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Abstract

Ensuring the safety of airplane flight in icing conditions is an important and active arena

of research in the aerospace community. Notwithstanding the research, development, and

legislation aimed at certifying airplanes for safe operation, an analysis of the effects of

icing uncertainties on certification quantities of interest is generally lacking. The central

objective of this thesis is to examine and analyze problems in airfoil ice accretion from the

standpoint of uncertainty quantification.

We focus on three distinct areas: user-informed, data-driven, and computational un-

certainty quantification. In the user-informed approach to uncertainty quantification, we

discuss important canonical icing classifications and show how these categories can be

modeled using a few shape parameters. We then investigate the statistical effects of these

parameters. In the data-driven approach, we build statistical models of airfoil ice shapes

from databases of actual ice shapes, and quantify the effects of these parameters. Finally,

in the computational approach, we investigate the effects of uncertainty in the physics of

the ice accretion process, by perturbing the input to an in-house numerical ice accretion

code that we develop in this thesis.
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Chapter 1

Introduction

In an aggregate sense, aviation is one of the safest means of transportation that exists today.

According to statistics provided by the National Transportation Safety Board (NTSB),

of the 34, 678 transportation fatalities registered in 2013, only 443 were related to aviation,

compared to 32, 719 highway-related fatalities, 891 rail-related fatalities, and 615 marine-

related fatalities [15]. Ensuring the continuation and improvement of this tradition of safe

airplane flight is the responsibility of the Federal Aviation Administration (FAA), which

has the authority to establish regulations governing certification rules and standards to

assess the airworthiness of airplanes.

One longstanding phenomenon that poses issues for aircraft safety is the in-flight ac-

cumulation of ice on an aircraft in hazardous atmospheric conditions. Several high-profile

accidents have occurred where ex post-facto analyses have implicated icing as the culprit.

In October 1994, an Avions de Transport (ATR) ATR 72 series airplane was en route

from Indianapolis to Chicago when it encountered severe icing conditions; tragically, this

resulted in a catastrophic loss of control which crashed the airplane and killed all 68 pas-

sengers/crew. Subsequent investigation by NTSB, NASA, and others revealed that su-

percooled large drops (SLDs) had impinged on the airplane wing aft of the deicing boots

and created a ridge of ice on the upper surface that resulted in the loss of control [13]. In
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January 1997, an Embraer EMB 120 Brasilia model airplane had departed from Cincin-

nati and was headed for Detroit when it too experienced unrecoverable loss of control due

to ice accretion on the wings. The resulting crash killed all 29 people on board [14]. In

addition to these commercial aircraft accidents, icing has also caused a number of private

airplane crashes – 26 total accidents involving the Cessna 208B Caravan were recorded

between 1987 and 2003, with 47 total fatalities involved [99]. Between 1990 and 2000,

structural ice accretion accounted for 153 crashes [49].

These accidents (and others like them) have inspired the FAA/NTSB to devote signifi-

cant resources toward improving airplane safety with regards to icing. This is underscored

by a recent addendum to Title 14 of the Code of Federal Regulations (14 CFR), part 25

(Airworthiness Standards: Transport Category Airplanes), which enacts stricter certi-

fication rules for flight in supercooled large droplet (SLD) icing conditions [6]. Aside

from regulations, the FAA and others have taken an active interest in funding research

aimed at improving icing safety. As we will see in this thesis, the literature encompasses

work that addresses informational deficiencies across a wide range of topics, including

computation, experimental observations, fundamental physical understanding, sensitivity

analyses/optimizations, etc.

Notwithstanding this progress, ice accretion is a process which is, in practice, subject

to a wide range of uncertainty. The sources of these uncertainties are manifold, but what

is important is that the existing literature lacks a thorough treatment of this topic. Stated

plainly, this is the central objective of this thesis – to address the topic of uncertainty in

the ice accretion problem. The work involved in this area falls into one of a few categories:

describing/modeling sources of uncertainty, developing and/or implementing methods

for quantifying uncertainty and statistically exploring a parameter space, and analyzing

the statistics of a particular output quantity of interest. For completeness, we will address

all three of these categories in this thesis.
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1.1 Motivation and Goals

This work is motivated by the observation that airfoil ice accretion is a fundamentally

uncertain problem, which makes certification for safe flight challenging. Sources of un-

certainty can be meteorological (e.g., free-stream temperature), aerodynamic (e.g., turbu-

lence), or geometric (e.g., airfoil profile and ice shape). We have found that the literature

does not provide a thorough treatment of how to assess the statistical effects of these un-

certainties on important safety/performance metrics.

The goal of this work is to help close the informational deficiency gap regarding un-

certainty quantification (UQ) for the icing problem. We wish to apply the methods and

techniques developed by the uncertainty quantification community to problems in airfoil

ice accretion. Doing this will involve first modeling the sources of uncertainty in the icing

problem; this input-process modeling can be approached in several ways and constitutes

a large part of this thesis. Once an input parameter space has been determined, we must

select a set of tools for statistically exploring the input parameter space. The tools we em-

ploy in this thesis are chosen for their accuracy, efficiency, and other attractive properties

that will become evident in later chapters. We will use these tools to investigate how aero-

dynamic performance metrics (e.g., lift) are affected statistically by uncertainty in the ice

shape or in underlying physical conditions.

1.2 Approach

The approach we follow in this work is one which combines a number of techniques from

the uncertainty quantification, low-dimensional modeling, and computational modeling

communities. The breadth of techniques employed is needed to address the full scope of

the icing problem.

The general procedure in approaching UQ for any application is to first identify a set

of governing parameters whose variation controls the output quantity of interest, endow
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these parameters with a probability distribution that reflects the uncertainty present in

the problem, and then statistically explore the effects of this uncertainty by leveraging

data obtained at select locations in that parameter space. The first of these objectives is

arguably the most important, as the subsequent UQ results can only be meaningful if they

are generated using reliable and comprehensive data and/or input models. In the icing

problem, we will discuss three specific approaches for identifying a governing parameter

space – user-informed, data-driven, and computational.

The “user-informed” approach is the most straightforward to understand and imple-

ment. Here, the user is assumed to have a priori knowledge of a set of parameters that

controls all deviations in ice shape from some baseline mean shape. These parameters

are not arbitrary, however; they correspond to scalings/translations that empirically de-

scribe a wide range of ice shapes found in the literature. The user then proceeds to study

how aerodynamic performance is statistically affected by uncertainties in these parameters.

This approach is advantageous when the dominant sources of uncertainty are easy to iden-

tify, as is the case when those sources are simple scalings (e.g., the “height” of an ice horn).

Of course, care must be taken to ensure that the allowable parametric variations produce

ice shapes that are reasonably reflective of those observed in nature, and not arbitrary or

unrealistic.

The “data-driven” approach explicitly addresses the deficiencies of the user-informed

approach by grounding the allowable shape variations in actual data. In this method, we

first obtain a database of ice shapes (which may be either experimental or computational in

nature) generated under different physical conditions. We then build a parametric model

that captures the variations present in this dataset using Proper Orthogonal Decomposition

(POD). We further show how to incorporate physical information into this parametric

model, thereby producing a data-driven model of icing. As we will see, this method can

suffer from too much “diversity” in the data – that is, having a database whose members

are more dissimilar to one another requires a more complicated model (i.e., more POD
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modes) than a database whose members exhibit less variation. One way to alleviate this

situation is to use clustering techniques to partition the data into separate groups, which

results in several databases which are easier to model. We also show how these clustering

techniques can be employed as an empirical classification scheme, which allows us to learn

groupings for similar ice shapes.

The computational approach complements the other approaches by enabling an inves-

tigation of uncertainties in the physics that give rise to icing. As a part of this thesis,

we develop a computational ice accretion code, which calculates the ice shape on an airfoil

given different physical conditions. This code first computes the distribution of impinging

water droplets over the surface of the airfoil (using an aerodynamic flow solution provided

by a separate in-house CFD solver), and next computes the resulting ice shape by solving

mass and energy conservation equations. We apply the techniques of uncertainty quantifi-

cation to investigate how statistical variations in the governing physical parameters (e.g.,

temperature, liquid water content, accretion time) of this code can produce different ice

shapes with different aerodynamic characteristics.

Regardless of which of the three techniques just described is used to identify an uncer-

tain parameter space, a method must be used quantify the uncertainties that result. In this

thesis, we make extensive use of polynomial chaos expansions (PCE) and related quadra-

ture techniques in order to perform efficient and accurate UQ. We also, to a lesser extent,

make use of Latin Hypercube sampling (LHS) and quasi Monte Carlo sampling.

1.3 Contributions

We make several contributions in this thesis, all related to the application of modeling and

uncertainty quantification to the problem of airfoil ice accretion. Enumerated explicitly,

these contributions are as follows:
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1. Quantification of the statistical effects of ice accretion uncertainty by means of poly-

nomial chaos expansions (PCE), quasi Monte Carlo sampling, and Latin Hypercube

sampling (LHS).

2. Low-dimensional modeling of large databases of ice shapes using Proper Orthogonal

Decomposition (POD).

3. Development of a purely data-driven, statistical model of ice accretion.

4. Empirical classification scheme for databases of ice shapes using spectral graph par-

titioning and clustering techniques.

5. Development, verification, and implementation of an in-house computational ice ac-

cretion code.

6. Three different approaches for identifying uncertain parameter spaces in ice accretion

– user-informed, data-driven, and computational.
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Chapter 2

Polynomial Chaos

The purpose of this chapter is to provide a brief introduction to the methods of polynomial

chaos expansions (PCE), which are applied extensively in this thesis. For a more thorough

treatment, the interested reader is referred to standard references in the field (e.g., [34,

104, 55]).

One of the main objectives of this thesis is the quantification of uncertainty in aero-

dynamic performance metrics, resulting from uncertainty in the parameters that govern

the ice shape. We assume for the time being that we have perfect statistical knowledge

of these parameters – that is, we know how many parameters there are, whether they

are bounded or not, and what the joint probability density function for these parameters is

(how we arrive at this knowledge is a separate issue). Our goal is to quantify the statistical

relationship between these input parameters and an output metric. Traditionally, uncer-

tainty quantification (UQ) problems such as this have been approached through Monte

Carlo methods. In a Monte Carlo approach, one draws a population of N random samples

from the event space in question, with assurance of statistical convergence guaranteed by

the Central Limit Theorem at rate N−1/2. A drawback of these methods is that they are

sampling-based, and as such often require undesirably or unfeasibly large sample sizes. A
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relatively new alternative to this approach which is gaining increasing popularity is to use

polynomial chaos expansions (PCE).

Polynomial chaos is a spectral method, and as such is a fundamentally different ap-

proach to UQ than traditional sampling-based methods. In PC methods, one seeks to

approximate the input-output mapping from the uncertain parameter space to the output

quantities of interest. This is done by using polynomials that are orthogonal with respect

to the probability measure on the underlying input parameter space.

There are several advantages underlying this approach. First, if the input-output map-

ping is smooth, and the dimensionality of the input parameter space is relatively modest

(e.g., d < 5), then the methods used to construct a PCE (which will be discussed in

this chapter) can be much more efficient than Monte Carlo methods. Additionally, the

significance of obtaining an explicit polynomial surrogate cannot be understated – once

constructed, the PCE can be Monte Carlo sampled at almost no computational cost, and

local and global sensitivities can be evaluated analytically.

There are two main approaches to UQ using PCE: the stochastic Galerkin method, and

the stochastic collocation method (see Xiu[104] for more information about both). The

first method can be thought of as an extension of traditional Galerkin methods – it is used

to quantify the propagation of uncertainty through a set of governing differential equations

that are assumed to be known. The governing stochastic equations are orthogonally pro-

jected onto the span of a PCE basis, and all expansions are truncated at finite order. This

results in a new system of coupled, deterministic equations which must be solved for the

modes of the solution expansion. The stochastic collocation method, on the other hand, is

essentially a discrete Galerkin approach, whereby the integrals in the projection equations

are approximated by a quadrature rule of sufficient accuracy. This process results in the

evaluation of the governing equation at a finite number of nodes, or “collocation points.”

It is important to note that the former method is intrusive, in the sense that the gov-

erning equations (and any code which solves them) are fundamentally changed by the

8



Galerkin projection. The stochastic Galerkin approach can be very difficult to implement

when the governing equations are large or complicated, since the new, coupled equations

must be first derived and then solved. The stochastic collocation method, on the other

hand, does not require the derivation of new equations, and so any legacy codes for solving

the original equations may still be used. This represents a key advantage of the stochastic

collocation method: all that is required are solutions at select points in parameter space.

As such, the method need not be limited to applications involving governing differential

equations; in general, all that is required is a set of uncertain parameters along with an

output metric controlled by those parameters. It is for this reason that we will be using

the stochastic collocation method for PCE in this thesis.

2.1 General Formulation

Let Z = (Z1, . . . , Zd) be a vector of d independent random variables, with probability

density functions (ρ(Z1), . . . , ρ(Zd)), and let y(Z) : Rd 7→ Rm represent a mapping for

m different quantities-of-interest that depend on Z. In the context of this thesis, Z will

represent a set of random parameters that control the ice shape on an airfoil, and y(Z) will

be a vector of some aerodynamic performance metrics (e.g., lift, drag).

The goal of the method is to approximate each component of y(Z) in terms of some

basis functions Φk. Assuming – for ease of exposition – that y(Z) is simply a scalar, we

can write the N th-order PC approximate of y(Z) as:

y(Z) ≈ yN(Z) =
N∑

|i|=0

yiΦi(Z). (2.1)

Here, i = (i1, . . . , id) is a multi-index, and |i| =
∑d

j=1 ij.

The issue to address is how the basis Φk is chosen. Mutual independence of the random

variables Z1 . . . Zd implies that the probability space is simply the d-dimensional tensor
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product of each of the individual variables. Because of this, we can define the multivariate

basis functions Φk(Z) as simply the products of univariate polynomials:

Φi(Z) =
d∏

k=1

ϕik(Zk), (2.2)

where we choose these univariate polynomials to be orthonormal with respect to the

weighted inner product:

⟨ϕi(Zk), ϕj(Zk)⟩ =
∫
Γk

ϕi(Zk)ϕj(Zk)ρ(Zk) dZk = δij, (2.3)

where δij is the Kronecker delta function and Γk denotes the support of Zk. It follows from

this that the multivariate basis functions Φk are also mutually orthonormal with respect to

the weighted inner product:

⟨f, g⟩ =
∫
Γ

f(Z)g(Z)ρ(Z) dZ, (2.4)

where ρ(Z) =
∏d

k=1 ρ(Zk) denotes the joint probability density function of Z, and has

support Γ.

Eq. (2.4) establishes a direct correspondence between the input parameter probability

density function and the polynomial basis chosen. For example, if our input parameters

have uniform distributions, then the appropriate PC basis is the Legendre polynomials.

The univariate Legendre polynomials, defined on Z ∈ [−1, 1], are shown in Fig. 2.1 for

illustration.

2.2 Stochastic Collocation

We now turn our attention to a method for determining the coefficients yi in the expan-

sion (2.1). One approach is to calculate them by taking an inner product with Φj: because
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Figure 2.1: Univariate Legendre polynomials ϕk, k = 1 . . . 10.

the Φj are orthonormal, we have

yj = ⟨y,Φj⟩ . (2.5)

Note that one could also take y(Z) to be a vector of several different aerodynamic quan-

tities of interest: in this case, the coefficients yi in the expansion (2.1) are vectors, and

each component of yi is determined by an equation such as (2.5), for the corresponding

component of y.

The issue now is how we choose to approximate the projection integrals in (2.5). A

commonly used approach is to use a quadrature method, in which the inner product is

approximated discretely:

yj = ⟨y,Φj⟩ ≈
Q∑

k=1

y(Z(k))Φj(Z
(k))wk, (2.6)

where Z(k) denote a set of Q quadrature nodes, with corresponding weights wk. A possible

choice is to use Gauss quadrature [35], in which the function y(Z) is evaluated on a grid

consisting of the tensor product of n separate 1-D quadrature point sets in parameter space

(see Fig. 2.2 for an illustration). An attractive feature of Gauss quadrature is accuracy: by

definition, a univariate Gauss quadrature rule using Q points is exact for any polynomial

integrand of order 2Q− 1. It can be shown [35] that the nodes which satisfy this property

are given by the zeros of the Qth basis polynomial (i.e., ϕQ). However, because the multi-
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dimensional quadrature rule is a tensor product of univariate rules, this method does not

scale well with large d, since the number of quadrature nodes grows exponentially with

the dimension d.
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(a) 2-D nodes.
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(b) 3-D nodes.

Figure 2.2: Gauss-Legendre nodes for d = 2, 3.

An alternative to Gauss quadrature is to use sparse grid methods[84, 55, 33], in which

the total number of grid points used is lessened by using only a subset of the full tensor

product (see Fig. 2.3 for an illustration). Any valid quadrature rule may in principle be

used to construct a corresponding sparse grid rule; hence, the nodes need not be the zeros

of the basis polynomials (as is the case in Gauss quadrature). In particular, nodal sets

may be chosen which are nested, meaning that successive iterative grid refinements reuse

previous coarse grid points. This is an attractive feature, since it is possible to refine a PC

surrogate calculated on a coarse grid without “throwing away” those coarse grid points

(which is generally not the case in Gauss quadrature).

In the studies contained in this thesis, we compute PC expansions by stochastic col-

location using either Gauss quadrature or sparse grid construction (which will be noted

appropriately). The sparse grid constructions are computed using DAKOTA, an open-

source code for optimization and UQ developed by Sandia National Laboratory [1].
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Figure 2.3: Smoylak sparse grid constructions, using Fejer nodes of level 4.

2.3 Statistics and Analysis of Variance

If we have a sufficiently accurate PC expansion for the observable, defined as in (2.1),

then we may retrieve statistical moments through a few simple post-processing steps. For

example, the mean is approximated by the expected value of the PC expansion: noting

that Φ0 = 1, we have

µ = E[y] =
∫
Γ

yρ(Z) dZ = ⟨y,Φ0⟩ = y0. (2.7)

Similarly, the variance can be approximated as

σ2 = E[(y − µ)2] = ⟨y − y0, y − y0⟩ =
N∑

|i|=1

y2i . (2.8)

A nice feature of PC expansions is that the use of orthogonal polynomials makes it pos-

sible to analytically compute analysis of variance (ANOVA) metrics. For example, Sobol

indices, which provide a metric of the relative “importance” of each of the uncertain pa-

rameters on the output, may be directly computed from the PC model coefficients [87].

Specifically, the “total” Sobol index Ti is defined as the fraction of the total variance con-
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tributed by all those polynomials in the PC expansion which involve Zi:

Ti =
E[Var(y|Z−i)]

Var(y)
, i = 1, . . . , d

=
1

σ2

∑
j

y2j∥ϕj∥2
(2.9)

where j in the above expression is understood to index only those terms in the PC expansion

which involve parameter Zi, Z−i denotes all parameters except Zi, E[·] denotes the expected

value, and Var(·) denotes the variance.

2.4 Overview of PCE Algorithms

Putting together the results of this section, we can outline a simple set of steps which de-

scribes how to implement a PCE-based uncertainty quantification, based on the stochastic

collocation method:

Algorithm 1: PCE UQ: Full Tensor Grid
Input: Uncertain parameters Z = (Z1 . . . Zd) with known PDF ρ(Z)
Output: PCE surrogate yN(Z) =

∑N
|i|=0 yiΦi(Z)

(1) Basis: choose PC basis corresponding to ρ(Z)
(2) Nodes/Weights: compute the (N + 1) point univariate Gauss-quadrature
nodes/weights; form the d-dimensional tensor product
(3) Simulation: solve the deterministic simulation at each of the quadrature points
(4) Reconstruction: evaluate discrete projection integrals and solve for the PCE
surrogate
(5) Statistics: calculate statistics/ANOVA from PCE surrogate
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Algorithm 2: PCE UQ: Adaptive Sparse Grid
Input: Uncertain parameters Z = (Z1 . . . Zd) with known PDF ρ(Z)
Output: PCE surrogate yN(Z) =

∑N
|i|=0 yiΦi(Z)

(1) Basis: choose PC basis corresponding to ρ(Z)
(2) Initialization: compute initial coarse grid, set tolerance TOL
while err < TOL do

(3) Simulation: solve the deterministic simulation at each of the quadrature
points
(4) Reconstruction: evaluate discrete projection integrals and solve for the PCE
surrogate
(5) Direction: compute Sobol indices; next refinement direction is that which has
the highest Sobol index
(6) Refinement: compute refined grid points
(7) Convergence: compute convergence metric err (e.g., L2 norm of the change in
the response covariance matrix)

end
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Chapter 3

User-Informed UQ

3.1 Introduction

The intent of this chapter is to provide an introduction to the ways in which the UQ

techniques described in the previous chapter may be applied for the purposes of studying

airfoil icing. As such, the focus is three-fold: first, we wish to introduce a few canonical

classifications of airfoil/wing icing that occur in practice; second, we aim to parameterize

shape variations within these classifications using a few geometric parameters; third, we

will apply PCE techniques to quantify uncertainty in airfoil performance, and compare

the results against Monte Carlo simulations. The goal of doing this is to give convincing

evidence that PCE methods provide a computationally efficient and accurate framework

for icing UQ.

A brief remark is in order regarding what this chapter is not. As we will see, the param-

eters that control the ice shape used in this chapter are devised on the basis of engineering

intuition: we identify typical geometric scalings and translations that are commonly dis-

cussed in the icing literature, and use these as our parameter spaces. We do not attempt

more sophisticated means for either identifying or modeling the input stochastic processes

that control the ice shape. That subject is addressed in Chapter 4 (data-driven modeling
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of ice shapes) and Chapter 5 (computational/physical governing parameters). Our focus

here is on the PCE methods and how they apply to icing.

We structure this chapter in the following way. First, we provide a brief section re-

garding background information on the types of ice that we will be studying, particularly

with respect to the ways in which these shapes may be parameterized. Next, we set up

several UQ experiments and perform them with both Monte Carlo and PCE methods, and

compare the results. We note that the bulk of this chapter has been published; see [28].

3.2 Wing Icing Classifications

The consensus in the literature is that wing icing may be conveniently divided into a few

simple classifications. Each of these is briefly discussed in turn. The interested reader is

referred to the literature for a more in-depth discussion[17].

