we do not show the optimized DMD Ritz values and vectors of the entire cylinder flow.
The transient regime, however, is an exception. Figure 11.10 compares the Ritz values from this
regime, using DMD and a three-mode optimized DMD. Whereas DMD clusters Ritz values with
similar vector energies (as in Figure 11.3c, d), optimized DMD combines these clusters into single
modes. This is advantageous, since nearly as much dynamical information can be contained in three
optimized DMD modes as in seven DMD modes. Furthermore, in Figure 11.14 and its surrounding
discussion, we show that the DMD mode clusters may be problematic when truncating the mode
set. Comparing Figure 11.5(a–c) and (d–f), we observe small but noticeable differences between
the primary oscillatory DMD and optimized DMD modes.

To a large extent, the DMD algorithm is successful at extracting frequencies and growth rates
from empirical data. Rowley et al. (2009) demonstrated this by comparing the numerical simulation
of a three-dimensional jet in crossflow to its DMD results. The DMD algorithm is similarly suc-
cessful for the cylinder flow (whose dynamics are simpler than those of the jet in crossflow), except
in the nonlinear transient regime. Table 11.1 compares frequencies and growth rates calculated by
three techniques. We extract one set of values from CL oscillation peaks. In the case of DMD,
we consider the most energetic oscillatory mode pair, as in Section 11.6.3. Three-mode optimized
DMD recovers a similar complex conjugate pair of modes. Denoting the growth rate by β such
that the growth follows β t̂, we have β = |λ|1/∆t̂s .

The frequencies extracted from DMD and optimized DMD match lift force values to very good
precision in the near-equilibrium and limit cycle regimes. In the transient regime, however, the
three-mode optimized DMD captures the dominant Strouhal number better than DMD. This
is because DMD imposes the constraint that the number of modes must be one fewer than the
number of data vectors. By considering only three modes, we truncate the majority of the modal
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Table 11.1: Comparison of Strouhal numbers St and growth rates β over two periods of data from each of
the three regimes. The lift force data, DMD, and three-mode optimized DMD yield these results.

St β
Regime lift data DMD opt. DMD lift data DMD opt. DMD
Near-equilibrium 0.126 0.126 0.126 1.054 1.054 1.054
Transient 0.130 0.124 0.130 1.044 1.017 1.028
Limit cycle 0.141 0.141 0.141 1.000 1.000 1.000

decomposition. In nonlinear dynamics, as in the transient regime, these truncated modes may
contain important information that we should not carelessly throw out. On the other hand, the
three-mode optimized DMD tailors the decomposition to find a single complex conjugate pair of
modes. Thus, optimized DMD provides the “best” single-frequency representation of the transient
flow.

Similarly, growth rates agree near the equilibrium, where dynamics are largely linear, and near
the limit cycle, where β = 1 by definition. A larger variation is evident in the transient regime.

11.6.5 Comparison with the temporal DFT

Figure 11.11 shows the spectra produced by the temporal DFT in each of the three data sets.
As (11.31) predicts, the Ritz values are exactly the m + 1 roots of unity, excluding unity itself.
Therefore, to produce modes that correctly capture the features of the flow, it is imperative that
the data set cover an integer number of oscillation periods. Comparing the temporal DFT vector
energies to the DMD Ritz vector energies in Figure 11.3, we observe that the primary oscillation
modes are well-captured. These DFT modes look the same as equivalent optimized DMD modes
to the naked eye (Figures 11.4c–e, 11.5d–f, and 11.7).

The temporal DFT mode energies, however, have a much slower decay rate. This is expected
in the near-equilibrium and transient regimes, since data sets there are non-periodic. The slow
decay is generally undesirable, since the implication is that we may need to retain a large number
of modes to construct an accurate solution. In addition, the low-energy modes in the transient
regime are irregular and generally without meaningful physical interpretation. This is typically not
the case with low-energy DMD and optimized DMD modes.

We highlight an additional advantage of DMD and optimized DMD over the temporal DFT in
Figure 11.12. As Section 11.4.4 explains, the largest period that the temporal DFT can compute is
the time span of the data set. Therefore, it would have limited utility in analyzing small data sets
that cover less than a full period of oscillation. On the other hand, DMD and especially optimized
DMD are not constrained as severely. In the cylinder’s limit cycle, where a full period is 15.1
snapshots, we compute DMD on two to 15 snapshots, and we compute a three-mode optimized
DMD on four to 15 snapshots. The former computes the growth rate to within a 5% error of unity
when eight or more snapshots are used, and the latter when any number of snapshots is used.
Similarly, DMD computes the Strouhal number to within a 5% error of 0.141 when nine or more
snapshots are used, and optimized DMD when eight or more are used. With only half a period of
data, DMD can compute the modal decomposition modestly accurately; optimized DMD performs
even better.

137



−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
(a)

ℜ [λ ]

ℑ
[λ
]

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

10
0

St

(b)

E

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
(c)

ℜ [λ ]

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

10
0

St

(d)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
(e)

ℜ [λ ]

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

10
0

St

(f)

Figure 11.11: Ritz values λ computed from temporal DFT on two periods of data. Top row: as the real and
imaginary parts. Bottom row: as the normalized vector energy E =

√
m+ 1 ‖v‖2 / ‖[K xm]‖F versus the

Strouhal number. Left column: near-equilibrium regime; middle column: transient regime; right column:
limit cycle regime.
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Figure 11.12: The Ritz value of the limit cycle’s primary oscillatory mode, using a full period of data or less
in DMD (blue ◦) and three-mode optimized DMD (red +). A full period is 15.1 snapshots. The dashed line
indicates the correct value. (a): As the growth rate β. (b): As the Strouhal number.
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Figure 11.13: Ritz values λ computed from DMD on two periods of equilibrium-subtracted data. Top row: as
the real and imaginary parts. Bottom row: as the normalized vector energy E =

√
m+ 1 ‖v‖2 / ‖[K xm]‖F

versus the Strouhal number. Left column: near-equilibrium regime; middle column: transient regime; right
column: limit cycle regime. Except for the Ritz value closest to λ = 1, the spectra are very close to ones in
Figure 11.3, without the equilibrium subtraction.

