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Abstract

This dissertation focuses on the mechanics of locomotion through a fluid medium

characterized by propulsors (fins and wings) with a large aspect ratio and a large

Reynolds number. The subject so delimited is of particular interest because on the

order of 100 million years of animal evolution have led to fast and efficient animals

converging upon such features. Idealized models of propulsors are studied in order to

distill the essential physics responsible for fast and efficient locomotion, rather than

the idiosyncrasies of any particular animal.

The first half considers a rigid propulsor, where the kinematics are known a priori.

We derive a set of scaling laws for the thrust, power, and efficiency of a propulsor

sinusoidally heaving or pitching while translating in a uniform stream. The validity of

the scaling laws is borne out by their success in collapsing a wide array of experimental

data. Moreover, physical phenomena are easily attributed to different terms in the

scaling laws, revealing an important but previously unappreciated interplay between

added mass and lift-based forces. The scaling laws are extended to non-sinusoidal

kinematics, intermittent kinematics, and combined heaving and pitching kinematics,

at each step collapsing experimental data and revealing important physics.

The second half considers a flexible propulsor, where the kinematics are unknown

a priori. We start with the simplest case of a propulsor with homogeneous stiffness.

To understand the role of fluid-structure resonance, we calculate the spectrum of the

governing equations. The results demonstrate that resonance induces local maxima in

thrust and power, in agreement with the literature, but does not by itself induce local

maxima in efficiency, as assumed in the literature. Flutter eigenfunctions emerge as

the system’s stiffness is decreased, increasing locomotory efficiency. The results are

then extended to propulsors with heterogeneous stiffness, and we calculate optimal

distributions of stiffness over a wide range of conditions.
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Throughout, the importance of fluid drag is discussed. For rigid propulsors, drag

induces a global maximum in efficiency, plausibly explaining the narrow operating

conditions observed in dolphins, sharks, bony fish, birds, bats, and insects. For

flexible propulsors, drag induces local maxima in efficiency at resonance.
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Preface

This dissertation contains two parts. The first part provides an overview of foils

oscillating in a fluid, with the overview split between rigid and flexible foils. The

first part reviews the relevant theoretical, experimental, and computational results,

and also briefly describes some of the new results from this dissertation. The second

part consists of published and submitted papers, which are also split between rigid

and flexible foils. These papers contain the detailed results of this dissertation. The

papers have been reformatted from their published forms, and the content of the sub-

mitted papers may change after peer-review; the reader should consult the published

papers for finalized results. Author contributions are listed in Chapter 5, and the

bibliography for the entire dissertation is listed at the end of this dissertation.
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Chapter 1

Motivation and goals

The primary goals in designing the next generation of underwater vehicles are that

they be fast, efficient, maneuverable, and stealthy. Traditional propeller-based un-

derwater vehicles may be fast, but generally lag in the other three measures of per-

formance. To achieve all of the performance goals simultaneously, next-generation

designs require a new paradigm.

In this respect, biology offers a rich source of inspiration. Aquatic animals have

benefited from on the order of 100 million years of evolution, surely leading them to

develop features that make them good swimmers in the sense of the previous para-

graph. Although not all of the evolved features may have a hydrodynamic purpose

(or may have a hydrodynamic purpose other than the four previously outlined), it

is reasonable to expect that many of them will. After all, many aquatic animals are

indeed fast, efficient, maneuverable, and stealthy (though not necessarily all at once).

The capabilities of aquatic animals have led engineers to construct robotic systems

imitating biological systems. Perhaps the best-known example is the RoboTuna, an

eight-link tendon- and pulley-driven robot emulating the physical form and kinemat-

ics of a bluefin tuna (Triantafyllou and Triantafyllou, 1995). More recent examples

include the GhostSwimmer (Rufo and Smithers, 2011), another robot fashioned after
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tuna, and the MantaBot (Fish et al., 2011), a partially soft robot fashioned after cow-

nosed rays. These systems exemplify biomimicry (also called biomimetics), the design

of human-made systems modelled directly on biological systems, and are mostly lim-

ited to the performance of the biological systems on which they are modelled.

In order to surpass the performance of biological systems, we turn to the bioin-

spired design paradigm. Bioinspiration is the design of human-made systems based

on fundamental principles of biological systems, contrasting the direct imitation of

biomimicry; it requires a deep understanding of the physical principles at play. To

design underwater vehicles capable of great speed, efficiency, maneuverability, and

stealth, we must gain a deeper understanding of the physics of underwater locomo-

tion based on principles derived from biology.

The goal of this dissertation is to uncover the underlying physics of the fluid-

structure interaction responsible for propelling large-scale (high Reynolds number)

aquatic animals forward. The focus is on the first two goals outlined in the

beginning—speed and efficiency—with maneuverability and stealth being left for

future study. Fast and efficient swimmers, epitomized by animals such as tuna,

are interesting in that nearly all of the propulsive force is generated by their tails,

which are well-separated from the rest of the body which essentially amounts to

a source of balancing drag (Webb, 1984). Furthermore, the tails characteristically

have large aspect ratio and move in an oscillatory fashion. The essential features

of the propulsion of these swimmers can therefore be understood via an abstracted

problem: the propulsion of an oscillating two-dimensional foil. The foil represents

the propulsive surface of the animals, henceforth referred to as the propulsor. This is

the problem studied in this dissertation, with the hope that the principles uncovered

here may guide the design of the next generation of underwater vehicles.

Since biological propulsors are at times rigid and at other times flexible, half of the

dissertation is devoted to each topic. Accordingly, the rest of Part I is split between
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Figure 1.1: A body in the complex plane and the force acting on an element.

rigid and flexible propulsors. Each chapter begins with a review of the relevant

theoretical background, followed by experimental and computational results from the

literature, and ends with a summary of the results from this dissertation (the details

of which are in Part II of the dissertation).

1.1 The classical theory and its limitations

To begin with, consider unsteady two-dimensional flow of a perfect fluid of constant

density ρ around an object. The object is allowed to move and change shape, the

flow is assumed to be continuous, and the fluid is at rest at infinity. For convenience,

we work in the complex plane. The object is described by a closed contour C, and we

wish to determine the force and moment about the origin acting on the object due to

the pressure p acting on the exterior surface of C. The setup is sketched in figure 1.1

in a fixed coordinate system (x, y) and a moving coordinate system (x′, y′), with L

being a curve along which the tangential velocity and velocity potential φ may be

discontinuous if there is circulation Γ about C, and zi being the point where C and L

intersect. The analysis follows Sedov (1965), although we note that the results first

appeared in Sedov (1935).
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The force and moment about the origin acting on an element dz of C (per unit

span) are

dFx + i dFy = ip dz, (1.1)

dM = x dFy − y dFx = −Re{iz(dFx + i dFy)}, (1.2)

where i is the imaginary unit and the overbar denotes complex conjugation. The

pressure can be determined from the unsteady form of Bernoulli’s principle,

p = −ρ∂φ
∂t
− ρ

2
(u2 + v2) + f, (1.3)

where t is time, u+ iv is the complex velocity of the fluid, and f is some function of

only time. Letting d/dt denote the material derivative, we have

dφ

dt
=
∂φ

∂t
+ u2 + v2, (1.4)

where we have used the definition of the velocity potential. The force on the element

dz is then

dFx + i dFy = if dz − iρdφ

dt
dz +

iρ

2
(u+ iv)(u− iv)dz. (1.5)

By the definition of the complex potential w = φ+iψ, where ψ is the stream function,

and the fact that dw/dz = u− iv, we have

(u− iv)dz = dφ+ i dψ. (1.6)

Additionally, using the fact that

− idφ
dt

dz = −i d

(
z

dφ

dt

)
+ i

d

dt
(z dφ)− i(u+ iv)dφ (1.7)
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and that on C

d
dφ

dt
=

d

dt
dφ,

dz

dt
= u+ iv, (1.8)

we may rewrite the force on the element dz as

dFx + i dFy = if dz − iρ d

(
z

dφ

dt

)
+
iρ

2

dw

dz
dw + ρ

d

dt
(z dψ) + iρ

d

dt
(z dw). (1.9)

To obtain the force on the entire body, we integrate (1.9) around the closed curve

C, yielding

Fx + iFy = −iρzi
dΓ

dt
+
iρ

2

∮
C

(
dw

dz

)2

dz +
d

dt

(
ρ

dSz∗

dt
+ iρ

∮
C
z

dw

dz
dz

)
, (1.10)

where S is the area bounded by C and z∗ is the centroid of this area. In a similar

way, we may obtain an expression for the moment about the origin on the body; see

Sedov (1965) for details. We obtain

M = −ρ
2
zizi

dΓ

dt
+ Re

[
−ρ

2

∮
C
z

(
dw

dz

)2

dz +
ρ

2

d

dt

∮
C
zz

dw

dz
dz

]
. (1.11)

We may generalize the formulas to a moving coordinate system. Let q = U + iV

denote the velocity of the origin of the moving coordinate system, and let Ω denote

its angular velocity. The coordinates in the moving system are denoted with a prime,

and let δ/δt denote differentiation with respect to the fixed coordinate system. Then

we have

dz

dt
=
δz′

δt
+ iΩz′ + q. (1.12)

The force on the body in the moving coordinate system is then

Fx + iFy = iρqΓ− iρzi
dΓ

dt
+
iρ

2

∮
C

(
dw

dz

)2

dz +
d

dt

(
ρ

dSz∗

dt
+ ρSq + iρ

∮
C
z

dw

dz
dz

)
,

(1.13)

6



and the moment about the origin of the moving coordinate system is

M = −ρ
2
zizi

dΓ

dt
+ Re

[
−iρq

(
dSz∗

dt
+ i

∮
C
z

dw

dz
dz

)
− ρ

2

∮
C
z

(
dw

dz

)2

dz

+
δ

δt

1

2

∮
C
zz

dw

dz
dz

]
. (1.14)

where we have omitted the prime on z. The paths of integration of the integrals may

be changed, and the integrals may be evaluated as sums of residues at the poles of

the integrands.

The steady force on a rigid body moving with constant velocity follows immedi-

ately from (1.13), giving Joukowski’s theorem: Fx + iFy = iρqΓ. The force on a body

with unsteady motion shedding vorticity into its wake, i.e. the flapping foil we use

to model the propulsors of fast and efficient swimmers, cannot be readily evaluated

with the above formulas due to the difficulty in evaluating the full flow field. This

motivates the approximate models developed in the literature and in this dissertation.
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Chapter 2

Rigid propulsors

This chapter considers rigid propulsors, where the kinematics are known a priori. The

model problem is a two-dimensional foil of chord c and span s heaving and pitching in

a uniform incoming flow of speed U∞, as sketched in figure 2.1 (span is the distance

into the page). The sketched coordinate system is used to facilitate comparison to

experiments later. Both motions are sinusoidal, with the heave motion described by

h(t) = h0 sin(2πft) and the pitch motion described by θ(t) = θ0 sin(2πft+ φ), where

h0 is the heave amplitude, f is the frequency of motion, t is time, θ0 is the pitch

amplitude, and φ is the phase difference between the heave and pitch motions.

The primary quantities of interest are the time-averaged thrust T produced by the

oscillating foil, the time-averaged power P consumed by the foil, and the efficiency η

Figure 2.1: A rigid heaving and pitching foil.
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of thrust production. These quantities are given by

T = Fx, P = Fyḣ+Mθ̇, η =
TU∞

P
, (2.1)

respectively, where the dot denotes differentiation with respect to time, and the over-

bar denotes time-averaging (the distinction between when an overbar denotes time-

averaging and when it denotes complex conjugation should be clear from context).

The measure of efficiency we use is called the Froude efficiency. The corresponding

dimensionless quantities are the time-averaged thrust and power coefficients

CT =
T

1
2
ρU2
∞sc

, CP =
P

1
2
ρU3
∞sc

, (2.2)

with the Froude efficiency already being dimensionless. Note that the Froude effi-

ciency is equal to CT/CP .

2.1 Theoretical background

In the absence of circulation in the flow, the complex potential is holomorphic and

single-valued outside of the foil, simplifying the expressions for the force and moment

developed in Chapter 1. Starting with (1.13), the expression for the force, the first

three terms are zero since there is no circulation and the expansion of the complex

potential near infinity begins with a term of the order 1/z (hence the expansion of

(dw/dz)2 begins with a term of the order 1/z4). The force simplifies to

Fx + iFy =
dI

dt
, (2.3)

where

I = ρSq∗ + iρ

∮
C
z

dw

dz
dz = iρ

∮
C
z dφ, (2.4)
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and q∗ = q + iΩz∗ is the velocity of the centroid of the foil. Integrating by parts, we

may write

I = −iρ
∮
C
φ dz, (2.5)

which shows that −I is the total momentum of the fluid.

If the velocity and angular velocity with respect to the moving coordinate system

are the same at two times, then the momentum of the fluid is the same at those two

times. Furthermore, if the orientation of the moving coordinate system relative to the

fixed coordinate system is the same at those two times, then the absolute momentum

of the fluid is the same at those two times. This implies that the mean force with

respect to the fixed coordinate system produced by a foil moving periodically is zero.

In other words, a lone, rigid, periodically oscillating foil cannot produce a mean

propulsive force purely through non-circulatory forces.

Although the inability to produce net propulsion may make the non-circulatory

framework seem worthless in the context of this dissertation, the non-circulatory

forces will find use later on, so we continue on. Ultimately, the forces and moment

may be written as

Fx = −λx
dU

dt
− λxy

dV

dt
− λxω

dΩ

dt
+ Ω(λxyU + λyV + λyωΩ), (2.6)

Fy = −λxy
dU

dt
− λy

dV

dt
− λyω

dΩ

dt
− Ω(λxU + λxyV + λxωΩ), (2.7)

M = −λxω
dU

dt
− λyω

dV

dt
− λω

dΩ

dt
− λxy(U2 − V 2)− (λy − λx)UV − (λyωU − λxωV )Ω.

(2.8)

In the above, the forces and velocities are in the moving coordinate system of figure 1.1

and will need to be transformed into the coordinate system of figure 2.1. The λij are

called the coefficients of added or virtual mass due to the analogous role of mass they

play in the above expressions; we refer to the non-circulatory forces as added mass

forces. Formulas to calculate λij given the geometry of a two-dimensional body can
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Figure 2.2: The Knoller-Betz effect.

be found in Sedov (1965), as well as values for several shapes. Later, we will make

use of the values for a flat plate with chord c:

λx = 0, λy =
π

4
ρc2, λxy = 0, λxω = 0, λyω =

π

8
ρc3, λω =

9π

128
ρc4. (2.9)

In order to produce net propulsion, we must somehow allow for circulation in the

flow. Although there does not presently exist a general solution for the unsteady

motion of a two-dimensional foil with a line of discontinuity emanating from its trail-

ing edge, approximations allowing for circulation in the flow can be made that make

the problem amenable to analysis. Even quasi-steady circulation can produce thrust.

For example, suppose a foil heaves periodically while translating forward with a con-

stant speed as sketched in figure 2.2. Instantaneously, the fluid moves uniformly and

obliquely to the foil with a speed Ueff =
√
U2
∞ + ḣ2 and angle arctan(ḣ/U∞) relative

to the foil’s centerline. Considering only the instantaneous circulation around the

foil, Joukowski’s theorem provides that the force on the foil is perpendicular to the

effective velocity vector. Hence, there is a component of the force in the stream-

wise direction, as sketched in figure 2.2. This thrust-producing effect is called the

Knoller-Betz or Katzmayr effect (Knoller, 1909; Betz, 1912; Katzmayr, 1922).

To incorporate unsteady effects, an approximation must be made. In particular,

consider a flat foil oscillating with small amplitudes (small heave and pitch mo-

tions). For such motions, the force and moment on the foil were solved for by Glauert

(1930). The proceeding exposition follows Theodorsen (1935), first developing the
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non-circulatory velocity potential that satisfies the no-penetration boundary condi-

tion at the surface of the foil, and then the circulatory potential that satisfies the

Kutta condition without disturbing the no-penetration boundary condition.

Consider a flat foil in the (x, y) plane normalized by its half-chord c/2 so that

its leading edge is located at (−1, 0) and its trailing edge is located at (1, 0). The

flat foil corresponds to the surface of the unit circle in the (X, Y ) plane through the

Joukowski transformation. In the (X, Y ) plane, the velocity potential associated with

a source of strength 2ε located at (X1, Y1) and a source of strength −2ε at (X1,−Y1)

is

φ =
ε

2π
ln

(X −X1)2 + (Y − Y1)2

(X −X1)2 + (Y + Y1)2
. (2.10)

On the upper surface of the circle, Y =
√

1−X2 and Y1 =
√

1−X2
1 . Making this

substitution, allowing for a distribution of sources and sinks on the surface of the

circle, and applying the Joukowski transformation gives the velocity potential on the

surface of the flat plate:

φ(x, t) =
c

4π

∫ 1

−1

ε(x1, t) ln
(x− x1)2 + (

√
1− x2 −

√
1− x2

1)2

(x− x1)2 + (
√

1− x2 +
√

1− x2
1)2

dx1. (2.11)

Here, ε(x, t) is the strength of the source/sink distribution and depends on space and

time.

To uphold the no-penetration boundary condition at the surface of the plate, the

velocity generated by the source/sink distribution and the component of the free-

stream velocity normal to the plate must equal the normal velocity of the plate,

giving

ε = U∞
∂yp
∂x

+
c

2

∂yp
∂t

on x ∈ [−1, 1], (2.12)
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where yp is the local height of the plate. Relating the local height of the plate to the

heave and pitch motions gives

φnc =
1

2
U∞cθ

√
1− x2 +

c

2
ḣ
√

1− x2 +
c2

4
θ̇
(

1 +
x

2

)√
1− x2 (2.13)

for the non-circulatory potential on the surface of the plate.

For the circulatory potential, we allow a continuous sheet of point vortices to be

shed from the trailing edge. Since the amplitudes of motion are assumed small, the

sheet remains on the x-axis and advects downstream with the free-stream velocity.

Consider first a pair of point vortices in the (X, Y ) plane, one outside the unit circle

located at (X0, 0) with strength −∆Γ and an image vortex of opposite strength at

(1/X0, 0). The vortices are positioned such that the no-penetration boundary condi-

tion is maintained. The resulting velocity potential is

φ =
∆Γ

2π

(
arctan

Y

X −X0

− arctan
Y

X − 1/X0

)
. (2.14)

In the (x, y) plane, the velocity potential is

φ = −∆Γ

2π
arctan

√
1− x2

√
x2

0 − 1

1− xx0

. (2.15)

The circulatory potential for a sheet of vorticity extending to infinity is then

φc = − c

4π

∫ ∞
1

arctan

√
1− x2

√
x2

0 − 1

1− xx0

γ(x0, t) dx0, (2.16)

where γ(x, t) is the strength of the vorticity distribution and depends on space and

time. The strength γ is determined by the Kutta condition, which requires that no

infinite velocities exist at the trailing edge. To evaluate the velocity at the trailing
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edge, we use the full velocity potential (the sum of the circulatory and non-circulatory

potentials).

With the full velocity potential in hand, we may evaluate the pressure difference

across the plate via

p = −2ρ

(
U∞

∂φ

∂x
+
∂φ

∂t

)
, (2.17)

and integrate it to get the forces and moment about the leading edge. Assuming

complex exponential heave and pitch motions, the force and moment per unit span

on the plate in the coordinate system of figure 2.1 are

Fy =
ρ

4
c2
(
πU∞θ̇ − πḧ+

π

2
cθ̈
)

+ πρU∞cC

(
U∞θ − ḣ+

3c

4
θ̇

)
, (2.18)

M = −ρ
4
c2

(
3π

4
U∞cθ̇ +

9π

32
c2θ̈ − π

2
cḧ

)
− π

4
ρU∞c

2C

(
U∞θ − ḣ+

3c

4
θ̇

)
, (2.19)

where C is a complex function defined by

C(·) =
H

(2)
1 (·)

H
(2)
1 (·) + iH

(2)
0 (·)

, (2.20)

and H
(2)
ν are Hankel functions. C is often called the Theodorsen function. In (2.18)

and (2.19), C is evaluated at πfc/U∞; see Theodorsen (1935) for details. Note that

Fy and M above are complex since the heave and pitch motions were described by

complex exponentials. The real parts correspond to the real parts of the motions,

and the imaginary parts correspond to the imaginary parts of the motions. The

Theodorsen function changes both the magnitude and phase of the circulatory force

at certain values of the reduced frequency f ∗ = fc/U∞, as shown in figure 2.3.

The thrust force has two components: one due to the component of the lift force

projected in the streamwise direction, and another due to the suction force on the

leading edge. We leave the details to Garrick (1936), but quote the final result for

the time-averaged thrust and time-averaged power per unit span that we originally
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Figure 2.3: Magnitude and phase of the Theodorsen function.

sought:

Fx = 2π3ρcf 2(a1h
2
0 + a2θ

2
0 + 2a3θ0h0), (2.21)

P = 2π3ρU∞cf
2(b1h

2
0 + b2θ

2
0 + 2b3θ0h0). (2.22)

The expressions for the prefactors ai and bi are in Appendix 2.A.

The small-amplitude theory fares well in some respects. Experimental measure-

ments of the amplitude and phase of streamwise and cross-stream forces match

the predictions from the small-amplitude theory reasonably well (Mackowski and

Williamson, 2015). Unfortunately, the small-amplitude theory overpredicts the thrust

and efficiency produced by an oscillating foil (in some cases it overpredicts the power

and in other cases it underpredicts the power) (Young and Lai, 2007; Mackowski and

Williamson, 2015). The small-amplitude theory falls short in three ways: the flow is

assumed inviscid (the importance of a finite Reynolds number is shown in Chapter 9);

the vortex wake is assumed planar, which significantly impacts the thrust and power

predictions (Young and Lai, 2007); and the vortex wake is not allowed to deform un-

der its own induced velocity, although this effect has very minor consequences (Young

and Lai, 2007).
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Chopra (1976) was able to extend the two-dimensional inviscid theory to large-

amplitude motions. Although he did not explicitly restrict the amplitudes of motion,

they are implicitly restricted by the assumption of a small effective angle of attack.

The main difficulty lay in modelling the vortex wake. Chopra modelled the wake

as an infinitesimally thin sheet of vorticity shed at the trailing edge of the foil and

advected downstream at the rate of the free-stream velocity; in the reference frame

of the fluid, the vortex wake appears as a standing wave. Although his non-planar

vortex wake is not allowed to deform according to the induced velocity field, this

makes little difference for modest reduced frequencies (Katz and Weihs, 1978; Young

and Lai, 2007). The principal drawback of Chopra’s theory is how complicated it

is; as far as we are aware, no subsequent authors made use of his theory other than

quoting results computed by Chopra himself. Furthermore, it does not account for

finite Reynolds number effects.

The available theory does not represent experimental and computational measure-

ments very well, and the best theory is complicated to the point of not having been

used. Consequently, the theoretical results are not shown here. We turn to experi-

mental and computational results to show the main propulsive features of oscillating

foils. The main features are governed by the dimensionless parameters

Re =
ρU∞c

µ
, f ∗ =

fc

U∞
,

h0

c
, sin θ0, φ, (2.23)

where Re is the Reynolds number, µ is the dynamic viscosity of the fluid, f ∗ is the

reduced frequency, and the others are the dimensionless amplitudes and phase. The

effects of the Reynolds number are oftentimes ignored. There are other dimensionless

parameters that are often used, but they can be obtained from the preceding ones.
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Popular examples include the Strouhal number,

St =
2fA

U∞
, (2.24)

where A is the amplitude of the trailing edge, which can be calculated from the

reduced frequency, amplitudes, and phase; the angle of attack is another commonly

used dimensionless parameter. The shape of the foil will also affect the performance,

but it is hardly ever considered (which is not to say that shape effects are insignificant).

The effects of these dimensionless parameters are explored in the next section.

2.2 Experiments and computations

In the context of using oscillating foils as a means of propulsion, there are four prin-

cipal questions studies try to answer:

1. How does the thrust production depend on the motion?

2. How does the power consumption depend on the motion?

3. How does the efficiency depend on the motion?

4. How does the fluid move?

Experiments and computations reveal some robust features, and the typical be-

haviours of the thrust, power, efficiency, and fluid are sketched in figure 2.4. Most of

the cited work discusses at least one of the above questions.

First, consider the thrust. The thrust coefficient tends to increase with the

Strouhal number at an increasing rate. The Strouhal number can be thought of

as a measure of the intensity of the motion (increasing the frequency or amplitude

of motion increases the Strouhal number). At low values of the Strouhal number,

the thrust tends to be negative; we will refer to this as the ‘offset drag’ CD. Beyond
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Figure 2.4: Typical (a) thrust curve, (b) power curve, (c) efficiency curve, and (d)
wake for a rigid oscillating foil. The sketch of the wake is adapted from Eloy (2012).

observational studies, the understanding of thrust production is mostly limited to

the linear theory, arguments based on the wake (discussed later), and a simplified

argument based on added mass (Gazzola et al., 2014). The results of this dissertation

advance the understanding of thrust production.

Second, the power. The power coefficient also tends to increase with the Strouhal

number at an increasing rate. The power coefficient tends to increase at a faster

rate than the thrust coefficient does. As the motion weakens, the power coefficient

approaches zero. The power is rarely analyzed, with most studies focusing instead

on thrust and efficiency, and studies that do show measurements of power are obser-

vational in nature. The results of this dissertation provide an understanding of the

power consumption.

Third, the efficiency. The efficiency is the ratio of the thrust coefficient to the

power coefficient, and its behaviour can be deduced from the behaviours of the thrust

and power. By definition, the zero-crossing point of the efficiency coincides with that

of the thrust. Near the zero-crossing point, the efficiency changes rapidly with the

Strouhal number. Since the power coefficient increases at a faster rate than the thrust

coefficient does, the efficiency decreases with the Strouhal number for large values of
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the Strouhal number. Consequently, there is an intermediate value of the Strouhal

number where a peak in efficiency exists, typically in the range 0.2 < St < 0.4

(Triantafyllou et al., 1991). The rapid increase after the zero-crossing point, followed

by the peak and gradual decay with Strouhal number, is quite typical. Much of the

literature focuses on the efficiency, so this section will as well.

Fourth, the wake. Oscillating foils tend to leave a distinctive pattern of vortices in

their wake. Some nice smoke visualization is shown in Bratt (1953), and the patterns

there are reflected in the sketch in figure 2.4d. During each cycle of the motion,

the foil leaves a counter-rotating pair of vortices in its wake. Different patterns are

possible (see Koochesfahani (1989) for some examples), but the sketched pattern is

the one most frequently observed and reported.

The wake is often used to make conclusions about what is happening to the foil;

Andersen et al. (2017) went so far as to create phase maps of the different vortex

patterns and relate them to thrust production. In the configuration shown in the

sketch, where the red counterclockwise rotating vortices lie above the blue clockwise

rotating vortices, the velocity field induced by the vortices creates a meandering

jet that increases the streamwise momentum of the fluid opposite to the direction

of travel, indicating that the fluid likely imparts a streamwise force on the foil in

the direction of travel. This vortex configuration is called a ‘reverse von Kármán’

vortex street, dubbed so since it has the opposite configuration of the classic von

Kármán vortex street, a staggered array of counter-rotating vortex pairs where the

counterclockwise rotating vortices lie below the clockwise rotating vortices. A von

Kármán vortex street is usually thought of as being indicative of net drag due to the

induced velocity field, and the reverse von Kármán vortex street is usually thought

of as being indicative of net thrust, but this is not quite true (Andersen et al., 2017).

(The incongruity should be obvious, since the wake argument only considers the

momentum flux but ignores the pressure on the foil.)
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In praising Andersen et al.’s phase maps of the vortex patterns in the wake, Zhang

(2017) makes an analogy between the vortex patterns in the wake of an oscillating foil

(or swimming/flying animals, for that matter) and the footprints of animals walking

on muddy ground. Just as scientists can learn much from the footprints of animals,

scientists can also learn much from the vortex patterns observed in the wake of an

oscillating foil. The view developed during the progress of this dissertation is that the

wake is indeed like the trail of an animal’s footprints: some estimates can be made

from it, but much more can be learned by analyzing the foil itself (the ‘animal’).

The wake is a consequence of the motion of the foil, and the situation should not be

confused with the chicken-or-egg dilemma. The rest of the dissertation will make no

mention the wake, unless needed when reviewing existing literature.

Now back to the efficiency. To achieve high levels of efficiency, heave and pitch

motions need to be combined (see Van Buren et al. (2018a), for example). The

phase difference between the motions greatly impacts the efficiency. The linear theory

predicts that a 90◦ phase difference maximizes efficiency (Lighthill, 1970; Wu, 1971),

and this has also been observed in computations (Isogai et al., 1999; Tuncer and Kaya,

2005) and experiments (Read et al., 2003; Schouveiler et al., 2005). Nonoptimal phase

differences are associated with flow separation at the leading edge, leading to decreases

in efficiency (Wang, 2000; Lewin and Haj-Hariri, 2003). Although Anderson et al.

(1998) stated that favourable leading edge vortex dynamics contributed positively to

their highest efficiency case, it is important to note that this conclusion was reached

through flow visualization at Re = 1,100, whereas the efficiency measurement was

carried out at Re = 40,000. Indeed, a careful set of computations has shown that

leading edge vorticity is generally detrimental to efficiency (Tuncer and Kaya, 2005;

Young et al., 2006; Young and Lai, 2007).

The amplitudes of motion also affect the efficiency. Generally speaking, large

amplitudes give high efficiencies (Anderson et al., 1998). It is difficult to understand
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why this is so, since the small-amplitude theory is far from applicable. Alexander

(2003) provides a very simplified but nice analysis that suggests that large amplitudes

should be highly efficient; his analysis is recounted in detail in Chapter 8.

Perhaps the parameter with the most significant (and best known) effect on the

efficiency is the Strouhal number. As previously mentioned, oscillating foils tend to

peak in efficiency in a fairly tight range of Strouhal numbers, 0.2 < St < 0.4, and this

range is quite robust. Probably for this reason, the Strouhal number has been called

“the governing parameter of the overall problem” (Triantafyllou et al., 1993). Further-

more, this range of Strouhal numbers coincides with the range observed in swimming

and flying animals (Triantafyllou et al., 1991; Taylor et al., 2003). Naturally, the com-

munity was quite curious why a peak in efficiency is consistently observed in a tight

range of Strouhal numbers. Three theories have been put forth. In the first theory,

conceived by Triantafyllou et al. (1991), the authors argue that peak efficiency occurs

when the kinematics of the foil result in the maximum amplification of the shed vor-

tices in the wake, yielding maximum thrust per unit of input energy. The Strouhal

number of maximum spatial amplification always lies in the range St ∈ [0.25, 0.35]

for their data. The phenomenon of maximum spatial amplification of shed vortices

has been called ‘wake resonance’ (Moored et al., 2012). The second theory argues

that the preferred Strouhal number is connected with maximizing the angle of at-

tack allowed while avoiding the shedding of leading edge vortices (Wang, 2000). In

other words, the motion should be made strong, but not so strong so as to cause

flow separation at the leading edge. The third theory is directed towards swimming

animals, but states that the ratio of tail beat amplitude to the body length essentially

dictates the Strouhal number for steadily cruising animals, since it requires a balance

between thrust and drag. This is similar to the explanation provided by Gazzola et al.

