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Abstract

This thesis focuses on two major themes: modeling and understanding the dynamics
of rapidly pitching airfoils, and developing methods that can be used to extract models
and pertinent features from datasets obtained in the study of these and other systems in
fluid mechanics and aerodynamics. Much of the work utilizes in some capacity dynamic
mode decomposition (DMD), a recently developed method to extract dynamical features
and models from data.

The investigation of pitching airfoils includes both wind tunnel experiments and direct
numerical simulations. Experiments are performed on a NACA 0012 airfoil undergoing rapid
pitching motion, with the focus on developing a switched linear modeling framework that
can accurately predict unsteady aerodynamic forces and pressure distributions throughout
arbitrary pitching motions.

Numerical simulations are used to study the behavior of sinusoidally pitching airfoils.
By systematically varying the amplitude, frequency, mean angle and axis of pitching, a
comprehensive database of results is acquired, from which interesting regions in parameter
space are identified and studied. Attention is given to pitching at “preferred” frequencies,
where vortex shedding in the wake is excited or amplified, leading to larger lift forces.

More generally, the ability to extract nonlinear models that describe the behavior of
complex fluids systems can assist in not only understanding the dominant features of such
systems, but also to achieve accurate prediction and control. One potential avenue to achieve
this objective is through numerical approximation of the Koopman operator, an infinite-
dimensional linear operator capable of describing finite-dimensional nonlinear systems, such
as those that might describe the dominant dynamics of fluids systems. This idea is explored
by showing that algorithms designed to approximate the Koopman operator can indeed be
utilized to accurately model nonlinear fluids systems, even when the data available is limited
or noisy.

Data-driven algorithms can be adversely affected by noisy data. Focusing on DMD, it is
shown analytically that the algorithm is biased to sensor noise, which explains a previously
observed sensitivity to noisy data. Using this finding, a number of modifications to DMD are
proposed, which all give better approximations of the true dynamics using noise-corrupted
data.
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Chapter 1

Introduction

The study of aerodynamics and fluid mechanics predate the birth of the scientific method
itself. From the initial musings of Aristotle and Archimedes, to the sketches of Leonardo
Da Vinci, to George Caley’s conception of a modern airplane configuration in 1799, the field
has often been at the forefront of scientific and engineering enquiry [5]. Yet, in spite of this
long history, and the fact that the underlying governing equations of viscous fluid flow being
known for hundreds of years, there is still much to learn. For example, in many respects we
are still catching up to the mastery exhibited by biological swimmers and fliers, in terms of
maneuverability and efficiency. This existence of ongoing work is not by any means due to
a lack of imperative. Indeed, reductions in aerodynamic drag on cars, trucks, airplanes and
ships can lead to billions of dollars in fuel savings [55], and significant reductions of CO2

emissions, to speak nothing of the enhanced safety that would come with, for example, a
more comprehensive understanding of the dynamics of aircraft in deep stall [e.g., 93].

On top of developments in materials, manufacturing, and the miniaturization of proces-
sors allowing for new research questions to become of practical interest, advances in both
experimental techniques and equipment, and computational power and storage capacity, re-
searchers in fluid dynamics can now generate more high-fidelity data than ever before. This is
crucial to advancing the field as a whole, since all but the most idealized, simple systems can-
not be fully understood by analytical deductions alone. new questions to become of practical
interest. This is not to suggest that the field of fluid dynamics and aerodynamics are now
confined to the realms of data science. Indeed, progress is made by combining the insight
attained from study of the fundamental equations with the additional dimension of large
datasets. Indeed, obtaining the right data relies on understanding of the physical system.
Beyond this, however, data collection should also be informed by a proper understanding of
the capabilities and limitations of the algorithmic tools that are required to assist in data
analysis.

The presence of increasingly large data sets necessitates the use of such post-processing
techniques that are able to extract tractable and physically relevant information from the
data. This thesis will consider methods to extract pertinent information and models from
data obtained from fluids simulations and experiments. While the focus will be on unsteady
aerodynamic systems, specifically pitching airfoils, the techniques used and developed are
applicable to a wider range of applications, both within and outside the realms of fluid
mechanics.
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1.1 Unsteady aerodynamics

The flight of small, highly maneuverable aircraft, whether biological or manmade, is greatly
impacted by unsteady aerodynamic effects, which can be either beneficial or detrimental to
flight. Accurate understanding of such effects can allow for the design of aircraft that are
more efficient, responsive, and robust.

The need to account for unsteady effects has been recognized since soon after the break-
through of powered manmade flight, in the classical works of Wagner [167], Theodorsen
[154], and Garrick [56]. Indeed, many failed attempts at flight can probably be attributed
to a severe lack of understanding of how to utilize such effects. These classical models
give significant insight into the fundamental flow physics associated with unsteady flight,
such as relative contributions to lift of the added mass, quasi-steady bound circulation, and
wake vortices. For example, the Theodorsen model gives the relationship between the airfoil
kinematics (α, α̇, and α̈, where α is the angle of attack) and the lift coefficient by:

CL =
π

2

(
α̇− 1

2
aα̈

)
+ 2π

(
α +

1

2
α̇

(
1

2
− a
))

C(k), (1.1.1)

where a is a parameter that defines the pitch axes, with a = −1 and +1 corresponding
to pitching about the leading and trailing edge of the airfoil, respectively. k = πfc

U
is

the reduced frequency, and C(k) is the Theodorsen function, which governs the interaction
between the shed vorticity in the wake and the circulatory lift force. While such models can
be quantitatively accurate for cases of attached flow where viscous effects are negligible, they
quickly lose validity when dealing with separated flows, which are often encountered in the
extreme motions that are possible for birds, insects, and micro and unmanned aerial vehicles
(MAV and UAV). It is precisely in these extreme cases that accurate predictive models are
essential to prevent catastrophic failure and ensure ongoing successful flight. While more
accurate predictions can be attained from high-fidelity simulations, the computational cost
typically prohibits the direct use of such simulations for real-time prediction and control.

Biological examples such as insects [19, 130, 170] and birds [165] have seemingly evolved
to take advantage of the high transient lift force that can be generated due to the forma-
tion of a leading edge vortex (LEV) during rapid pitch- up motion, for example. While
these give motivating examples of the advantages of accurate understanding of unsteady
aerodynamic effects, the preferred wing kinematics arising from evolution is highly specific
and coupled to the geometry and other physiological features of the animal. Indeed, the
characteristics of unsteady aerodynamic effects, particularly for separated flows, seem to be
quite sensitive to both the geometry [86] and Reynolds number [178] of the airfoils. Studies
into low Reynolds number flow over stationary symmetric airfoils [166, 1, 140, 32, 87] reveal
complex, Reynolds number dependent effects associated with flow separation and reattach-
ment, Kelvin-Helmholtz shear layer instabilities, transition to turbulence, and von Kármán
vortex shedding, with the dynamics of pitching airfoils influenced by these phenomena as
well as dynamic stall vortex formation, growth and detachment, which are again sensitive
to Reynolds number [166, 1, 140, 32, 87]. These observations motivate the development of
general modeling procedures that can be easily applied to a range of parameter cases. In
addition, it is desirable for such methods to be sufficiently general such that they can be
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applied to more realistic aircraft configurations, rather than just airfoils. As an example,
such data driven modeling was considered for the case of accurate prediction and control
of lift for a low Reynolds number pitching airfoil [23, 24], using the eigensystem realization
algorithm [79] (ERA) and observer/Kalman filter identification [82] (OKID). There has also
been a significant amount of work in terms of nonlinear modeling, ranging from low order
state- space models formulated from theoretical considerations [60], to Volterra series models
that have been used to model a range of unsteady aerodynamic and aeroelastic phenomena
[141, 94, 12].

1.2 Data-driven modeling

As has already been mentioned, researchers in fluid dynamics can now generate more high-
fidelity data than ever before. The presence of increasingly large data sets calls for appro-
priate data analysis techniques, that are able to extract tractable and physically relevant
information from the data. In particular, a much-desired goal in fluid mechanics, and indeed
many other fields, is to obtain simple models that are capable of predicting the behavior of
seemingly complex systems. Low-dimensional models can not only improve our fundamental
understanding of such systems, but are often required for purpose of efficient and accurate
prediction, estimation and control. Broadly speaking, one can obtain low-dimensional in-
formation about a system (whether it be in the form of a reduced-order model, or simply
spatial modes corresponding to certain energetic or dynamic characteristics) in numerous
ways, potentially using some combination of data collected from simulations and experi-
ments, and theoretical knowledge of the system, such as the governing partial differential
equations (PDEs).

Purely data-driven methods can include those developed particularly for fluids appli-
cations, such as the dynamic mode decomposition (DMD) [136, 134], or those which are
appropriated from other communities, such as the eigensystem realization algorithm (ERA)
[89, 79], which was first applied to study spacecraft structures, but has more recently been
appropriated to model a wide range of fluids systems [26, 2, 75, 76, 23, 24, 16, 74, 54].

Dynamic mode decomposition allows for the identification and analysis of dynamical fea-
tures of time-evolving fluid flows, using data obtained from either experiments or simulations.
In contrast to other data-driven modal decompositions such as the proper orthogonal decom-
position (POD), DMD allows for spatial modes to be identified that can be directly associated
with characteristic frequencies and growth/decay rates. Following its conception, DMD was
quickly shown to be useful in extracting dynamical features in both experimental and numer-
ical data [136, 134]. It has subsequently been used to gain dynamic insight on a wide range
of problems arising in fluid mechanics [129, 137, 135, 109, 138, 47, 64, 77, 90, 103, 61, 133, 49]
and other fields [65].

DMD has a strong connection to Koopman operator theory [88, 98], as exposed in Rowley
et al. [129], and further reviewed in Mezić [99], which can justify its use in analyzing nonlinear
dynamical systems. Since its original formulation, numerous modifications and extensions
have been made to DMD. Chen et al. [28] highlights the connection that DMD shares with
traditional Fourier analysis, as well as proposing an optimized algorithm that recasts DMD as
an optimal dimensionality reduction problem. This concept of finding only the dynamically
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important modes has also been considered in subsequent works of Wynn et al. [176] and
Jovanović et al. [78]. All of these works are motivated, in part, by the fact that by default
DMD will output as many modes as there are pairs of snapshots (assuming that the length
of the snapshot vector is greater than the number of snapshots), which is arbitrary with
respect to the dynamical system under consideration. In reality, one would prefer to output
only the modes and eigenvalues that are present (or dominant) in the data. When the data
is corrupted by noise (as will always be the case to some degree, especially for experimental
data), this process becomes nontrivial, since noisy data might have a numerical rank far
larger than the dimension of the governing dynamics of the system. Further to this, one
cannot expect to have a clean partition into modes that identify true dynamical features,
and those which consist largely of noise.

Simple ways of achieving this objective can involve either first projecting the data onto
a smaller dimensional basis (such as the most energetic POD modes) before applying DMD,
or by choosing only the most dynamically important DMD modes after applying DMD to
the full data. One could also truncate the data to a dimension larger than the assumed
dimension of the dynamics, and then apply a balanced truncation to the resulting dynamical
system to obtain the desired reduced-order model. This approach is sometimes referred to
as over-specification in the system identification community [e.g., 81]. Keeping a higher
dimension of data than that of the assumed dynamics can be particularly important for
input-output systems that have highly energetic modes that are not strongly observable or
controllable [122]. Ideally, any algorithm that restricts the number of DMD modes that are
computed should also additionally be computationally efficient. A fast method to perform
DMD in real time on large datasets was recently proposed in Hemati et al. [67], while
a library for efficient parallel implementation of number of common modal decomposition
and system identification techniques is described in Belson et al. [17]. Sayadi and Schmid
[132] also gives an explicit implementation of DMD for parallelized computation. One can
also achieve computational speedup by incorporating efficient methods to compute singular
value decompositions, typically the computational bottleneck in DMD, to speed up the
computation [53].

An notable limitation of the methods mentioned so far is that (when considered in the
context of data-driven reduced-order modeling techniques) they are linear, in the sense that
the reduced-order model that is identified is in the form of a linear system of ordinary
differential equations (ODEs). While there have been a number of examples of nonlinear
data-driven modeling techniques used in fluids applications [94, 112, 115, 58, 12, 39, 84, 68,
41, 25, 70, 6], their widespread use has been more limited, and the underlying theory is less
established, than linear techniques. More details concerning the application of data-driven
modeling techniques in fluid mechanics can be found in recent review articles [22, 123].

Perhaps the most common method to obtain a nonlinear reduced-order model for fluids
systems comes via a projection of the governing equations onto a low-dimensional basis that
is optimal for capturing the energy of the data, i.e., the proper orthogonal decomposition
(POD) [95, 18, 73], which is a procedure referred to as Galerkin projection. Galerkin projec-
tion (GP) has been used to extract models for many different fluids systems, a non-exhaustive
list includes flow past a cylinder at low Reynolds number [44, 105, 106], grooved channels
[44] the wall region of turbulent boundary layers [7, 114], flat plate boundary layers [121],
turbulent plane Couette flow [101, 144], turbulent pipe flow [20] cavity oscillations [126, 125],
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mixing layers [120, 162, 13], and compressible flows [128]. One significant drawback of GP
models is that they ignore modes that are low in energy, but are required for the dissipation
of energy in the full system. A number of modifications have been proposed to address
this concern, as well as other issues with such models. Aubry et al. [7] and Podvin [114]
use an eddy viscosity term that accounts for energy dissipated into unmodeled modes, Östh
et al. [108] investigate a hierachy of eddy viscosity formulations, while Wang et al. [168, 169]
incorporate LES closure modeling strategies. Cordier et al. [37, 38] summarize a number of
calibration techniques that can be used to improve the accuracy of Galerkin models, and
also discuss the various ways in which the error of such models can be quantified. Balajewicz
et al. [14] employs a subspace rotation technique to stabilize the models, which, unlike other
calibration techniques, maintains consistency with the original governing equations. Bala-
jewicz et al. [13] imposes constraints to balance the turbulent kinetic energy of the resulting
model. All of these modifications of Galerkin projection heighten the “data-driven” nature
of the method. Noack et al. [107] gives an in-depth summary and analysis of many issues,
variations, progress, and open problems on the topic of Galerkin projection models, while
Luchtenburg et al. [92] gives a clear expository introduction of the main ideas in Galerkin
projection, with examples.

While it was mentioned above that DMD could be classified as a “linear” method, con-
nections between the DMD algorithm and the Koopman operator [129, 99] give promise that
it can ultimately be used to model and understand nonlinearities. The Koopman operator
[88] gives a means of representing a finite-dimensional, nonlinear system as an infinite dimen-
sional linear system, and DMD gives a finite-dimensional approximation to this operator.

In particular, an extension of DMD that potentially allows for better representation
of nonlinear data has also recently been proposed [172], and although the computational
costs increase dramatically with the dimension of the system, a kernel method described in
Williams et al. [173] reduces the cost to be comparable to standard DMD.

1.3 Organization and contributions

Following this introductory chapter, Chapter 2 presents a summary of key concepts and
techniques in data-driven modeling of fluid systems, as well as presenting some results that,
besides being of some independent interest, will motivate the research directions taken in
the subsequent chapters. Broadly speaking, Chapters 3 and 4 will focus specifically on
the application pitching airfoils, while Chapters 5 and 6 focus on data-driven modeling
techniques, particularly extensions and improvements to DMD and their application to fluids
systems. A more detailed description of the contents of this thesis follows. As well as
acknowledging the published and forthcoming literature related to this thesis, this section
also details the contributions of coauthors to these publications. Unless otherwise mentioned,
the conception, execution and writing up of all research is my own, with guidance from
Clarence Rowley across all phases. The acknowledgments section of this thesis gives a more
comprehensive account of the many additional people who provided valuable assistance for
my research.

Chapter 3 obtains models to predict the pressures and forces on a rapidly pitching
airfoil. This is one of the first applications to experimental data of a recently developed

5



variant of DMD by Proctor et al. [116] to allow for the identification of systems that contain
inputs (e.g., systems that are being forced or controlled externally in some manner). We
show that this modeling approach is convenient for constructing “switched models”, whereby
one can predict the behavior of a nonlinear system by switching between a family of linear
models. In particular, the “DMD with inputs” method gives models for which the coordi-
nates of the models remain consistent with each other, which eliminates complications and
ill-conditioning that has been observed when using alternate methods [40]. This modeling
approach allows for the formulation of a switched model that remains accurate over a wide
range of angles of attack, ranging from attached to fully separated flow. The experiments
were performed at the Andrew Fejer Unsteady Flow wind tunnel at the Illinois Institute of
technology under the supervision of Professor David Williams. The experiments and sub-
sequent analysis were performed with the assistance of Nicole Schiavone, an undergraduate
working in Professor Rowley’s lab in summer 2014. Material in this chapter is based on the
conference paper [41]:

• S. T. M. Dawson, N. K. Schiavone, C. W. Rowley, and D. R. Williams. A data-driven
modeling framework for predicting forces and pressures on a rapidly pitching airfoil.
In 45th AIAA Fluid Dynamics Conference, page 2767, 2015.

Chapter 4 explores a phenomena that is identified in Chapter 2: that airfoils undergoing
low-amplitude sinusoidal pitching motion generate enhanced lift when pitching at preferred
frequencies. A systematic parameter sweep over the pitching frequency, amplitude, and base
angle of attack is conducted, with the mean and frequency content of the forces analyzed. In
addition, the flow fields are studied using DMD. Daniel Floryan and Maziar Hemati provided
assistance in the conception of this project, and in editing the resulting paper. Material in
this chapter is based on the conference paper [42]:

• S. T. M. Dawson, D. C. Floryan, C. W. Rowley, and M. S. Hemati. Lift enhancement of
high angle of attack airfoils using periodic pitching. In 54th AIAA Aerospace Sciences
Meeting, page 2069, 2016.

Chapter 5 shows how a recently developed extension to DMD can be utilized to obtain
nonlinear reduced-order models for fluids systems. We modify the extended DMD (EDMD)
algorithm to include a Tikhonov regularization step, which is found to give improved re-
sults for the purposes of nonlinear system identification. The method is demonstrated on
the canonical example of flow past a circular cylinder, for data starting near the unstable
equilibrium solution and converging to the periodic vortex shedding limit cycle. It is demon-
strated that this approach can be superior to classical POD-Galerkin projection, particularly
in cases where the data is noisy, is from a limited spatial region, is not spatially resolved,
or is only collected over a short time window. Material in this chapter is contained in the
paper:

• S. T. M. Dawson and C. W. Rowley, Nonlinear reduced-order models of fluids sys-
tems using extended dynamic mode decomposition, In preparation for Theoretical and
Computational Fluid Dynamics, 2016.

Some of the results presented in Chapter 5 are also used in an upcoming review paper [123]:
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• C. W. Rowley and S. T. M. Dawson. Model reduction for flow analysis and control.
Annual Review of Fluid Mechanics, 49(1), 2017.

I was the primary contributor to the sections of this paper that feature research presented
in this thesis.

Chapter 6 analyzes the effect of noise of DMD. As well as giving an explanation for a
previously identifies sensitivity to noisy data, three variants of the DMD algorithm are pro-
posed, all of which give improved performance on noisy data. Maziar Hemati and Matthew
Williams assisted in some of the derivations of some of the mathematical results, and Hemati
conceived the original idea for a total least-squares variant of DMD. Additionally, one ex-
ample in this chapter makes use of experimental data provided by Jessica Shang. This work
is published in the following paper [43]:

• S. T. M. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley. Characteriz-
ing and correcting for the effect of sensor noise in the dynamic mode decomposition.
Experiments in Fluids, 57(42):1–19, 2016.

The introductory and background chapters (Chapters 1 and 2) also use material from the
aforementioned publications. In addition to these publications, Chapter 2 also uses feedback
control ideas that are published in the following paper [24]:

• S. L. Brunton, S. T. M. Dawson, and C. W. Rowley. State-space model identification
and feedback control of unsteady aerodynamic forces. Journal of Fluids and Structures,
50:253–270, 2014.

Steven Brunton conceived the research idea to design feedback controllers using reduced-
order models that he had identified, and assisted me in their implementation in numerical
simulations.

In addition to the these publications, elements of this thesis have also been presented in
the following conference presentations:

• S. T. M. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley. Improved
Dynamic Mode Decomposition Algorithms for Noisy Data. SIAM Conference on Un-
certainty Quantification, Lausanne, Switzerland, April 2016 (invited speaker).

• S. T. M. Dawson and C. W. Rowley. Nonlinear models for fluids systems using extended
dynamic mode decomposition. 68th Annual Meeting of the APS Division of Fluid
Dynamics, Boston, MA, November 2015.

• M. S. Hemati, M. O. Williams, S. T. M. Dawson, and C. W. Rowley. Koopman
Operator Theoretic Methods in Systems and Control, SIAM Conference on Control
and its Applications, Paris, France, July 2015.

• S. T. M. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley, Improving the
Accuracy of Dynamic Mode Decomposition in the Presence of Noise. SIAM Conference
on Applications of Dynamical Systems, Snowbird, UT, May 2015 (invited speaker).
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• C. W. Rowley, M. O. Williams, M. S. Hemati, and S. T. M. Dawson. Reduced-order
Models using Dynamic Mode Decomposition. SIAM Conference on Computational
Science and Engineering, Salt Lake City, UT, March 2015.

• S. T. M. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley. Characterizing
and correcting for the effect of sensor noise in the dynamic mode decomposition. 67th
Annual Meeting of the APS Division of Fluid Dynamics, San Francisco, CA, November
2014.

• N. K. Schiavone, S. T. M. Dawson, C. W. Rowley, and D. R. Williams. Modeling
unsteady forces and pressures on a rapidly pitching airfoil. 67th Annual Meeting of the
APS Division of Fluid Dynamics, San Francisco, CA, November 2014.

• S. T. M. Dawson, S. L. Brunton, and C. W. Rowley. Nonlinear switched models for
control of unsteady forces on a rapidly pitching airfoil. 66th Annual Meeting of the
APS Division of Fluid Dynamics, November 2013.

• S. T. M. Dawson, S. L. Brunton, and C. W. Rowley. Feedback control of a pitching
and plunging airfoil via direct numerical simulation. 65th Annual Meeting of the APS
Division of Fluid Dynamics, November 2012.

• S. L. Brunton, S. T. M. Dawson, and C. W. Rowley. Feedback control of a pitching
airfoil based on unsteady lift models. 42nd AIAA Fluid Dynamics Conference, June
2012.

Effort is made to keep notation consistent throughout this thesis, however on occasion
notation changes between chapters, in attempt to uphold existing conventions in the rele-
vant fields. While each of these chapters is largely self contained, we present in Chapter
2 underlying preliminaries that are broadly relevant across all sections of this thesis. Due
to the distinct subject areas covered, we include additional introductory material in each
chapter, and in some cases include appendix sections within each chapter, for material that
is relevant to the chapter but is tangential to the main ideas and results. With this structure
readers should be able to move from Chapter 2 to any chapter of particular interest.
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Chapter 2

Background and motivating results

This chapter will introduce some concepts that will be used and referred to on a number
of occasions throughout this thesis. Section 2.1, presents a range of algorithms that have
seen common use for identifying models and features of fluids systems. Relevant literature
and applications of such methods were discussed in detail in Section 1.2. The method that
is utilized more predominantly in this thesis is DMD (Section 2.1.3), which is featured to
various extents in each of Chapters 3–6. The description of DMD is preceded by a discussion
of POD in Section 2.1.1. This serves as background both for both DMD and Galerkin
projection (GP, Section 2.1.2). GP, which utilizes POD modes as an efficient low-dimensional
basis for approximating the governing equations, is used in Chapter 5 as a comparison to the
EDMD method of nonlinear system identification. We include a presentation of ERA both
since it is used in Section 2.2, and to highlight the similarities with DMD; similarities which
exist between numerous data-driven linear modeling/system identification algorithms.