11.6.6 Comparison with equilibrium subtraction

We show the DMD spectra of the three data sets—with the equilibrium subtracted—in Figure 11.13.
Upon comparing these spectra with the ones from the original data sets (Figure 11.3), we notice
that the results are nearly identical. One key difference is that the mode closest to λ = 1 is now
significantly weaker. This is a natural consequence of the base flow subtraction. Since the dynamics
of the cylinder flow at Re = 60 do not depart drastically from the unstable equilibrium, we could
expect a stationary DMD mode to resemble the unstable equilibrium. Such a mode should be less
present when we subtract the equilibrium from the data.

To the naked eye, these DMD modes from the three regimes look identical to the modes without
base flow subtraction; see Figures 11.4, 11.5, and 11.7. We stress again, however, that the base
flow subtraction is necessary to ensure that the modes have homogeneous boundary conditions.
(The figures only show the innermost domain of the computational grid, and so the actual outer
boundaries are not visible.)

11.6.7 Projection error

For the purpose of constructing reduced-order models (typically by Galerkin projection), we also
assess the ability of the discussed modal decompositions to yield good projection subspaces. By
construction, POD produces the modal subspace that retains the largest possible vector energy
after projection (Holmes et al., 1996). Proper orthogonal decomposition, however, is fundamentally
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Figure 11.14: (a): The projection error using different DMD modes sets. (blue ◦, top): linear stability
modes; (blue ◦, bottom): linear stability modes and the shift mode; (green ×, top): orbital modes; (green
×, bottom): orbital modes and the shift mode; (red �): time-varying modes. (b): The projection error in
the transient regime using different time-varying modes. (red �): DMD, as in (a); (magenta M): temporal
DFT; (black O): optimized DMD; (cyan ♦): equilibrium-subtracted DMD. For reference, compare these two
plots to Figure 11.2.

decoupled from any sense of time or dynamics, and therefore may not provide the best mode basis
for constructing dynamical models.

Suppose that V is a linearly independent set of modes, and PV = V (V∗V)−1 V∗ is the orthog-
onal projection onto the modes. We define the projection error of a data vector x as

ε (x; V) , ‖x−PVx‖2
‖x‖2

. (11.51)

A low projection error indicates that the set of modes in V captures a large amount of information
in x, from an energy standpoint. Again, we stress that modal decompositions with low projection
errors do not necessarily create accurate reduced-order models. Nevertheless, this error is still a
meaningful measure to consider. A large error suggests that reduced-order models created from
the mode set cannot faithfully represent the true state of the dynamical system.

In Figure 11.14(a), we project the two-dimensional velocity data from the cylinder flow sim-
ulation onto different mode sets, and we show the resulting projection error ε

(
x
(
t̂
)

; V
)
. We

compute linear stability modes from the near-equilibrium regime and orbital modes from the limit
cycle, both using DMD. We retain three DMD modes—the λ ≈ 1 mode and the most energetic
complex conjugate pair—for projection, and truncate the rest (see Figures 11.4, 11.6, and 11.7).
As expected, linear stability modes yield low projection errors near the equilibrium, and orbital
modes yield low projection errors in the limit cycle. The errors become large, however, away from
the regimes from which we compute each set of modes. Noack et al. (2003) shows that the inclusion
of a shift mode, defined in this case as the limit cycle mean minus the unstable equilibrium state,
improves the projection error. This is also shown in Figure 11.14(a). We comment that there is
little change in projection error if we use the mean flow and two temporal DFT modes instead of
three DMD modes; therefore, we do not show temporal DFT results.

We might expect that we could reduce the projection error by projecting data onto modes
computed only from their local temporal neighborhood. Thus, we also project each data vector
onto three time-varying modes, which we compute by DMD on a data set beginning half a cycle
before the data vector and terminating half a cycle after. As shown in Figure 11.14, this is effective
at minimizing projection errors, except around t̂ = 94. There, the error becomes large because
there exist two DMD modes with Ritz values λ ≈ 1, and we only retain whichever is closer to
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λ = 1. Should we include the other, the spike in the error would not exist. Nonetheless, this shows
that truncating DMD modes may cause unintended and harmful effects.

In Figure 11.14(b), we additionally compute the projection error onto three time-varying tem-
poral DFT and optimized DMD modes. They are nearly equally good at minimizing the projection
error, and they outperform any other set of modes tested. The figure also includes the projection
error onto time-varying DMD modes with equilibrium subtraction. In this case, the projection is
onto the span of the equilibrium, the λ ≈ 1 mode, and the most energetic oscillatory pair of modes.

Finally, we remark that prior studies in the literature suggest the utility of DMD modes for
Galerkin modeling. As Sections 11.2 and 11.6.3 mention, the DMD modes near the equilibrium
are approximately the eigenmodes of the linearized dynamics, and DMD modes near the orbit are
approximately the POD modes. A number of previous studies have already investigated the use
of these modes in Galerkin modeling; see the first several references of Tadmor et al. (2010). For
a comprehensive study specifically related to the Galerkin modeling of the cylinder wake, refer to
Noack et al. (2003); this particular study shows that a combination of POD modes, linear stability
modes, and the shift mode accurately models the wake.

11.7 Conclusion

The Koopman operator is a linear operator that represents nonlinear dynamics without lineariza-
tion. Dynamic mode decomposition is a data-based method for estimating Koopman eigenvalues
and modes. It approximates a trajectory, often from nonlinear dynamics, as the result of a linear
process. The Ritz values of the decomposition yield growth rates and frequencies, and the Ritz
vectors yield corresponding directions. Unlike many previous decomposition techniques such as
POD and balanced POD, DMD is not tightly constrained; the data need be neither periodic nor
from a linear process for DMD to construct a meaningful modal decomposition.