(2014), who stated that the range of Strouhal numbers observed in nature is due to

a thrust-drag balance, that is, the range of Strouhal numbers observed in nature is a
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consequence of a statement about momentum, not a statement about energy. A new

theory is the subject of Chapter 9.

2.3 New results

Here, new results from this dissertation are summarized. The details are contained

in Chapters 6–9.

Since the available theory does not accurately represent the available experi-

mental data, we set out to develop scaling relations that accurately represent the

mean propulsive performance of oscillating rigid propulsors in Chapter 6. Since the

Strouhal number is considered “the governing parameter of the overall problem” (Tri-

antafyllou et al., 1993), the hope was that experimental data could be scaled by the

Strouhal number alone. In conducting many experiments on heaving and pitching

foils, however, we found that propulsive performance cannot be represented solely by

the Strouhal number. For instance, figure 2.5 shows that for a heaving foil, motions

with different amplitudes but the same Strouhal number can produce significantly

different levels of thrust.

Using the theory of Theodorsen (1935), Garrick (1936), and Sedov (1965) reviewed

in Section 2.1, we developed scaling relations for the time-averaged thrust, power,

and efficiency of heaving or pitching foils; the details are in Chapter 6. The scaling

relations also allow for an offset drag to the thrust to capture finite Reynolds number

effects. The work of Liu et al. (2014) is important to the scaling relations because there

the authors showed that finite amplitudes alter the phases of the forces compared to

what the linear theory predicts. This observation suggests that forces that are zero

when time-averaged in the small-amplitude setting may have a non-zero mean in the

finite amplitude setting. Since the magnitude of the time-varying forces is generally

large compared to time-averaged values, the phase shift due to finite amplitudes may
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Figure 2.5: Time-averaged thrust coefficient CT as a function of Strouhal number
St for a heaving foil, for various heave amplitude to chord ratios, h∗. Experimental
results from the current study. The parameters CT and St are defined in Section 6.2.
Repeated from figure 6.1.

create new time-averaged forces that have important contributions to the total time-

averaged propulsive performance. Our scaling relations allow for such contributions,

and experimental data dictates whether these contributions are important through

empirical pre-factors.

When tested against experimental data for heaving or pitching foils, the scaling

relations successfully collapse the thrust and power data. The efficiency data collapse

when drag can be ignored, and diverge in a way predicted by the scaling relations

when drag becomes important. Drag is seen to be responsible for the precipitous drop

in efficiency when motions become weak.

The scaling laws also suggest a new definition for the thrust coefficient, where

the thrust is normalized by the velocity of the trailing edge of the foil instead of

by the dynamic pressure. For heaving foils, the new thrust coefficient depends only

on the reduced frequency, whereas for pitching foils, the new thrust coefficient is a

constant. Consequently, the dimensional thrust of a pitching foil is independent of

the free-stream velocity, which is confirmed through additional experiments.
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In Chapter 7, we experimentally explore the energetic benefits of intermittent

pitching motions. Fish have been observed to intermittently flap their fins in many

contexts (Fish et al., 1991; Gleiss et al., 2011), leading us to ask if there are any

associated energetic benefits. The experiments were conducted in a water tunnel with

a constant free-stream velocity, whereas intermittently flapping fish accelerate and

decelerate. Based on the scaling relations, however, pitching motions are independent

of the free-stream velocity, so experiments conducted under a constant velocity can

be used to make conclusions about the behaviour of accelerating bodies.

The first conclusion is that propulsive performance scales directly with the duty

cycle, which describes the fraction of time that the foil is moving during intermittent

motions. By averaging the thrust and power over only the active portion of the

motion, the data taken at different duty cycles collapse. Together with the particle

image velocimetry results, which show that the main vortical structures do not change

between intermittent and continuous motions, the results suggest that each cycle of

active motion is independent of the others. In other words, the whole is the sum of

its parts.

The second conclusion concerns the energetics of intermittent swimming. We com-

pare the energy expended by intermittent and continuous motions in three scenarios:

(1) energy expended in traversing a given distance; (2) energy expended in travers-

ing a given distance, including metabolic energy losses; and (3) energy expended in

traversing a given distance in a given amount of time. Intermittent motions were

generally energetically favourable as no energy is spent during the inactive portion

of the motion where the swimmer still coasts forward. When metabolic energy losses

were added, they could be high enough to make continuous swimming energetically

advantageous.

The original scaling relations were extended to describe intermittent motions and

to provide insights into the energetics of intermittent swimming. The scaling rela-
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tions have also been extended to non-sinusoidal motions and combined heaving and

pitching motions in subsequent work (Van Buren et al., 2017, 2018a). In Van Buren

et al. (2018a), many free constants are needed in order for the scaling relations to

successfully collapse experimental thrust and power data. In Chapter 8, we specialize

to combined heaving and pitching motions where the heave leads the pitch by a 90◦

phase difference, since such motions are most efficient. In narrowing the scope to the

most efficient motions, we develop scaling relations that have no free constants (see

Appendix 9.A.1 for details). Even though there are no empirical constants, the scal-

ing relations successfully collapse experimental data from motions with peak-to-peak

trailing edge amplitudes of nearly two chord lengths.

The new scaling relations reveal that large-amplitude motions should produce

high efficiency, as observed in past experiments (Anderson et al., 1998). What is

new is that the scaling relations give a reason as to why large-amplitude motions are

more efficient than small-amplitude motions. Moreover, low-frequency motions are

also predicted to be more efficient, and this is validated by the experimental data.

At a certain point, however, the predictions break down, and large-amplitude, low-

frequency motions become inefficient. The reason is that the offset drag also increases

with the pitch amplitude (recall that drag leads to a precipitous drop in efficiency

once motions become weak enough). In other words, big and slow (large-amplitude,

low-frequency) motions are more efficient until they become so big and so slow that

drag overwhelms the thrust production and the efficiency decreases. Modest decreases

in drag, for example through increases in the Reynolds number, will lead to greater

efficiencies everywhere.

Although at a given thrust coefficient we may increase efficiency by increasing the

amplitude (unless drag is important), there is a fundamental tradeoff between thrust

coefficient and efficiency: an increase in one requires a decrease in the other. We

developed a scaling relation that captures this tradeoff in the limit of no drag and
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reflects the experimental measurements, as shown in figure 2.6. The presence of drag

lowers the gains in efficiency that can be achieved through sacrifices in thrust.

The scaling relations are then used to make conclusions about the biology in

Chapter 9. As previously mentioned, many swimming and flying animals are observed

to cruise in a narrow range of Strouhal numbers 0.2 < St < 0.4, which is where

efficiency consistently peaks for oscillating foils. We show that this peak in efficiency

is due to the drag experienced by the foil. Furthermore, the drag is also responsible for

the precipitous drop in efficiency at low Strouhal numbers, and our scaling relations

also predict the gradual decay of the efficiency past the peak with increasing Strouhal

number. The observations of the constancy of the Strouhal number in nature are due

to the drag experienced by these animals’ propulsive surfaces. Since drag is expected

to weaken with increasing Reynolds number, our scaling relations predict the Strouhal

number of animals should decrease with increasing Reynolds number, which is indeed

observed in nature (Gazzola et al., 2014). Our theory is strong because not only does

it predict the peak in efficiency and variation with Reynolds number seen in nature,

it also predicts all of the off-peak behaviour. This work puts to rest why animals

swim and fly the way they do.
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2.A Prefactors in Garrick’s work

Following are the prefactors used in (2.21) and (2.22).

a1 = F 2 +G2, (2.25)

a2 =
c2
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b1 = F, (2.28)
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b3 =
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4

[(
1

2
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G

πf ∗

)
cosφ+

(
F

πf ∗
−G

)
sinφ

]
. (2.30)

Above, F and G are respectively the real and imaginary parts of the complex function

C defined in (2.20), that is C = F + iG, and f ∗ = fc/U∞ is the reduced frequency.
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Chapter 3

Flexible propulsors

This chapter considers passively flexible propulsors, where the kinematics are un-

known a priori. The model problem is a two-dimensional flexible, inextensible plate

of chord c and span s heaving and pitching at its leading edge in a uniform incoming

flow of speed U∞, as sketched in figure 3.1. Both motions are sinusoidal, with the

heave motion described by h(t) = h0 sin(2πft) and the pitch motion described by

θ(t) = θ0 sin(2πft+φ), where h0 is the heave amplitude, f is the frequency, t is time,

θ0 is the pitch amplitude, and φ is the phase difference between the heave and pitch

motions. The unknown deflection is denoted Y , and depends on the fluid properties

(speed U∞ and density ρf ) and the material properties (density ρs, Young’s modulus

E, and second moment of area I).

Figure 3.1: A flexible plate actuated at its leading edge.
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The quantities of interest are the time-averaged thrust produced by the oscillating

plate, the time-averaged power, and the efficiency. These are defined the same way

as in (2.1), with the corresponding dimensionless quantities defined in (2.2).

3.1 Theoretical background

The best available theory is that of Wu (1961). In his theory, Wu considers the two-

dimensional flow of an inviscid fluid generated by the motion of a thin deformable

plate. The deflection and slope are assumed to be small everywhere, allowing for

linearization of the governing equations. Let q = (U∞ + u, v) denote the flow ve-

locity, where (u, v) is the perturbation velocity due to the motion of the plate. The

perturbation velocity satisfies the continuity equation,

∂u

∂x
+
∂v

∂y
= 0. (3.1)

Since the motion of the plate is assumed small, u and v are small compared to U∞,

allowing for linearization of the Euler equations:

(
∂

∂t
+ U∞

∂

∂x

)
q = − 1

ρf
∇p, (3.2)

where p is the pressure of the fluid.

The fluid additionally satisfies the no-penetration and Kutta conditions, which

may be written as

v|x∈[0,c],y=0 =
∂Y

∂t
+ U∞

∂Y

∂x
, (3.3)

|v||(x,y)=(c,0) <∞. (3.4)
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In the linear setting, the heave and pitch motions are imposed as boundary con-

ditions at the leading edge in the form

Y (0, t) = h(t), (3.5)

∂Y

∂x
(0, t) = θ(t). (3.6)

Given the deflection Y of the plate, Wu’s theory allows us to calculate all of the

forces on the plate, the power consumption, and the efficiency; the details are given

in Chapter 10. Wu’s theory generalizes the linear theory of Chapter 2 to deformable

plates. For a passively flexible plate, however, the deflection is unknown a priori.

Additional information is needed to simultaneously solve for the deflection of the

plate and the flow.

Under the assumptions of Wu’s linear theory for the flow, the plate deforms ac-

cording to Euler-Bernoulli beam theory. That is, the transverse deflection of the plate

satisfies

ρsds
∂2Y

∂t2
+

∂2

∂x2

(
B
∂2Y

∂x2

)
= s∆p, (3.7)

where d is the thickness of the plate, B = EI is the flexural rigidity, and the second

moment of area is given by I = sd3/12. The left-hand side of the equation describes

the solid mechanics, and the right-hand side couples the solid and fluid mechanics

through the pressure difference across the plate due to the fluid. (The solid mechanics

affect the fluid mechanics through the no-penetration condition (3.3).) Since (3.7)

is fourth-order in space, it requires four boundary conditions; two are given by the

heave and pitch motions as in (3.5) and (3.6), and two more boundary conditions
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appropriate for the oscillating plate problem are the ‘free-end’ boundary conditions,

∂2Y

∂x2
(c, t) = 0, (3.8)

∂3Y

∂x3
(c, t) = 0. (3.9)

Altogether, we have a coupled system of equations for the linearized fluid-structure

interaction problem. This represents the best analytically tractable theory for pas-

sively flexible plates oscillating in a fluid. Details of the solution for the general case

of a plate with spatially distributed properties are given in Moore (2017) and Chap-

ter 11. Although the assumptions of the theory are restrictive, we will later use the

theory to provide some new results.

The theory cannot capture finite-amplitude and viscous effects, however. To get

the full picture, we turn to the experimental and computational results. In addition

to the dimensionless parameters in (2.23) identified for rigid foils, flexible foils will

depend on

R =
ρsd

ρfc
, S =

Ed3

ρfU2
∞c

3
,

d

c
, (3.10)

where R is the ratio of characteristic solid mass to characteristic fluid mass, S is

a ratio of elastic forces to fluid forces, and the other dimensionless parameter is the

dimensionless thickness. The dimensionless thickness is usually quite small and can be

ignored. In the context of swimming, the mass ratio is small (since the dimensionless

thickness is small and swimmers are neutrally buoyant), but it is important in the

context of flight. The effects of these dimensionless parameters are explored in the

next section.
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3.2 Experiments and computations

The same four questions that guided the review of rigid oscillating foils guide this

review of flexible foils. The overarching question is how passive flexibility modifies

the thrust production, power consumption, efficiency, and wake of rigid oscillating

foils.

The wake of flexible foils is qualitatively the same as the wake of rigid foils. The

foil creates patterns of vortices in its wake whose induced velocities create meandering

jets. Since there are no serious differences and the wake is considered a mere footprint

in this dissertation, no more will be said about it.

The presence of passive flexibility can qualitatively alter the thrust, power, and

efficiency, however. The passive flexibility introduces natural frequencies into the

system. When the system is actuated near a natural frequency (when the system is

‘in resonance’), the response to the actuation will be large. The deflection sketched

in figure 3.2d reflects the type of behaviour seen when the first natural frequency of

the system is excited; as higher natural frequencies are excited, the wavelength of

the deflection decreases. The enhanced deflection around a natural frequency causes

the thrust, power, and efficiency to change as well. The typical view is sketched in

figure 3.2, with local maxima arising near natural frequencies.

Thrust has generally been found to benefit from passive flexibility. Increases

in thrust have been noted across a wide range of frequencies, from far below the

first natural frequency of the system to deep into the region of higher-order natural

frequencies (Alben, 2008b; Ferreira de Sousa and Allen, 2011; Dewey et al., 2013;

Katz and Weihs, 1978, 1979; Quinn et al., 2014). When the frequency of actuation

is near a natural frequency of the system, thrust generally exhibits a local maximum

(Alben, 2008b; Dewey et al., 2013; Quinn et al., 2014). The explanation is that when

the system is in resonance, the deflection becomes substantial, which leads to greater
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Figure 3.2: Typical (a) thrust curve, (b) power curve, (c) efficiency curve, and (d)
wake and deflection for a flexible oscillating foil.

thrust production. Here, a tacit equivalence is made between rigid and flexible foils

(recall that rigid foils produce greater thrust when oscillating with larger amplitudes).

The power is similarly affected by the introduction of passive flexibility, at least

qualitatively. Although detailed analyses of the power are lacking, the power mostly

follows the behaviour of the thrust near and away from natural frequencies, with

resonance tending to increase the power consumption, leading to local maxima in

power (Alben, 2008b; Ferreira de Sousa and Allen, 2011; Dewey et al., 2013; Kang

et al., 2011; Michelin and Llewellyn Smith, 2009).

The behaviour of efficiency is a much trickier issue. On one hand, passive flexibility

can increase thrust and therefore efficiency; on the other hand, passive flexibility can

increase power and therefore decrease efficiency. Since the boosts in thrust and power

occur near each other, it is not immediately clear whether to expect increases or

decreases in efficiency.

Studies tend to report that flexibility leads to increases in efficiency. Just as for

thrust, increases in efficiency have been observed everywhere from far below the first

natural frequency to deep into the region of higher-order natural frequencies (Alben,

2008b; Ferreira de Sousa and Allen, 2011; Dewey et al., 2013; Katz and Weihs, 1978,
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1979; Quinn et al., 2014). Unlike the thrust, local maxima in efficiency have been

observed below, near, and above natural frequencies (Dewey et al., 2013; Moored

et al., 2014; Quinn et al., 2014, 2015; Paraz et al., 2016), as well as at frequencies far

from any natural frequency (Ramananarivo et al., 2011; Kang et al., 2011; Vanella

et al., 2009; Zhu et al., 2014; Michelin and Llewellyn Smith, 2009). What is the reason

for the variety of behaviour reported, and the seeming confusion?

Part of the confusion can be explained by ill-defined natural frequencies. Some

studies calculated natural frequencies based on a beam in a vacuum, disregarding the

effect of the fluid (Hua et al., 2013; Kang et al., 2011; Vanella et al., 2009). Even in a

system without dissipation, the added mass of the fluid alone may significantly alter

the natural frequencies, as is nicely shown in Michelin and Llewellyn Smith (2009). In

the context of swimming, where the characteristic fluid mass is much greater than the

characteristic foil mass, the fluid’s effect on the natural frequencies will be significant.

In other studies, the added mass of the fluid was mistaken for drag, leading to an

incorrect definition of the total mass of the system (Vanella et al., 2009; Combes

and Daniel, 2003b). When efficiency and resonance were unrelated, large-amplitude

motions were considered, and the nonlinear dynamics at play likely make the linear

notion of resonance an inappropriate frame through which to analyze the system.

Nonetheless, the general sentiment in the community is that resonance should

lead to local maxima in efficiency, because resonance is ‘good.’ Perhaps the tacit

argument made is that resonance takes a given amount of input energy and locally

boosts the output. Although intuitive in some way (or at least consistent with ob-

servations), this idea is not quite right. After all, resonance also leads to increases

in power consumption. This dissertation makes headway in clarifying how resonance

and efficiency are related.

In cases where non-resonant boosts in efficiency were observed, physical mecha-

nisms unrelated to fluid-structure resonance were offered. One is the idea of ‘wake
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resonance,’ where the fluid itself has some preferred frequency of actuation (this was

briefly discussed in Chapter 2) (Moored et al., 2014). Other ideas are offered by Quinn

et al. (2015), who argued that peaks in efficiency occur when the Strouhal number is

high enough that the flow does not separate but low enough that the shed vortices

remain tightly packed, the trailing edge amplitude is maximized while flow remains

attached along the body, and the effective angle of attack is minimized. (Note that

in these two works, fluid-structure resonance coincided with maxima in efficiency.)

Ramananarivo et al. (2011) argued that, in their study, efficiency was maximized by

making use of the nonlinear nature of a drag transverse to the direction of travel and

when the trailing edge is approximately parallel to the local velocity. In their case,

the characteristic fluid and foil masses were of the same order, appropriate for flight

but not for swimming.

Modifying how the flexibility is distributed can also modify the propulsive perfor-

mance. Experiments relevant to the context of swimming have generally shown that

concentrating stiffness towards the leading edge enhances thrust and efficiency (Riggs

et al., 2010; Lucas et al., 2015; Kancharala and Philen, 2016). It is important to note,

however, that these studies did not control for the mean stiffness when changing the

distribution, so it is unclear whether the observed effects are due to a changing mean

stiffness or a changing distribution of stiffness.

The stiffness distribution is also of interest when the characteristic fluid mass is

of the same order as the characteristic foil mass, relevant to flying insects that have

veined wings (Combes and Daniel, 2003a). Both Shoele and Zhu (2013) and Yeh et al.

(2017) found that a stiffer leading edge lowers and broadens local maxima in thrust,

and broadly increases efficiency. Moore (2015) used the linear theory and optimized

the stiffness (mean and distribution) for thrust at a fixed frequency, finding that a

rigid foil with a torsional spring at its leading edge was optimal. Again, these studies
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did not control for mean stiffness, so it is unclear how the distribution itself affects

the propulsive performance. Chapter 11 addresses this issue.

3.3 New results

Here, new results from this dissertation are summarized. The details are contained

in Chapters 10–11.

Since there is apparent confusion about how fluid-structure resonance affects the

propulsion of oscillating flexible foils, particularly propulsive efficiency, we study the

propulsion of flexible foils in a context where the linear notion of resonance is clear.

Namely, we study the linear inviscid model of a passively flexible swimmer from

Section 3.1, valid for small-amplitude motions. The frequencies of actuation and

stiffness ratios considered span many orders of magnitude, while the mass ratio is

fixed to a low value representative of swimmers.

In Chapter 10, we begin by considering foils with uniform flexibility, where the

local stiffness along the chord is the same everywhere. The trailing edge deflection

shows sharp ridges of resonant behaviour for reduced frequencies f ∗ > 1 and stiffness

ratios S > 1, as shown in figure 3.3. For f ∗ < 1 and S < 1, however, the resonant

peaks smear together. Calculating the eigenvalues of the fluid-structure system shows

that the sharp ridges of resonant behaviour align with the imaginary parts of the

eigenvalues, more commonly referred to as the natural frequencies. We call the Euler-

Bernoulli eigenvalues since their behaviour is reminiscent of an Euler-Bernoulli beam

in a vacuum. The sharp ridges smear as the eigenvalues dampen. When the ridges are

sharp, their locations are predicted quite well by the quiescent eigenvalues, that is,

the eigenvalues calculated in the limit where the bending velocity is large compared

to the fluid velocity. The thrust coefficient and power coefficient behave the same

as the trailing edge deflection, showing sharp resonant ridges at natural frequencies
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Figure 3.3: Trailing edge amplitude as a function of reduced frequency f ∗ and stiffness
ratio S for a (a) heaving and (b) pitching plate with R = 0.01 relative to that of an
equivalent rigid plate. Dashed white lines indicate where the flexible plate has the
same trailing edge amplitude as the equivalent rigid plate. Under-resolved areas have
been whited out. Repeated from figure 10.6.

which smear together at low values of the reduced frequency and stiffness ratio. This

behaviour is consistent with the literature.

The efficiency, on the other hand, does not show any resonant behaviour. Rather,

the efficiency is broadly high when the reduced frequency and stiffness ratio are low,

shown in figure 3.4. This behaviour is not seen in the literature. In the linear

inviscid setting, the thrust and power increase by the same factor when the foil is

actuated at a natural frequency, the peaks in each nullifying each other, making

the efficiency flat across natural frequencies. The region of broadly high efficiency

is quite interesting, and it coincides with a different type of eigenvalue. When the

stiffness ratio is low enough, the Euler-Bernoulli eigenvalues essentially disappear and

are replaced by flutter eigenvalues. The flutter eigenvalues have imaginary parts that

increase as the stiffness ratio decreases, and eventually move into the right-half plane

where they induce unstable flag flapping behaviour (which is why we call the flutter

eigenvalues). Inspecting the associated flutter eigenfunctions, they take on a form
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Figure 3.4: Efficiency as a function of reduced frequency f ∗ and stiffness ratio S for a
(a) heaving and (b) pitching plate with R = 0.01 relative to that of an equivalent rigid
plate. Dashed white lines indicate where the flexible plate has the same efficiency as
the equivalent rigid plate. Under-resolved areas and areas with negative efficiency
have been whited out. Repeated from figure 10.14.

close to a travelling wave, whereas the Euler-Bernoulli eigenfunctions do not. In the

actuated system, cases with high efficiency take on near travelling wave forms, and

the degradation of efficiency coincides with the degradation of the travelling wave.

Since travelling waves are known to be an efficient set of kinematics (Wu, 1961),

we conclude that the emergence of flutter behaviour as the stiffness ratio decreases

induces efficient kinematics.

Once we add finite Reynolds number effects into the system in the form of a

streamwise drag, resonant peaks in the efficiency emerge that are not present in the

inviscid system. In moving from a non-resonant to a resonant condition in a system

without drag, the mean thrust and power coefficients effectively scale up by some

factor a > 1. Since the efficiency is the ratio of the two, the factor a appears in

the numerator and denominator, cancels, and there is no resonant peak. When drag

is present, it reduces the baseline non-resonant efficiency compared to the system

without drag. In moving to a resonant condition, the thrust and power scale up

by the factor a, but the drag does not. The net thrust therefore scales up by a
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factor greater than a, so the efficiency increases at resonance. This effect creates

local maxima in efficiency at resonance. Since drag affects the system at first order,

this effect of streamwise drag inducing resonant peaks in efficiency should be robust

to nonlinearities present at finite amplitudes. Since any real system will have some

streamwise drag, resonant peaks should be present, explaining why peaks in efficiency

are observed in experiments.

In Chapter 11, we consider the effects of distributed flexibility, where the local

stiffness varies along the chord. In order to separate the effects of mean stiffness

and stiffness distribution, we use a set of orthogonal polynomials to describe the

stiffness distribution. Doing so allows us to independently control the mean stiffness

and stiffness distribution, which has not been done before. This ability is important

because it allows us to distinguish effects due to distribution from effects due to

the mean stiffness. Allowing the stiffness to vary spatially produces no qualitative

differences from uniformly flexible foils.

Important quantitative differences do arise, however. Although the mean stiffness

is kept constant, varying the spatial distribution of stiffness changes the eigenvalues

of the system. To elucidate these differences, we find stiffness distributions that max-

imize the thrust, minimize the power, and maximize the efficiency. We find that:

(1) to maximize thrust, stiffness should be distributed so as to create a natural fre-

quency at the frequency of actuation, or concentrated toward the leading edge if a

natural frequency cannot be placed at the frequency of actuation; (2) to minimize

power, stiffness should be distributed so as to avoid natural frequencies, or concen-

trated away from the leading edge; and (3) meaningful gains in efficiency can be

made when the stiffness is distributed so as to elicit flutter behaviour, which induces

efficient travelling wave kinematics.

Just as a finite Reynolds number produced qualitative changes for uniformly flexi-

ble foils, it also does so for foils with distributed flexibility. The thrust-maximizing and
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power-minimizing stiffness distributions are unchanged, but the presence of stream-

wise drag will change the efficiency-maximizing distribution to resemble the thrust-

maximizing distribution and be dictated by the eigenvalues of the system.
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Chapter 4

Conclusion

4.1 Summary

Modelling remains central to understanding the behaviour of natural and artificial

swimmers. This dissertation was motivated by wanting to understand the free

swimming of full-bodied, three-dimensional swimmers found in nature. Several

simplifications were made. First, we distinguished between thrust-producing and

drag-producing parts of animals’ bodies, focusing on the thrust-producing part (the

‘propulsor’) in isolation. Such a simplification seems reasonable for the fast and

efficient animals of interest here (e.g. tuna), where the propulsor and forebody tend

to be distinct, but cannot be made for animals like eels. Second, we ignored all

three-dimensional effects, focusing on the two-dimensional problem. Again, such a

simplification seems reasonable for the fast and efficient animals of interest here since

their propulsors tend to be nearly two-dimensional, and we have already ignored the

three-dimensional forebodies in the first simplification. Third, we greatly simplified

the fluid mechanics, studying the problem through the lens of scaling laws and linear

models. Fourth, we considered propulsors in a ‘tethered’ configuration, where they
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are not free to according to the instantaneous forces they feel. In particular, they

experience a net streamwise force in the mean.

Have we oversimplified the problem? In some ways, yes, but in the most impor-

tant ways, probably not (as far as speed and efficiency of propulsion are concerned,

that is). The ideas developed in this thesis have been tested and held up against

a flurry of experimental data. Furthermore, the behaviour of swimmers in nature

seems consistent with our ideas. The third simplification outlined above is therefore

acceptable.

The most important ideas to take away from this dissertation are twofold. First,

all of the scaling relations and experimental data strongly indicate that the character-

istic lateral velocity of the foil, and not the free-stream velocity, is the relevant velocity

scale in the problem. This is a departure from the standard thinking; indeed, anony-

mous reviewers of our papers have expressed great surprise and even incredulity that

the forces do not scale with the dynamic pressure. The primacy of the characteristic

lateral velocity over the free-stream velocity largely erases any differences between

tethered and free swimming, implying that tethered swimming studies can be used to

make conclusions about free swimming (so long as the other simplifications outlined

above are acceptable). Unsteady streamwise motions of the propulsor will be highly

damped when the propulsor is attached to a body (see Chapter 7), so we need not

consider their effects. Even if unsteady streamwise motions are present, their effects

on mean propulsive performance are miniscule (Van Buren et al., 2018b) (although

instantaneous forces will likely be affected). Although not shown in this dissertation,

ongoing work suggests that forces on flexible foils also scale with the characteristic

lateral velocity of the foil.

The second important takeaway is the importance of drag. For the most part,

drag negatively offsets the thrust curve by a modest amount, so it has been dismissed

as relatively unimportant in the past. When considering the efficiency, however, the
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offset in the thrust curve is critically important. The presence of drag creates a peak

in efficiency at intermediate Strouhal numbers, a peak that has been hypothesized as

being responsible for the constancy of Strouhal numbers observed in steadily cruising

swimmers and fliers in nature. The presence of drag is therefore responsible for these

biological observations, bringing to a close a 30 years old mystery. When flexible

propulsors are considered, the same effect of drag on efficiency is present. Addi-

tionally, drag is responsible for creating the resonant peaks in efficiency observed in

experiments. In an inviscid setting, no resonant peaks in efficiency are present, but

the addition of drag induces such peaks.

4.2 Outlook

In the beginning of this dissertation, we noted four aspects of swimming at which

natural swimmers excel: speed, efficiency, maneuverability, and stealth. This disser-

tation thoroughly covers the first two, but some related questions remain. The most

obvious question is whether the scaling analysis can be extended to flexible foils. Early

work suggests this is possible. Another question is, what is the role of nonlinearity

in the propulsion of flexible foils? The linear analysis in this dissertation reproduces

the main qualitative features observed in experiments (once drag is accounted for),

but not quantiative features. How do finite amplitudes affect the results? Studies

aimed at addressing this question are underway. A related question is, if nonlinearity

is important, is it important in the fluid mechanics, the solid mechanics, or both?

The other two aspects of swimming at which natural swimmers excel—

maneuverability and stealth—leave many opportunities for future studies. The

sounds of swimming fish are non-harmonic with frequencies ranging from 100 Hz to

below 10 Hz (Moulton, 1960; Kasumyan, 2008). These sounds are primarily due to

near-field displacements and can only be detected over a short range when produced
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at high intensity (Tavolga, 1971). When studying maneuverability, the whole system

will need to be taken into account, that is, the propulsor should not be studied in

isolation as it has previously been (Read et al., 2003). The reason is that although

the propulsor may be able to generate a large moment if it is sufficiently far from

the center of mass of the forebody, simply bending the body will likely produce a

moment about the center of mass much more effectively. Once maneuverability of

these whole-body swimmers is understood, the tools of model-based control can be

effectively used to navigate these swimmers; see Kelly (1998), Kanso and Marsden

(2005), and Free and Paley (2018) for some examples. Single-body control will

naturally lead to the control of many-body systems.
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Papers
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Chapter 5

Overview

Part II of this dissertation contains papers that have either been published or submit-

ted to journals. Some minor differences in format may be present between published

papers and the chapters here. The papers are organized into chapters as follows:

• Chapter 6 presents scaling laws for the thrust production, power consumption,

and efficiency of rigid foils sinusoidally heaving or pitching while translating in

a uniform stream. The scaling laws are validated by experiments and are also

shown to be consistent with biological data on swimming aquatic animals.