2.1 Data-driven modeling of fluids systems

2.1.1 Proper orthogonal decomposition

The goal of the proper orthogonal decomposition (POD) is to obtain a set of empirical spatial
modes that optimally represent a given dataset from an energetic standpoint. Assume that
we can decompose the dynamics of some system u(x, t) (which could be the time-varying
velocity field of a fluid, say) by

u(x, t) = u0(x) +
∞∑
i=1

ui(x)ai(t), (2.1.1)

where u0(x) is some fixed (often average) data, and {ui(x)}∞i=1 are a set of orthonormal basis
functions (modes). POD takes these modes to be those which successively capture the most
energy of the velocity field. Each POD mode ui satisfies the integral∫

Ω

E[ui(x)uj(x
′)]ui(x

′)dx′ = λui(x),
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where E[ui(x)uj(x
′)] denotes the expectation. As indicated by Equation (2.1.1), POD is

normally performed after first subtracting the mean (or perhaps an equilibrium point) from
the data. This approach has the advantage that u0 satisfies the required non-homogeneous
boundary conditions, meaning that all other modes ui will satisfy homogenous boundary
conditions, so any linear combination of modes of the form given by Equation (2.1.1) will
automatically satisfy the correct boundary conditions of the problem at hand. In discrete
terms, if we arrange finite-dimensional data collected from a simulation or experiment into
a matrix Y , with each column representing a snapshot of data at a given time, then the
POD modes are the columns of U in the singular value decomposition Y = UΣV ∗. Here
the ith entry of the diagonal matrix Σ corresponds to the energy contained in the ith POD
mode. In this discrete formulation, for simplicity we are omitting any rescaling of the data
that should be performed so that the modes are orthonormal with respect to the usual inner
product. That is, if ui and uj are columns of U , then we really should have

〈ui,uj〉 =

∫
Ω

u∗j(x
′)ui(x

′)dx′ ≈
n∑
k=1

u∗j(xk)ui(xk)dxk = u∗jWui = δij,

for an appropriate weight matrix W , rather than 〈ui,uj〉 = u∗jui = δij.

The original data Y can be represented in terms of POD coefficients by Ỹ = U ∗Y . If
we wish to reduce the dimension of this data, we may do so in an optimal way (with respect
to energy content) by simply truncating the columns of U beyond a certain point, which
corresponds to removing POD modes that are of sufficiently low energy. Doing this gives a
reduced-order approximation of the data Ỹr = U ∗rY , where Ur contains the first r columns
of U . Note that there are alternative truncation techniques that may be more effective
than energy maximization for certain applications, for example balanced POD [122] gives a
reduced-order linear state space model that is optimal with respect to a given set of sensors
and actuators.

2.1.2 Galerkin projection

The idea behind GP is to approximate the governing PDEs that describe a given system
with a low-dimensional set of ODEs. This is accomplished by projecting the equations onto
spatial POD modes identified using the methods described in Section 2.1.1. We begin with
the incompressible Navier–Stokes equations:

∂u

∂t
= −(u · ∇)u + ν∆u−∇p

∇ · u = 0.
(2.1.2)

If we take the (spatial) inner product of Equation (2.1.2) with a given mode uj, we obtain〈
∂u

∂t
,uj

〉
= −〈(u · ∇)u,uj〉+ ν 〈∆u,uj〉 − 〈∇p,uj〉 . (2.1.3)
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Substituting in the finite-dimensional approximation of Equation (2.1.1), we obtain

ȧ = La + Q(a,a) + f , (2.1.4)

were L is a linear operator (i.e., a matrix), Q is a bilinear operator , and f is a vector, each
defined based on the identified spatial POD modes by

Lij = ν 〈∆uj,ui〉 , Qijk = −〈(uj · ∇)uk,ui〉 , f = −〈∇p,ui〉 . (2.1.5)

This gives a means of approximating the Navier-Stokes equations by a set of nonlinear ODEs.
As mentioned in Section 6.1, there are many modifications that have been proposed for this
general procedure, most typically to account for the energy transfer to unmodeled modes
(i.e., the energy cascade to finer spatial scales). For cases where spatial symmetries exist
(e.g., in the streamwise and azimuthal directions for circular pipe flow), one can show that
the POD modes must become Fourier modes, which can simplify their computation. It is
also possible to “factor out” such symmetries by using an optimally chosen moving frame of
reference [124, 127].

2.1.3 Dynamic mode decomposition

DMD has undergone a number of formulations, interpretations and modifications since its
inception. Common to all methods is the requisite collection and arrangement of data,which
is now summarized. Suppose we collect snapshots of data yi, which we assemble as columns
in the data matrix Z. For fluids systems yi will typically be a velocity field snapshot, but
more generally it is a vector of observations of an evolving dynamical system at a given
time. From Z, we select all pairs of columns that are sampled at a time difference ∆t apart,
and place them into the matrices Y and Y # (where the data in a given column of Y #

was collected ∆t after the equivalent column of Y ). Note that if Z consists of a sequential
time-series of data, then Y and Y # are simply Z with the last and first columns excluded,
respectively. Let Y and Y # each be n by m matrices, so we have m pairs of snapshots,
each of size n. By not explicitly requiring a single time-series of data, we allow for larger or
irregular time gaps between snapshot pairs, the concatenation of data from multiple time-
series, and for the removal of any corrupted or spurious data. Recently, Tu et al. [161]
proposed an interpretation of DMD modes and eigenvalues as the eigendecomposition of the
matrix

A = Y #Y +, (2.1.6)

where Y + denotes the Moore-Penrose pseudoinverse of a matrix Y . While this is a succinct
interpretation, and one which will be useful in the ensuing analysis, it is typically not an
efficient (or even feasible) means of performing DMD (as discussed in Tu et al. [161]). This
is especially true when n � m, which is often the case in high-dimensional fluids systems.
Instead, since Y and Y # have rank at most min(m,n), it is typically more efficient to first
project the data onto a subspace that is (at most) of this dimension. One way to do this
is by projecting the original snapshots onto the POD modes of the data, which is implicitly
done in all DMD algorithms. Note that the POD modes of Y are the columns of U in the
singular value decomposition Y = UΣV ∗ (though typically POD is performed after first
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subtracting the temporal mean of the data, which is not done here). We present here a
typical algorithm to compute DMD, that is most similar to that proposed in [161] as exact
DMD.

Algorithm 1 (DMD).

1. Take the reduced singular value decomposition (SVD) of Y , letting Y = UΣV ∗.

2. (Optional) Truncate the SVD by only considering the first r columns of U and V , and
the first r rows and columns of Σ (with the singular values ordered by size), to obtain
Ur, Σr, and Vr

3. Let Ã := U ∗rY
#VrΣ

−1
r

4. Find the eigenvalues µi and eigenvectors wi of Ã, with Ãwi = µiwi,

5. Every nonzero µi is a DMD eigenvector, with a corresponding DMD mode given by
ϕi := µ−1

i Y #VrΣ
−1
r wi.

This method is similar to the original formulation of DMD [134], but for the fact that
in step 5 the DMD modes are no longer restricted to lie within the column space of Y . We
also explicitly provide the optional step of truncating the SVD of Y , which might be done
if the system is known to exhibit low dimensional dynamics, or in an attempt to eliminate
POD modes that contain only noise. We note that this is not the only means to reduce the
dimension of the identified system dynamics, nor is it necessarily optimal. Indeed, Wynn
et al. [176] develop a method that optimizes the projection basis in parallel while performing
a DMD-like eigendecomposition. Jovanović et al. [78] take a different approach, seeking a
small number of nonzero modes from the full eigendecomposition that best approximate the
system dynamics. An empirical comparison between these various dimensionality-reduction
techniques will be given in Section 6.3.3. Note that the continuous eigenvalues λci of the
system are related to the discrete time eigenvalues identified via DMD via λci = log(µi)/∆t.
The growth rate γi and frequency ωi associated with DMD mode ϕi are then given by
λci = γi + iωi.

The matrix Ã is related to A in Equation (2.1.6) by Ã = U ∗rAUr. While A can be
viewed as an approximating linear propagation matrix in Rn (i.e., the space of original data
vectors), Ã is the equivalent propagation matrix in the space of POD coefficients, which we
will sometimes refer to as POD space. Another interpretation of Ã is that it is the spatial
correlation matrix between the POD modes Ur, and the same POD modes shifted by the
assumed dynamics A [134]. If we let x̃k = U ∗r xk be the representation of a given snapshot
xk in the POD basis and let Ỹ = U ∗rY and Ỹ # = U ∗rY

#, then it is easy to verify that the
equivalent of Equation (2.1.6) in POD space is

Ã = Ỹ #Ỹ +. (2.1.7)

Equation (2.1.7) will be useful for the analysis performed in this thesis, particularly Chap-
ter 6.

As well as the inherent empirical usefulness of being able to extract spatial modes corre-
sponding to certain frequencies and growth or decay rates, DMD has the potential to give a
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deep understanding of the system dynamics, due to a connection with the Koopman operator
[129]. For a discrete dynamical system xk+1 = F (xk), suppose we have scalar-valued observ-
ables g(x), which reside in some function space G. The Koopman operator K is defined to
act on this space of observables, such that we have

K(g(xk)) = g (F (xk)) = g(xk+1). (2.1.8)

In other words, K maps from a scalar-valued function of the state at a given time to the
value of that function one timestep in the future. The main advantage of studying a dy-
namical system through consideration of the Koopman operator is that, even for nonlinear
dynamical systems, the Koopman operator is linear. The catch is that, instead of a working
in a finite dimensional space, K is infinite dimensional, due to the fact that the function
space G is (uncountably) infinite-dimensional. While any numerical approximation of K will
necessarily be finite-dimensional, one might hope to at least obtain accurate estimations of
its eigendecomposition. For DMD, it is implicitly assumed that the observable functions are
simply the data collected at each spatial location. Extended DMD (EDMD) [172] considers
the case where these observables may be defined as any transformations of the data, with
the idea being to use a richer set of observable functions to find a better finite-dimensional
approximation to K. For further discussion of DMD, EDMD, and connections to the Koop-
man operator, see Rowley et al. [129], Mezić [99], Tu et al. [161], Williams et al. [172], and
Rowley and Dawson [123]. EDMD will be used and discussed in more detail in Chapter 5.

2.1.4 Eigensystem realization algorithm

The eigensystem realization algorithm (ERA) is a method that extracts a linear state space
model from impulse response data. As mentioned in section 1.2, it was first conceived for
analyzing the structural dynamics of spacecraft in Juang and Pappa [79], but also shares close
similarities with a number of previously proposed techniques [e.g., 72, 89]. More details about
a range of similar methods and their potential applications can be found in [163, 164, 119].

The output of ERA is a discrete-time linear state-space system, taking the form.

xk+1 = Adxk + Bduk

yk = Cdxk + Dduk,
(2.1.9)

The ERA algorithm proceeds as follows:

Algorithm 2 (ERA).

1. Collect output data from an impulse response of the form {y0,yP ,y2P , . . . ,ymP} and
{y1,yP+1,y2P+1, . . . ,ymP+1}.

2. Assemble the block Hankel matrices

H =


y0 yP y2P · · · ymc
yP y2P y3P · · · y(mc+1)
...

...
...

. . .
...

ymoP y(mo+1)P y(mo+2)P · · · y(mo+mc)P

 ,
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H# =


y1 yP+1 y2P+1 · · · ymcP+1

yP+1 y2P+1 y3P+1 · · · y(mc+1)P+1
...

...
...

. . .
...

ymoP+1 y(mo+1)P+1 y(mo+2)P+1 · · · y(mo+mc)P+1

 ,
where mc and mo are chosen such that mc +mo ≤ m.

3. Compute the (reduced) SVD H = UΣV T .

4. Truncate the SVD by only considering the first r columns of U and V , and the first
r rows and columns of Σ (with the singular values ordered by size), to obtain Ur, Σr,
and Vr, where r is the desired model order.

5. The matrices of the reduced-order model of a system with p inputs and q outputs are
given by

Ar = Σ−1/2
r UT

r HVrΣ
1/2
r ,

Br = the first p columns of Σ1/2
r V T

r ,

Cr = the first q rows of UrΣ
1/2
r ,

Dr = y0.

(2.1.10)

Note that when p = 1, the data pairs in step 1 can just be taken from an impulse response
sequence with its last and first entries removed. This more general formulation allows for
the skipping of data when assembling H , which can reduce computational costs, while still
allowing data to be used across a large total time window.

In general, input-output data might not be available in the form of an impulse response, in
which case other more general subspace methods may be used (e.g., Verhaegen and Dewilde
[163]). Another approach is to use a technique such as observer/Kalman filter identification
[82] to compute an impulse response from input-output data with random inputs, before
applying ERA. We note that there are close similarities between DMD and ERA. Indeed,
the two algorithms become equivalent when m0 = 1, in the sense that the A matrices from
either method are only different by a similarity transform [161].

2.2 Motivating results

In this section, we present some preliminary results that will serve as motivation for the
research in the following chapters. The main idea will be to use ERA to identify models
for a pitching airfoil system, and use these models to design feedback systems that allow for
the lift to be controlled. In other words, a controller will be used to determine the airfoil
kinematics required to achieve a desired (possibly time-varying) lift coefficient. Since these
results are largely provided for motivation, we omit a number of technical details from this
section. The core methodology behind these results is given in Brunton et al. [24]. For
brevity, we also defer a detailed discussion of the experimental and numerical methods to
Chapters 3 and 4 respectively.

We consider an airfoil undergoing simple pitching motion about the quarter chord, with
the system input being the kinematics of the airfoil (captured by the angular acceleration, α̈)
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and the output the lift coefficent, CL = FL
0.5ρAU2

∞
. Models (in the form of low order state-space

realizations of the system) are identified by applying the eigensystem realization algorithm to
discrete-time impulse response data. This occurs after first extracting the components of the
lift that are directly proportional to the angle of attack and its derivatives (α, α̇, and α̈), de-
scribed in further detail in [24]. For direct numerical simulations, such impulse response data
is directly simulated, while in experiments it is acquired by applying the observer/Kalman
filter identification algorithm (OKID) [82] to the input/output data from pseudo-random,
frequency rich maneuvers. Feedback controllers are designed using H∞ loopshaping, with
a controller designed to meet a desired “loopshape” (i.e., the transfer function describing
the dynamics of the closed-loop system). See Skogestad and Postlethwaite [143] for further
details about such methods.

This procedure can be applied using both theoretical models (e.g., the Theodorsen model,
Equation 1.1.1) and the previously discussed reduced-order models, identified in both direct
numerical simulations (DNS) and wind tunnel experiments. Simulations are performed on a
two-dimensional flat plate airfoil at a Reynolds number of 100, using an immersed boundary
projection method [149, 36]. Experiments were conducted using a NACA 0006 airfoil of
chord length 0.245 m with a free stream velocity of 3 m/s, giving a Reynolds number of
approximately 50,000. Gusting conditions are generated in the wind tunnel by using a series
of shutters downstream of the test section. In spite of the differences in parameters and
conditions between the DNS and experimental work, we demonstrate that the same control
methodology can be successfully applied in both cases.

Feedback control is implemented for tracking reference lifts of a range of magnitudes,
both with and without the presence of gusting disturbances. To begin with, we consider
tracking step changes in reference lift in DNS. Figure 2.1 shows accurate tracking of the
desired lift over a range of magnitudes, even significantly beyond the maximum value that
can be held in steady conditions (CL = 0.97, for this system). This highlights one of the
major benefits of using feedback control: even though the system is clearly non-linear, we are
able to make the output (which is often what we care most about) behave linearly. Here the
nonlinear effects are compensated for by the controller modifying the input to the system.
Figure 2.2 shows lift tracking step responses for experimental conditions. The presence of
noise and time lags in the system degrades the performance. Nonlinear effects further limit
the performance for high amplitude steps.

Having validating that feedback control can be successfully implemented on simple step
maneuvers, we proceed to investigate more complex desired lift profiles. Figure 2.3 shows the
performance of the DNS system in tracking a sinusoidally varying reference lift. Interestingly,
we note that the addition of a periodic component to the reference lift at certain frequencies
allows for successful tracking of a higher average lift.

While these results show one use for reduced-order models, they also suggest a few
limitations of such an approach. Firstly, accurate lift tracking was only possible when an
accurate, real-time lift measurement was available. This is primarily due to the fact that
the system is nonlinear. This motivates the development of nonlinear modeling procedures
considered in Chapters 3 and 5.
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Figure 2.1: (a) Step responses of various magnitude for the closed-loop system in DNS, and
(b) normalized step responses. Linear behavior in the output (lift coefficient) is observed,
despite large nonlinearities present in the system, which is evident from the variation in the
angle of attack plots.
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Figure 2.2: Step responses of various magnitude for the closed-loop system in wind tunnel
experiments. The controller performance degrades for high-amplitude steps.

Figure 2.3: Controller performance in tracking sinusoidally varying reference lift coefficient.
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Figure 2.3 exposes some interesting flow physics for this particularly pitching airfoil sys-
tem, where higher average lift coefficients are found when pitching at a preferred frequency
(corresponding to oscillations of period tU

c
= 3). This phenomena is explored systematically

in Chapter 4.
We also observe a degradation of performance when using experimental, rather than nu-

merical data. Aside from issues with implementing feedback control in experimental systems
that contain time lags between command and actuation, one cause of this degradation is the
presence of noise in the data. This is particularly important when using data-driven mod-
eling approaches. We study the presence of noise in the dynamic mode decomposition in
Chapter 6, and propose modified algorithms that can give improved performance with noisy
data.
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Chapter 3

A data-driven modeling framework
for predicting forces and pressures on
a rapidly pitching airfoil

This chapter formulates a switched linear modeling procedure to understand and predict
the unsteady aerodynamic forces arising from rapid pitching motion of a NACA 0012 airfoil,
at a Reynolds number of 50,000. The system identification procedure applies a generalized
dynamic mode decomposition algorithm to time-resolved wind tunnel measurements of the
lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil.
Linear state space models are identified for 5◦ pitch-up and pitch-down maneuvers within an
overall angle of attack range of 0◦–20◦. The identified models accurately capture the effects of
flow separation and leading-edge vortex formation and convection. It is shown that switching
between different linear models can give accurate prediction of the nonlinear behavior that is
present in high-amplitude maneuvers. The models are accurate for a wide range of motions,
including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the
models access to a subset of the measured data channels can allow for improved estimates of
the remaining states via the use of a Kalman filter, which could be of use for aerodynamic
control applications.

3.1 Introduction

Airfoils undergoing pitching motion can exhibit a range of distinct features, including bound-
ary layer separation and reattachment, Kelvin-Helmholtz shear layer instabilities, dynamic
stall vortex formation and detachment, and von Kàrmàn wake instabilities. Indeed, the dy-
namics of the system at low angles of attack, where the flow may be fully attached to the
upper surface of the airfoil, often bears little resemblance to the behavior at high angles of
attack, where the airfoil can more closely resemble a bluff body, with a large recirculation
region and periodic vortex shedding. For this reason, if one were to attempt to formulate
a reduced-order model that captures the dynamics of a pitching airfoil restricted to one
of these regimes, not only would the resulting models have substantial differences, but the
entire modeling approach chosen could be fundamentally different. For example, a typical
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model at small angles of attack might be derived using classical unsteady aerodynamic the-
ory as discussed in Section 1.1, whereas a high angle-of-attack model might take the form of
a Goman-Khrabrov model [60], for example. Such a model is motivated by the movement
of the separation point on the airfoil undergoing (relatively) slow pitching, and thus only
makes sense flow which is at least partially separated. Indeed, such a model was formu-
lated for a system similar to that considered in this chapter (though with a narrower range
of motions and angles of attack than considered here) in Williams et al. [171]. Therefore,
it can be challenging to find a reduced-order modeling framework that is both sufficiently
simple to explicitly formulate and rapidly simulate, and general enough to capture the full
range of phenomena that emerge under different conditions. As discussed in Section 1.1,
this complexity can motivate the use of data-driven modeling methods, which allow for the
identification of dynamical systems that accurately capture the features present in the data,
and are generalizable to a wide range datasets and systems of varying complexity.

The overriding goal of this chapter is to formulate a modeling framework that allows for
the prediction of the system dynamics across wide range of angles of attack, ranging between
fully attached and fully separated flow, for arbitrary pitching maneuvers. For the purposes
of this work, we specifically seek accurate prediction of the time-varying forces and pressures
incident on an airfoil as it is pitching. One downside of using data-driven methods is that
one can lose or bypass the physical understanding that explains the behavior of the system.
For this reason, we make an effort to not just formulate models that accurately represent the
data itself, but also to interpret the dominant features that such models are representing.

The modeling approach used in this chapter utilizes a recently-proposed variant of dy-
namic mode decomposition, which allows for the identification of systems with inputs [116].
One advantage of the present modeling approach is that, unlike those generated using the
eigensystem realization algorithm, for example, the model states can be directly related to
measurements. This can allow easy switching between neighboring linear models, which
subsequently permits the formation of a switched linear model that is capable of predicting
nonlinear behavior. The algorithm is described in Section 3.2, which is followed by a descrip-
tion of the experimental setup in Section 3.3. Section 3.4 demonstrates that the obtained
models are accurate for a range of high-amplitude pitching maneuvers. Section 3.5 contains
a more general discussion of the results and subsequent conclusions of this study. Section
3.6 contains appendices to this chapter, which consists of more detailed results pertaining to
the forces and pressures on a stationary airfoil, as well as a short description of the Kalman
filter used in Section 3.4.

3.2 System identification method

We use a variant of dynamic-mode decomposition to identify models describing the pitching
airfoil, which is briefly described here. The goal will be to identify a family of linear discrete-
time systems of the form

xi+1 = Akxi + Bkui, (3.2.1)

where xi+1 is the state of the system one timestep after the system was in state xi. By
identifying different Ak and Bk matrices for different angles of attack and directions of
pitching, we can assemble a family of linear models {Ak,Bk}Nk=1 that can subsequently
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be pieced together to allow for accurate prediction of maneuvers spanning a wider range of
angles of attack than any single linear model would be capable of. We now describe in general
terms the identification procedure for a linear model {A,B}. Further details concerning the
specific data chosen to constitute the state x will be given in Section 3.4.1.

Suppose we collect a time-series of measurements xi, which we assemble as columns into a
matrix Z, as described in Section 2.1.3. From Z, we select all pairs of data that are separated
by some nominal time ∆t, which we assemble into matrices Y and Y #. If Z consists of
uniformly sampled data, then Y and Y # are Z with the last and first columns removed,
respectively. Standard DMD can be characterized as finding the eigendecomposition of a
matrix A satisfying (or approximately satisfying) Y # = AY [161]. Depending on the size
of Y and Y #, A is either the (Frobenius) minimum-norm solution (if the data matrices
have more rows than columns), or the least-squares solution (otherwise). The usefulness and
validity of this approach relies assumption that the system is autonomous, and not greatly
affected by external inputs. If we have known inputs ui assembled into a matrix U , then it
is possible to modify DMD [116] to instead seek the matrices A and B satisfying

Y # =
[
A B

] [Y
U

]
. (3.2.2)

Provided that the size of the state m is not excessive, we may compute the augmented system
matrices [A B] through [

A B
]

= Y #

[
Y
U

]+

, (3.2.3)

where + denotes the Moore-Penrose pseudoinverse. Since fluids systems are, in general,
nonlinear, the ability of the identified linear system to accurately model all of the data may
be limited. However, an intelligent selection of state variables x can go a considerable way
towards factoring out much of the nonlinearity in the system. To begin with, rather than
directly using force and pressure measurements, we can instead consider deviations from the
equilibrium (or mean) values at a given angle of attack. This allows for the resulting linear
model to be accurate despite nonlinear static behavior.

3.3 Experimental method

Experiments were conducted at the Andrew Fejer wind tunnel at the Illinois Institute of
Technology, with a diagram of the airfoil mounting shown in Figure 3.1. A NACA 0012
airfoil of chord length c = 0.245 m was used in a test section of length 3 m and cross-section
0.6 m by 0.6 m. The airfoil spanned the width of the test-section, thus minimizing three-
dimensional effects. The airfoil was mounted upon a six-axis ATI nano17 force transducer in
its spanwise center, which allowed for the measurement of time-resolved forces and moments.
This, in turn, was mounted upon two pushrods actuated by Copley servo tubes, allowing for
pitching motion to be commanded. For the results presented here, only the rear pushrod
was actuated, which resulted in pitching about an axis 0.11c from the leading edge. The
presence of the airfoil mounting and pushrod mechanism creates a disturbance to the flow,
which influences the force measurements in particular. This is the main cause of the nonzero
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Figure 3.1: Schematic of the experimental setup.

lift at an angle of attack α = 0◦, which will be observed in Section 3.4. This effect has been
previously documented for this wind tunnel setup [171]. Six pressure taps were installed
along the chord of the airfoil at one spanwise location, located at distances of 0.050c, 0.217c,
0.385c, 0.552c, 0.720c, and 0.887c aft of the leading edge. The freestream velocity U was
measured using a pitot tube and remained constant at a nominal value of 3 m/s, giving
a Reynolds number cU

ν
of approximately 50,000 (ν is the kinematic viscosity of air), and a

convective time tc = c
U

= 0.0817 s. Note that some blockage effects meant that the freestream
velocity changed by a small amount as the angle of attack changed (approximately 3% when
pitching between 0◦ and 20◦). All forces and pressures were nondimensionalized using the
averaged velocity at the relevant phase of the maneuver. (Note that this neglects unsteady
gusting effects associated with the changing velocity, but since the changes are small, these
effects should be negligible.)