3.2.1 Rime Ice

This type of ice accumulates under icing conditions characterized by a combination of

colder temperatures and lower atmospheric liquid water content (LWC). Under such con-

ditions, there is enough heat transfer to completely freeze all (or nearly all) of the water

mass impinging on the wing from the freestream, and so the resulting shape closely follows

the impingement distribution. Discussions and studies of the general effects of streamwise

accretion on airfoil lift, drag, pressure distribution, stall characteristics, etc. can be found

in [18, 5, 12, 19, 22].

Aerodynamically, the consensus is that this category of shapes presents less of an aero-

dynamic danger than the other categories, since the accretions smoothly follow the airfoil

contour. For this reason, in this chapter, we do not study rime accretions. Instead, we

focus on the types of accretion that represent more dangerous threats to aerodynamic per-

formance.
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3.2.2 Ice Roughness

This category refers to the development of ice elements that are small compared to other

macroscopic ice accretions, but large enough to interfere with the boundary layer. These

elements generally have heights at least equal to the height of the boundary layer (and

in many cases much larger). Hence, they act as small-scale flow obstacles and induce

separation on the order of the height of the roughness element. Ice roughness may occur

as an early stage accretion, leading to the development of a large ice formation (e.g., horn

or ridge), or it may occur on the surface of a large ice formation. The latter case has been

empirically observed to occur in both glaze and rime accretions: areas with relatively low

heat transfer (such as near the leading edge) tend to be smooth, while areas with higher

rates of heat transfer tend to accumulate ice roughness.

Roughness elements can energize the boundary layer and promote heat transfer by in-

creasing turbulent viscosity and mixing, and since convective heat transfer plays a major

role in the ice shape, these elements can be crucial in determining the ice shape. It is

for this reason that much research has been invested in understanding and predicting the

development of ice with roughness. Hansman [37] first conjectured the connection be-

tween ice roughness and the role it plays in glaze ice shape development; Shin [82, 7]

performed experiments to confirm this hypothesis and empirically characterize ice rough-

ness distributions. Studies have been performed aimed at understanding the effects of ice

roughness distributions on boundary layer transitioning [45, 44, 25, 26], describing the

effects of roughness on airfoil lift [23, 54], and analyzing the regions of the airfoil surface

most sensitive to roughness [16].

While ice roughness may lead to early trailing-edge separation, it typically does not

cause the large scale separation bubbles characteristic of the more dangerous horn and

ridge ice. Additionally, ice roughness exists on a length scale below that which can be

modeled in our in-house meshing software; indeed, most computational icing codes treat
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roughness using subgrid models (e.g., as extensions to a turbulence model). For these

reasons, we will not discuss this situation any further in this chapter.

3.2.3 Ridge Ice

In order to combat ice development, de-icing mechanisms may be installed on lifting sur-

faces, the two most common of which are pneumatic boots (usually on smaller private

airplanes) and thermal surface heating protection systems. However, these mechanisms

are oftentimes limited to the tip of the leading edge and do not protect areas farther aft. If a

significant amount of the impinging water mass is not removed completely, it can runback

along the surface and refreeze in the unprotected areas, creating a sharp, discontinuous

step, or “ridge” [63, 4] (see Fig. 3.1 for a visualization).

Because of its discontinuous nature, an ice ridge essentially acts as a flow obstacle, and

has been investigated as such. In particular, it is often modeled with a quarter circle round

geometry at some location aft of the stagnation point. The effect of such a geometry on

the flowfield physics has been thoroughly studied [52, 51, 20, 50, 36, 53]. It is generally

acknowledged that the major parameters at play in this scenario are the size and location of

the quarter-round; spanwise uniformity is another factor in 3-D icing studies. Depending

on the size and location, the ridge may cause either a large-scale separation bubble, or

complete separation. It is therefore a particularly dangerous type of accretion, and hence

is one of the categories we will study in this chapter.

3.2.4 Horn Ice

Horn ice forms in icing conditions which are relatively warmer with higher amounts of liq-

uid water content in the free-stream. It can be understood in terms of a division between

areas near the stagnation point of the airfoil, for which rates of ice accretion are lower,

and areas aft of that, which experience higher rates. This differential in ice accretion rates

19



is fundamentally due to a similar differential in convective heat transfer on the surface,

which can be explained using elemental boundary layer theory. The Reynolds Analogy

implies that the local rate of convective heat transfer is proportional to the local skin fric-

tion [77, 80]. The local skin friction is influenced by the mean flow gradient inside the

boundary layer, as well as Reynolds stresses from turbulent eddies. Local surface velocity

on an airplane wing spikes at areas just aft of the stagnation point, which leads to higher

flow gradients and provides a partial explanation of the differential heat transfer. The

other mechanism is provided by ice roughness elements, which (as previously discussed)

increase the eddy viscosity and tend to be more highly concentrated aft of the stagnation

point [38, 37]. The combination of these two aerodynamic effects is responsible for the

heat transfer distributions that give rise to horn ice.

Horn ice formations are large leading edge protrusions that can disrupt the flow near

the leading edge upper surface, which is where most of the airfoil lift is generated. The

consensus amongst the icing community is that the parameters that dominate aerodynamic

performance are the horn height (normal to the airfoil surface), angle with respect to the

chordline, and location. Various studies have been performed investigating the relative

effects of these parameters on the leading edge separation bubble aft of the horn and on

airfoil performance [70, 71, 72, 76, 74, 73, 46]. The ability of the horn to separate the

flow near the leading edge makes this type of icing particularly dangerous, and it is for

this reason that horn ice is the other category of icing that we will study in this chapter.

3.3 Application of PCE to Airfoil Icing

The PCE stochastic collocation method presented in the previous chapter is applied to

the ridge and horn ice problems in this section, with the goal of quantifying uncertainty

in airfoil aerodynamic performance metrics, such as max lift coefficient and stall angle of

attack. The results are compared to Monte Carlo simulations.
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Both the ridge and horn cases are modeled as 2-D phenomena in the following stud-

ies. In both cases, we parameterize the variation in the ice shape using two independent

parameters. This parameterization is discussed in what follows.

We model ridge ice shapes as backward-facing quarter circle rounds, which are param-

eterized by the radius R of the round and the location Sr aft of the airfoil leading edge (see

Fig. 3.1). The radius R governs uncertainty in the size of the ridge ice, while the position

Sr governs uncertainty in the position at which the ridge forms aft of the deicing boot.

We select a profile for the mean horn geometry from Papadakis[73]. The two indepen-

dent stochastic parameters that govern perturbations from the mean shape are the height

H (normal to the airfoil surface) and separation distance Sh of the horn. The mean horn

profile used is shown in Fig. 3.1.
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Figure 3.1: Parameterization convention for the ridge and horn ice scenarios. The fig-
ure at the right represents the mean horn ice shape used in this work, obtained from
Papadakis[73].

3.3.1 Selection of Flow Solver and Aerodynamic Conditions

Practical implementation of uncertainty quantification analysis relies upon fast and accu-

rate flow solvers. In order to evaluate the aerodynamic characteristics for the different

ice shapes considered, we need a reliable, tested flow solver. In this thesis, we use use
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FLO103, a well-validated, in-house code for the solution of the two-dimensional Reynolds

Averaged Navier-Stokes (RANS) equations developed over the course of many years by

Martinelli and Jameson [59, 91, 90].

A one-equation Spalart-Allmaras turbulence model [85] provides closure for the

RANS, which is capable of accurately modeling mildly separated flow near the stall

regime. The discretization of the spatial operators is carried out by using a second order

cell-centered finite-volume method in which the viscous stresses are computed using a

discrete form of Gauss’ theorem. The key to the flow solver efficiency is a full approxima-

tion multigrid time-stepping scheme, which accelerates the rate of convergence to a steady

state. All calculations are performed on a boundary-fitted, structured “C”-mesh, generated

with an in-house hyperbolic grid generator. These meshes contain 513 cell-centered nodes

in the direction along the airfoil, and 129 cell-centered nodes in the direction normal to

the airfoil, with approximately 65 nodes inside the boundary layer.

In our problem setup, the airfoil profile used is the NACA 63A213 at a Reynolds num-

ber of Re = 4.5 × 105 and Mach number of M = 0.21. These conditions are chosen for

several reasons. First, we wish to verify our flow solver against published experimental

data from the ice accretion literature, and the conditions cited were investigated by Pa-

padakis [73]. As shown in Fig. 3.2, FLO103 is able to reproduce to high accuracy both

the airfoil lift curve and pressure distribution over the range of angles of attack for which

there are steady solutions.

Second, we wish to select a lower Reynolds number than that encountered in flight.

This is because higher Reynolds numbers would require finer grid resolutions, which

would require longer solution times. Because the foci of this paper are the icing parame-

terization and UQ methodologies, and because we verify all of our PCE solutions against

quasi-Monte Carlo solutions (which are computationally laborious), we select a lower

Reynolds number to ease the computational burden. Note, however, that the computa-
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tional approaches used in this paper are, in principle, applicable to the higher Reynolds

numbers that are representative of flight conditions.
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Figure 3.2: Comparisons of the lift curve (left) and pressure distribution at α = 8◦ (right)
for a NACA 63A213 airfoil at Re = 4.5 × 105 and M = 0.21. The experimental data are
provided in [73].

3.3.2 Ridge Ice Case
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Figure 3.3: Left: Ridge shapes corresponding to R = µR + {−2,−1, 0, 1, 2}σR with
σR = 40% (and with Sr = µSr). Right: Ridge shapes corresponding to Sr = µSr +
{−2,−1, 0, 1, 2}σSr with σSr = 5% (and with R = µR).

We begin with the ridge ice case and quantify uncertainty in three separate aerody-

namic performace metrics: CLmax, αmax, and L/Dmax. In each of the cases, there are two
23



uncertain input parameters: ridge radius, R, and ridge position, Sr. Both of these param-

eters assume independent Gaussian distributions, where µR = 1.39% of the chord, and

µSr = 20% of the chord; these were selected in agreement with Bragg[17]. We specify σR

as a percentage of µR and σSr as a percentage of the chord length. We present two UQ

investigations in which the standard deviation pairs (σR, σSr) take the values (10%, 1.25%)

and (40%, 5%). Fig 3.3 shows the independent effects of the ridge parameters on ridge

size and position.

As mentioned, we compare our PCE methods to quasi-Monte Carlo simulations [62].

The basic algorithm used in this scheme involves inverse transform sampling (see the work

of Devroye [30]) for selecting samples. The cumulative distribution space is sampled using

an ergodic dynamical system with an invariant measure that matches the desired distri-

bution. This algorithm has a notable advantage of efficiency over standard Monte Carlo

algorithms. Numerical experiments suggest that samples obtained through this method

converge in distribution at a rate proportional to 1/N , where N is the number of samples

. This is in contrast to standard Monte Carlo, in which the rate of convergence is 1/
√
N .
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Table 3.1: Comparison of Statistical Moments for Monte Carlo and PCE: (σR, σSr) =
(10%,1.25%)

CLmax αmax (deg) L/Dmax

MC PCE MC PCE MC PCE

Mean 0.87 0.86 9.8 9.6 16.6 16.5
Variance 0.0024 0.0025 0.16 0.13 4.0 4.4
Skewness −0.33 −0.37 −0.50 −0.96 0.56 0.40
Kurtosis 2.3 2.2 2.9 2.7 3.0 2.6
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Figure 3.4: Comparisons of PCE surrogate and quasi Monte Carlo results, including out-
put maps (top) and statistics (bottom) for “small” ridge uncertainty.
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Table 3.2: Comparison of Statistical Moments for Monte Carlo and PCE: (σR, σSr) =
(40%,5%)

CLmax αmax (deg) L/Dmax

MC PCE MC PCE MC PCE

Mean 0.85 0.85 9.2 9.2 19.4 19.7
Variance 0.020 0.022 0.72 0.69 110 120
Skewness −0.29 −0.38 −0.60 −1.4 1.3 1.2
Kurtosis 2.1 2.2 2.9 4.4 4.3 3.7
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Figure 3.5: Comparisons of PCE surrogate and quasi Monte Carlo results, including out-
put maps (top) and statistics (bottom) for “large” ridge uncertainty.

The top rows of Fig. 3.4–3.5 compare the surrogate maps created using the PCE

stochastic collocation method to results obtained through quasi Monte Carlo sampling

for CLmax, αmax, and L/Dmax. In these figures, the gray scale is chosen to represent differ-

ent values of dSr (dark to light transition indicates increasing values of dSr). The bottom

rows present normalized histograms of the quasi Monte Carlo results and compare them

to the results of propagating the input distribution through the PCE surrogate map. Ta-
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bles 3.1 and 3.2 give quantitative comparisons of the statistics for the Monte Carlo and

PCE method results for the ridge studies. The quasi Monte Carlo method used 500 sam-

ples per case, whereas the PCE method utilized 4th order polynomial expansions and hence

required a 5×5 collocation mesh. It should be noted that the Jacobi polynomials—not the

Hermite polynomials—were used as the basis in the PCE scheme. There are two reasons

for this choice. First, the input distribution in all cases was a truncated Gaussian (i.e., both

dR and dSr were truncated at ±2σ). Second, use of the Hermite polynomials might have

presented a practical problem, as the collocation nodes tend to lay far out in the tails of

the distribution. Sampling at these extreme nodes (corresponding to extreme ridge radii

and/or positions) might have presented a problem for the RANS solver. Hence, we used

a Jacobi expansion which approximates a truncated Gaussian in distribution and does not

require sampling at extreme positions. Specifically, denoting the univariate Jacobi poly-

nomials as {J (α,β)
i }, we used the linear expansion

∑5
i=0 aiJ

(2,2)
i to approximate a truncated

Gaussian. See Xiu[104] for an in-depth discussion and for the numerical values of the

coefficients ai.

Examining the data in Fig. 3.4 and 3.5, we observe that the dominant parameter in

all cases is the ridge radius, R; the ridge position Sr has a relatively smaller effect on the

metrics. A larger ridge size (i.e., increasing dR) leads to a monotonic decrease in CLmax

and L/Dmax. A ridge which is closer to the leading edge (i.e., decreasing dSr) also results

in a monotonic decrease in CLmax and L/Dmax. This is quite intuitive, since a large ridge

radius tends to promote large scale flow separation at lower angles of attack, and a ridge

closer to the leading edge disrupts more of the flow over the airfoil.

It is also clear that the agreement between the PCE and Monte Carlo schemes is best

for the metrics CLmax and L/Dmax; agreement for αmax is less satisfactory. This can be

attributed to the smoothness of the maps. The maps CLmax(dR, dSr) and L/Dmax(dR, dSr)

are both very smooth—in spectral terms, most of the energy of the PCE expansions which

approximate them is contained in the low order modes.
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In contrast, αmax(dR, dSr) is not as smooth, as can be seen in the Monte Carlo results,

particularly at extreme values of dR. This reflects a nontrivial amount of energy in higher

order spectral terms which are neglected in our 4th order PCE expansions. However, this

should be considered in context with how we obtain the values of αmax. Our algorithm

for detecting CLmax and αmax involves testing the curvature of discrete points on the lift

curve—if the curvature exceeds some calibrated bounds, then stall is assumed to have

occured, andCLmax and αmax are interpolated from the discrete points. As onemight expect,

this method works well for detecting CLmax, since that quantity is relatively constant near

stall. However, it does not perform as robustly for αmax, since that quantity is much more

sensitive to perturbations from the true value near stall. Thus, in a sense, we do not even

wish to recover the higher order modes for αmax, since these reflect the lack of robustness

of our algorithm instead of the general trends in the parameter space.

It should also be noted that if greater refinement of the PCE results for αmax is desired,

this could be achieved either by retaining higher order terms in the PCE expansion of

αmax (p-refinement), or by dividing the stochastic space into smaller, discrete elements

(h-refinement), or a combination of these tactics. In the next section on horn icing, we

explicitly demonstrate how to apply stochastic h-refinement to improve PCE results.

The effect of an increasing ridge radius on the flowfield is shown in Fig. 3.6. This

figure shows contours of x-momentum as well as streamlines of the flow for increasing

ridge radius. The solution for the smallest ridge closely resembles that of the clean airfoil.

A large-scale separation bubble forms aft of the ridge for the medium sized case before

reattaching to the airfoil surface; this separation bubble reduces lift and increases drag. For

the largest ridge, the separation bubble caused by the ridge is so large that the flow does

not reattach, leading to early stall. This figure demonstrates how different our UQ study

is from a sensitivity study, in which the effect of only small perturbations is investigated.

In contrast, we are investigating a large amount of uncertainty in ridge size and position,

and this leads to a large spectrum of possible flowfields.
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Figure 3.6: Flowfield for ridge ice cases at α = 6◦ in which dR = -80, 0, and 80% of µR.

3.3.3 Horn Ice Case

We approach the horn ice UQ problem in the following way. First, we identify a canonical

horn ice shape, which was originally produced by NASA’s LEWICE icing code for 22.5

minutes of ice accretion on a NACA 63A213 airfoil (see Papadakis[73] for more details).

That shape is identified in Fig. 3.1. We allow a scaling of the horn height by a parameter

which we denote as h, with h ∈ [0,1] (0 corresponds to the clean airfoil, and 1 corresponds

to the horn height given in the figure). We also allow a scaling of the inter-horn separation

distance by a parameter which we denote as s, with s ∈ [0.1,1.9] (that is, the inter-horn

separation distance in the figure can vary by±90% of its nominal value). We wish to inves-

tigate uncertainty in aerodynamic performance metrics given uncertainty in h and s, where

h is the positive half of the Gaussian N (0, 0.52) (which we will denote as N+
1/2(0, 0.5

2)), and

s is the Gaussian N (1, 0.452). It should be noted that both parameters are truncated at 2σ

distance from the mean. The horn variations produced by these parameters are shown in

Fig. 3.7.
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Figure 3.7: Left: Horn shapes produced by variation of the parameter h ∈
{0.2, 0.4, 0.6, 0.8, 1} (s = 1). Right: Horn shapes produced by variation of the parame-
ter s ∈ {0.1, 0.5, 1, 1.5, 1.9} (h = 1).
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Figure 3.8: Comparisons of PCE surrogate and quasi Monte Carlo results, including out-
put maps (top) and statistics (bottom) for horn uncertainty.

It is also important to point out that the half-Gaussian distribution that we are using

does not belong to any of the basic types of distributions typically used with polynomial

chaos expansions (i.e., Gaussian, uniform, beta, etc.). To apply our methodology, we must

represent the half-Gaussian distribution in terms of our chosen basis functions. More
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Table 3.3: Comparison of Statistical Moments for Monte Carlo and PCE: h =
N1/2+(0,0.5

2), s = N (1,0.452)

CLmax αmax (deg) L/Dmax

MC PCE MC PCE MC PCE

Mean 0.86 0.92 9.7 10.2 34 33
Variance 0.0097 0.014 0.84 0.29 170 170
Skewness 0.35 −0.56 −2.3 −0.43 0.38 0.38
Kurtosis 2.1 1.6 8.8 3.1 1.8 1.8

precisely, we need to determine the coefficients of ξ ≈
∑M

i=1 aiϕi(Z), where ξ is a random

variable, the PDF of which is our custom input distribution (which is the half-Gaussian

in our problem), and {ϕi(Z)}Mi=1 are the basis polynomials for one of the basic polynomial

chaos distributions (e.g., uniform). This mapping can be approximated by probability

space projection; for details on this procedure, see the work of Xiu and Karniadakis [104].

Table 3.3 gives quantitative comparisons of the statistics for the Monte Carlo and PCE

results for this horn study. Fig. 3.8 compares the PCE results to the Monte Carlo results.

The gray scale in the top row of plots is chosen to represent different values of s (dark

to light transition indicates increasing values of s). As can be clearly seen in Fig. 3.8, the

dominant parameter is the horn height scale (h); variations with horn separation distance

(s) are smaller by comparison. Unlike the ridge ice cases, there are discontinuities in the

maps for both CLmax(h, s) and αmax(h, s). These discontinuities may arise because we are

seeking only steady solutions with our flow solver. For horn heights h around 0.18, it is

likely that the natural flow exhibits unsteady vortex shedding and does not correspond to

a steady solution. This conjecture could be tested by running time-resolved calculations

for that region of parameter space; however, we leave this issue for future work since it

does not affect the demonstration or merits of the basic UQ approach and methodology

that is the focus of the present work.

The polynomial chaos expansions, which are linear combinations of smooth polyno-

mials, obviously cannot resolve such discontinuities. This results in errors in both the
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PCE surrogate maps and in the output PDFs for CLmax and αmax. This result illustrates

an important caveat in the use of our PCE approach: if discontinuities are present in the

response surface, then they can significantly impact the accuracy of the results. Regard-

less of whether the discontinuities are physical, this raises an important question worth

discussing: can anything be done to improve the PCE results when discontinuities are

present? One method well suited for this problem follows the traditional notions of h-

refinement. The general idea is to divide the stochastic collocation mesh into separate

regions and then implement PCE separately in each of those regions (while taking care to

preserve total probability). This results in piecewise-smooth expansions for our response

surfaces and results in significantly better agreement between the PCE and Monte Carlo

results, as shown in Fig. 3.9 and Table 3.4.

In our problem, the best approach is to divide the collocation mesh at the discontinu-

ity revealed by the Monte Carlo results. In practice, when Monte Carlo results are not

available, one would have to resort to an adaptive scheme, in which the PCE surrogate is

computed using a coarse mesh, and then this mesh is sequentially divided if local sensitiv-

ities (or total variance) exceed some preset threshold value. For more information on this

approach, see the work of Wan and Karniadakis [98].
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Table 3.4: Comparison of Statistical Moments for Monte Carlo and Multi-Element PCE:
h = N1/2+(0, 0.5

2), s = N (1, 0.452)

CLmax αmax (deg)

MC MEPCE MC MEPCE

Mean 0.86 0.85 9.7 9.9
Variance 0.0097 0.010 0.84 0.71
Skewness 0.35 0.50 −2.3 −2.5
Kurtosis 2.1 2.3 8.8 9.0
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Figure 3.9: Comparisons of multi-element PCE surrogate and quasi Monte Carlo results,
including output maps (top) and statistics (bottom) for horn uncertainty.
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3.4 Summary

Wing icing is not only dangerous to pilots, it is a complex physics problem which is sub-

ject to a large amount of uncertainty. Quantifying the exact effects of this uncertainty on

airplane performance is hence of great importance to airplane safety.