We prove that the DMD algorithm of Rowley et al. (2009) and Schmid (2010) produces a unique
decomposition if and only if all vectors except the last in a given data set are linearly independent,
and the Ritz values are distinct. If the data violate either condition, then non-unique Ritz values
and vectors may still exist.

To use DMD modes in a reduced-order Galerkin model of a partial differential equation, we
must typically include a “base flow” that satisfies the appropriate boundary conditions. The mean
of the data is a common choice for a base flow, especially in POD-based analyses. Dynamic mode
decomposition on a mean-subtracted set of data, however, is exactly equivalent to a temporal DFT
and harmonic averaging. This implies that for m + 1 data vectors, the Ritz values are precisely
the m + 1 roots of unity, excluding unity itself. The inability to compute growth rates, as well as
the predetermination of frequencies regardless of data content, are fundamental properties of the
temporal DFT. In addition, the temporal DFT cannot capture a particular frequency if the data
set covers less than one corresponding period. Furthermore, the decay of temporal DFT vector
energies is slow if the data are non-periodic. We can avoid these issues by choosing the equilibrium
point instead as the base flow.

Next, we introduce an optimized DMD, which tailors the decomposition specifically to the
desired number of modes. In this decomposition, the representation of any data vector may contain
a residual, but this method minimizes the total residual over all data vectors. In the absence of
an analytic algorithm, we use simulated annealing and quasi-Newton iterators to compute the
optimized DMD. Aside from these iterators, this decomposition generally does not suffer from
numerical sensitivity as DMD does. Optimized DMD is also superior for computing a small number
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of modes, since the decomposition constructs a user-given number of modes and does not require
arbitrary truncation.

We use the two-dimensional incompressible flow over a cylinder as a test bed for the afore-
mentioned decomposition methods. Dynamic mode decomposition recovers the leading unstable
eigenmodes from data near the unstable equilibrium. It also recovers POD-like modes from data
near the limit cycle. When a small window of snapshots traverses the cylinder data from the
equilibrium to the limit cycle, the Ritz values and vectors morph gradually.

The optimized DMD and equilibrium-subtracted DMD of the cylinder flow reproduce the DMD
results to a large extent. A significant improvement is visible in the transient regime, however.
Optimized DMD computes growth rates and frequencies more faithfully, and it avoids clusters
of Ritz values, which are problematic for truncating mode sets. Equilibrium-subtracted DMD,
on the other hand, largely preserves the DMD modes and spectra, while correctly accounting for
boundary conditions. Temporal DFT modes of the cylinder flow look qualitatively like optimized
DMD modes, but the roll-off in the Ritz vector energies is slow when the data are not from the
periodic orbit. Unlike the temporal DFT, DMD is able to compute frequencies and growth rates
from little over half a period of data; optimized DMD fares even better.

As the cylinder flow evolves from the unstable equilibrium to the stable limit cycle, time-
varying temporal DFT, optimized DMD, and equilibrium-subtracted DMD modes are better able
to represent (in the sense of energy) the data than time-varying DMD modes. These mode sets
maintain a low error through the entire trajectory of the cylinder flow, from the equilibrium to the
limit cycle. Based on these findings, we hypothesize that the use of these time-varying modes may
yield accurate Galerkin models.

This work was supported by the Department of Defense National Defense Science & Engineering
Graduate (DOD NDSEG) Fellowship, the National Science Foundation Graduate Research Fellow-
ship Program (NSF GRFP), and AFOSR grant FA9550-09-1-0257. We thank Bernd Noack for
discussions on mean subtraction.
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Constructing a reduced-order controller from a high-dimensional plant is commonly necessary.
The “reduce-then-design” approach constructs the controller from a reduced-order plant; “design-
then-reduce” reduces a full-order controller. In both cases, we present sufficient conditions for
the full-order plant and reduced-order controller to achieve closed-loop stability or performance.
These conditions, motivated primarily by the ν-gap metric, reveal model reduction orders that
guarantee stability or performance. The control of the linearized Ginzburg–Landau system provides
validation.

12.1 Introduction

The last few decades have seen great development in linear time-invariant (LTI) state-space meth-
ods for computing powerful and effective controllers. Many real-life dynamical models, however,
have a very large state dimension. Since controllers are often at least as large as the plant, it is
frequently preferable to implement reduced-order controllers instead. When the matrix represent-
ing the plant dynamics is available, there exist several methods for designing such reduced-order
controllers (Obinata and Anderson, 2001). In certain applications, however, the dynamical opera-
tor is so large that matrix computations, such as the solution of Riccati equations or linear matrix
inequalities, are impractical or impossible. In the control of a linearized fluid flow, for instance, the
number of states is typically on the order of the number of grid points used to represent the fluid
dynamics. Such a number often ranges from hundreds of thousands to billions.

In the context of these very-large-dimensional plants, designers often first reduce the plant
dynamics to an approximate system of much lower dimension. If a matrix representation of
the dynamical operator is available, then standard methods include modal truncation, balanced
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Figure 12.1: Two approaches for arriving at different reduced-order controllers Kr from a full-order model
P, as used in this study (cf. Obinata and Anderson (2001), Figure 3.1.1).

truncation, optimal Hankel norm reduction, and coprime factor model reduction (Skogestad and
Postlethwaite, 2005, Ch. 11). Should the matrix representation be unavailable, or too large to
be tractable, designers may use data-based techniques such as proper orthogonal decomposition
(Holmes et al., 1996) or balanced proper orthogonal decomposition (BPOD; Rowley, 2005), as well
as system-identification methods such as the eigensystem realization algorithm (ERA; Juang and
Pappa, 1985). In either case, the designer then constructs the controller from the reduced-order
model (i.e., “reduce-then-design”), with the assumption that that the reduced-order model is a
sufficiently accurate representation of the original dynamics.