Force and pressure data was acquired at a frequency of 1000 Hz. For each maneuver, data
was phase-averaged over at least 50 cycles to reduce the effect of measurement noise. All
maneuvers were also performed with the wind tunnel off before and after data was collected
with the tunnel switched on. These results were also phase-averaged, and subtracted from
the tunnel-on data. This eliminates (for the force readings) the effects of the mass of the
wing, the added-mass terms associated with accelerating the surrounding air, and also any
other effects on the measurement equipment resulting directly from the maneuver performed.
By eliminating added-mass terms, we isolate the circulatory fluids forces arising from a given
pitching maneuver.

3.4 Results

Here results are presented for the identification (Section 3.4.1) and performance of the suite of
identified models. To test the performance of the family of models that have been identified,
we analyze their ability to predict a range of other maneuvers. These range from compositions
of similar individual maneuvers (Section 3.4.2), to sinusoidal (Section 3.4.3) and pseudo-
random (Section 3.4.4) pitching maneuvers. The latter two of classes of maneuver bear little
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similarity to the maneuvers used for identification. In this sense, we will be able to show the
generality of these models, which highlights that the identified models represent more than
simply fits to the data, and have predictive capabilities.

3.4.1 System identification results

Models were identified separately from pitch-up and pitch-down maneuvers between 0◦–5◦,
5◦–10◦, 10◦–15◦, and 15◦–20◦, with model states obtained from the 6 pressure readings and
the lift and drag measurements. The prescribed maneuvers take the canonical form [51]

α(t) =
MG

max(G)
, G = log

[
cosh(a(t− t1)) cosh(at2)

cosh(a(t− t2)) cosh(at1)

]
. (3.4.1)

Nondimensionalizing time by U
c
, we take t2 − t1 = 2, and a = 10U

c
= 122.4 (along with

M = 5◦). With these parameter values, a becomes the main governing parameter that
determines the rate of the step.

The duration of the pitch was approximately 4 convective time units (4 c
U

). Static data at
the corresponding angles of attack was first subtracted from all measurements, and all data
was nondimensionalized (forces by 1

2
ρcU2 and pressures by 1

2
ρU2). To identify models, the

DMD-type algorithm described in Section 3.2 was used, which allows for data with inputs
(which in this case was taken to be measurements of either α and α̇, or just α̇). Using this
method, we arrive at models of the form

xi+1 = Axi + Bui,

as described in Section 3.2. Here we let x = [Ĉp1 Ĉp2 . . . Ĉp6 Ĉl Ĉd]
T , and u = [α α̇]T .

Note that while we treat α as an input for convenience, the fact that it is entirely dependent
on α̇ means that we could also treat it as an additional system state. Here ·̂ represents the
deviation from an equilibrium condition, Ĉi = Ci − Ce

i (α), where Ce
i (α) is the equilibrium

(or mean in the case of an unsteady state) value of the coefficient at a given angle of attack.
We first attain this equilibrium data for angles of attack in the range α ∈ [0◦, 22◦], which is
shown in Figure 3.2. The behavior of the system for fixed angles of attack can also contain
significant complexity. We provide further data and analysis of the fixed airfoil configuration
in an appendix, Section 3.6.1. To motivate the development of unsteady models, we also
show in Figure 3.2 how data acquired for a pitching airfoil deviates from these equilibrium
values. Considering just the static data, we observe that the lift coefficient increases close to
linearly (with a slope of approximately 1.7π) between 0◦ and 8◦, before the lift curve reaches
its peak and then plateaus between 10◦ and 15◦, before again increasing beyond 15◦. The lift
plateau corresponds to the airfoil stalling, with the flow over the suction surface becoming
separated. Further evidence for this comes from examining both the drag curve, which sees
a large increase in drag beyond α = 8◦, and in the first two pressure coefficients, which give
a sharp drop in pressure beyond this angle. Prior to full separation, there is evidence for
partial separation towards the rear of the airfoil. Pressure sensors 3–6 all measure a drop in
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Figure 3.2: Force and pressure coefficient data for a static airfoil at angles of attack between
0◦ and 22◦, as well as for an airfoil sinusoidally pitching between 5◦ and 15◦ at a rate
k = πfc

U
= 0.051. Pitching data was phase-averaged over 200 cycles, while static data

was obtained while keeping the airfoil fixed at angles of attack between 0◦ and 22◦, in 1◦

increments.
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Figure 3.3: Force and pressure data for 5◦ pitch-up maneuvers for starting angles of 0◦, 5◦,
10◦ and 15◦, which were used for system identification. In all cases, the identified models
accurately replicate the experimental data. Also shown is the static data at the relevant
instantaneous angle of attack.

pressure at a critical angle between 2◦ and 6◦, which appears to signify the separation point
moving upstream of the given sensor.

Returning now to the system identification procedure, Figures 3.3 and 3.4 show the
performance of each model in predicting the pressure and force coefficients for the maneuver
upon which they were identified. For reference, the static pressure and force coefficients
at the instantaneous angle of attack are also shown in Figures 3.3 and 3.4. Rather than
subtracting the full static curves before system identification, we found improved results by
assuming linear variation in the static values throughout the maneuver. This avoids issues
with separation-related “jumps” occurring at different angles of attack in for the static and
moving airfoil, which makes the static-subtracted data less smooth.
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Figure 3.4: Force and pressure data for 5◦ pitch-down maneuvers for starting angles of 5◦,
10◦, 15◦ and 20◦, which were used for system identification. In all cases, the identified
models accurately replicate the experimental data. Also shown is the static data at the
relevant instantaneous angle of attack.
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We can identify two dominant features of the pitch-up and pitch-down behavior. A
temporary rise in Cl, Cd and −Cp is observed which is consistent with the formation and
convection of a leading-edge vortex (see, e.g., all measurements for pitching between 15◦ and
20◦), and a time-lag in reaching the steady state value, most likely due to the boundary
layer requiring time to reach its new equilibrium configuration (see, e.g., Cp6 when pitching
between 0◦ and 5◦). We qualitatively summarize the presence of each of these features in
Table 3.1.

Maneuver −Cp1 −Cp2 −Cp3 −Cp4 −Cp5 −Cp6 CL CD
0◦ to 5◦ N D D D D D N N
5◦ to 10◦ V VD VD VD VD VD V VD
10◦ to 15◦ V V V V V VD V V
15◦ to 20◦ V V V V V V V V
20◦ to 15◦ V V V V V V V V
15◦ to 10◦ V V V V V N V N
10◦ to 5◦ V V N N D D -V D
5◦ to 0◦ N N V D D N N N

Table 3.1: Qualitative features observed during pitch-up and pitch-down maneuvers for each
pressure and force measurement. V refers to effects of a vortex, D refers to a time lag, while
N indicates that neither of these effects are significant.

We finally note that we obtain quite different models for pitch-up and pitch-down maneu-
vers. To show this explicitly, Figure 3.5 shows the inaccuracy of the prediction of a 5◦–10◦

pitch-up model for a 10◦–5◦ pitch-down maneuver, which arises primarily because the 5◦–10◦

pitch-up model predicts the existence of a time-delay, which is not present in the 10◦–5◦

pitch-down data. This has important implications for the use of pseudo-random system
identification maneuvers, which necessarily incorporate both pitching up and pitching down
motion.

3.4.2 Multiple pitch-up and pitch-down maneuvers

We now consider a maneuver consisting of two pitch-ups followed by two pitch-downs, each
in rapid succession. We attempt to predict the maneuver by switching between the relevant
models for each pitch-up and pitch-down. For this maneuver, four different models are used.
Given that the state of each model consists of the same variables, this is simply a matter of
switching the A and B matrices used to propagate the system.

The results for this procedure in predicting Cl, Cd, as well as two of the pressure coeffi-
cients are shown in Figure 3.6, where we have considered double pitch-up/down maneuvers
between 10◦ and 20◦ with different pitching rates. We vary the a parameter from equation
3.4.1 to modify the pitching rate (halving and doubling it from the value used in system
identification). In all cases, we switch between sub-models at t = 10, 20 and 30 convective
times, using the final predicted state from one sub-model as the initial condition for the
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Figure 3.5: Example of inaccurate prediction of a pitch-up model (5◦−10◦ model, red curves)
on pitch down maneuver (10◦ − 5◦ maneuver, blue curves).

next. To give some basis for comparison, we show the performance of a single linear model
(that identified from a 5–10◦ pitch-up) in predicting this maneuver in Figure 3.7. We note
that the only section of this maneuver that this model accurately predicts is that which is
most similar to its identification maneuver.

Figure 3.8 shows a quadruple pitch-up and -down maneuver, which switches between all
models. From all of these results, we find that switching between models generally works
well, though sometimes it can induce “jumps” immediately after switching, particularly when
switching between the pitch-up and pitch-down models between 5◦ and 10◦. It is possible that
these could be eliminated or reduced with further refinements to the system identification
and/or switching procedure.

3.4.3 Sinusoidal pitching

Next, we consider high-amplitude sinusoidal pitching maneuvers, pitching between 0◦ and 20◦

at rates f = 0.2 Hz and 0.4 Hz, giving a reduced frequencies k = πfc
U

= 0.051 and 0.103. In
Figure 3.9 we show the predicted pressures and forces when using a single model (arbitrarily
taken to be the pitch-up model from 5◦ to 10◦), a switched model, and a switched equipped
with a Kalman filter (that gives access to the first and sixth pressure measurements). Details
concerning the design of this Kalman filter are given in an appendix, Section 3.6.2. We find
that the switched model performs better than any single linear model, and that improved
accuracy in all measurements can be achieved when using the Kalman filter. The latter
observation demonstrates that, even if the models themselves have some inaccuracies in
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Figure 3.6: Switched model performance in predicting pressure and force coefficients for
double pitch up/down maneuvers with different pitch-rates (increasing from (a) to (c)),
between 10◦ and 20◦. Switching between sub-models occurs at t = 10, 20 and 30 convective
times, using the final predicted state from one sub-model as the initial condition for the
next. Subplot (b) uses the same pitch-rate as the maneuvers used for system identification.
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Figure 3.7: Performance of a single (5◦–10◦ pitch-up) model in predicting pressure and force
coefficients for double pitch up/down maneuver.
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Figure 3.8: Performance of switched model in predicting pressure and force coefficients for
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predicting the outputs, access to measurements of a subset of these outputs can improve
the prediction of all outputs. This is relevant for the use of such models for real-time
control, where, for example, we may seek to attain a desired lift force using only pressure
measurements.

3.4.4 Pseudo-random pitching

We finally consider the case where the angle of attack varies in a pseudo-random manner.
Figure 3.10 shows the performance of a switched model equipped with a Kalman filter in
predicting the pressures and forces for a pseudo-random pitching maneuver. Again, we
observe close agreement between the measured and predicted results. This close agreement
highlights the full generality of the switched model, as it is capable of accurately predicting
the behavior of the airfoil forces and pressures for arbitrary high-amplitude pitching motions.

3.5 Discussion and conclusions

The results presented in Section 3.4 demonstrate that the system identification technique
described in Section 3.2 can be of use for unsteady aerodynamic modeling applications.
The fact that accurate models were attained from very simple pitch-up and pitch-down
maneuvers gives the procedure an advantage over the OKID algorithm, which typically
requires a concatenation of a variety of motions to obtain accurate models [23]. The absence
of internal states in the resulting models mean that they are naturally suited for piecing
together for the formation of a global switched model. This process is difficult for ERA
models, where the internal states are not directly associated with physical measurements.
Having measurements directly associated with model states means that the dimension of the
observables must be at least as large as the dimension of the underlying dynamics (or their
approximating model), though this restriction could be relaxed if we were to concatenate the
data with time-shifted measurements (as is done in ERA), or by using transformations of the
original data [172]. Conversely, the fact that the models are accurate suggests that 8th order
linear models are sufficient to capture the phenomena present in the maneuvers considered.
Indeed, in many cases it was found that it was possible to apply balanced truncation to
reduce the dimension of the identified models without significant degradation of predictive
accuracy.

In general, linear modeling techniques are appealing due to the simplicity of their iden-
tification and formulation, and the ease of use in simulation and controller design. Their
accuracy in the prediction of nonlinear dynamics, however, will typically be fundamentally
limited to a region in phase-space that is near to the identification maneuver. Scheduling
between a family of linear models can go some way to incorporating nonlinear effects into
a global model, thus increasing the region in phase-space where such models are accurate.
This work demonstrated that, in the α direction of phase-space, such an approach can work
between 0◦ and 20◦, which includes the regimes where the flow over the suction surface is
completely attached, partially separated, and fully separated. This range was the maximum
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Figure 3.9: Predicted and actual pressure and force coefficients for high-amplitude sinusoidal
pitching at dimensionless frequencies k = πfc

U
= 0.051 and 0.103. Predictions are made using

a model both with and without a Kalman filter. When a Kalman filter is used, the model is
given access to the pressure measurements nearest and furthest from the leading edge (Cp1
and Cp6).
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Figure 3.10: Performance of the switched model, equipped with a Kalman filter and measure-
ments of the first and last pressure coefficient, in predicting pressure and force coefficients
for high-amplitude pseudo-random pitching maneuver.
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available given physical limitations of the airfoil mounting, but we imagine that separated
flows at higher angles of attack should also be able to be accurately modeled, given that
they are phenomenologically similar (in terms of being fully separated) to those near 20◦.

In terms of the applicability of the model for maneuvers with different pitch-rates (i.e.,
the α̇ direction of phase space), we see in Figure 3.6 that the models remain accurate for a
range of values of pitch rates. Looking at Figure 3.9, however, it is observed that switching
between models while pitching at a relatively fast rate can lead to some degradation of model
accuracy. This is a known limitation of gain scheduling models in general [139].

The fact that the acquired data was phase-averaged over a number of cycles means
that any unsteady phenomena that are not phase-locked with the pitching motions will
be averaged out of the identified models. Particularly for separated boundary layers, such
effects (which can occur on a faster timescale to the pitching motions) can be significant, even
if they are not directly controllable by pitching motion. Further work could, for example,
incorporate such dynamics into state estimators, which could improve the real-time predictive
power of such models.

The data that is obtained for the cases of a pitching and stationary airfoil is also of
fundamental fluid mechanical interest, which will could further investigated by investigating
the time-varying velocity field using particle image velocimetry (PIV). Specifically, it would
be interesting to explore whether a small number of measurements could be used to accurately
predict not only the pressures and forces (as was done in the present work), but also the
entire velocity field in the vicinity of the airfoil.

3.6 Appendices

3.6.1 Further static airfoil results and analysis

The system identification method used in this chapter (described in Section 3.2) relies on
an accurate knowledge of the characteristics of the stationary airfoil across the range of
angles of attack considered in this investigation. In Section 3.4.1, the general behavior of
the lift and pressure curves was analyzed, with the lift plateau pressure drop related to the
increasing amounts of flow separation on the suction surface of the airfoil as the angle of
attack increases. To analyze this more quantitatively, we show in Figure 3.11 the angle of
attack at which the (negative) pressure at each location on the airfoil reaches its first local
maximum. For angles of attack beyond this critical angle, we reason that the flow is at least
partially separated.

To better understand the flow physics involved in the separation of the flow, we perform
a spectral analysis of the data collected at constant angles of attack. Figures 3.12 and 3.13
show the spectra (power spectral density) for each output for the wind tunnel off and on,
respectively. With the tunnel off, the plots are very similar for each angle of attack, so only
one spectrum is shown (being the average of tunnel-off spectra at all angles of attack). We
highlight a few important frequencies in the spectra. Figure 3.12 shows a peak at a frequency
of 13.2 Hz (as well as its first harmonic) for all pressure measurements, which might be due
to measurement noise in the output voltages. The force and angle measurements (again with
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Figure 3.11: Location of static separation point (determined by pressure maxima) as function
of α

the tunnel off) have peaks at 7.3 Hz and 37.6 Hz. Since these peaks (as well as some smaller
ones in between the two frequencies) are the same for the measured angles and forces, it is
likely that that they are due to mechanical vibration of the pushrod servos.

With the tunnel on, there are numerous additional features worth mentioning. A peak
at 7.8 Hz appears in all measurements, and there is also see a peak at 3.8 Hz in some of
the data. One might think that these correspond to the same resonance peak identified in
the tunnel-off measurements. However, there are a couple of reasons to suggest that these
are fluids related: they do not appear in the measured angle of attack spectra, nor does the
3.8 Hz peak appear when the tunnel is turned off, and this peak only seems to appear at
higher angles of attack (when the surrounding frequencies also have larger spectral densities).
Indeed, it seems that this frequency exhibits period-doubling behavior beyond a certain angle
of attack.

We can estimate numerous characteristic frequencies related to fluids effects. Beyond a
certain critical angle of attack, the flow should exhibit periodic vortex shedding. This should
occur at a frequency corresponding to a Strouhal number (fc sin(α)

U
) of 0.15–0.2, which gives

a frequency range (for angles between 10◦ and 20◦) of 5–14 Hz. In general, there is larger
energy at all frequencies less than about 15 Hz for higher angles of attack, which is due to
unsteadiness in the separated flow over the suction surface.

At lower angles of attack, the wake may also be unsteady, with the shear layer susceptible
to Kelvin-Helmholtz instabilities [178, 177, 87]. These effects have been reported for similar
airfoils and similar (low) Reynolds numbers, and occur at higher frequencies than that of the
von Kármán vortex street. The frequencies for this instability is more sensitive to Reynolds
number than the vortex shedding frequency. Note that Yarusevych et al. [178] also observes
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Figure 3.12: Power spectral densities of the pressures, forces, and angle of attack measure-
ments made with the tunnel turned off.
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Figure 3.13: Power spectral densities of the pressures, forces, and angle of attack mea-
surements for angles of attack ranging between 0◦ (black) and 21◦ (red), with pertinent
frequencies identified by vertical lines.
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function of α.

a drop in −Cp at α = 5◦ at a location x/c ≈ 0.65, which is broadly consistent with our static
pressure measurements. At α = 5◦, Yarusevych [178] finds a spectral peak in the stream wise
velocity at x/c ≈ 0.53 at f = 55Hz, which corresponds to fc

U
= 5.75 for Re = 55×103, which

in turn corresponds to a frequency of approximately 70 Hz for our experiment. Note that this
is of similar frequency to the peaks observed in pressure measurements for moderate angles
of attack (indicated with blue vertical lines), suggesting that the same instability mechanism
is responsible for the peaks recorded here.

In Figure 3.14 we show how the PSD magnitude varies with angle of attack for selected
frequencies. We note that at 7.8 Hz, all measurements show largest amplitude between 10◦

and 15◦, possibly indicating that coherent periodic shedding is most notable at this frequency
in this range of angles of attack. While the vortex shedding frequency should decrease as the
angle of attack increases beyond this range, we lose discernible peaks in the spectra. At the
frequency of 86.4Hz, we find localized maxima at different angles of attack for each pressure
sensor, with the location of the maxima moving upstream along the chord as the angle of
attack increases. We suggest that this frequency is associated with Kelvin-Helmholtz vortex
rollup, which occurs near the point at which the flow separates. Further evidence of this is
seen in Figure 3.11, where it is shown that the angle at which the resonance peak at 86.4
Hz is largest occurs at an angle just beyond the pressure maximum, beyond which it was
reasoned that the flow becomes separated.
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3.6.2 Kalman filter design

The linear models (taking the form given in Equation 3.2.1) identified in this work give a
prediction of forces and pressures given knowledge of the airfoil pitching kinematics. In some
situations, it might be possible to supplement knowledge of these kinematics (i.e., the system
inputs) with some number of additional measurements. This section briefly describes the
setup and design of a Kalman filter [85], that is used to improve the estimate of the state of
the system using such additional measurements. Suppose we have a state space system of
the form

xi+1 = Axi + Bui + Gwi

yi = Cxi + Dui + Hwi + vi,

which is a generalization of Equation 3.2.1 to include the influence of plant disturbances w,
as well as an output equation that includes sensor noise v. For the purposes of this work,
we will assume that H = 0, D = 0, and C is a matrix that selects a subset of the states
x as outputs. The Kalman filter gives an estimate of the state x̂ from the system inputs u
and (potentially noisy) measurements y, whose dynamics are governed by the equation

x̂i+1 = Ax̂i + Bui + L(yi −Cx̂i −Dui).

Here the matrix L gives the optimal state estimate for given disturbance and noise covariance
matrices, Q = E(wwT ) and R = E(vvT ), respectively. Further details concerning Kalman
filter design and the computation of L may be found in standard optimal control textbooks
[e.g., 146]. For this work, we take Q and R to be appropriately sized diagonal matrices,
and set all diagonal entries to be equal aside from the entries of Q corresponding to the lift
and drag states, which we decrease by a factor of 10 to avoid excessive oscillations in the
estimated force coefficients. We find that Kalman filter performance is relatively insensitive
to changes in these weights.
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Chapter 4

Lift enhancement at high angles of
attack with periodic pitching

In this chapter, we study flow over a sinusoidally pitching, two-dimensional flat plate at a
Reynolds number of 100, across a range of pitching amplitudes, frequencies, mean angles of
attack, and pitch axis locations. We report on the lift, drag, and wake structures present in
different regions of parameter space. We examine the average and spectral properties of the
forces on the airfoil, and use dynamic mode decomposition to examine the structures and
frequency content of the wake. Focus is given to a number of regions in parameter space
where interesting behavior is observed. In particular, we find that in the regime where the
flow on the upper surface of the airfoil is separated, but the steady wake is stable, pitching
at a specific frequency excites a vortex shedding mode in the wake, leading to substantial
increase in the lift and drag forces. This phenomena is insensitive to pitch-axis location and
amplitude. At higher angles of attack where the wake for a steady airfoil exhibits periodic
vortex shedding, we find that, in addition to this mean lift maxima, the interaction between
the natural and forced modes gives rise to more complex behavior.

4.1 Introduction

The unsteady motion of airfoils at low Reynolds number and high angle of attack leads
to a range of phenomena that cannot adequately be explained by classical aerodynamic
theories. It is precisely these conditions that are encountered by small fliers, ranging from
biological examples such as birds [165], insects [19, 130, 170], and bats, or manmade UAVs
and MAVs. The vortex dynamics excited by airfoil motion, actuation, or indeed present
in the natural flow at sufficiently high angles of attack, can significantly affect aerodynamic
performance [97]. This motivates work that seeks to understand and control such phenomena,
and indeed modeling the dynamics of pitching and plunging airfoils has attracted significant
recent attention [e.g., 23, 24, 11, 63, 66, 41, 180]. That is not to say that such unsteady
aerodynamic studies are only contemporary; the need to study unsteady aerodynamic effects
was originally motivated through the study of helicopter aerodynamics [91, 167, 154].

This chapter will investigate the interaction between periodic vortex shedding that can
occur for bluff bodies (or airfoils at sufficiently large angle of attack), and imposed sinusoidal
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pitching motion. In the case of plunging motion, it has been observed that lock on [131] can
occur between plunging frequency and natural vortex shedding [179, 34, 33], while similar
phenomena have been found for surging oscillations over a wide range of Reynolds number
[30]. We will show that similar phenomena are observed in the case of pitching motion. In
experimental conditions, plunging oscillations may also lead to a bifurcation of the wake
direction [35].

It has been observed that optimal pitching trajectories maximize the circulation that is
entrained in leading edge vortices [100], linking the concepts explored here to the general
notion of a formation number that can be used to explain characteristic sizes and frequencies
associated with vortex phenomena [57]. While this work will only consider two-dimensional
airfoils, we note that three dimensional phenomena can give rise to additional complexity.
For example, aspect ratio effects being significant on lift enhancement due to periodic forcing
[150], and in the case of three dimensional airfoils that are free to exhibit rolling motion,
forced pitching can lead to self-excited roll oscillations [156].

There are strong parallels between studying the effect on lift and drag in the context of
lifting airfoils, and in the investigation of thrust-generating airfoils [45], where it is found
that propulsive efficiency is maximized when flapping produces a reverse von Kàrmàn wake
that excites the least stable spatial mode of the mean wake flow [158, 157]. We describe
the numerical method and scope of the work in Section 4.2, before presenting results in
Section 4.3. We will focus on presenting and analyzing results at parameters where the
pitching motion triggers, strengthens, or interferes with vortex shedding.