This chapter demonstrated the utility of polynomial chaos expansion (PCE) methods

as a fast and accurate method for quantifying the effects on airfoil performance of ice shape

uncertainty. The main advantage of this approach is speed and efficiency; each of the PCE

results in this paper required an order of magnitude fewer samples than those required in

the Monte Carlo-based schemes because of the efficiency of Gaussian quadrature. It is

hoped that improvements in icing UQ can contribute toward improved safety regulations

and protocols for pilots and a mitigation of icing-related accidents.
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Chapter 4

Data-Driven UQ

4.1 Introduction

The previous chapter provides us with convincing evidence that PCE methods can be ap-

plied to efficiently and accurately quantify uncertainty in aerodynamic performance, given

parameterized uncertainty in the ice shape. As we noted, however, the shape parameters

utilized in the previous chapter were devised on the basis of the engineering intuition and

on the collective experience of the icing community. One advantage of this approach is

that it enables us to identify the effects of the scaling/translation parameters that dom-

inate the aerodynamic characteristics without spending too much effort modeling actual

shape variations. However, this can also be seen as a weakness, in the sense that the ice

shapes studied do not reflect actual experimental/computational ice shapes, which raises

questions about whether the entire UQ method can be extended to analyze “real” data.

In this chapter, we intend to address these concerns by deriving sets of ice shape pa-

rameters from databases of actual ice shapes. In this way, we shift toward a “data-driven”

approach, in which we apply techniques from low-dimensional modeling to capture as

much of the variation in a given dataset of ice shapes as possible with as few parameters as

possible. Given a database of ice shapes, we first identify a low-dimensional set of shape
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parameters by using the Proper Orthogonal Decomposition (POD) of the dataset. This

gives us both a method for generating and studying artificial ice shapes as well as a way

to assess the statistical variation of our dataset.

Based on the variation in the data, we select a parameterized range in POD space to

perform uncertainty quantification (UQ).We generate artificial ice shapes by taking linear

combinations of the POD modes, and study the effects on aerodynamics by meshing the

resultant airfoil and computing its aerodynamic properties using our in-house flow solver

(FLO103). In order to perform the UQ efficiently, we use either adaptive sparse grid

polynomial chaos or Latin Hypercube sampling (LHS).

We show how the spatial modes generated by POD can be linked to physical informa-

tion about the underlying icing conditions (e.g., temperature, liquid water content). This

provides a means for statistically correlating the icing physics to the ice shape. The result

of this is a statistical model of ice accretion, entirely driven by data, which may be used to

benchmark or improve deterministic numerical ice accretion codes.

We will also explore the concept of applying clustering tools to the icing context. This

can be useful if, for example, there is “too much” variation in a database – that is, the

ice shapes contained in a database could vary so much from one another that many shape

parameters are required to faithfully represent them. We will find that there sometimes

exist subsets of ice shapes hidden within a database that can be grouped together on the

basis of mutual similarity. Segregating a large database of disparate shapes into smaller

subsets of closely related shapes by means of clustering algorithms will prove to be both

an effective method for reducing the number of shape parameters, and a tool for empirical

ice shape classification.

This chapter is organized as follows. First, we show how to identify low-dimensional

models for icing datasets. These models will form the input parameter space for our UQ

studies. Next, we apply the shape modeling approach to a computational dataset, and

then perform a UQ study on the resulting parameter space. Next, we apply the shape
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modeling approach to an experimental ice shape database. We link physical information

to this database and produce a purely data-driven model of ice accretion. We then explore

the concept of clustering the database into smaller subgroups. We then show how this

may be done, and perform UQ on the resulting subgroups. We note that some of this

material can be found in our recent AIAA paper [29].

4.2 Low-Dimensional Modeling using POD

The space of all possible ice shapes contains an infinite number of degrees of freedom.

Aside from the fact that such a space is impossible to completely study, it is also not

within our interests to study each and every shape perturbation that could ever possi-

bly occur; rather, we wish to restrict our study and the parameters that govern it to likely

ice shapes. The approach taken here is to consider a subspace of possible ice shapes, de-

termined from data, either from simulations (§4.3) or experiments (§4.4). In particular,

for a given dataset of ice shapes, we determine a low-dimensional subspace that optimally

spans the data using Proper Orthogonal Decomposition (POD) [42].

Denote the vector of parameters governing a particular ice shape by x ∈ RN (we will

have more to say about what N is and how we get it soon). We wish to approximate any

x as a linear combination of some basis vectors ψi, called POD modes:

x ≈
P∑
i=1

aiψi (4.1)

POD gives us one way of generating the basis {ψi} from the data. A key property is that

the basis identified by POD will be able to represent the dataset better than any other

linear basis, in the sense of projection error (using the standard Euclidean norm). The

POD modes are determined as follows. Let xj, j = 1 . . .M denote the elements in our
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dataset, and let X ∈ RN×M be the matrix with xj as its columns:

X =

x1 · · · xM

 (4.2)

The POD modes ψi are then given by the left singular vectors of the singular value decom-

position X = UΣVT (i.e., the columns of U). The POD eigenvalues (i.e., the diagonal

elements of Σ) give an indication of how much of the statistical variation of the dataset

is accounted for by each of the modes. When X is large (as it can be in our applica-

tions), we can use the “method of snapshots” [83, 42] to efficiently calculate the POD

modes/eigenvalues.

Using POD to model the ice dataset has effectively generated a (low-dimensional) pa-

rameter space to explore, along with coordinates of the data points in that space. In this

way, we have automatically converted a database of ice shapes into a parameterized UQ

problem. Casting this as a UQ problem has several potential benefits and uses:

• A linearly parameterized description of the ice gives us an easy and systematic method

of generating new ice shapes that effectively interpolate the shapes present in our

database. This makes it possible to produce and study a wide range of shapes.

• UQ tools allow us to compute and analyze the statistical relationships between our

responses (aerodynamics) and our inputs (ice shapes). For example, we can look at

the effect of different input distributions (e.g. uniform, Gaussian, etc.), correlations

between POD modes and lift coefficients, output statistics, etc.

• We can use UQ tools to produce a surrogate model of the input-output behavior

– using PCE, we obtain a polynomial mapping between the POD modes and the

aerodynamics. This can be advantageous as a predictive tool: if one wishes to know

the aerodynamics of a particular ice shape that has not been studied yet, one could
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compute it by simply evaluating the surrogate model (assuming this ice shape is in

the span of the POD basis).

Furthermore, using POD to generate our parameterization of the ice is advantageous

for a few reasons:

• The POD basis outperforms any other possible linear basis of the same dimension

for representing our data in the sense of projection error. In this way, it is an optimal

parameterization.

• The POD coordinates are linearly uncorrelated (since the modes are orthonormal).

This justifies an assumption of mutual independence amongst the parameters in our

UQ study, which underlies the UQ methods we will be using.

• The POD is a general method for data-processing, which makes it amenable to ana-

lyzing other ice shape databases that we have not yet considered. Thus, our approach

could be applied to other datasets as well.

As previously noted, the UQ methods that we will be using need to be efficient, since

we have moderately high dimensional parameter spaces to explore. In this chapter, we use

a combination of sparse grid PCE and Latin Hypercube sampling to perform UQ.

4.3 Simulation Database

In this section, we give our first example of how the techniques just discussed may be

applied to an ice shape dataset from the literature. For this example, our data consists of

cross-sections from an icing simulation performed on a 3D swept wing. This data and the

research related to it is described in detail in Broeren et. al. [21] and is shown in Figure

4.1.
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Figure 4.1: Horn ice accretion case on the NASA CRM, from Broeren et. al.[21].

The model geometry used in this data set was the NASA Common Research Model

(CRM) at 65% scale. The ice accretion model used was LEWICE3D, which is a NASA’s

3D icing code. This study represents 45 minutes of accretion time at an altitude of 10,000

ft and free stream velocity of 232 knots. The static temperature was −4o C, the mean

volumetric diameter (MVD) was 20 µm, and the liquid water content (LWC) was 0.55

g/m3.

4.3.1 Modeling using POD

Our first objective is to apply the POD machinery to the data set consisting of 95 individ-

ual horn ice cross sections on the CRM wing, with the objective of identifying the most

important ice shape features. We will first do a preprocessing step on our data – we will

map all of the airfoil cross sections into s-coordinates (arc length coordinates, relative to

40



the airfoil leading edge), so that the ice shapes may be represented as a function of a single

variable.

Let us denote the horn ice height (in s-coordinates, normal to the airfoil) as Nk(s),

where k indexes the cross-sections. A POD representation of this dataset will take the

following expansion form:

Nk(s) = N(s) +
M∑
i=1

cikψi(s), k = 1, . . . , S. (4.3)

Here, N(s) is the height (in s-coordinates) of the mean ice shape, ci is the ith POD

coefficient, and ψi(s) is the ith POD mode, and S is the number of ice shapes.

Fig. 4.2a shows the dataset. By inspection, we see that much of the variability in shape

is due to differences in width, position, and height. Physically, these differences are due

to the spanwise geometric variation of the 2D cross-sections of CRM wing, as well as 3D

crossflow along the wing and boundary condition effects (i.e., effects of having a wall at the

root and downwash at the tip). We can account for the spanwise geometric variations by

scaling/shifting each of the individual ice shapes to fit a template shape, which produces

Fig. 4.2b. The point of doing this is to separate variations in scaling from differences in

shape. As we will see, this will be reflected in our parameterization of the ice, in which three

of the parameters specify scaling, and the two POD modes specify shape perturbations.

If we pre-process the data with these scalings/shiftings, the POD expansion will be:

Nk(s) = hk

(
N(aks+ bk) +

M∑
i=1

cikψi(aks+ bk)

)
, k = 1, . . . , S. (4.4)
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In this framework, uncertainty could be accounted for by perturbing both the scaling

parameters and the POD coefficients:

ak 7→ ak + ξa

bk 7→ bk + ξb

hk 7→ ξhhk

cik 7→ cik + ξci for k = 1 ... M

(4.5)

Here, the first three parameters are perturbations on the nominal positions, widths,

and heights of all of the individual ice shapes. The last M parameters are global per-

turbations on each of the POD eigenmodes. The first three parameters were chosen by

scaling/shifting each individual shape so that the transformed shape most closely matches

a symmetric Gaussian template G(s) (which is close to the mean of the unshifted/unscaled

data):

(ak, bk) = argmin
a,b

∥Nk(as+ b)−G(s)∥22, k = 1, . . . , S.
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(b) Horn profiles scaled/shifted to fit a sym-
metric Gaussian template centered at zero.

Figure 4.2: Horn profiles, unaligned and aligned. The color map denotes spanwise posi-
tion along the CRM wing from root (0%) to tip (100%).

The absolute values of the POD eigenvalues are shown in Figure 4.3. As can be seen,

there is a sharp drop-off in the magnitude of the scaled/shifted POD eigenvalues at mode
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2. This implies that the first two modes capture much of the important features. We can

visualize this by reconstructing the dataset with one and two POD modes and examining

how well the shapes match the originals. Shown in Figure 4.4 are the original ice shapes

along with their reconstructions using one and two PODmodes. It can be observed that no

skewness is able to be represented until two POD modes are used. Qualitatively speaking,

the two-mode reconstructions show good agreement with the original data.
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(b) The mean and first 2 POD modes.

Figure 4.3: POD eigenvalues and modes for the scaled/shifted data.
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Figure 4.4: POD reconstructions of the ice. The color map denotes spanwise position
along the CRM wing from root (0%) to tip (100%).
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Figure 4.6: Variation of the POD modes on the mean (dashed black).

The next step in identifying the relevant parameters for a UQ study is to study the

spanwise variation of the POD coefficients. Figures 4.5 and 4.6 demonstrate these prop-

erties. As can be seen, both modes are most pronounced at the boundaries, since this is

where ice shapes deviate the most from the mean. The first mode has the effect of making

the ice profile wider and skewed left; hence, it is largest in magnitude on the inboard por-

tions of the wing. The second mode has the effect of skewing the ice profile right; hence,

it is largest in magnitude on the outboard portions of the wing.
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4.3.2 Airfoil Icing UQ: Five Parameter Scenario

Now that we have generated a POD representation of our horn shape data, we can inves-

tigate the effects of uncertainty in the POD coefficients. As shown in Eq. (4.4), we have 3

scaling parameters (height, width, and position), and 2 POD coefficients, so our parameter

space is 5 dimensional. We assume that all 5 of our parameters are uniformly distributed

between some bounds. The ranges that we choose, as well as their independent effects

on the horn shape, are displayed in Fig. 4.7. We wish to limit the parameters to ranges

observed in the data; therefore, we set the upper and lower bounds of the parameters to

plus/minus one standard deviation from the mean (where the means and standard devi-

ations are calculated from the dataset distributions). This effectively produces a uniform

distribution approximate to the actual distribution in the dataset.

In this UQ study, we will quantify uncertainty in the two response metrics CL and CD.

The airfoil cross-section used here was chosen to be the cross-section at 50% semispan

of the CRM, and the aerodynamic coefficients were determined at a Reynolds number of

5× 106, Mach number of 0.4, and angle of attack α = 3◦.

Table 4.1: Data correlations

CL CD

CL 1.00 −0.94
CD −0.94 1.00

a 0.09 −0.05
b −0.78 0.82
h −0.28 0.31

POD 1 −0.28 0.26
POD 2 0.33 −0.34

Fig. 4.8 presents the statistics for a Latin Hypercube sampling of the PCE surrogate

with 106 samples. This surrogate required 1,103 flow solver evaluations to converge, which
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Figure 4.7: Depiction of the ranges of each of the parameters in the 5-dimensional pa-
rameter space and their effects on the horn shape (colorbars indicate parameter ranges).
Dashed black ice shape in each subplot represents the mean shape used.

Table 4.2: Sobol Indices (Single Parameter)

a b h POD 1 POD 2

T 0.03 0.69 0.15 0.11 0.14

is reasonable for a 5 dimensional parameter space. Convergence is based on the change

in the L2 norm of the surrogate response covariance matrix falling below some threshold

(which we set to be equal to 10−4).

The first thing to note is that we can easily see that CL and CD correlate very strongly

(corr(CL, CD) = −0.94), which indicates that over our parameter range, we only need to
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Figure 4.8: Probability density functions for two response metrics in the 5 parameter UQ
study. These results required 1,103 samples in the adaptive sparse grid algorithm.

examine one of the two in order to understand the effects of our inputs on aerodynamic

performance.

In order to examine the independent relative contributions of each of our 5 input pa-

rameters to the variance of our responses, we examine both the data correlations and the

Sobol indices (defined previously in Chapter 2). Loosely speaking, the Sobol index gives

a measure of how much, on average, a parameter (or a combination of parameters) con-

tributes to the total variance of the response. It is clear from these metrics that variations

in horn position, b, contribute the most to the variance of our response and hence b is the

“most important” parameter. The caveat of this statement, of course, is that it only applies

over the limited parameter range we have chosen. Had we chosen to investigate larger

variations in height, for example, then height could very well be the dominant parameter.

The sign of the correlation of horn position with our responses indicates that perfor-

mance degrades (i.e., lower lift, higher drag) as the horn moves closer to the upper surface.

The physical explanation for this is intuitive, and can ascertained by inspecting Fig. 4.10.

The upper surface horn is a more obtrusive flow obstacle, and therefore promotes a larger

steady-state separation bubble aft of the horn than the equally-sized (but less obtrusive)

lower horn. This phenomenon agrees with similar findings in the previous chapter of this

thesis.
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Although horn position is the most dominant parameter, the other parameters do affect

performance; this can be revealed by examining the correlations in Table 4.1. As expected,

taller horns give worse performance than shorter ones. Performance is relatively insensitive

to variations in width, but there is a slight tendency for narrower horns to give worse

performance than wider horns. This is because narrower horns come to a sharper point

and hence promote larger leading edge separation bubbles, whereas wider horns have more

rounded points and hence are less severe. Perhaps not as immediately clear is the effect of

the POD modes on performance. One way to gain some insight into this is to project the

surrogate onto the two-parameter space of POD coefficients. This can be approximated

by sampling the surrogate, and then locally averaging out the three scaling parameters.

This produces Fig. 4.11, which demonstrates that the POD modes can interact in such a

way as to produce a distinct skew to the horn. Depending on the direction of this skew,

this can either help or hurt aerodynamic performance, since the length of the leading edge

separation bubble depends on the horn shape details.

Integrating all of these analyses together gives a clean, intuitive picture of the effects

of our 5 parameters on the flow. We find that the most dangerous horn shapes in our

parameter space are tall, narrow, upper surface horns that have a sharp upper skew shape;

the most benign ones are short, wide and rounded, located on the lower surface, and have

gentle downward skew (or no skew at all). This is affirmed by examining Fig 4.9, which

shows clear statistical clustering of the horn shapes in parameter space that produce the

best and worst aerodynamic performance.

4.4 Experimental Database

We now turn our attention to a different source of ice shape data – namely, ice shapes

generated from experiments in icing wind tunnels. The particular nature of the ice shapes
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(b) Unfavorable horns.

Figure 4.9: Statistical clustering of “good” (bottom 10% of CL) and “bad” (top 10% of
CL) horns in parameter space, based on 106 Latin Hypercube samples of the surrogate.
The parameter magnitudes have all been linearly scaled to lie between ±1.

(a) Lower surface horn. (b) Upper surface horn.

Figure 4.10: Flow field contours (of Mach number) for two horns of equal size and shape
that differ only in their relative positions. The horn in (b) is more normal to the freestream
flow than the horn in (a), and hence generates a larger scale leading edge separation bub-
ble.

in this dataset presents an opportunity for us to address several issues that were irrelevant

in the previous case study. Our goal in the preceding example was to use a dataset in

which the individual ice shapes exhibited only modest variation from the mean shape. This

ensured that we could obtain a faithful representation of the ice using only amodest number

of parameters (five). In this section, we are interested in applying the same techniques to
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(a) Favorably skewed horn. (b) Unfavorably skewed horn.
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Figure 4.11: Effect of POD coefficients on performance. Part (c) displays contours of CL

as a function of the POD coefficients, obtained by sampling the PCE surrogate and locally
averaging over b and h. Parts (a-b) display two horns that are the same size/position, but
differ in their POD coefficients. This gives rise to favorable/unfavorable skewness in the
shape.

a dataset whose entries represent a much wider range of physical conditions, and hence

a much wider range of shapes. As we will see, doing this comes at the cost of having

to retain more POD modes to accurately represent the ice, which translates into a much

larger UQ study. This will motivate the need for us to augment our current approach with

a data clustering preprocessing step. In addition to that, we will use this data as a means

to demonstrate how to analyze ice shapes that are not convex and hence cannot be cast into
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arc-length coordinates. Lastly, we show how to combine physical information about icing

with the POD ice shape model, which gives us a data-driven model of ice accretion.
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Figure 4.12: Scaling transformation exam-
ple. Blue: original shape and airfoil, red:
scaled ice and base airfoil.

Two resources that provide an excellent

sampling of 2D ice shapes for different air-

foil geometries subjected to different icing

conditions are Addy [3], and Wright and

Rutkowski [103]. For the studies used in

this example, we use the shapes found in

Addy. The shapes found in this database

were generated in a wind tunnel by expos-

ing different airfoils to a wide range of icing

conditions. The conditions used reflect the

guidelines and standards for atmospheric

icing conditions as defined by the Federal Aviation Administration (Federal Aviation Reg-

ulations 25 Appendix C). In that database, three clean airfoil geometries are used – one

which represents a business jet, one which represents a commercial transport, and one

which represents a general aviation aircraft. A plot of all of these shapes together on the

same airfoil is shown in Fig. 4.13. As can be observed, there is significant variation in

the size and shape details of the ice. These shapes were generated from variations in the

following range of icing conditions:

• Mach number ∈ [0.28, 0.39]

• Airspeed ∈ [175, 250] knots

• Attitude ∈ [1.5, 6.0]◦

• Free-stream temperature ∈ [−27.8,−0.7]◦C

• Surface temperature ∈ [−31.6,−5.0]◦C

• MVD ∈ [15, 160]µm

• LWC ∈ [0.310, 1.6] g
m3

52



• Exposure time ∈ [0.7, 45] min

See Addy [3] (pg. 40) for further details.
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Figure 4.13: Ice shape dataset, fromAddy[3]. c denotes the chord (set to 1 in all examples).

There are 145 total shapes present in the dataset that includes all base airfoils (business,

commercial, and general aviation). It is here that we encounter a problem that must be

solved before we are able to use this dataset – the ice shapes present were generated on

three different clean airfoil geometries, and it is not immediately clear how to account for

that. The approach we take to address this is to select one of the three clean geometries as

a base shape, find the transformations which scale the other two clean geometries onto that

baseline, and then apply these scalings to the data as appropriate. An example showing

the effect of this transformation is shown in Fig. 4.12. As can be seen, the example ice

shape shown (like most of the ice shapes in our database) exists at the tip of the leading

edge of the airfoil and hence is not affected strongly by the scaling transformation.

4.4.1 POD of the Ice Shape Data

In order to apply the methods above to our ice shape problem, we need to first determine

an appropriate vector space representation of the ice shapes. There is not necessarily one

unique way of doing this. One approach would be to cast all ice shapes into arc-length

coordinates (where ice shape height is measured normal to the clean base). However,
53



a drawback of this approach is that it is not possible to represent ice shapes which are

multi-valued in arc-length coordinates. While many of the ice shapes in this database

could be represented accurately in arc-length coordinates, a few of the shapes are suspect.

Moreover, one of the contributions we wish to make here is to demonstrate an alternative

method for vectorizing ice shapes which can handle any ice shape with no restrictions.

This method works as follows. We first find a rectangular window of space in which

all of the ice shapes in Fig. 4.13 fit, and we overlay this space with a static Cartesian mesh.

For a particular ice shape, we assign a value of 1 to a particular grid point if that grid

point is inside/on the body of the ice, or a value of 0 if it is not. It should be noted that

any points inside the clean airfoil were excepted from the grid, so that our mesh consists

entirely of points located either in the free-stream, or in the ice. This process produces

a “pixelation” of the ice shapes, and hence is a shape parameterization method that can

handle non-convex ice shapes (which would be multi-valued in arc-length coordinates).

The background mesh consists of roughly N = 7× 105 points. An example of this process

is shown in Fig. 4.14.

Figure 4.14: Illustration of how ice shapes are defined for POD. Each ice shape is defined
on a static Cartesian background mesh, the bounds of which form the rectangular window
of this figure. For a particular ice shape, a grid point is assigned a value of 1 if that point
is located inside the ice boundary. The ice boundary is shown in dotted red; points on the
ice are shown in dotted black.
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Having cast all of our ice shapes in the same N -dimensional vector space, we are now

in a position to compute the POD modes. Because we will ultimately be doing UQ on the

POD modes, we would like to retain as few modes as possible while still having accurate

representation power in that basis. This is the classic tradeoff between economy and accu-

racy in low-dimensional modeling. In order to make an informed decision on how many

modes to keep, we look at the POD eigenvalues, shown in Fig. 4.15.