• Chapter 7 presents experiments on rigid foils intermittently pitching while trans-

lating in a uniform stream. The individual bursts of motion are shown to be

essentially independent of each other. Furthermore, intermittent motions are

shown to be energetically advantageous in certain free-swimming situations, and

the scaling laws from Chapter 6 are used to explain the advantages.

• Chapter 8 extends the scaling laws from Chapter 6 to efficient, large-amplitude,

simultaneously heaving and pitching motions. The scaling laws are validated

by experiments, and implications are drawn for the efficiency in particular.

46



• Chapter 9 uses the scaling laws from Chapter 8 to explain the observations

that many swimming and flying animals cruise with a Strouhal number

0.2 < St < 0.4.

• Chapter 10 analyzes the deformation, thrust production, power consumption,

and efficiency of passively (and uniformly) flexible thin foils sinusoidally heav-

ing or pitching while translating in a uniform stream. The eigenvalues of the

coupled fluid-structure system are used to clarify misconceptions about the role

of resonance, and some new effects are discovered.

• Chapter 11 extends the analysis from Chapter 10 to foils with distributed flex-

ibility. Optimal distributions of flexibility are sought and understood through

the eigenvalues of the coupled fluid-structure system.

5.1 Author contributions

In the following chapters, I designed and performed the research, analyzed the data,

and wrote the content. The listed co-authors advised me on aspects of the research,

and revised and edited these papers. I outline specific contributions from co-authors

below, with unlisted contributions being from myself.

• In Chapter 6, Van Buren helped perform the experiments.

• In Chapter 7, Smits conceived the experiments, and Van Buren wrote part of

the introduction, helped perform the experiments, and scaled the forces and

power by duty cycle.

• In Chapter 8, Smits suggested investigating the relationship between thrust and

efficiency, and Van Buren helped perform the experiments.

• In Chapter 9, Van Buren helped perform the experiments.
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• In Chapter 10, Rowley suggested calculating eigenvalues of the coupled fluid-

structure system.

• In Chapter 11, Rowley suggested describing the stiffness distributions by Leg-

endre polynomials.
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Chapter 6

Scaling the propulsive performance

of heaving and pitching foils

Daniel Floryan, Tyler Van Buren, Clarence W. Rowley, and

Alexander J. Smits

Appears as Floryan et al. (2017a).

Scaling laws for the propulsive performance of rigid foils undergoing oscillatory heav-

ing and pitching motions are presented. Water tunnel experiments on a nominally

two-dimensional flow validate the scaling laws, with the scaled data for thrust, power,

and efficiency all showing excellent collapse. The analysis indicates that the behaviour

of the foils depends on both Strouhal number and reduced frequency, but for motions

where the viscous drag is small the thrust closely follows a linear dependence on re-

duced frequency. The scaling laws are also shown to be consistent with biological

data on swimming aquatic animals.
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6.1 Introduction

The flow around moving foils serves as an abstraction of many interesting swimming

and flight problems observed in nature. Our principal interest here is in exploiting

the motion of foils for the purpose of propulsion, and so we focus on the thrust they

produce, and their efficiency.

Analytical treatments of pitching and heaving (sometimes called plunging) foils

date back to the early–mid 20th century. In particular, Garrick (1936) used the

linear, inviscid, and unsteady theory of Theodorsen (1935) to provide expressions

for the mean thrust produced by an oscillating foil, and the mean power input and

output. Lighthill (1970) extended the theory to undulatory motion in what is called

elongated-body theory. More recently, data-driven reduced-order modelling by, for

example, Brunton et al. (2013), Brunton et al. (2014), and Dawson et al. (2015), has

extended the range of validity and accuracy of similar models. A drawback of these

treatments, however, is that it is often difficult to extract physical insights from them

in regard to mean propulsive parameters such as thrust and efficiency.

In this respect, scaling laws can often prove valuable (Triantafyllou et al., 2005).

In a particularly influential paper, Triantafyllou et al. (1993) established the impor-

tance of the Strouhal number in describing fish-like swimming flows, calling it the

“dominant new parameter for fish propulsion” and “the governing parameter of the

overall problem.” The Strouhal number has since been adopted in nearly all subse-

quent works as the main parameter of interest (see, for instance, Quinn et al. (2014)),

although the reduced frequency is sometimes preferred for foils with significant flexi-

bility (Dewey et al., 2013).

Nevertheless, in conducting extensive experiments on pitching and heaving foils we

find that such flows cannot be adequately described using only the Strouhal number

or the reduced frequency. For instance, figure 6.1 shows the time-averaged thrust

coefficient as a function of Strouhal number for a heaving foil. We see that the ratio
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Figure 6.1: Time-averaged thrust coefficient CT as a function of Strouhal number
St for a heaving foil, for various heave amplitude to chord ratios, h∗. Experimental
results from the current study. The parameters CT and St are defined in Section 6.2.

of the heave amplitude to chord, h∗ = h0/c, has a significant impact on the thrust

generated at a fixed Strouhal number. Here we report these findings, together with

a new scaling analysis that helps to explain the experimental propulsive performance

of rigid foils undergoing either heaving or pitching motions.

6.2 Scaling laws

Consider a rigid two-dimensional foil moving at a constant speed U∞ while

heaving and pitching about its leading edge. These motions are described by

h(t) = h0 sin(2πft) and θ(t) = θ0 sin(2πft), respectively, where h0 is the heave

amplitude, θ0 is the pitch amplitude, and f is the frequency; see figure 6.2. We are

chiefly concerned with the time-averaged thrust in the streamwise direction produced

by the foil motion, Fx, and the corresponding Froude efficiency

η =
FxU∞

Fyḣ+Mθ̇
, (6.1)
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where Fy is the force perpendicular to the free-stream and M is the moment taken

about the leading edge. This efficiency is the ratio of power output to the fluid to

power input to the foil. The relevant dimensionless parameters are

St =
2fA

U∞
, f ∗ =

fc

U∞
, A∗ =

A

c
, (6.2)

where St is the Strouhal number, f ∗ is the reduced frequency, A is the trailing edge

amplitude of the motion (h0 for heave, c sin θ0 for pitch), and c is the chord length of

the foil. Although St = 2f ∗A∗, we use all three parameters as a matter of convenience.

Force and power coefficients are defined by

CT =
Fx

1
2
ρU2
∞sc

, Cy =
Fy

1
2
ρU2
∞sc

, CP =
Fyḣ+Mθ̇

1
2
ρU3
∞sc

, (6.3)

where ρ is the density of the surrounding fluid, and s is the span of the foil.

We start with the notion that the forces acting on the foil are due to lift-based

mechanisms, added mass effects, and viscous drag. We will assume that over our

range of Reynolds numbers the drag coefficient CD is constant, independent of the

amplitude or frequency of the actuation of the foil. This assumption will be justified

by reference to the experimental data.

6.2.1 Lift-based forces

The only lift-based forces we consider are those that arise when the foil is at an

instantaneous angle of attack to the free-stream given by α = θ − arctan (ḣ/U∞).

The effective flow velocity seen by the foil has a magnitude Ueff =
√
U2
∞ + ḣ2, and an
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angle relative to the free-stream velocity of arctan (ḣ/U∞). Hence,

Fx = −L sin (θ − α) = −Lḣ/Ueff,

Fy = L cos (θ − α) = LU∞/Ueff,

 (6.4)

where L is the lift on the foil given by L = 1
2
ρU2

effscCL, and the lift coefficient

CL = 2π sinα + 3
2
πα̇c/U∞ (Theodorsen, 1935). The moment about the leading edge

is M = −cL/4. Note that for a purely pitching foil, quasi-steady lift forces do not

produce any thrust. High-frequency and large-amplitude motions will strengthen the

nonlinearities in the response; the work of Liu et al. (2014) suggests that this will

alter the phase differences between forces and motions. As such, terms that are ex-

pected to be 90◦ out of phase (for example, displacement and velocity, or velocity and

acceleration) may develop in-phase components. These phase shifts are assumed to

be constant for simplicity.

For heaving motions, neglecting viscous drag, we find

CT ∼ 2π3St2 + 3π4St2 f ∗ U∗,

Cy ∼ 2π2St+ 3π3St f ∗ U∗,

CP ∼ 2π3St2 + 3π4St2 f ∗ U∗,

η ∼ 1,


(6.5)
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where U∗ = U∞/Ueff = 1/
√

1 + π2St2. Similarly, for small pitching motions,

CT ∼ 0,

Cy ∼ 2πA∗ + 3
2
π2St,

CP ∼ 1
2
π2StA∗ + 3

8
π3St2,

η ∼ 0.


(6.6)

In these scaling relations the first term is due to the angle of attack, and the second is

due to the rate of change of the angle of attack. The∼ sign indicates a proportionality,

and although we expect the relative magnitudes of the first and second terms to be

given by the analysis, the absolute magnitudes will need to be found by experiment.

6.2.2 Added mass forces

From Sedov (1965), the added mass forces per unit span on a flat plate are

Ft/s = ρπc′2V θ̇ − ρπc′3θ̇2,

Fn/s = −ρπc′2V̇ + ρπc′3θ̈,

M/s = ρπc′3V̇ − 9
8
ρπc′4θ̈ − ρπc′2UV + ρπc′3Uθ̇,


(6.7)

where c′ = c/2, U and V are the instantaneous velocities in the directions tangential

and normal to the plate, and subscripts t and n denote the instantaneous forces in
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the same directions. In our laboratory reference frame

Fx/s = ρπc′2
(
ḣθ̇ cos θ − U∞θ̇ sin θ − c′θ̇2

)
cos θ

+ρπc′2
(
ḧ cos θ − ḣθ̇ sin θ − U∞θ̇ cos θ + c′θ̈

)
sin θ,

Fy/s = ρπc′2
(
−ḧ cos θ + ḣθ̇ sin θ + U∞θ̇ cos θ + c′θ̈

)
cos θ

+ρπc′2
(
ḣθ̇ cos θ − U∞θ̇ sin θ − c′θ̇2

)
sin θ,

M/s = ρπc′2
[
c′
(
ḧ cos θ − ḣθ̇ sin θ − U∞θ̇ cos θ

)
− 9

8
c′2θ̈

−
(
U∞ cos θ + ḣ sin θ

)(
ḣ cos θ − U∞ sin θ

)
+c′
(
U∞ cos θ + ḣ sin θ

)
θ̇
]
.



(6.8)

Note that for a purely heaving foil, added mass does not produce any thrust.

For heaving motions, neglecting viscous drag, we find

CT ∼ 0,

Cy ∼ π3St f ∗,

CP ∼ π4St2 f ∗,

η ∼ 0.


(6.9)

Similarly, for small pitching motions,

CT ∼ 1
2
π3St2 + π2StA∗,

Cy ∼ 1
2
π3St f ∗ + 1

2
π2St,

CP ∼ 9
32
π4St2 f ∗ + 1

2
π2StA∗,

η ∼ 16 + 16πf ∗

8 + 9π2f ∗2
.


(6.10)
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In these scaling relations, the first term is the absolute added mass term, while the

second term is due to being in a rotating frame of reference.

6.2.3 Summary

Combining lift-based and added mass forces, for purely heaving motions we have

CT = c1St
2 + c2St

2 f ∗ U∗ − CDh,

CP = c3St
2 + c4St

2 f ∗ + c5St
2 f ∗ U∗,

η =
c1 + c2f

∗U∗

c3 + c4f ∗ + c5f ∗U∗
,


(6.11)

where we have included the drag force for heaving motions (CDh) in the thrust scaling.

The expression for the efficiency given here neglects the drag force, and so it should

be interpreted as an inviscid scaling result. We will show the effects of viscous drag

on the efficiency later in the text.

For purely pitching motions

CT = c6St
2 + c7StA

∗ − CDp,

CP = c8St
2 + c9St

2 f ∗,

η =
1

f ∗
c6f
∗ + c7/2

c9f ∗ + c8

,


(6.12)

where CDp is the drag coefficient for pitching motions. The constants c1 to c9 will

need to be found by experiment. Note that the expressions for efficiency only hold in

the limit of negligible drag, so that they represent inviscid estimates.
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Figure 6.2: Experimental setup and sketch of motions.

6.3 Experimental setup

Experiments on a pitching or heaving foil were performed in a water tunnel. The

foil was suspended in a free-surface recirculating water tunnel with a 0.46 m wide,

0.3 m deep, and 2.44 m long test section. The tunnel velocity was varied from 60

to 120 mm/s, with a typical turbulence intensity of 0.8%. A free-surface plate was

used to minimize the generation of surface waves. The experimental setup is shown

in figure 6.2.

A teardrop foil was used for the experiments, with a chord of c = 80 mm, maximum

thickness 8 mm, and span s = 279 mm, yielding an aspect ratio of AR = 3.5 and

chord-based Reynolds number of Re = 4,780 at 60 mm/s. To ensure that the flow was

effectively two-dimensional, the gaps between the foil edges and the top and bottom

surfaces of the water channel were less than 5 mm. Either pitching or heaving motions

were used. A servo motor (Hitec HS-8370TH) was used to pitch the foil about its

leading edge, and a linear actuator (Linmot PS01-23x80F-HP-R) was used to heave

it on nearly frictionless air bearings (NewWay S301901). The pitch amplitude was

varied from θ0 = 3◦ to 15◦ in intervals of 2◦, the heave amplitude was varied from
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h0 = 5 mm to 15 mm in intervals of 2 mm, and the frequency of actuation f was

chosen so that the Strouhal number varied from St = 0.05 to 0.4 in intervals of 0.025

(while maintaining f < 2 Hz). Pitch and heave motions were sampled continuously

via encoders.

The foil thrust and efficiency were measured using a six-component force and

torque sensor (ATI Mini40), which has force and torque resolutions of 5 × 10−3

N and 1.25 × 10−4 N·m in the x- and y-directions respectively, and 10−3 N and

1.25× 10−4 N ·m in the z-direction. The force and torque data were acquired at a

sampling rate of 100 Hz. During each experimental trial, the motion ran for 30 total

cycles: the first five cycles were warm-up cycles, the following 20 cycles were for data

acquisition, and the last five cycles were cool-down cycles. Each trial was run at least

six times to ensure the repeatability of the data. Altogether, data were acquired for

more than 1000 individual experiments.

6.4 Heave results

Time-averaged thrust and power coefficients for the foil in heave are shown in figure

6.3. The data were taken at a fixed velocity of 60 mm/s. Performing a least-squares

linear regression, the scaling constants were determined to be c1 = 3.52, c2 = 3.69,

c3 = 27.47, c4 = 13.81, c5 = 5.06, and a drag coefficient of 0.15 (see (6.11)). The

values of the constants should not be taken to be universal; they are simply the values

that work best for our data. The collapse of the data is relatively insensitive to the

exact values of some of the constants, but the analysis indicates that each term in

the model is of O(1) importance, indicating that the physical mechanisms identified

here are significant in explaining the data.

The thrust data collapse well onto a single curve, suggesting that the simplified

physics used in our model is sufficient to explain the behaviour of the thrust. As

58



0 0.5 1 1.5 2 0 5 10
0

5

10

152

1.5

1

0.5

0

-0.5

(b)(a)

h* = 0.1875
h* = 0.1625
h* = 0.1375
h* = 0.1125
h* = 0.0875
h* = 0.0625

Figure 6.3: Heaving motions. Time-averaged (a) thrust and (b) power coefficients as
functions of the scaling parameters (see (6.11)) for various h∗ = h0/c.

shown in section 6.2, the St2 term corresponds to the angle of attack and the St2f ∗U∗

term corresponds to the rate of change of angle of attack. We see therefore that the

thrust for heaving motions is entirely due to lift-based forces and that the effects of

unsteadiness on the mean thrust are well captured by the rate of change of angle of

attack.

Likewise, the power data collapse well onto a single curve, although there is some

spread in the data for the stronger motions. The angle of attack, the rate of change of

angle of attack, and added mass contribute to the power scaling. Power for heaving

motions is thus affected by both lift-based and added mass forces, and the essential

effects of unsteadiness on the mean power are well captured by the rate of change of

angle of attack and added mass. It should be noted that the collapse of the mean

power data is relatively insensitive to the values of the constants. The mean power

is a weakly nonlinear function of the scaling parameter, suggesting the limits of our

model; this is likely caused by the modification of the added mass (Liu et al., 2014).

The efficiency data are given in figure 6.4, presented as a function of Strouhal

number (a), and as a function of the reduced frequency (b). For heaving motions,

the scaling arguments indicate that the efficiency in the absence of drag should be
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Figure 6.4: Heaving motions. Efficiency as a function of (a) St, and (b) and f ∗.
Solid lines indicate the scaling given by (6.11); dashed line indicates the scaling with
CDh = 0.

approximately constant (for our constants and range of parameters). For higher values

of the reduced frequency we observe that the efficiency data approach a constant,

marked by a dashed line. The efficiency deviates from this trend for lower values of

the reduced frequency and for smaller heave amplitudes due to the viscous drag on

the foil. As motions become weaker, they produce less thrust. The drag, however,

remains essentially constant. Thus as the motions become weaker, the drag will

constitute a larger portion of the net streamwise force, eventually overtaking any

thrust produced and leading to a negative efficiency.

6.5 Pitch results

Time-averaged thrust and power coefficients for pitching foils are shown in figure 6.5.

The data were taken at a fixed velocity of 60 mm/s. Performing a least-squares linear

regression, the scaling constants were determined to be c6 = 2.55, c7 = 0, c8 = 7.78,

c9 = 4.89, and a drag coefficient of 0.08 (see (6.12)). Note that the thrust is affected

by only the Strouhal number, as seen in previous work (Koochesfahani, 1989). The

values of the constants should be interpreted the same was as noted at the beginning
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Figure 6.5: Pitching motions. Time-averaged (a) thrust and (b) power coefficients as
functions of the scaling parameters (see (6.12)), with c7 = 0.

of Section 6.4. The term multiplied by c7 is negligible, indicating that it expresses

the product of two terms (in this case displacement and velocity) that are 90◦ out of

phase.

The thrust data follow our scaling model well. Although the pitch data are a bit

more scattered than the heave data, the collapse is still evident and the thrust coeffi-

cient varies linearly with the scaling parameter as expected. As shown in section 6.2,

the St2 term corresponds to added mass, and so the thrust for pitching motions is

entirely due to added mass forces, which capture all of the effects of unsteadiness.

The power data also follow our scaling model well. Power in pitch is governed by

the rate of change of angle of attack (the St2 term), and by added mass forces (the

St2f ∗ term). These two terms alone capture the essential effects of unsteadiness on

the mean power. As found for heaving motions, the mean power for pitch is a weakly

nonlinear function of the scaling parameter, indicating the limits of our model.

In figure 6.6 we present the efficiency data as a function of Strouhal number (a),

and as a function of the reduced frequency (b). The scaling result in the absence of

drag is given by c6/(c8 + c9f
∗) (see (6.12)), shown in the figure by the dashed line.

Clearly, the reduced frequency collapses the data for faster motions, whereas the
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Figure 6.6: Pitching motions. Efficiency as a function of (a) St, and (b) f ∗. Solid lines
indicate the scaling given by (6.12); dashed line indicates the scaling with CDp = 0.

Strouhal number does not. As found for heaving motions, the pitching data deviate

from the scaling for slower motions where viscous drag becomes a significant portion

of the net streamwise force. The solid lines show the curve fits after taking the drag

into account. The inviscid scaling suggests that in order to maximize efficiency, the

reduced frequency should be minimized, but viscous drag begins to be important at

some point, and so for maximum efficiency an intermediate reduced frequency is best.

The inviscid scaling for the efficiency can be rewritten as (c6/c9)/(c8/c9 + f ∗).

The efficiency curve thus behaves as f ∗−1, but translated to the left by an amount

c8/c9. The amount of leftward translation thus depends on the relative strengths of

the terms corresponding to the coefficients c8 (rate of change of angle of attack) and

c9 (added mass). From the perspective of maximizing efficiency, a smaller translation

is better (e.g. f ∗−1 without any translation approaches infinity as f ∗ approaches

zero). It is clear that we may alter the amount of translation, and thus the efficiency,

by changing the relative strengths of lift-based and added mass forces. This could

be achieved, possibly, by adding higher harmonics to the motion. This approach is

currently under investigation.
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6.6 Rescaling thrust

If we consider motions where the viscous drag term is small, the thrust coefficients

for heaving and pitching motions in (6.11)–(6.12) reduce to

CTh = c1St
2 + c2St

2 f ∗ U∗, (6.13)

CTp = c6St
2, (6.14)

respectively, where we have taken c7 = 0 as shown by the data. It is apparent that we

may eliminate St from both expressions by rescaling the thrust, reducing the number

of necessary scaling parameters. We rewrite the thrust laws as

C∗Th = 4c1 + 4c2f
∗ U∗, (6.15)

C∗Tp = 4c6, (6.16)

where we define a new thrust coefficient

C∗T =
Fx

1
2
ρf 2A2sc

(6.17)

based on a characteristic velocity scale fA. Since C∗T does not contain the free-stream

velocity U∞, (6.16) indicates that for pitching motions the dimensional thrust should

be independent of the free-stream velocity.

The results, scaled as suggested by (6.15)–(6.16), are shown in figure 6.7. They

show that the non-dimensional thrust coefficient C∗T is indeed a linear function of

reduced frequency for heaving motions for large values of f ∗ (U∗ varies only approx-

imately 10% for our data, effectively constant), and a constant for pitching motions.
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Figure 6.7: Newly non-dimensionalized thrust as a function of reduced frequency for
(a) heaving and (b) pitching. (6.15)–(6.16) are shown by the dashed lines. Colours
are the same as in figures 6.3 and 6.5.

The experimental results presented thus far have all been taken at a single free-

stream velocity. To verify that the thrust results are truly independent of velocity,

the velocity was varied from 60 to 120 mm/s. Figure 6.8 shows that the dimensional

thrust is independent of free-stream velocity for pitching motions, and only weakly

depends on free-stream velocity for heaving motions, confirming our scaling argu-

ments. Although not shown here, we note that the data taken at different velocities

follow the scaling laws given by (6.11)–(6.12), with the same values for the coefficients

as found in Sections 6.4 and 6.5.

6.6.1 Biological data

It is instructive to test our scaling arguments against biological observations. Fig-

ure 6.9 shows fluke-beat frequency and non-dimensional fluke-beat amplitude as func-

tions of length-specific swimming speed for several odontocete cetaceans (Rohr and

Fish, 2004). The data indicate that in order to increase their swimming speeds, these

cetaceans increase their fluke-beat frequency while maintaining constant fluke-beat
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Figure 6.8: Dimensional thrust as a function of frequency at various free-stream
velocities for (a) pitching at θ0 = 7◦ and (b) heaving at various h∗ = h0/c.
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Figure 6.9: (a) Fluke-beat frequency and (b) non-dimensional fluke-beat amplitude
as functions of length-specific swimming speed for several odontocete cetaceans.
Adapted from Rohr and Fish (2004).

amplitude. In fact, their speeds increase at the same rate as their frequencies. In terms

of non-dimensional variables, they are maintaining a constant reduced frequency.

Recall from section 6.2 that our scaling arguments indicate that the efficiency

scales with f ∗−1. Suppose that a swimmer wants to always swim as efficiently as

possible. According to our scaling arguments, this corresponds to swimming at the

value of reduced frequency which gives the greatest efficiency. Thus as a swimmer

65



changes its speed, it must change its frequency accordingly in order to maintain the

same reduced frequency. This is precisely what the biological data show.

6.7 Conclusions

Using only quasi-steady lift-based and added mass forces, new scaling laws for thrust

coefficients, side force coefficients, power coefficients, and efficiencies were obtained

for a rigid foil undergoing oscillatory heaving and pitching motions. The analysis

indicates that the foil performance depends on both Strouhal number and reduced

frequency. Water tunnel experiments on a nominally two-dimensional rigid foil showed

that the scaling laws give an excellent collapse of the data. Viscous drag was seen

to add an approximately constant negative offset to the thrust coefficient, but it

causes the rapid decrease in efficiency seen for slower motions (low Strouhal number

or small reduced frequency), and our scaling laws captured this behaviour well. For

both heaving and pitching motions, the scaling indicates that slower motions lead to

greater efficiency, as long as the motions are not so slow that viscous drag becomes a

substantial component of the net streamwise force.

Biological observations of the swimming behaviour of odontocete cetaceans were

shown to be consistent with our scaling arguments. When these aquatic creatures

swim, they change their fluke-beat frequency in order to change their swimming speed

while maintaining a constant fluke-beat amplitude. Under the premise of swimming

as efficiently as possible, this behaviour of maintaining a constant reduced frequency

is consistent with the scaling arguments presented.

Finally, observations of the weak dependence (or even independence) of di-

mensional thrust on free-stream velocity led to the introduction of a new non-

dimensionalization for thrust. The new non-dimensionalization reduces the thrust to

only a linear function of reduced frequency for heaving motions, and to a constant
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value for pitching motions. The experimental data were shown to validate the new

scaling, which is independent of Strouhal number.
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Chapter 7

Forces and energetics of

intermittent swimming

Daniel Floryan, Tyler Van Buren, and Alexander J. Smits

Appears as Floryan et al. (2017b).

Experiments are reported on intermittent swimming motions. Water tunnel experi-

ments on a nominally two-dimensional pitching foil show that the mean thrust and

power scale linearly with the duty cycle, from a value of 0.2 all the way up to con-

tinuous motions, indicating that individual bursts of activity in intermittent motions

are independent of each other. This conclusion is corroborated by particle image

velocimetry flow visualizations, which show that the main vortical structures in the

wake do not change with duty cycle. The experimental data also demonstrate that in-

termittent motions are generally energetically advantageous over continuous motions.

When metabolic energy losses are taken into account, this conclusion is maintained

for metabolic power fractions less than one.
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7.1 Introduction

Many aquatic animals, such as large sharks and seals (Gleiss et al., 2011) to small

schooling fish (Fish et al., 1991), exhibit an intermittent swimming behaviour, some-

times called burst-and-coast swimming. Fish practice intermittent swimming while

hunting, fleeing a predator, pursuing a mate, or while starving, and exhibit a wide

range of ratios of burst to coast times (Kramer and McLaughlin, 2001). Our primary

interest here is to examine the potential energy benefit of intermittent swimming in

cruising conditions.

In this respect, Weihs (1974) developed a simple theoretical model and showed

that fish could achieve up to 50% savings in energy through intermittent swimming,

which was supported by observations on the swimming range of salmon. Videler

and Weihs (1982) then found that cod and saithe choose minimum and maximum

swimming velocities that match predicted theoretical optima.

The key parameter that differentiates intermittent from continuous swimming in

Weihs’ model is α, the ratio of drag during active swimming to drag during coasting.

The model showed that intermittent swimming is potentially energetically advanta-

geous only for values of α > 1. Lighthill (1971) and Webb (1975) noted that the total

drag on fish is 3–5 times higher when they are actively swimming than when they

do not actuate their bodies, which corresponds to a range of α where intermittent

swimming is expected to be energetically advantageous. Lighthill suggested that the

drag increases during active swimming due to the thinning of the boundary layer, and

so boundary layer thinning may be hypothesized as the mechanism responsible for

the energetic benefits of intermittent swimming; we emphasize that this is a viscous

mechanism. As the author himself noted, however, this hypothesis was tentative and

untested, and more recent work suggests that boundary layer thinning during un-

steady swimming motions could lead to only about a 90% increase in drag (Anderson

et al., 2001).
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Similar simplified hydromechanic approaches were followed by Blake (1983) and

Chung (2009), but the main focus of their work was on the impact of the shape of the

body of the fish and how to minimize drag, factors that directly impact the energy

expenditure of intermittent motions. Numerical simulations by Wu et al. (2007) show

similar energetic benefits as the theory.

To understand the consequences of intermittent swimming, we have conducted

an experimental investigation of intermittent propulsion by a rigid pitching foil. The

performance of pitching and heaving foils in continuous motion is relatively well un-

derstood, and Floryan et al. (2017a) recently presented a comprehensive scaling argu-

ment that collapses the available data on thrust and power well. In that context, our

aim is to understand how intermittent swimming motions affect the forces produced,

and the energy expended, and to develop a scaling analysis to describe these changes.

We seek to answer three specific questions: (1) do intermittent motions reduce the

energy needed to traverse a given distance if metabolic losses are ignored; (2) how

does this conclusion change when metabolic energy losses are taken into account; and

(3) do intermittent motions reduce the energy needed to traverse a given distance

when the average speed is fixed?

7.2 Experimental setup

Experiments were conducted using a rigid pitching foil in a recirculating free-surface

water channel, as shown in figure 7.1. The water channel test section is 0.46 m wide,

0.3 m deep, and 2.44 m long. Baffles upstream and downstream of the foil minimized

surface waves. The free-stream velocity, U∞, was fixed at 100 mm/s for performance

testing and 60 mm/s for wake measurements.

The propulsor was a two-dimensional teardrop foil with a chord of c = 80 mm,

maximum thickness of 8 mm, and span of s = 279 mm. The performance was
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Figure 7.1: Experimental setup.

measured by a six component force/torque sensor (ATI Mini40), with force and torque

resolutions of 5×10−3 N and 1.25×10−4 N·m, respectively. The pitching motions were

generated by a servo motor (Hitec HS-8370TH) monitored via a separate encoder.

Pitching motions were sinusoidal, and the amplitudes were varied from θ0 = 5◦ to

15◦ every 5◦. For intermittent motions, duty cycles of ∆ = 0.2 to 0.9 every 0.1

were explored and compared to continuous motion (∆ = 1). A duty cycle of 0.2, for

example, means that the foil completes one full period of pitching, and then stops

moving with θ = 0 for a time equal to four periods. The actuation frequency, that is,

the frequency of the active portion of the cycle, varied from f = 0.2 to 1.5 Hz every

0.1 Hz. This yielded a Strouhal number, St = 2fc sin(θ0)/U∞, range from 0.05 to

0.4. Each trial consisted of 30 cycles, and the data were averaged over the middle 20

cycles. Each trial was repeated a minimum of three times to ensure repeatability and

reduce uncertainty.

The wake velocity measurements were taken at the center-span of the foil with

particle image velocimetry (PIV). Silver coated hollow ceramic spheres (Potter In-

dustries Inc. Conduct-O-Fil AGSL150 TRD) were used to seed the flow, illuminated
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by a CW argon-ion laser (Spectra Physics 2020). An 8-bit monochrome CCD camera

(MotionXtra HG-LE) with 1128×752 resolution was used to acquire images at 25 Hz.

Images were processed sequentially with commercial DaVis software using spatial cor-

relation interrogation window sizes of 64×64 and twice at 32×32 with 50% overlap.

The (cropped) measurement region covered 86 mm in the streamwise direction and

84 mm across, with a resolution of 7 vectors per 10 mm. Average and instantaneous

velocity errors are estimated to be 2.7% and 1–5%, respectively (Sciacchitano et al.,

2013).