4.2 Numerical method and scope of investigation

An immersed boundary projection method is used to perform direct numerical simulations
of the incompressible Navier–Stokes equations, using the approaches of Taira and Colonius
[149] and Colonius and Taira [36]. We summarize the main features of this approach here,
and refer readers to the relevant papers for further details. In this method, the influence of
a solid body immersed in a surrounding fluid is represented with a series of boundary forces,
whose locations do not have to conform to the underlying grid. The origins of immersed
boundary methods date back to Peskin [113] in the study of heart hemodynamics. The
method presented in Taira and Colonius [149] formulates the solution for the flow field and
boundary forces as a Lagrange multiplier problem, which gives it the same form as a projec-
tion (or fractional step) method [31, 153], which may be expressed as an LU decomposition
of the discretized equations [111]. The fractional step method solves the governing equations
by first solving the momentum equation without the pressure term, next solving a Poisson
equation for the pressure, and lastly projecting the pressure-free intermediate in a manner
that accounts for the now-known pressure. Rather than performing this procedure directly,
it is possible to use a nullspace method to eliminate the need to solve for the pressure sepa-
rately [36]. The use of a discrete sine transform allows for computational speedup, but at the
cost of requiring a uniform computational grid. This restriction may be relaxed through the
use of a series of nested, uniform grids of different size and resolution [36], which allows for
sufficient spatial resolution near the body, and a large total domain to eliminate boundary
effects.
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Figure 4.1: Computational domain used for this study, with the size and location of the
airfoil shown. Dashed lines represent the borders of each nested grid.

The domain for this work consists of four nested grids about a flat plate airfoil. A diagram
of the computational domain is shown in Figure 4.1. Each of the four grids contains 600
by 300 grid points, with a total computational domain extending 96 and 48 chord lengths
in the streamwise and transverse directions, respectively. The Reynolds number (based on
chord length and freestream velocity) is fixed at 100 throughout.

Resolution studies were performed to ensure that the resolution and extent of the domain
were sufficient. To give an example of this, we show in Figure 4.2 results from performing
simulations using between one and five nested grids. To show that the extent of the innermost
domain (i.e., that with the finest resolution) is sufficient, we also show the result obtained
from using three larger nested grids, each centered on the airfoil, of size 1500 by 500 grid
points (with the same spatial resolution as before). It is observed that increasing the size
of the total domain beyond 4 grids has minimal effect on the forces on the airfoil, with the
mean lift changing by less than 0.4% when a fifth outer grid is included.

Crank-Nicholson and third-order Runge-Kutta time steppers are used to evolve the lin-
ear and nonlinear terms respectively, with step size ranging between ∆t = 0.0005c/U and
∆t = 0.01c/U , with the smaller range of ∆t required to resolve pitching motions with larger
frequencies and/or amplitudes. For the domain used, advancing the solver one timestep
typically takes less than one second on an Intel Xeon E5 CPU. The relatively small com-
putational cost of an individual simulation for such two-dimensional, low Reynolds number
flows makes the thorough investigation of a high-dimensional parameter space feasible.

In all cases, we run the simulations for sufficiently long such that any limit cycle or long-
time behavior is reached before the data that is used for analysis is collected. We consider
airfoil kinematics of the form

α(t) = αM + αA sin(2πf ∗t), (4.2.1)

where f ∗ = fc/U is a dimensionless frequency. We perform simulations with the mean angle
of attack varying in 5◦ increments between 15◦ and 45◦, with pitching amplitudes of 1◦,
2◦, 5◦ and 10◦. We consider frequencies in the range f ∗ ∈ [0.01, 2], with approximately 20
frequencies used for each αM and αA. For some cases, additional frequencies are added to
improve local resolution in parameter space. Performing these simulations with for pitching
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Figure 4.2: Resolution study to determine appropriate size of computational domain. The
simulations start from zero initial conditions, with the airfoil performing sinusoidal pitching
as defined by Equation 4.2.1 with αM = 20, αA = 5, f ∗ = 0.5. The left subplots show
the time-evolution of the lift and drag coefficients, with the top right subplot showing a
zoomed-in

about the leading edge, midchord, and trailing edge, this results in a total of approximately
1680 individual simulations.

4.3 Results

4.3.1 Static data

To give a sense for the behavior of the stationary airfoil, we show a typical lift curve in
Figure 4.3, showing the lift when the flow is steady (i.e., the equilibrium wake, which can
be stable or unstable depending on the angle of attack), and the maximum, minimum, and
mean lift when the system is unsteady (corresponding to an unstable wake). We observe
the expected linear relationship between the angle of attack, α, and the lift coefficient, CL
for low angles of attack. Once the angle of attack becomes sufficiently large (α > 10◦), flow
separation on the upper surface of the airfoil leads to a shallower lift slope. At α ≈ 20◦,
the flow is separated and steady. Beyond a critical angle of attack αc ≈ 27◦, the steady
solution becomes unstable, and periodic vortex shedding is observed. This is an example
of a supercritical Hopf bifurcation that is seen in the wake of bluff bodies as the Reynolds
number is increased [145]. Note that in the case of an airfoil at an angle of attack, the
projected area c sin(α) is the effective length parameter for determining the location of the
bifurcation. For α > αc, the system exhibits higher lift (and drag) than would occur at the
unstable equilibrium solution (which is computed using selective frequency damping [3]).
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Figure 4.3: Lift curve for stationary airfoil, showing regions where the equilibrium is stable
(α < 27◦) and unstable (α > 27◦), above which periodic vortex shedding occurs.

4.3.2 Force analysis

In this section, we study the lift and drag forces for pitching motion with various amplitudes,
frequencies, and mean angles of attack. To begin with, only pitching about the midchord of
the airfoil is considered.

Figure 4.4 shows the mean lift coefficient as a function of the dimensionless frequency, f ∗,
for pitching with a range of amplitudes, αA, and mean angles of attack, αM . We observe a
distinct local peak in CL for all values of αM and αA, aside from pitching with low amplitudes
(αA = 1◦ or 2◦) about αM = 15◦. The location of this lift peak moves slightly as αM varies,
from approximately f ∗ = 0.3 at αM = 20◦, to f ∗ = 0.23 at αM = 45◦. For αM ≥ 30◦,
we observe a second peak emerging at approximately twice the frequency of the dominant
peak. This suggests that we excite dynamics that give enhanced lift when pitching at both a
fundamental frequency and its first harmonic. We note also that the size of the lift increment
seems to be largest for the intermediate base angles of 25◦ and 30◦.

Figure 4.5 shows the mean drag coefficient for the same range of parameters as Figure
4.4. We find that there are increases in drag that show similar behavior to those for the lift.
To compare the changes in lift and drag more explicitly, we plot the ratio between mean
lift and drag coefficients in Figure 4.6. For larger pitching amplitudes, there is an increase
in the lift-to-drag ratio at certain frequencies. The frequency of the lift-to-drag peak shows
similar behavior to the peaks in both lift and drag (note that, unlike the lift and drag
forces, lift over drag decreases with increasing αM). This finding is potentially important for
the effectiveness of such motions in flight (though other factors, such as the phase difference
between lift and drag, would also be of importance). We additionally note that the frequency
range at which these phenomena occur is well within that which is achievable by onboard
actuators for centimeter-scale flapping-wing aerial vehicles [96, 152].

Turning our attention back to the lift coefficient, we plot in Figure 4.7 the increase in
lift coefficient from the fixed-wing value at αM , normalized by the amplitude of pitching.
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Figure 4.4: Mean lift coefficient for a range of pitching amplitudes αA, frequencies, f ∗, and
mean angles of attack, αM . Pitching is about the midchord.
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Figure 4.5: Mean drag coefficient for a range of pitching amplitudes αA, frequencies, f ∗, and
mean angles of attack, αM . Pitching is about the midchord.
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Figure 4.6: Mean of lift-to-drag ratio for a range of pitching amplitudes αA, frequencies, f ∗,
and mean angles of attack, αM . Pitching is about the midchord.
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For angles of attack below the critical angle (αc) at which vortex shedding occurs, the lift
increment is slightly larger for larger αA, even after normalizing, despite the fact that the
mean lift is lower than the fixed-wing value across other frequencies. This could be due
to the fact that, for larger αA, the maximum angle of attack attained in a pitching cycle
is closer to or exceeds αc, and thus better able to excite vortex shedding. Conversely, for
αM ≥ 25◦, the normalized lift increment is slightly larger for smaller pitching amplitudes,
though in some cases this is in line with the larger average lift increments present for lower
pitching amplitudes across all frequencies.

To analyze the effect of pitch axis location, we show in Figure 4.8 the normalized lift
increment (i.e., the same quantity plotted in Figure 4.7) for pitching about the leading edge,
rather than the midchord. We find very similar results to pitching about the midchord,
with maximum increased lift at dimensionless frequencies between 0.25 and 0.3. The lift
increment is larger for pitching about the leading edge, which could be due to the increased
range of motion of the trailing edge for the same angular pitch amplitude. Note also that
leading edge pitching will result in larger added mass forces, which for nonzero αM will
increase lift and decrease drag, particularly for high pitching frequencies. The remainder of
this section will consider pitching about the midchord. The effect of pitch axis location will
be investigated more thoroughly in the next section.

Figure 4.9 indicates how the mean lift compares to the maximum and minimum lift for
αA = 5◦. Note that in some of the cases the lift is not periodic with the period of forcing, so
these maximum and minimum values are the global extrema over many cycles. We observe
(particularly clearly for lower mean angles of attack) that as the frequency increases from low
values, the amplitude of the lift response increases, while the mean remains approximately
constant. Above f ∗ ≈ 0.2, the amplitude of the variation in lift decreases, but with the
lift minimum rising more abruptly than the lift maximum falls. This asymmetry produces
the higher average lift that is observed in the range 0.1 < f ∗ < 0.5. For higher frequencies,
larger added mass forces mean that the amplitude of the lift oscillations continue to increase,
though the mean lift stays approximately constant.

To analyze the time-varying behavior in more detail, we take the discrete Fourier trans-
form of the lift coefficient signal in time for each trial. The results for this are shown in
Figure 4.10, for pitching amplitude αA = 1◦. For αM ≤ 25, we observe one dominant fre-
quency peak, corresponding to the pitching frequency f ∗. Even though the undisturbed
wake is stable at α = 25◦, we still observe some frequency content near the almost-unstable
vortex shedding mode across all pitching frequencies. For larger angles of attack, there is
a second major peak in the spectra, corresponding to the vortex shedding frequency at the
given αM . In the region where these two frequencies are similar, there appear to be complex
interactions between the dynamics associated with each frequency. As αM grows larger, a
distinct peak emerges at the first harmonic of the fundamental vortex shedding frequency,
further complicating the frequency response of the system, which can now include, at very
least, sums and differences of multiples of these frequencies.
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Figure 4.7: Mean lift coefficient increment over the fixed airfoil value, normalized by the
amplitude of pitching αA, across a range of pitching amplitudes αA, frequencies, f ∗, and
mean angles of attack, αM . Pitching is about the midchord.

49



Frequency, f*
10

-2
10

-1
10

0

∆
 C

L
/ 
α

A

-0.04

-0.02

0

0.02

0.04

0.06

0.08
αM = 15

◦

α
A

 = 1
o

α
A

 = 2
o

α
A

 = 5
o

α
A

 = 10
o

Frequency, f*
10

-2
10

-1
10

0

∆
 C

L
/ 
α

A

-0.04

-0.02

0

0.02

0.04

0.06

0.08
αM = 20

◦

α
A

 = 1
o

α
A

 = 2
o

α
A

 = 5
o

α
A

 = 10
o

Frequency, f*
10

-2
10

-1
10

0

∆
 C

L
/ 
α

A

-0.04

-0.02

0

0.02

0.04

0.06

0.08
αM = 25

◦

α
A

 = 1
o

α
A

 = 2
o

α
A

 = 5
o

α
A

 = 10
o

Frequency, f*
10

-2
10

-1
10

0

∆
 C

L
/ 
α

A

-0.04

-0.02

0

0.02

0.04

0.06

0.08
αM = 30

◦

α
A

 = 1
o

α
A

 = 2
o

α
A

 = 5
o

α
A

 = 10
o

Frequency, f*
10

-2
10

-1
10

0

∆
 C

L
/ 
α

A

-0.04

-0.02

0

0.02

0.04

0.06

0.08
αM = 35

◦

α
A

 = 1
o

α
A

 = 2
o

α
A

 = 5
o

α
A

 = 10
o

Frequency, f*
10

-2
10

-1
10

0

∆
 C

L
/ 
α

A

-0.04

-0.02

0

0.02

0.04

0.06

0.08
αM = 40

◦

α
A

 = 1
o

α
A

 = 2
o

α
A

 = 5
o

α
A

 = 10
o

Frequency, f*
10

-2
10

-1
10

0

∆
 C

L
/ 
α

A

-0.04

-0.02

0

0.02

0.04

0.06

0.08
αM = 45

◦

α
A

 = 1
o

α
A

 = 2
o

α
A

 = 5
o

α
A

 = 10
o

Figure 4.8: Mean lift coefficient increment over the fixed airfoil value, normalized by the
amplitude of pitching αA, across a range of pitching amplitudes αA, frequencies, f ∗, and
mean angles of attack, αM . Pitching is about the leading edge.

50



Frequency, f*
10

-2
10

-1
10

0

C
L

-0.5

0

0.5

1

1.5

2
αM = 15,αA = 5

◦

Max. C
L

Mean C
L

Min. C
L

Frequency, f*
10

-2
10

-1
10

0

C
L

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
αM = 20,αA = 5

◦

Max. C
L

Mean C
L

Min. C
L

Frequency, f*
10

-2
10

-1
10

0

C
L

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
αM = 25,αA = 5

◦

Max. C
L

Mean C
L

Min. C
L

Frequency, f*
10

-2
10

-1
10

0

C
L

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
αM = 30,αA = 5

◦

Max. C
L

Mean C
L

Min. C
L

Frequency, f*
10

-2
10

-1
10

0

C
L

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
αM = 35,αA = 5

◦

Max. C
L

Mean C
L

Min. C
L

Frequency, f*
10

-2
10

-1
10

0

C
L

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
αM = 40,αA = 5

◦

Max. C
L

Mean C
L

Min. C
L

Frequency, f*
10

-2
10

-1
10

0

C
L

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
αM = 45,αA = 5

◦

Max. C
L

Mean C
L

Min. C
L

Figure 4.9: A comparison between the maximum, minimum, and mean lift coefficient at-
tained for pitching with amplitude αA = 5◦, for a range of mean angles of attack, αM , and
frequencies, f ∗. Pitching is about the midchord.
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Figure 4.10: Power spectral densities of the lift force for pitching motion about the midchord
with amplitude αA = 1◦. For clarity, the spectra for each forcing frequency is shifted by one
order of magnitude, so the absolute scale of the vertical axis is not significant.
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4.3.3 Wake analysis with dynamic mode decomposition

Here we analyze the flow field in the wake of the body, in an attempt to study the underlying
physics behind the phenomena observed in Section 4.3.2. We will make use of DMD, which,
as discussed previously (Sections 1.2 and 2.1.3), is a technique that can extract dynamical
content from data, in the form of spatial modes and their associated growth/decay rates
and frequencies of oscillation. Before applying DMD, we look at what insight can be gained
through visualizations of snapshots of the wake. We begin by considering a base angle
αM = 20◦, which is prior to the Hopf bifurcation at which unforced vortex shedding occurs,
and thus has a stable equilibrium wake. Figure 4.11 shows vorticity field snapshots for a
variety of forcing frequencies with amplitude αA = 1◦. We observe that at around f ∗ ≈ 0.3,
the vorticity field is qualitatively different, with periodic vortex shedding being excited by
the pitching motion. This immediately suggests that the increased lift observed at these
pitching frequencies arises due to enhanced vortex formation. We note that the vorticity
fields for pitching about the leading edge (left) and midchord (right) show similar results,
with leading-edge pitching generally leading to stronger, more distinct vortices forming closer
to the airfoil.

The vorticity fields shown in Figure 4.12 have the same parameters as those for Figure
4.11, but with a larger pitching amplitude of αA = 5◦. We again see the same phenom-
ena where the forcing excites vortex shedding, but here distinct vortices form and persist
downstream over a wider range of frequencies. This is consistent with the results from Sec-
tion 4.3.2, where for the αM = 20◦ case in Figure 4.4 we observe an enhanced lift over a
wider range of frequencies for higher forcing amplitudes.

To investigate the behavior as we move closer to, and past, the critical angle of attack αc,
we show in Figure 4.13 snapshots of the vorticity field for mean angles of attack αM = 25◦,
and 30◦, keeping the pitching amplitude αA = 5◦. For αM = 25◦, the observed behavior
is similar to that exhibited in Figures 4.11 and 4.12, with more distinct vortex shedding
apparent for intermediate frequencies. For the αM = 25◦ case (left subplots of Figure 4.13),
however, vortex formation appears to be promoted at a slightly lower frequencies than with
αM = 20◦, which is consistent with the locations of the lift peaks for these values of αM in
Figure 4.4. When αM = 30◦ (right subplots of Figure 4.13), the fact that αM > αc means that
there would be vortex shedding without any pitching motion, which is consistent with the fact
that clear vortex shedding is observed some distance downstream of the airfoil for all pitching
frequencies. The interaction between the pitching and this natural instability appears to be
more complex than (or at least, more difficult to interpret directly from vorticity snapshots),
so we will make use of DMD to allow for more detailed and quantitative analysis of this case.

DMD is performed on the vorticity field for the same values of αM and αA as used in
Figure 4.13 (αM = 25◦ and 30◦, with αA = 5◦), for a variety of pitching frequencies. We
use 401 snapshots for each case, with a time gap between snapshots of ∆t = 0.1c/U . The
snapshots are collected after first allowing the system to evolve from rest for 50 convective
time units. We take data from a region downstream of the body as our domain for DMD,
to avoid complications associated with having the moving body in the domain.
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Figure 4.11: Instantaneous vorticity fields for pitching about the leading edge (left) and
midchord (right) at a variety of frequencies, with αM = 20◦ and αA = 1◦.
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Figure 4.12: Instantaneous vorticity fields for pitching about the leading edge (left) and
midchord (right) at a variety of frequencies, with αM = 20◦ and αA = 5◦.
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Figure 4.13: Instantaneous vorticity fields for pitching about the midchord (right) at a variety
of frequencies, with αA = 5◦ and αM = 25◦ (left) and αM = 30◦ (right).
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While it is most often applied to data from systems without external forcing, DMD
can be used to examine forced systems [159, 116, 102], though one must take care in the
interpretation of its outputs. In this context, we show that it can be an effective tool to
determine both the frequency content of the wake, and also if the wake “locks on” to a vortex
shedding mode. As an aside, we note that more rigorous connections between DMD and
Fourier analysis can be made [28].

Figures 4.14 and 4.15 show results of applying DMD to the wake when αM = 25◦ for a
variety of pitching frequencies. The amplitudes of each DMD mode are plotted against their
corresponding frequency in the left subplots. Also plotted are the real components of the
vorticity fields of the four modes of largest amplitude for each forcing frequency. Note that
if one decomposes a time-varying field u(x, t) into DMD modes ϕi(x) (with corresponding
continuous-time eigenvalue λi) by

u(x, t) =
N∑
i=1

aie
iλitϕi(x), (4.3.1)

then we define the amplitude of mode ϕi by ai, where it is assumed that each mode has
been scaled to be of unit norm. See Tu et al. [161] for more details about other possible
methods for defining DMD mode amplitudes. Note also that the frequency of a given DMD
mode is imag(λi)

2π
(where the factor of 2π converts from radians to cycles, to be consistent

with the definition of pitching frequency). The relative amplitudes of the zero-frequency
mode (which will be referred to as the constant mode) and that at the mode with the
frequency of forcing (henceforth the forcing mode) indicates the extent to which the forcing
influences vortex shedding in the wake. Across all frequencies, most of the high-amplitude
DMD modes occur at multiples of the forcing frequency. As the frequency increases from
its smallest values, the amplitude of the forcing mode increases, to the extent where it is
larger than the constant mode for f ∗ = 0.25 and 0.3. At higher frequencies, the forcing mode
again decrease in amplitude, indicating that forcing has a reduced influence on the wake.
Aside from the higher amplitude of the forcing mode at f ∗ = 0.25 and 0.3, the shape of the
constant mode also changes with the forcing frequency. In particular, for f ∗ = 0.2 and 0.25
the constant mode gives a vorticity field that does not extend as far downstream of the body,
and spreads out more in the direction normal to the flow. Referring back to Figures 4.12
and 4.13, the enhanced spreading of the mean flow is seemingly due to the larger vortices
drifting above (for negative vorticity) and below (positive vorticity) the airfoil as they are
shed. This phenomenon could also explain why the lift-to-drag ratio is often maximized at
pitching frequencies slightly larger than those at which maximum lift occurs. The enhanced
spreading at lower frequencies increases drag, so lift-to-drag benefits exist only at higher
frequencies, where the wake remains thinner.

For pitching at f ∗ = 0.05, 0.4, and 0.5, a DMD mode with frequency approximately 0.25
emerges, which is largest further downstream from other modes (about 8–10c downstream
of the airfoil). This seems to be due to a marginally stable wake mode being excited, even
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αM = 25◦, αA = 5◦, pitching frequency f ∗ = 0.05
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Figure 4.14: DMD eigenvalue amplitudes and frequencies (left) and eigenmodes correspond-
ing to the four largest amplitude eigenmodes, for pitching with αM = 25◦, αA = 5◦, and
f ∗ = 0.05, 0.1, 0.2 and 0.25.
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αM = 25◦, αA = 5◦, pitching frequency f ∗ = 0.3
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Figure 4.15: DMD eigenvalue amplitudes and frequencies (left) and eigenmodes correspond-
ing to the four largest amplitude eigenmodes, for pitching with αM = 25◦, αA = 5◦, and
f ∗ = 0.3, 0.35, 0.4 and 0.5.
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αM = 30◦, αA = 5◦, pitching frequency f ∗ = 0.05
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Figure 4.16: DMD eigenvalue amplitudes and frequencies (left) and eigenmodes correspond-
ing to the four largest amplitude eigenmodes, for pitching with αM = 30◦, αA = 5◦, and
f ∗ = 0.05, 0.1, 0.2 and 0.25.
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αM = 30◦, αA = 5◦, pitching frequency f ∗ = 0.3
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Figure 4.17: DMD eigenvalue amplitudes and frequencies (left) and eigenmodes correspond-
ing to the four largest amplitude eigenmodes, for pitching with αM = 30◦, αA = 5◦, and
f ∗ = 0.3, 0.35, 0.4 and 0.5.
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though it oscillates at a different frequency to the forcing frequency (though for f ∗ = 0.5,
this represents period-doubling behavior). This is perhaps unsurprising, as for αM = 25◦

and αA = 5◦, the motion of the airfoil crosses over the critical αc, so, in the absence of the
wake locking-on to the frequency of pitching, this natural instability mode is excited. For
f ∗ = 0.05, we additionally observe DMD modes at sums and differences of the forcing and
natural frequencies.

Having analyzed the case where αM < αc, we show in Figures 4.16 and 4.17 the results
of applying DMD to data collected with αM = 30◦ > αc. For 0.2 ≤ f ∗ ≤ 0.3, only the
forcing frequency and it’s harmonics are seen in the dominant DMD modes, indicating that
the wake instability is locking on to the forcing frequency. As before, the largest modes with
nonzero frequency arise when pitching at f ∗ = 0.2 and 0.25, for which enhanced lift was
observed (see Figures 4.4 and 4.9). A small lift peak is also observed at f ∗ = 0.5, which we
observe corresponds to a relatively large DMD mode at the natural frequency, which is half
of the forcing frequency.

Sufficiently far away from the natural frequency of the wake, the natural instability mode
does not lock-on to the frequency of forcing, and one obtains a wake with both frequencies,
as well as harmonics and sums and differences of the natural and forcing frequencies, which
is broadly consistent with observations from Figure 4.10, where the forcing and natural
frequencies both emerge when they are sufficiently different.