Alternatively, we may design the controller directly from the full-order plant. For large-dimen-
sional plants, certain techniques approximate the full-order controller of interest directly from the
original plant. For instance, Chandrasekhar’s method (Kailath, 1973) and recently-proposed meth-
ods such as the adjoint of the direct-adjoint (Bewley et al., 2011) approximate the H2 optimal
controller. Whether we directly compute or approximate the full-order controller, we may then
reduce the controller (i.e., “design-then-reduce”) to make their application more computationally
tractable. There exists a wealth of literature that discusses effective methods for controller reduc-
tion. For instance, Goddard and Glover (1998), Obinata and Anderson (2001), and Gao et al.
(2006) investigate frequency-weighted model reduction techniques, which are constructed from ap-
proximations of an internal-model-control-based transfer function.

Figure 12.1 depicts the two methods for designing low-order controllers. We denote the design-
then-reduce controller KK

r , and the reduce-then-design controller KP
r . The notation Kr may refer

to either one.
A number of works have also specifically investigated the reduced-order control of distributed-

parameter (e.g., partial differential equation) systems (e.g., Burns and King, 1998; King and Sachs,
2000; Atwell and King, 2004; Batten and Evans, 2010). Some of these references, as well as Obinata
and Anderson (2001), loosely argue that reduce-then-design is inherently inferior to design-then-
reduce. The latter delays the approximation step as much as possible, whereas the former allows
approximation error to propagate.

In addition, certain works in the model reduction literature have addressed robust stability or
performance in the context of controller reduction (e.g., Zhou and Chen, 1995; Goddard and Glover,
1998; King and Sachs, 2000; Wang and Huang, 2003). In particular, a recent work (Dehkordi
and Boulet, 2011) analyzes multiplicative uncertainty using structured singular values and the
M∆-structure, focusing on balanced truncation for controller reduction. This model of controller
reduction yields lower bounds on the controller order necessary for robust stability or performance.
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In the present study, we connect concepts from robust stability and performance (such as the
normalized coprime stability margin and the ν-gap metric) with concepts from model reduction
(such as Hankel singular values and H∞ norms on model reduction error). By doing so, we derive
simple theorems that guarantee the closed-loop stability or performance of full-order plants with
reduced-order controllers. The primary merit of these theorems is that they are more generalizable
and readily applicable to the design of reduced-order controllers—we believe—than other known
robust stability or performance results. Furthermore, as in Dehkordi and Boulet (2011), and as
we will see in the included example, the theorems provide a sense of the required model reduction
accuracy for stability or performance. Control designers may therefore use them to guide the
model reduction process. Lastly, our results are applicable to both the reduce-then-design and the
design-then-reduce methods.

This paper is organized as follows. We briefly review elements of the normalized coprime
stability margin and the ν-gap margin in Section 12.2. Section 12.3 presents the main results of the
paper by proving sufficient conditions for the stability, or desired performance level, of full-order
plants in closed-loop with reduced-order controllers. In Section 12.4, we show examples of these
conditions using the control of the linearized Ginzburg–Landau system, and we provide concluding
remarks in Section 12.5.

12.2 The normalized coprime stability margin and the ν-gap met-
ric

In this paper, we use the following notation. We denote the conjugate transpose of a matrix or
transfer function G by G∗. The maximum singular value of a matrix or transfer function G is
denoted σ(G). L∞ is the Lebesgue space of matrix functions essentially bounded on the imaginary
axis, with norm ‖G‖∞ = ess supω∈R σ(G(iω)). The space of stable, continuous time, LTI transfer
functions is H∞, and H∞ ⊂ L∞. R is the space of rational functions, and RL∞ , R ∩L∞ and
RH∞ , R ∩H∞. For G ∈ RL∞, ‖G‖∞ = maxω∈R σ(G(iω)). We denote the kth largest Hankel
singular value of G ∈ RH∞ by σk(G). In the case of an unstable G, we first separate G into a
stable and an anti-stable part; σk(G) only includes the Hankel singular values of the stable part.

Next, we review the framework of the normalized coprime stability margin and the ν-gap metric.
We base this discussion on Vinnicombe (1993) and Vinnicombe (2001); consult these references for
a complete description.

The normalized coprime stability margin and the ν-gap metric provide a useful framework for
providing bounds on closed-loop performance. Suppose the stability margin bP,K of a plant P
and a controller K, as well as the ν-gap metric δν(P,Pp) between P and a perturbed plant Pp,
are both known. Then, we may analytically solve for lower and upper bounds on bPp,K. The
utility of this framework is multifaceted. First, we can potentially guarantee that the closed loop
system [Pp,K] will be stable and achieve a certain performance level—even though we constructed
K to control P, not Pp. Furthermore, we may determine this without actually testing [Pp,K].
In addition, the framework of normalized coprime factorization is more generalizable than, for
instance, multiplicative or inverse multiplicative uncertainty alone. Finally, the framework for P,
K, and a perturbed controller Kp is exactly analogous.

We first introduce some definitions that we use in our theory.

Definition 12.1. The closed-loop system [P,K] is stable if the eight transfer functions from v1,
v2, v3, and v4 to u and y in Figure 12.2 are stable (Vinnicombe, 2001, Definition 1.1). These eight
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Figure 12.2: The standard feedback interconnection (Vinnicombe, 2001, Figure 1.1).

transfer function relations are[
y
u

]
=
[
P
I

]
(I−KP)−1

[
−K I

] [v2
v1

]
+
[

I
K

]
(I−PK)−1

[
I −P

] [v4
v3

]
. (12.1)

Definition 12.2. The normalized right coprime factorization of G ∈ Rp×q is the ordered pair
(N,M), where N ∈ RH p×q

∞ and M ∈ RH q×q
∞ , G = NM−1, and N∗N + M∗M = I. The transfer

functions N and M are unique up to a right multiplication by a unitary matrix. The normalized
left coprime factorization is exactly analogous; see Vinnicombe (2001, Chapter 1.2.1).