7.3 Forces and power

We begin by considering experiments in which the foil is fixed in the streamwise

direction and pitched sinusoidally either continuously or intermittently. The propul-

sive performance is described using the conventional definitions of thrust and power

coefficients, where

CT =
Fx

1
2
ρU2
∞sc

, CP =
Mθ̇

1
2
ρU3
∞sc

. (7.1)

Here, Fx is the streamwise force, M is the spanwise torque, θ̇ is the angular velocity

of pitching, and ρ is the fluid density.

In switching from swimming to non-swimming, the form of the transition is im-

portant since it has an impact on both the thrust and power, as shown in figure 7.2.

We therefore define a smoothing parameter ξ, where ξ = 0 is unsmoothed (see inlay

of figure 7.2). The waveforms are smoothed via a Gaussian filter, where ξ is the width

of the Gaussian kernel relative to the width of the active portion of the wave. As

the waveform becomes smoother, the thrust and power decrease because the starting

and stopping accelerations decrease. To make comparisons meaningful, we apply a

smoothing parameter of ξ = 0.1 for all experiments.
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Figure 7.2: Time-averaged thrust (circular symbols) and power coefficients (square
symbols) as they vary with smoothing parameter ξ (θ0 = 10◦, f = 1 Hz, ∆ = 0.5.)

The thrust and power coefficients are shown in figure 7.3 for a range of duty

cycles and pitch amplitudes. Both the thrust and power increase nonlinearly with

Strouhal number and duty cycle in all cases. In figure 7.4 we show the same results

scaled with the duty cycle, which collapses all of the data points onto a single curve.

For intermittent motions, it appears to be sufficient to correct the time-averaged

force such that the averaging is only done on the active portion of the cycle. This

procedure is similar to that used by Akoz and Moored (2017), who scale the thrust

for intermittent motions with the frequency of motion, which effectively accounts

for duty cycle. This result has the important implication that the thrust and power

generated in each actuation cycle can be treated independently. The whole is, indeed,

the sum of its parts.

Figure 7.5 shows the instantaneous wake vortex structure at the point in the gen-

eration cycle where the primary positive vortex is generated (labeled 1 in each figure).

The continuous sinusoidal motion produces a typical thrust-producing “reverse von

Kármán vortex street,” generating two opposite-sense vortices per actuation cycle.

The intermittent motion, however, produces two primary vortices (1 and 2) and two

smaller secondary vortices (1’ and 2’). These secondary vortices are due to the rapid
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Figure 7.3: Time-averaged (a) thrust and (b) power coefficients as functions of
Strouhal number. Dark to light symbols represent increasing duty cycles, ranging
from ∆ = 0.2 to 1 every 0.1. Symbols identify pitch amplitudes of θ0 = 5◦ (circle),
10◦ (square), and 15◦ (triangle).
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Figure 7.4: Time-averaged (a) thrust and (b) power coefficients normalized by duty
cycle as functions of Strouhal number. Symbols and tones as in figure 7.3.
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Figure 7.5: Instantaneous wake vorticity with in-plane velocity arrows overlaid for
(a) continuous motion, (b) duty cycle of ∆ = 0.25, (c) ∆ = 0.5, and (d) ∆ = 0.75
and a Strouhal number of St = 0.4. Small graphics in the bottom right show the
pitch angle over time and the generation points of each vortex in the actuation cycle.

start and stop of the intermittent motion. Similar vortex formations have been shown

numerically for intermittent motions (Wu et al., 2007) and secondary vortices are also

found in rapid starting and stopping square wave motions (Van Buren et al., 2017).

Changing the duty cycle appears to have little effect on the location and strength of

the vortices produced per cycle, suggesting that there is minimal interaction between

separate cycles. This finding is consistent with the observed scaling of the thrust and

power coefficients with the duty cycle.

7.4 Free swimming performance

We now consider a free swimmer, no longer constrained to move at a fixed speed. Its

motion is governed by Newton’s Second Law

m
du

dt
= T −D, (7.2)

where m is the mass, u is the speed, T is the thrust, and D is the drag. We make

the assumptions that the swimmer can be effectively split into a drag-producing part
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Figure 7.6: A swimmer can be simply represented as a combination of a drag-
producing body and a thrust-producing propulsor.

(the body) and a thrust-producing part (the propulsor), as illustrated in figure 7.6,

and that these parts are independent of each other.

We further assume a quadratic drag law (White, 2011), such that

D =
1

2
ρu2AwCD, (7.3)

where ρ is the fluid density, Aw is the wetted area of the body, and CD is the drag

coefficient. We know from Floryan et al. (2017a) that the thrust produced by a

pitching foil is independent of the free-stream velocity, so we can assume that the

thrust measured from the fixed velocity experiments is the same as what would be

measured if the foil were allowed to move. Furthermore, the appropriate velocity

scale for a pitching foil is fA, where f is the frequency of the motion, and A is the

amplitude of the motion. The non-dimensionalized governing equation is then

2
m∗

A∗
du∗

dt∗
= C∗T − CDA∗wu∗2, (7.4)

where m∗ = m/ρc2s is the ratio of the body mass to the propulsor added mass,

A∗ = A/c is the ratio of the amplitude to the chord, u∗ = u/fA is the non-dimensional

speed, t∗ = tf is the non-dimensional time, C∗T = T/1
2
ρ(fA)2sc is the thrust coefficient

using the new velocity scale, CD is the drag coefficient as in (7.3), and A∗w = Aw/sc

is the ratio of the body’s wetted area to the propulsor’s wetted area. The prefactor
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m∗/A∗ is the ratio of the body’s mass to the mass of the fluid displaced by the

propulsor.

We find the mean speed for the free swimmer by inputting the phase-averaged

thrust measured in our experiments into (7.4) and solving numerically. We solve

using MATLAB’s built-in integrator ODE45 (Dormand and Prince, 1980; Shampine

and Reichelt, 1997), evolving the system forward until it settles on the limit cycle.

The drag coefficient is kept constant at 0.01 (Barrett et al., 1999), A∗ varies with the

data, and we vary the mass and area ratios over some orders of magnitude.

7.4.1 Results on mean speed

We first compare the calculated mean speed U∗mean to the “steady-state” speed U∗steady,

that is, the speed found by setting du∗/dt∗ = 0 in (7.4) and equating mean thrust to

mean drag. The results, plotted in figure 7.7, show that the two speeds are nearly

equal. The calculated mean speed falls below the steady value only for small values

of the mass ratio m∗ and large values of the area ratio A∗w, which represent unphys-

ical realizations. Points with mean speed greater than the steady speed seem to be

spurious.

The relation between the calculated mean and steady speeds can be understood

by considering the problem in the frequency domain. Let

C∗T =
∑
n

Cne
iωnt, u∗ =

∑
n

une
iωnt (7.5)

be the Fourier series representing the thrust and speed, respectively. Since the thrust

and speed are real, we require that C−n = Cn and u−n = un, where the overbar

denotes the complex conjugate. The equation for the zeroth Fourier mode of speed

is then

u2
0 =

C0

CDA∗w
−
∑
n6=0

unun. (7.6)
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Figure 7.7: Mean speed versus steady speed for all frequencies, amplitudes, and duty
cycles. Mass ratios are m∗ = 0.01, 0.1, 1, 10 (light to dark symbols), and area ratios
are A∗w = 1 (circles) and 10 (squares).

We see that the higher harmonics will act to decrease the mean speed. The effects of

the mean thrust, drag coefficient, and area ratio on the mean speed are as expected.

To understand the effect of the mass ratio, we linearize (7.4) about the steady

speed and take the Laplace transform. The system has a single left-half-plane pole at

−bCDA∗wA∗/m∗, where b is a constant arising from linearization. A greater mass ratio

moves the pole closer to the origin, thus attenuating high frequencies. Intuitively, a

greater mass ratio corresponds to a swimmer with greater inertia; the greater inertia

will cause the speed to fluctuate less about its mean. According to (7.6), the attenu-

ation of high frequencies with greater mass ratio brings the mean speed closer to the

steady speed, explaining the observed behaviour.

The effect of the area ratio on the mean speed can be understood in the same

way. A smaller area ratio moves the pole closer to the origin, attenuating high fre-

quencies. The mean speed should thus be closer to the steady speed as the area ratio

is decreased.

We end by noting that the mean speed only deviates from the steady speed for

extreme values of the parameters, unlikely to be encountered in nature, and for low
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values of the mean speed where experimental errors in our force measurements are

relatively large. For a wide range of the parameters, estimating the mean speed to

be the steady speed appears to be a reasonable approximation.

7.4.2 Results on energetics

Consider now the energetics of intermittent motions. Given a set of actuation param-

eters (frequency and amplitude), we would like to know whether changing the duty

cycle decreases the energy required to travel a certain distance. This is captured by

φ = E/E0, the ratio of the energy expended by intermittent motion to the energy

expended by continuous motion with the same actuation. This energy ratio can be

otherwise expressed as

φ =
E

E0

=
Pt

P0t0
=

Pd/U

P0d0/U0

=
PU0

P0U
, (7.7)

where P is the mean power, and t is the time taken to travel a distance d at a mean

speed U . For the problem considered here, d = d0. Values of φ < 1 indicate that

intermittent motions are energetically favourable, whereas values of φ > 1 indicate

that intermittent motions are unfavourable.

The results are plotted in figure 7.8. We only use data with m∗ = 1 and A∗w = 10,

as trends should not vary with the mass and area ratios for reasonable values, as found

earlier. We see that intermittent motions are almost always energetically favourable

compared to continuous motions, with greater energy savings with decreasing duty

cycle. We know from section 7.3 that T ∼ T0∆ (∆ is the duty cycle), where T is

the mean thrust, and the symbol ∼ means “proportional to.” Similarly, P ∼ P0∆.

Furthermore, figure 7.7 shows that U ∼
√
T for a wide range of parameters. The
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Figure 7.8: Ratio of energy expended by intermittent motions to energy expended by
continuous motions as a function of duty cycle for θ0 = 15◦, all frequencies, m∗ = 1,
and A∗w = 10.

energy ratio should then behave according to

φ =
P

P0

U0

U
∼ ∆

1√
∆

=
√

∆. (7.8)

Figure 7.8 indicates that the data follow this trend, which is not unexpected: a

swimmer in this scenario does not expend any energy during the inactive portion of

intermittent motions, but still coasts forward, so that intermittent motions are always

energetically favourable.

Apart from energy spent on swimming, aquatic animals also expend energy on

metabolic processes. To capture this, we consider the metabolic energy ratio

ψ =
E + Em
E0 + Em0

, (7.9)

where Em is the energy spent due to metabolic processes. We will assume that the

mean power spent on metabolic processes is the same for continuous and intermittent

motion, and that it is a constant fraction cm of the power lost in continuous swimming,
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Figure 7.9: Ratio of energy expended by intermittent motions to energy expended by
continuous motions, including metabolic energy losses, as a function of duty cycle for
θ0 = 15◦, all frequencies, m∗ = 1, and A∗w = 10. Each point is an average over all
frequencies. The colour denotes the value of the metabolic power fraction cm, 0 to 2
in intervals of 0.25 (dark to light).

P0. Hence,

ψ =
E + Em
E0 + Em,0

=
Pt+ cmP0t

P0t0 + cmP0t0
=

(P + cmP0)d/U

(1 + cm)P0d0/U0

=
P + cmP0

(1 + cm)P0

U0

U
, (7.10)

since d = d0. Values of ψ < 1 indicate motions that are energetically favourable.

The experimental results are plotted in figure 7.9. We have varied the metabolic

power fraction cm from 0 to 2, typical in biology (Di Santo and Lauder, private

communication). With cm = 0 (darkest symbols), the plot is the same as in figure 7.8,

indicating that intermittent motions are energetically favourable. As the metabolic

power fraction is increased, however, the trend reverses. For large enough values of

cm (approximately bounded by cm > 1), intermittent motions expend more energy

than continuous motions, a trend that increases as the duty cycle decreases.
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Based on the mean thrust, power, and speed scalings, the metabolic energy ratio

should scale as

ψ =
P + cmP0

(1 + cm)P0

U0

U
∼ (∆ + cm)P0

(1 + cm)P0

1√
∆

=
∆ + cm

(1 + cm)
√

∆
. (7.11)

From figure 7.9 we see that the data and the scaling tell the same story: even though

intermittent motions expend less energy on swimming, the metabolic losses can play

a significant role because intermittent motions take more time to traverse a given

distance than continuous motions. The extra time to travel will increase the metabolic

energy losses, and this effect may dominate the benefits gained in swimming energy

losses.

Another comparison we can make is to consider the energy ratio φ, but restrict

ourselves to motions which produce the same mean speed, that is, φ|Umean . For ex-

ample, it may be that a continuous motion produces the same mean speed as an

intermittent motion with a duty cycle of 0.5 actuating at twice the frequency, but

which motion expends more energy? The answer to this question will reveal which

gait is best if a swimmer wants to traverse a given distance in a given amount of

time. The results are plotted in figure 7.10. Interestingly, it appears that intermit-

tent motions continue to be energetically favourable with the added time restriction.

Energetically optimal duty cycles exist, and savings are greater for lower speeds, at

least for the data considered here. Despite having to increase the frequency of actu-

ation in order to match the mean speed of continuous motions, intermittent motions

are nevertheless energetically favourable in this context.

We can understand this behaviour by using the scaling relations obtained here

and in previous work (Floryan et al., 2017a). The thrust coefficient approximately

follows

CT
∆
∼ c1St

2 − CD,u, (7.12)
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Figure 7.10: Ratio of energy expended by intermittent motions to energy expended
by continuous motions, restricted to equal mean speeds, as a function of duty cycle
for θ0 = 15◦. Dashed lines correspond to (7.18), with m∗ = 1, A∗w = 10. The
symbol grey scale corresponds to three values of (dimensional) mean speed chosen,
Umean = 0.2, 0.25, 0.3 (dark to light). The frequency of the intermittent motion was
chosen so that it would have a speed equal to the continuous motion.

where CD,u is the offset of the thrust curve. Similarly, the power coefficient approxi-

mately follows

CP
∆
∼ St3. (7.13)

Note that this relationship is different than given in Floryan et al. (2017a), but it fits

our data almost as well and is more convenient for our purposes here. Solving for the

power gives

P ∼ ∆ · f 3A3ρsc = ∆ ·
(

2T

∆ · ρsc
+ CD,uU

2

)3/2

ρsc. (7.14)

As shown earlier, the mean speed can be estimated well by equating the mean thrust

of the propulsor to the mean drag of the body, so that

T = D =
1

2
ρU2AwCD. (7.15)

The power then becomes

P ∼ ∆ · U3

(
1

∆

Aw
sc
CD + CD,u

)3/2

ρsc. (7.16)
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In this case, the energy ratio between intermittent and continuous motions is

φ|Umean =
E

E0

=
Pt

P0t0
=
P

P0

, (7.17)

since t = t0. Hence,

φ|Umean ∼
∆ ·
(

1
∆
A∗wCD + CD,u

)3/2

(A∗wCD + CD,u)
3/2

. (7.18)

For the cases analyzed here, we chose A∗w = 10 and CD = 0.01. This expression is

plotted in figure 7.10 for CD,u ∈ {0.04, 0.08, 0.16} (for our data, CD,u = 0.08). Note

that the energy ratio is quite sensitive to the value of CD,u. The expression is in

qualitative agreement with the data, having a U-shape and indicating that there may

be a particular duty cycle which is optimal.

7.5 Conclusions

The forces and energetics of intermittent swimming motions, characterized by the

duty cycle, were analyzed and compared to continuous swimming. Water tunnel

experiments on a nominally two-dimensional rigid foil pitching about its leading edge

showed that mean thrust and power increased with increasing duty cycle, all the way

up to continuous motion. The mean thrust and power data for different duty cycles

were collapsed by dividing the mean thrust and power by the duty cycle, indicating

that thrust and power in one burst cycle are not affected by the previous burst cycle.

PIV measurements of the wake showed that the dominant structures shed into the

wake were always counter-rotating pairs of vortices, regardless of the duty cycle. The

PIV measurements corroborated the assertion that individual cycles of activity are

unaffected by previous cycles.

Free swimming speed and energetics were analyzed by numerically integrating

the measured experimental data. Although the experimental data was acquired for
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a foil moving at a constant speed, previous work showed that the thrust produced

by a pitching foil is independent of speed so we expect that the thrust measured

in stationary experiments would be the same as what would be measured in free

swimming experiments. For a large range of area and mass ratios, the mean speed

was then found to be the same as what would be calculated by assuming a constant

speed and equating mean thrust with mean drag. The mean speed was lower than

this steady speed only for parameters unlikely to be encountered in nature, indicating

that the constant steady speed is a good approximation to the mean speed.

The energetics of intermittent motions were then compared to continuous mo-

tions according to three criteria: (1) energy expended in traversing a given distance;

(2) energy expended in traversing a given distance, including metabolic energy; and

(3) energy expended in traversing a given distance in a given time. Intermittent mo-

tions were generally energetically favourable as no energy is spent during the inactive

portion of the motion where the swimmer still coasts forward. When metabolic en-

ergy losses were added, they could be high enough to make continuous swimming

energetically advantageous.

The assertion that forces are unaffected by speed for pitching motions, shown in

a previous study, was instrumental in being able to use the stationary experiments

in the free swimming analysis. Although the forces produced by general motions

(for example, combinations of pitch and heave) will depend on the speed, this work

nonetheless highlights the potential benefits and pitfalls of intermittent motions as a

swimming protocol.

This work was supported by ONR Grant N00014-14-1-0533 (Program Manager

Robert Brizzolara). We would also like to thank Dr. Keith Moored for stimulating

our interests in intermittent swimming.
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Chapter 8

Large-amplitude oscillations of foils

for efficient propulsion

Daniel Floryan, Tyler Van Buren, and Alexander J. Smits

Appears as Floryan et al. (2019).

Large-amplitude oscillations of foils have been observed to yield greater propulsive

efficiency than small-amplitude oscillations. Using scaling relations and experiments

on foils with peak-to-peak trailing edge amplitudes of up to two chord lengths, we

explain why this is so. In the process, we reveal the importance of drag, specifically

how it can significantly reduce the efficiency, and how this effect depends on ampli-

tude. The scaling relations and experimental data also reveal a fundamental tradeoff

between high thrust and high efficiency, where the drag also plays a crucial role.

8.1 Introduction

The propulsive performance of two-dimensional heaving and pitching foils was first

considered by Garrick (1936), using Theodorsen’s aerodynamic analysis (Theodorsen,
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1935). The theory assumes that the amplitudes of motion are small (allowing for

linearization of the governing equations), and that the fluid is inviscid everywhere

except in an infinitesimally thin rectilinear vortex wake shed from the trailing edge

of the foil. As Garrick himself put it, the assumptions of the theory make it so

that “[q]uantitative agreement with experimental values [...] can hardly be expected”

(Garrick, 1936). The requirement of small amplitudes seems particularly restrictive

in the context of underwater propulsion, in that Scherer surmised that “[i]n order to

achieve practical levels of thrust such an oscillating foil must undergo large amplitude

oscillations at relatively high frequency,” rendering the classical small-amplitude the-

ory inapplicable (Scherer, 1968). Here, we are interested in maintaining high levels of

thrust and efficiency simultaneously, partly motivated by Van Buren et al. (2018a),

and we explore how large-amplitude motions can be incorporated in theory and how

theory compares to experiment.

In this respect, Chopra (1976) extended the two-dimensional inviscid theory to

large-amplitude motions, although the amplitudes were implicitly bounded by the

assumption of small effective angles of attack. Chopra found that large amplitudes

accompanied by small angles of attack and small reduced frequencies produced high

efficiency but low thrust, while increasing the angle of attack and the reduced fre-

quency enhanced thrust but diminished efficiency. Efficiencies over 0.8 and even 0.9

were easily attained according to his inviscid theory, but no experimental verification

was presented.

In an influential experiment, Anderson et al. (1998) measured efficiencies of up to

0.87 in their large-amplitude experiments, attributing the high efficiencies to optimal

wake formation (corresponding to a relatively narrow range of Strouhal numbers) and

favourable leading edge vortex dynamics. We note, however, that the flow visualiza-

tion used to capture the favourable leading edge vortex dynamics was performed at a

Reynolds number of 1,100, whereas the propulsive measurements were performed at
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Study Anderson et al. (1998) Read et al. (2003) Schouveiler et al. (2005)

η range 0.77–0.83 0.55–0.56 0.53–0.61

Table 8.1: Ranges of efficiency η reported in different works under nominally iden-
tical conditions and in the same facility. Kinematic parameters are h0/c = 0.75,
αmax = 20◦, φ = 270◦, and Sth = 2fh0/U∞ ∈ [0.25, 0.4] (definitions given in Sec-
tion 8.2).

a Reynolds number of 40,000, casting doubt on whether the same favourable leading

edge vortex dynamics persist at the higher Reynolds number where the efficiency was

measured. Indeed, computational investigations of similar motions have shown that

the production of leading edge vortices is detrimental to efficiency, and optimal (in

terms of efficiency) motions steer clear of generating leading edge vortices (Tuncer

and Kaya, 2005; Young et al., 2006; Young and Lai, 2007). Furthermore, subsequent

work by the same experimental group using the same experimental setup produced

significantly different efficiencies at identical motions, as shown in table 8.1 (Read

et al., 2003; Schouveiler et al., 2005). Even the latter two works disagree, especially

regarding the Strouhal number corresponding to peak efficiency (Stηmax = 0.16 versus

Stηmax = 0.25).

In what follows, we aim to provide a consistent framework through which the

high-efficiency propulsion of large-amplitude heaving and pitching rigid foils can be

understood, including reasons for why large-amplitude motions should be pursued

to begin with. We test our ideas against experimental measurements of (old) small-

amplitude motions and (new) large-amplitude motions, and explain the measurements

by a scaling theory. Finally, we use the scaling theory to provide a path forward for

improving the propulsive performance of oscillating propulsors.
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Figure 8.1: Experimental setup and sketch of motions.

8.2 Problem description and motivating analysis

Consider a rigid two-dimensional foil moving at a constant speed U∞ while

heaving and pitching about its leading edge. These motions are described by

h(t) = h0 sin(2πft) and θ(t) = θ0 sin(2πft+ φ), where h0 is the heave amplitude, θ0

is the pitch amplitude, f is the frequency, t is time, and φ is the phase difference

between the motions; see figure 8.1. We are chiefly concerned with the time-averaged

thrust in the streamwise direction produced by the foil, Fx, the time-averaged

power consumed, P , and the corresponding Froude efficiency η, defined in terms of

dimensionless thrust and power coefficients as follows:

CT =
Fx

1
2
ρU2
∞sc

, CP =
Fyḣ+Mθ̇

1
2
ρU3
∞sc

, η =
CT
CP

, (8.1)

where ρ is the density of the surrounding fluid, s is the span of the foil, c is its chord

length, Fy is the force perpendicular to the free-stream and M is the moment about

the leading edge. The efficiency measures the ratio of the power output to the fluid to

the power input to the foil. We further define the dimensionless amplitude A∗ = A0/c,
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where A0 is the amplitude of motion of the foil trailing edge, taken to be half of the

peak-to-peak excursion of the trailing edge. The leading edge of the foil sees a local

effective angle of attack

α ≡ −θ − arctan(ḣ/U∞), (8.2)

defined such that a positive constant value of α yields positive lift in our coordinate

system. Note that different points along the foil see different local effective angles of

attack due to the rotational motion. We also define the dimensionless frequencies

f ∗ =
fc

U∞
, St =

2fA0

U∞
, (8.3)

where f ∗ is the reduced frequency, and St is the Strouhal number based on trail-

ing edge amplitude. The Strouhal number may be interpreted as the ratio of the

characteristic trailing edge velocity to the free-stream velocity. Although these di-

mensionless parameters are not all independent (St ≡ 2f ∗A∗, for example), they are

introduced as a matter of convenience.

The results in the literature point towards using large-amplitude motions to attain

high efficiency, but do not explain why they are efficient. To motivate the use of

large-amplitude motions, we borrow the analysis of Alexander (2003). Suppose (in a

time-averaged sense) a foil accelerates fluid in its wake to a speed uw at a mass flow

rate ṁ. By action/reaction, the thrust generated is then

Fx = ṁuw. (8.4)

Notice that a given quantity of thrust can be produced in many ways; for example,

accelerating a large mass of fluid to a low speed can produce the same thrust as

accelerating a small mass of fluid to a high speed. We illustrate this schematically in

figure 8.2.
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Figure 8.2: An illustration of two motions that produce the same thrust. Velocity
profiles are shown in the frame of reference where the fluid at infinity is at rest.

Now consider the energetics of the process. Work is done to push the swimmer

forward with thrust Fx and speed U∞ at a rate

Ẇ = FxU∞ = ṁuwU∞. (8.5)

Energy is also expended in increasing the kinetic energy of the fluid in the wake at a

rate

Ėw = 1
2
ṁu2

w. (8.6)

The efficiency is then

η =
Ẇ

Ẇ + Ėw
=

1

1 + 1
2
uw/U∞

. (8.7)

According to this analysis, the greatest efficiency is attained when the wake velocity

uw is minimized. To produce a given quantity of thrust most efficiently, we must

decrease uw as much as possible while proportionately increasing ṁ. We will test this

hypothesis by experiment on foils heaving and pitching over a large range of motion

amplitudes.

These results can also be tested against the scaling laws proposed by Van Buren

et al. (2018a). We restrict ourselves to the case of φ = 270◦, so that we adopt the
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simplified scaling relations for thrust and power given by Floryan et al. (2018), that

is,

CT + CD ∼ St2, (8.8)

CP ∼ f ∗St2(1−H∗Θ∗), (8.9)

where ∼ denotes a proportionality, and H∗ = h0/A0 and Θ∗ = c sin θ0/A0. Also, CD

is the drag offset determined by measuring the thrust as the Strouhal number goes to

small values. Van Buren et al. (2018a) found that CD varied linearly with the pitch

amplitude, CD ∼ A∗θ = sin θ0, suggesting that the drag behaves as that on a flat plate

with frontal area proportional to the pitch amplitude. Hence,

η ∼ A∗(St2 − c1A
∗
θ)

St3(1−H∗Θ∗)
. (8.10)

The constant c1 sets the level of the drag relative to the thrust. We note that these

relations were derived under the assumption of small motions. In particular, they do

not consider the effects of leading edge flow separation.

8.3 Experimental setup

Experiments on a heaving and pitching foil were performed in a free-surface recircu-

lating water tunnel with a 0.46 m wide, 0.3 m deep, and 2.44 m long test section.

The tunnel velocity was set to U∞ = 0.1 m/s, and a free-surface plate was used

to minimize the generation of surface waves. The experimental setup is shown in

figure 8.1.

A teardrop-shaped foil of chord length c = 80 mm, maximum thickness 8 mm, and

span s = 279 mm was used, yielding an aspect ratio of 3.5 and chord-based Reynolds

number of Re = 8,000. To ensure that the flow was effectively two-dimensional, the
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Set h0 (mm) θ0 (degrees) f (Hz) φ (degrees)

1 10: 10: 30 5: 5: 15 0.2: 0.1: 0.8 270

2 40: 10: 60 25: 5: 40 0.2: 0.05: 0.8 270

Table 8.2: Motion parameters (start: step: end).
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Figure 8.3: Efficiency as a function of maximum angle of attack at the leading edge
for our data. Colour indicates pitch angle (in degrees).

gaps between the foil edges and the top and bottom surfaces of the water tunnel were

less than 5 mm, effectively increasing the aspect ratio. Heave motions were generated

by a linear actuator (Linmot PS01-23x80F-HP-R) pushing a carriage holding the foil

on nearly frictionless air bearings (NewWay S301901), and pitch motions about the

leading edge were generated by a servo motor (Hitec HS-8370TH). Both motions were

measured via encoders. Two sets of motions were used (see table 8.2): a subset of

the motions from Van Buren et al. (2018a) (set 1); and a new set of motions with

larger amplitudes (set 2). We restrict ourselves to motions with φ = 270◦ because

these have repeatedly been shown to be the most efficient (several of the references

in the present work have made this observation). Motions with a nominal maximum

angle of attack at the leading edge αmax > 35◦ were removed from the experimental

program, since large angles of attack are known to be detrimental to efficiency; see

figure 8.3.
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The forces and moments on the foil were measured using a six-component

force and torque sensor (ATI Mini40), which has force and torque resolutions of

5× 10−3 N and 1.25× 10−4 N·m in the x- and y-directions, respectively, and 10−2 N

and 1.25× 10−4 N ·m in the z-direction. The force and torque data were acquired at

a sampling rate of 100 Hz. Each case ran for 30 cycles of the motion, with the first

and last five cycles used for warmup and cooldown. For each case from Van Buren

et al. (2018a), one trial was performed, and for the new cases, three trials were

performed. Consequently, data from old cases will be plotted without error bars

while data from new cases will be plotted with error bars, the error bars showing the

sample standard deviation across trials. The inertia of the foil was not subtracted

from the force and torque measurements since it makes exactly zero contribution to

the mean forces and mean power (see Van Buren et al. (2018b) for further details).

8.4 Propulsive performance

8.4.1 Thrust

We show the time-averaged thrust coefficients for all cases in figure 8.4 as a function of

Strouhal number. In figure 8.4a, we have plotted the raw thrust coefficients, coloured

by the pitch amplitude. The thrust data can be separated into several different

curves, each corresponding to a different pitch amplitude. The curves appear to be

offset from each other by a constant amount, with curves corresponding to higher

pitch amplitudes falling below curves corresponding to lower pitch amplitudes. We

interpret the offset of each curve as a static drag offset CD, that is, the mean drag

produced by the motion in the limit of low frequency (slow motions).

As indicated earlier, Van Buren et al. (2018a) found that for small-amplitude

motions CD varied linearly with the pitch amplitude, CD ∼ A∗θ. To show that this is

a good approximation for large-amplitude motions as well, we turn to the drag curve
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Figure 8.4: Coefficient of thrust as a function of (a) St for raw thrust, and (b) St2

for drag-corrected thrust. Colour indicates pitch amplitude θ0.

at constant angles of attack, as shown in figure 8.5. (The angle of attack and pitch

angle are equivalent in this case.) The offset drag indeed varies linearly with the pitch

amplitude, approximately as CD = 1.2A∗θ.

When we account for the drag offset by adding it back to the thrust in the form

CT,d = CT + 1.2A∗θ, then according to the scaling law in (8.8), the drag-corrected

thrust should vary as

CT,d ∼ St2. (8.11)

We note that this scaling relation was developed for motions with small amplitudes,

whereas the data in the present work contains motions with large amplitudes. Nev-

ertheless, when we plot the drag-corrected thrust against the scaling variable in fig-

ure 8.4b, the data collapse on a straight line. The data are more scattered at larger

Strouhal numbers, but the collapse is quite good overall. The simplicity of the scal-

ing relation may obscure just how powerful it is: it collapses the low-amplitude data

as well as the large-amplitude data, with trailing edge amplitudes of up to nearly

one chord (two chord lengths peak-to-peak). The success of the collapse also shows

the dominant role of the trailing edge velocity for thrust, even for large-amplitude

motions.