4.3.4 Experimental Results

The data presented so far in this chapter has come entirely from two-dimensional direct
numerical simulations, at the low Reynolds number of 100, with a simple flat plate airfoil
geometry. It is thus natural to wonder how universal the phenomena explored in this chapter
are. To partially address this question, we present some preliminary experimental data.
Wind tunnel force data was acquired using the experimental setup described in Chapter 3,
with a NACA 0009 airfoil. Limitations on the maximum force to which the force balance
could be exposed meant that only very small amplitude motions (αA ≈ 0.5◦) could be applied,
up to a maximum pitching frequency of approximately f ∗ = 0.41. The actual amplitude of
pitching motion decreased slightly as the frequency increased, due to the limitations of the
pushrod dynamics. For this reason, we consider the normalized lift coefficient increment using
the measured amplitude of pitching. Figure 4.18 compares the experimental observations of
the normalized lift increment to the numerical data when pitching about the midchord at
αM = 20◦ (previously shown in Figure 4.7).

Qualitatively, the same enhanced lift phenomena emerges in the experimental results,
with a maximum lift increment observed when pitching at a frequency f ∗ = 0.35. The fact
that the magnitude of the lift peak is different is unsurprising, given the differing Reynolds
number, airfoil shape, and pitch axis (0.11c from the leading edge for the experimental data)
between the numerical and experimental data.
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Figure 4.18: Comparison between experimental data for a NACA 0009 airfoil at a Reynolds
number of 50,000, with numerical results previously shown in Figure 4.7 for αM = 20◦.

4.4 Discussion and conclusions

For angles of attack below the critical angle where unforced vortex shedding first occurs
(αc), it was found that pitching at a certain frequency can excite vortex shedding in the
wake, leading to higher mean lift. The magnitude and width in frequency range of the lift
increment increases significantly as the forcing amplitude increases. This is perhaps a similar
phenomenon to the widening of the “resonance horn” [21] observed by Choi et al. [30] for
the case of a surging and plunging airfoil (though in that case, the system was above the
critical bifurcation parameter).

For αM above the critical angle for vortex shedding, there is a similar peak in the mean
lift coefficient when the pitching frequency is close to the natural vortex shedding frequency
or its first harmonic. When the natural and forcing frequencies are different, the interactions
between the two frequencies can lead to complex frequency spectra in the forces and wakes.
Note in particular that pitching some amount below the vortex shedding frequency can lead
to a notable decrease in mean lift for αA ≥ 5◦ at αM ≥ 35◦.

While periodic pitching at the preferred frequency where vortex shedding is excited or
enhanced also leads to an increase in drag, the differences in effect that pitching has on the
two force components leads to an increase in the lift-to-drag ratio for frequencies slightly
above the frequency for which the lift is maximized. It is interesting to note that while the
frequency at which the maximum lift increment occurs decreases slightly as αM increases
(in agreement with the slight decrease in natural vortex shedding frequency), the frequency
giving maximum lift-to-drag ratio increases with αM . Indeed, for high αM it seems that the
maximum lift-to-drag ratio typically occurs between the peaks in lift and drag located at
the vortex shedding frequency and its first harmonic, where there is a local lift minimum,
and thus also a slightly more substantial drag minimum.

Beyond αc, the interactions between the pitching and vortex shedding frequencies can
lead to complex frequency spectra in both the forces (as seen in Figure 4.10) and wakes
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(Figures 4.16-4.17). There are numerous methods by which one can analyze frequency con-
tent, and here we show how DMD can clearly distinguish between cases where all frequencies
present are harmonics of the pitching frequency, and where there is a richer range of frequency
content, as well as giving a sense of the relative amplitude of each frequency component of
the wake.

There has been much effort in the past to understand, model, and predict unsteady
aerodynamic forces, moments, pressures, and indeed many other quantities of interest for
moving airfoils. Particularly in the case of separated flow, these dynamics are often highly
nonlinear. One might seek to get around this by linearizing about a certain fixed point (say
an angle of attack), in the hope that a linear model would at least be locally accurate. The
findings presented here suggest that such an approach might be problematic, since a linear
model (e.g., a transfer function) can only predict the magnitude and phase of a response
to sinusoidal forcing, but not any change in the mean value. Thus, such effects must be
accounted for separately, or a more complex modeling framework used.
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Chapter 5

Nonlinear reduced-order models of
fluids systems using extended
dynamic mode decomposition

Data-driven approximations to the Koopman operator have much potential for capturing and
illuminating the dynamics exhibited by the Navier-Stokes equations. In this chapter, we show
that the elements of an identified finite dimensional approximation to the Koopman operator
can be utilized for the construction of accurate nonlinear reduced-order models. We present
a modification to the extended dynamic mode decomposition (EDMD) algorithm through
the inclusion of a regularization parameter, which we find often gives more accurate models.
The performance of models identified using our proposed method are compared to those
found by performing a Galerkin projection of the governing equations onto proper orthogonal
decomposition modes, for the canonical case of two-dimensional flow past a circular cylinder.
We demonstrate that identifying nonlinear models using EDMD is particularly advantageous
when the data available is noisy, or is only available within certain regions of space or time.

5.1 Introduction

A much-desired goal in fluid mechanics, and indeed many other fields, is to obtain simple
models that are capable of predicting the behavior of seemingly complex systems. Low-
dimensional models can not only improve our fundamental understanding of such systems,
but are often required for purpose of efficient and accurate prediction, estimation and control.
A brief review of the literature pertaining to a number of such approaches was given in
Section 1.2, with relevant algorithms described in Section 2.1 We once more highlight the
difference between approaches where the resulting reduced-order dynamics are obtained from
a reduction of the full partial differential equations, as in Galerkin projection (GP), and those
where the dynamics are inferred only from data, as in DMD or ERA.

In this chapter, we will propose a method for obtaining nonlinear reduced-order models
that is based upon a recently-developed extension of DMD [172], referred to as extended
DMD (EDMD), in which nonlinearities can be accounted for by an appropriate choice of
observables. In particular, we will explore how this algorithm can be tailored to identify
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nonlinear models that have the same (or similar) form as those that would be obtained
through projection of the governing equations onto a low-dimensional basis obtained from
data. In this sense, the nonlinear models that we identify in this work will come from
EDMD, but will have similar form to those given by GP. We note that this is a different
approach to using dominant DMD modes as an alternative to POD modes for a basis for
projection [155]. A further recently-proposed approach uses DMD to efficiently approximate
just the nonlinear component of the dynamics [4], as an alternative to the discrete empirical
interpolation method [15, 27].

We lastly note that several previous studies have considered this dichotomy between us-
ing projection onto governing equations, or using time-resolved data, to identify models,
most often for linear systems. For example, Illingworth et al. [76] considers models identified
directly using ERA and models identified by considering each of the pertinent physical pro-
cesses individually, while Hervé et al. [71] discusses the use of both GP models and ARMAX
system identification methods with physically motivated terms to model (and subsequently
control) flow over a backwards-facing step.

Section 5.2 describes EDMD, which is an extension of the DMD algorithm described
in Section 2.1.3. We also introduce a regularized variant of this algorithm, which will be
utilized for system identification purposes. Models will be identified and tested in Section
5.3 on data obtained from numerical simulations of flow past a circular cylinder, the results
of which are discussed in further detail in Section 5.4.

5.2 Reduced-order models using extended dynamic

mode decomposition

This section introduces the proposed modeling approach. Section 5.2.1 discusses the EDMD
extension and how it may be used to obtain nonlinear models, while Section 5.2.2 gives a
regularized modification to EDMD that we find to be advantageous when using EDMD for
such purposes. When viewed as a method for reduced-order modeling, the main difference
between the approach discussed here and that used for GP (see Section 2.1.2) is in how the
temporal dynamics are identified: GP uses the governing equations, whereas DMD/EDMD
uses only data to identify dynamics.

5.2.1 Extended dynamic mode decomposition and nonlinear mod-
els

A fundamental limitation to models extracted from DMD is their linearity, which can make
them entirely unable to model fundamentally nonlinear features that arise in fluid flows. In
the context of DMD being an approximation of the Koopman operator (see Section 2.1.3),
this limitation amounts to Koopman eigenfunctions not lying within the span of the data.
Continuing from the description of DMD in Section 2.1.3, rather than applying the DMD
algorithm directly to the data y, we may define a set of observables ψ(y) (where ψ : Rn → Rk

for some k) that span a space more conducive to approximating the true dynamics. Explicitly,
we may proceed with the same DMD procedure described in Section 2.1.3, but take the
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columns of the matrices Y and Y # to be pairs (ψ(yi), ψ(y#
i )). The EDMD matrix (which

can be viewed as a finite-dimensional approximation to the Koopman operator) is then given
by

A = Y #Y + =
[
ψ(y#

1 ) ψ(y#
2 ) · · ·ψ(y#

m)
]

[ψ(y1) ψ(y2) · · ·ψ(ym)]+ . (5.2.1)

While ψ(Y ) = U ∗rY gives an optimal transformation of the data from an energetic perspec-
tive (and is what Equation (2.1.7) represents in the EDMD framework), it might not be a
suitable transformation for correct identification of the dynamics. To this end, we use the
form of Galerkin projection models to guide an alternative transformation. Expressing the
POD coefficients as before by a = U ∗r y, we let

q = ψ(y) =

[
a

vec (a⊗ a)

]
. (5.2.2)

Here vec (a⊗ a) denotes a vector of all non-redundant quadratic couplings between POD
coefficients, i.e. (a1)2, a1a2, (a2)2, etc. If we keep r POD modes, then we have observables of
dimension k = r+r(r+1)/2, with the possible addition of an additional constant observable
to account for the mean of the data. We will not closely concern ourselves with how closely
we may approximate the true Koopman operator using such a choice of observables, but
will rather show that, in any case, the elements of the identified dynamics on this space of
observables may be used to construct a nonlinear model of the system dynamics. To this
end, we start by explicitly writing the identified dynamics using this approach by

a1

a2
...
ar

(a1)2

a1a2
...

(ar)
2


t+∆t

=



l11 l21 · · · lr1 q11
1 q12

1 · · · qrr1

l12 l22 · · · lr2 q11
2 q12

2 · · · qrr2
...

...
. . .

...
...

...
. . .

...
l1r l2r · · · lrr q11

r q12
r · · · qrrr

l111 l211 · · · lr11 q11
11 q12

11 · · · qrr11

l112 l212 · · · lr12 q11
12 q12

12 · · · qrr12
...

...
. . .

...
...

...
. . .

...
l1rr l2rr · · · lrrr q11

rr q12
rr · · · qrrrr





a1

a2
...
ar

(a1)2

a1a2
...

(ar)
2


t

. (5.2.3)

In this notation, the superscripts denote the given (linear or quadratic) term that is in-
fluencing the variable (i.e., POD coefficient, or quadratic monomial thereof) identified by
the subscripts. Focusing on a single POD coefficient (i.e., one of the first r rows of Equa-
tion 5.2.3), we have that

ak(t+ ∆t) =
r∑
i=1

likai(t) +
r∑

i,j=1
j≤i

qijk ai(t)aj(t), (5.2.4)

which is the same form as Equation (2.1.5), but in discrete-time. Thus, by taking the
first r rows of the A matrix obtained from performing EDMD with observables given by
Equation (5.2.2), we may obtain a system of nonlinear equations that can accurately model
the evolution of the POD coefficients of the system in discrete time.
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While we may expect that the first r rows of A give an accurate model for the evolution of
POD coefficients, in general we should not expect the same for the evolution of the quadratic
monomials of POD coefficients. This is because the equations for the evolution of these terms
should involve cubic terms, which are not spanned by our observables. Incidentally, this
suggests that using any basis of polynomial observables for approximating the Koopman
operator for the Navier-Stokes problems might be problematic. One possible alternative,
not explored in this work, is to use the Kernel variant of EDMD [173] with an appropriately
chosen kernel function that better spans the Koopman eigenfuctions.

5.2.2 A modification to DMD/EDMD

When in the least squares regime (i.e., when there are fewer observables than the number
of snapshot pairs), Equations (2.1.6) and (5.2.1) can give solutions with large entries in
A. Empirically, these entries can be significantly larger in magnitude than those expected,
say, from performing a Galerkin projection. It also appears that this “overfitting” can give
models that lack stability. To mitigate these observations, we propose a simple modification
to DMD/EDMD that penalizes the size of entries in A. Note that the same process can
be applied to both DMD and EDMD, whenever the data matrix Y has more columns than
rows. When this is the case, Equation (5.2.1) gives the solution to the minimization problem

A = argminM‖MY − Y #‖2
F . (5.2.5)

We may add a penalization on the size of the entries of A to formulate a joint least squares
problem

A = argminM

(
‖MY − Y #‖2

F + β2‖M‖2
F

)
, (5.2.6)

where β is a parameter that determines the extent to which large entries in M are penal-
ized. The element-wise nature of the Frobenius norm means that Equation (5.2.6) may be
rearranged to give

A = argminM

∥∥M [Y βI]−
[
Y # 0

]∥∥2

F
, (5.2.7)

where I and 0 are appropriately sized matrices. Note that this modification of DMD/EDMD
is essentially a form of Tikhonov regularization. Equation (5.2.7) has an explicit solution,
given by

A = Y # [Y βI]+ . (5.2.8)

We remark that this regularization is equivalent as adding to the data set pairs of snapshots
where each observable goes from some nonzero value β to 0 over a timestep of ∆t. It
should also be noted that Tikhonov regularization methods have been used previously as a
method of calibrating GP models [37], and have also been used for other system identification
techniques, such as finite impulse response models [83]. More generally, one can add a variety
of different forms of penalty terms to obtain a desired balance between competing objectives.
For example, in the context of EDMD, Williams et al. [174] uses a L1,2 minimization to obtain
what in our notation would be a solution with a small number of nonzero columns of A.
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Figure 5.1: Computational domain used for numerical simulation of flow past a circular
cylinder. Dashed lines represent the borders of each nested grid. The gray shading denotes
the region from which data was collected for modeling purposes

5.3 Example: flow past a circular cylinder

We test our proposed method using the much-studied example of 2D flow past a circular
cylinder. Beyond a critical Reynolds number of approximately 47 [117], the equilibrium
becomes unstable and the system will instead converge upon a limit cycle characterized by
periodic vortex shedding. We take data for Re = 60, with the initial condition close to the
unstable equilibrium. The data captures the initial growth of an instability near the unstable
equilibrium, through to convergence to the limit cycle. This is an example where regular
DMD will fail (in the sense of identifying an appropriate reduced-order model), since the
process (which is a Hopf bifurcation) is fundamentally nonlinear. In particular, beyond the
critical Reynolds number, the nonlinear terms must become non-negligible to balance the
growth of the unstable linear dynamics, leading to the observed limit cycle behavior.

We will explore the performance of both EDMD and GP models on this system for a
range of data, including that which is noisy and spatially truncated or sparse. The data was
obtained from direct numerical simulation using an immersed boundary projection method
[149, 36], which was described in more detail in Section 4.2. Selective frequency damping
[3] was used to obtain the unstable equilibrium solution. To focus on the transitional region
of the dynamics, the snapshots to be used were collected after first running the simulation
from the unstable equilibrium for 250D

U
time units. The simulations were performed on a

domain consisting of five nested grids, as shown in Figure 5.1. Each grid is uniform, with
the finest grid having a grid spacing of 0.02D in each direction, and each successively larger
grid having double the grid spacing of the previous. The full domain has size 256D × 64D.
This large domain was chosen so as to resolve both the flowfield on the region of the grid
used for analysis (shown in gray), and the forces incident on the cylinder, to a high degree
of accuracy.

This comparison between the performance of EDMD and GP models begins in a scenario
where both models work relatively well: where clean data encompassing a large spatial
domain is available across a window of time spanning all of the distinct dynamic regimes.
While we find that GP models can indeed outperform the EDMD models that we identify
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in favorable conditions, we will proceed to demonstrate that in the cases where the data is
noisy or restricted, EDMD models can perform substantially better.

5.3.1 Data arrangement and selection

The data to be used was taken from the gray shaded region in Figure 5.1. As mentioned
previously, we evolve the system from the equilibrium for some time (250D

U
) before collecting

data, then collect 1000 snapshots separated by a uniform timestep ∆t = 0.2D
U

. This time
interval spans the growth of the instability from near the equilibrium, through to the conver-
gence of the flow to a periodic limit cycle. We note that Galerkin projection in particular is
quite sensitive to the resolution and extent of data chosen. For this reason, we do not claim
that the GP models that we identify are the most accurate that can be obtained for such a
system, but still serve as a basis for comparison to the EDMD models that are identified for
the same choice of data.

The EDMD procedure requires a selection of observables. Despite narrowing down this
choice substantially by choosing to work with linear and quadratic monomials of POD coef-
ficients, there can still be some additional ambiguity that should be explicitly clarified. To
begin with, one must decide how whether to subtract the mean flow from the data before
applying POD. This step is almost always performed when performing POD, partly because
then any reconstruction of the flow using a linear combination of POD modes will automat-
ically satisfy the required boundary conditions [73]. Conversely, it is almost never done with
DMD; doing so can lead to an undesirable equivalence to taking a discrete Fourier transform
[28]. Furthermore, if one is to subtract a “mean”, for this flow one could conceivable take
this to be any of the mean of the limit cycle, the mean of the data, or even the unstable
equilibrium velocity field. To emphasize the fact that we are approaching this procedure
from a data-driven perspective, and to be consistent with the subspace used for both pro-
cedures, here we first subtract the mean of the data before performing POD (for both GP
and EDMD models). Note that this is different to what is typically done when constructing
GP models for such a system, where the mean is most typically taken to be the mean of the
limit cycle [e.g., 106]. The mean and POD modes identified in this manner are shown in
Figure 5.2, with their relative energy content shown in Figure 5.3.

We further note that subtracting the mean of the velocity field before performing POD
does not result in all of the observables used for EDMD having zero mean, as (ai)

2 is
always non-negative. When performing EDMD, we can also choose whether to explicitly
include this mean mode as an observable, which amounts to allowing for a constant term in
Equation 5.2.3. We will most often choose to do this, though will discuss this in more detail
later. On top of all of these details, the regularization introduced in Section 5.2.2 introduces
an additional parameter whose value must be set, which we will discuss in the next section.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 5.2: Contours of streamwise velocity for the (a) mean mode and (b)-(j) first nine
POD modes, along with the corresponding time-varying coefficients of the POD modes iden-
tified from data collected as the flow transitions from near the unstable equilibrium to the
limit cycle
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(a) (b)

Figure 5.3: (a) Relative and (b) cumulative energy content of the first 30 POD modes, for
the same data used in Figure 5.2
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Figure 5.4: Performance of 3rd order GP and EDMD nonlinear models in predicting the
evolution of POD coefficients for transitional flow past a cylinder, showing (a) time evolution
and (b) phase portrait plots. The Galerkin and EDMD phase portrait models are allowed
to evolve for 800 dimensionless time units to confirm limit cycle behavior

5.3.2 Comparison between EDMD and GP models, regulariza-
tion, and model order dependence

This section analyzes the performance of both EDMD and GP models of a range of orders
in modeling the dynamics of the flow past a cylinder. We begin with some sample results.
Figure 5.4 shows the performance of both Galerkin projection, and the EDMD approach
outlined in Section 5.2, in identifying a model that can predict the evolution of the first
three POD coefficients. For this system, the dynamics of these coefficients are known to
evolve on a paraboloid [106]. We observe that the EDMD model is more accurate than
the GP model in terms of obtaining both the correct transient and limit cycle behavior.
Figure 5.5 shows that the same findings hold when the dimension of the models increase to
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Figure 5.5: Performance of 9th order GP and EDMD nonlinear models in predicting the
time-evolution of POD coefficients for transitional flow past a cylinder, showing (a) time
evolution and (b) phase portrait plots. Only the first 5 modes are shown on the left, while
the phase protein shows the projection onto the first 3 modes. The Galerkin and eEMD
phase portrait models are allowed to evolve for 800 dimensionless time units to confirm limit
cycle behavior

9. We keep β at a fixed value of 0.5 for both of these examples, which will be the default
unless otherwise mentioned.

In order to study more systematically the accuracy of models of various order, we compare
in Figure 5.6 the identified limit cycle amplitude (defined based on the coefficient of the first
POD mode) and frequency for models of order 3–28. As well as showing results for EDMD
models identified with β = 0.5, we additionally show the performance of models identified
with an optimized value of β, where the optimal is found based on a direct search over the
range 0 ≤ β ≤ 2. This comparison shows that the results are relatively insensitive to β, and
that the one initially chosen value tends to perform reasonably well across all model orders.
It would be possible, however, to develop more sophisticated methods to tune β using the
data available. To do this, one could apply standard extrema-seeking algorithms to find a
value of β that allows the identified model to best match the data, by some chosen metric.
One could also explore the possibility of replacing the βI term in Equation 5.2.7 with a
diagonal matrix with different entries, though this then loses the direct connection to the
joint least squares problem formulated in Equation 5.2.6.

In general, EDMD models are mode accurate than GP models at predicting the limit
cycle characteristics for models of order less than 8, while GP models are more accurate for
high order, except for models of order 14, where the GP model performs uncharacteristically
poorly. While for this simple system the high order models are not required to obtain an
accurate representation of the system dynamics, it is important to verify that the proposed
algorithm remains capable of identifying stable and accurate models as the model order
increases, in order to be of use for more complex fluids systems.
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Figure 5.6: Prediction of the limit cycle amplitude (a) and frequency (b) of the first POD
mode from both EDMD and GP models

5.3.3 Model prediction for untrained conditions

An important feature of any identified model is the ability to predict the behavior of the
system along trajectories in phase space that are not contained in the data used for model
identification. This ensures the practical utility of such a model, and increases confidence that
the “correct” system dynamics are being captured. We show in Figure 5.7 the performance of
3rd order EDMD and GP models in predicting the evolution of the first 3 POD coefficients,
starting at the mean of the limit cycle rather than near the unstable equillibrium. We observe
that the GP model more accurately captures the initial transient as the flow approaches the
slow manifold (paraboloid), though as before the EDMD model is more accurate in predicting
the subsequent approach to the limit cycle. Note that there are two main reasons why this
model might be somewhat inaccurate in the untrained region: not only are the dynamics
in this region untrained, but the POD basis is additionally no longer energetically optimal
(in terms of energy) for this dataset, so low order models in particular might not capture
features that are both energetically and dynamically important.

5.3.4 Noisy data

An important quality for any modeling procedure to possess is a robustness to noisy data,
such as that which might be acquired from experiments. In Figure 5.8, we show the results
of identifying 3rd order models to the same data as considered previously, but corrupted by
Gaussian white noise, with magnitude of 5% of the freestream velocity. It is observed that
the EDMD model retains it’s accuracy, whereas the GP model captures none of the observed
features of the system. This result is interesting, since the noise-corrupted data is actually
being used to identify the dynamics in the case of EDMD, whereas GP only uses the data to
obtain a spatial basis. As well as showing the robustness of the EDMD modeling procedure,
these results highlight the sensitivity of GP to this basis selection.
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Figure 5.7: Performance of 3rd order GP and EDMD nonlinear models in predicting the
evolution of POD coefficients for transitional flow past a cylinder, showing (a) time evolution
and (b) phase portrait plots. The initial condition is taken to be the mean of the limit cycle
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Figure 5.8: Performance of 3rd order GP and EDMD nonlinear models in predicting the
evolution of POD coefficients for transitional flow past a cylinder, showing (a) time evolution
and (b) phase portrait plots. The Galerkin and EDMD phase portrait models are identified
from data that is corrupted by noise of standard deviation σ = 0.05U . β = 0.5
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Figure 5.9: Performance of 3rd order GP and EDMD nonlinear models in predicting the
evolution of POD coefficients for transitional flow past a cylinder, showing (a) time evolution
and (b) phase portrait plots. Only data contained from inside the square shown in (c) is
used for model identification. The EDMD models were obtained with β = 0.1

5.3.5 Data from a restricted spatial domain

Another potential drawback of GP models is that they require spatially resolved data across
a wide domain, ideally such that the boundary conditions are constant. In Figure 5.9, we
attempt to obtain reduced-order models using a small portion of the domain. Unlike GP,
EDMD is still able to produce an accurate model with such a restricted data set. Here, we
are only using the data collected from this limited domain to compute POD, so the modes
that are computed will differ somewhat from the modes shown in Figure 5.2. The fact that
EDMD models in this case retain their accuracy for both noisy data and restricted spatial
domains suggests that this modeling framework could be particularly useful for experimental
data, which often possesses both limitations.