Definition 12.3. For a p × q plant P and a q × p controller K, the normalized coprime stability
margin is

bP,K ,


∥∥∥∥∥
[
P
I

]
(I−KP)−1

[
−K I

]∥∥∥∥∥
−1

∞

, [P,K] stable

0, otherwise
(12.2)

(see Vinnicombe, 2001, (2.1)). It is a measure of both the performance and the robustness of [P,K].
Furthermore, bP,K = bK,P.

Definition 12.4. For a system G ∈ Rp×q given by a normalized right coprime factorization
(N,M), and a perturbed system given by Gp = (N + ∆N)(M + ∆M)−1 ∈ Rp×q,

δν(G,Gp) , inf
∆N,∆M∈L∞

wno |M+∆M|=η(Gp)

∥∥∥∥∥
[
∆N
∆M

]∥∥∥∥∥
∞

(12.3)

(see Vinnicombe, 2001, Definition 1.8). Here, wno g(s) is the counterclockwise winding number
around 0 of the scalar function g(s) as s follows the counterclockwise Nyquist D-contour (indented
to the right of any pure imaginary poles or zeros). Also, | · | indicates the determinant, and η(G)
is the number of open right-half-plane poles of G. The ν-gap metric is a metric on R; it obeys the
relation δν(G,Gp) = δν(Gp,G).

We may also compute the ν-gap metric using a more readily calculable relation. First, we define
the matrix square root.

Definition 12.5. Consider the matrix X ∈ Cn×m. The Hermitian square root (X∗X)
1
2 of the

matrix X∗X is the unique positive semidefinite matrix satisfying ((X∗X)
1
2 )2 = X∗X and (X∗X)

1
2 =

((X∗X)
1
2 )∗. (See Vinnicombe, 2001, page 69.)
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Given this definition, we may calculate the ν-gap metric by

δν(G,Gp) =
∥∥∥(I + GpG∗p)−

1
2 (G−Gp)(I + G∗G)−

1
2

∥∥∥
∞
, (12.4)

if |I + G∗p(iω)G(iω)| 6= 0 for all ω ∈ R, and wno|I + G∗pG| + η(G) − η(Gp) − η0(Gp) = 0, where
η0(Gp) is the number of pure imaginary poles of Gp (Zhou and Doyle, 1998, Thm. 17.6). Otherwise,
δν(G,Gp) = 1.

The key relation that bounds the normalized coprime stability margin is

sin−1 bPp,K ≥ sin−1 bP,K − sin−1 δν(P,Pp). (12.5a)

(See, for instance, Vinnicombe, 2001, (3.2)). For a more detailed discussion and proof, see Vinni-
combe (1993, Theorem 4.2) or Vinnicombe (2001, Theorem 3.8). Since inputs to δν commute, we
have that

sin−1 bP,KP
r
≥ sin−1 bPr,KP

r
− sin−1 δν(P,Pr). (12.5b)

Furthermore,
sin−1 bKK

r ,P ≥ sin−1 bK,P − sin−1 δν(K,KK
r ); (12.5c)

since the inputs to b commute,

sin−1 bP,KK
r
≥ sin−1 bP,K − sin−1 δν(K,KK

r ). (12.5d)

12.3 Guarantees on the stability and performance of [P,Kr]
Equations (12.5b, 12.5d) motivate the stability and performance guarantees. If the right-hand side
of these inequalities is positive, then [P,Kr] must be stable. Additionally, if the right-hand side is
greater than some positive value, then we can provide a lower bound on bP,Kr greater than zero.

The main results of this paper are readily applicable when the model reduction method of choice
has an analytic upper bound on the H∞ norm of the error. For instance, balanced truncation has
the upper bound ‖G−Gr‖∞ ≤ 2

∑n
k=r+1 σk(G) (Skogestad and Postlethwaite, 2005, (11.17)),

and a particular construction of optimal Hankel norm reduction has the bound ‖G−Gr‖∞ ≤∑n
k=r+1 σk(G) (Skogestad and Postlethwaite, 2005, (11.29–30)).
Our main results are based on the following basic theorem.

Theorem 12.1. If G,Gr ∈ RL∞ and δν(G,Gr) < 1, then

δν(G,Gr) ≤ ‖G−Gr‖∞ . (12.6)

Proof. See, for instance, the proof of Proposition 3 in Jones and Kerrigan (2010).

We now show conditions that guarantee the closed-loop stability or performance of the full plant
and reduced-order controller.

Theorem 12.2 (Condition for design-then-reduce performance). If KK
r is an approximation of K

that satisfies
∥∥K−KK

r

∥∥
∞ ≤ α for some α ∈ [0, 1), and δν(K,KK

r ) < 1, then the condition

sin−1 bP,K > sin−1 α+ sin−1 bd (12.7)

is sufficient for satisfying the performance criterion bP,KK
r
> bd for the desired bd ∈ [0, 1).
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Proof. Given the stated conditions, (12.7) implies

sin−1 bP,K > sin−1
∥∥∥K−KK

r

∥∥∥
∞

+ sin−1 bd, (12.8a)

and Theorem 12.1 yields

sin−1 bP,K > sin−1 δν(K,KK
r ) + sin−1 bd. (12.8b)

Equations (12.5d, 12.8b) reduce to bP,KK
r
> bd.

Corollary 12.1 (Weak condition for design-then-reduce stability). If KK
r is an approximation of

K that satisfies
∥∥K−KK

r

∥∥
∞ ≤ α for some α ∈ [0, 1), and δν(K,KK

r ) < 1, then the condition

bP,K > α (12.9)

is sufficient for the stability of [P,KK
r ].

Proof. This follows directly from Theorem 12.2, with the choice bd = 0.

We may derive a stronger condition, however, from Obinata and Anderson (2001, Chapter 3.2).

Theorem 12.3 (Strong condition for design-then-reduce stability). If [P,K] is stable, KK
r is an

approximation of K that satisfies
∥∥K−KK

r

∥∥
∞ ≤ α for some α ∈ [0, 1), and η(K) = η(KK

r ), then∥∥∥P(I−KP)−1
∥∥∥−1

∞
> α (12.10)

is sufficient for the stability of [P,KK
r ].