We make the decision to truncate the expansion at order 10, where the magnitudes of

the eigenvalues have decayed by about one order of magnitude. A glance at the cumulative

sum of the eigenvalues in Fig. 4.15 shows that at 10 modes, the cumulative sum reaches

almost exactly two-thirds of its final value. A statistical interpretation of this is that two-

thirds of the variance exhibited by the dataset POD coefficients is retained by the first 10

modes [42]. This is a quantitative basis for discussing how accurate the representation

power of our model is. Certainly we could improve the fidelity of our reconstructions by

retaining more modes, but this would present a more computationally laborious UQ study.
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Figure 4.15: POD eigenvalues.

We display the mean shape and first 10 modes in Fig. 4.16. As can be seen, the

lowest order mode has the most effect on the underside of the airfoil, where – in our

dataset – there is a high probability of having ice (which is likely due to the fact that these

airfoils were tested at an angle of attack, making some amount of underside accretion
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relatively likely). The apparent function of the second mode is to simply add mass at

“intermediate” locations. The third mode clearly acts as a switch between upper surface

horn accretions and lower surface rime accretions. The fourth mode similarly discriminates

between rime-like accretions that protrude outward along the centerline of the airfoil, and

upper/lower surface horns. The higher order modes represent more detailed and extreme

shape excursions from the mean.
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Figure 4.16: Mean and POD Modes.57



We have already given some indication of the accuracy of our 10-mode ice shape model

by quantifying how much of the POD coefficient variance we retain. We can do a more

direct (and more visual) investigation of this question by actually projecting the ice shapes

onto the truncated POD basis and comparing results. It is important to realize that our

POD reconstructions will need to be filtered a posteriori. This is because the reconstruc-

tions will consist of grid point values that exist on a continuum on some range (around 0

to 1). However, our ice shapes are binary in nature – a particular grid point should either

be 1 if it is on the ice, or 0 if it is not.

To rectify this issue, we use the following simple filtering algorithm. For a particular

ice shape, we compute the maximum and minimum values of the entire grid, and we round

everything greater than half of the range to 1 (and, similarly, everything less than half to

0). Demonstrations of this process are shown in Fig. 4.17 for several ice shapes. We

observe that the quality of the reconstructions generally depends on how close to the mean

a particular ice shape is. We can easily compute this distance with the Euclidean norm

in POD coordinate space. Fig. 4.17 reveals that shapes that are close to the mean have

great reconstructions, while the agreement for more extreme shapes far from the mean

is less satisfactory. This agrees with our observation that the more exotic/extreme shape

perturbations exist only in the higher (not lower) modes, since they account for a relatively

small fraction of the dataset.
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(a) Unfiltered reconstruction. (b) Filtered reconstruction.
POD coordinate distance: 8th percentile

(c) Unfiltered reconstruction. (d) Filtered reconstruction.
POD coordinate distance: 76th percentile

(e) Unfiltered reconstruction. (f) Filtered reconstruction.
POD coordinate distance: 94th percentile

Figure 4.17: Left: Projection of ice shape (dashed black line) onto 10 POD modes. Right:
Filtered reconstruction (red), fitted boundary (green), and original shape (dashed black).
Shown below each subfigure group is the POD coordinate distance of each respective
ice shape from the dataset mean, expressed as a percentile of the distribution of dataset
coordinate distances.
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4.4.2 Airfoil Icing UQ: 10 Parameter Scenario

In accordance with the UQ approach we have followed thus far, the next step would be

to perform PCE-based UQ for the 10-dimensional parameter space, with output metrics

of lift/drag at some angle of attack. However, such an approach proves problematic, for

two reasons. First, the distributions of dataset POD coefficients do not conform well to

any of the “standard” distributions used in polynomial chaos (e.g., normal or uniform).

Of course, we could adopt the same procedure as we did in our last study, whereby we

approximate the actual distributions with uniform (or normal) distributions whose width

is controlled by the standard deviation of the actual distribution. However, this approach

is not very satisfactory, if our goal is to obtain output results whose statistics reflect the

actual data distributions.

The second issue with the PCE approach to this study is that, quite simply, it does

not seem to work well when applied to this particular problem. We know this because

we actually did attempt to implement the method on this problem; however, even after

running several thousands of simulations with anisotropic sparse grids, the resulting PCE

surrogate was clearly not converged to an accuracy sufficient enough to be believable (to

illustrate, a significant portion of the surrogate statistics indicated negative drag, a phe-

nomenon which was nowhere supported in the data). We conjecture that the reason for

this is polynomial overshoot in the surrogate, caused by non-smoothness in the parameter

space (akin to Gibbs overshoot).

This illustrates an important lesson about choosing the appropriate UQ method for

the problem at hand. Polynomial chaos, while useful in many scenarios, is no panacea.

Indeed, it is predicated on the fundamental assumption that the response surface of interest

is smooth, and it can certainly fail if this assumption does not hold. The UQ method for

this problem must, at minimum, be able to address that reality. Additionally, we would

like for the input process statistics to reflect the actual distribution of POD coordinates in
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the dataset. As a result of these constraints, we choose to use Latin Hypercube Sampling

(LHS) for this problem.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 4.18: Distribution of POD coefficients for the original dataset (blue) and LHS
(green).
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It is not our intention to give a detailed exposition of Latin Hypercube sampling; we

only review the basic concepts. The interested reader is referred to the literature on the

subject [60, 43, 40, 88]. LHS is a sampling technique in which the range of each individual

parameter is first divided into N bins, where N is the number of user-specified samples.

The relative lengths of these bins are controlled by a user-specified distribution of the

respective parameters, such that bins are shorter near areas of higher probability density.

A single sample is drawn from each of the N bins for every individual parameter, and then

these values are shuffled to create N parameter vectors. A defining characteristic of this

method is that every row and column of the parameter space hypercube contains exactly

one sample.

For this 10-parameter study, we choose to perform LHS with around 2,000 samples.

Fig. 4.18 displays the distributions of POD coefficients for the original dataset and the LHS

samples; the statistical agreement is excellent. As mentioned earlier, the geometry we use

as the base clean airfoil is the business jet airfoil from Addy [3]. We set the Reynolds

number of the flow to 5 million, the Mach number to 0.3, and the angle of attack to 3

degrees.

The resulting shapes – colored according to lift coefficient – are displayed in Fig. 4.19,

and the corresponding statistics are shown in Fig. 4.20. We see that the lift statistics show

a clear peak aroundCL = 0.4; this is due to the fact that a large subgroup of the LHS sample

shapes are smaller rime accretions for which there is not much deterioration in lift (we will

have more to say about this fact in the next section on database partitioning). The statistics

have a clear tail toward lower values of CL, indicating that performance deteriorates by a

relatively large amount for the more extreme shapes in the distribution.

We can analyze the database of LHS samples for statistical trends in several ways. One

interesting question to pose is, what are the most “dangerous” (i.e., low lift, high drag)

regions of space for ice accretion to exist, according to the data we have generated and

studied? If we simply view the ice shapes shown in Fig. 4.19 as points in space, where all
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points on the same shape have the same value of lift coefficient, then we are in a position

to compute local spatial statistics as an answer to that question. We only have to define

how we compute spatial subdomains. Fig. 4.21 displays the results obtained by using a

quadtree decomposition of the ice shape points, with a minimum bin size specified in order

to allow the cell sizes to reflect the local spatial point density. Fig. 4.21a shows the spatial

average, from which it is clear that lower surface rime accretions are relatively benign,

even if they are reasonably massive. Fig 4.21b shows the spatial variance. As would be

expected, this plot contains more noise than Fig. 4.21a (since averaging is a smoothing

operation); however, we can clearly see a horn outlined by the border of the areas of low

variance. The interpretation is that performance is very sensitive to upper/lower surface

horn accretions. Of course, this is widely known, but with the data we can quantify the

horn shape that gives the most aerodynamic sensitivity (for the range of shapes that can

be represented by our parameter space).
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Figure 4.19: 1,921 Latin Hypercube samples.

POD of a database of ice shapes creates a set of spatial modes that optimally explain the

database. Having statistically studied a wide range of shapes generated from these modes,
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(a) Lift coefficient statistics.
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(b) Drag coefficient statistics.

Figure 4.20: Statistics computed using 1,921 LHS samples.

we consider the next natural question: what are the statistical effects of these modes on

aerodynamic performance? That is, we wish to understand performance in terms of the

dominant spatial characteristics of the ice.

We can understand the general effects of the POD modes by examining the coefficients

of those shapes in the upper and lower deciles of CL. Fig 4.22 displays these statistics,

along with the statistics of the original LHS distributions, for the first four modes. As

we mentioned previously, the effect of modes 1 and 2 is to add ice mass, and since the

top decile of CL is populated with low ice accretions, the statistics for that decile skews

heavily negative. On the other hand, the lower decile ofCL is populated with large, massive

shapes, which is reflected in a slight positive skew in mode 2 (relative to the original LHS

distribution). Mode 3 acts as a switch between lower and upper surface accretion. The

top decile of CL skews slightly right of the original LHS distribution for this mode, which

reflects the notion that lower surface accretions are more benign than upper surface ones.

Surprisingly, however, there does not appear to be any relative skew in the distribution

of the lower decile, which might be expected on the same intuitive grounds. Mode 4

acts as a switch between large rime accretions along the chordline and large horns on the

upper/lower surface. As expected, the lower decile of CL tends to skew toward range

giving horns, while the upper decile is tightly distributed around zero.
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(a) Spatial average of CL.
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Figure 4.21: Spatial statistics of CL, computed from LHS sample shapes.

4.4.3 A Data-Driven Ice Accretion Model

It might be objected that we have not learned anything fundamentally new about icing

physics from these observations; while this is true, it misses the point of what we are

doing. The approach followed in this chapter has been to build and study icing models

purely from data, with no appeal to the underlying physics. We have already seen the

first usage of this in terms of uncertainty quantification – that is, we utilize a database of

observations to build a model which we can study statistically. This allows us to quantify

the range of aerodynamic performance corresponding to the range of variation expressed

by the underlying data.
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A second benefit of our approach may be realized if we link the spatial features (i.e.,

modal coordinates) of our data to the physical conditions under which these shapes were

generated. We have data on the wind tunnel conditions under which all elements of

the database were generated, including temperature, liquid water content, and accretion

time, but until now, we have not made use of it. Melding physical information into our

database introduces the possibility of making a “quasi-physical” model, by which we mean

a data-derived POD model whose coefficients depend on physical conditions. With this

approach, we are attempting to construct a statistical model of ice accretion, where the

inputs are physical conditions (accretion time, temperature, and LWC) and the outputs

are shape/aerodynamics. This would be useful in two ways. First, it would provide a

means for comparing, benchmarking, and even improving physics-based numerical codes.

Second, the data-driven model could be non-deterministic, in the sense that the mapping

from physical parameters to POD coordinates need not be deterministic (indeed, the data

shown in Fig. 4.23 suggests that that mapping might not be deterministic). This could

account for non-deterministic sources of uncertainty in ice accretion, which is not currently

accounted for in computational codes.

We begin by examining the relationships between the modal coordinates of our

database and their physical conditions. Fig. 4.23 displays 2D projections of the POD

coordinates, colored according to accretion time, static temperature, and liquid water

content. The trend which stands out most obviously is the relationship between the modal

coordinates and accretion time. Fig. 4.23a reveals a very distinct clustering (which, as

we will see in the subsequent section, could actually have been ascertained with no prior

knowledge of accretion time as well). Fig. 4.23b shows similar segregation between

low-time accretions, which are clustered around the origin of the figure, and high-time

accretions, which are spread over larger numerical values of the coordinates. As we have

already noted, modes 1 and 2 simply add ice mass, and so it should be no surprise that

they clearly separate the smaller accretions from the larger ones.
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Fig. 4.23c, 4.23d show the temperature dependence of the coordinates, while

Fig. 4.23e, 4.23f show dependence on LWC. Interestingly, there does not appear to

be any discernible relationships between first two modes and either temperature or LWC.

This is perhaps because those modes simply differentiate “big” from “small” shapes,

which is mostly just a function of accretion time. However, there are apparent separations

in the large ice shapes in mode 4 coordinates. We see that the large shapes with colder

temperatures and lower LWC tend to have positive mode 4 coordinates, while those

with warmer temperatures and higher LWC tend to have negative mode 4 coordinates.

This provides further confirmation that mode 4 is essentially a switch between rime-like

conditions and glaze-like conditions.

Having imported physical information into our model, we are now in a position to

provide some encouraging evidence in favor of a purely data-driven icing model which re-

spects icing physics. Shown in Fig. 4.24 are (unfiltered) ice shapes which were generated

by specifying physical condition ranges. To create them, we filter the database to select

only that subset of shapes that fit our criteria. We can then select the POD coefficients

by examining the modal coefficient statistics of that subset. For example, the shapes in

Fig 4.24 were created using the mean values of the modal coefficients of the downselected

subgroups. As can be seen, we obtain qualitatively convincing horns and rime accretions

simply by specifying the physical conditions appropriately.

We can take this one step further and make a “random” ice shape generator which is

purely data-based. Fig. 4.25 shows 100 shapes for both rime and glaze icing conditions.

These shapes were generated by filtering the database for the shapes that match our crite-

ria, creating a histogram of the POD coefficients of those shapes, and drawing 100 random

samples from that distribution. The resulting shapes clearly are clustered about the mean

shapes shown in Fig. 4.24, and demonstrate a significant amount of variation while still

being generally “believable”, given the physical conditions used to create them.
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(a) Mode 1. (b) Mode 2.

(c) Mode 3. (d) Mode 4.

Figure 4.22: Statistics for the top/bottom deciles of CL, along with the original LHS
distributions.

69



−100−50 0 50 100 150 200 250
Mode 1

−100

−50

0

50

100

150

M
od

e 
2

0

20

Ti
m

e 
(m

in
)

(a) Time (modes 1 and 2).

−150−100−50 0 50 100 150 200
Mode 3

−150
−100

−50
0

50
100
150

M
od

e 
4

0

20

Ti
m

e 
(m

in
)

(b) Time (modes 3 and 4).
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(c) Temperature (modes 1 and 2).
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(d) Temperature (modes 3 and 4).
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(e) LWC (modes 1 and 2).
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(f) LWC (modes 3 and 4).

Figure 4.23: Distribution of POD coordinates, colored according to physical parameters
(accretion time, static temperature, and liquid water content).

70



(a) Time > 10 min, temperature > -10oC,
LWC > 0.45 g/m3.

(b) Time > 10 min, temperature < -10oC,
LWC < 0.45 g/m3.

(c) Time < 10 min, temperature > -10oC,
LWC > 0.45 g/m3.

(d) Time < 10 min, temperature < -10oC,
LWC < 0.45 g/m3.

Figure 4.24: Purely data-driven model ice shapes.
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(a) Time > 10 min, temperature > -10oC,
LWC > 0.45 g/m3.
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(b) Time > 10 min, temperature < -10oC,
LWC < 0.45 g/m3.

Figure 4.25: Random ice shapes (100 samples each) for physical conditions matching horn
(left) and rime (right) accretion.
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4.5 Database Partitioning

One of the observations we made in the last section regarded the idea that the shapes

in our database can be classified with respect to physical conditions. For example, we

saw that accretion time seemed to give a very stark division between smaller and larger

shapes. Motivated by this, we use this section to expound on the topic of clusters within

our database. We have already seen how shapes may be classified and the database filtered

on the basis of physical conditions, so that topic needs no further discussion. Rather, our

focus in this section is how clusters in the database may be deduced without using physical

information at all. The clustering we perform in this section is done solely on the basis of

the shape of the ice. This approach could be useful in terms of improving the POD model:

if we separate a database into groups based on maximizing in-group shape similarity, then

we could potentially obtain two highly accurate POD models (one for each group) as

opposed to one model of lower accuracy. It might also be useful as an empirical analysis

tool: we often assume that ice shapes grouped together on the basis of similar physical

conditions will look similar, but to what extent is that true? This method of grouping

shapes can help answer that question.

In order to cluster the shapes in our database into self-similar groupings, we must

first have some means for quantifying how similar two shapes are. As we described last

section, an individual ice shape element of our database consists of a vector of binary el-

ements, which indicate whether or not there is ice at a particular location on a 2D back-

ground mesh. Defining our ice data in this way makes several similarity/dissimilarity

metrics possible. We investigate the use of two different similarity metrics, each with two

different approaches to clustering. The first involves defining similarity using the “exclu-

sive or” (XOR) of two different ice shapes, computing the weighted graph Laplacian of

the ice database under this metric, and then finding an optimal graph partition using the

Fiedler vector. In the second method, we define similarity as the distance between the
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POD coordinates of two different ice shapes, and then apply k–means clustering on the

POD coordinates. As we will see, both methods yield similar clustering results.

4.5.1 The XOR Similarity Metric

Our present goal is to first connect the ice shapes of our database by using the XOR

of two ice shapes as a measure of similarity. We interpret the ice shape database as an

undirected graph, consisting of a collection of vertices and edges (V,E), corresponding to

the ice shapes and their associated similarities. In order to define similarity between two

ice shapes, we begin by computing the XOR of two ice shapes (an example of which is

shown in Fig. 4.26).

Figure 4.26: Example depiction of the XOR of two ice shapes.

The sum of this vector yields a measure of distance – two ice shapes are identical if

the XOR of them equals zero, and dissimilar if it is large. Visually, this distance measure

we are using corresponds to the total volume of ice that two ice shapes do not share in

common (shaded grey in Fig 4.26). Finally, we define similarity between two ice shapes
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by applying a Gaussian kernel function to the XOR summation:

wij = exp
(
−1

2

d2ij
σ2

)
dij =

NG∑
k

[XOR(xi, xj)]k

(4.6)

here, xi denotes an ice shape defined on the 2D background mesh, and NG denotes the

total number of grid points on that mesh, dij denotes the distance between two shapes, and

wij denotes the associated similarity. In general, there are no solid theoretical guidelines

for choosing the user-defined parameter σ. Intuitively, it must be on the order of the

length scale one expects to observe in connected clusters. This can be estimated from the

database itself: compute the vertex-to-vertex distances between all vertices in the dataset,

and choose a value of σ to represent some measure of locality that reflects the resulting

statistics. We display the database distance statistics in Fig. 4.27.
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Figure 4.27: Distribution of point-to-point XOR distances, normalized by σ = 3000.

In Fig. 4.27, we have chosen σ = 3000. Notice that this choice of σ is large enough that

the first (and largest) peak of the distance distribution is within about 5σ, and small enough

that the remainder is outside of that range. Thus, we have implicitly defined locality based

upon the first/largest peak in the distance distribution. Finally, in order to sparsify the

distance matrix, we round any value of wij corresponding to a distance dij greater than 3σ

in magnitude to zero. It might be objected that this choice of σ appears too small, given the
74



range of the distance statistics in Fig. 4.27. Choosing σ is a bit of a balancing act: too small

of a choice gives low graph connectivity (which defeats the purpose of making a connected

graph); too large of a choice gives high graph connectivity, which makes partitioning and

identifying clusters more difficult (since, in such a case, all elements are closely connected

to one another). Aware of this, we experimented with several values of σ, and found that

this value yields a good trade-off between low and high graph connectivity.

4.5.2 Graph Laplacian and Spectral Partitioning

Equipped with both distance and similarity metrics, we are now in a position to calculate

the graph Laplacian and use it to partition the graph. We do not wish to divert focus to a

lengthy description of spectral partitioning; we briefly note the basics here. The interested

reader is referred to the literature for details [58, 97, 31].

The Laplacian is defined as:

L = D −W (4.7)

where W is the similarity matrix with entries wij (defined, for our setting, in Eq. 4.6),

and D is the degree matrix with entries di =
∑N

j=1wij (N is the number of database

elements). The eigenspectrum of this matrix provides useful information concerning the

connectivity of the graph. In particular, consider an ordering of the eigenvalues λ1 ≤ λ2 ≤

· · · ≤ λN . The k eigenvalues equal to zero indicate the number of connected components

in the graph, and the eigenvector corresponding to λk+1 (referred to as the Fiedler vector)

gives a grouping of the vertices which indicates connected subgraphs.

The ordered eigenvalues of the Laplacian are shown in Fig. 4.28. As can be clearly

seen, the first 49 eigenvalues are zero (to machine precision), with a clear jump to a nonzero

eigenvalue λ50. One way to visualize the clustering produced by the Fiedler vector is to
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Figure 4.28: Eigenvalues of the Laplacian (ordered by magnitude).

sort the vector components by magnitude and re-order the distance (or similarity) matrix

by this indexing; this is shown in Fig. 4.29.

The eigenvectors corresponding to λ = 0 give disconnected clusters within our

database. As we mentioned, there are many of these. This is caused by our choice of the

parameter σ in defining the shape similarity. What we find as a result of this choice is that

many of the large accretions are dissimilar enough from any of the other shapes that they

effectively form their own unconnected subclusters. However, there is one large cluster

of 94 elements, formed by the smaller ice accretions, which is revealed by one of the zero

eigenvectors and is shown in Fig. 4.29c. The subpartitioning of this cluster according

to the Fiedler vector (Fig 4.29f) is fairly trivial – it simply involves cutting off the single

most dissimilar horn. The eigenvector corresponding to the next smallest eigenvalue

partitions off a larger subgroup of accumulations (Fig. 4.29i).

As we stated earlier, one of the potential uses of this clustering scheme is to demonstrate

a means for doing empirical ice classification, as opposed to classifying shapes based on

the underlying physical conditions. We can compare the modal coordinates of the clusters

generated to the modal coordinates colored by physical conditions (see Fig. 4.23) to get

a sense of how similar/dissimilar these schemes are. Unsurprisingly, the first graph par-

titioning (formed by the zero eigenvector) corresponds almost exactly to the partitioning

that would occur on the basis of accretion time (compare Fig. 4.29d to Fig. 4.23a). Inter-
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Figure 4.29: Clusters computed using the eigenspectrum of the Laplacian, as well as the
associated POD coordinates.
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estingly, the subpartitioning of this group does not appear to correlate much with time or

temperature, although it does seem to be related to reasonably high values of LWC (com-

pare Fig. 4.29j to Fig. 4.23e). This subpartition of shapes appears to be a combination

of rime-like accretions and smooth upper-surface horn accretions that are clearly visually

differentiated from the rest of the group, although that would not necessarily be expected

on the basis of the temperature/LWC combinations present. It is important to recall that

our database ice shapes were originally generated on one of three different airfoils (before

being scaled onto a base airfoil for our analysis), so it is possible that this might account

for the subdivision we have observed. Notwithstanding that, however, these observations

demonstrate the utility of this empirical taxonomy scheme: sometimes, the rime/glaze ac-

cretion behaviors might not follow the “rules of thumb” that one would expect, and so if

we wish to separate similar shapes in some general dataset, it might benefit us to do so

using a partitioning scheme which is independent of the physical conditions.