An advantage of EDMD is that it does not require spatially resolved data, which is
required for the computation of spatial derivatives in GP. In Figure 5.10, we show that EDMD
can produce an accurate ROM with only data from a small number of sparse, randomly
chosen points. This gives cause for optimism that the method could additionally be used in
experiments for which only point sensor measurements are available, rather than the spatially
resolved flowfields, which can be more costly and time consuming to obtain. While the
selection of the sensor locations in this case was random, we observed empirically that best
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Figure 5.10: Performance of 3rd order GP and EDMD nonlinear models in predicting the
evolution of POD coefficients for transitional flow past a cylinder, showing (a) time evolution
and (b) phase portrait plots. Only data sampled at green circles shown in (c) are used for
model identification

results were obtained when the sensor locations were spread across different spatial regions
of the domain. When using only a small number of point sensors, we found that better
models were obtained when we did not include a constant term in our set of observables.
We additionally did not use any form of regularization.

5.3.6 Data from limited temporal sampling

In this section, we explore the ability of EDMD and GP models in predicting the evolution of
a system using only a small amount of temporal data. As in Section 5.3.5, we compute POD
modes (including the mean modes) from the subset of data that is used. Note in particular
that this means that the POD basis that we use as our state space will be different to those
identified from the full dataset. In Figure 5.11, we show the results of applying both EDMD
and GP when using only the first 40%, 20%, and 10% of the time series of data used for the
previous sections. We find that, even when the data available is significantly reduced and has
clearly not reached the limit cycle, the EDMD models still accurately predict the presence
(and to some extent, the location) of the limit cycle. This is in contract to the GP model,
where the limited data available renders the model qualitatively incorrect for all amounts of
data used. Note that the results in this section did not use any form of regularization.

77



(a)

0 50 100 150 200

a
1

-2

0

2

Data used

0 50 100 150 200

a
2

-2

0

2

Time

0 50 100 150 200

a
3

-2

0

2

(b)

2

1

a
1

0

-1

-2-2

-1

0

a
2

1

1.2

1

0.8

0.6

0.4

0.2

0

-0.2
2

a
3

Data
Galerkin projection model
Extended DMD model

(c)

0 50 100 150 200

a
1

-2

0

2

Data used

0 50 100 150 200

a
2

-2

0

2

Time

0 50 100 150 200

a
3

-2

0

2

(d)

2

1

a
1

0

-1

-2-2

-1

0

a
2

1

-0.2

1.2

1

0.8

0.6

0.4

0.2

0

2

a
3

Data
Galerkin projection model
Extended DMD model

(e)

0 50 100 150 200

a
1

-2

0

2

Data used

0 50 100 150 200

a
2

-2

0

2

Time

0 50 100 150 200

a
3

-2

0

2

(f)

2

1

a
1

0

-1

-2-2

-1

0

a
2

1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

2

a
3

Data
Galerkin projection model
Extended DMD model

Figure 5.11: Performance of 3rd order GP and eDMD nonlinear models in predicting the
evolution of POD coefficients for transitional flow past a cylinder, showing (a,c,e) time
evolution and (b,d,f) phase portrait plots. Models are identified using only the first 400
(top), 200 (center) and 100 (bottom) snapshots of data, as shown
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5.4 Discussion and conclusions

This chapter has introduced a method to extract low-order, nonlinear models from time-
resolved data, by utilizing an extension of the DMD algorithm. Through the use of a
variety of different types of data from a simple example of a nonlinear fluids system, we
have attempted to evaluate the relative performance of this method in across a range of
circumstances.

We believe that the advantages of the present approach are numerous. We have demon-
strated that this data-driven approach is more robust to noisy data, and exhibits greater
flexibility in terms of the spatial extent and resolution of data for which the method pro-
duces accurate models. We therefore hold strong hopes that this method will be useful in
particular to model experimental data, which often contains such limitations.

Beyond this, the present method requires no explicit knowledge of the underlying govern-
ing equations, though here knowing at least the form of the nonlinearity was advantageous.
In particular, note that the correct form of the observables is most likely important when
the nonlinear model is used to extrapolate a small amount of data, and ultimately correctly
predict the limit cycle in Section 5.3.6. In other words, if the correct form of the nonlinearity
is known, then even a small sample of data can be sufficient to identify a model that is at
least qualitatively accurate. This finding has important implications for more complicated
systems, where sampling across all possible regimes and/or locations in phase space may be
infeasible.

In Section 5.3.1, it was observed that EDMD models are particularly accurate when
the dimension of the model is small, in comparison to both GP models of the same order,
and EDMD models of higher order. The fact that GP models are less accurate for lower
model orders is unsurprising, since (without any additional modification) they have no way
of accounting for the effect of unmodeled modes. EDMD models, on the other hand, can
at least account for the time-averaged effect of modes that are not explicitly included as
variables. Note, however, that unmodeled modes with highly intermittent dynamics could
be impossible to accurately account for. As the model order increases, GP models should be
expected to become more accurate, as the effect of unmodeled modes reduces. Conversely,
we find that EDMD models can become less accurate and robust, possibly due to the rapid
increase in the number of parameters requiring to be fit. Note that a phenomena has been
observed previously in polynomial identification [112].

The mathematical machinery behind DMD and it’s variants involves a least squares (or
minimum norm, in the underconstrained case) fit of data. In this sense, the method pre-
sented in this work shares strong similarities with a number of other methods that have been
used to identify nonlinear systems in fluids, such as polynomial identification [112], mod-
ified quadratic stochastic estimation [104], Volterra system identification [12], and linear
parameter varying system identification [70], which all employ a similar type of least-squares
coefficient-fitting methodology in their respective algorithms. The recently developed SINDy
[25] (sparse identification of nonlinear dynamics) also employs a similar basic framework,
though with an additional sparsity-promoting algorithm to decide upon the appropriate ob-
servables from a larger library, which is particularly useful when the form of the nonlinearity
is unknown. In this sense, we do not claim that the algorithm we use is exceptionally novel,
but hope that this exposition, both in terms of the connections of DMD and Koopman
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theory, and in highlighting a number of situations where such a modeling approach might
be advantageous or necessary. On the former point, one could hope that EDMD, with the
correct choice of observables, can allow for accurate prediction not just of Koopman eigenval-
ues and eigenmodes, but also Koopman eigenfunctions. There is indeed strong evidence to
suggest that identified Koopman eigenfunctions can indeed give an accurate characterization
of the dynamics of the cylinder wake near the limit cycle [8]. We do not make any claims
that we have achieved such convergence here over the full transient regime, but rather show
that the results can still be useful from a practical, model-reduction standpoint.

As well as pursuing this direction, further work could seek to utilize such models for
purposes of flow control. Preliminary investigations also suggest that such EDMD-based
models can be effective at identifying stability properties, such as eigenvalues of the linearized
system at equilibrium points.
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Chapter 6

Characterizing and correcting for the
effect of sensor noise in the dynamic
mode decomposition

Dynamic mode decomposition (DMD) provides a practical means of extracting insightful
dynamical information from fluids datasets. Like any data processing technique, DMD’s
usefulness is limited by its ability to extract real and accurate dynamical features from
noise-corrupted data. In this chapter, we show analytically that DMD is biased to sensor
noise, and quantify how this bias depends on the size and noise level of the data. We present
three modifications to DMD that can be used to remove this bias: (i) a direct correction
of the identified bias using known noise properties, (ii) combining the results of performing
DMD forwards and backwards in time, and (iii) a total least-squares-inspired algorithm.
We discuss the relative merits of each algorithm, and demonstrate the performance of these
modifications on a range of synthetic, numerical, and experimental datasets. We further
compare our modified DMD algorithms with other variants proposed in recent literature.

6.1 Introduction

One of the major advantages of DMD over techniques such as global stability analysis, for
example, is that it can be applied directly to data, without the need for the knowledge or
construction of the system matrix, which is typically not available for experiments [134].
For this reason, analysis of the sensitivity of DMD to the type of noise typically found in
experimental results is of particular importance. The effects of noise on the accuracy of the
DMD procedure was systematically investigated in the empirical study by Duke et al. [48],
for the case of a synthetic waveform inspired by canonical periodic shear flow instabilities.
More recently, Pan et al. [110] have extended this type of analysis to more complex data
with multiple frequencies, as might be found in typical fluids systems.

This chapter builds upon these previous studies by analytically deriving an expression
that explicitly shows how DMD should be affected by noise, for the case where the noise
is assumed to be sensor noise that is uncorrelated with the dynamics of the system. Our
analysis complements the “noise-robust” DMD formulation in Hemati et al. [69] by explicitly
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quantifying the influence of noise on DMD. Further, while our analysis is consistent with the
total least-squares formulation in Hemati et al. [69], we use the insights gained from our anal-
ysis to develop alternative techniques to total least-squares DMD that may be preferable in
certain applications. Ultimately, the availability of multiple “noise-aware” DMD algorithms
allows the user to approach dynamical analysis of noisy data from multiple angles, thus gar-
nering more confidence in the computations. We note that the case of process noise, where
noise can interact with the dynamics of the system, is also the subject of recent work [9].

The analysis will use a recent characterization of DMD [161], described in Section 2.1.3,
which, along with other advantages, highlights the connection of DMD to related techniques
that are used in other communities for the extraction of dynamical information from data.
Many linear system identification techniques are closely related in that they are based around
singular value decomposition of a data matrix; aside from DMD there is the eigensystem
realization algorithm [79] (see Section 2.1.4) and balanced proper orthogonal decomposition
[122], for example. Indeed, the origin of such an approach seems to date back to the work
of Ho and Kalman [72].

In this chapter, we first show that the dominant effect of noise on DMD is often determin-
istic. This not only allows us to accurately predict its effect, but also allows for a correction
to be implemented to recover the noise-free dynamics. As well as directly correcting for
the noise, we present two other modifications of DMD, that both are able to remove this
bias without needing to know the noise characteristics. Section 6.2 develops the theory that
characterizes the effect of noise on DMD, which subsequently motivates the formulation of
our modified algorithms, which we term noise-corrected DMD (ncDMD), forward-backward
DMD (fbDMD) and total least-squares DMD (tlsDMD). In Section 6.3, we analyze the per-
formance of these algorithms on a number of synthetic data sets, which are corrupted by
Gaussian white noise. We additionally investigate how the algorithms perform on data with
both sensor and process noise. In Section 6.4, we use numerical and experimental data from
flow past a cylinder undergoing periodic vortex shedding, to demonstrate the utility of the
proposed modifications of DMD for real fluids data.

6.2 Characterizing noise in dynamic mode decomposi-

tion

This section details the methodology that is used to analyze the effect of noise in DMD. The
exposition is designed to follow on from the description of DMD given in Section 2.1.3. The
effect of sensor noise in the data on the results of DMD is studied in Section 6.2.1, which in
particular shows that DMD is biased to sensor noise. Sections 6.2.2–6.2.4 formulate three
different modifications of the DMD algorithm that are designed to remove this bias.

6.2.1 Sensor noise in DMD

In this work we use the term sensor noise to describe additive noise that affects only our
measurements of a given system, and does not interact with the true dynamics. If we have
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a discrete-time dynamical system

x(t+ ∆t) = F [x(t)],

then we assume that our measurements take the form

xm(t) = x(t) + n(t),

where n(t) is a random noise vector. For the purposes of this paper, we will take each
component of n(t) to be independent and normally distributed with zero mean and a given
variance. With Y and Y # as described in Section 2.1.3, suppose that we measure Ym =
Y + N and Y #

m = Y # + N#, where N and N# are random matrices of sensor noise.
Note that some (or most) columns of random data in N might also be in N#, but shifted
to a different column. We will assume that the noise is independent of the true data, and
is independent in both space and time, so that each element of a given noise matrix is a
random variable taken from a fixed zero-mean normal distribution. From Equation (2.1.7),
the measured DMD matrix Ãm can be computed from

Ãm = Ỹ #
m Ỹ +

m = (Ỹ # + Ñ#)(Ỹ + Ñ )+

= (Ỹ # + Ñ#)(Ỹ + Ñ )∗[(Ỹ + Ñ )(Ỹ + Ñ )∗]+

= (Ỹ #Ỹ ∗ + Ñ#Ỹ ∗ + Ỹ #Ñ ∗ + Ñ#Ñ ∗)

×
[
Ỹ Ỹ ∗ + ÑỸ ∗ + Ỹ Ñ ∗ + ÑÑ ∗

]+

, (6.2.1)

where we have used the identity M+ = M ∗(MM ∗)+. Note again that here the ∼ notation
means that the data is expressed in the POD basis obtained from the noisy data. We perform
our analysis in this POD space rather than with the original data to allow for truncation of
low energy modes, and because the computation of the pseudoinverse Y + can be prohibitive
for large datasets. We expect that the presence of noise should result in some error in the
computation of Ãm (in comparison to the noise free matrix Ã) and thus some amount of
error in the computed DMD eigenvalues and modes. Since elements of Ãm are statistical
quantities dependent on the noise, it will make sense to compute statistical properties of
the matrix. We begin by computing E[Ãm], the expected value of the computed DMD
matrix. Provided that we have truncated any POD modes with zero energy, Ỹ Ỹ ∗ should
be invertible. If the noise terms are sufficiently small, then we can make use of the matrix
perturbed inverse expansion (M + P )−1 = M−1 −M−1PM−1 + . . . , where higher order
terms will be small for M � P . Equation 6.2.1 then becomes

Ãm = (Ỹ #Ỹ ∗ + Ñ#Ỹ ∗ + Ỹ #Ñ ∗ + Ñ#Ñ ∗)(Ỹ Ỹ ∗)−1

×
[
I − (ÑỸ ∗ + Ỹ Ñ ∗ + ÑÑ ∗)(Ỹ Ỹ ∗)−1 + . . .

]
. (6.2.2)

Taking the expected value of Equation (6.2.2), we may classify the terms into three
categories: a deterministic terms that does not involve Ñ or Ñ# (which ends up being
Ã), terms involving one or three noise matrices, which will have expected values of 0 (e.g.,
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Ñ#Ỹ ∗(Ỹ Ỹ ∗)−1), and terms which involve two or four noise matrices. It is terms this latter
category that may have non-zero expected values, and thus bias the result of applying DMD
to noisy data. Discarding terms containing a single noise matrix, and additionally discarding
higher order terms from the expansion, we have

E(Ãm) = Ã(I − E(ÑÑ ∗)(Ỹ Ỹ ∗)−1) + E(Ñ#Ỹ +Ñ )Ỹ +

+ E(Ñ#Ỹ +Ỹ Ñ ∗)(Ỹ Ỹ ∗)−1 + Ỹ #E(Ñ ∗(Ỹ Ỹ ∗)−1Ñ )Ỹ +

+ Ỹ #E(Ñ ∗(Ỹ Ỹ ∗)−1Ỹ Ñ ∗(Ỹ Ỹ ∗)−1)

+ E
[
Ñ#Ñ ∗(Ỹ Ỹ ∗)−1(I − ÑÑ ∗(Ỹ Ỹ ∗)−1)

]
, (6.2.3)

where we have noted that Ỹ #Ỹ ∗(Ỹ Ỹ ∗)−1 = Ỹ #Ỹ + = Ã. Assuming that the noise is
sufficiently small compared with the true data, we can further neglect the term involving four
noise matrices. The largest of the remaining terms will be that which contains the product
ÑÑ ∗. The remaining terms do not necessarily have zero mean, but for the purposes of
this investigation will be neglected. Our results will demonstrate that this simplification is
justifiable. This reduces Equation (6.2.3) to the following expression, relating the identified
and true DMD matrices:

E(Ãm) = Ã(I − E(ÑÑ ∗)(Ỹ Ỹ ∗)−1). (6.2.4)

It might seem surprising that Equation (6.2.4) contains N , but not N#. The reason for this
will become apparent in Section 6.2.4, where casting DMD in an optimization framework
shows that the standard algorithm is optimal only when assuming that all of the noise is in
Y #, but not Y . From a mathematical point of view, it is because the expression Ã = Ỹ #Ỹ +

is linear in Ỹ # but not in Ỹ , which is why perturbations to Ỹ do not have to propagate
through the equation in an unbiased manner. Note that the same analysis can be performed
without transforming into POD space (i.e., without the ·̃ notation), with the analogous
expression to Equation (6.2.4) being

E(Am) = A(I − E(NN ∗)(Y Y ∗)−1), (6.2.5)

subject to Y Y ∗ being invertible. For systems where the size of each snapshot is larger than
the number of snapshots (i.e, n > m, which is typical for fluids systems), Y Y ∗ will not be
invertible, thus motivating our choice to work in POD space. Moreover, one might want
the option to truncate all but a certain number of POD modes, in order to obtain a low-
dimensional model for the dominant system dynamics. Up until this point, we have not made
a distinction between the POD modes of the clean data, Y , and the noisy measured data,
Ym, with the latter typically being all that we have access to. This issue will be explicitly
addressed in Section 6.2.2.

Equation (6.2.4) shows that DMD is biased to sensor noise. In practice, the importance
of this finding will depend on how the magnitude of this bias compares to the random
component of error, that will fluctuate with different samples of random noise. Figure 6.1
shows an illustration of how bias and random components of error contribute to the total
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Figure 6.1: Illustrative diagram showing how the error in estimation of a given quantity can
be decomposed into bias error (being the difference between the true and expected value
of the identified quantity), and random error (representing the fluctuation in the estimated
quantity between different noise realizations)

error in the estimation of some quantity from noisy data. The appendix to this chapter
(Section 6.6) provides scaling arguments that suggest that the bias will be the dominant
component of error in DMD whenever m1/2SNR > n1/2, where SNR is the signal-to-noise
ratio. When this is the case, it would be particularly advantageous if one had access to a
bias-free alternative to DMD. The remainder of this section will present a number of such
alternatives.

6.2.2 Direct correction of sensor noise bias in DMD

Referring back to Equation (6.2.4), we can form a bias-free estimate of the true DMD matrix
Ã via

Ã ≈ Ãm(I − E(ÑÑ ∗)(Ỹ Ỹ ∗)−1)−1. (6.2.6)

Making this modification in practice requires an accurate estimate of both the noise co-
variance, E(ÑÑ ∗), and the true data covariance, Ỹ Ỹ ∗, in POD space. For noise that is
sufficiently small, we can utilize the approximation

Ỹ Ỹ ∗ = U ∗Y Y ∗U ≈ U ∗mYmY
∗
mUm = Σ2

m, (6.2.7)

where UmΣmV
∗
m is the singular value decomposition of the noisy data, Ym. This allows for

us to express the bias of DMD in terms of quantities that are measurable from noisy data.
The assumption that Y Y ∗ = (Ym − N )(Ym − N )∗ ≈ YmY

∗
m can be further refined by

retaining the NN ∗ term, but for small noise this higher order term will typically be small
enough to neglect after being inserted into Equation (6.2.6). The assumption that U ≈ Um

will largely be justified by means of results that show the utility of this analysis. Analyzing
the precise relationship between U and Um in more detail is beyond the scope of this work,
and is indeed an active area of research. We direct the interested reader to relevant results
in perturbed SVD’s [147, 148, 10], random inner product matrices [29, 151], and POD-type
operations on noisy data [52, 142, 181].
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Assuming that the noise is uniform as well as spatially and temporally independent,
then E(ÑÑ ∗) = E(U ∗NN ∗U) = U ∗mσ2

NU = mσ2
NI, where σ2

N is the variance of each
independent component of the noise matrix. With this assumption, and the approximation
given in Equation (6.2.7), Equation (6.2.6) becomes

Ã ≈ Ãm(I −mσ2
NΣ−2

m )−1. (6.2.8)

If the noise is sufficiently small, then a perturbed inverse approximation gives

Ã ≈ Ãm(I +mσ2
NΣ−2

m ). (6.2.9)

We thus have derived a correction to the bias that is present in the original DMD matrix
Am due to the effect of sensor noise. We note that this approximation relies on an accurate
knowledge of the noise covariance matrix. There are numerous means to estimate noise
properties from data, see Pyatykh et al. [118], for example. The approximations used in
deriving this expression also rely on the magnitude of the noise being smaller than that of
the true data within each non-truncated POD mode. We now state explicitly the algorithm
by which we can correct for the effect of sensor noise in the DMD algorithm, which we refer
to as noise-corrected DMD, or ncDMD:

Algorithm 3 (Noise-corrected DMD (ncDMD)).

1. Compute Ãm from the measured data as per steps 1–3 of Algorithm 1

2. Compute the approximation of Ã from Equation (6.2.8)

3. Compute the DMD eigenvalues and modes via steps 4–5 of Algorithm 1, using the
bias-free estimate of Ã.

As was also noted in Section 6.2.1, we could have performed all of the above analysis
without first projecting onto the space of POD coefficients, which gives us the following as
analogous to Equations 6.2.8 and (6.2.9) respectively, subject to the appropriate inverses
existing:

A ≈ Am(I −mσ2
N(YmY

∗
m)−1)−1 ≈ Am(I +mσ2

N(YmY
∗
m)−1). (6.2.10)

While this approach might be computationally prohibitive for many applications of DMD
(since it requires inverting large n× n matrices), it could in theory be more accurate, since
it does not rely on any assumption that the POD modes for the measured and true data are
sufficiently close to each other. Note again that Y Y ∗ can only be invertible if m > n, as
otherwise it cannot be full rank.

6.2.3 Forward-backward DMD

If we were to swap the data in Y and Y #, then (for suitably well behaved data) we should
expect to identify the inverse dynamical system, with state propagation matrix Bm (or B̃m

in POD space), which approximates the true dynamics B (and B̃). Note that it is not guar-
anteed that the dynamics of the original system are invertible, but this assumption should
not be too restrictive for the majority of physical systems under consideration (particularly
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after projection onto an appropriate POD subspace). It is argued in Section 6.6 that sensor
noise has the effect of shifting the computed DMD eigenvalues to appear to be more stable
than they actually are (i.e., moving them further inside the unit circle). Since our analysis
was independent of the nature of the data, we should expect the same effect to be present
for the computation of the inverse system. However, if B̃ is invertible, then we should have
B̃ = Ã−1, meaning that we should be able to compute an estimate of the forward-time
propagation matrix using backward-time DMD, via Ãback

m = B̃−1
m . However, given that the

eigenvalues of B̃m should have their growth rates underestimated, those of the eigenvalues
of Ãback

m will be overestimated. Specifically, from consideration of Equation (6.2.4), we have

E(B̃m) ≈ B̃
(
I − E(ÑÑ ∗)(Ỹ Ỹ ∗)−1

)
,

and so

Ãback
m ≈

(
I − E(ÑÑ ∗)(Ỹ Ỹ ∗)−1

)−1

Ã, (6.2.11)

where we are using the fact that the noise and POD energy components are the same for
forward- and backward-DMD. We can then combine estimates of the dynamics from forward-
and backward-time DMD to obtain

ÃmÃ
back
m = Ã

(
I − E(ÑÑ ∗)(Ỹ Ỹ ∗)−1

)(
I − E(ÑÑ ∗)(Ỹ Ỹ ∗)−1

)−1

Ã = Ã2. (6.2.12)

We thus have the estimate
Ã ≈ (ÃmÃ

back
m )1/2. (6.2.13)

Note that this square root will in general be non-unique, and thus determining which root is
the relevant solution could be nontrivial. One reasonable method, if there is any ambiguity,
is to take the square root which is closest to Ãm (or Ãback

m ). See Golub and Van Loan [59]
for a more detailed discussion of the computation of matrix square roots. As an aside, note
that if we assume that we know the equivalent continuous time matrices Ãc

m = log(Ãm)/∆t
and Ãc,back

m = log(Ãback
m )/∆t, then the equivalent of Equation (6.2.13) is

Ãc ≈ 1

2
(Ãc

m + Ãc,back
m ).

We are now in a position to formalize this algorithm, which we refer to as forward-backward
DMD or fbDMD.

Algorithm 4 (forward-backward DMD (fbDMD)).

1. Compute Ãm from the measured data as per steps 1–3 of Algorithm 1

2. Compute B̃m from the measured data as per steps 1–3 of Algorithm 1, where Y and
Y # are interchanged

3. Compute the approximation of Ã from Equation (6.2.13)

4. Compute the DMD eigenvalues and modes via steps 4–5 of Algorithm 1, using the
improved estimate of Ã from step 4.
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Note that in the case where most data snapshots are in both Y and Y # (e.g., for a
sequential time series of data) we can reduce the computational cost of steps 1–2 in Algorithm
4 by first taking the SVD of the entire data set, and then working in the space of the resulting
POD modes.