95



0.5

0.3

0

12o8o0o

0.2

16o4o

0.4

0.1

-0.1

Figure 8.5: Drag curve at Re = 8,000 for the foil used in all experiments. Values are
reported relative to the drag at θ = 0. Colour indicates each of the three trials.

The scaling relation for thrust aligns with the heuristic analysis from Section 8.2,

originally due to Alexander (2003). According to that analysis, different motions

produce the same thrust as long as the amplitude and frequency are varied inversely

to one another. In other words, different motions will produce the same thrust as long

as their Strouhal numbers are equal, congruent to the scaling relation given by (8.11).

We will show later that the presence of the drag offset has important implications for

efficiency.

8.4.2 Power

The time-averaged power coefficients for all cases are presented in figure 8.6a as

a function of Strouhal number, coloured by the pitch amplitude. When the time-

averaged power coefficient is plotted as a function of St, the power data corresponding

to higher pitch amplitudes fall below data corresponding to lower pitch amplitudes,

as also found for the thrust behaviour.

According to the small-amplitude scaling analysis, the power should vary accord-

ing to (8.9). When the power coefficients are plotted in this scaling form they collapse

surprisingly well on a straight line for all amplitudes of motion, as shown in figure 8.6b.
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Figure 8.6: Coefficient of power as a function of (a) St and (b) the scaling variable
f ∗St2(1−H∗Θ∗). Colour indicates θ0.

As for the thrust, the data are more scattered at larger Strouhal numbers, but the

collapse is quite satisfactory. We emphasize that, without any free constants, the

scaling law collapses the data for motions with peak-to-peak trailing edge amplitudes

of up to nearly two chord lengths.

We can gain some physical insight by considering the scaling expression for the

power in more detail, that is, the variable f ∗St2(1 − H∗Θ∗). The term outside of

the parentheses is a product of the dimensionless frequency and the square of the

Strouhal number, that is, the square of the dimensionless trailing edge velocity; it

gives a measure of the intensity of the motion and sets the overall level of the power.

The term inside the parentheses measures how far the product of amplitude ratios is

from unity; it modulates the overall power. This term is minimized when H∗ = Θ∗,

that is, the power is minimized when heave and pitch contribute equally to the trailing

edge amplitude (Floryan et al., 2018). Because the factor (1−H∗Θ∗) does not vary

as much as the factor f ∗St2 in our data, it is difficult to see their individual effects

in the power curves shown. We therefore plot the time-averaged power coefficient as

a function of the two terms in figure 8.7. Two different views are shown to make the

variation clearer. According to (8.9), the logarithm of the power coefficient should be
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Figure 8.7: Coefficient of power as a function of f ∗St2 and 1−H∗Θ∗. Colour indicates
CP . The two plots are the same, but viewed from different angles.

a linear function of the logarithms of the two terms. The grey plane is the resulting

least squares linear regression, and the vertical lines show the distance between the

points and the plane. The slope of the grey plane shows that a decrease in the

modulating term (1−H∗Θ∗) indeed results in a decrease in the power.

8.4.3 Efficiency

The efficiency for all cases is plotted in figure 8.8a as a function of Strouhal num-

ber, with colour corresponding to the dimensionless amplitude of motion A∗. We

plot the efficiency against St because increasing the amplitude while maintaining a

fixed St necessarily means that we are lowering the frequency. Thus by comparing

points with the same St, we directly compare low-amplitude/high-frequency data to

high-amplitude/low-frequency data, allowing us to examine the hypothesis set out in

Section 8.2.

For St > 0.6, the hypothesis holds true: larger amplitudes lead to greater effi-

ciency. Moreover, decreasing frequency while maintaining a fixed amplitude (decreas-

ing St while maintaining the same colour in figure 8.8a) also leads to greater efficiency.

However, these trends break down at lower St, where we see that in certain regions
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Figure 8.8: Efficiency as a function of St. Colour indicates: (a) dimensionless ampli-
tude A∗; (b) pitch amplitude θ0.

decreasing the amplitude actually improves the efficiency. We also see that once the

frequency is low enough for a motion of fixed amplitude, decreasing the frequency

decreases the efficiency.

The region where the hypothesis breaks down coincides with the region of peak ef-

ficiency. Since our original intention was to explore the use of large-amplitude motions

to attain high efficiencies, understanding the breakdown—where large-amplitude mo-

tions are no longer the most efficient—is crucial. We will pursue this understanding

by considering the scaling expression for the efficiency given by (8.10).

To start, consider the case c1 = 0, that is, where the drag offset ignored. In that

case, (8.10) reduces to η ∼ A∗/St(1−H∗Θ∗), suggesting that increasing the trailing

edge amplitude and decreasing the Strouhal number will both increase the efficiency.

The only way to accomplish both simultaneously is to increase the amplitude and

decrease the reduced frequency. If we are interested in increasing efficiency while

maintaining a constant level of thrust, then we must increase the amplitude while

maintaining a constant Strouhal number. Again, this corresponds to increasing the

amplitude while decreasing the reduced frequency. In the limit of no drag, the scaling

analysis agrees with the analysis of Section 8.2, and both agree with the efficiency
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data for St > 0.6. This makes sense because for large St, the thrust term St2 in the

numerator of (8.10) dominates the drag term A∗θ.

The analysis from Section 8.2 breaks down when the drag cannot be ignored

(St < 0.6 here), but the scaling analysis can still shed some light on the behaviour of

the efficiency. When St becomes small enough, the efficiency begins to drop precip-

itously. It appears that motions with large amplitudes tend to experience the drop

in efficiency at larger St than those with small amplitudes, but the colouring in fig-

ure 8.8a shows that this is not quite the case (for example, the points that drop off at

the largest St have a large amplitude, but not the largest). Examining (8.10) reveals

the reason for the drop in efficiency. When St becomes small enough, the drag begins

to dominate the thrust (c1A
∗
θ begins to dominate St2), consequently decreasing the

efficiency. Since the drag is dominated by the pitch amplitude, we should expect

motions with larger pitch amplitudes to have drops in efficiency at greater St. When

we colour the data by the pitch amplitude, as in figure 8.8b, we indeed see that the

drop in efficiency occurs at greater St for larger pitch amplitudes.

The results leave us at a crossroads: increasing the trailing edge amplitude in-

creases efficiency, but in order to increase the trailing edge amplitude while avoiding

large angles of attack, we need to increase the pitch amplitude, which strengthens

the drag offset and increases the Strouhal number at which the precipitous drop in

efficiency occurs. In other words, big and slow motions are more efficient until they

become so big and so slow that drag overwhelms the thrust production. In the large-

St region (St > 0.6 here), large-amplitude motions are the most efficient but their

peak efficiency is lower. The key is to diminish the effects of drag.

To demonstrate the effect of reducing drag, we have taken our data and compen-

sated for some of the drag by adding a fraction of it back to the thrust. If we choose
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Figure 8.9: (a) Raw efficiency and (b) reduced-drag efficiency as functions of St.
colour indicates A∗.

a drag reduction level of 25%, then the resulting reduced-drag efficiency is

ηd =
CT + 0.3A∗θ

CP
, (8.12)

since we originally found that the drag was well-approximated by CD = 1.2A∗θ. The

reduced-drag efficiency is plotted in figure 8.9 next to the raw efficiency with the

same scale. A relatively modest decrease in the drag of the foil leads to marked

increases in efficiency, especially for large-amplitude motions, and extends the range

of validity of the original analysis of large-amplitude motions. If one’s goal is to

produce thrust efficiently, then reducing drag should clearly be the avenue explored.

Our experiments were performed at Re = 8,000, and we expect improvements in

efficiency with increases in Reynolds number. Beyond increasing Re, other avenues

for reducing the drag should lead to similar results.

8.4.4 Thrust/efficiency tradeoff

Perhaps the most important question is how the thrust and efficiency depend on each

other. It is generally desirable for a propulsor to simultaneously have high thrust
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and efficiency. To produce a given amount of thrust most efficiently, we found that

large-amplitude, low-frequency combinations do the best (the issue of drag aside).

But is there a fundamental limit to this balance? Figure 8.8 certainly suggests so, as

increasing St leads to increases in thrust but decreases in efficiency. To shed some

additional light on this matter, we consider the scaling laws in the limit of negligible

drag. In that case, the thrust and efficiency follow

CT ∼ St2, (8.13)

η ∼ A∗St2

St3(1−H∗Θ∗)
. (8.14)

Combining the two, we obtain a relationship between thrust and efficiency, that is,

η ∼ A∗

1−H∗Θ∗
1√
CT

. (8.15)

We do not expect this relationship to be complete; for example, we certainly do not

expect unbounded efficiency as the thrust approaches zero. But the relationship gives

a qualitative insight on the fundamental tradeoff between thrust and efficiency—in

order to increase one, we must decrease the other.

The efficiency and thrust data are plotted against each other in figure 8.10, reveal-

ing a Pareto front nearly following the scaling in (8.15) for larger thrust coefficients.

Although we do not show it here, the data closer to the edge of the Pareto front have

larger amplitudes. The inviscid scaling is shown with a triangle, and we see that

the Pareto front is generally flatter than the inviscid scaling. colouring the data by

CT/1.2A
∗
θ (ratio of thrust to an estimate of the drag, giving an idea of ‘how inviscid’

any data point is) shows that ‘more inviscid’ data follow the inviscid scaling better,

and we expect data to follow this scaling even more closely with further increases

in the thrust/drag ratio. Conversely, the more important the drag is (the lower the

ratio is), the greater the deviation from the inviscid scaling is. As the importance of
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Figure 8.10: Efficiency as a function of thrust coefficient, with the drag-free scaling
shown. colour indicates CT/1.2A

∗
θ.

drag increases, the rate at which efficiency increases with a decrease in thrust drops.

Not only is there a fundamental tradeoff between thrust and efficiency, the presence

of drag worsens this tradeoff, further underlining the importance of drag and the

necessity of decreasing it.

8.5 Conclusions

We examined the thrust production, power consumption, and efficiency of a two-

dimensional foil in combined heave and pitch motions with peak-to-peak trailing edge

amplitudes up to almost two chord lengths. The phase difference between heave and

pitch motions was kept constant at 270◦ where high efficiency is expected. For these

large-amplitude motions the classical small-amplitude theory breaks down, but the

scaling relations developed by Van Buren et al. (2018a) and Floryan et al. (2018) were

shown to hold across the entire range of amplitudes explored in this study, collapsing

experimental data for thrust, drag, and power.

These scaling relations were then used to explain the use of large-amplitude mo-

tions in order to achieve high efficiency. In particular, when drag can be ignored,
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reducing frequency and increasing amplitude can increase efficiency without changing

thrust, and thrust can be sacrificed for further gains in efficiency; the data reflected

this conclusion when the Strouhal number was large (St > 0.6 for our Reynolds num-

ber), where the drag is relatively weak. When the Strouhal number is small (St < 0.6

for our Reynolds number), however, drag is important and increases in amplitude lead

to decreases in efficiency. This lower Strouhal number region is important because at

this Reynolds number it covers the Strouhal number corresponding to peak efficiency.

This behaviour occurs because increasing the total amplitude requires increasing the

pitch amplitude to maintain angles of attack below the dynamic stall limit. Since the

drag is important for low St and depends primarily on the pitch amplitude, increasing

the total amplitude while maintaining a reasonable angle of attack increases the drag,

which can then overwhelm the thrust, causing the efficiency to decrease sharply.

In other words, big and slow (large-amplitude, low-frequency) motions are more

efficient until they become so big and so slow that drag overwhelms the thrust pro-

duction and the efficiency decreases. By combining the scaling relations and the

experimental data, we showed that modest decreases in drag can significantly in-

crease efficiency, especially the peak efficiency. The key to attaining high efficiency

is always to decrease the drag. For a given propulsor, increasing the Reynolds num-

ber is expected to decrease the drag coefficient. Decreasing the drag also extends

the range of Strouhal numbers where large-amplitude, low-frequency motions lead to

high efficiencies.

Although at a given thrust coefficient we may increase efficiency by increasing the

amplitude (unless drag is important), there is a fundamental tradeoff between thrust

coefficient and efficiency: an increase in one requires a decrease in the other. We

developed a scaling relation that captures this tradeoff in the limit of no drag and

reflects the experimental measurements. The presence of drag lowers the gains in

efficiency that can be achieved through sacrifices in thrust.
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Our results also have implications for swimming animals. Large-Reynolds number

swimmers change their speed by changing their frequency of oscillation while main-

taining a constant amplitude (Rohr and Fish, 2004). That is, they maintain a constant

Strouhal number and dimensionless amplitude while changing speed. According to

our observations and in the limit of negligible propulsor drag, this behaviour maintains

a constant level of efficiency. Moreover, we speculate that the animals use their largest

possible amplitude of motion at all speeds, and by only changing their frequency to

change their speed their behaviour reflects an attempt to maximize efficiency.

This work was supported by ONR Grant N00014-14-1-0533 (Program Manager

Robert Brizzolara).

105



Chapter 9

Efficient cruising for swimming and

flying animals is dictated by fluid

drag

Daniel Floryan, Tyler Van Buren, and Alexander J. Smits

Appears as Floryan et al. (2018).

Many swimming and flying animals are observed to cruise in a narrow range of

Strouhal numbers, where the Strouhal number St = 2fA/U∞ is a dimensionless

parameter that relates stroke frequency f , amplitude A, and forward speed U∞.

Dolphins, sharks, bony fish, birds, bats, and insects typically cruise in the range

0.2 < St < 0.4, which coincides with the Strouhal number range for maximum

efficiency as found by experiments on heaving and pitching airfoils. It has there-

fore been postulated that natural selection has tuned animals to use this range of

Strouhal numbers because it confers high efficiency, but the reason why this is so is

still unclear. Here, by using simple scaling arguments, we argue that the Strouhal

number for peak efficiency is largely determined by fluid drag on the fins and wings.
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Swimming and flying animals across many species and scales cruise in a relatively

narrow range of Strouhal numbers 0.2 < St < 0.4 (Triantafyllou et al., 1991; Taylor

et al., 2003). The Strouhal number St = 2fA/U∞ is a dimensionless parameter that

relates stroke frequency f , stroke amplitude A, and forward speed U∞. It has been

hypothesized that for animals that range widely or migrate over long distances, nat-

ural selection should favor swimming and flying motions of high propulsive efficiency,

and so the kinematics, described by the Strouhal number, should be tuned for high

propulsive efficiency. Indeed, the cruising range of Strouhal numbers observed in na-

ture overlaps the range of Strouhal numbers experimentally shown to result in high

propulsive efficiency for simple propulsors (Triantafyllou et al., 1991; Floryan et al.,

2017a; Van Buren et al., 2018a).

A typical efficiency curve for a simple propulsor is shown in figure 9.1. We see

that at low Strouhal numbers, the efficiency rapidly rises with increasing Strouhal

number, reaches a maximum, and then falls off relatively slowly with further increases

in Strouhal number. Here, the propulsive efficiency η is defined as η = TU∞/P , where

T is the mean net thrust that propels the animal forward, U∞ is the mean forward

cruising speed, and P is the mean mechanical power required to create the thrust.

What dictates the Strouhal number that leads to maximum efficiency? Three pre-

vailing theories have been proposed. The first (Triantafyllou et al., 1991, 1993) argues

that peak efficiency occurs when the kinematics result in the maximum amplification

of the shed vortices in the wake, yielding maximum thrust per unit of input energy;

this phenomenon has been termed “wake resonance” (Moored et al., 2012). The sec-

ond theory (Wang, 2000) argues that the preferred Strouhal number is connected with

maximizing the angle of attack allowed, while avoiding the shedding of leading edge

vortices. The third (Saadat et al., 2017) holds that, for aquatic animals, the ratio of
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Figure 9.1: A typical efficiency curve showing efficiency η as a function of St. Data
are for a heaving and pitching NACA0012 foil (Quinn et al., 2015) (A/c = 0.19, and
heaving leads pitching by 90◦).

the tail beat amplitude to the body length essentially dictates the Strouhal number

for cruise, since it requires a balance between thrust and drag.

Here, we offer a simple alternative explanation for the observed peak in efficiency,

and we also explain the rapid rise in efficiency at low St and the more gradual decrease

at high St. Our explanation highlights the important role that fluid drag plays in

determining the efficiency behaviour.

Consider a cruising animal, one that is moving at constant velocity. We make the

assumption that the thrust is produced primarily by its propulsor (for example, caudal

fin for a fish, fluke for a mammal, wing for a bird), and that the drag is composed of

two parts: the drag due to its body (Db, proportional to the body surface area), and

an “offset” drag due to its propulsor (Do, proportional to the propulsor frontal area

projected over its range of motion). More details are given below.

This decomposition is illustrated in figure 9.2, where the thrust-producing propul-

sor is separated from the drag-producing body and represented by an oscillating airfoil

(Wu, 2011). To be clear, fliers are distinct from swimmers in that fliers’ propulsors

need to produce lift to combat gravity, in addition to thrust to propel themselves for-
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Figure 9.2: Swimmers and fliers can be decomposed into thrust-producing (orange)
and drag-producing (blue) parts, with the propulsor aptly represented by an oscillat-
ing airfoil.

ward. As far as steady forward cruising is concerned, however, the physics of forward

propulsion is not affected by the additional requirement of lift (Wu, 2011).

We also simplify the motion of the propulsor to model it as a combination of

heaving (amplitude h0) and pitching (amplitude θ0). Biologically-relevant motions

are ones where the heaving and pitching motions are in phase, or where the heaving

motion leads the pitching motion by 90◦ (Van Buren et al., 2018a). In cruise, our

model requires that the thrust produced by the propulsor balances the total fluid

drag experienced by the body and the propulsor.

We now consider the performance (thrust, power and efficiency) of an isolated

propulsor. For the net thrust T we use the scaling

T ∼ ρSpV
2 −Do, (9.1)

where ρ is the density of the fluid, Sp is the area of the propulsor, and V (∼ fA) is

the characteristic speed of the transverse motion of the propulsor. The V 2 scaling is

derived in Section 9.A.1, where it is also shown to be representative of biologically-
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relevant flapping motions. In addition, the scaling is supported by theory (Garrick,

1936; Lighthill, 1971), empirical curve fits on fish performance (Bainbridge, 1958,

1963), and the performance of a large group of swimming animals (Gazzola et al.,

2014). As indicated above, we will assume that for a cruising animal the net thrust

of the propulsor balances the drag of the body Db, where Db ∼ ρSbU
2
∞, and Sb is the

surface area of the body. Hence, for a negligible offset drag,

St2 ∼ Sb/Sp. (9.2)

Previous work has proposed that this thrust-drag balance alone yields a constant

Strouhal number (Gazzola et al., 2014). However, (9.2) shows that this conclusion

implicitly assumes that Do = 0, and that the area ratio Sb/Sp remains constant,

which will not hold across the many different species that cruise in the preferred

range 0.2 < St < 0.4. To arrive at a more general result, we need to understand the

energetics determining swimming and flying. The net thrust of the propulsor at peak

efficiency then sets the cruising speed.

For the power expended, we adopt the scaling

P ∼ ρSpfc
(
V 2 − VhVθ

)
, (9.3)

where c is a characteristic length scale of the propulsor, and Vh and Vθ are the trans-

verse velocity scales characteristic of the heaving and pitching motions, respectively.

This scaling is derived in Section 9.A.1, where further details are given. It is based

on established theory and analysis (Garrick, 1936; Theodorsen, 1935; Sedov, 1965),

and it is corroborated by a large set of experiments (Van Buren et al., 2018a). It

derives from the nonlinear interaction of the power produced by the propulsor ve-

locity and its acceleration, an interaction that is critical to our understanding of the

large-amplitude motions observed in nature.
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We now consider the offset drag, that is, the drag of the propulsor in the limit of

vanishing f , which scales as

Do ∼ ρU2
∞Spg(θ0). (9.4)

Here, θ0 is the amplitude of the pitching motion, and the function g(θ0) is positive

when θ0 = 0 and increases with θ0 (Floryan et al., 2017a; Van Buren et al., 2018a).

The offset drag can be viewed as scaling with the projected frontal area of the propul-

sor, as in bluff body flows (White, 2011).

Hence, we arrive at

η =
TU∞
P
∼ V 2U∞ − b1U

3
∞g

fc(V 2 − VhVθ)
, (9.5)

where the constant b1 sets the relative importance of the drag term compared to

the thrust term (in general, we expect b1 to be a function of Reynolds number

Re = ρcU/µ, where µ is the fluid viscosity). The efficiency can be recast in terms

of the Strouhal number St = 2fA/U∞ and a dimensionless amplitude A∗ = A/c, so

that

η ∼ A∗ (St2 − b1g)

St3 (1−H∗Θ∗)
. (9.6)

The other non-dimensional terms, H∗ = h0/A and Θ∗ = cθ0/A, represent, respec-

tively, the amplitudes of the heaving and pitching motions relative to the total am-

plitude of motion.

We see immediately that to achieve high efficiency, the dimensionless amplitude A∗

should be large. This observation is consistent with the argument put forth by R. M.

Alexander, where he proposed that large-amplitude motions are more efficient than

small-amplitude motions (Alexander, 2003). However, there are two potential limiting

factors. First, as A∗ becomes larger the instantaneous angle of attack increases,

dynamic stall effects may become important, and the drag model given here for Do

will be invalidated. Second, animal morphology naturally sets a limit as to how

large they can make A∗. For efficient cruising, therefore, A∗ should be as large as an
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animal’s morphology allows, while avoiding dynamic stall at all times. Our argument

is consistent with the experimental observations made by Saadat et al. (2017) in what

we called the third theory. Wang (2000) (the second theory) similarly argues for large-

amplitude motions, although she argues that large-amplitude motions are connected

to the optimal Strouhal number, whereas we argue that, all else fixed, the amplitude

sets the total efficiency but it does not dictate the optimal Strouhal number.

What about the optimal Strouhal number? When there is no offset drag (b1 = 0),

the efficiency increases monotonically as St decreases, and the optimal efficiency is

achieved in the limit St → 0. However, in the presence of offset drag (b1 6= 0) the

efficiency will become negative as St → 0 because the drag dominates the thrust

produced by the propulsor. In general, (9.6) gives negative efficiencies at low St,

a rapid increase with St to achieve a positive peak value at St =
√

3b1g, and a

subsequent slow decrease with further increase in St as the influence of drag becomes

weaker. The comparison between the form given by (9.6) and the data originally

shown in figure 9.1 makes this clear, as displayed in figure 9.3. The offset drag is

crucial in determining the low St behaviour, and in setting the particular St at which

the peak efficiency occurs. Note that the maximum value of the efficiency is directly

related to the value of the drag constant b1, which further emphasizes the critical role

of the drag term in determining the efficiency behaviour. The amplification of shed

vortices described in the wake resonance theory (the first theory) may simply arise

as a signature of the efficient production of net thrust, but this is purely speculative.

Finally, we consider the composition of the motion, that is, the relative amounts

of heaving and pitching. As shown in Section 9.A.2, for biologically-relevant flapping

motions the denominator of (9.6) is minimized (and hence efficiency is maximized)

when h0 = cθ0. In other words, optimally efficient propulsors should have heaving

and pitching motions that contribute equally to the total motion. When we also take

the numerator of (9.6) into account, we actually expect the heaving contribution to
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Figure 9.3: Efficiency η as a function of St. Data are as given in figure 9.1 for
a heaving and pitching NACA0012 foil (Quinn et al., 2015). Solid lines are given
by (9.6) with a fixed proportionality constant of 0.155. The drag constant, b1, is set
to 0.5, 0.35, 0.23, 0.15, 0.1, and 0.05 as the colours vary from dark to light, and we
have set g(θ0) = θ0. The proportionality constant and the value of b1 corresponding
to the experimental data were calculated by a total least squares fit to the data.

be a little larger because the offset drag is dominated by pitch. We are not aware of

biological measurements that would allow us to test the optimal heaving and pitching

balance, so at this point it remains a hypothesis.

We leave the reader with a final thought. We expect that the relative importance

of the drag, captured by b1, will depend on the Reynolds number. Our drag model

is similar to that for a bluff body, such as a sphere or cylinder, so we expect b1 will

be large at small Reynolds numbers, and decrease as the Reynolds number increases

until it reaches about 1000, above which the drag will be almost constant (at least

for Re < 2× 105, although biological measurements imply that the drag may remain

constant up to Re = 108 (Schlichting, 1979; Gazzola et al., 2014)). Therefore, at low

Reynolds numbers the location of the peak efficiency will change with Reynolds num-

ber: as Reynolds number increases, the optimal St will decrease, until b1 reaches its

asymptotic value at a sufficiently high Reynolds number. Our conclusion is consistent

with biological measurements (at least for swimmers), where the preferred Strouhal

number appears to decrease as the Reynolds number increases, until it reaches an
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asymptotic value (Gazzola et al., 2014). This further substantiates our claim that the

presence of fluid drag on the propulsor is the crucial factor in creating an efficiency

peak which dictates the cruising conditions of swimming and flying animals. In other

words, energetic considerations set the kinematics of the propulsor to the most effi-

cient one, and the net thrust of the propulsor at peak efficiency balances the drag of

the body to set the cruising speed.

9.A Supplementary information

9.A.1 Thrust and power

Here we derive simple expressions for the mean thrust and power, as used in the main

text, by considering sinusoidal heaving and pitching motions described by

h(t) = h0 sin(2πft), (9.7)

θ(t) = θ0 sin(2πft+ φ), (9.8)

where pitch leads heave by a phase angle φ. In our previous work (Van Buren et al.,

2018a), we used aerodynamic theory to derive the following expressions for the mean

thrust and power coefficients produced by a heaving and pitching foil:

CT = c1St
2 + c2Sthθ0 sinφ+ c3Stθθ0 − c4θ0, (9.9)

CP = c5St
2 + c6f

∗SthStθ sinφ+ c7Sthθ0 sinφ+ c8f
∗St2h + c9f

∗St2θ + c10Stθθ0,

(9.10)

where Sth = 2fh0/U∞, Stθ = 2fcθ0/U∞, and the reduced frequency f ∗ = fc/U .

Also, CT = 2T/ρSpU
2
∞ is the thrust coefficient, and CP = 2P/ρSpU

3
∞ is the power

coefficient. Note that the term c4θ0 represents the drag coefficient for the propulsor.
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These expressions were shown to collapse experimental data on a simple teardrop foil

for all values of φ.

For the biologically-relevant phase angles φ ∈ {0◦, 270◦}, we find that the c2 and

c3 terms in thrust, and the c10 and c7 terms in power, are small relative to the other

terms and can be neglected. For power, we use St2 = St2h + St2θ + 2SthStθ cosφ. As

a result, we now propose, for φ ∈ {0◦, 270◦},

CT = c1St
2 − c4θ0, (9.11)

CP = a1St
2 + a2f

∗St2 + a3f
∗SthStθ. (9.12)

We have introduced new constants ai to avoid confusion with the previous constants

ci in the power. All signs have been absorbed into the constants. Note that we now

have the same thrust and power expressions for both phases. Based on the numerical

values of the constants in (9.11)–(9.12), as found from the experimental data, we can

propose a further reduction, where

CT = c1St
2 − c4θ0, (9.13)

CP = a2f
∗ (St2 − SthStθ) . (9.14)

Plotting the thrust and power data against (9.13)–(9.14) yields figure 9.4. The

collapse using these reduced models is as good as obtained by Van Buren et al.

(2018a) using the full expressions given by (9.9) and (9.10).

(9.13) and (9.14) can be written dimensionally, so that, for φ ∈ {0◦, 270◦},

T ∼ ρSpV
2 −Do, (9.15)

P ∼ ρSpfc(V
2 − VhVθ), (9.16)

where Do is the drag offset.
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Figure 9.4: Thrust and power data plotted against (9.13)–(9.14) for φ = 0◦ (blue)
and φ = 270◦ (orange). The coefficients are c1 = 4.65, c4 = 0.49, a2 = 62.51.

9.A.2 Motion composition

The total amplitude for a motion with arbitrary phase is

A2 = h2
0 + 2h0cθ0 cosφ+ c2θ2

0. (9.17)

For biologically-relevant phases, we then have

φ = 0◦ : A = h0 + cθ0, (9.18)

φ = 270◦ : A2 = h2
0 + c2θ2

0. (9.19)

For both phases, h0cθ0/A
2 is maximized when h0 = cθ0, minimized when one of them

is zero, and always less than 1. (This can be shown using calculus for φ = 0◦, and

using right triangles for φ = 270◦.) So for both phases, the denominator of (9.6) is

positive, and is minimized when the heave and pitch amplitudes are equal.

9.A.3 Materials and methods

The experimental setup is the same as described by Van Buren et al. (2018a). Ex-

periments on a heaving and pitching airfoil were conducted in a water tunnel with a
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0.46 × 0.3 × 2.44 m test section, with the tunnel velocity set to U∞ = 0.1 m/s. A

teardrop airfoil of chord c = 0.08 m, thickness 0.008 m, and span 0.279 m was used,

yielding a chord-based Reynolds number of Re = 8,000.

Heaving motions were generated by a linear actuator (Linmot PS01-23 × 80F-

HP-R), pitching motions about the leading edge were generated by a servo motor

(Hitec HS-8370TH), and both were measured by encoders. The heaving and pitching

motions were sinusoidal, as described in (9.7)–(9.8), with frequencies f = 0.2 to

0.8 Hz every 0.1 Hz, heaving amplitudes h0 = 0.01, 0.02, 0.03 m, pitching amplitudes

θ0 = 5◦, 10◦, 15◦, and phase angles φ = 0◦ and 90◦, with experiments performed on

all combinations of the kinematic parameters.

The forces and moments imparted by the water on the airfoil were measured by a

six-component sensor (ATI Mini40) at a sampling rate of 100 Hz. The force and torque

resolutions were 5× 10−3 N and 1.25× 10−4 N·m, respectively, in the streamwise and

cross-stream directions, and 10−2 N and 1.25×10−4 N·m, respectively, in the spanwise

direction. Each case was run for 30 cycles, with the first and last five cycles used for

warmup and cooldown. All sensors were zeroed before every case.
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Chapter 10

Clarifying the relationship between

efficiency and resonance for flexible

inertial swimmers

Daniel Floryan and Clarence W. Rowley

Appears as Floryan and Rowley (2018).

We study a linear inviscid model of a passively flexible swimmer, calculating its

propulsive performance, eigenvalues, and eigenfunctions with an eye towards clarify-

ing the relationship between efficiency and resonance. The frequencies of actuation

and stiffness ratios we consider span a large range, while the mass ratio is mostly

fixed to a low value representative of swimmers. We present results showing how the

trailing edge deflection, thrust coefficient, power coefficient, and efficiency vary in the

stiffness-frequency plane. The trailing edge deflection, thrust coefficient, and power

coefficient show sharp ridges of resonant behaviour for mid-to-high frequencies and

stiffnesses, whereas the efficiency does not show resonant behaviour anywhere. For

low frequencies and stiffnesses, the resonant peaks smear together and the efficiency is
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high. In this region, flutter modes emerge, inducing travelling wave kinematics which

make the swimmer more efficient. We also consider the effects of a finite Reynolds

number in the form of streamwise drag. The drag adds an offset to the net thrust

produced by the swimmer, causing resonant peaks to appear in the efficiency (as

observed in experiments in the literature).