4.5.3 Clustering in POD coordinates

We have already demonstrated one method for partitioning the graph of ice shapes using a

similarity metric and the associated graph Laplacian. Another option would be to perform

clustering in POD coordinate space (which we have already computed). The distance

metric in this case would simply be the Euclidean distance. The clustering algorithm we

choose to use is k–means [57, 56, 39].

The results of applying this clustering technique are shown in Fig. 4.30. In this fig-

ure, we have applied 2-means clustering twice in a recursive fashion: we apply it once

to separate the database into two groups, and then apply it again to one of the groups.

The first application of 2-means separates the small from the large ice shapes in almost

the same way as the Laplacian spectral clustering does, with the notable exception of a

few large horns and one large rime shape that do not visually appear to fit with the rest

of the group. The second round of 2-means separates this group into two subgroups. As
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Figure 4.30: K–means clustering of ice shapes in POD coordinates. Groups 1 and 2 were
produced as a single group after applying 2-means; applying it again yields the blue/red
division.

with the subdivision produced with spectral clustering, this subdivision seems to separate

the rime-like accretions from the horn-like shapes. Interestingly, there do not appear to

be any distinctions between these subdivisions on the basis of physical information (i.e.,

accretion time, temperature, or LWC). Again, it is possible that different original base

airfoils might partially explain this phenomenon, but nonetheless it is still illustrative of

the use of the empirical classification scheme, which might find data trends unrevealed by

physical conditions.

Comparing the two clustering methods, we see advantages and disadvantages to both.

Spectral clustering produces a better separation between the large and small ice accretions,

but it could be argued that visually, k–means produces a qualitatively better subdivision

between the horn and rime-like accretions within the group of small shapes. Regardless,

these differences are slight, and it seems that either method produces satisfactory clusters.
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4.5.4 Cluster Modeling

We have already seen how clustering can help classify shapes based on similarity. A useful

consequence of this is that it is often easier to model a cluster than it is to model the entire

database, since the cluster has less variation. We briefly demonstrate this here on the

cluster of small ice shapes.

Modeling is straightforward; we simply apply POD to this group of shapes. The first

advantage of limiting ourselves to only the smaller shapes is that because these shapes

are less extreme, they can be cast into arc-length coordinates (which cannot in general be

done with the larger shapes, since some would be multi-valued in arc-length coordinates).

Doing this is advisable, because it effectively reduces the spatial dimensionality of the ice,

which makes it possible to capture more of the ice features with fewer modes.

We show the transformation of the first cluster into arc-length coordinates in Fig. 4.31.

The mean and leading POD modes, as well as the cumulative sum of the POD eigenvalue

magnitudes, are shown.

As can be seen, the first four POD modes captures about 80% of the total variation in

the dataset, and the first eight capture about 90%; diminishing returns occur after retain-

ing higher order modes in the model. For the purposes of performing UQ on the shape

variation, there is a trade-off between retaining more POD modes to ensure a well-resolved

model, and retaining less modes to keep the dimensionality of the parameter space low.

We therefore choose to truncate the expansion at 5 modes.

4.5.5 Cluster Uncertainty Quantification

One of the benefits of doing the cluster analysis is that when we restrict our analysis to

the cluster of closely related shapes, we are more likely to be able to apply the machinery

of PCE (as opposed to the LHS we were forced to use last section), and in so doing, we
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Figure 4.31: Modeling of the first group of ice shapes.
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Figure 4.32: Shapes corresponding to varying each of the individual POD modes about
the mean shape, in increments of one standard deviation, up to ±3 standard deviations.

81



retain all of the benefits of that approach (i.e., numerical surrogate, easy global and local

sensitivity computations, etc.). Here we use the PCE approach to study the statistical

effects that ice shape variation (as derived from the cluster of small shapes) has on airfoil

aerodynamics. As our entire work rests on a data-based approach, we wish for our results

to reflect the data we have. Thus, we should attempt to use a PCE input distribution that

is in decent agreement with the empirical statistics from the data.

We choose to fit a normal distribution to each of the empirical POD coefficient statistics,

and thus we use the Hermite polynomials in the PCE method. Fig. 4.33 reveals that,

although not perfect, the normal distribution fit is a reasonable choice.
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Figure 4.33: Statistics for the leading POD coefficients (for the first cluster of ice shapes).
The blue histograms represent the statistics of the dataset; the red curves represent the
result of fitting a Gaussian distribution to those statistics.

We perform PCE on the 5-dimensional parameter space described above using adaptive

sparse grid sampling, which is implemented in DAKOTA. The clean airfoil shape is the

business jet geometry, the angle of attack is set at α = 3◦, and the Reynolds number is set

at Re = 7.5 × 106. These latter two conditions are chosen to be consistent with the flight

conditions represented in the original dataset. There is indeed variation in both the angle

of attack and Reynolds number in that dataset; however, the main goal of our UQ study
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Figure 4.34: Probability density functions for output metrics, approximated using 104

Monte Carlo samples of the PCE surrogates and Gaussian kernel smoothing.

is to quantify the effects that ice shape variation has, hence, we do not allow either angle

of attack or Reynolds number to be uncertain parameters. We quantify the uncertainty in

the output metrics CL and CD.

Fig. 4.34 displays the output statistics that result from sparse grid PCE using 487

function evaluations. This is the number of evaluations needed to converge the change in

the L2 norm of the response covariance matrix to a pre-set tolerance of 1×10−4. Of course,

if higher resolution is desired, more evaluations may be performed.

We can also examine the surrogate for input-output sensitivities, correlations, and de-

pendencies. One way to do this is to Monte Carlo sample the surrogate, rank the results

according to a metric (e.g., CL), and then look at the statistics of the extremities. This

method is a global measure of sensitivity, in the sense that the entire parameter space is

surveyed and analyzed. This information is displayed in Fig. 4.35a,4.35b. We see that

modes 2 and 3 have a strong coupling effect on CL. If we examine the shapes correspond-

ing to the mean values of the top/bottom deciles of CL (Fig. 4.35c), we conclude that

modes 2 and 3 couple to produce upper/lower surface horns, which give the deterioration

in performance observed.

Another means of examining sensitivity – which is local in nature – is to evaluate the

gradient of the PCE surrogate at some location in parameter space (usually the mean), and
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(b) Highest decile of CL.
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Figure 4.35: Global parameter space analysis: lowest/highest deciles of CL. Boxplots
show clustering in parameter space of the lowest and highest deciles of CL. Data consists
of 104 Monte Carlo surrogate evaluations.

examine the shape perturbations that result. This information is displayed in Fig. 4.36.

As can be inferred, both the global and local measures of sensitivity reveal almost the same

trends: lift decreases as ice mass is added to form lower and upper surface horns, and

increases as ice mass decreases (particularly on the upper surface).

84



−0.04−0.02 0.00 0.02 0.04 0.06 0.08 0.10

−0.04

−0.02

0.00

0.02

0.04

Figure 4.36: Local sensitivity: ice shapes corresponding to the gradient of CL with respect
to the uncertain parameters (evaluated at the uncertain parameter means). Red to green
transition indicates lower to higher CL.

4.6 Summary

The purpose of this chapter was to introduce a new perspective on the topic of airfoil icing,

and apply it to the problem of ice modeling and uncertainty quantification. The motivation

for this approach is apparent from a brief survey of the existing literature. What we find,

broadly speaking, is that an extensive amount of research has already been done in two

arenas – physical/computational and experimental. Many papers have been published that

model the physics of ice accretion and build deterministic computational models from that

(as we will discuss next chapter), and many experiments have been performed at various

icing conditions in icing wind tunnels. However, no one has yet attempted to build ice

accretion models purely from data, and study the variations produced by these models.

This can be viewed as a “middle ground” approach between purely computational and

purely experimental, and it has several benefits.

The first benefit we observed is that we can distill a set of spatial shape parameters from

a database of ice shapes. This was the initial motivation for the data-based modeling: to

derive a set of ice shape parameters that are no longer heuristic (as was the case in Chapter
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3), but instead are “realistic” in the sense that they are produced using real data. In this

way, it becomes possible to make the subsequent UQ studies similarly realistic.

We encountered the second benefit of this approach when we connected the modal co-

ordinates of ice shapes in a database to the underlying physical conditions used to produce

the shapes in that database. This made it possible to examine statistical trends between

physical parameters and resulting shapes. The ultimate product of this was a purely data-

driven, statistical model of ice accretion, whereby it is possible to input a desired range of

physical icing conditions and generate a random sampling of ice shapes corresponding to

those conditions. The implications of this could be profound in the icing community, as no

one has heretofore attempted to introduce experimental data into ice accretion models. We

foresee that this data-driven modeling could be used to benchmark and improve numerical

codes.

Lastly, we saw how we can derive empirical classifications from the variations present

in a dataset. This is useful as an evidentiary tool for exploring what, if any, links exist

between physical icing conditions and ice shape. Sometimes, we saw that the clusters

produced in a dataset trended cleanly with intuitive parameters (such as accretion time,

which differentiates large and small shapes). Other times, we produced visually self-similar

clusters within our dataset that, surprisingly, would not have been expected on the basis

of physical conditions. This evidence-based method of separation gives a tool to icing

researchers that can help either support or undermine the traditional classifications of ice

accretion that are well-known.

Going forward, there are many extensions to this research that might be explored. First,

the main concern with any data-based approach is always the quality of the data itself –

results are only as “good” as the underlying data. The experimental dataset we made use of

in this chapter is reasonably comprehensive, in the sense that it represents a diverse range

of conditions, but it certainly could be improved by adding more shapes. For instance, a

large number of the shapes in that database were low-time accretions, which does bias the
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results/models toward those types of shapes. Second, an interesting avenue of research

would be to explore how one might fuse the data-driven models we have produced with

numerical icing codes. It might be possible to add empirical corrections to these numerical

codes that are based on predictions from the data-based models.
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Chapter 5

Computational UQ

The purpose of this chapter is to approach the icing UQ problem from a fundamentally

different perspective than those which have been presented thus far. The last two chap-

ters dealt with quantifying uncertainty present in the actual shape of the ice; however, the

source of that uncertainty was only briefly addressed. In this chapter, we seek to close that

gap by considering uncertainties which are more fundamental to the icing process. The

parameters involved are physical quantities that govern the ice growth, and hence our goal

is to quantify the effects of uncertainties in governing macroscopic physical parameters on

iced airfoil performance. Research of this nature is particularly germane for certification

procedures, as the parametric trends and statistics generated can inform a decision regard-

ing whether flight is “safe” under a given set of circumstances.

In order to investigate these questions, we must first have the appropriate tools for do-

ing so. We choose to adopt a strictly computational approach, for which there is already an

extensive body of literature [96, 32, 102, 94, 81, 64, 100, 65]. The semi-empirical models

described in these works form the basis for a computational icing code that we develop in

this chapter. In a UQ setting, hundreds or thousands of different icing scenarios would

need to be evaluated quickly, easily, and inexpensively. For this reason, it is particularly
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important that we use a method for quantifying uncertainties that is both efficient and

accurate.

The structure of this chapter is as follows. We first introduce some necessary back-

ground material on the physics of airfoil ice accretion. Next, we introduce the computa-

tional ice accretion code CATFISh (Coupled Aero-Thermodynamics For Icing Simula-

tions), which we developed in-house as a part of this thesis, and which we will be using to

perform parametric UQ studies. We first briefly sketch the structure of CATFISh from

a system-level perspective, and then delve into greater detail on the individual component

sub-modules of the software. After benchmarking this code against published results in

the literature, we proceed to design and perform several UQ studies on the physics of

airfoil ice accretion, and comment on their relevance to airplane safety.

5.1 Overview of the Icing Process

We have already presented a detailed account of the various categories of airfoil ice in

Chapter 3. We need not repeat that information here; instead, we focus on a brief de-

scription of the process of icing, which is necessary to understand how our icing code

(CATFISh) is structured.

Airfoil ice accretion exists due to the presence of micro-scale liquid water droplets

present in the atmosphere. The size of an individual droplet can be highly variable (di-

ameters ranging from around 10µm to greater than 1000µm are possible); however, it is

possible to describe the statistical distribution of size for different icing conditions [6].

The temperature of the droplets depends on the ambient temperature, which may be near

the freezing mark or well below it (e.g., −20o C). Droplets may exist as supercooled water

in this state, due to lack of a nucleation site and insufficient heat transfer mechanisms to

completely remove the latent heat of freezing. The amount of water mass present in the
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atmosphere is measured as a bulk quantity and is referred to as the Liquid Water Content

(LWC). Typical values of LWC tend to range from 0.1g/m3 to 1g/m3.

Impingement of the droplets onto the airfoil surface is the first step in ice accretion.

The exact trajectory of an individual droplet is determined by a combination of the local

flowfield surrounding the airfoil and the mass of the droplet. As would be expected on

physical grounds, smaller, less massive droplets are more easily deflected away from the

airfoil by the pressure gradients near the airfoil leading edge, whereas larger, more massive

droplets have more inertia and hence tend to follow more ballistic trajectories, relatively

unaffected by the local airfoil flowfield. Once a droplet strikes the airfoil surface, several

phenomena may occur: the droplet may rebound off of the surface and continue advecting

downstream away from the airfoil, or it may spread into a thin film on the surface, or

it may splash, depositing a fraction of the mass onto the surface and ejecting the rest.

Semi-empirical research and modeling [32, 96] suggests that the prevailing mechanism is

determined by a combination of the Weber number (which measures the ratio of inertial

to surface tension forces) and Reynolds number (which measures the ratio of inertial to

viscous forces).

Once droplets impinge on the surface, they may freeze immediately, merge into a

thin lubricating film, or may coalesce into beads held together by surface tension ef-

fects [37, 66, 67]. The first case is observed in conditions which are relatively cold with

relatively low LWC - in such scenarios, it is cold enough that all of the impinging water

freezes immediately, and the resulting ice shape closely follows the airfoil profile (referred

to in the literature as “rime” accretion; see the description in Chapter 3). If, instead, the

temperature and LWC combination is such that there is not enough heat transfer to com-

pletely remove the latent heat of freezing of the incoming water, a thin film may form on

the surface. This film is sufficiently thin that it is generally assumed to convect along

the airfoil surface driven by the aerodynamic shear stress at the wall [10]. This trans-

port process redistributes water mass along the surface of the airfoil and provides a partial
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explanation for why ice shapes do not always perfectly match the impingement profile.

Some fraction of this film will freeze into ice; exactly how much depends entirely on the

heat transfer mechanisms present to remove the latent heat of freezing. As will be dis-

cussed later, several such mechanisms exist, but the one which dominates is aerodynamic

cooling by convection [37]. This cooling mechanism has an unequal distribution over the

surface of the airfoil, and hence (under certain conditions) can give rise to unequal rates

of freezing, producing ice “horns” (see the description in Chapter 3). As noted, not all

unfrozen water necessarily merges into the thin film; some may coalesce into micro-scale

beads. The formation and freezing of micro-scale beads has the effect of creating surface

roughness, which energizes the boundary layer and promotes turbulence. The main ef-

fect of this phenomenon (from an icing viewpoint) is to increase the local heat transfer

by convection, since increasing turbulence promotes greater mixing within the boundary

layer [37].

Aerodynamically, the effects of icing depend heavily on the type of icing that occurs,

which in turn depends on the governing physical parameters. As we have noted already,

horn ice is generally more dangerous than rime ice, simply because of the geometric effects

on the flow (see Fig. 5.1 for an illustration of the flowfield differences between the two).

In summary, there are two main physical processes that take place in concert to de-

termine the ice shape for a particular set of icing conditions. The first is the advection

and impingement of atmospheric liquid droplets, the details of which are determined by

the flowfield surrounding the airfoil. The second process is the surface thermodynam-

ics, which determines how much of the impinging water freezes, and how much of it is

advected back along the surface. These two processes form the basis of the structure of

CATFISh.
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(a) Rime ice. T∞ = 250.37K, LWC =
0.55g/m3, MVD = 20µm, Re = 7.76 × 106,
M = 0.32, T = 5 min.

(b) Glaze ice. T∞ = 262.04K, LWC =
0.86g/m3, MVD = 20µm, Re = 5.33 × 106,
M = 0.21, T = 5 min.

Figure 5.1: Comparison of flowfield differences between rime and glaze accretions (cal-
culated using CATFISh). Contours represent velocity magnitude. Conditions noted are
free-stream temperature (T∞), Reynolds number (Re), Mach number (M), liquid water
content (LWC), mean volumetric diameter (MVD), and accretion time (T ).

5.2 Code Structure

In this section, we briefly outline the structure of the computational airfoil icing code

CATFISh, which we developed as a part of this thesis for the purpose of investigating the

statistical effects of uncertainties in the physics of icing.

CATFISh integrates an existing aerodynamic code (mesh generator/flow solver) with

a droplet advection module and a thermodynamic module in order to solve for time-

dependent ice growth. A system-level depiction of these components is given in Fig. 5.2.

The mesh/flow solver used has been described previously in this thesis, and consists

of FLO103 along with an in-house hyperbolic grid generator. The droplet advection

module advects a screen of particles from the free-stream at the wing using a Lagrangian

particle approach. Impingement characteristics (i.e., splashing, bouncing, deposition)

are simulated and a rate of water mass deposition onto the surface is calculated. The

thermodynamic module solves for local rates of ice accretion on the surface by solving
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mass/energy conservation partial differential equations. Finally, ice growth is calculated

for a specific interval of time by adding the calculated amount of ice mass normal to the

surface of the airfoil. This entire process (mesh/flow solver to incremental ice growth)

can be repeated in a time-stepping fashion in order to grow ice for an arbitrarily long

period of time.
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Figure 5.2: Modular structure of CATFISh
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5.3 Droplet Simulation Module

The first module in CATFISh handles all of the physics related to droplet advection. Rel-

evant inputs include droplet size distribution, LWC, free-stream temperature, and the

appropriate mesh/flow solutions.

Some decisions and assumptions must be made in order to simulate the droplet ad-

vection in order to make the problem computationally tractable. To illustrate this point,

we begin by performing a simple estimate the number of particles impinging on an airfoil

surface given a set of “typical” aerodynamic/icing conditions. Let us assume the following

conditions: LWC = 0.5 g/m3, MVD = 20 µm, U∞ = 100m/s. Assuming perfectly spher-

ical droplets, we calculate that there are approximately 1.2× 108 droplets per cubic meter

in ambient conditions. Given the free-stream velocity of the airfoil, we further estimate a

flux of approximately 1.2× 1010 (i.e., 12 billion) droplets per cubic meter per second. It is

also important to note that total ice accretion times of interest routinely range from tens of

seconds up to 10 minutes.

5.3.1 Droplet Advection

It should be evident from this simple calculation that a full-scale, time-resolved simulation

of all of the impinging particles for an icing computation is not feasible. Therefore, some

simplifying assumptions must be made. The first assumption that is made is that all of the

water which impinges on the airfoil may be accurately modeled by a continuous thin-film

distribution of water. This assumption is valid for calculating the macroscopic distribution

of impinging water, but (as noted in the previous section) ignores potential micro-scale

physics involved with the accumulation of water beads held together by surface tension.

One way to model some of this micro-scale physics is to introduce a model for surface

roughness into the turbulence model of the aerodynamic calculation; this option will be

discussed in the next section. In any event, this assumption of a surface thin-film shifts the
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goal of this module from simulating each and every single droplet to calculating a flux of

water across the surface of the airfoil. This flux is measured in the icing community as a

fraction of the free-stream water droplet flux, and is referred to as the collection efficiency.

There exist (at the time of this writing) two main approaches for modeling droplet

physics – an Eulerian formulation [10, 9], and a Lagrangian formulation [32, 96, 94].

The former method seeks to model the air as essentially a two-phase continuum (dry air

plus water content) and proceeds by supplementing the mass/momentum conservation

equations for the dry air (i.e., Navier-Stokes equations) with those for water content [10,

9]:
∂α

∂t
+∇ · (αud) = 0

∂ud
∂t

+∇ · (ud) = Fd
(5.1)

here, the variables α, ud, and Fd are, respectively, mean values of the nondimensional

water volume fraction, droplet velocity, and droplet forces (or equivalently, droplet velocity

sources/sinks) over a small fluid element at a specific spatio-temporal location. Solving

these conservation PDEs yields the water content distribution over the surface of the airfoil,

which can be converted to a collection efficiency.

In contrast to the Eulerian method, the Lagrangian approach begins by assuming that

the collection efficiency may be approximated by advecting a screen of uniformly-spaced

particles at the airfoil and observing the resulting distribution of impacts on the surface.

Fig. 5.3 shows a cartoon depiction of this procedure. Assuming no mass loss due to splash-

ing/bouncing, it is straightforward to see (by conservation of mass) that the local collection

efficiency (the ratio of the free stream droplet flux to the flux over the airfoil surface) is

given by the ratio of the spacings in the figure; that is,

β(s∗) =
∆y(s∗)

∆s(s∗)
(5.2)

where s∗ denotes an arbitrary location on the surface.
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Figure 5.3: Illustration of the calculation of the collection efficiency via a Lagrangian
method.

CATFISh uses the Lagrangian method to calculate the collection efficiency. The

droplet volume fraction is generally small in icing scenarios; that is, the ratio of the bulk

density of the droplets to that of the surrounding air is on the order of 10−3. Usually, if a

two-phase flow has a volume fraction loading less than 10−1, then the assumption that the

heavier gas phase is unaffected by the lighter phase (one-way coupling) is justified [24].

Hence, we can separate the aerodynamic flowfield calculations from the droplet trajectory

calculations. A screen of uniformly-spaced particles is initiated upstream of the airfoil,

and subsequently advected by the following equations of motion [32, 96]:

dxd
dt

= vd

md
dvd
dt

=
1

2
ρgCDπr

2
d∥vg − vd∥(vg − vd) +mdg.