6.2.4 Total least-squares DMD

For the case where the number of snapshots, m, is greater than the size of each snapshot, n,
the DMD matrix A can be interpreted as the least-squares solution to the overdetermined
system AY = Y #. When n > m, then the solution for the now underdetermined system
is the minimum Frobenius norm solution to AY = Y #. In both cases, this solution is
A = Y #Y +. Note that it is possible to turn an under-determined system into an over-
determined system by truncating the number of POD modes used to less than m (truncating
to precisely m results in a unique solution when the data is full column rank, with no loss of
data). A least-squares solution of this form minimizes the error in Y #, but implicitly assumes
that there is no error in Y . This can explain why the bias in DMD (Equation (6.2.4)) is
dependent on Ñ , but not Ñ#. That is, in the least-squares case DMD can be viewed as
finding

A : Y # + E# = AY , minimizing ‖E#‖F ,

where ‖ · ‖F denotes the Frobenius norm of a matrix. When doing backwards-time DMD in
Section 6.2.3, we conversely assume that Y # is known exactly and minimize the error in Y .
That is, assuming the identified dynamics are invertible, we find

A : Y # = A(Y + E), minimizing ‖E‖F .

For this reason, combining forward- and backward-time DMD takes into account the error
in both Y and Y #. A more direct means of doing this is to use a single algorithm that finds
a least-squares solution for the error in both Y and Y #. It is possible to adapt standard
TLS algorithms [59] to a DMD setting, which we perform here. We seek

A : (Y # + E#) = A(Y + E), minimizing ‖E‖F , where E =

[
E
E#

]
.

The expressions Y # + E# and Y + E can be interpreted as Y #
m −N# and Ym −N . To

solve for this, we can rearrange the equation to obtain

[
A −I

] [ Y + E
Y # + E#

]
= 0. (6.2.14)

We would now like to assume that 2n < m. This might not be the case, particularly for
high-dimensional fluids data. To get around this, and improve computational tractability,
we may project Equation (6.2.14) onto a POD subspace of dimension r < m/2, to obtain

[
Ã −I

] [ Ỹ + Ẽ

Ỹ # + Ẽ#

]
= 0. (6.2.15)
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This POD projection step is in contrast to the TLS DMD formulation in Hemati et al.
[69], where a projection is performed onto a basis determined from an augmented snapshot

matrix Z =

[
Y
Y #

]
. We find that the present formulation yields more accurate eigenvalues in

a number of examples. Note that the nullspace of
[
Ã −I

]
is r-dimensional, meaning that

the 2r by m matrix

[
Ỹ + Ẽ

Ỹ # + Ẽ#

]
can have rank at most r.

Let the full SVD of

[
Ỹ

Ỹ #

]
be given by UΣV ∗. If the data is noisy, we should expect

that all 2r diagonal entries of Σ are nonzero. By the Eckart-Young theorem [50], the nearest
(in the sense of Frobenius norm) rank r matrix will be given by[

Ỹ + Ẽ

Ỹ # + Ẽ#

]
= UΣ1:rV

∗,

where Σ1:r contains the leading r singular values of Σ, with the rest replaced by zeros. We
then have that[

Ỹ + Ẽ

Ỹ # + Ẽ#

]
= UΣ1:rV

∗ =

[
U11 U12

U21 U22

] [
Σ1 0
0 0

] [
V ∗1
V ∗2

]
=

[
U11Σ1V

∗
1

U21Σ1V
∗

1

]
,

where Uij are r by r matrices, and V1 is the first r columns of V . Rearranging this equation,
we obtain the total least-squares estimate for Ã:

Ã = U21U
−1
11 . (6.2.16)

Note that this derivation requires that U11 be invertible. While the derivation includes the
full SVD of the augmented data, Equation (6.2.16) indicates that we only need the first
r columns of U , meaning that only a reduced SVD is required. Algorithm 5 summarizes
this total least-squares approach to DMD, which we refer to as total least-squares DMD, or
tlsDMD.

Algorithm 5 (total least-squares DMD (tlsDMD)).

1. Collect data Y and Y #, and project onto r < m/2 POD modes to obtain Ỹ and Ỹ #.

2. Take the SVD of

[
Ỹ

Ỹ #

]
, letting

[
Ỹ

Ỹ #

]
= UΣV ∗.

3. Partition the 2r by 2r matrix U into r by r sub-matrices, letting U =

[
U11 U12

U21 U22

]
(note that only the first r columns need to be computed).

4. Compute the total least-squares DMD matrix Ã, using Equation (6.2.16).

5. Compute the DMD eigenvalues and modes using steps 4–5 of Algorithm 1.
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An alternative and more focused exposition of tlsDMD is given in Hemati et al. [69]. We
note that Algorithm 5 is not identical to that presented in this work (due to the lack of
pre-truncation of POD modes), however we find that Algorithm 5 gives marginally better
results in terms of the accuracy of identified eigenvalues.

6.3 Results with synthetic data

In this section we will test our proposed modifications to DMD on a number of examples.
Using known dynamics with the addition of random noise will allow us to examine the
performance of these proposed modifications (Algorithms 3–5) in comparison to regular DMD
(Algorithm 1). We begin by considering a simple 2-dimensional linear system in Section 6.3.1.
In Section 6.3.2, we consider the same system with an expanded set of observables, which tests
the important case of high-dimensional data that is described by low-dimensional dynamics.
Section 6.3.3 compares the performance of the proposed modifications of DMD to other
DMD variants in recent literature, while Section 6.3.4 considers the problem of identifying
dynamics that are quickly decaying and obscured by dominant modes and noise, a case
where DMD-like algorithms could be of most use. Finally, in Section 6.3.5 we analyze how
the proposed DMD modifications treat process noise.

6.3.1 Example: A periodic linear system

We consider first a simple two-dimensional linear system, with dynamics given by

ẋ =

[
1 −2
1 −1

]
x. (6.3.1)

This system has (continuous-time) eigenvalues λc1,2 = ±i, so gives purely periodic dy-
namics, with no growth or decay. We discretize with a timestep ∆t = 0.1, so the discrete-time
eigenvalues are then λ1,2 = e±∆ti. We use 100 timesteps of data (i.e., m = 99), corrupted
with Gaussian white noise of variance σ2

N = 0.01. The identified continuous-time eigenvalues
from both regular DMD (Algorithm 1), and the direct noise-correction (Algorithm 3) are
shown in Figure 6.2(a), for 1000 different trials from the initial condition x0 = [1 0.1]T . We
assume that the correction term is given by mσ2

NIn, and observe that this corrects almost
perfectly for the bias in the DMD algorithm in terms of identifying eigenvalues. Also shown
in Figure 6.2(a) are ellipses representing the 95% confidence region, with the major and mi-
nor axes of the ellipse aligned with the principal component directions of the eigenvalue data.
For clarity, in the presentation of subsequent results, we will omit individual data points and
show only such ellipses. In Figure 6.2(b) we show the mean and 95% confidence ellipses for
Algorithms 4 and 5. As with ncDMD, both fbDMD (Algorithm 4) and tlsDMD (Algorithm
5) accurately correct for the bias in the mean of the identified eigenvalue. Further to this,
fbDMD and tlsDMD also both reduce the area of the 95% confidence ellipse, which indicates
that they are more likely to attain a closer approximation to the correct eigenvalue on any
given trial.
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Figure 6.2: (a) Eigenvalues (in continuous-time) identified from regular DMD (Algorithm
1, dots) and noise-corrected DMD (Algorithm 3, crosses) from 100 snapshots of data from
Equation (6.3.1), with ∆t = 0.1 and σ2

N = 0.01. Only one of the complex conjugate pair of
eigenvalues is shown. The mean and 95% confidence ellipse of 1000 trials are given for each
data set. (b) shows the mean and 95% confidence ellipse for the same data set for each of
the algorithms

Focusing back on comparing Algorithms 1 and 3, we show results for a variety of values of
m and σ2

N in Figure 6.3. In Figure 6.3(a), rather than looking at the error in the eigenvalues,
we instead consider the Frobenius norm of the difference between the true and identified
propagation matrices, ‖Atrue − Apred‖F . For very small noise, the correction makes little
difference, since the random error is larger than the bias error. For larger values of noise,
we observe that the error saturates when using standard DMD, which is due to the presence
of the bias term identified in Section 6.2.1, which has a size independent of the number of
samples, m. We note that the magnitude of this bias term is proportional to σ2

N , as predicted
by Equation (6.2.8). Evidence of this error saturation phenomena can also be seen in past
studies of the effect of sensor noise on DMD [48, 176, 110]. After this bias term is corrected
for, we see that the error decays proportional to m−1/2 for all values of noise, as predicted
from the analysis in the appendix, Section 6.6. The more rapid decay in error with m for
small numbers of samples seems to arise from the fact that the data has not yet completed
one full period of oscillation. Figure 6.3 shows the corrections to DMD made using both the
sampled (NN ∗) and theoretical (mσ2

NI) covariance matrices. Normally the sample noise
covariance would not be known, and so we demonstrate here that the theoretical covariance
achieves almost the same decrease in error. Figure 6.3(b) shows that the ncDMD error curves
collapse when the error is normalized by the standard deviation of noise, σN (note that we
could also multiply the error by the SNR to get the same scaling).

Figure 6.4 shows the performance of Algorithms 4 and 5 on the same data as Figure 6.3.
Again, we find that both of these algorithms can prevent the error saturation present in
standard DMD, and indeed can perform noticeably better than Algorithm 3 for larger noise
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Figure 6.3: Error in the estimated propagation matrix Ã identified from performing DMD
and ncDMD on noise-corrupted data generated from Equation (6.3.1), for different values
of m and σ2

N . In (a) the error is given as ‖Atrue − Apred‖F , while in (b) this quantity is
normalized by the standard deviation of the noise, σN . In both cases, the error is averaged
over 100 trials for each m and σ2

N . Note that for clarity, (b) excludes the two largest noise
levels shown in (a)
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Figure 6.4: Error in the estimated propagation matrix Ã identified from performing DMD,
ncDMD, fbDMD, and tlsDMD on noise-corrupted data generated from Equation (6.3.1), for
different values of m and σ2

N . The error is given as ‖Atrue −Apred‖F , and is averaged over
100 trials for each m and σ2

N
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levels. Algorithms 3–5 all appear to exhibit the same asymptotic behavior as the number of
snapshots, m, increases, with the error decreasing proportional to m−1/2.

A common means to mitigate the effect of noisy data is to collect multiple time-series
of data, and process this in such as way to improve the results over just using one data
set. One can ask the question if it is better to concatenate the snapshots of data from each
time series and apply DMD to this collection, or to apply DMD to phase-averaged data.
Our results suggest that the latter option is preferable if using standard DMD, since adding
additional pairs of snapshots will not decrease the error beyond a certain level, due to this
bias saturation at large m. If we are using ncDMD, fbDMD, or tlsDMD, however, then we
should get the same scalings regardless of which option is chosen, since in both cases the
error should be proportional to p−1/2, where p is the number of trials of data collected.

6.3.2 A periodic linear system with a high-dimensional state of
observables

This example considered in Section 6.3.1 has m� n, which is atypical of many fluids systems
for which DMD is used. To consider the case where the size of the state n is larger than
the number of snapshots m, we expand the state of our system to include time-shifts of the
data. In this sense, we have new observables given by

zk =


xk

xk−1
...

xk−q

 , (6.3.2)

with the size of the state n = 2(q+ 1). This periodic system can equivalently be viewed as a
traveling wave, which is now observed over a larger spatial domain. Similar data (but with
a non-zero growth rate) was considered in Duke et al. [48] and Wynn et al. [176]. Since the
dynamics are still only two-dimensional despite the higher dimensional state, we use only
the first two POD modes of the data to identify a 2 × 2 propagation matrix Ã. The next
section will examine alternative means of performing this dimensionality reduction.

Figure 6.5 shows the statistical results (in terms of DMD eigenvalues) of performing
variants of DMD on such data, using m = 50 and a range of snapshot sizes, n. We find that
a bias exists for regular DMD, but the magnitude of this bias decreases as the size of each
snapshot increases (note that the scale between subplots changes, though the aspect ratio
remains the same). We find that Algorithms 3–5 all outperform regular DMD in terms of
giving mean (expected) eigenvalues that are closer to the true value. For small state sizes,
Algorithms 4 and 5 also also give a smaller confidence ellipse, though this is not observed
for larger state sizes. As the size of the state increases, the bias component of the error of
DMD (evidenced by the difference between the true and mean identified eigenvalue) becomes
smaller relative to the random component of the error (indicated by the size of the confidence
ellipse). This means that the modifications to DMD presented in Algorithms 3–5 give the
largest improvement when the size of the state is small, due to the fact that in this regime the
bias component of error is larger than the random component. Note that these conclusions
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Figure 6.5: Mean and 95% confidence ellipses of continuous-time eigenvalues identified by ap-
plying regular DMD (Algorithm 1), noise-corrected DMD (Algorithm 3), forward-backward
DMD (Algorithm 4) and total least-squares DMD (Algorithm 5) on 1000 trials of noisy data
generated by Equation (6.3.1), and observed as in Equation (6.3.2). Here the number of
snapshots m is fixed to be 50, ∆t = 0.1, and σ2

N = 0.1. Only one of the complex conjugate
pair of eigenvalues is shown

may be predicted from the scaling laws given in Equations (6.6.2) and (6.6.5). Moreover,
one can verify that as the size of the state (n) increases, the size of the ellipses decrease
proportional to n−1/2.

6.3.3 Comparison to other modified DMD algorithms

Without any modification, applying DMD on noisy data will give min(m,n) eigenvalue-mode
pairs, many of which may be mostly or entirely due to noise, particularly if the underlying
dynamics are low-dimensional. For this reason, a number of modifications of DMD that
aim to identify a small number of dynamically important modes have been developed. The
most simple means of reducing the dimension of the data is to simply project onto a reduced
number of POD modes, which is explicitly mentioned as an optional step in Algorithm 1. This
projection step was also used within Algorithms 3–5 in Section 6.3.2. A number of alternative
means to obtain a small number of dynamic modes from DMD-type algorithms have been
proposed, as briefly mentioned in Section 1.2. These variants all start with the observation
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that standard DMD can be formulated within an optimization framework, in the sense that
it identifies a least-squares or minimum-norm propagation matrix for a given data set. Chen
et al. [28] proposes a modification termed optimized DMD that seeks to find optimal low-rank
dynamics that best matches a sequential time-series of data. While the fact that this method
optimizes over the entire time-sequence of data rather than just pairwise snapshots should
increase its robustness to noise, the non-convexity of the optimization potentially limits its
utility. Optimal Mode Decompostion (OMD, [62, 176]) finds an optimal low-dimensional
subspace on which the identified dynamics reside, rather than assuming that this subspace
is simply the most energetic POD modes. This approach was shown to give an improvement
on the DMD eigenvalues obtained for noisy data in Wynn et al. [176]. Sparsity-promoting
DMD (spDMD, [78]) adds an l1 regularization term that penalizes the number of DMD
modes with non-zero coefficients in the approximation of the time-series of data.

This section will compare OMD and spDMD with the algorithms presented in the present
work. Of the algorithms presented here, we will focus on fbDMD (Algorithm 4), which was
found to perform equally well as tlsDMD, and better than ncDMD, in Sections 6.3.1 and
6.3.2. Figure 6.6 shows identified eigenvalue statistics (mean and confidence ellipses) for each
of these algorithms, using the same data as that for Figure 6.5. We observe that OMD gives a
more accurate mean eigenvalue that DMD, and a confidence ellipse of approximately the same
size. spDMD gives a mean identified eigenvalue that is closer again to the mean, although
the variance in the eigenvalues identified for each trial is larger. We note that spDMD
occasionally produced erroneous results, which were excluded as outliers from the statistical
analysis. This highlights an important advantage to the modifications to DMD presented
here: the algorithms are given in closed form, and do not rely on an appropriate selection of
parameters and tolerances that are most likely required for an optimization procedure. In
all of the cases, fbDMD (and tlsDMD, which is not shown but barely distinguishable from
fbDMD) gives the best estimate of the true eigenvalue.

While these results suggest that fbDMD/tlsDMD is more accurate than OMD and
spDMD, we must remember that the results from one data set do not show the global
superiority of any given algorithm. Indeed, one could most likely find data sets for which
any given algorithm is superior (by some chosen metric) to others. We conclude this section
by noting that it should be possible to combine the optimization procedures presented in
Chen et al. [28], Wynn et al. [176], and Jovanović et al. [78] with the modifications to DMD
presented here. Indeed, a simple means to do this might be to modify Algorithm 4 so that
the results of applying a given algorithm forwards and backwards in time are geometrically
averaged, as in Equation (6.2.13).

6.3.4 Identifying hidden dynamics

The systems considered in Sections 6.3.1 and 6.3.2 could be considered “easy” in the sense
that the dominant dynamics are simple, and of consistently larger magnitude than the noise.
Indeed, it is not difficult to qualitatively identify such dynamics by eye from simply looking
at some visualization of the data. A more difficult case occurs when some of the dynamics
are of low magnitude and/or are quickly decaying, and thus might quickly be lost among
the noise in the measurements. A major benefit of data processing techniques such as DMD
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Figure 6.6: Mean and 95% confidence ellipses of continuous-time eigenvalues identified by
applying regular DMD (Algorithm 1), forward-backward DMD (Algorithm 5), OMD and
spDMD for noisy data generated from 1000 trials of data generated by Equation (6.3.1), and
observed as in Equation (6.3.2). Here the number of snapshots m is fixed to be 50, ∆t = 0.1,
and σ2

N = 0.1. Only one of the complex conjugate pair of eigenvalues is shown
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Figure 6.7: Visualization of data generated by Equation (6.3.3), with k1 = 1, ω1 = 1, γ1 =
1, k2 = 0.4, ω2 = 3.7, γ2 = −0.2, and σ = 0.5

is the ability to identify dynamics that might otherwise remain hidden. With this in mind,
we now consider a superposition of two sinusoidal signals that are traveling across a spatial
domain in time, with the amplitude of one mode growing, and the other decaying:

f(x, t) = sin(k1x− ω1t)e
γ1t + sin(k2x− ω2t)e

γ2t + nσ(x, t), (6.3.3)

where we set k1 = 1, ω1 = 1, γ1 = 1, k2 = 0.4, ω2 = 3.7 and γ2 = −0.2. We thus have
the superposition of a growing, traveling wave, and a decaying signal that is quickly hidden
by the unstable dynamics. The four continuous-time eigenvalues of this data are γ1 ± ω1

and γ2 ± ω2. This data is again similar to that considered in Wynn et al. [176] and Duke
et al. [48], if we neglect the decaying dynamics. Figure 6.7 shows the data with white noise
of standard deviation σ = 0.5. Figure 6.8 shows the performance of various DMD-type
algorithms in identifying one of the dominant eigenvalues (1 + i) and one of the “hidden”
eigenvalues (−0.2 + 3.7i). Mean eigenvalues and error ellipses are computed from 1000
different noise samples. Unsurprisingly, all methods are quite accurate at identifying the
dominant eigenvalue, though the variants proposed in the present work show improvements
in both the mean and scatter over the 1000 trials. In terms of the hidden eigenvalue, we
observe that DMD (as well as OMD) estimates a decay rate that is almost double the true
value. In contrast, all of ncDMD, fbDMD, and tlsDMD predict the eigenvalue accurately,
with a reduction in the error of the mean eigenvalue between DMD and fbDMD (for example)
of 88%. In addition, we note that the scatter in the identified hidden eigenvalue across the
trials is smaller for fbDMD and tlsDMD (as indicated by smaller confidence ellipses).
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Figure 6.8: Mean and 95% confidence ellipses of continuous-time eigenvalues identified by
applying regular DMD (Algorithm 1), OMD, noise-corrected DMD (Algorithm 3), forward-
backward DMD (Algorithm 4) and total least-squares DMD (Algorithm 5) to 1000 trials of
noisy data generated by Equation (6.3.3), with k1 = 1, ω1 = 1, γ1 = 1, k2 = 0.4, ω2 = 3.7,
γ2 = −0.2, and σ = 0.5

6.3.5 Differentiating between process and sensor noise

This section will primarily address the issue of comparing and distinguishing between the
effects of process and sensor noise. We consider the Stuart-Landau equation, which has been
used as a model for the transient and periodic dynamics of flow past a cylinder in the vortex
shedding regime [106, 8]. In discrete time, we can express this system in polar coordinates
by

rk+1 = rk + dt(µrk − r3
k + nr),

θk+1 = θk + dt(γ − βr2
k +

nθ
rk

),
(6.3.4)

where we have included process noise terms nr and nθ, which are assumed to be independent
in time, and sampled from separate zero-mean Gaussian distributions with variance σ2

P . We
take as our data snapshots of the form

xk =
[
e−Jiθk e(−J+1)iθk · · · eJiθk

]T
, (6.3.5)

for some integer J . We may add sensor noise to this data as in previous sections. For µ > 0,
Equation (6.3.4) contains a stable limit cycle at r =

√
µ, with period 2π/(γ − βµ). Starting

on the limit cycle, we consider data with process noise, sensor noise, neither, and both.
Without any noise, the eigenvalues identified from this data will lie upon the imaginary axis,
at locations given by λc = ij(γ − µβ). Process noise acts to perturb the system from its
limit cycle, which ultimately leads to phase diffusion, and a “bending” of the eigenvalues
such that they instead lie on a parabola. The behavior of this system with process noise is
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described more extensively in Bagheri [9]. Figure 6.9 shows the results of applying variants
of DMD on data generated by Equation (6.3.4) with µ = 1, γ = 1, β = 0, and dt = 0.01,
with data collected using Equation (6.3.5) with J = 10. Applying DMD on noise-free data
gives eigenvalues along the imaginary axis, while data from the system with process noise
gives a parabola of eigenvalues, as expected. For data collected using Equation (6.3.5), each
data channel will be orthogonal in time, and will contain the same energy. As a result, sensor
noise will act to shift all identified eigenvalues into the left half plane by the same amount,
as observed in Figure 6.9(a). Figure 6.9(b) shows that applying ncDMD accurately corrects
for this shift, for the system with and without process noise. This shows that it is possible
to distinguish between the effects of these two forms of noise, given only an estimate of the
magnitude of the sensor noise. That is, we are able to eliminate the effects of the noise that
is due to imperfections in our observations, while retaining the effects of actual disturbances
to the system. Figure 6.9(c) shows that tlsDMD corrects for the effects of both process
and sensor noise, which is desirable if one wishes to recover the dynamics of the noise-free
system. The results for fbDMD are not shown, but were very similar to those for tlsDMD.
The ability of tlsDMD and fbDMD on process noise is not surprising, since they treat Y and
Y # in a symmetric manner, and thus consider phase diffusion both forwards and backwards
in time.

6.4 Results with numerical and experimental data

Having analyzed the performance of the various proposed modifications of DMD on syn-
thetic data sets, we now turn our attention to data obtained from fluids simulations and
experiments. We will focus on the canonical case of the unsteady wake of a circular cylinder
exhibiting periodic vortex shedding. In Section 6.4.1 we present results from data obtained
from a two-dimensional direct numerical simulation, while Section 6.4.2 considers data ob-
tained from PIV measurements in a water channel.

6.4.1 Cylinder wake: simulation data

We use an immersed boundary projection method [149, 36], with a domain consisting of
a series of nested grids, with the finest grid enclosing the body, and each successive grid
twice as large as the previous. The finest grid consists of uniformly spaced points with grid
spacing equal to 0.02D (where D is the cylinder diameter), extending 2D upstream and 4D
downstream of the center of the cylinder, and spanning 4D in the direction normal to the
flow. Each successively larger grid contains the same number of grid points, with twice the
grid spacing as the previous grid. More details about the numerical method were given in
Section 4.2. The Reynolds number Re = U∞D

ν
was set to be 100, where ν is the kinematic

velocity. This Reynolds number is above that for which the wake is stable (47 [117]), and
below that for which three-dimensional instabilities emerge (approximately 194 [175]). At
this Reynolds Number, the wake is hence unstable, and approaches a single periodic limit
cycle characterized by a von Kàrmàn vortex street in the wake. The data to be analyzed
was taken from 234 snapshots of the vorticity field, spaced 0.1 D

U∞
time units apart. This
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Figure 6.9: Eigenvalues identified using (a) DMD, (b) ncDMD, and (c) tlsDMD for the
Stuart-Landau equation (Equation (6.3.4)), with 100, 000 snapshots of data from Equa-
tion (6.3.5), with r0 = 1, µ = 1, γ = 1, β = 0, and dt = 0.01. Data with sensor noise,
process noise, neither and both are considered, with noise levels for process and sensor noise
being σ2

P = 0.01 and σ2
N = 10−4 respectively. Note that in the absence of sensor noise, DMD

and ncDMD are identical
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corresponds to approximately 4 complete periods of vortex shedding. We truncate the data
to only consider first 15 POD modes. These first 15 POD modes contain 99.99% of the total
energy of the clean data, and 92.96% of the total energy of the data after the addition of
Gaussian white noise with standard deviation σ = 0.2U∞

D
. Thus it is almost entirely noise

that is truncated for the noisy data.
Figure 6.10 shows results from applying various variants of DMD to such data. Though

not shown, the results of applying tlsDMD were visually indistinguishable as using fbDMD.
Since we are artificially adding noise, we can compare the results using noisy data to those
generated from the noise-free data. When applying regular DMD to noisy data, we observe
significant errors in the growth rate associated with the highest-frequency eigenvalues (Fig-
ure 6.10(a)). For an oscillatory system such as this, the DMD eigenmodes are very similar to
the POD modes, with a DMD mode corresponding to λc ≈ 0 that is almost the mean flow,
and the modes associated with conjugate pairs of DMD eigenvalues corresponding to pairs of
POD modes with equal energy, see Chen et al. [28] for further discussion of this phenomenon.
This means that the observed measured eigenvalues are in line with the analysis given in
Sections 6.2.1 and 6.6, since the lower energy POD modes oscillate the most. We can see
the effect of this error in Figure 6.10(b), which shows the prediction of a number of POD
coefficients as evolved by the identified system, starting from the true initial condition. The
dominant, low frequency POD modes are accurately predicted, but the higher “harmonics”
are erroneously predicted to decay when using regular DMD. ncDMD improves the perfor-
mance marginally, while fbDMD and tlsDMD both almost completely remove the erroneous
decay of the high-frequency modes.