Proof. An internal-model-control-like structure (Obinata and Anderson, 2001, Chapter 3.2) shows
that if K,KK

r ∈ RL∞, [P,K] is stable, η(K) = η(KK
r ), and

1 >
∥∥∥(K−KK

r )P(I−KP)−1
∥∥∥
∞
, (12.11a)

then [P,KK
r ] is stable. From the stated conditions and (12.10), we see that

1 >
∥∥∥K−KK

r

∥∥∥
∞

∥∥∥P(I−KP)−1
∥∥∥
∞

(12.11b)

≥
∥∥∥(K−KK

r )P(I−KP)−1
∥∥∥
∞

; (12.11c)

therefore, [P,KK
r ] must be stable.

This condition is stronger than Corollary 12.1, because it can be shown using H∞ norm prop-
erties that

∥∥P(I−KP)−1∥∥−1
∞ ≥ bP,K. The difference between the two sides of this inequality,

however, may not be large in practice; see Figure 12.4 for an example comparison.
The design-then-reduce conditions presented above may be difficult or impossible to compute

for very large systems. Reduce-then-design is a more common approach in the control of very large
systems (e.g., fluid flow control); the conditions for reduce-then-design performance and stability—
which we present below—are easy to compute. These results and their proofs are exactly analogous
to the design-then-reduce counterparts.
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Theorem 12.4 (Condition for reduce-then-design performance). If Pr is an approximation of P
that satisfies ‖P−Pr‖∞ ≤ β for some β ∈ [0, 1), and δν(P,Pr) < 1, then the condition

sin−1 bPr,KP
r
> sin−1 β + sin−1 bd (12.12)

is sufficient for satisfying the performance criterion bP,KP
r
> bd for the desired bd ∈ [0, 1).

Proof. Given the stated conditions, (12.12) implies

sin−1 bPr,KP
r
> sin−1 ‖P−Pr‖∞ + sin−1 bd, (12.13a)

and Theorem 12.1 yields

sin−1 bPr,KP
r
> sin−1 δν(P,Pr) + sin−1 bd. (12.13b)

Equations (12.5b, 12.13b) reduce to bP,KP
r
> bd.

Corollary 12.2 (Weak condition for reduce-then-design stability). If Pr is an approximation of
P that satisfies ‖P−Pr‖∞ ≤ β for some β ∈ [0, 1), and δν(P,Pr) < 1, then the condition

bPr,KP
r
> β (12.14)

is sufficient for the stability of [P,KP
r ].

Proof. This follows directly from Theorem 12.4, with the choice bd = 0.

Next, we derive a stronger bound using Obinata and Anderson (2001, Chapter 3.2), as before.

Theorem 12.5 (Strong condition for reduce-then-design stability). If [Pr,KP
r ] is stable, Pr is an

approximation of P that satisfies ‖P−Pr‖∞ ≤ β for some β ∈ [0, 1), and η(P) = η(Pr), then∥∥∥(I−KP
r Pr)−1KP

r

∥∥∥−1

∞
> β (12.15)

is sufficient for the stability of [P,KP
r ].

Proof. We may modify the internal model control structure in Obinata and Anderson (2001,
Chapter 3.2) to handle plant perturbations instead of controller perturbations. In this case, if
P,Pr ∈ RL∞, [Pr,KP

r ] is stable, η(P) = η(Pr), and

1 >
∥∥∥(I−KP

r Pr)−1KP
r (P−Pr)

∥∥∥
∞

(12.16a)

then [P,KP
r ] is stable. From the stated conditions and (12.15),

1 >
∥∥∥(I−KP

r Pr)−1KP
r

∥∥∥
∞
‖P−Pr‖∞ (12.16b)

≥
∥∥∥(I−KP

r Pr)−1KP
r (P−Pr)

∥∥∥
∞

; (12.16c)

therefore, [P,KP
r ] must be stable.

This condition is stronger than Corollary 12.2, because it can be shown using norm properties
that

∥∥(I−KP
r Pr)−1KP

r

∥∥−1
∞ ≥ bPr,KP

r
. Again, the difference between the two sides of this inequality

may not be large in practice; see Figure 12.6 for an example comparison.
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Remark. Practically, the parameters α and β are the analytic upper bounds on the model reduction
error’s H∞ norm. For instance, if KK

r is the order r balanced truncation of K, then Theorem 12.3
guarantees the stability of [P,KK

r ] when

∥∥∥P(I−KP)−1
∥∥∥−1

∞
> 2

n∑
k=r+1

σk(K). (12.17a)

Alternatively, if Pr is the order r balanced truncation of P, then Theorem 12.5 guarantees the
stability of [P,KP

r ] when

∥∥∥(I−KP
r Pr)−1KP

r

∥∥∥−1

∞
> 2

n∑
k=r+1

σk(P). (12.17b)

Remark. The conditions that η(K) = η(KK
r ) (Theorem 12.3) and η(P) = η(Pr) (Theorem 12.5)

are often satisfied in practice. For instance, when performing balanced reduction or optimal Hankel
norm reduction on an unstable system G, we perform the decomposition G = Gs + Ga, with Gs

stable and Ga anti-stable, and reduce only Gs. See, for example, the reduce-then-design results of
Section 12.4.

12.4 Example: linearized Ginzburg–Landau control

The Ginzburg–Landau equation is a model for fluid flow perturbations, among many other appli-
cations. For a detailed discussion, see Chomaz et al. (1988); Cossu and Chomaz (1997); Chomaz
(2005). Bagheri et al. (2009) provide a comprehensive review of Ginzburg–Landau control and
model reduction, using conventional linear controllers designed from finite-dimensional numerical
approximations of the governing PDE. This is the approach we take in the present paper. An
alternative approach retains the infinite-dimensional PDE, but is restricted to boundary control;
see Aamo et al. (2005), Aamo et al. (2007), Milovanovic and Aamo (2011) and references within,
or Smyshlyaev and Krstić (2010), Chapter 6 for a summary of the technique. Our goal here is
not to compare these control design approaches, but rather, to illustrate how the techniques of the
previous section may be used to provide guaranteed bounds for reduced-order controllers.