(5.3)

Here, xd, vd, rd, andmd are, respectively, the droplet position, velocity, radius, andmass; vg

and ρg are the gas velocity and density, g denotes the gravity vector, and CD is the droplet

drag coefficient. CD can be calculated with the Schiller and Naumann correlation [32, 96,
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79]:

CD =
24

Red
(1 + 0.15Re0.687d )

Red =
2ρgrd
µg

∥vd − vg∥
(5.4)

A choice must be made regarding how to solve Eq. 5.3. One possibility is a high-order

explicit scheme (e.g., Runge-Kutta), however, the stability criterion for this method is

quite restraining for small particles. An alternative method is to formulate the exact solu-

tion of Eq. 5.3 corresponding to a constant gas velocity and very small Reynolds number

(i.e. Stokes drag law), and then explicitly solve that. CATFISh implements this approach,

which reads [32, 96]:

xn+1i = xni + ug∆t+ (vni − vg)
(
1− exp(−∆t

τnd
)

)
τnd

+

(
∆t−

(
1− exp(−∆t

τnd
)

)
τnd

)
τnd g

vn+1i = vni + vg + exp(−∆t

τnd
)(vni − vg) +

(
1− exp(−∆t

τnd
)

)
τnd g

(5.5)

where τd = 24
RedCD

(
2ρlr

2
d

9µg

)
is the droplet dynamical response time (ρl is the liquid den-

sity).

5.3.2 Tracking Particles

The last component to droplet advection deals with determining the gas state at the location

of all of the droplets. In FLO103, calculations are performed on a boundary-fitted mesh, so

the problem becomes a “particle-in-cell” problem – given a particle (i.e. a droplet) location

in the mesh, find that cell which it occupies.

A naive approach to this problem is clearly computationally intractable: given NP par-

ticles and NG cells, a brute-force algorithm (e.g., cell centroid nearest-neighbor search)

requires NP ×NG calculations (note that this must be performed each iteration).
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CATFISh uses a custom algorithm to quickly and accurately solve the particle-in-cell

problem. The algorithm exists in two parts. First, a calculation of the initial cell locations

of the droplets is required. To solve this, a quadtree search object is created of the cell

centroids (see Fig. 5.4 for a visualization). The basic premise at work in a quadtree is to

subdivide a 2D spatial domain into four rectangular quadrants (i.e., northeast, northwest,

southeast, and southwest). This division is then recursively iterated upon each of the sub-

domains until no subdivision contains more than a prespecified number of points (in our

setting, grid cell centroids). Given a query point, the nearest cell centroid can be calculated

by recursively searching the tree of subdivisions, and then performing a nearest-neighbor

calculation once there are no subdivisions left. This tree is searched for all particles in the

mesh, providing initial cell locations.

Once the droplets are advected, new cell locations must be computed, and this is where

the second component of the tracking algorithm comes into play. Although the quadtree

could in theory be iteratively re-searched each iteration, this strategy is actually prone to

error, particularly near the airfoil surface. The fundamental reason for this is that the cells

near the boundary wall are extremely anisotropic in aspect ratio (i.e., the width-to-height

ratio can be 100 or more). Because quadtree spatial divisions occur on rectangles of aspect

ratio close to one, this geometric phenomenon can lead to incorrect computations of cell

location.

The solution we have implemented in CATFISh takes advantage of precomputed grid

metrics and small time-steps to search only those cells that neighbor the previous cell

location. First, each time-step is chosen such that it is not possible for any particle to

move a distance which would bring it outside of the neighborhood formed by the eight

cells that border the current cell location. This means that a nine-cell search is required

for each particle. In order to ensure that the cell anisotropicity does not lead to incorrect

calculations, the nine-cell neighborhood is scaled by the local Jacobian. This mapping

transforms the center cell exactly into a square. The neighboring eight cells are not in
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Figure 5.4: Quadtree illustration. LEFT: farfield view. RIGHT: close-up view of airfoil.

general transformed into exact squares, but instead are general quadrangles. However, in

practice, this does not seem to affect the accuracy of the calculations.

5.3.3 ImpingementModeling: Bouncing, Deposition, and Splashing

Once droplets impinge upon the airfoil surface, several modes of behavior have been em-

pirically observed [96, 32, 102] to occur. As noted previously, these include bouncing,

depositing into a thin film, or splashing. CATFISh uses empirical correlations from the

literature [96, 32, 94] to first predict which of the mechanisms will occur for each im-

pacting droplet and then simulate its effects. These empirical models are briefly reviewed

here.

The first step in determining which of the regimes a particular impinging droplet will

experience involves computing relevant non-dimensional parameters. TheWeber number,

which measures the strength of the droplet’s inertia relative to surface tension forces, the

Reynolds number, which measures the strength of the droplet’s inertia relative to viscous

forces, and the Ohnesorge, which measures the strength of viscous forces relative to inertial
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and surface tension forces, are all important and can be written as:

Re =
ρlvn(2rd)

µl

We =
ρl(2rd)v

2
n

σl

Oh =

√
We

Re

(5.6)

where vn denotes the normal velocity of the impacting droplet, rd is the droplet radius, and

ρl, µl, σl are the liquid density, viscosity, and surface tension.

Using these non-dimensional quantities, we have the following empirical model for

droplet impact:

K ≤ Kb0fb(R, δ) 7→ Bounce

Kb0fb(R, δ) ≤ K ≤ Ks0fs(R, δ) 7→ Deposition

K > Ks0fs(R, δ) 7→ Splash

(5.7)

In these equations, K = We × Oh−2/5 is the Cossali number. Kb0 and Ks0 are threshold

values, R = hr

2rd
is the dimensionless wall roughness height (hr is the dimensional rough-

ness height), and δ =
hf

2rd
is the dimensionless film thickness (hf is the dimensional film

thickness). The fb, fs are correction factors to account for the effects of wall roughness

and film thickness, and they may be represented as:

fs(R, δ) =
1 + R̃2

1 + ωsrR̃2

1 + δ2

1 + ωsfδ2

fb(R, δ) =
1 + R̃2

(1 + ωsrR̃2)(1 + ωbrR̃4)

1 + δ2

1 + ωbfδ2

(5.8)

where R̃ = R2

R+δ
is a wall roughness, adjusted to account for the presence of a liquid film.

Eq. 5.8 also has several empirical constants. The values of these constants used in CAT-

FISh are: Ks0 = 3000, Kb0 = 600, ωsr = 20/3, ωsf = 5/6, ωbr = 32, and ωbf = 1.
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Once the proper impingement regime has been calculated for a particular droplet, mass

loss via ejection must be calculated. This is trivial for the deposition (mass loss equals zero)

and bouncing (all of the mass is ejected) regimes, but for the splashing regime, empirical

models must be implemented. The mass loss due to splashing is calculated using the

following law:
ms

m0

= max

(
a(θ)− fs(R, δ)Ks0

K

b(θ)

, 0

)

a(θ) = 1− 0.3sin(θ)

b(θ) =
1

8
(1 + 3cos(θ))

(5.9)

wherems andm0 are the ejected mass and the initial mass (respectively), and θ is the angle

of incidence between the impinging droplet velocity vector and the tangent vector at the

wall surface.

The splashing process creates child droplets, which are ejected into the freestream and

continue to advect downstream with the local velocity field. Models exist in the litera-

ture [96, 81, 64] which describe in detail statistical models for ejection droplet size and

velocity. However, after experimenting numerically with some of these models, we have

found that splashing tends to create many particles, which slows the collection efficiency

computation appreciably. Additionally, most of the ejected droplets are swept aft of the

airfoil entirely by the external flow anyway, making tracking them unnecessary. There-

fore, CATFISh does not presently track ejected splash particles (i.e., it assumes that all

droplets ejected through splashing do not re-impinge on the airfoil).

5.4 Thermodynamics Module

The previous subsection dealt with the droplet simulation module, the main purpose of

which is the calculation of a water flux distribution over the surface of the airfoil. The next

step in the icing code is to use this information to calculate a distribution of ice growth over
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the surface of the airfoil. This subsection describes in detail the methodology implemented

in CATFISh for accomplishing this. The approach described here is modeled after the

work done by Messinger [61], Habashi [10], and NASA Glenn [100].

Evaporation

Sublimation

Aero Heating

Droplet Heating

Heat of Fusion

Convection

Figure 5.5: Illustration of heat transfer mechanisms in airfoil icing.

Fig. 5.5 illustrates the various dominant heat transfer mechanisms that drive the ice

accretion process. Before discussing those mechanisms in detail, it is important start the

discussion with a precise account of into/fromwhat, exactly, heat is being transferred. The

answer to this question depends on the nature of the ice accretion. If the icing conditions

are such that rime accretion exists (i.e., where all impinging water immediately freezes

upon impact), then all heat involved is transferred to/from the ice surface, which has no

liquid film on top of it. If, instead, conditions are such that glaze accretion occurs, then

there exists a thin (i.e., 20 µm or less) film of water on top of the ice surface, and heat is

transferred in/out of this film.

These heat transfer phenomena are accompanied by mass transfer mechanisms. We

are already aware of the obvious transfer of mass that occurs by means of the droplets from

the free-stream impinging on the airfoil surface. In rime accretions, this is the only mass

transfer mechanism that is possible. In glaze accretions, the thin film of surface water can

advect aft along the surface of the wing, driven by the local shear stress at the surface,

providing a means for redistributing the incoming water.
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5.4.1 Mass/Energy Conservation

Taking all of this into consideration, it is possible to write mass/energy conservation laws

for the film on the surface:

ρl

(
∂hf
∂t

+
∂

∂s
(ūfhf )

)
= ṁimp − ṁevap − ṁice

ρl

(
∂hfclT

∂t
+

∂

∂s
(ūfhfclT )

)
= ėimp − ėevap + ėice + ėconv

(5.10)

The right-hand-side of these equations represent the sources and sinks for mass (first

equation) and energy (second equation) that we have just discussed. Specifically, ṁimp,

ṁevap, and ṁice respectively denote mass sources/sinks to account to impingement, evapo-

ration/sublimation, and ice accretion; ėimp, ėevap, ėice, and ėconv denote energy sources/sinks

that are generated by impingement, evaporation/sublimation, ice accretion, and convec-

tion/kinetic heating. The left-hand-side represents the convective derivative of film mass

(ρlhf) and energy (ρlhfcwT ), which advect with the film speed ūf . hf is the film height, cl

is the specific heat transfer coefficient of water, T is the temperature of the film/ice/airfoil

surface, and s is an arc-length coordinate (with the origin at the stagnation point).

The expressions for sources/sinks in Eq. 5.10 read thus:

ṁimp = U∞ LWC β

ṁevap =
0.7ch
cair

(
Pv,p −Hr,∞Pv,∞

Ps

)
ėimp =

(
clT∞ +

∥ud∥2

2

)
ṁimp

ėevap =
1

2
(Levap + Lsub)ṁevap

ėice = (Lfus − ciceT )ṁice

ėconv = ch(Trec − T )

(5.11)

In these equations, ch is the convective heat transfer coefficient, cair is the specific heat

capacity of air, Pv,p is the saturation vapor pressure at the airfoil surface, Pv,∞ is the sat-
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uration vapor pressure of the ambient air, Hr,∞ is the relative humidity, Ps is the static

pressure at the boundary layer edge, T∞ is the free-stream temperature, ud is the droplet

velocity, Levap, Lsub and Lfus are the latent heats of evaporation, sublimation and fusion,

cice is the specific heat capacity of ice, and Trec is the recovery temperature.

We can also determine the film speed, ūf , in Eq. 5.10 in terms of known flow quantities.

Because the film is thin, we can assume it to be Newtonian, i.e. τ = µl
duf

dy
, where τ is the

wall shear stress and y is the coordinate in the direction normal to the wall. Imposing zero

velocity at the wall as a boundary condition immediately yields:

uf =
y

µl

τ (5.12)

Averaging this equation across the film thickness gives:

ūf =
1

hf

∫ hf

0

uf (y)dy =
hf
2µl

τ (5.13)

5.4.2 Closure Constraints

At this point, we have two equations, and three unknowns (hf , T , and ṁice); the system

is underdetermined. Extra information is needed to close these relations, and is provided

by the following constraints:

hf ≥ 0

ṁice ≥ 0

hfT ≥ 0

ṁiceT ≤ 0

(5.14)

These compatibility relations are physically intuitive: neither the film height nor ice

growth rate can be negative; if there is a water film, it cannot be below freezing in

equilibrium; if there is ice growth, the ice cannot be above freezing in equilibrium.
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5.4.3 Convective Heat Transfer Computation

Before proceeding any further, a brief digression is in order regarding how we choose

to calculate the convective heat transfer, ėconv. This is the most important term in the

energy equation, Eq. 5.10, which can be seen by a simple order of magnitude estimate.

The dominance of ėconv explains why many ice shapes (i.e., horns) strongly resemble the

underlying distribution of convective heat transfer across the airfoil surface.

The convective heat transfer is a subgrid scale phenomenon, in that it depends heavily

on the nature of the boundary layer (laminar or turbulent) as well as turbulent mixing. The

latter of these phenomena is physically dominated by the presence of small-scale roughness

elements on the surface of the ice, which act as vortex generators that enhance Reynolds

stresses (see the review of ice roughness in Chapter 3). It is here that we encounter a

dilemma which is familiar to the computational fluids community: one of the most im-

portant physical mechanisms in our problem (that is, surface roughness and boundary

layer turbulence) is also one of the most challenging to model. We obviously cannot com-

pute these mechanisms directly, because they exist at subgrid scales, and so we resort to

approximating them with subgrid models.

Themodel implemented in FLO103 is the rough-wall extension to the Spalart-Allmaras

turbulence model [86, 8, 11]. This model consists of the one-equation turbulence model

described by the classic Spalart-Allmaras model, plus a term that accounts for surface

roughness. The main aerodynamic effect of this parameter is to increase eddy viscosity

and promote mixing (thereby increasing convective heat transfer). The Spalart-Allmaras

model computes the turbulent viscosity ν̃ and reads thus:

∂ν̃

∂t
+ uj

∂ν̃

∂xj
=

1

σRe∞

[
∂

∂xk
(ν + ν̃)

∂ν̃

∂xk
+ cb2

∂ν̃

∂xk

∂ν̃

∂xk

]
+ cb1(1− ft2)S̃ν̃

−
[
cw1fw − cb1

κ2
ft2

]
+

1

Re∞

(
ν̃

d

)2

+Re∞(ft1∆U
2).

(5.15)
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Here, d is the distance from the wall, S̃ is the modified vorticity, cb1, cb2, cw1, κ, and σ

are closure coefficients, fw is a closure function, and ft1 and ft2 are functions that allow the

user to set the location of the laminar/turbulent transitioning.

The rough wall extension modifies the wall distance d based on a Nikuradse sand grain

roughness ks that is presumed known to the user:

d = dmin + 0.03ks (5.16)

This modification changes the boundary condition for the turbulent viscosity from

Dirichlet (ν̃wall = 0) to Neumann ((∂ν̃/∂n)wall = ν̃wall/d).

The convective heat transfer ėconv is obtained by solving the RANS equations, with

the turbulent eddy viscosity computed using the model just described. An open question

involved in doing this is, what boundary condition should be used for the energy equa-

tion? FLO103 was originally implemented using adiabatic boundary conditions, which

obviously cannot be correct for icing applications since, by definition, such a condition

guarantees zero wall heat flux. The consensus of the icing community seems to be that

imposing a constant clean airfoil temperature above the freestream temperature is appro-

priate [10, 92]. In CATFISh/FLO103, we set this (Dirichlet) boundary condition on the

wall temperature to the freezing temperature (273.15 K).

5.4.4 Solution Method

CATFISh discretizes Eq. 5.10 with a finite volume method. Explicitly, the conversion of

Eq. 5.10 to a finite volume scheme is achieved by integrating over the spatial domain, and
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then applying the divergence theorem:

∂U

∂t
+
∂F

∂s
= Ṡ∫

Bk

(
∂U

∂t
+
∂F

∂s

)
ds =

∫
Bk

Ṡ ds∫
Bk

∂U

∂t
ds+

(
Fk+1/2 − Fk−1/2

)
=

∫
Bk

Ṡ ds

∂Ūk

∂t
=

1

∆sk

∫
Bk

Ṡ ds−∆Fk︸ ︷︷ ︸
δu

Ū t+∆t
k = Ū t

k −∆tδu

(5.17)

Here, we are using general notation, where U represents the relevant flow variable, Fk =

(ūfU)k is the (body-centered) flux in cell k, Ṡ is the sum of all sources/sinks, Bk is a control

volume cell, ∆sk is the length of cell k, and Ūk is the cell average of the flow variable.

Fig. 5.6 displays the general schematic at play here.

KK-1 K+1

Fk-1/2 Fk+1/2
Sk

Figure 5.6: Illustration of the finite volume method. The stagnation line divides the upper
surface cells (blue) from the lower surface cells (red).

Note that the film speed (ūf) may reverse sign (as is the case if there are separation

bubbles aft of a horn); this can lead to discontinuities in the solution, and necessitates

some form of upwinding. Therefore, a Roe scheme [89, 78] is used to calculate the fluxes,

which gives:

Fk+1/2 =
1

2
(Fk + Fk+1)−

1

2
|ūfk+1/2

|(Uk+1 − Uk) (5.18)
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It should be noted - as shown in Fig. 5.6 - that the airfoil surface is divided into two

sections (upper and lower surface), based on where the stagnation point is. This is because

the boundary conditions for the thermodynamic variables are applied at the stagnation

point (hf (s = 0) = 0, T (s = 0) = 0oC). Hence, Eq. 5.10 is solved independently on the

upper and lower surfaces.

CATFISh makes a quasi-steady state assumption in solving these equations. That

is, Eq. 5.10 is driven to steady-state (∂U/∂t = 0), and the resulting solution for the ice

accretion rate (ṁice) is used to calculate an incremental addition of ice, corresponding to

a short-time march of ∆t. Then, the entire grid is re-meshed, a new flowfield is solved,

Eq. 5.10 is once again driven to steady-state, a new ice accretion rate is computed, and

another layer of ice is added. This process is iterated upon in order to produce time-

dependent ice growth, and is displayed in Alg. 3.

5.4.5 Ice Addition

The last topic that must be addressed involves how the ice is added to the airfoil surface. A

naive approach is to simply add the appropriate amount for a given point in the direction

of the local normal vector. However, there are two distinct problems with this method.

First, the ice shape produced in this manner will actually be more massive than it should

be, owing to the curvature of the underlying surface. A depiction of this phenomenon is

shown in Fig. 5.7. Second, adding ice without first smoothing the profile in some fashion

will result in shapes that are unrealistically jagged.

The problem of area oblation has been observed in the NASA Glenn icing code

LEWICE, is rectified using a simple geometric algorithm [101]: the areas of the red

triangles in Fig. 5.7 are calculated, and a new local ice height is computed such that the

updated ice area is equal to the difference between the blue rectangle and the red triangle.

This scheme starts on the underside of the airfoil and proceeds in a marching fashion to
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s

Ice

Height

(a) Calculated ice height (b) Ice added to airfoil

Figure 5.7: Illustration of the area oblation effect. When the calculated ice height (blue
rectangles) is simply added along local normal vectors, extra mass (red triangles) is unin-
tentionally added due to the curvature of the underlying airfoil/ice surface.

the upperside. Our numerical experiments with this method confirm that it provides a

good correction for the area oblation effect.

We solve the related problem of ice jaggedness by passing the ice shape through a

Laplacian smoothing function. That is, we solve the discretized version of the following

operator for the smoothed coordinates:

ỹ − ϵ∇2ỹ = y (5.19)

where y and ỹ are, respectively, the non-smoothed and smoothed coordinates, and ϵ is a

user-defined smoothing parameter.

5.5 Validations

In this section, we present several studies that benchmark CATFISh and its calculations

against published computational and experimental data.
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Algorithm 3: CATFISh Thermodynamics Solver
Input: Flowfield and droplet calculations
Output: Ice growth rate ṁice, film height hf , surface temperature T
(1) Initialization: select initial guesses for hf , T , and ṁice

while ∂U/∂t > (convergence tolerance) do
(2) Iterate: forward step mass/energy equations for hf and T
(3) Constraints: apply constraints to hf and T
(4) Ice rate: solve energy equation for ṁice

end

5.5.1 Droplet Simulation

The first matter which should be discussed regarding benchmarking droplet simulations

is that there are two possible types of calculations we could perform - monodispersed,

or polydispersed. A monodispersed simulation, as the name implies, is one in which all

droplets in the freestream have the same diameter. Conversely, a polydispersed simulation

is one in which the sizes of droplets advected obey some statistical distribution.

The relative tradeoffs to consider in using one or the other are exactly what one would

expect - computational efficiency versus precision. Atmospheric studies [75] and current

FAA safety regulations [6] agree that, in reality, cloud droplets are distributed rather

than monodispersed (although different distributions are possible). The typical approach

in a polydispersed simulation is to perform several independent monodispersed simula-

tions, each drawn from the underlying droplet distribution, and then weight average them

appropriately. Polydispersed droplet simulations in airfoil icing typically make use of ei-

ther 10-bin or 27-bin distributions (i.e., either 10 or 27 weight-averaged monodispersed

simulations). A monodispersed approach would essentially replace the droplet distribu-

tion with a delta function at the mean volumetric diameter (MVD) of the distribution.

The polydispersed approach is, of course, the more realistic method, but a 27-bin polydis-

persed simulation requires 27 times as much work as a monodispersed simulation; this is

the computational tradeoff that must be considered (especially in our UQ setting, where

we must perform many icing simulations corresponding to different conditions).
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Comparisons of droplet simulations and collection efficiency calculations for a number

of droplet sizes and distributions are shown in Fig. 5.8. This figure presents droplet cal-

culations for diameters equal to 20, 111, and 236 µm. The top row uses a NACA 0012

airfoil, with free-stream conditions of Re∞ = 4.14 × 106 and M∞ = 0.32 at a 2.5◦ angle

of attack , and the “experiment” against which CATFISh is benchmarked is numerical

computation from LEWICE [10]. The bottom two rows of the figure use a NACA 23012

airfoil, with free-stream conditions of Re∞ = 4.6 × 106 and M = 0.23 at a 4◦ angle of

attack , and the experiments against which CATFISh is benchmarked were generated at

the NASA Glenn Icing Research Tunnel [75]. In all three cases, CATFISh was run using

both 27-bin distributions (see Appendix B) and a single monodispersed run.