10.1 Introduction

A distinguishing feature of nature’s swimmers and fliers is the flexibility of their tails

and wings, prevailing across a wide range of length scales, time scales, and media. A

natural question to ask is whether or not flexibility equips swimmers and fliers with

any propulsive advantages over their rigid counterparts, and if so, what characterizes

such advantages? The prevailing thinking is that flexibility is indeed a desirable

property of a propulsor, but the characterization of its effects, particularly on the

efficiency of propulsion, is tenuous.

To be clear, our own interests lie mainly in inertial swimmers characterized by

high Reynolds numbers, a large ratio of characteristic fluid mass to body mass, and

uniformly distributed passive flexibility. This is in contrast to fliers, for example,

where the mass ratio is of order unity and higher, and where the flexibility may be

localized. Nevertheless, we will draw upon some of the literature on flight to motivate

and guide our analysis.

Passive flexibility has generally been found to lead to thrust and efficiency gains

across a range of actuation frequencies, from far below the first natural frequency of

the system, to deep into the region of higher-order natural frequencies (Alben, 2008b;

Ferreira de Sousa and Allen, 2011; Dewey et al., 2013; Katz and Weihs, 1978, 1979;

Quinn et al., 2014). In the context of swimming, the efficiency is a measure of how
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much of the power used to generate the kinematics of a swimmer is converted to useful

thrust power. (Although exact definitions vary from one work to the other, they are all

in the same spirit.) While thrust generally exhibits local maxima when actuating near

natural frequencies (when the system is in resonance), efficiency has been observed

to exhibit local maxima below natural frequencies, near natural frequencies, and

above natural frequencies (Dewey et al., 2013; Moored et al., 2014; Quinn et al.,

2014, 2015; Paraz et al., 2016), as well as at frequencies relatively far from a natural

frequency (Ramananarivo et al., 2011; Kang et al., 2011; Vanella et al., 2009; Zhu

et al., 2014; Michelin and Llewellyn Smith, 2009). This muddled relationship between

efficiency and resonance can be partly explained by an ill-conceived notion of natural

frequencies. In some cases (Hua et al., 2013; Kang et al., 2011; Vanella et al., 2009),

natural frequencies were based off of an Euler-Bernoulli beam in a vacuum, whereas

Michelin and Llewellyn Smith (2009) has shown that the presence of a fluid critically

affects the natural frequencies of the system. Some of these studies mistook the added

mass of the fluid for drag, leading to an incorrect definition of the total system mass

(Vanella et al., 2009; Combes and Daniel, 2003b). In other cases where efficiency

and resonance were unrelated, large-amplitude motions were considered, leading to

a regime of highly nonlinear dynamics where the linear notion of resonance may be

inappropriate. We summarize the parameters used in the literature in table 10.1,

translated to correspond with the definitions employed in this work, as defined in

Section 10.2. Note that some parameters had to be estimated.

The tacit argument in studies where local maxima in efficiency were observed

somewhere near a resonant frequency seems to be that resonance is a condition that

improves the efficiency of a system. Although appealing, it is not immediately clear

that resonance should unconditionally improve the efficiency of a system. Indeed,

most of the works we cite demonstrate local maxima in the input power when the

system is actuated at a resonant frequency, not just the thrust, which degrades the
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efficiency. How resonance affects efficiency is subtle, and should be understood beyond

a black-box understanding.

Physical mechanisms unrelated to a fluid-structure resonance have also been of-

fered to explain maxima in efficiency. According to Moored et al. (2014), peaks in

efficiency occur when the actuation frequency is tuned to a “wake resonant frequency,”

which is unrelated to any structural frequency. Quinn et al. (2015) argued that peaks

in efficiency occur when the Strouhal number is high enough that the flow does not

separate but low enough that the shed vortices remain tightly packed, the trailing

edge amplitude is maximized while flow remains attached along the body, and the

effective angle of attack is minimized. In these two works, fluid-structure resonance

did coincide with maxima in efficiency. In Ramananarivo et al. (2011), peak efficiency

was not related to resonance; instead, it was achieved by making use of the nonlinear

nature of a drag transverse to the direction of locomotion. The authors argued that

efficiency is maximized when the trailing edge is approximately parallel to the total

velocity.

In this work, we attempt to clarify the relationship between efficiency and res-

onance. Resonance is a condition where some property of the system exhibits a

maximum; for a passively flexible swimmer, the deflection of its body is one such

property. The relation between efficiency and deflection is complicated, making it

unclear whether or not resonance of the deflection should result in maximal effi-

ciency. To clarify the matter, we study a passively flexible swimmer using a linear

model, valid for small-amplitude motions. Doing so allows us to formally calculate

natural frequencies of the coupled fluid-structure system, and to stay in a dynami-

cal regime where the notion of resonance is clear. The linear model cannot account

for large-amplitude effects such as separation (especially of the leading edge vortex),

but accurately models attached flows (Saffman, 1992). Systematically examining the

effects of nonlinearity — perhaps separately in the fluid and solid mechanics, and
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Figure 10.1: Schematic of the problem.

then together — in the context of our linear results would be a useful step forward

in delineating exactly what the role of nonlinearity is in swimmers.

10.2 Problem description

Here, the setup and assumptions are the same as in Moore (2017). Consider a two-

dimensional, inextensible elastic plate of length L and thickness d. The plate is thin

(d� L), and is transversely deflected a small amount Y from its neutral position,

with its slope Yx � 1. Under these assumptions, the dynamics of the plate is governed

by Euler-Bernoulli beam theory. The plate has uniformly distributed density ρs and

flexural rigidity B = EI, where E is the Young’s modulus, I = wd3/12 is the second

moment of area of the plate, and w is the width of the plate. The plate is immersed

in an incompressible, inviscid Newtonian fluid of density ρf . There is no flow along

the width of the plate, and far from the plate the flow is unidirectional and constant:

U = U i. The setup is altogether illustrated in figure 10.1.

The motion of the plate alters the velocity field of the fluid, whose forces in turn

modify the motion of the plate. The transverse position of the plate satisfies the

Euler-Bernoulli beam equation

ρsdwYtt +BYxxxx = w∆p, (10.1)
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where ∆p is the pressure difference across the plate due to the fluid flow, subscript

t denotes differentiation with respect to time, and subscript x denotes differentia-

tion with respect to streamwise position. The fluid motion satisfies the linearized

incompressible Euler equations

∇ · u = 0,

ρf (ut + Uux) = −∇p,

 (10.2)

where u = ui + vj. The above linearization is valid when the perturbation velocity

u is much smaller than U . Since the perturbation velocity depends on the plate’s

vertical velocity, its slope, and the rate of change of its slope, the linear assumption

holds for small-amplitude motions of the plate.

We non-dimensionalize the above equations using L/2 as the length scale, U as

the velocity scale, and L/(2U) as the time scale, yielding

2RYtt +
2

3
SYxxxx = ∆p,

∇ · u = 0,

ut + ux = ∇φ,


(10.3)

where

R =
ρsd

ρfL
, S =

Ed3

ρfU2L3
, φ = p∞ − p. (10.4)

In the above, x, t, Y , u, and p are now dimensionless, with the pressure non-

dimensionalized by ρfU
2. The coordinates are aligned such that x = −1 corresponds

to the leading edge and x = 1 corresponds to the trailing edge. R is a ratio of

solid-to-fluid mass, and S is a ratio of bending-to-fluid forces. Note that ∆φ = −∆p.
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The fluid additionally satisfies the no-penetration and Kutta conditions, which

can be stated as

v|x∈[−1,1],y=0 = Yt + Yx,

|v||(x,y)=(1,0) <∞.

 (10.5)

We impose heaving and pitching motions h and θ, respectively, on the leading

edge of the plate, while the trailing edge is free, resulting in boundary conditions

Y (−1, t) = h(t), Yx(−1, t) = θ(t), Yxx(1, t) = 0, Yxxx(1, t) = 0. (10.6)

The fluid motion resulting from the actuation of the leading edge of the plate imparts

a net horizontal force onto the plate. In other words, energy input into the system

by the actuation of the leading edge is used to generate a propulsive force. The net

horizontal force (thrust) on the plate is

CT =

∫ 1

−1

∆pYx dx+ CTS, (10.7)

where CTS is the leading edge suction force (formula given in Moore, 2017), and the

power input is

CP = −
∫ 1

−1

∆pYt dx. (10.8)

The leading edge suction force used in Moore (2017) is the limit of the suction force

on a leading edge of small but finite radius of curvature, in the limit that the radius

tends to zero. The leading edge suction force is a reasonable model of the actual flow

when it is attached (Saffman, 1992), so we have chosen to include it. In terms of

dimensional variables, CT = T/(1
2
ρfU

2Lw) and CP = P/(1
2
ρfU

3Lw), where T and

P are the dimensional net thrust and power input, respectively. Finally, the Froude

efficiency is defined as

η =
TU

P
=
CT

CP
, (10.9)
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where the overbar denotes a time-averaged quantity.

In this work, we restrict ourselves to actuation at the leading edge that is sinusoidal

in time, that is,

h(t) = h0ejσt,

θ(t) = θ0ejσt,

 (10.10)

where σ = πLf/U is the dimensionless angular frequency, f is the dimensional fre-

quency in Hz, j =
√
−1, and the real part in j should be taken when evaluating the

deflection. Since the system is linear in Y , the resulting deflection of the plate and

fluid flow will also be sinusoidal in time. We leave the details of the method of solution

to Appendix 10.A, noting that all calculations in this work used 64 collocation points.

The method to calculate the eigenvalues of the system is detailed in Appendix 10.B,

and some useful formulas for the numerical method used are given in Appendix 10.C.

10.3 A note on parameters

It is important to acknowledge that the system parameters we use will critically affect

the phenomena we observe. The dissensus in the literature on the relationship between

efficiency and resonance may be partly attributed to results being overextended from

one dynamical regime to another. We thus take the opportunity here to explicitly

state the parameters we employ in this work, as well as to show some resulting

qualitative features.

To be clear, the system is parameterized by its Reynolds number Re, mass, stiff-

ness, and frequency and amplitude of actuation. Our flow is inviscid, but we will

consider some of the effects of a finite Reynolds number later on. As revealed by

the non-dimensional quantities in (10.4), the mass and stiffness of the system depend

on both the solid and the fluid. For underwater swimmers, the mass ratio is gen-

erally quite low since swimmers are neutrally buoyant but thin; this is in contrast
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Re R =
ρsd

ρfL
S =

Ed3

ρfU2L3
f ∗ =

fL

U
h0 θ0

inviscid 0.01 10−2–102 10−1–102 2 (linear) 1 (linear)

Table 10.2: Parameter values used in this work.

to fliers, for example, where the mass ratio is of order unity and higher. Since our

interests lie in swimming flows, we take the mass ratio to be R = 0.01 throughout.

We vary the stiffness of the system from very flexible (S � 1) to very stiff (S � 1),

characterized by the stiffness ratio S. We vary the frequency of actuation so that it

covers multiple natural frequencies of the system. Our system is linear, so scaling

the amplitude by some factor will simply scale the flow and deflection fields by the

same factor. In this sense, amplitude does not matter in our problem, so we set the

heaving and pitching amplitudes so that the maximum deflection of the trailing edge

of a rigid plate is equal to the length of the plate. The amplitude affects both thrust

and power quadratically, and does not affect efficiency in this linear setting. We do

not consider nonlinear effects caused by large amplitudes. The parameters we use in

the proceeding sections are summarized in table 11.1.

As a final note, we point out the effect of the mass of the system. Although we

fix the mass ratio to be R = 0.01 in the proceeding sections in this work, we take the

opportunity here to vary R in order to show how swimmers and fliers may differ, at

least qualitatively. In figure 10.2, we show the efficiency as a function of mass and

stiffness ratios for plates heaving and pitching at a reduced frequency f ∗ = 1 (the

results are similar to those in figure 11 of Moore (2017), but for slightly different

parameter values). The white areas demarcate where the plate produces a net drag

(and hence negative efficiency). The relationship between efficiency and stiffness

is qualitatively different for low and high mass ratios. At high mass ratios (where

the plate is much more massive than a characteristic mass of fluid), the plate does

not produce thrust unless the stiffness ratio is high. At O(1) mass ratios, efficiency
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Figure 10.2: Efficiency as a function of mass ratio R and stiffness ratio S for a (a)
heaving and (b) pitching plate at f ∗ = 1. Areas with negative efficiency have been
whited out.

increases monotonically as the plate becomes stiffer. At low mass ratios, efficiency

does not change monotonically with stiffness.

In figure 10.3, we show the first four natural frequencies of the coupled fluid-

structure system as a function of the mass ratio for the limit of large bending velocity

compared to flow velocity; we will refer to such frequencies (and, more generally,

eigenvalues and eigenfunctions) as quiescent natural frequencies, and refer the reader

to Appendix 10.B.2 for more details. To be clear, when we write “natural frequen-

cies” we mean the imaginary parts of the eigenvalues of the system, calculated as

in Appendix 10.B. For just the results in this plot, we have changed the time scale

such that a flat line indicates that only the mass of the plate (but not the fluid) mat-

ters. The non-dimensional angular frequency here is ω∗ = ω
√

3ρsL4/(4Ed2), where

ω = 2πf is the dimensional angular frequency. For high values of the mass ratio, the

natural frequencies scale with the mass of the plate (ω∗ ∼ R0). For low values of the

mass ratio, however, the natural frequencies scale with the mass of the surrounding

fluid (ω∗ ∼ R1/2). There is also a region where both the characteristic plate and
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Figure 10.3: First four natural frequencies in a quiescent fluid as a function of mass
ratio. Asymptotic behaviour overlaid.

fluid masses must be considered. We also note that for a non-zero incoming flow, the

natural frequencies may change (we will show this later).

Together, the results briefly shown here underline the importance of specifying the

dynamical regime of the system, in particular the mass ratio R. All of our results will

be for R = 0.01, and we expect our conclusions to hold for low mass ratios (R . 0.1).

10.4 Inviscid results

Here, we present our results on the kinematics and propulsive characteristics of uni-

formly flexible swimmers. Since our interests lie in clarifying the role of resonance, we

limit ourselves to purely heaving and purely pitching plates; allowing simultaneous

heaving and pitching would add two parameters, and would potentially dilute our

results on the role of resonance. Given our interests, it also makes sense to present

results for flexible plates relative to rigid plates. For example, we will present the

mean thrust that a flexible plate produces relative to the mean thrust that an other-

wise identical rigid plate produces. We therefore begin by briefly reviewing the results

for rigid plates.
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10.4.1 Propulsive characteristics of rigid swimmers

The linear inviscid theory for sinusoidally heaving and pitching rigid plates was devel-

oped in Theodorsen (1935), and extended in Garrick (1936) to provide results on the

propulsive characteristics of such plates. The mean thrust produced, as well as the

mean power needed to produce the mean thrust, are shown in figure 10.4 as a function

of the reduced frequency for the amplitudes in table 10.2. At high reduced frequen-

cies, the mean thrust coefficient varies as f ∗2 for both heaving and pitching plates.

At low reduced frequencies, the mean thrust coefficient varies sub-quadratically for a

heaving plate, and super-quadratically for a pitching plate, for the reduced frequen-

cies shown here. Note that a heaving plate always produces net thrust in the mean,

whereas a pitching plate produces net drag in the mean for f ∗ < 0.202. The story is

much the same for the mean power coefficient. At high reduced frequencies, the mean

power coefficient varies as f ∗2 for both heaving and pitching plates. At low reduced

frequencies, the mean power coefficient varies sub-quadratically for a heaving plate,

and super-quadratically for a pitching plate, for the reduced frequencies shown here.

The power input for a heaving plate is always positive in the mean, whereas the power

input for a pitching plate is negative in the mean for f ∗ < 0.013. As f ∗ → 0, CT → 0

and CP → 0 for both heaving and pitching plates.

Given the mean thrust and power, we may calculate the efficiency, shown in

figure 10.5 as a function of the reduced frequency. At high reduced frequencies,

η → 0.5 for both heaving and pitching plates. At low reduced frequencies, the

efficiencies for heaving and pitching plates diverge. For a heaving plate, the efficiency

increases as the reduced frequency decreases, with η → 1 as f ∗ → 0. For a pitching

plate, the efficiency becomes negative since a pitching plate produces net drag at

low reduced frequencies. Note that because of how the efficiency is defined, there is

a vertical asymptote where the mean power coefficient is zero, at f ∗ ≈ 0.013. To

the left of this asymptote the efficiency is positive since both the mean thrust and
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Figure 10.4: (a) Mean thrust coefficient and (b) mean power coefficient as a function of
reduced frequency f ∗ for a heaving (red) and pitching (blue) rigid plate. Asymptotic
behaviour included. At low f ∗, a pitching rigid plate produces drag in the mean.
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Figure 10.5: Efficiency as a function of reduced frequency f ∗ for a heaving (red) and
pitching (blue) rigid plate. At low f ∗, a pitching rigid plate produces drag in the
mean, hence its efficiency is negative.

power coefficients are negative, but we shall ignore any such cases since we are only

interested in thrust-producing plates.

Having briefly reviewed the propulsive characteristics of rigid plates in the linear

inviscid regime, we now move on to uniformly flexible plates. It is worth bearing

in mind how the thrust, power, and efficiency vary with reduced frequency for rigid
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Figure 10.6: Trailing edge amplitude as a function of reduced frequency f ∗ and stiff-
ness ratio S for a (a) heaving and (b) pitching plate with R = 0.01 relative to that
of an equivalent rigid plate. Dashed white lines indicate where the flexible plate has
the same trailing edge amplitude as the equivalent rigid plate. Under-resolved areas
have been whited out.

heaving and pitching plates when we present the results for flexible heaving and

pitching plates.

10.4.2 Propulsive characteristics of flexible swimmers

We begin by considering the kinematics of the flexible plate actuated sinusoidally at

its leading edge. For our purposes, it is sufficient to look at the deflection at a single

point along the length of the plate, which we choose to be the trailing edge. The

amplitude of the trailing edge deflection is shown in figure 10.6. More specifically,

we have plotted the logarithm of the ratio of the trailing edge amplitude of a flexible

plate to the trailing edge amplitude of an otherwise identical rigid plate. The dashed

white lines indicate where the flexible plate has the same trailing edge amplitude as

the rigid plate. For both heaving and pitching plates, we see ridges of local maxima in

trailing edge amplitude in the stiffness-frequency plane. For a given ridge, its reduced

frequency increases with the non-dimensional stiffness.
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Figure 10.7: Same as in figure 10.6, but with quiescent natural frequencies overlaid
as green lines.

We suspect that the locations of the local maxima of trailing edge amplitude

correspond to resonances in the system. To verify our suspicion, we formally calculate

the first ten pairs of quiescent eigenvalues of the coupled fluid-structure system, that

is, the eigenvalues of a clamped plate in an otherwise quiescent fluid. (Formally, by

quiescent we mean in the limit where the bending velocity is large compared to the

fluid velocity.) We have re-plotted the trailing edge amplitudes from figure 10.6 in

figure 10.7, with the imaginary parts of the eigenvalues overlaid (and re-scaled to

match the non-dimensionalization employed in the plots). Indeed, the local maxima

in trailing edge amplitude align with the quiescent natural frequencies of the system.

The alignment is not as good when both the reduced frequency and non-dimensional

stiffness are low; we leave this point aside now but will revisit it later. It can be easily

shown that the quiescent natural frequencies scale as f ∗ ∼ S1/2.

To explain why the local maxima in trailing edge amplitude occur when the system

is actuated at its natural frequencies, we turn to the transfer function from actuation

to trailing edge deflection. Recall that the transfer function of a linear input-output

system is a function G(s), where s is a complex number, such that the response to
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an input of the form est is given by G(s)est. Since the trailing edge deflection is just

a sample of the entire deflection field, the poles of the transfer function will be the

eigenvalues of the system. Generally, the eigenvalues are in the left half-plane. In

figure 10.8, we schematically illustrate the magnitude of a simple transfer function in

the complex plane. In figure 10.8a, a single pole of the transfer function is marked as

a cross, and the contour lines show level sets of the magnitude of the transfer function

in the complex plane. For a single pole λ, the transfer function is G = 1/(s − λ),

where s = σ + iω is the complex variable. The magnitude of the transfer function

decreases with distance from the pole in the complex plane, resulting in the circular

level sets centered about the pole. Since our actuation is sinusoidal (i.e., eiωt), we

are specifically interested in the behaviour along the imaginary axis; this is shown

in figure 10.8b. It is clear that maxima in the magnitude of the transfer function

will occur when we actuate the system at a frequency equal to the imaginary part of

an eigenvalue of the system (a “natural frequency”); in other words, maxima in the

magnitude of the transfer function occur when we actuate at resonance. This will

generally hold true even when the system has multiple eigenvalues, as long as they

are far enough from each other.

With the swimmer’s kinematics understood more or less in terms of the system’s

eigenvalues, we move on to its propulsive characteristics. The mean thrust and power

coefficients are shown in figures 10.9 and 10.10, respectively. We have plotted the

logarithm of the ratio of the mean thrust/power coefficient of a flexible plate to

the mean thrust/power coefficient of an otherwise identical rigid plate to show how

flexibility modifies the propulsive characteristics. The dashed white lines indicate

where the flexible values match the rigid values. Regions of low reduced frequency that

have negative mean thrust/power have been whited out. Just as for the trailing edge

amplitude, we see ridges of local maxima in the mean thrust and power coefficients.
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Figure 10.8: Schematic explaining resonance. (a) Level sets on the complex plane
of the magnitude of a transfer function with one pole, marked with a cross. (b)
Magnitude of the same transfer function evaluated on the imaginary axis.
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Figure 10.9: Thrust coefficient as a function of reduced frequency f ∗ and stiffness
ratio S for a (a) heaving and (b) pitching plate with R = 0.01 relative to that of an
equivalent rigid plate. Dashed white lines indicate where the flexible plate has the
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135



102

100

10-1

2.5

10210010-2

102

100

10-1
10210010-2

(a) (b)

10-1 101

101

2

1.5

1

0.5

0

-0.5

-1

10-1 101

101

0

-1

-2

-4

-3

Figure 10.10: Power coefficient as a function of reduced frequency f ∗ and stiffness
ratio S for a (a) heaving and (b) pitching plate with R = 0.01 relative to that of an
equivalent rigid plate. Dashed white lines indicate where the flexible plate has the
same power coefficient as the equivalent rigid plate. Under-resolved areas and areas
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In figures 10.11 and 10.12, we have re-plotted the mean thrust and power coeffi-

cients, with the quiescent natural frequencies overlaid. Just as for the trailing edge

amplitude, the ridges of local maxima in both mean thrust and mean power align

with the quiescent natural frequencies of the system (the alignment is not as good

when the reduced frequency and non-dimensional stiffness are low, but we will revisit

this issue later). Since the thrust and power are quadratic functions of the deflection

(see (10.7) and (10.8)), we expect them to exhibit local maxima when the system is

actuated at natural frequencies.

With the behaviour of the deflection, mean thrust, and mean power understood,

we are left to understand the behaviour of the efficiency. The efficiency is shown

in figure 10.13. For a heaving plate, the efficiency generally decreases with reduced

frequency, just like for the rigid plate (cf. figure 10.5). For a pitching plate, the

behaviour of the efficiency differs from the rigid case in that it increases with re-

duced frequency, reaches a peak, and then decreases with reduced frequency. Recall
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Figure 10.11: Same as in figure 10.9, but with quiescent natural frequencies overlaid
as green lines.
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Figure 10.12: Same as in figure 10.10, but with quiescent natural frequencies overlaid
as green lines.
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Figure 10.13: Efficiency as a function of reduced frequency f ∗ and stiffness ratio S
for a (a) heaving and (b) pitching plate with R = 0.01. Under-resolved areas and
areas with negative efficiency have been whited out.

that for a rigid pitching plate, the efficiency monotonically increases with reduced

frequency, not displaying any local maximum. For both heaving and pitching plates,

the efficiency generally increases as the non-dimensional stiffness decreases.

To isolate the effects of flexibility, we have plotted the difference in efficiency

between the flexible and rigid swimmers in figure 10.14, with a dashed white line

indicating where flexible and rigid swimmers attain the same efficiencies. We see that

the flexible swimmer is broadly more efficient than the rigid swimmer (in fact, the

flexible heaving plate always attains greater efficiency than the rigid heaving plate).

This leads us to conclude that flexibility generally makes a swimmer more efficient, at

least for low mass ratios. The mechanism for increased efficiency, however, is unclear.

What about passive flexibility makes a swimmer more efficient?

It is apparent that the efficiency is not related to the quiescent natural frequen-

cies. Whereas both mean thrust and mean power have ridges of local maxima aligned

with the quiescent natural frequencies, this is not the case for the efficiency. The

efficiency instead has a single broad region of high values in the stiffness-frequency

plane. Elsewhere in the plane, the local maxima in thrust and power cancel each other
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Figure 10.14: Efficiency as a function of reduced frequency f ∗ and stiffness ratio S for
a (a) heaving and (b) pitching plate with R = 0.01 relative to that of an equivalent
rigid plate. Dashed white lines indicate where the flexible plate has the same efficiency
as the equivalent rigid plate. Under-resolved areas and areas with negative efficiency
have been whited out.

exactly, resulting in flat efficiency; such behaviour has been previously observed in

linear models of passively flexible swimmers (Alben, 2008b; Moore, 2014, 2017). The

broad region of high efficiency is aligned with a line for which reduced frequency de-

creases with non-dimensional stiffness, opposite the behaviour of the quiescent natural

frequencies.

10.4.3 Fluid-structure eigenvalues and their relationship

with efficiency

While the efficiency appears to be unrelated to the quiescent natural frequencies,

it may be possible that it is related to the full eigenvalues of the system. In the

quiescent limit, the forces at play are the elastic forces from the plate and the added

mass forces from the fluid, with lift forces being negligible. In the full problem,

however, lift forces may be important. We expect the lift forces to be dominant when

the reduced frequency and non-dimensional stiffness are low, which is where the region
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Figure 10.15: Same as in figure 10.14, but with natural frequencies overlaid as cyan
lines.

of high efficiency is, and where the behaviours of the trailing edge amplitude, mean

thrust, and mean power deviate from the behaviour of the quiescent eigenvalues.

In figure 10.15, we again show the difference in efficiency between flexible and rigid

swimmers, but now with the full natural frequencies overlaid. When the reduced fre-

quency and non-dimensional stiffness are high, the natural frequencies match closely

with the quiescent natural frequencies, as expected. For low values of the reduced

frequency and non-dimensional stiffness, lift forces become important and affect the

natural frequencies, causing them to deviate from their quiescent behaviour. We even

see the emergence of branches for which the reduced frequencies increase as the non-

dimensional stiffness decreases, counter to our intuition for flexible plates. The region

of high efficiency is aligned with the counterintuitive branch of natural frequencies,

leading us to suspect that this strange branch may be responsible for high efficiency;

we therefore find it paramount to understand the behaviour of the eigenvalues of the

system.

In figure 10.16, we trace the first three eigenvalue pairs of the full coupled fluid-

structure system as the non-dimensional stiffness decreases. Note that the eigenvalues

are solutions of a nonlinear eigenvalue problem, so eigenvalues may appear and dis-
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Figure 10.16: First few eigenvalues of the system as a function of stiffness ratio S:
(a) real parts; and (b) imaginary parts.

appear. Also note that the imaginary parts of the eigenvalues in figure 10.16b are

greater than those in figure 10.15 by a factor of π because of how we have chosen

to define f ∗. In the following description of the eigenvalues, we begin at large stiff-

ness ratio S and describe how the eigenvalues change as we decrease S, since the

eigenvalues essentially behave as those for an Euler-Bernoulli beam in vacuo for large

S.

As the stiffness ratio decreases, the first three eigenvalues behave as expected: the

imaginary parts decrease, and the real parts do not change. We shall refer to these

as primary eigenvalues, and label them P1, P2, and P3. As S further decreases, the

behaviour of P1 changes: its real part first increases a bit, then decreases dramatically,

and then begins to loop up; its imaginary part first decreases more quickly, then

decreases substantially more slowly, until it finally decays to zero. At this point

(S = 0.327), P1 merges with one of the two real eigenvalues that have appeared,

labelled R1 and R2. The two real eigenvalues appear when S = 1.658, shortly after

the behaviour of P1 changes, and they merge and disappear when S = 0.127. Just

after the two real eigenvalues appear, a new conjugate pair, labelled S1, appears

when S = 1.549. We refer to this eigenvalue as a secondary eigenvalue because
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it essentially replaces the primary eigenvalue P1. We summarize the behaviour as

follows: the original primary eigenvalue, P1, has decreasing imaginary part until it

becomes purely real. In this time, a pair of real eigenvalues, R1 and R2, appear. P1

and R1 merge when P1 becomes real, and they eventually disappear, along with R2,

when they all collide. A new conjugate pair of secondary eigenvalues, S1, appears

as well, and both its real and imaginary parts increase as S decreases. The second

primary eigenvalue P2 essentially demonstrates the same behaviour, and we hazard

a guess that P3 shows the beginnings of the same behaviour.

What physical mechanism is at the root of the observed behaviour in the eigen-

values? It should be clear that P1 is an Euler-Bernoulli mode, since it essentially

displays the behaviour of an eigenvalue of an Euler-Bernoulli beam in vacuo. To be

more precise, the behaviour of P1 is dominated by elastic and added mass forces,

leading to Euler-Bernoulli type behaviour. S1, on the other hand, is a flutter mode.

S1 emerges when the stiffness ratio is low, and so its behaviour is dominated by lift

and added mass forces. Both the real and imaginary parts of S1 increase as the stiff-

ness ratio decreases, characteristic of a flutter mode. The stiffness ratio can also be

thought of as the inverse of a reduced flow velocity, as in Eloy et al. (2007), whereby

increasing the reduced flow velocity leads to a flutter instability. If we decreased

S even further, S1 would eventually become unstable. When the non-dimensional

stiffness is O(1), P1, S1, R1, and R2 simultaneously exist. For such values of the

non-dimensional stiffness, all three types of forces— elastic, lift, and added mass—

are non-negligible. The importance of all three types of forces explains why all three

modes— Euler-Bernoulli, flutter, and divergence (R1 and R2)— simultaneously exist.

The same emergence and disappearance of modes occurs for the higher-order

modes as well, but at lower values of the stiffness ratio. The change in behaviour

occurs at lower values of S because the higher-order modes have shorter wavelengths

(see Alben, 2008a, for example), significantly increasing the Yxxxx term in (10.3),
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thereby significantly increasing the magnitude of the elastic forces. We therefore ex-

pect the elastic forces to become dominated by lift forces at much lower values of S

for the higher-order modes.