The linearized system and control setup that we describe here are from Chen and Rowley (2011),
which contains a more complete description. Given a time parameter t, a spatial coordinate x
(typically the fluid flow direction), and a complex parameter q(x, t) that represents a velocity or
streamfunction perturbation, the linearized Ginzburg–Landau equation is

∂q

∂t
= L q, (12.18a)

where
L , µ(x)− ν ∂

∂x
+ γ

∂2

∂x2 . (12.18b)

With an infinite spatial domain x ∈ (−∞,∞), the boundary conditions are q(±∞, t) = 0 (Cossu
and Chomaz, 1997; Chomaz, 2005).

The Ginzburg–Landau equation is a convective-diffusive model with amplification. The ampli-
fication function we choose is µ(x) = 0.37−0.005x2. The complex advection speed is ν = 2.0+0.4j,
and the complex diffusion parameter is γ = 1.0− 1.0j. With this choice of parameters, L has one
unstable eigenvalue, at 0.0123− 0.648j.
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To implement output feedback control of the linearized Ginzburg–Landau equation, we use
single-input, single-output control with one localized actuator at x = xa and one localized sensor
at x = xs. For a scalar actuation signal u(t) and a scalar sensor signal y(t), the continuous-space
state space is

∂q

∂t
(x, t) = L q(x, t) + exp

(
−(x− xa)2

2σ2

)
u(t) (12.19a)

y(t) =
〈
q(x, t), exp

(
−(x− xs)2

2σ2

)〉
, (12.19b)

where 〈f1(x), f2(x)〉 ,
∫∞
−∞ f̄2(x)f1(x) dx is a spatial inner product. For this study, we choose

σ = 0.4.
To limit the Ginzburg–Landau model to a finite dimension, we employ a Hermite polynomial

pseudospectral method. The software described in Weideman and Reddy (2000) computes the
domain discretization {x1, . . . , xN} and the derivatives. We choose N = 100 grid points; when
N = 200, the results shown in Figs. 12.4–12.7 are nearly unchanged. The domain reaches from
x1 = −56.1 to xN = 56.1; the region of amplification, where µ(x) > 0, is −8.6 < x < 8.6.

With this discretization scheme, we define the state vector

ξ(t) ,
[
q(x1, t) · · · q(xN , t)

]T
, (12.20)

and we denote the pseudospectral discretization of L by A. The actuation matrix B is the
discretization of exp(−(x − xa)2/(2σ2)). The sensing matrix C is trickier to compute, because of
an implied spatial integration on an uneven grid. Define the trapezoidal integration matrix

H , 1
2diag(x2 − x1, x3 − x1, · · · , xj+1 − xj−1, · · · , xN − xN−2, xN − xN−1). (12.21)

With this weight, the discretization of the continuous-space inner product 〈q1,q2〉 is given by
〈ξ1, ξ2〉 = ξ∗2Hξ1. Thus, if fs is the discretization of exp(−(x − xs)2/(2σ2)), then C = f∗sH.
Altogether, we define the Ginzburg–Landau plant

P :
[
ξ̇

y

]
=
[

A B
C 0

] [
ξ

u

]
. (12.22)

We implement a nearly optimal H∞ loop-shaping controller, using the negative-feedback H2
optimal controller as the plant weight w. As in our previous work (Chen and Rowley, 2011), we
choose the state cost matrix Q = 49H and the input cost matrix R = 1 for the H2 optimal
controller. In addition, we choose the state disturbance covariance W = H, corresponding to a
white noise uncorrelated and evenly distributed in time and space, and we choose the sensor noise
covariance V = 4 · 10−8. These matrices, along with P , determine the H2 optimal controller for a
given actuator and sensor location (Skogestad and Postlethwaite, 2005, Ch. 9.2).

We place the actuator and sensor at the H2 optimal placement—that is, the placement which
minimizes the H2 norm from state disturbances and sensor noise to the cost on the state and input
sizes, when P is in closed-loop with the H2 optimal controller. (See Chen and Rowley (2011)
for complete details.) This occurs at xa = −1.0 and xs = 1.0. Setting the weight w equal to
the negative-feedback H2 optimal controller at this placement, we denote the weighted plant by
Pw = Pw.
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Figure 12.3: Bode plots of the linearized complex Ginzburg–Landau input-output dynamics P and the
weighted dynamics Pw.

Figure 12.3 shows the Bode plots of P and Pw. From a classical control standpoint, we see that
the weight increases the loop gain at low frequencies, where we require disturbance rejection, and
decreases the loop gain at high frequencies, where we require noise attenuation. Furthermore, the
weighted plant has ample stability margins. Its Nyquist plot encircles the −1 point once, since it
has one unstable pole, and it comes no closer than 0.61 units to the −1 point.

The true H∞ loop-shaping controller is Kopt ∈ R such that bPw,Kopt = supK∈R bPw,K . To
simplify the computation of the controller, we first compute supK∈R bPw,K ; then, we assemble a
suboptimal controller K, where the target value of bPw,K is 1/(1 + 10−5) times the optimal value
(see Skogestad and Postlethwaite, 2005, Chapter 9.4.1).

In this example, we use balanced truncation to approximate the plant and controller. Therefore,
we apply Theorems 12.2 and 12.3 with α = 2

∑n
k=r+1 σk(K). In the reduce-then-design case

(Theorems 12.4 and 12.5), the computation is more complicated because Pw has one right-half-
plane pole. Therefore, we split Pw into two additive parts, with one stable and one anti-stable; we
only reduce the stable part (see Remark 12.3). As a result, the lowest reduction order is r = 1.
Furthermore, since σk(Pw) only includes the Hankel singular values of the stable part, we use
β = 2

∑n−1
k=r σk(Pw).