A few comments are in order regarding 5.8. First, the agreement is excellent between

experiment, monodispersed, and polydispersed results for small droplet size (MVD =

20µm), while there is slight disagreement between the three for larger droplet sizes (MVD

= 111µm and MVD = 236µm). This is most likely related to the fact that smaller droplets

have less mass and hence smaller Reynolds/Cossali numbers (as defined previously in

Equations 5.6 and 5.7). As a consequence of this, most of those either deposit directly

onto the airfoil or simply bounce off; there is relatively little splashing physics present

in the case of smaller droplets. In contrast, the larger droplets are more likely to have a

high enough Cossali number that splashing will occur, which makes the modeling more

challenging.

Second, the disagreement between the poly/mono-dispersed results does not seem sig-

nificant enough in any of the droplet sizes to warrant the added computational burden

involved with running polydispersed results. Again, it must be stressed that this added

expense is quite significant in a UQ context, where new polydispersed calculations would

be required each timestep of each simulation.
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5.5.2 Icing Calculations

Here, we compare the ice accretion calculations of CATFISh to both experimental and

numerical (LEWICE) results [103]. Specifically, we examine the ice shapes that grow on

a NACA 0012 airfoil under 20 different sets of icing conditions. The test matrix detailing

those conditions is given in Appendix C. Fig. 5.9 displays the final accretion results for

these tests.

Examining the results in Fig. 5.9, we see qualitatively mixed results, ranging from

excellent agreement between CATFISh and experiments (e.g., runs 425, 405, 424, 429)

to poor agreement between CATFISh and experiments (e.g., runs 206, 427). However, it

is important to keep a few things in mind when assessing these results. First, agreement

between experimental and computational shapes for glaze horns is notoriously difficult to

achieve, as noted by several researchers [10, 47, 93]. This is partially attributable to the

modeling assumptions and simplifications made on the computational side (e.g., not fully

resolving the micro-scale surface roughness physics), and partially attributable to a lack of

ice shape repeatability on the experimental side. Second, most of the results demonstrate

that the CATFISh is, at minimum, able to identify the correct regime of icing: if the

experimental shape is a glaze horn, for example, then CATFISh generally predicts a horn,

notwithstanding particular differences in height, angle, and shape details. Most of the test

cases for which there is poor agreement in Fig. 5.9 fall into this category – they are horn

accretions for which CATFISh predicts a different horn angle.

Example rime/glaze solutions are shown in Fig. 5.10. These solutions are initialized

with zero for each variable, and driven to steady-state as described in Alg. 3. As can be seen,

the temperature profile converges relatively slowly compared to the film and ice profiles.

The final solutions are well-converged and appear to satisfy all physical constraints.
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(c) Droplet advection trajectories corre-
sponding to droplet diameter 111 µm.
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(d) Collection efficiency; MVD = 111µm.
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(e) Droplet advection trajectories corre-
sponding to droplet diameter 236 µm.
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(f) Collection efficiency; MVD = 236µm.

Figure 5.8: Droplet trajectories and collection efficiencies for various droplet sizes. On the
right, monodispersed solutions are shown in green; polydispersed solutions are shown in
blue.
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Figure 5.9: Benchmark test cases for CATFISh (titled with corresponding experiment
number). Experiments are shown as red dots, LEWICE computations are shown in green,
and CATFISh computations are shown in blue.
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(a) Rime accretion case (run 405).
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(b) Glaze accretion case (run 308).

Figure 5.10: Illustration of driving the thermodynamics to steady-state.
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5.6 UQ Results

Having validated CATFISh against pre-existing results from the literature, we now turn

our attention to the ultimate goal of this chapter - the quantification of uncertainty in

aerodynamic performance due to uncertainty in physical parameters.

To begin, we must first identify the important governing parameters in the icing pro-

cess. Toward that end, we note that there are aerodynamic parameters and thermodynamic

parameters that both interact to determine the ice shape. The aerodynamic parameters that

are especially relevant include the free-stream velocity, Mach and Reynolds numbers, and

angle-of-attack. Important thermodynamic parameters include the free-stream tempera-

ture, liquid water content, droplet diameter, accretion time, and the roughness parameter

(in the Spalart-Allmaras turbulence model). In terms of UQ methodology, we choose to

use sparse grid polynomial chaos to build surrogate models globally over a given param-

eter space, and then analyze the resulting statistics of the surrogate for useful trends and

information.

Each icing simulation is fairly expensive. Wall clock times of 2-3 hours can sometimes

be necessary for 5 minute simulations (with flow/ice restarts every 1 minute). To make

the UQ manageable, we run all simulations on our own in-house server, which has 128

processors. Job submission to these processors is handled by TORQUE PBS [2]. The in-

dividual subtasks of each icing simulation (e.g., interfacing with DAKOTA input/output,

running FLO103/CATFISh executables) are handled by custom bash shell scripts.

The UQ studies that follow have, at largest, a parameter space dimension of three. Of

course, there are more than three governing parameters in ice accretion; however, we did

not attempt any studies of higher dimension. The reasoning for this was practical: such

high dimensional spaces will require many simulations (potentially thousands or more),

and every now and then human intervention is required (for example, grid/flow/icing

solvers might fail, or the server might go down, either from a power loss or unintended
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consequences from software updates). This can result in total UQ runtimes that are sig-

nificantly longer than one might expect from a “back of the envelope” calculation. Hence,

we limit ourselves to, at most, three parameters. With more processors, improvements to

the robustness of our grid/flow/icing solvers, and improvements to the “failsafe” robust-

ness of the server itself, higher dimensional parameter space UQ studies could certainly

be possible.

As free-stream temperature and LWC are two dominant parameters in ice accretion,

we proceed to study the effects these parameters have, either alone or in conjunction with

one other parameter.

5.6.1 Two Parameters: T∞ and LWC

We begin with a 2-D parameter space consisting of the free-stream temperature (T∞)

and liquid water content (LWC) of the air. These two parameters are arguably the most

important thermodynamic parameters, as they play a critical role in determining whether

the accretion type is rime or glaze [93, 37]. As output, we choose to examine the coefficient

of lift (CLα) at a particular angle-of-attack. This metric is important from the perspective

of aircraft safety, because it provides a local description of exactly how much control a pilot

has in recovering airplane lift in response to lift deterioration caused by ice accretion. We

select bounds for the variables based on the conditions used in the experimental databases

generated by NASA Glenn [103] - specifically, we use T∞ ∈ [250, 270] K and LWC ∈

[0.3, 1.0] g/m3. We equip each of these variables with uniform distributions, a choice which

corresponds to no prior statistical knowledge about which sections of parameter space are

more likely (this can be intuitively interpreted as a “worst-case” statistical analysis, since

the introduction of statistical knowledge through a weighted distribution would likely have

the effect of lowering the output variance). The PCE basis polynomials corresponding to

our choice of distribution are the Legendre polynomials.
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The other governing aero/thermo-dynamic parameters are held constant for this study.

Again, they are chosen to be consistent with the ranges of values explored byNASAGlenn.

A precise description of these parameters is as follows: Re∞ = 4.14e6, M∞ = 0.32, U∞ =

102.8, α = 4◦, MVD = 20 µm, and accretion time = 5 min. The roughness parameter (i.e.,

average wall roughness element height) in the Spalart-Allmaras turbulence model is set

to 0.55 mm. The airfoil profile chosen is a NACA 0012, with a chord of 0.5334 m.

Fig. 5.11 shows the quadrature points used in this study, the PCE surrogate computed

from these quadrature points (colored according to the lift slope value), and the statis-

tics (computed by Monte Carlo sampling of the surrogate). We observe a sharp division

between two regions in parameter space, which can be explained in terms of rime/glaze

accretion. Rime accretions, by definition, occur when there is enough heat transfer to re-

move all (or almost all) of the latent heat of freezing needed to freeze all (or almost all)

of the incoming water mass over the entire surface of the airfoil. As would be expected,

this regime of icing occurs in colder conditions with lower LWC. Conversely, glaze shapes

occur when there is not enough heat transfer to completely freeze all incoming water mass,

resulting in a redistribution of the incoming water over the surface of the airfoil and the

familiar “horn” shapes. This regime tends to occur at higher temperatures and LWC. As

has been pointed out in multiple places in this thesis, horns are generally more danger-

ous aerodynamically than rime accretions, and this explains the trends shown in Fig. 5.11.

Fig. 5.12 displays a selection of shapes from the parameter space that are associated with

the benign and dangerous regions. It is also worth noting that the construction of a PCE

surrogate allows us to quantitatively describe, with high precision, the exact locations in

parameter space corresponding to the rime/glaze arenas, as opposed to simply describing

the governing trends qualitatively.
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(c) PCE surrogate statistics.

Figure 5.11: Quadrature points, PCE surrogate, and statistics for the 2 parameter (T∞ and
LWC) study on lift slope.

5.6.2 Three Parameters: T∞, LWC, and ∆T

We can extend the results of the previous section to include accretion time as a third

parameter. In this way, we can quantify the time-dependent degradation of aerodynamic

performance. We choose to study a uniformly distributed accretion time: ∆T = U [1, 5]

minutes. All other governing aero/thermo-dynamic parameters retain the same values as

in the previous study.

Figures 5.14a, 5.14c and 5.14d display the quadrature points used in this study, the

PCE surrogate computed from these quadrature points (colored according to the lift slope

value), and the statistics (computed by Monte Carlo sampling of the surrogate). As ex-
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Figure 5.12: Select points in parameter space corresponding to more and less dangerous
regimes of icing, as well as the ice shapes they produce.

pected, the deterioration of CLα is monotonically worse with increasing accretion time

(given specific values of T∞ and LWC). Statistically, we still have a bimodal distribution,

corresponding to the rime and glaze regimes; however, this distribution is now skewed

toward the peak of higher CLα . This is because horns require some amount of time to grow

before they cause the large scale leading-edge separation bubbles that cause the extreme

performance degradation.

One potential use of the PCE surrogate involves estimating conditional expectations of

the output. In this particular setting, it may benefit aircraft safety to calculate what the

lift slope is as a function of time, with the other parameters (temperature and LWC) aver-

aged out. With PCE, this is straightforward - simply compute the output on a number of

constant-time “slices” in parameter space, and average the output on each of these slices.

Similarly, we can compute other statistics of each of these slices, such as percentile ranges.

Fig. 5.14e displays the conditional expectation and percentile ranges of lift slope; these

statistics show how quickly performance deteriorates as a function of time with statistical

variations in T∞ and LWC included. We observe that the performance range for a single

value of time increases as time increases, as the differences between benign rime and dan-

gerous horn accretions becomes more and more pronounced. Note that many of the rime
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accretions, even larger ones, appear not to degrade the lift slope relative to the clean airfoil

value (which is near the thin airfoil theory theoretical value of 2π). This phenomenon has

been observed in other studies [17], and is due to the fact that smooth rime accretions tend

to act as if they were leading edge extensions.

5.6.3 Three Parameters: T∞, LWC, and MVD

Now, we take droplet size into account, and perform aUQ study to see how it interacts with

temperature and LWC. As has been noted, droplet size can have a reasonably significant

impact on the calculated distribution of water that impinges on the airfoil. One objective of

this study is to assess just how important this parameter is relative to T∞ and LWC, which

have already been established as important governing parameters. We choose a uniform

distribution for the droplet size: MVD = U [10, 100] µm. All simulations performed are

monodispersed. Accretion time is set to 5 min; all other governing parameters are the

same as before.

As can be seen in Fig. 5.15a and 5.15c, there is a small but noticeable effect of MVD, as

witnessed by the conditional expectation shown in Fig. 5.15e. We observe a sharp average

increase in performance as we lower MVD below about 20µm, as well as a modest average

increase in performance at diameters above approximately 90µm.

These effects can be explained by examining Fig. 5.13. The collection efficiency for

MVD = 10µm has a much lower peak than those corresponding to the larger sizes. This

results in lower impinging water mass, which results in an ice shape that is closer to rime

accretion than a glaze horn. The difference between intermediate and large values of MVD

is more subtle. Upon close examination of Fig. 5.13a,5.13b,5.13c, it is apparent that the

upper surface collection efficiency (relative to the appropriate stagnation point) is slightly

greater for the intermediate droplet size than it is for the large droplet size. This is most

likely due to splashing losses, which are greater for larger and more massive droplets. The
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effect is slight, but it is enough to produce a marginally larger upper-surface horn for the

intermediate droplet size.
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Figure 5.13: Comparison of collection efficiency evolution and ice shapes produced using
different droplet sizes.

The overall implications of these observations are mixed. It is clear lowering droplet

diameters below 20 µm is more likely to produce benign ice shapes with less impact on

performance; however, performance is relatively unaffected by increasing droplet size all

the way to around 90 µm. The modest recovery in performance observed after that point

is relatively small, if it exists at all. The importance of MVD relative to temperature and

LWC can be quantified by examining the total Sobol indices (see Chapter 2), which pro-

vide a measure of the relative fraction of the total variance attributable to each individual

parameter. The Sobol indices for T∞ and LWC are 0.5 and 0.6, respectively, while the

Sobol index for MVD is 0.1, meaning that the total influence of MVD is only 10% of the

total variance. Assuming we believe that our droplet advection module gives a faithful

representation of the true physics, then these findings may be interpreted as evidence that
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MVD is a relatively unimportant parameter in icing. However, our model is imperfect, and

droplet models are still an area of active research. Additionally, we have used monodis-

persed (rather than the more physical polydispersed) droplet distributions; it would be

interesting to examine whether these findings change in a polydispersed setting.

5.6.4 Three Parameters: T∞, LWC, and Roughness

As we have noted, the roughness parameter in the Spalart-Allmaras turbulence model

can heavily influence the convective heat transfer, and therefore the ice shape. Research

has been done to develop empirical correlations relating the roughness height to aero-

dynamic/icing parameters; however, the local value of the roughness height can be non-

uniform over the airfoil surface. Surface roughness heights have been observed to vary over

an order of magnitude in some studies. Given how important of a parameter roughness

height is in controlling convective heat transfer, quantifying the variation of the aerody-

namics over a range of roughness values and icing conditions would be a useful study.

In this study, we aim to see how important the roughness parameter is over a range

of temperature/LWC combinations. All other icing/aerodynamic parameters are kept

constant at the values they have assumed in the previous studies.

What stands out most clearly from the statistical trends of Fig. 5.16 is the sharp de-

cline in performance that occurs as ks is decreased below 0.25mm for some combinations

of temperature/LWC. By examining the ice shapes depicted in Fig 5.16b, we can deduce

the physical explanation for this occurrence: the horns that give the worst performance are

the ones that have the highest inter-horn angle. As we have observed in previous parts of

this thesis, inter-horn separation produces horns that are more normal to the free-stream

flow, resulting in a larger leading edge separation bubble and hence worse performance.

The reason for this effect is the general concept that rougher surfaces promote greater

turbulent mixing within the boundary layer than smoother surfaces do; hence, convective

heat transfer is less in the area surrounding the stagnation point for smoother surfaces
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than for rougher ones. This pushes the horns farther aft, resulting in the increased sepa-

ration distance. Of course, the areas in parameter space for which the temperature is cold

enough and the LWC is low enough that rime accretion exists are mostly unaffected by

this phenomenon.

These results confirm our suspicion that roughness can play a pivotal role in determin-

ing the computed ice shape. It is therefore possible that existing icing codes would benefit

from greater research in the subgrid roughness models.

5.7 Summary

The intent of this chapter was to introduce one final perspective on the ice accretion UQ

problem. The chapters prior to this one did not extensively investigate the effects of un-

certainties in the governing physical parameters that produce airfoil ice shapes. This

chapter sought to close that gap by developing computational codes and studying their

input/output statistics.

Specifically, we developed from scratch an in-house ice accretion code, which interfaces

with our pre-existing, in-house flow solver. This icing code uses a hybrid of techniques

from other icing codes, and it contains three modules: droplet advection (which calculates

the droplet trajectories and impinging water mass from the free-stream), thermodynamics

(which discretizes and solves the governing mass/energy balances to calculate a rate of ice

accretion), and ice addition (which applies filtering/smoothing routines to the calculated

ice rate and adds ice to the airfoil surface). We then performed a series of UQ experi-

ments to understand and quantify the effects of different icing parameters on aerodynamic

performance.

There are still many open avenues for this research in the future. For example, we did

not include aerodynamic parameters (such as Reynolds/Mach number) in our uncertain
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parameter space; these could have a significant impact on the calculated ice shapes, and it

would be interesting to investigate those effects. It would also be interesting to investigate

whether or not the purely data-driven icing models from Chapter 4 could be fused with

CATFISh and used to improve its calculations, perhaps by deriving some correction terms

in the ice addition step that account for any discrepancies between CATFISh and the data-

driven model predictions.
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(d) PCE surrogate statistics. (e) Statistics of CLα as a function of ∆T.
Conditional expectation is solid; shaded re-
gion denotes 25th and 75th percentiles.

Figure 5.14: Quadrature points, PCE surrogate, and statistics for the 3 parameter (T∞,
LWC and ∆T ) study on lift slope.
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orscale identical to (c)).

(c) PCE surrogate (parameter units identical to (a)).
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(d) PCE surrogate statistics. (e) Statistics of CLα as a function of MVD.
Conditional expectation is solid; shaded re-
gion denotes 25th and 75th percentiles.

Figure 5.15: Quadrature points, PCE surrogate, and statistics for the 3 parameter (T∞,
LWC and MVD) study on lift slope.
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(d) PCE surrogate statistics. (e) Statistics of CLα as a function of ks. Con-
ditional expectation is solid; shaded region
denotes 25th and 75th percentiles.

Figure 5.16: Quadrature points, PCE surrogate, and statistics for the 3 parameter (T∞,
LWC and roughness) study on lift slope.
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Chapter 6

Conclusion

The fundamental intent of this dissertation was to contribute to airplane safety by address-

ing a problem long recognized by the FAA as a serious safety concern. The accumulation

of ice on aircraft wings has been documented as the main cause for many catastrophic in-

flight failures that have tragically resulted in the loss of many lives. No category of airplane

is inherently any more robust against this problem – icing affects small Cessnas, medium

sized business jets, and large commercial transports.

We sought to approach airfoil icing from a different perspective than those which have

already been published in the community. The existing literature contains a thorough

treatment of icing from experimental, computational, and physical perspectives; however,

there have been few efforts to systematically quantify the effects of parametric uncertainty

in the icing process on aerodynamic performance. There are several benefits of studying

icing through the lens of UQ. The most essential of these is that we can not only describe

qualitative trends in parameter space, but we can quantify the statistical distribution of

airfoil performance, given some a priori statistical knowledge of the uncertainty in the

underlying governing icing parameters. This could be useful in the context of flight certi-

fication, where an airplane would need to be certified as “safe” to fly in a set of uncertain

atmospheric conditions, to a predefined statistical level of certainty (e.g., “we are 95%
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confident that this aircraft passes all performance requirements, given this atmospheric

uncertainty”).

The work presented in this thesis can be classified as belonging to one of three general

categories of UQ: user-informed, data-driven, or computational. The first of these topics

represents our first attempt at applying the UQ method of Polynomial Chaos Expansions

(PCE) to the airfoil icing problem. Our objective was to (a) describe canonical ice shape

classifications, (b) show how these classifications could be represented by a template shape

and a few scaling/translation operations, and (c) confirm by experiment that PCE provides

an efficient and accurate way of quantifying uncertainty over a wide range of ice shapes.

We accomplished these objectives by studying parameterized shape uncertainty in ridge

and horn ice cases, and showed how the lift/drag of the airfoil vary statistically.

The next topic presented was the data-driven UQ method. The motivation for con-

sidering this approach was to attempt to construct ice shape perturbations/parameters

that we more “realistic” (i.e., derived from data) than those we had previously considered

in the user-informed UQ. We began by introducing Proper Orthogonal Decomposition

(POD) as the tool that could be used to derive an optimal set of ice shape parameters from

a database of ice shapes. We applied POD with success to two independent databases of

ice shapes, and performed UQ on the resulting parametric spaces. We next showed how

we could link physical information (i.e., temperature, LWC, accretion time) to the POD

ice shape modes, and used this link to construct a purely data-driven model of ice accre-

tion, which was capable of accepting physical condition inputs and producing random ice

shapes corresponding to those conditions as outputs. We commented on the particular

usefulness of this data-driven model, as a novel means for benchmarking and improving

existing numerical icing codes. Finally, we elaborated on the concept of identifying and

segregating self-similar clusters in an ice shape database, and commented on its utility as

an empirical classification tool and as a means for simplifying a complex dataset into a few

relatively simple datasets.
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Our final topic in this dissertation is computational icing UQ. The purpose of this topic

was to apply the UQ machinery to understanding the statistical effects of physical param-

eters. To do this, we developed from scratch an in-house ice accretion code (CATFISh).

This numerical code represents a hybrid of techniques from literature, and is built in three

modules: a droplet advection module, a thermodynamic module, and an ice addition mod-

ule. CATFISh interfaces with our pre-existing in-house mesh/flow solvers (FLO103).

We first validated this code against several published results, and then proceeded to study

the effects of parameterized physical uncertainty on the computed ice shape.

As we have noted, there are multiple exciting avenues for further extensions to the

research we have presented. In particular, the data-driven icing model we developed could

be improved by the addition of more ice shapes that represent a diverse range of physical

conditions. It would also be interesting to examine whether the data-driven icing model

could be blended with CATFISh and used as an empirical correction tool.

In summary, the motivation for our work has been introduce tools that can bring a de-

gree of statistical certitude to a problem which has long been viewed as elusively uncertain.

Rather than attempt to make incremental contributions to physical models, we aimed for

the more general goal of quantifying the effects of uncertainty in the process of icing. It

is our hope that the contributions made in this dissertation could be used to improve the

continued safety of aircraft flight.
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Appendix A

UQ for Cargo Hold Fires

This appendix contains a paper [27] I co-authored on the subject of applying PCE tech-

niques to the problem of uncertainty in cargo hold fires. It is closely related in style and

methodology to Chapter 3.

A.1 Introduction

Federal aviation regulations require that all large passenger aircraft have fire detection and

suppression systems in all cargo compartments. Several different detection methods are

generally used together, such as sensors for temperature, carbon monoxide, smoke partic-

ulate, radiation, and optical detection. These sensors are required to detect the fire within

60 seconds of fire ignition [95]. Certification of these systems currently requires expensive

ground and in-flight testing. Current fire detection certification focuses on experiments

using a small fire in empty cargo holds, such as the narrow-body Boeing 707 fuselage

located at the Federal Aviation Administration William J. Hughes Technical center in

Atlantic City, New Jersey[68]. Simulating a single fire case is a well-posed problem and

relatively straightforward, but of limited utility. Due to the costs associated with these
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types of experiments, testing a wide variety of fire sources, positions, and compartment

cargo cluttering is not feasible.