As the non-dimensional stiffness decreases, the eigenvalues of the system come

closer together in the complex plane. When multiple eigenvalues are relatively close to

each other, our notion of resonance, schematically illustrated in figure 10.8, becomes

muddied. In figure 10.17, we schematically illustrate the magnitude of a transfer

function with multiple poles that are relatively close to each other. In figure 10.17a,

the poles of the transfer function are marked as crosses, and the contour lines show

level sets of the magnitude of the transfer function in the complex plane. Because

the poles are close to each other, the level sets are no longer simple circles. Since

our actuation is sinusoidal, we are specifically interested in the behaviour along the

imaginary axis; this is shown in figure 10.17b. Because the poles are close to each

other, there are no longer local maxima when the system is actuated at one of its

natural frequencies; instead, there is a broad response across the range of natural

frequencies. In our example, there is a single local maximum despite there being four

poles. Moreover, the local maximum does not occur at any of the natural frequencies

of the system, it occurs between the imaginary parts of λ3 and λ4. This schematic

explains why the ridges of local maxima in trailing edge amplitude, mean thrust,

and mean power broaden and smear together as the reduced frequency and non-

dimensional stiffness become small (see figures 10.6, 10.9, and 10.10).

With a good understanding of the eigenvalues of the system, we may now interpret

the behaviour of the efficiency in light of the behaviour of the eigenvalues. Specifically,

we want to understand the difference in efficiency between flexible and rigid swimmers

(i.e. figures 10.14 and 10.15). Broadly speaking, we expect a flexible swimmer to be

more efficient than a rigid one for a simple reason: as a flexible swimmer moves

through the fluid, its body deforms in response to the forcing from the fluid, so it
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(a) (b)

Figure 10.17: Our simple notion of resonance becomes unclear when multiple poles
are relatively close. (a) Level sets on the complex plane of the magnitude of a transfer
function with four poles, marked with crosses. (b) Magnitude of the same transfer
function evaluated on the imaginary axis.

does not need to fight against the fluid as much as a non-deforming rigid swimmer

does. A flexible swimmer therefore expends less energy in driving its motion than a

rigid swimmer does. This effect becomes more pronounced as the elastic forces weaken

relative to the lift forces— as the swimmer becomes flimsier. As previously discussed,

the elastic forces weaken relative to the lift forces as the non-dimensional stiffness

S decreases. The elastic forces also become relatively weaker when the frequency of

actuation is decreased. As we can see from the eigenvalues in figure 10.15, a lower

reduced frequency will excite lower-order modes. The lower-order modes have longer

wavelengths, and therefore relatively weaker elastic forces. To summarize, decreasing

S and f ∗ weakens the elastic forces in the swimmer, thereby weakening its ability to

resist the fluid, lowering the power needed to drive its motion, and making it more

efficient.

This is not the complete picture, however. As we can see in figure 10.15, in

the lower left region there are areas where decreasing S and increasing f ∗ improves

the efficiency, counter to our previous argument. This behaviour can be understood

in terms of the changing behaviour of the eigenvalues of the system in that region.
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When S becomes small enough, the primary eigenvalue is essentially replaced by the

secondary eigenvalue. Recall that the primary eigenvalue corresponds to an Euler-

Bernoulli mode, and the secondary eigenvalue corresponds to a flutter mode. Euler-

Bernoulli modes are dominated by elastic forces, while flutter modes are dominated

by lift forces. Based on the previous discussion, swimmers whose composition includes

flutter modes should be more efficient.

A comparison between Euler-Bernoulli mode P2 and flutter mode S1 for S = 0.1

is shown in figure 10.18, where the modes have been normalized so that their second

derivatives at the leading edge are real and equal to 1. Qualitatively, the flutter mode

looks more efficient than the Euler-Bernoulli mode, with the Euler-Bernoulli mode

having a rigid fore and aft. To quantify this observation, in figure 10.19 we have

plotted the magnitudes of the modes as well as the phase between the leading edge

and the deflection along the chord for the two modes, normalized as before. The

deflection of flutter mode S1 is greater than that of Euler-Bernoulli mode P2 along

the entire chord. The phase is flat for a large portion of the fore of Euler-Bernoulli

mode P2, indicating that it moves rigidly. The phase also flattens out towards the aft,

indicating that it too is nearly rigid. In contrast, flutter mode S2 has a nearly linearly

decreasing phase. A front-to-back travelling wave would have a linearly decreasing

phase, so flutter mode S1 essentially behaves as a travelling wave (with spatially

varying amplitude). As shown in Wu (1961), travelling wave kinematics can be quite

efficient. The emergence of the flutter modes as S decreases leads to travelling wave

kinematics in the actuated system. For a value of S for which a flutter mode exists,

the phase of the deflection decreases nearly linearly when the system is actuated at

a low frequency, indicating that the kinematics are nearly a travelling wave. As the

frequency of actuation is increased, the phase behaves less linearly, instead alternating

between relatively flat and steep behaviours; the degradation of the travelling wave

kinematics is more severe as the frequency of actuation is increased. The behaviour at
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Figure 10.18: Ten snapshots, evenly spaced in time, of (a) Euler-Bernoulli mode P2
and (b) flutter mode S1 for S = 0.1 comprising one period of motion. The modes
have been normalized so that their second derivatives at the leading edge are real and
equal to 1.
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Figure 10.19: (a) Magnitude and (b) phase in radians of the deflection along the
chord for Euler-Bernoulli mode P2 (red) and flutter mode S1 (blue), for S = 0.1. The
modes have been normalized so that their second derivatives at the leading edge are
real and equal to 1.

low frequencies is therefore dominated by the flutter modes, while the Euler-Bernoulli

modes become dominant at higher frequencies. The frequency at which the travelling

wave kinematics degrade increases as S decreases, coinciding with the frequency at

which the efficiency degrades, and with the behaviour of the imaginary parts of the

flutter eigenvalues. We may therefore reasonably conclude that the emergence of the

flutter modes as S decreases makes the swimmer more efficient.
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As a final note, we point out that increases in efficiency are often intertwined with

decreases in thrust. This is apparent when comparing the plots of mean thrust with

the plots of efficiency (figures 10.9 and 10.14, respectively). To generate large thrust,

the swimmer needs to be able to push against the fluid. To be efficient, however,

the swimmer needs to be compliant to the fluid. A limiting case of this is when

the body of the swimmer takes the form of a front-to-back travelling wave. As the

wave velocity approaches the free-stream velocity, the thrust vanishes, the efficiency

approaches unity, and the swimmer merely travels along a sinusoidal path fixed in

space (Wu, 1961). We must be mindful of regions of low thrust, especially in the

presence of drag, as we shall explore in the next section.

10.5 Finite Reynolds number effects

Recently, the effects of streamwise drag on efficiency have come to be appreciated, at

least for rigid swimmers (Floryan et al., 2017a). Drag can create peaks in efficiency

and can make the efficiency quite sensitive to changes in the system, as also suggested

in Moore (2014). Here, we consider how streamwise drag due to a finite Reynolds

number affects the system.

The presence of drag in our system does not change it much. The kinematics

will not change, so the trailing edge amplitude remains unchanged. The net thrust

produced decreases uniformly across the stiffness-frequency plane, leaving the picture

qualitatively the same. The power consumption also does not change. The efficiency,

however, will change. Whereas before there were no local maxima in efficiency, the

addition of an offset drag to the system will spur the emergence of ridges of local

maxima in efficiency, just like the ones previously described for the trailing edge

amplitude, mean thrust, and mean power.
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The ridges of local maxima in efficiency caused by the addition of an offset drag

can be understood in a simple way. We will consider a simplified picture of resonance

in our system. Suppose we actuate the inviscid system at a non-resonant frequency,

resulting in mean thrust coefficient CT0, mean power coefficient CP0, and efficiency

η0 = CT0/CP0. If we change the frequency of actuation to a resonant one, our previous

results show that the mean thrust coefficient, power coefficient, and efficiency will

become

CT1 = aCT0, CP1 = aCP0, η1 =
CT1

CP1

=
aCT0

aCP0

=
CT0

CP0

= η0, (10.11)

where a > 1. We see that resonance does not alter the efficiency when there is no

drag.

Now consider adding streamwise drag to the system. The baseline mean thrust

changes by an offset, and the mean power does not change. The baseline efficiency is

then

η0 =
CT0 − CD
CP0

=
CT0

CP0

− CD

CP0

, (10.12)

where CD is the drag coefficient. When we actuate at resonance, the mean thrust and

mean power increase as before, and the drag does not change. The efficiency becomes

η1 =
aCT0 − CD
aCP0

= η0 +
a− 1

a

CD

CP0

> η0. (10.13)

We see that the addition of streamwise drag to the system causes local maxima in

efficiency when the system is actuated at a natural frequency. This effect should be

robust to the source of drag. Note that this effect depends on how strongly resonance

affects the system (the value of a), and on how strong the drag is (CD/CP0). We

demonstrate this effect in figure 10.20, where we show the efficiency for CD = 0.1

(Floryan et al., 2017a). Since the effect depends on the ratio CD/CP0, just for this
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Figure 10.20: Efficiency as a function of reduced frequency f ∗ and stiffness ratio S
for a (a) heaving and (b) pitching plate with R = 0.01 with additional drag. Under-
resolved areas and areas with negative efficiency have been whited out.

plot we have changed the amplitudes to h0 = 0.2 and θ0 = 0.1. Indeed, we see

ridges of local maxima in efficiency which align with the natural frequencies. We also

note that the addition of streamwise drag has pushed the thrust-drag transition to

significantly higher values of the reduced frequency; this underscores the importance

of streamwise drag for swimmers.

Since any real system will have some drag, resonant peaks in efficiency should be

present. We offer our simple explanation as a reason for the existence of resonant

peaks in efficiency observed in the literature, modulo nonlinear effects. Since our

analysis is linear, the aforementioned effect of streamwise drag on the efficiency of

the system is present at first order, and we therefore expect it to be robust to nonlinear

effects.

10.6 Conclusions

In this work, we studied a linear inviscid model of a passively flexible swimmer,

valid for small-amplitude, low-frequency motions where there is no separation. The
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frequencies of actuation and stiffness ratios we considered spanned a large range,

while the mass ratio was mostly fixed to a low value representative of swimmers.

A short set of results for which we varied the mass ratio indicates that there exist

qualitative differences between flappers with low mass ratios (swimmers) and those

with mass ratios of order unity and higher (fliers). The results presented in this

work are therefore applicable to swimmers, and care should be taken in extending the

results to fliers.

We presented results showing how the trailing edge deflection, thrust coefficient,

power coefficient, and efficiency vary in the stiffness-frequency plane. The trailing

edge deflection, thrust coefficient, and power coefficient showed sharp ridges of res-

onant behaviour for reduced frequencies f ∗ > 1 and stiffness ratios S > 1. In this

region, the locations of the resonant peaks were well predicted by the imaginary

parts of the quiescent eigenvalues of the system. For f ∗ < 1 and S < 1, however, the

resonant peaks smeared together. The efficiency, on the other hand, did not show

resonant peaks anywhere in the stiffness-frequency plane, instead showing a broad

region of high values for f ∗ < 1 and S < 1.

Calculating the full eigenvalues and eigenfunctions of the system, we saw that the

region of high efficiency coincided with the emergence of flutter modes and disappear-

ance of Euler-Bernoulli modes. The imaginary parts of the eigenvalues of the flutter

modes increase with decreasing stiffness ratio, opposite to the behaviour of the Euler-

Bernoulli modes. The eigenfunctions revealed that flutter modes take on a form close

to a travelling wave, whereas the Euler-Bernoulli modes have nearly rigid regions. In

the actuated system, cases with high efficiency took on near travelling wave forms,

and the degradation of efficiency coincided with a degradation of the travelling wave.

We may therefore reasonably conclude that the emergence of the flutter modes as S

decreases makes the swimmer more efficient.
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Lastly, we considered the effects of a finite Reynolds number in the form of stream-

wise drag. Streamwise drag added an offset drag to the system, which created reso-

nant peaks in the efficiency that are not present in the inviscid system. Since any real

system will have some streamwise drag, resonant peaks should be present. We offer

our simple explanation as a reason for the existence of resonant peaks in efficiency

observed in the literature.

This work was supported by ONR Grant N00014-14-1-0533 (Program Manager

Robert Brizzolara). We would also like to thank Dr. Andres Goza for many useful

discussions.

10.A Method of solution

Consider the case where the imposed leading edge motion is sinusoidal in time with

dimensionless angular frequency σ = πLf/U , where f is the dimensional frequency

in Hz. We may then decompose the deflection into a product of temporal and spatial

terms, with the temporal component being sinusoidal and the spatial component

represented by a Chebyshev series:

Y (x, t) = ejσtY0(x),

Y0(x) =
1

2
β0 +

∞∑
k=1

βkTk(x),

 (10.14)

where j =
√
−1, the real part in j should be taken when evaluating the deflection,

and Tk(x) = cos(k arccosx) is the Chebyshev polynomial of degree k. For a given

deflection Y of this form, the solution to the flow is given in Wu (1961); we repeat

the basics of that analysis in the proceeding text.

Represent two-dimensional physical space (x, y) by the complex plane z = x+ iy,

where i =
√
−1 but ij 6= −1. There exists a complex potential F (z, t) = φ(z, t) +
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iψ(z, t), with φ and ψ harmonic conjugates, that is analytic in z and related to the

complex velocity w = u− iv through the momentum equation by

∂F

∂z
=
∂w

∂t
+
∂w

∂z
. (10.15)

We use the conformal transformation

z =
1

2

(
ζ +

1

ζ

)
(10.16)

to map physical space in the z-plane to the exterior of the unit circle in the ζ-plane.

This transformation maps the plate onto the unit circle. The complex potential can

be represented by a multipole expansion

F (ζ, t) = φ(ζ, t) + iψ(ζ, t) = iejσt

(
a0

ζ + 1
+
∞∑
k=1

ak
ζk

)
. (10.17)

Evaluating on the unit circle ζ = eiθ gives

φ(ζ = eiθ, t) = ejσt

(
1

2
a0 tan

θ

2
+
∞∑
k=1

ak sin kθ

)
,

ψ(ζ = eiθ, t) = ejσt

(
1

2
a0 +

∞∑
k=1

ak cos kθ

)
.

 (10.18)

In physical space, on the surface of the plate we have

φ(z = x± 0i, t) = ejσtΦ±(x) = ejσt

(
±1

2
a0

√
1− x
1 + x

±
∞∑
k=1

ak sin kθ

)
,

ψ(z = x± 0i, t) = ejσtΨ(x) = ejσt

(
1

2
a0 +

∞∑
k=1

akTk(x)

)
,

 (10.19)

where we have used x = cos θ. ψ has equal values on the top and bottom since it is

even in θ, whereas φ is odd in θ and thus has a discontinuity in physical space.
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The no-penetration condition can be written as

∂ψ

∂x
|y=0 = −

(
∂

∂t
+

∂

∂x

)2

Y, (10.20)

which simplifies to

DΨ = −(jσ +D)2Y0, (10.21)

where D = d/dx. Given Y0, this equation allows us to solve for all ak except a0. To

solve for a0, we begin by writing the vertical velocity on the surface of the plate as

v(z = x+ 0i, t) = ejσtV (x) = ejσt

(
1

2
V0 +

∞∑
k=1

VkTk(x)

)
. (10.22)

The no-penetration condition can then be written as

V = (jσ +D)Y0. (10.23)

The coefficient a0 is given by

a0 = −C(jσ)(V0 + V1) + V1, (10.24)

where

C(jσ) =
K1(jσ)

K0(jσ) +K1(jσ)
(10.25)

is the Theodorsen function, and Kν is the modified Bessel function of the second kind

of order ν. The expression for a0 is derived in Wu (1961).

With all of the ak known, the pressure difference across the plate can be written

as

∆p(x, t) = ejσtP0(x) = ejσt

(
a0

√
1− x
1 + x

+ 2
∞∑
k=1

ak sin kθ

)
. (10.26)

We note that the pressure difference depends linearly on the deflection Y0.
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Altogether, given the deflection Y0, we may calculate the coefficients ak. The

coefficients ak are used to calculate the pressure difference across the plate, which

alters the deflection of the plate via (10.3). The coupled fluid-structure problem

must be solved numerically.

10.A.1 Numerical method

Substituting the Chebyshev series (10.14) into the Euler-Bernoulli equation (10.3)

gives a fourth-order differential equation for Y0:

− 2σ2RY0 +
2

3
SD4Y0 = P0. (10.27)

The corresponding boundary conditions (10.6) are re-written as

Y0(−1) = h0, Y0,x(−1) = θ0, Y0,xx(1) = 0, Y0,xxx(1) = 0, (10.28)

where h0 and θ0 are the heaving and pitching amplitudes at the leading edge, re-

spectively. We re-iterate that the pressure difference across the plate P0 is a linear

function of the deflection Y0, and so (10.27)–(10.28) give a linear, homogemeous

boundary value problem for Y0. When solving for the deflection Y0, all infinite series

are truncated to the upper limit N .

The numerical method to solve the boundary value problem is given in Moore

(2017). The method is a pseudo-spectral Chebyshev scheme that uses Gauss-

Chebyshev points. The method is fast (O(N logN)) and accurate, avoiding errors

typically encountered when using Chebyshev methods to solve high-order differential

equations by pre-conditioning the system with continuous operators. Quadrature

formulas for the thrust and power coefficients in (10.7) and (10.8) are also given in

Moore (2017).
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10.B Eigenvalues of the system

Here, we seek to determine the natural response of a flexible plate whose leading edge

is held clamped in an oncoming flow (Alben, 2008a; Michelin and Llewellyn Smith,

2009; Eloy et al., 2007). This amounts to finding the eigenvalues and eigenvectors of

the system (10.3) with homogeneous boundary conditions (h(t) ≡ 0 and θ(t) ≡ 0). To

do so, quantities that were previously written as Fourier-Chebyshev expansions (the

deflection, complex potential, and velocity) are now written as Chebyshev series with

time-varying coefficients. Following the preceding analysis, we arrive at the following

equations:

2RYtt +
2

3
SYxxxx = ∆p, (10.29)

Y (x, t) =
1

2
β0(t) +

∞∑
k=1

βk(t)Tk(x), (10.30)

∆p(x, t) = a0(t)

√
1− x
1 + x

+ 2
∞∑
k=1

ak(t) sin kθ, (10.31)

∞∑
k=1

akT
′
k = −1

2
β̈0 −

∞∑
k=1

[
β̈kTk + 2β̇kT

′
k + βkT

′′
k

]
, (10.32)

where a dot denotes differentiation with respect to t and a prime denotes differentia-

tion with respect to x.

As before, we need an additional equation to determine a0. For now, we use (10.24)

but treat the Theodorsen function as a constant C. The coefficient a0 is then

a0 = −C(V0 + V1) + V1, (10.33)

where Vk is the kth Chebyshev coefficient of the vertical velocity on the surface of the

plate. The Vk are obtained by evaluating the no-penetration condition (10.5):

1

2
V0 +

∞∑
k=1

VkTk =
1

2
β̇0 +

∞∑
k=1

[
β̇kTk + βkT

′
k

]
. (10.34)
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Treating a0 in this manner will yield a linear eigenvalue problem. After obtaining the

eigenvalues and eigenfunctions of the linear eigenvalue problem, we will use those as

initial guesses for the nonlinear eigenvalue problem, which will use the full Theodorsen

function. But first, we proceed with the description of the linear eigenvalue problem.

We can write the equations more compactly as follows:

2Rβ̈ +
2

3
SD4β) = P , (10.35)

P = Aa, (10.36)

Da = −β̈ − 2Dβ̇ −D2β, (10.37)

V = β̇ +Dβ, (10.38)

with (10.33) for a0. In the above, β is a vector of the Chebyshev coefficients of

the deflection Y , and similarly for P (pressure), a (potential), and V (vertical ve-

locity). P = Aa simply states that the Chebyshev coefficients of the pressure are

linear combinations of the coefficients ak, and D is the spectral representation of the

differentiation operator.

Putting everything together, we get the following ordinary differential equation:

2Rβ̈ +
2

3
SD4β) = A[−D−β̈ − 2D−Dβ̇ + e1(e2 − Ce1 − Ce2)T β̇

−D−D2β + e1(e2 − Ce1 − Ce2)TDβ], (10.39)

where D− is the spectral representation of the integration operator that makes the

first Chebyshev coefficient zero, and ek is the kth Euclidean basis vector. (10.39) can
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be written in state-space form as

d

dt

β
β̇

 =

 0 I

M−1A1 M−1A2


β
β̇

 ,
M = 2R + AD−,

A1 = −2

3
SD4 − AD−D2 + Ae1(e2 − Ce1 − Ce2)TD,

A2 = −2AD−D + Ae1(e2 − Ce1 − Ce2)T .


(10.40)

When numerically solving the system, the infinite series are truncated to finite

series. In order to incorporate the four boundary conditions into (10.40), the last

four rows of the differential equation for β̈ are replaced by the boundary conditions.

The system is then

d

dt

I 0

0 I−4


β
β̇

 =

 0 I

M−1A1 M−1A2


β
β̇

 , (10.41)

where I−4 is the identity matrix with the last four diagonal entries being zeros. The

last four rows of the right-hand side are replaced by the boundary conditions. We

now have a generalized eigenvalue problem to solve for the eigenvalues of the system.

10.B.1 Nonlinear eigenvalue problem

Having obtained the solution to the linear eigenvalue problem, we use it as an initial

guess for the nonlinear eigenvalue problem. The nonlinear eigenvalue problem is

obtained by making the ansatz

Y (x, t) = eλtY0(x),

Y0(x) = 1
2
β0 +

∑∞
k=1 βkTk(x).

 (10.42)
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This is the same as in Appendix 10.A, except that we allow the exponent λ to be

any complex number instead of just an imaginary number. Proceeding as in Ap-

pendix 10.B, we arrive at the following equations:

2λ2Rβ +
2

3
SD4β) = P , (10.43)

P = Aa, (10.44)

Da = −λ2β − 2λDβ −D2β, (10.45)

V = λβ +Dβ, (10.46)

a0 = −C(λ)(V0 + V1) + V1, (10.47)

where the notation is as in Appendix 10.B.

Putting everything together, we get the following equation:

2λ2Rβ +
2

3
SD4β) = A[−λ2D−β − 2λD−Dβ + λe1(e2 − C(λ)e1 − C(λ)e2)Tβ

−D−D2β + e1(e2 − C(λ)e1 − C(λ)e2)TDβ], (10.48)

where the notation is as in Appendix 10.B. Truncating the upper limit of the infinite

series to N , (10.48) gives N + 1 equations for N + 2 unknowns (the N + 1 elements

of β and λ). We add an equation which normalizes β in order to make the system

square. As before, the last four equations are replaced by the boundary conditions.

We solve for β and λ using the Newton-Raphson method, using absolute and relative

error tolerances 10−6. For cases where the Newton-Raphson method did not converge,

we calculated the solution by looking at a global picture of the determinant of the

system and finding its roots.

To validate our method for calculating eigenvalues, we calculate the eigenvalues

for the same set of parameters as in figure 4(c,d) in Alben (2008a). In figure 10.21,

we compare the eigenvalues calculated using our method to some of the eigenvalues
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Figure 10.21: Comparison between eigenvalues calculated using our method and those
found in figures 4c and 4d in Alben (2008a). Note that just for this figure, we adopt
the notation used in Alben (2008a).

in Alben (2008a), adopting the notation used in that work. Our eigenvalues agree

well with those from Alben (2008a), lending confidence to our method.

10.B.2 Quiescent fluid

Consider the case where the plate is immersed in a quiescent fluid, i.e. where the

bending velocity is large compared to the fluid velocity. How do the eigenvalues

of the system change? To answer this question, we solve the Euler-Bernoulli and

Euler equations (10.1)–(10.2) in the limit of large bending velocity. In this limit,

the appropriate time scale to use is the bending time scale, which we choose to be√
3ρsL4/(4Ed2). Non-dimensionalizing the solid and fluid equations using the length

scale L/2 and the bending time scale yields

Ytt + Yxxxx =
1

2R
∆p,

∇ · u = 0,

ut +

√
3R

S
ux = ∇φ,


(10.49)
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where R and S are as in (10.4), and φ = p∞ − p. In the above, x, t, Y , u, and p are

now dimensionless, with the pressure non-dimensionalized by ρfEd
3/(3ρsdL

2). The

limit of a quiescent flow corresponds to R/S → 0, or equivalently Ed2/ρsL
2 � U2,

which explicitly puts this limit in terms of velocity scales. For now, we keep all terms

and discuss the limit later. Intuitively, large values of the solid-to-fluid mass ratio R

make the fluid dynamics inconsequential to the deflection of the plate (a heavy plate

will be unaffected by the surrounding fluid).

The fluid additionally satisfies the no-penetration condition, stated as

v|x∈[−1,1],y=0 = Yt +

√
3R

S
Yx. (10.50)

The boundary conditions on the plate are

Y (−1, t) = 0, Yx(−1, t) = 0, Yxx(1, t) = 0, Yxxx(1, t) = 0. (10.51)

We solve for the fluid motion for a given deflection as in Appendix 10.A. Writing

the deflection as

Y (x, t) =
1

2
β0(t) +

∞∑
k=1

βk(t)Tk(x), (10.52)

and the components of the complex potential evaluated on the surface of the plate as

φ(z = x± 0i, t) = ±1

2
a0(t)

√
1− x
1 + x

±
∞∑
k=1

ak(t) sin kθ,

ψ(z = x± 0i, t) =
1

2
a0(t) +

∞∑
k=1

ak(t)Tk(x),

 (10.53)

the pressure difference across the surface of the plate is

∆p(x, t) = a0(t)

√
1− x
1 + x

+ 2
∞∑
k=1

ak(t) sin kθ. (10.54)
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The coefficients ak are obtained by applying the no-penetration condition,

∂ψ

∂x
|y=0 = −

(
∂

∂t
+

√
3R

S

∂

∂x

)2

Y. (10.55)

This does not yield a0, which is instead given by the Laplace domain equation

a0 = −
√

3R

S
C(V0 + V1) +

√
3R

S
V1. (10.56)

In the limit of a quiescent fluid (R/S → 0), a0 → 0. Thus all of the coefficients ak are

determined by (10.55), which itself simplifies since the second term in the parentheses

is zero in the limit R/S → 0. We note that in this limit the only fluid force on the

plate is the force due to added mass.

Putting everything together, we get the following ordinary differential equation:

β̈ +D4β = − 1

R
AD−β̈, (10.57)

where β is the vector of coefficients βk, D is the spectral representation of the differ-

entiation operator, and D− is the spectral representation of the integration operator

that makes the first Chebyshev coefficient zero. The operator A maps the coefficients

ak, which are the coefficients of a sine series for the pressure, into the corresponding

coefficients of a cosine series. If Ts is an operator that takes us from the x-domain to

the sine domain, and Tc is an operator that takes us from the x-domain to the cosine

domain, then A = TcT
−1
s . (10.57) can be written in state-space form as

d

dt

β
β̇

 =

 0 I

−
(
I +

1

R
AD−

)−1

D4 0


β
β̇

 . (10.58)

When numerically solving the system, the infinite series are truncated to finite

series. In order to incorporate the four boundary conditions into (10.59), the last
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four rows of the differential equation for β̈ are replaced by the boundary conditions.

This is fine to do since the last four rows read β̈k = 0 due to four applications of the

differentiation operator D. The system is then

d

dt

I 0

0 I−4


β
β̇

 =

 0 I

−
(
I +

1

R
AD−

)−1

D4 0


β
β̇

 , (10.59)

where I−4 is the identity matrix with the last four diagonals being zeros. The last

four rows of the right-hand side are replaced by the boundary conditions. We now

have a generalized eigenvalue problem to solve for the eigenvalues of the system.

10.C Some useful formulas

The following is a collection of useful definitions and formulas from Moore (2017) for

the Chebyshev method employed here. The (interior) Gauss-Chebyshev points are

xn = cos θn, θn =
π(2n+ 1)

2(N + 1)
, for n = 0, 1, . . . , N. (10.60)

Consider a function f(x) interpolated at these points by the polynomial pN(x) of

degree N :

f(xn) = pN(xn), for n = 0, 1, . . . , N,

PN(xn) =
1

2
b0 +

N∑
k=1

bkTk(x).

 (10.61)

On the θ-grid this is

f(xn) =
1

2
b0 +

N∑
k=1

bk cos kθn, for n = 0, 1, . . . , N. (10.62)

Thus we may use the fast discrete cosine transform to transform between a function’s

values on the collocation points, f(xn), and the Chebyshev coefficients bk.
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The antiderivative of pN(x) is

D−1pN(x) =
1

2
B0 +

N+1∑
k=1

BkTk(x),

Bk =
1

2k
(bk−1 − bk+1), for n = 1, 2, . . . , N.

 (10.63)

B0 is a free constant of integration.

The derivative of pN(x) is

DpN(x) =
1

2
b′0 +

N∑
k=1

b′kTk(x),

b′N+1 = b′N = 0,

b′k = b′k+2 + 2(k + 1)bk+1, for n = N − 1, N − 2, . . . , 0.


(10.64)

Since the endpoints x = ±1 are not part of the collocation grid, we give a formula

to evaluate the function at the endpoints:

pN(±1) =
1

2
b0 +

N∑
k=1

(±1)kbk. (10.65)
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Chapter 11

Distributed flexibility in inertial

swimmers

Daniel Floryan and Clarence W. Rowley

Appears as Floryan and Rowley (2019).

Using a linear inviscid model of a passively flexible swimmer, we explore how dis-

tributed flexibility modifies the thrust production, power consumption, and propul-

sive efficiency compared to swimmers with uniform flexibility. The frequencies of

actuation and mean stiffness ratios considered cover several orders of magnitude,

while the mass ratio is fixed to a low value representative of swimmers. Distributed

flexibility makes no qualitative differences, but does introduce important quantitative

differences. Calculating optimal stiffness distributions, we find that: (1) to maximize

thrust, stiffness should be distributed so as to create a favourable natural frequency,

or concentrated toward the leading edge; (2) to minimize power, stiffness should be

distributed so as to avoid natural frequencies, or concentrated away from the lead-

ing edge; and (3) meaningful gains in efficiency can be made when the stiffness is

distributed so as to elicit flutter behaviour, which induces efficient travelling wave
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kinematics. We also consider the effects of a finite Reynolds number in the form of

streamwise drag.

11.1 Introduction

Animal swimming and flight is complex. To make headway in understanding how

animals swim and fly, we often abstract the coordinated motion of entire bodies to

plates flapping in a fluid; this is the “channel flow” for swimming and flying, as

reflected in the vast literature (see the reviews in Triantafyllou et al. (2000); Wang

(2005); Wu (2011), for example). A salient feature of the fins and wings of swimming

and flying animals is flexibility. Flexibility allows fish to use fine musculature to

actively control their kinematics to some degree (Fish and Lauder, 2006), and allows

birds to morph their wings (Bergmann, 1839), but also passively influences kinematics

through elastic restoring forces.