As well as considering eigenvalues, we also validate in Figure 6.11 that the modifications
of DMD do not adversely affect the identified DMD modes. This is shown both visually
in Figure 6.11(a), and quantitatively in Figure 6.11(b), where we give the inner product
〈φi,noisy, φi,clean〉 of the ith modes identified from clean and noisy data, where we have pre-
scaled the modes to be of unit norm. We enumerate the modes by the imaginary component
of the associated eigenvalue, with mode 0 corresponding to the eigenvalue on the real axis.
For modes that come in complex conjugate pairs, we arbitrarily consider those with positive
imaginary component. We see that both fbDMD and tlsDMD marginally outperform regular
DMD, in terms of identifying modes that are at least as close to those identified from noise-
free data. The decrease in the inner product as the mode number increases is indicative of
noise being more significant in higher-frequency modes, which contain less energy.

6.4.2 Cylinder wake: experimental data

We now turn our attention to data acquired from water channel experiment. An anodized
aluminum cylinder of diameter D = 9.5 mm and length L = 260 mm was immersed in a
recirculating, free-surface water channel with freestream velocity U∞ = 4.35 cm/s. This
gives a Reynolds number Re = DU∞

ν
= 413. Further details of the experimental setup and

methodology are provided in Tu et al. [160]. We apply variants of DMD to 500 snapshots
from a vorticity field of size 135 × 80. Figure 6.12 shows the identified eigenvalues and
the predicted POD coefficients from the models identified from DMD and tlsDMD. As in
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Figure 6.10: (a) Eigenvalues and (b) POD coefficients identified from applying DMD,
ncDMD fbDMD, and tlsDMD to DNS vorticity data from a cylinder wake at Re = 100.
Noisy data was corrupted with Gaussian white noise with σ = 0.2U∞
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Section 6.4.1, we first project onto the 15 most energetic POD modes. Note that some
eigenvalues (typically quickly decaying) are outside the range of the plot. As was the case
with DNS data, we observe that DMD gives eigenvalues that are further into the left half
plane than those identified using tlsDMD. This manifests in the erroneous prediction of
decaying POD coefficients (Figure 6.12(b)), particularly for modes that are less energetic,
and more rapidly oscillating. We thus conclude that more accurate low-dimensional models
for the experimental results can be achieved by using tlsDMD. We note that this improvement
can be attained without explicit knowledge of the process and sensor noise characteristics.

6.5 Discussion and conclusions

It was shown in Section 6.2 that simple linear algebraic considerations can allow us to derive
an estimate for the bias that exists in all standard formulations of DMD. This subsequently
led to the formulation of the three modified algorithms that we suggest can be used to
eliminate this bias. Section 6.3 showed that this predicted bias is indeed present in the
results of DMD. Directly correcting for this bias term (Algorithm 3, ncDMD) was shown
to almost completely eliminate this bias. While this modification demonstrates that our
characterization of the dominant effects of noise was accurate, its usefulness is limited by the
fact that it requires an accurate estimate of the noise covariance. Additionally, the presence
of a Σ−2 term in correction factor used in ncDMD makes this computation unsuitable for
cases with small singular values that are not truncated. On the other hand, the correction
factor in Algorithm 3 may be applied to existing DMD results with minimal computational
effort. Algorithms 4 (fbDMD) and 5 (tlsDMD), which do not require knowledge of the
noise characteristics, were also found to correct for the bias, and also were able to reduce the
random error across many noise realizations (as seen by smaller associated confidence ellipses
in Figure 6.2, for example). Furthermore, fbDMD and tlsDMD were found in Section 6.3.5 to
also compensate for the effect of process noise. This feature could be desirable or undesirable,
depending on the purpose for which DMD is being applied. Note that this is also consistent
for the findings in Section 6.4.2, where for a notionally periodic system, tlsDMD was found
to give eigenvalues very close to the imaginary axis, despite (presumably) the presence of
both sensor and process noise.

In practice, the examples examined in Sections 6.3.4, 6.4.1 and 6.4.2 suggest an overar-
ching principle: while regular DMD can be accurate for identifying dominant dynamics that
have much larger amplitudes than the noise in the data, accurate identification of the eigen-
values associated with lower amplitude modes (and in particular, their real components) can
be significantly improved when using the modified DMD algorithms presented here. Con-
versely, if one is primarily concerned with the identification of modes and their frequencies
of oscillation, and less concerned with accurate identification of growth/decay rates, then
the effect of sensor noise is comparatively minimal, and subsequently the choice of DMD
algorithm is less important.

Fundamentally, the bias in DMD arises because the algorithm is essentially a least-squares
algorithm, which is designed for cases where the “independent” variable (which in DMD takes
the form of the data Y ) is known accurately, and the “dependent” variable Y # contains
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Figure 6.12: (a) Eigenvalues and (b) POD coefficients identified from applying DMD and
tlsDMD to experimental vorticity data
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the noise/error. In reality, since Y and Y # should both be affected by noise, minimizing
the error in both the Y and Y # “directions” can allow for a more accurate answer to be
obtained. One drawback of tlsDMD is that it requires taking the SVD of a larger matrix.
Note that for cases where n > m (i.e., the size of each snapshot is larger than the number of
snapshots) and there is no truncation of POD modes corresponding to small singular values,
DMD gives the minimum Frobenius norm (of A) solution to AY = Y #. In this case, in
principle neither fbDMD or tlsDMD should yield any improvements. In reality, however,
if there is noise in the data, then we do not necessarily want an exact fit to the data, but
rather an unbiased estimate of the noise-free dynamics. We may obtain this by truncating
POD modes that are deemed to be mostly noise, and use some variant of DMD to identify
the remaining dynamics. tlsDMD and fbDMD give very similar results, which suggests that
fbDMD can be viewed as a computationally cheaper alternative to approximating the results
of tlsDMD. Note that while fbDMD is often computationally cheaper, it relies on being able
to invert the matrix B̃m, which might be an ill-conditioned operation for some data.

In Section 6.3.3, we compared the variants presented here with two recent optimization
algorithms that have been proposed. The results show our algorithms outperforming both
sparsity promoting DMD and OMD. Note that since these algorithms are not in closed form,
but instead contain optimization procedures, the results depend somewhat on the specifi-
cation of the relevant optimization parameters. In this comparison, our use of Algorithms
3–5 relied upon the projection onto a low dimensional subspace before applying DMD-type
algorithms. We particularly note that the tlsDMD algorithm proposed here is slightly dif-
ferent from that given in Hemati et al. [69] due to this POD projection, which we found
empirically to give improved results. We suggest that this is because the initial truncation
of low-energy POD modes has a filtering effect that better isolates the true dynamics, at
least for the datasets considered here. One could imagine, however, that in certain cases this
projection could lead to significant degradation of results. For example, where the dynam-
ically important modes are highly dissimilar to the dominant POD modes, the flexibility
for the projection basis to be modified could be particularly advantageous. In such cases,
sparsity promoting DMD or OMD could give more favorable results. In general, it is rela-
tively common in system identification to use a subspace that is larger than the dimension
of the underlying dynamics, and then later truncate to obtain a reduced-order model of an
appropriate size/rank. This can be particularly important when the dealing with specific
system inputs and outputs [122]. Juang and Pappa [80] discuss a number of ways in which
true dynamic modes can be distinguished for noisy modes, in the context of the eigensystem
realization algorithm. Tu et al. [161] further discusses how DMD modes can be scaled, from
which appropriate modes can be chosen. The spDMD algorithm in Jovanović et al. [78] es-
sentially automates this procedure, and comes with the additional potential advantage of not
requiring a-priori knowledge of the dimension of the reduced-order dynamics to be identified.
Note that it is also possible to combine the modifications to DMD proposed here with the
OMD and spDMD optimization procedures, which could result in further improvements in
some circumstances.

Though we used a large number of trials when testing our results on synthetic data in
order to obtain statistically meaningful findings, in reality one would most likely not have
this luxury with real data. In this case, it is important to understand for the size and quality

106



of the data to be analyzed, both the best algorithm to use, and the amount of confidence
that should be had in the results of the chosen algorithm.

While this work has been motivated by and has largely focused on sensor noise (that is,
noise which only affects measurements, and not the system dynamics), the characterization
and removal of process noise (i.e., disturbances to the system states) is entirely another
matter. Interestingly, the effect of process noise was identified analytically in [9] to be a
parabolic decay in the growth rate of identified eigenvalues with increasing frequency. It
turns out that a similar effect is observed here for the case of measurement noise. Isolating
sensor noise from process noise (especially with limited prior information about the statistics
of either) is an important and challenging task, particularly when dealing with more complex,
turbulent flows, where the true dynamics exist on a wide range of spatial and temporal scales.
The fact that DMD, ncDMD and tlsDMD/fbDMD each perform differently on these different
forms of noise could itself be an important tool to this end.

Particularly in experimental data, users might typically preprocess data in a number
of ways before considering applying DMD-type algorithms. It could be advantageous to
investigate precisely how various averaging and smoothing operations affect the subsequent
analysis of dynamics, and subsequently whether such post-processing and analysis can be
achieved through a single algorithm.

Ultimately, having a larger selection of possible algorithms should be of benefit to re-
searchers who desire the dynamical information that DMD-type algorithms can provide,
who can choose based on the size of the data, amount of noise present, required accuracy
of the results, and amount of computational resources available. One of the major advan-
tages of DMD (and related algorithms) advocated in Schmid [134] is the fact that it requires
only direct data measurements, without needing knowledge of any underlying system ma-
trix, thus making it well suited to use on experimentally acquired data. Inevitably, however,
data from experiments is always affected to some extent by noise. It is thus important to
properly understand and quantify how noise can influence the results of DMD. Conversely,
the quest for high quality data can often require large investments of both time and money.
Formulating algorithms that are more robust to noisy data can be a cheaper alternative to
obtain results of sufficient accuracy. As it becomes easier to generate and store increasingly
large datasets, it is also important to recognize that simply feeding larger quantities of data
(e.g., more snapshots) into a given algorithm does not guarantee desired improvements in
the accuracy of their outputs, as illustrated in Figures 6.3 and 6.4.

The problem that fluid dynamicists face in extracting tractable information from large
datasets is not unique to fluids, and rather transcends a wide variety of fields of study
(although other fields are often not afforded the luxury of knowing the underlying differential
equations). It thus should be fruitful to continue to investigate how previous and current
developments across a wide range of other fields may be utilized in the study of fluids systems.
We likewise hope that other areas can benefit from the work that is motivated by the desire
to understand how fluids flow.
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6.6 Appendix: Quantifying the size of the bias in DMD

We seek to quantify the magnitude of this bias present in DMD that was derived in Sec-
tion 6.2.1, subject to certain simplifying assumptions on the nature of the data and noise.
If the noise is uniform, and spatially and temporally independent, then

E(ÑÑ ∗) = E(U ∗NN ∗U) = U ∗mσ2
NU = mσ2

NI,

where σ2
N is the variance of each independent component of the noise matrix. Furthermore, if

we assure that we are projecting onto the POD modes of the clean data, then (Ỹ Ỹ ∗) = Σ2,
where UΣV ∗ is the singular value decomposition of Y . Thus with these assumptions,
Equation (6.2.4) can be simplified to give

E(Ãm) = Ã(I −mσ2
NΣ−2). (6.6.1)

The (diagonal) entries Σ2
i of Σ2 have the interpretation of being the energy content of the

ith POD mode. We then should expect that Σ2
i ∼ mnqiσ

2
Y , where σ2

Y is the RMS value of

the elements in the data matrix Y , and qi =
Σ2
i

Trace(Σ2)
is the proportion of the total energy

of the system contained in the ith POD mode. For this scaling, we make the assumption
that adding/removing rows and columns of data (i.e., varying m and n) does not affect
either σY or qi. The bias term mσ2

NΣ−2 is a diagonal matrix whose ith entry has a size (eb)i
proportional to

(eb)i ∼
1

nqiSNR2
, (6.6.2)

where SNR is the signal-to-noise ratio. Thus sensor noise has the effect of reducing the

diagonal entries of the computed Ãm matrix by a multiplicative factor of 1 − σ2
N

nqiσ2
Y

, which

means that POD coefficients are predicted to decay more rapidly than they actually do. This
effect is most pronounced for lower energy modes, for which the qi is smaller. We thus expect
to identify with DMD (continuous-time) eigenvalues that are further into the left half plane
than they should be (or would be if we applied DMD to noise-free data). Duke et al. [48]
argus in the case of periodic data that the growth rate of the eigenvalues should typically
be the most challenging to identify, since there are a range of pre-existing methods that can
identify frequencies. Here we have argued that it is precisely this growth rate that is most
affected by noise. Importantly, the amount of bias is independent of m, which suggests that
the bias component of the error will be particularly dominant when we have a large number
of low-dimensional snapshots. Importantly, this suggests that one cannot always effectively
reduce the effect of noise by simply using more snapshots of data, since the bias error will
eventually become the dominant error.

While we can now quantify the magnitude of the bias in DMD, we do not as yet know how
it compares to the random component of the error that would arise from a given realization
of noise. To do this, we will estimate the typical size of the variance of individual entries of
Ã, using the standard definition

var
[
Ãij

]
= E

{(
(Ỹ #

m Ỹ +
m )ij − E

[
(Ỹ #

m Ỹ +
m )ij

])(
(Ỹ #

m Ỹ +
m )ij − E

[
(Ỹ #

m Ỹ +
m )ij

])}
. (6.6.3)

108



Referring back to Equation (6.2.1), if we exclude terms that are quadratic or higher in noise,
and assume that the noise covariance matrix is sufficiently close to its expected value, we
find that

(Ỹ #
m Ỹ +

m )− E
[
(Ỹ #

m Ỹ +
m )
]

= (Ỹ # + Ñ#)(Ỹ + Ñ )(Ỹ Ỹ ∗ + Ỹ Ñ ∗ + ÑỸ ∗ + ÑÑ ∗)−1

− Ỹ #Ỹ + − E(ÑÑ ∗)Σ−2

=
[
Ỹ #Ỹ +(Ỹ Ñ ∗ + ÑỸ ∗) + Ñ#Ỹ ∗ + Ỹ #Ñ ∗

]
Σ−2.

Elements of the terms Ỹ Ñ ∗, Ñ (̃Y #)∗, Ñ#Ỹ ∗, and Ỹ #Ñ ∗ are uncorrelated sums over m
random terms, with each term in the sum having variance nqiσ

2
Y σ

2
N where as before qi is the

energy fraction in the ith POD mode. This means that the sum will have variance mnqiσ
2
Y σ

2
N .

Assuming that Ỹ #Ỹ +(= Ã) does not greatly change the magnitude of quantities that it
multiplies, and assuming that qi remains constant when varying m and n, this means that
we find that

var
[
Ãij

]
∼ σ2

N

mnσ2
Y

. (6.6.4)

Thus the expected size of the random error in applying DMD to noisy data is

er ∼
1

m1/2n1/2SNR
. (6.6.5)

Comparing Equation (6.6.5) with Equation (6.6.2), we propose that the bias in DMD will
be the dominant source of error whenever

m1/2SNR > n1/2.
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Chapter 7

Conclusions and future work

This thesis has considered a number of topics related to modeling the dynamics of pitching
airfoils, and the methods that can be used to model these and other systems encountered in
fluid mechanics and aerodynamics.

In Chapter 3, a framework was proposed to construct models for the dynamics of a
rapidly pitching airfoil across a range of angles of attack, encompassing flow that is fully,
partially, and nowhere attached to the suction surface. The success of this model in predicting
pressures and forces without all regimes shows its utility in modeling systems that exhibit
a broad range of features across different regimes. Moreover, we demonstrated that the
approach is sufficiently robust to be of use for experimental data.

Chapter 4 focused on investigating a particular feature of pitching airfoils, namely the
effect of sinusoidal pitching at close to the “preferred” wake frequency, which can substan-
tially change the structure of the wake, and in turn the forces on the airfoil. This systematic
investigation is necessary to understand the phenomena, and how it affects quantities of
interest, such as the lift coefficient. By using DMD, we were able to isolate the structures
corresponding to the natural and forcing frequencies. A thorough understanding such ef-
fects is important for designing modeling techniques that will be capable of predicting the
influence of such phenomena.

An alternative approach to generate nonlinear models from fluids data was presented in
Chapter 5, where it was demonstrated that an extension to the DMD algorithm could be
utilized to construct nonlinear models. Furthermore, it was demonstrated that this method
was particularly advantageous when the quality or quantity of the data available was limited.
In spite of the apparent robustness in this case, the effectiveness of data-driven modeling
procedures is unavoidably limited to some extent by the quality of data available. Because
of this, it is valuable to be able to quantify this effect, either theoretically or empirically.
This issue is explicitly considered for the DMD algorithm in Chapter 6. As well as providing
a theoretical explanation for why DMD can be sensitive to noise, this understanding was
leveraged to formulate alternative algorithms that give improved accuracy when dealing with
noise-corrupted datasets.

Successful modeling of fluids systems requires a combination of well chosen algorithms and
methods of analysis with correct physical insight and interpretations. Ideally, this process
can be symbiotic. On one hand, knowledge of a physical system can suggest the type of data
that should be collected, and the nature of the analysis and algorithms that should be used
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on the data. Conversely, an understanding for what the desired outcomes of applying an
algorithm are can lead to refinements and extensions of that algorithm to meet such demands.
It is hoped that the contents of this thesis help researchers in applying and advancing each
of these aspects.

The work of this thesis was motivated, in part, by preliminary results that used simple
linear models to control lift. Implicit in this motivation is the fact that the identification
accurate reduced-order models is not necessarily the final goal: ultimately, being able to use
such models for effective manipulation and control of a fluids system, for example, gives such
models more tangible value. The tools developed in this thesis will hopefully allow for these
steps to be taken for increasingly complex systems, in a manner which is robust to the type
of data being used to drive the procedure. More explicitly, a number of possible directions
for future work that would extend the research presented in this thesis include:

• Real-time estimation with limited sensors: Chapter 3 showed that, with a limited
number of measurements, one could equip the switched model with a Kalman filter to
improve the estimates of the measurements. However, this procedure was implemented
with phase-averaged data, and thus was could not be applied in real-time. It would be
valuable to investigate if effective real-time state estimation could be achieved using
only raw, noisy measurements.

• Modeling complex systems: The fluid/aerodynamic systems considered in this
work, particularly those studied with DNS, are relatively simple, both in terms of
the geometry (two-dimensional flat plate or circular cylinder), and the laminar, low
Reynolds number conditions. Applying the nonlinear system identification algorithm
discussed in Chapter 5 to more complex systems would be a logical next step.

• Assimilating physics with data: In Chapter 5, knowledge of the governing equa-
tions was utilized to guide the choice of observable functions. It could be possible to
use additional properties of the governing equations to further improve the accuracy of
identified models. For example, the energy-preserving property of the nonlinear terms
in the Navier-Stokes equations could be used to add constraints to the least-squares
optimization that underlies data-driven system identification.

• Further investigation and mitigation of noise effects on modeling algorithms:
The analysis in Chapter 6 was limited only to DMD. While the same analysis extends
trivially to related algorithms such as ERA, the effect of noisy data on EDMD, for
example, is complicated by the fact that the data typically undergoes nonlinear trans-
formations before the DMD algorithm is applied. A proper investigation of this could
be useful if trying to apply EDMD to noisy experimental data. Beyond this, one can
also analyze the effects of inaccuracies in on the tasks that such models might be used
for, such as state estimation or control. Interesting recent work related to this idea is
given in Dovetta et al. [46].

• Inferring other pertinent properties of fluids systems from modeling al-
gorithms: As well as being useful for prediction and control purposes, it would be
interesting to investigate what additional fundamental understanding of fluids systems
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can be extracted from models identified using the procedures discussed in this thesis.
For example, one might hope that the nonlinear models obtained in Chapter 5 could
be nutilized to calculate quantities such as the dominant eigenmodes of the linear sys-
tem about equillibria. On a somewhat related note, the DMD modes that emerge in
Chapter 4 at the frequency of the marginally stable wake mode look very similar to
what linear stability eigenmodes look like for such systems. Further investigation of
this could be fruitful for understanding the interacting between the dynamics of the
pitching and natural frequencies of instability in the wake.
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[61] F. Gómez, H. M. Blackburn, M. Rudman, B. J. McKeon, M. Luhar, R. Moarref, and
A. S. Sharma. On the origin of frequency sparsity in direct numerical simulations of
turbulent pipe flow. Physics of Fluids, 26(10):101703, 2014.

[62] P. J. Goulart, A. Wynn, and D. Pearson. Optimal mode decomposition for high
dimensional systems. In CDC, pages 4965–4970, 2012.

[63] K. O. Granlund, M. V. Ol, and L. P. Bernal. Unsteady pitching flat plates. Journal
of Fluid Mechanics, 733:R5, 2013.

[64] M. Grilli, P. J. Schmid, S. Hickel, and N. A. Adams. Analysis of unsteady behaviour
in shockwave turbulent boundary layer interaction. Journal of Fluid Mechanics, 700:
16–28, 2012.

[65] J. Grosek and J. N. Kutz. Dynamic mode decomposition for real-time background/-
foreground separation in video. arXiv preprint arXiv:1404.7592, 2014.

[66] M. S. Hemati, J. D. Eldredge, and J. L. Speyer. Improving vortex models via optimal
control theory. Journal of Fluids and Structures, 49:91–111, 2014.

[67] M. S. Hemati, M. O. Williams, and C. W. Rowley. Dynamic mode decomposition for
large and streaming datasets. Physics of Fluids, 26(11):111701, 2014.

[68] M. S. Hemati, S. T. M. Dawson, and C. W. Rowley. Unsteady aerodynamic response
modeling: A parameter-varying approach. AIAA Aerospace Sciences Meeting, 2015.

117



[69] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta. De-biasing the
dynamic mode decomposition for applied Koopman spectral analysis. arXiv preprint
arXiv:1502.03854, 2015.

[70] M. S. Hemati, S. T. M. Dawson, and C. W. Rowley. Parameter-varying models for
unsteady aerodynamic response prediction. to appear in AIAA Journal, 2016.
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expansion for systems with symmetry. Physica D: Nonlinear Phenomena, 142(1):1–19,
2000.

[125] C. W. Rowley and D. R. Williams. Dynamics and control of high-Reynolds-number
flow over open cavities. Annual Review of Fluid Mechanics, 38:251–276, 2006.

[126] C. W. Rowley, T. Colonius, and R. M. Murray. Dynamical models for control of cavity
oscillations. AIAA paper, 2126(2001):2126–34, 2001.

[127] C. W. Rowley, I. G. Kevrekidis, J. E. Marsden, and K. Lust. Reduction and recon-
struction for self-similar dynamical systems. Nonlinearity, 16(4):1257, 2003.

121



[128] C. W. Rowley, T. Colonius, and R. M. Murray. Model reduction for compressible
flows using POD and Galerkin projection. Physica D: Nonlinear Phenomena, 189(1):
115–129, 2004.
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