CFD tools that can accurately simulate heat and particulate transfer in fire-induced flow

in cargo holds can potentially reduce these certification costs by reducing the amount of

experimental work necessary. Simulations can then be used to assess the effectiveness of

a particular detector placement, as well as optimize their placement in a given cargo hold.

The allure of CFD tools is the reduction of monetary costs associated with certification

tests; however, a drawback is the associated computational expense. In light of this, an

issue that needs to be addressed is how to accurately quantify the uncertainty associated

with randomly variable boundary conditions (e.g., fire source location or temperature)

while using the least amount of CFD simulations possible.

This work has two main objectives. The first is to establish efficient and accurate CFD

tools that can be used to simulate cargo fires over a wide range of parameters. For these

simulations we develop an in-house high-order accurate discontinuous Galerkin (DG)[41]

flow solver on unstructured meshes. The DG scheme approach is well-suited for comput-

ing the turbulent, vorticity-dominated buoyancy-driven flows observed in cargo hold, and

unstructured meshes allows one to compute on a complex domain such as those encoun-

tered in cluttered cargo holds.

The second objective is to apply techniques of uncertainty quantification to explore the

statistical effects of parameterized boundary condition uncertainty with the ultimate goal

of optimizing the placement of fire detection systems. In particular, we will be using Poly-

nomial Chaos Expansions (PCE) to achieve this, as this method is efficient and accurate.

In order to assess the feasibility of these methods to the problem at hand, we are restricting

the problem to the 2-dimensional cross-section of the cargo hold.
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A.2 Simulation methodology

A.2.1 Discontinuous Galerkin simulation tool

It is well known that traditional low-order O(∆x2) flow solvers are excessively dissipative

for vorticity-dominated flows such as those seen in fires. Adequate resolution of vorticity

convection far from its generation source typically requires either a prohibitively fine mesh

or a higher-order representation of the flow solution. The in-house simulation tool used in

this work is a nodal discontinuous Galerkin (DG) flow solver for the compressible Navier-

Stokes equations with buoyancy effects, discretized with an unstructured mesh suitable for

complex geometries and arbitrarily-high order of accuracy. The spatial discretization used

here follows that detailed by Hesthaven and Warburton[41], and is briefly summarized

here.

For a multi-dimensional conservation law of quantity u, flux f, and source Ψ

∂u(x, t)
∂t

+∇ · f(u(x, t), x, t) = Ψ(x, t) (A.1)

the quantities can be approximated by an expansion

u(x, t) ≈ uh(x, t) =
Np∑
i=1

uh(xi, t)li(x) (A.2)

where li(x) is the multidimensional Lagrange polynomial defined by grid points xi, and

Np is the number of nodes in the element, Np = (N + 1)(N + 2)/2 for a triangular element

of polynomial order N .

Taking the product of this with the same Lagrange polynomial lj serving as a test

function and integrating by parts on the spatial component over an element V with surface

S yields ∫
V

(
∂uh
∂t

lj(x)− fh · ∇lj(x)−Ψhlj

)
dV = −

∫
S

f⋆lj(x) · n dS (A.3)
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where flux f⋆ is the numerical flux, uniquely defined at element interfaces. In this work

the inviscid components of flux are computed using the local Lax-Friedrichs flux splitting,

and the viscous flux components use a centered average.

Time integration is performed using the implicit 3rd order backward difference formula

du

dt
≈
(
un+1 − 18

11
un +

9

11
un−1 − 2

11
un−1

)
/

(
6

11
∆t

)
(A.4)

where ∆t is the discrete time step size and n the time step index.

This discretization leads to a non-linear system of algebraic equations to be solved at

each time step. The non-linear system can be written as F(u) = 0, and Newton’s method

can be used with the iterative step index k,

F(uk+1) = F(uk) + F′(uk)(uk+1 − uk) (A.5)

resulting in a sequence of linear systems

J(uk)δuk = −F(uk), uk+1 = uk + δuk (A.6)

for the Jacobian J = F′(u). The Jacobian matrix J is a very large sparse matrix which can

be prohibitively expensive to store in computer memory. Fortunately the Krylov subspace

methods for the solution of linear algebraic systems do not require this matrix itself, but

only the matrix-vector product. This can be approximated by a finite difference

Jδu ≈ [F(u+ ϵδu)− F(u)]/ϵ (A.7)

for a small (∼ 10−6) parameter ϵ. In this work the restarted GMRES algorithm is used

for the solution of the linear systems at each Newton iteration, with the Newton method

progressing until a desired convergence tolerance is reached and the physical time step is

advanced. This approach for solving non-linear systems by coupling matrix-free Krylov
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iterative methods for linear systems with Newton iterations is known as a “Jacobian-

free Newton-Krylov” (JFNK) method, and is detailed in the review paper by Knoll &

Keyes[48].

A.2.2 Cargo hold geometry and boundary conditions

The geometry of interest here is the forward cargo compartment of a Boeing 707. This

geometry shortly after a small fire is started in the center can be seen in figure A.1a. The

flow is entirely driven by buoyant effects due to the local heating produced by the fire.

We note that a short distance away from the fire source, there is no longer a significant

effect on the dynamics of the flow due to the actual chemical combustion process taking

place. This type of flow can therefore be accurately modeled as a heat source addition into

non-reactive air, freeing us from the need to tackle the computationally expensive details

of the combustion problem. Experimental results of the full 3D case and background on

this problem can be found in work by Oztekin et al[68, 69].

A typical simulation of a 2D cross-section of the cargo geometry (computed using our

in-house DG code) can be seen in figure A.1b. A turbulent plume rising from the heat

sources drives vortical flow around the compartment feeding back into itself at the bot-

tom. We note recirculation regions in both upper corners leading to stagnation regions

where streamlines are separating, indicating a sensor position there would be less effective

than at other locations. The turbulent, buoyant flow is instantaneously asymmetric, but

statistically averaged is largely symmetric due to symmetric boundary conditions. The

base of the geometry is 1.107m wide, and the ceiling is 2.286m wide and 1m tall.

In this work, we restrict the analysis to a 2D cross-section of a cargo hold. All boundary

conditions are isothermal, with the majority of the wall boundary fixed to the initial bulk

temperature non-dimensionalized to T∞ = 1. A 0.1m wide section of the floor is then set

to an isothermal condition at a multiple of the bulk temperature in order to model a heat

source. The temperature source Ts is examined in the range between Ts = 1.2 and 1.5, and
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the temperature location xs in the range between xs = 0.0 (centerline) and 0.503m (the

rightmost possible location for 0.1m wide source.) Due to symmetry, sources need only

be placed to one side of the geometry in order to analyze sources at a reflected point along

the floor.

(a) Temperature field after start-up of a small
fire in the center.

(b) Flow driven by a heat source in a 2D cross-
section. Colormap shown is temperature nor-
malized by the initial bulk temperature.

Figure A.1: Example flowfields of buoyancy-
driven flow in Boeing 707 cargo hold geom-
etry.

All DNS simulations here are per-

formed using cubic (N = 3) elements, with

the 2D meshes consisting of approximately

1500 triangular cells. This results in 10

nodes per cell for each of the 4 quantities

(density, x and y momentum, and energy)

to be solved, for a total of ∼ 60, 000 degress

of freedom.

Sample flowfield snapshots of temper-

ature are displayed in Figures A.2, A.3,

and A.4. These figures illustrate the wide

range of spatio-temporal flow behaviors

that are possible when the fire source loca-

tion and temperature are varied, and mo-

tivates a study aimed at quantifying the

statistics of some measure of the flow given

parameterized uncertainty in the fire source

location and temperature.
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(a) xs = 0.024m. (b) xs = 0.116m. (c) xs = 0.262m.

(d) xs = 0.387m. (e) xs = 0.480m.

Figure A.2: Temperature fields for Ts = 1.486 source at the 5 source locations, time t = 10s
after startup.

(a) Ts = 1.214. (b) Ts = 1.269. (c) Ts = 1.350.

(d) Ts = 1.431. (e) Ts = 1.486.

Figure A.3: Temperature fields at xs = 0.024m for the 5 values of temperature source,
time t = 10s after startup.

A.3 Case Study: 2-D

Cargo Hold Fire with Uncertain Location/Temperature

In this section, we apply the tools discussed to study a test problem in which both the

fire source location and temperature are independent, uncertain parameters with some

joint probability distribution ρ(Z). We choose to equip both parameters with a uniform

distribution. We assume that the range of possible fire source locations consists of the right

half of the cargo hold floor. This is done in order to study the effect of spatial asymmetry
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(a) t = 2s. (b) t = 3s. (c) t = 4s.

(d) t = 5s. (e) t = 6s. (f) t = 7s.

Figure A.4: Temperature field time evolution for Ts = 1.486, xs = 0.024 case.

on the UQ problem. We assume that the range of possible fire source temperatures is

given by the interval [1.2, 1.5]× T∞.

Given that both of our parameters are uniformly distributed, our PC basis consists of

the Legendre polynomials. We choose to truncate the PC expansion (2.1) at total order

N = 4. This implies that we use a 5 × 5 grid of collocation points in the parameter space

to evaluate the projection integrals (2.5), corresponding to the tensor product of the five

zeros of the fifth order Legendre polynomials (suitably shifted/scaled) with themselves.

These nodes are given in Table A.1. These are the collocation points that specify the fire

source locations/temperatures that we will simulate using our DG code.

Temperature strength Ts, 5× 5 1.214, 1.269, 1.350, 1.431, 1.486
Temperature location xs(m), 5× 5 0.024, 0.116, 0.252, 0.387, 0.480

Table A.1: Discrete simulation parameters for uncertainty quantification study. The pa-
rameter sweep is performed using a tensor product of these values.

Quantifying an entire field quantity u(x, t;Z) using PCE is difficult. This is because

the spatio-temporal behavior of the flow can vary significantly with fire source location and

temperature, which makes it difficult to interpolate in parameter space accurately using

4th order polynomials. Therefore, we focus on a set of observables more amenable to our

techniques, corresponding to the temperature along a 1-D segment near the cargo hold
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ceiling. This observable vector is highly relevant from an engineering standpoint, since it

informs the choice of fire sensor placement.

We denote the temperature along the line segment at height y = 0.95 in the cargo hold

as TC(x, t;Z). Intuitively, one would expect a certain characteristic rise time tR(Z) of the

buoyant plume from the fire source, which should be dominated by the source temperature

(and possibly affected by source location if the plume interacts with the cargo walls). We

define tR(Z) as the time required from the start of the fire to detection at any point on the

ceiling. For early fire detection, we are interested in the ceiling temperature distribution

averaged over a short period of time beginning at tR(Z) (for some choice of Z). Therefore,

we define the time-averaged ceiling temperature distribution:

TC(x;Z) =
1

∆t

∫ tR(Z)+∆t

tR(Z)

TC(x, t;Z) dt , (A.8)

and we quantify uncertainty in the observables TC(x;Z) and tR(Z). We use an aver-

aging time period of ∆t = 1s. Note that tR(Z) is a scalar quantity and hence has one PC

expansion associated with it, whereas TC(x;Z) is a function in x (which is discretized as

a vector at discrete locations) and hence has one PC expansion for each location in x we

choose to measure. The units of tR(Z) will be seconds; as noted previously, TC(x;Z) is

temperature normalized by the initial bulk temperature T∞.

We first examine the rise time tR(Z). The PCE surrogate model for rise times tR(Z)

is shown in Figure A.5, along with statistical quantities in Table A.2. Examination of

Figure A.5 and Table A.2 confirms our hypothesis that the characteristic rise time tR is

dominated by the source temperature. As shown, source temperature has a Sobol index

of 0.95, which means that 95% of the variance in the distribution of tR can be attributed

to source temperature (either acting alone or interacting with location). The only portion

of parameter space that really is affected strongly by source location appears to be the

“corner” area of parameter space where the source is very close to the cargo hold wall
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and the source temperature is very low. The result of this combination of variables is that

the initial buoyant plume “rolls over” toward the center of the cargo hold and falls back

downward toward the floor before reaching a height of y = 0.95 (where we are observing

ceiling temperature). This time-dependent behavior is illustrated in Figure A.6. It is not

until several seconds after this has occured that subsequent buoyant plumes finally touch

the ceiling. This combination of low temperature with a wall effect is what accounts for

the tail of the distribution of tR.

(a) PCE surrogate map of tR(Z), together
with the values at the 25 quadrature nodes.

2 4 6 8 10 12 14
tR

0.0

0.1

0.2

0.3

0.4
ρ
(t
R
)

(b) Probability density function ρ(tR(Z))
(approximated using 10,000 random sam-
ples of the PCE surrogate).

Figure A.5: PCE surrogate for tR(Z).

(a) t = 6s. (b) t = 8s. (c) t = 10s.

Figure A.6: Temperature field snapshots with Z = (0.48, 1.21). The initial plume falls
toward the floor without ever touching the ceiling, explaining the unusually long rise time.

We next turn our attention to the time-averaged ceiling temperature distribution

TC(x;Z). The time-averaged ceiling temperature distributions at the quadrature nodes
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Mean 4.8
Variance 3.9
Sobol Index 1 (Location) 0.08
Sobol Index 2 (Temperature) 0.95

Table A.2: Statistical quantities of interest for tR(Z).are shown in Figure A.9. The mean distribution along with confidence intervals – com-

puted from Monte Carlo samples of the PCE surrogate – is shown in Figure A.7a. The

accuracy of the PC model for ceiling temperature can be verified by comparing the PC

interpolation to data at various points in parameter space. This is done in Figure A.10,

which confirms that our the PC model provides reasonably accurate interpolation.

We can also examine the total Sobol indices as a function of x for the ceiling temper-

ature observable, which indicate which of the two uncertain parameters best explains the

variance in the ceiling temperature. These Sobol indices are displayed in Figure A.7b. As

can be seen, source temperature is the dominant parameter in the area around the max-

imum of the mean profile. The peripheral areas are dominated by source location. The

explanation of this phenomenon is natural: source temperature controls the intensity of

the temperature fluctuations observed on the ceiling where they are hottest, but source

location determines whether or not temperature fluctuations are actually observed at all in

the peripheral areas.

Having a PCE surrogate for ceiling temperature also means that we can compute the

statistics of any quantity derived from it. Two particularly relevant examples of this in-

clude the maximum value of TC(x;Z) as well as its location along the ceiling. We display

these statistics in Figure A.8. We see that a wide range of maximum ceiling temperatures

are possible, with a skew toward lower maximum values. We also see a clear skew in the

location of the maximum ceiling temperature to the right of the center (as would be ex-

pected from the asymmetry in the source location). Computing correlations between these

output quantities and our uncertain parameters confirms what one would expect – source
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temperature dominates the maximum value of the ceiling temperature, whereas source

location dominates its location.

−1.0 −0.5 0.0 0.5 1.0
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(a) Black: mean time-averaged ceiling tem-
perature profile. Blue: 68% confidence in-
terval. Red: 95% confidence interval.
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(b) Sobol indices for ceiling temperature at
points along the ceiling. Blue: source loca-
tion. Red: source temperature.

Figure A.7: Statistical quantities of interest for time-averaged ceiling temperature.
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(a) Distribution of the maximum value of the
time-averaged ceiling temperature.
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1
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F

(b) Distribution of the location of the maxi-
mum value of the time-averaged ceiling tem-
perature.

Figure A.8: Distributions of maximum ceiling temperature value and location. Computed
from 10,000 Monte Carlo samples of the PCE surrogate.

Combining all of this information together gives a clear and insightful view of the

physics of our cargo hold problem. We see that the main effects of increasing temperature

are to increase the maximum ceiling temperature, and to decrease the rise time. The main

effect of location is to influence whether or not fluctuations in ceiling temperature are

observed in the peripheral regions of the ceiling. The fact that we observe these intuitive

trends in our surrogate model gives us further validation of the claim that PCE methods
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Figure A.9: Time-averaged ceiling temperature distributions collected at the 25 quadra-
ture nodes. Each subtitle corresponds to the parameter pair (xS, TS).

may provide a method for UQ which is not only efficient, but also accurate for this class of

problems.

Of course, the main usage of these UQ tools is not just to confirm intuition, but to

quantify it. We see that, on average, we can expect a ceiling temperature distribution

which is roughly symmetric between the limits y ∈ [−0.35, 0.60], with a maximum around

y = 0.125. We can also give confidence intervals on the mean ceiling temperature distri-

bution (Figure A.7), and estimate the probability distributions for the value and location

of the maximum ceiling temperature (Figure A.8).

A.4 Summary

The purpose of this paper was establish a framework for performing efficient, accurate

investigations of the statistical variations in cargo hold fires that occur due to parameterized
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Figure A.10: Time-averaged ceiling temperature distributions collected at points on the
4x4 mesh which is dual to the 5x5 mesh. Data are displayed in blue; PC models are
displayed in red. Each subtitle corresponds to the parameter pair (xS, TS).

uncertainty in the boundary conditions. We address two related problems – increasing

the numerical accuracy of the CFD simulation, and uncertainty quantification. Higher

order numerical accuracy is necessary because traditional finite-volume schemes require

a prohibitively fine mesh in order to resolve the vortex-dominated flows seen in cargo

hold fire solutions. The need for uncertainty quantification stems from the fact that the

boundary conditions of the cargo hold fire will always be fundamentally unpredictable,

since one can never know a priori exactly where the fire will start, how hot it will be, how

much luggage clutter there is, etc.

In order to provide greater simulation accuracy, we developed an in-house discontinu-

ous Galerkin (DG) flow solver for the compressible Navier-Stokes equations with buoy-

ancy effects. This code also features an unstructuredmesh suitable for complex geometries.

To make uncertainty quantification feasible, we first reduced the problem from quantify-

ing the full flow field to quantifying measures of the flow field – a characteristic rise time
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of the buoyant flow, and a time-averaged ceiling temperature distribution. This made the

problem amenable to treatment with spectral expansion methods, and so we used PCE as

the tool to efficiently and accurately quantify the effects of fire source location and tem-

perature. A case study of a 2D cargo hold geometry in which the fire source location and

temperature were uncertain confirmed that PCE tools provide a viable UQ approach, and

keep the number of required CFD simulations to a minimum.

We are currently working to extend these methods to 3D cargo hold fire configurations.

We are also planning to investigate methods for accounting for geometric uncertainty in

cargo hold luggage clutter, which was not accounted for in our empty cargo hold geome-

tries.
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Appendix B

Droplet Distributions
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Table B.1: 27-Bin Droplet Distributions

Bin Weight MVD 20µm MVD 111µm MVD 236µm

1 4.75 3.77 10.87 15.91
2 4.75 8.42 24.52 45.34
3 4.75 10.07 29.64 74.84
4 4.75 11.55 34.96 102.0
5 4.75 12.98 44.74 122.6
6 4.75 14.30 58.34 141.6
7 4.75 15.50 70.67 160.5
8 4.75 16.65 81.29 178.4
9 4.75 17.68 91.19 197.7
10 4.75 18.61 100.9 218.0
11 4.75 19.54 110.6 240.8
12 4.75 20.51 119.5 271.0
13 4.75 21.51 128.8 320.0
14 4.75 22.51 140.1 393.5
15 4.75 23.58 152.8 455.5
16 4.75 24.73 165.9 494.6
17 4.75 25.98 179.4 534.1
18 4.75 27.47 193.7 578.0
19 4.75 29.32 207.2 624.0
20 4.75 31.85 219.7 670.9
21 1.00 33.81 227.4 701.1
22 1.00 34.83 230.1 713.6
23 1.00 36.22 237.8 728.3
24 0.50 37.47 250.5 742.1
25 0.50 38.74 264.2 752.7
26 0.50 40.67 279.5 763.2
27 0.50 44.37 312.6 1046.8
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Appendix C

Ice Test Matrix

Table C.1: Ice Accretion Test Matrix

Run P∞ (Pa) T∞ (K) U∞ (m/s) M∞ Re∞ Chord (m)

409 90760 265.07 67.1 0.21 5.60e6 0.5334
402 90760 263.71 102.8 0.32 7.76e6 0.5334
405 90760 250.37 102.8 0.32 7.76e6 0.5334
404 90760 256.56 102.8 0.32 7.76e6 0.5334
421 90760 268.4 67.1 0.20 5.21e6 0.5334
422 90760 268.4 67.1 0.20 5.21e6 0.5334
423 90760 265.07 67.1 0.21 5.21e6 0.5334
424 90760 259.51 67.1 0.21 5.53e6 0.5334
425 101510 244.51 67.1 0.21 6.16e6 0.5334
426 101520 265.07 67.1 0.21 5.33e6 0.5334
427 101520 265.07 67.1 0.21 5.33e6 0.5334
428 101520 265.07 67.1 0.21 5.33e6 0.5334
429 101550 262.04 102.8 0.21 5.33e6 0.5334
308 90760 262.04 102.8 0.21 7.76e6 0.5334
314 90760 262.04 102.8 0.21 7.76e6 0.5334
316 90760 262.04 102.8 0.21 7.76e6 0.5334
206 101510 265.37 102.8 0.21 5.21e6 0.5334
207 101510 256.49 102.8 0.21 5.21e6 0.5334
212 101510 262.04 102.8 0.21 5.21e6 0.5334
213 101510 262.04 102.8 0.21 5.21e6 0.5334
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Table C.2: Ice Accretion Test Matrix (continued)

Run MVD (µm) LWC (g/m3) Time (min)

409 30e-6 1.30e-3 6
402 20e-6 0.55e-3 7
405 20e-6 0.55e-3 7
404 20e-6 0.55e-3 7
421 20e-6 1.00e-3 6
422 20e-6 1.00e-3 6
423 20e-6 1.00e-3 6
424 20e-6 1.00e-3 6
425 20e-6 1.00e-3 6
426 30e-6 1.06e-3 6
427 30e-6 1.30e-3 6
428 30e-6 1.60e-3 6
429 40e-6 0.86e-3 5
308 20e-6 1.00e-3 4
314 15e-6 0.60e-3 6
316 20e-6 0.55e-3 4
206 20e-6 0.34e-3 12
207 20e-6 0.34e-3 12
212 30e-6 0.44e-3 9
213 40e-6 0.48e-3 8
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