In the design-then-reduce case, bPw,K = 5.10 · 10−1 and
∥∥Pw(I −KPw)−1∥∥−1

∞ = 5.91 · 10−1.
Figure 12.4 depicts this, along with the ν-gap metric and the error upper bound α. From this
figure, we observe that Theorem 12.3 guarantees the stability of [Pw,KK

r ] when r ≥ 2. If we
directly apply the stability margin and ν-gap relation in (12.5d), then we also derive r ≥ 2. In
reality, bPw,KK

r
> 0, and hence [Pw,KK

r ] is stable, when r ≥ 1.
If the desired minimal performance is bd = 0.4, then Theorem 12.2 guarantees this performance

level when r ≥ 4; see Figure 12.5. The direct application of the ν-gap metric in (12.8b) yields the
better guarantee r ≥ 3. In reality, bPw,KK

r
> bd when r ≥ 3.

Figure 12.6 plots stability parameters for reduce-then-design control, along with the error upper
bound β. Theorem 12.5 guarantees the stability of [Pw,KP

r ] when r ≥ 4. Directly applying
the stability margin and ν-gap relation in (12.5b) gives the better guarantee r ≥ 3. In reality,
bPw,KP

r
> 0, and hence [Pw,KP

r ] is stable, when r ≥ 3.
Keeping the minimal performance specification bd = 0.4, Theorem 12.4 and the direct appli-

cation of the ν-gap metric in (12.13b) both guarantee this performance level when r ≥ 5; see
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sin−1 δν(K,KK
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Figure 12.6: Robust stability quantities as the balanced truncation order of the weighted plant Pw varies.
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∥∥−1
∞ , where Pwr is the order r balanced truncation of Pw; solid line:
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k=r σk(Pw); ×: δν(Pw, Pwr).

Figure 12.7. This bound is actually tight; we verify that in reality, the closed-loop indeed meets
this performance specification only for r ≥ 5.

Finally, we remark briefly that for r ≤ 13, design-then-reduce yields a stability margin bP,KK
r

greater than the reduce-then-design stability margin bP,KP
r
. At r > 13, the difference between

these margins is negligible. This result is consistent with Obinata and Anderson (2001), which
argues that effective control is best preserved by delaying the approximation step (i.e., the model
reduction) as late in the design process as possible. Nonetheless, we must keep in mind that the
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design-then-reduce procedure is generally more computationally expensive than the reduce-then-
design procedure, especially for large systems.

12.5 Conclusion

In the application of control theory to large systems, it is typically necessary to use a reduced-order
controller Kr in closed-loop with the full-order plant P. This study presents conditions that are
sufficient for guaranteeing the stability or required performance of [P,Kr], whether Kr is a reduced-
order model of a full-order controller K, or a controller designed from a reduced-order plant Pr.
The conditions do not place restrictions on the control design or model reduction, besides that the
model reduction needs to have an upper bound on the H∞ norm of the error.

Theorems 12.3 and 12.5 state the stability conditions, and Theorems 12.2 and 12.4 state the
performance conditions. The analytic bounds on the normalized coprime stability margin, the ν-
gap metric, and model reduction error motivate the performance results. Although the performance
guarantees yield analogous stability guarantees, we find stronger bounds by employing the internal-
model-control-like structure in Obinata and Anderson (2001, Chapter 3.2).

A number of model reduction methods have known analytic upper bounds on the H∞ norm
of the reduction error (e.g., modal truncation, balanced truncation, and optimal Hankel norm
reduction). This H∞ norm, by itself, is not the best measure of robust stability—for robust stability,
we only require that the model reduction be accurate near the crossover frequency. Therefore,
many model reduction methods—particularly those that attempt to minimize the H∞ norm of the
error—will tend to fit the reduced model to the original model over a larger frequency range than
is necessary for robust stability.

Nevertheless, if the H∞ norm of the model reduction error is bounded from above, then the
ν-gap metric shares the same upper bound (see Theorem 12.1). If the normalized coprime stabil-
ity margin between the full-order plant and controller—or between the reduced-order plant and
controller—is greater than the bound on the ν-gap metric, then the full-order plant will prov-
ably be stable in closed-loop with the reduced-order controller. We may conclude this without
actually testing the closed-loop system. Furthermore, the bounds indicate how accurate a model
approximation needs to be, in the sense of the error’s H∞ norm, to be sufficient for guaranteeing
normalized coprime robust stability or performance. This aids the control designer in choosing a
model reduction order.

We demonstrate these sufficient conditions on the control of the linearized Ginzburg–Landau
equation. For both the design-then-reduce and the reduce-then-design approaches, the conditions
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correctly guarantee values of the controller order r for which [P,Kr] is stable. Given a desired
performance level, they also correctly guarantee the values of r for which [P,Kr] meets that perfor-
mance level. There generally exist lower values of r for which [P,Kr] is stable or has satisfactory
performance, but the theorems are a priori unable to guarantee such. Nonetheless, the bounds
provided by the theorems and corollaries are fairly tight in this example.

These results are directly implementable in the control of large systems. For instance, the
BPOD and ERA techniques are applicable to computer simulations of a linearized fluid flow, yield-
ing approximations of the linearized dynamics’ balanced truncation and Hankel singular values
(Rowley, 2005; Ma et al., 2011). Theorem 12.5 can then predict the plant and controller reduc-
tion orders for which the reduced-order controller is guaranteed to stabilize the flow. Additionally,
Theorem 12.4 can predict the orders for which the closed-loop system is guaranteed to achieve a
desired performance level. This would be beneficial for the control designer, since fluid flows—and
indeed, many other real-life systems—can be remarkably difficult to stabilize and control well.

The Department of Defense (DOD) supported this work through the National Defense Science
& Engineering Graduate (NDSEG) fellowship.
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