Simple flapping plate models of swimming and flight incorporate flexibility by

modelling the plate as a uniformly elastic material, allowing it to deform according

to the fluid and elastic forces it experiences. In the context of forward propulsion, we

are most interested in the thrust that a flapping plate can produce, as well as how

efficiently it produces the thrust. Passive flexibility changes the thrust that a flapping

plate produces, as well as the efficiency of thrust production. It has generally been

found that, compared to rigid plates, uniformly flexible plates produce greater thrust

when actuated near a fluid-structure natural frequency, and less thrust otherwise, but

the efficiency of uniformly flexible plates is greater than that of rigid plates over a

broad range of frequencies and stiffnesses (Alben, 2008b; Ferreira de Sousa and Allen,

2011; Dewey et al., 2013; Katz and Weihs, 1978, 1979; Quinn et al., 2014; Floryan

and Rowley, 2018). While thrust generally exhibits local maxima when actuating
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near natural frequencies, efficiency has been observed to exhibit local maxima below

natural frequencies, near natural frequencies, and above natural frequencies (Dewey

et al., 2013; Moored et al., 2014; Quinn et al., 2014, 2015; Paraz et al., 2016), as well

as at frequencies relatively far from a natural frequency (Ramananarivo et al., 2011;

Kang et al., 2011; Vanella et al., 2009; Zhu et al., 2014; Michelin and Llewellyn Smith,

2009). We recently clarified that resonant behaviour in efficiency — at least for

swimmers, where the characteristic fluid mass is much greater than the body mass —

can only arise when viscous forces are present, or if nonlinear effects are not negligible

(Floryan and Rowley, 2018).

Animals’ fins and wings are not uniformly flexible, however. The material prop-

erties of fins and wings may change along the chord (as the musculature, fat content,

and skin changes, for example), as may the thickness. (Figure 17 in Fish and Lauder

(2006) shows a beautiful example of varying material properties and thickness of

the fluke of a bottlenose dolphin.) Flexibility may even be highly localized, as in

the veined wings of insects Combes and Daniel (2003a). We thus ask how distributed

(nonuniform, heterogeneous) flexibility affects thrust production and efficiency in flap-

ping plates, in contrast to uniform flexibility.

Only recently have people begun to explore how the distribution of flexibility

affects propulsion in flapping plates. Experiments tend to focus on biomimetic flex-

ibility distributions similar to fish fins, where the leading portion of the plate is

stiffer than the trailing portion. The literature includes results on distributions that

are fully biomimetic with pure pitching motions (Riggs et al., 2010), stepwise con-

stant distributions with pure heaving and zero angle of attack motions (Lucas et al.,

2015), and supposedly linear distributions with pure heaving motions (Kancharala

and Philen, 2016); all of these experiments were for cases where the characteristic

fluid mass is much greater than the characteristic body mass, as in swimmers. The

experiments generally show that plates that are stiffer towards the leading edge pro-
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duce more thrust and do so more efficiently than plates that are uniformly flexible.

It is very important to note, however, that in the cited works, the plates with uni-

form and distributed flexibilities had different mean stiffnesses, making it difficult to

distinguish between the effects of changes in mean stiffness and changes in stiffness

distribution. Being able to make the distinction is important because, as we will show

later, changing the mean stiffness can significantly change natural frequencies, which

have significant effects on thrust and efficiency, and changing the mean stiffness also

changes the off-resonance behaviour in efficiency (Alben, 2008b; Floryan and Rowley,

2018).

Computational works have also analyzed how the distribution of flexibility affects

propulsion. In most studies, the characteristic fluid mass is of the same order as the

characteristic body mass, as in fliers (many of these studies are motivated by insect

flight). Distributed flexibility has been modelled in several ways: as a uniform elastic

plate with virtual linear springs at several control points (the virtual linear springs

attach the elastic sheet to points with a priori known motions, mimicking veins in

insect wings) (Shoele and Zhu, 2013); as an elastic plate with varying material prop-

erties (Moore, 2015); and as an elastic plate with homogeneous material properties

but varying thickness (Yeh et al., 2017). Both Shoele and Zhu (2013) and Yeh et al.

(2017) found that plates with stiff leading edges produced thrust curves that had

lower, but broader, peaks than those of uniformly flexible plates, and that plates

with stiff leading edges were broadly more efficient than uniformly flexible plates.

Moore (2015) optimized the stiffness (mean and distribution) at fixed frequencies for

thrust, and found that a plate that is rigid except at the leading edge (where it has a

torsional spring) produced greater thrust than any other flexible plate (although the

thrust is not much greater than that produced by a plate with linearly distributed

flexibility). The only computational work directly applicable to swimmers, where

the characteristic fluid mass is much greater than the characteristic body mass, is
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Kancharala and Philen (2016), where the authors found that a stiffer leading edge

enhances thrust and efficiency for their kinematics.

Although several studies have shown that distributed flexibility can enhance the

propulsion of flexible flapping plates in some way, the mechanisms are unclear. In

particular, none of the cited studies have controlled for mean stiffness, which is known

to significantly affect propulsion, so it is impossible to know how the distribution of

flexibility alone affects propulsion. The eigenvalues of the system can provide a basis

to understand how the distribution of flexibility affects propulsion, but this approach

has not yet been pursued. Furthermore, the literature has only given conditions that,

if met, give rise to improvements in thrust or efficiency, but this is far from a complete

characterization of the effects of the distribution of flexibility. For example, although

we know that a plate with a stiff leading edge operating at a certain frequency and

mean stiffness produces greater thrust than a uniformly flexible plate with a different

mean stiffness, we cannot generalize this statement to other cases, or conclude that

other distributions do not improve propulsion.

In this work, we attempt to completely characterize how distributed flexibility, in

contrast to uniform flexibility, changes the thrust production, power consumption, and

efficiency of propulsion of flapping plates. We emphasize the role of the distribution

of flexibility — separate from its mean value — particularly how it alters natural

frequencies and resonance. We also calculate optimal stiffness distributions, and

explain them in light of the preceeding analysis. To be clear, our own interests lie

mainly in inertial swimmers characterized by high Reynolds numbers and a large ratio

of characteristic fluid mass to body mass. This is in contrast to fliers, for example,

where the mass ratio is of order unity and higher. We employ a linear model of

a passively flexible swimmer, since doing so allows us to formally calculate natural

frequencies of the coupled fluid-structure system, and to stay in a dynamical regime

where the notion of resonance is clear.
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Figure 11.1: Schematic of the problem. The varying colour represents the varying
material properties.

11.2 Problem description

Here, the setup and assumptions are the same as in Moore (2017). Consider a two-

dimensional, inextensible elastic plate of length L and thickness d. The plate is thin

(d� L), and is transversely deflected a small amount Y from its neutral position, with

its slope Yx � L. Under these assumptions, the dynamics of the plate is governed by

Euler-Bernoulli beam theory. The plate has density ρs and flexural rigidity B = EI,

where E is the Young’s modulus, I = wd3/12 is the second moment of area of the

plate, and w is the width of the plate. We allow the properties of the plate to vary

spatially, that is, ρs, E, and d are functions of x. The plate is immersed in an

incompressible, inviscid Newtonian fluid of density ρf . There is no flow along the

width of the plate, and far from the plate the flow is unidirectional and constant:

U = U i. The setup is altogether illustrated in figure 11.1.

The motion of the plate alters the velocity field of the fluid, whose forces in turn

modify the motion of the plate. The transverse position of the plate satisfies the

Euler-Bernoulli beam equation

ρsdwYtt + (BYxx)xx = w∆p, (11.1)

where ∆p is the pressure difference across the plate due to the fluid flow, subscript

t denotes differentiation with respect to time, and subscript x denotes differentia-
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tion with respect to streamwise position. The fluid motion satisfies the linearized

incompressible Euler equations

∇ · u = 0,

ρf (ut + Uux) = −∇p,

 (11.2)

where u = ui + vj. The above linearization is valid when the perturbation velocity

u is much smaller than U . Since the perturbation velocity depends on the plate’s

vertical velocity, its slope, and the rate of change of its slope, the linear assumption

holds for small-amplitude motions of the plate.

We non-dimensionalize the above equations using L/2 as the length scale, U as

the velocity scale, and L/(2U) as the time scale, yielding

2RYtt +
2

3
(SYxx)xx = ∆p,

∇ · u = 0,

ut + ux = ∇φ,


(11.3)

where

R =
ρsd

ρfL
, S =

Ed3

ρfU2L3
, φ = p∞ − p. (11.4)

In the above, x, t, Y , u, and p are now dimensionless, with the pressure non-

dimensionalized by ρfU
2. The coordinates are aligned such that x = −1 corresponds

to the leading edge and x = 1 corresponds to the trailing edge. R is a ratio of solid-

to-fluid mass, and S is a ratio of bending-to-fluid forces, and both are functions of x.

Note that ∆φ = −∆p.
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The fluid additionally satisfies the no-penetration and Kutta conditions, which

can be stated as

v|x∈[−1,1],y=0 = Yt + Yx,

|v||(x,y)=(1,0) <∞.

 (11.5)

We impose heaving and pitching motions h and θ, respectively, on the leading

edge of the plate, while the trailing edge is free, resulting in boundary conditions

Y (−1, t) = h(t), Yx(−1, t) = θ(t), Yxx(1, t) = 0, Yxxx(1, t) = 0. (11.6)

The fluid motion resulting from the actuation of the leading edge of the plate imparts

a net horizontal force onto the plate. In other words, energy input into the system

by the actuation of the leading edge is used to generate a propulsive force. The net

horizontal force (thrust) on the plate is

CT =

∫ 1

−1

∆pYx dx+ CTS, (11.7)

where CTS is the leading edge suction force (formula given in Moore (2017)), and the

power input is

CP = −
∫ 1

−1

∆pYt dx. (11.8)

The leading edge suction force used in Moore (2017) is the limit of the suction force

on a leading edge of small but finite radius of curvature, in the limit that the radius

tends to zero. The leading edge suction force is a reasonable model of the actual flow

when it is attached (Saffman, 1992), so we have chosen to include it. In terms of

dimensional variables, CT = T/(1
2
ρfU

2Lw) and CP = P/(1
2
ρfU

3Lw), where T and

P are the dimensional net thrust and power input, respectively. Finally, the Froude

efficiency is defined as

η =
TU

P
=
CT

CP
, (11.9)
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where the overbar denotes a time-averaged quantity.

In this work, we restrict ourselves to actuation at the leading edge that is sinusoidal

in time, that is,

h(t) = h0ejσt,

θ(t) = θ0ejσt,

 (11.10)

where σ = πLf/U is the dimensionless angular frequency, f is the dimensional fre-

quency in Hz, j =
√
−1, and the real part in j should be taken when evaluating the

deflection. Since the system is linear in Y , the resulting deflection of the plate and

fluid flow will also be sinusoidal in time. We leave the details of the method of solu-

tion to Appendix 11.A, noting that all calculations in this work used either 64 or 128

collocation points. The method to calculate the eigenvalues of the system is detailed

in Appendix 11.B, and some useful formulas for the numerical method used are given

in Appendix 11.D.

11.3 Parameters and scope

The system parameters we use will critically affect the phenomena we observe. We

thus take the opportunity here to explicitly state the parameters we use in this work,

noting some attendant qualitative features.

The system is parameterized by its Reynolds number, Re, mass (mean and distri-

bution), stiffness (mean and distribution), and frequency and amplitude of actuation.

Our flow is inviscid, but we will briefly remark on the effects of a finite Reynolds

number later. The non-dimensional quantities in (11.4) show that the mass and stiff-

ness of the system depend on both the solid and the fluid. Underwater swimmers

tend to be thin and neutrally buoyant, so the mass ratio R is generally quite low; this

is in contrast to fliers, for example, whose mass ratios are of order unity and higher.

Since our interests lie in swimmers, we take the mean mass ratio to be 〈R〉 = 0.01
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Re 〈R〉 =
〈ρsd〉
ρfL

〈S〉 =
〈Ed3〉
ρfU2L3

f ∗ =
fL

U
h0 θ0

inviscid 0.01 10−2–102 10−1–102 2 (linear) 1 (linear)

Table 11.1: Parameter values used in this work.

throughout, where 〈·〉 denotes the spatial mean along the length of the plate. The

stiffness of the system is characterized by the stiffness ratio S; we vary the mean

stiffness of the system from very flexible (〈S〉 � 1) to very stiff (〈S〉 � 1). We

vary the frequency of actuation so that it covers multiple natural frequencies of the

system. Since our system is linear, scaling the amplitude by some factor will simply

scale the flow and deflection fields by the same factor. In this sense, amplitude does

not matter in our problem, so we set the heaving and pitching amplitudes so that

the maximum deflection of the trailing edge of a rigid plate is equal to the length of

the plate. The amplitude affects both thrust and power quadratically, and does not

affect efficiency in this linear setting. We do not consider nonlinear effects caused by

large amplitudes. The parameters we use in the proceeding sections are summarized

in table 11.1.

As shown in Floryan and Rowley (2018), the value of the mean mass ratio 〈R〉

qualitatively changes the propulsion of a flapping plate. At low values, however,

the mass of the plate is dominated by the mass of the fluid. With 〈R〉 = 0.01, we

expect the mass of the plate to have little effect on propulsion, and consequently

the distribution of mass should also have little effect on propulsion, at least for cases

where there is not a large amount of mass concentrated in a small area. In figure 11.2,

we plot the thrust coefficient, power coefficient, and efficiency as functions of the

mass distribution for 〈R〉 = 0.01, S ≡ 1, and f ∗ = 1 for heaving and pitching

plates. Here, we have taken the mass to be distributed linearly, in which case it is

described by a single parameter dR∗/dx, where R = 〈R〉R∗, R∗ is the distribution

of mass, and hence 〈R∗〉 = 1. Note that dR∗/dx ∈ [−1, 1] (otherwise a section of
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the plate would have negative mass), where dR∗/dx = −1 corresponds to a massive

leading edge, dR∗/dx = 0 corresponds to uniformly distributed mass, and dR∗/dx = 1

corresponds to a massive trailing edge. The thrust coefficient, power coefficient,

and efficiency in figure 11.2 have been normalized by their values when the mass is

uniformly distributed. At such low 〈R〉 the distribution of mass matters little; this

is in contrast to stiffness, whose distribution can greatly affect thrust, power, and

efficiency, as shown in figure 11.3 for the same mean parameter values as used in

figure 11.2. Accordingly, we will take R ≡ 0.01 in all proceeding results. We expect

our results to hold for low mass ratios (R . 0.1). We will allow the stiffness to vary

in space, with the mean value given by 〈S〉 and the distribution given by S∗. The

distribution S∗ can be conveniently described as a linear combination of Legendre

polynomials,

S∗ =
∑
i

ciPi, (11.11)

the first few of which are

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1). (11.12)

Legendre polynomials are convenient because they are orthogonal on x ∈ [−1, 1] with

weighting function 1. Consequently, we can fix 〈S∗〉 = 1 by fixing the coefficient of

the first Legendre polynomial P0 equal to 1.

11.4 Inviscid results

In the Introduction, we asked how distributed flexibility modifies propulsion in com-

parison to uniform flexibility. Before presenting our results on the kinematics and

propulsive characteristics of flapping plates with distributed flexibility, we will briefly

review the results for uniform flexibility from Floryan and Rowley (2018) in order
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Figure 11.2: Thrust coefficient, power coefficient, and efficiency as a function of the
mass distribution for a (a) heaving and (b) pitching plate for 〈R〉 = 0.01, S ≡ 1,
and f ∗ = 1. R is linear, and values are normalized by their value when the mass is
uniformly distributed.
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Figure 11.3: Thrust coefficient, power coefficient, and efficiency as a function of the
stiffness distribution for a (a) heaving and (b) pitching plate for R ≡ 0.01, 〈S〉 = 1,
and f ∗ = 1. S is linear, and values are normalized by their value when the mass is
uniformly distributed.
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to contextualize our results. All of our results for uniformly flexible plates will be

presented relative to rigid plates. For example, we will present the mean thrust that

a uniformly flexible plate produces relative to the mean thrust that an otherwise

identical rigid plate produces.

11.4.1 Propulsive characteristics of flapping plates with uni-

form flexibility

The amplitude of the trailing edge deflection, the mean thrust coefficient, and the

mean power coefficient all exhibit the same qualitative behaviour in the frequency-

stiffness plane. For reference, we have plotted the trailing edge amplitude in fig-

ure 11.4. For mid-to-high values of the reduced frequency and stiffness ratio, ridges of

local maxima are apparent. These ridges coincide with the natural frequencies (imag-

inary parts of the eigenvalues) of the system, indicating a resonant response. In this

region of the frequency-stiffness plane, the natural frequencies are well-approximated

by the quiescent natural frequencies, which are calculated in the limit where the

bending velocity is large compared to the fluid velocity; we provide more details

in Appendix 11.B.2. The eigenvalues are lightly damped (small angle relative to the

imaginary axis) and well-separated, leading to the sharp ridges observed. The natural

frequencies increase as the stiffness ratio increases, conforming to our intuition based

on a clamped Euler-Bernoulli beam in vacuo, and can be shown to vary as f ∗ ∼ S1/2

in this region of the frequency-stiffness plane. We will refer to these eigenvalues and

the corresponding eigenfunctions as Euler-Bernoulli modes.

The behaviour is quite different when the reduced frequency and stiffness ratio

are low, however. In this region of the frequency-stiffness plane, the resonant peaks

broaden and smear together as the stiffness ratio decreases because the eigenvalues

become more damped and move closer to each other. A ridge aligned in the direction

opposite to the other ridges emerges, with the frequency decreasing with stiffness,
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Figure 11.4: Trailing edge amplitude as a function of reduced frequency f ∗ and stiff-
ness ratio S for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to that of
an equivalent rigid plate. Dashed white lines indicate where the flexible plate has the
same trailing edge amplitude as the equivalent rigid plate. Under-resolved areas have
been whited out. Results are for a uniformly flexible plate. The mean thrust and
mean power coefficients are qualitatively the same as the trailing edge amplitude.

although we note that the mean thrust and mean power for a pitching plate actually

become negative here, in contrast to the trailing edge amplitude for a pitching plate.

Whereas the previous ridges coincided with the natural frequencies of the Euler-

Bernoulli modes, this ridge aligns with the natural frequencies of a flutter mode,

a mode that becomes unstable for low enough stiffness ratio and induces flutter in

the beam (as seen in a flag flapping in the wind, for example). With decreasing

stiffness ratio, Euler-Bernoulli modes are essentially replaced by flutter modes, with

the replacement occurring at lower values of the stiffness ratio for higher-order modes.

The flutter modes are weakly damped compared to the Euler-Bernoulli modes, leading

to ridges aligned with the flutter modes.

The efficiency behaves very differently from the trailing edge amplitude, mean

thrust, and mean power. In figure 11.5, we have plotted the difference in efficiency

between a uniformly flexible plate and an otherwise identical rigid plate. Whereas the
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Figure 11.5: Efficiency as a function of reduced frequency f ∗ and stiffness ratio S for
a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to that of an equivalent
rigid plate. Dashed white lines indicate where the flexible plate has the same efficiency
as the equivalent rigid plate. Under-resolved areas and areas that produce negative
efficiency have been whited out. Results are for a uniformly flexible plate.

trailing edge amplitude, mean thrust, and mean power have ridges of local maxima

aligned with the natural frequencies, the efficiency has a single broad region of high

values in the frequency-stiffness plane. Elsewhere in the plane, the local maxima in

thrust and efficiency cancel each other exactly, resulting in flat efficiency. The region

of high efficiency is aligned with the natural frequencies of the flutter mode. The

flutter mode induces travelling wave kinematics in the plate, which is known to be

highly efficient (Wu, 1961). It is worth keeping in mind that increases in efficiency

are often accompanied by decreases in thrust, as is evinced by the efficiency plot

for a pitching flexible plate (figure 11.5b). For the pitching plate, the cutoff where

efficiency and thrust become negative is aligned with the natural frequencies of the

flutter mode; although the flutter mode induces efficient kinematics, the kinematics

lead to low thrust. We must be wary of low values of thrust when drag is present in

the system.
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Figure 11.6: Trailing edge amplitude as a function of reduced frequency f ∗ and mean
stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to
that of an equivalent rigid plate. Dashed white lines indicate where the flexible plate
has the same trailing edge amplitude as the equivalent rigid plate. Under-resolved
areas have been whited out. Results are for a flexible plate with stiffness distribution
S∗(x) = 1 − 0.9x (stiff leading edge). The mean thrust and mean power coefficients
are qualitatively the same as the trailing edge amplitude.

11.4.2 Propulsive characteristics of flapping plates with dis-

tributed flexibility

We begin by considering linear stiffness distributions, which are described by a single

parameter dS∗/dx. Qualitatively, flexible plates with linearly distributed stiffness

are the same as flexible plates with uniformly distributed stiffness. In figures 11.6

and 11.7, we have plotted the trailing edge amplitude of plates with a stiff leading

edge (dS∗/dx = −0.9) and a soft leading edge (dS∗/dx = 0.9), respectively. As

before, the trailing edge amplitude is qualitatively representative of the mean thrust

and power coefficients. The plates with stiff and soft leading edges show the same

trends as a uniformly flexible plate: sharp resonant ridges for high reduced frequencies

and stiffness ratios; broadening and smearing of the ridges for low reduced frequencies

and stiffness ratios; and emergence of flutter modes for low stiffness ratios.
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Figure 11.7: Trailing edge amplitude as a function of reduced frequency f ∗ and mean
stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to
that of an equivalent rigid plate. Dashed white lines indicate where the flexible plate
has the same trailing edge amplitude as the equivalent rigid plate. Under-resolved
areas have been whited out. Results are for a flexible plate with stiffness distribution
S∗(x) = 1 + 0.9x (soft leading edge). The mean thrust and mean power coefficients
are qualitatively the same as the trailing edge amplitude.

The behaviour of the efficiency does not change either. In figures 11.8 and 11.9,

we have plotted the difference in efficiency between plates with stiff and soft leading

edges, respectively, and a rigid plate. In both cases, the efficiency does not have

any resonant ridges, but does have a broad region of high values for low reduced

frequencies and stiffness ratios. Just as for the trailing edge amplitude, mean thrust

coefficient, and mean power coefficient, the efficiency of plates with distributed flexi-

bility follows the same trends and for uniformly flexible plates.

By and large, there are no qualitative differences between plates with uniform stiff-

ness and plates with linearly distributed stiffness. The behaviour of the measures of

propulsive performance is dominated by the eigenvalues of the system, which are qual-

itatively the same for different distributions of stiffness: Euler-Bernoulli modes govern

the performance when the stiffness ratio is high, whereas flutter modes emerge and

govern the performance when the stiffness ratio is low. We posit that the behaviour
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Figure 11.8: Efficiency as a function of reduced frequency f ∗ and mean stiffness ratio
〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to that of an
equivalent rigid plate. Dashed white lines indicate where the flexible plate has the
same efficiency as the equivalent rigid plate. Under-resolved areas and areas that
produce negative efficiency have been whited out. Results are for a flexible plate with
stiffness distribution S∗(x) = 1− 0.9x (stiff leading edge).

102

100

10-1
10210010-2

102

100

10-1
10210010-2

(a) (b)

10-1 101

101

10-1 101

101
0.3

0.4

0.2

0.1

0.4

0.3

0.2

0.1

0

-0.1

Figure 11.9: Efficiency as a function of reduced frequency f ∗ and mean stiffness ratio
〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to that of an
equivalent rigid plate. Dashed white lines indicate where the flexible plate has the
same efficiency as the equivalent rigid plate. Under-resolved areas and areas that
produce negative efficiency have been whited out. Results are for a flexible plate with
stiffness distribution S∗(x) = 1 + 0.9x (soft leading edge).
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does not change qualitatively for higher-order distributions of stiffness. Although

there are no qualitative differences, there may be important quantitative differences,

and we shall explore them in the next section.

11.5 Optimal stiffness distributions

As discussed in the Introduction, the literature has shown that varying the distribu-

tion of stiffness quantitatively changes the propulsive performance of flexible plates.

In some cases (Moore, 2015; Kancharala and Philen, 2016), the stiffness distribu-

tion was optimized in order to achieve the greatest thrust/speed or greatest effi-

ciency/lowest cost of transport. Optimal stiffness distributions differed qualitatively

for different mass ratios. For a low mass ratio, relevant to swimmers, concentrating

the stiffness towards the leading edge maximized thrust and efficiency (Kancharala

and Philen, 2016), but the authors did not control for mean stiffness and only studied

a few frequencies. Here, we will calculate optimal stiffness distributions at every point

in the frequency-stiffness plane we have explored. Particularly, for every combination

of reduced frequency and mean stiffness, we solve for the distribution of stiffness that:

(a) maximizes thrust; (b) minimizes power; and (c) maximizes efficiency.

For now, we will limit ourselves to quadratic distributions of stiffness, but we will

end with how we expect our results to generalize to higher-order distributions. The

distribution of stiffness can be written as

S∗ = P0 + c1P1 + c2P2, (11.13)

where Pi are the Legendre polynomials (written out in (11.12)), and ci are the param-

eters we optimize over. The coefficient multiplying P0 is fixed to 1 so that 〈S∗〉 = 1.

Furthermore, we must restrict c1 and c2 so that S∗ is nonnegative on the plate. The
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Figure 11.10: (a) Feasible set of quadratic flexibility distributions. The interior re-
gion contains stiffness distributions that are positive everywhere on the plate, and
the border contains stiffness distributions that are positive except at a point. The
dark region contains stiffness distributions whose minima are at the leading/trailing
edge, and the light region contains stiffness distributions whose minima are at an
interior point of the plate. We have drawn some representative distributions in (b),
corresponding to the circles in (a).

physical constraint of nonnegativity leads to


−3c2

2 + 6c2 − c2
1 ≥ 0 if −3c2 ≤ c1 ≤ 3c2

1± c1 + c2 ≥ 0 otherwise.

(11.14)

The feasible set is drawn in figure 11.10, along with some representative stiffness

distributions. The dark region contains stiffness distributions whose minima are at

the leading/trailing edge, and the light region contains stiffness distributions whose

minima are at an interior point of the plate.

Altogether we have a nonlinear constrained optimization problem, with both the

objective function and the constraints being nonlinear in the optimization variables.

Since the feasible set is the union of an ellipse and a convex polyhedron, the orig-

inal optimization problem can be split into two optimization problems with linear

constraints (the ellipse can be described by linear constraints in polar coordinates).
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We solve the optimization problem using MATLAB’s default interior-point algorithm

(Mat, 2016).

11.5.1 Linear stiffness distributions

We begin by calculating optimal linear stiffness distributions, in which case the only

optimization parameter is the slope of the stiffness distribution, dS∗/dx. When

dS∗/dx < 0, we say that the plate has a stiff leading edge, and when dS∗/dx > 0,

we say that the plate has a soft leading edge. In figure 11.11, we have plotted the

optimal (thrust-maximizing) linear stiffness distribution, with the attendant optimal

mean thrust coefficient plotted in figure 11.12. There is a clear distinction in behaviour

between high-stiffness regions (where Euler-Bernoulli modes dominate the behaviour)

and low-stiffness regions (where flutter modes dominate), so we will discuss them in

turn.

When the Euler-Bernoulli modes dominate the response, the optimal stiffness

distribution at a given reduced frequency and mean stiffness ratio is the one that

has a natural frequency at that frequency of actuation. This is consistent with our

understanding of uniformly stiff plates, where actuating at a natural frequency pro-

duces a local maximum in thrust. By tuning the stiffness distribution appropriately,

we can tune the natural frequencies of the plate so that they coincide with the fre-

quency of actuation. The ability to tune the locations of natural frequencies broadens

the resonant response, thereby broadening the regions of high thrust, as evinced by

figure 11.12. These results starkly contrast those for a plate with a fixed stiffness

distribution, where the resonant response is quite narrow (cf. figures 11.4, 11.6, and

11.7).

A resonant response is not always possible, however. Although being able to

modify the stiffness distribution greatly broadens the resonant ridges, there are still

valleys of relatively low thrust in between the resonant ridges. This is because natural
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Figure 11.11: Optimal linear stiffness distribution as a function of reduced frequency
f ∗ and mean stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01.
Under-resolved areas and areas that produce negative thrust have been whited out.
Results are for a flexible plate with linear stiffness distribution optimized for thrust.
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Figure 11.12: Thrust coefficient as a function of reduced frequency f ∗ and mean
stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to
that of an equivalent rigid plate. Dashed white lines indicate where the flexible plate
has the same thrust coefficient as the equivalent rigid plate. Under-resolved areas and
areas that produce negative thrust have been whited out. Results are for a flexible
plate with linear stiffness distribution optimized for thrust.
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Figure 11.13: Same as in figure 11.11, but with natural frequencies overlaid as curves
for dS∗/dx = −0.9 (stiff leading edge, green), dS∗/dx = 0 (uniformly stiff, white),
and dS∗/dx = 0.9 (soft leading edge, purple).

frequencies of lower-order modes do not overlap with natural frequencies of higher-

order modes. To make the situation clear, we have re-plotted the optimal linear

stiffness distribution in figure 11.13 with the natural frequencies for stiff leading edge

(dS∗/dx = −0.9, green), uniformly stiff (dS∗/dx = 0, white), and soft leading edge

(dS∗/dx = 0.9, purple) plates overlaid as three sets of curves. Clearly, the natural

frequency of the first Euler-Bernoulli mode for a plate with a stiff leading edge is

nowhere close to the natural frequency of the second Euler-Bernoulli mode for a plate

with a soft leading edge, and so on for higher-order modes. The gap between natural

frequencies that are attainable with a linear stiffness distribution leads to the valleys

in optimal thrust between resonant ridges.

Moreover, for high-order modes the natural frequencies do not follow the pattern

we might expect. For the first mode, a plate with a soft leading edge has the lowest

natural frequency, and a plate with a stiff leading edge has the highest natural fre-

quency, as one might expect. By the third mode, however, a uniformly stiff plate has

a higher natural frequency than plates with stiff or soft leading edges. This is more

clearly shown in figure 11.14, where we have plotted the quiescent natural frequencies
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Figure 11.14: First four quiescent natural frequencies as a function of the stiffness
distribution. The natural frequencies have been normalized by the natural frequencies
of a uniformly stiff plate, dS∗/dx = 0.

for the first four modes as a function of the stiffness distribution. (For just this plot,

we have non-dimensionalized time using the bending time scale tbend, as explained

in Appendix 11.B.2, yielding ω∗ = ωtbend, where ω = 2πf is the dimensional angu-

lar frequency.) We have rescaled the quiescent natural frequencies so that they are

plotted relative to the values for a uniformly stiff plate. For third- and higher-order

modes, uniformly stiff plates have higher natural frequencies than plates with a stiff

(or soft) leading edge. Consequently, the relation between stiffness distribution and

natural frequency is not injective: plates with a stiff leading edge may have the same

natural frequency as plates with a soft leading edge.

When multiple stiffness distributions have the same natural frequency, which dis-

tribution is preferred? To provide insight into this question, we have calculated the

thrust produced by two plates, one with a stiff leading edge and one with a soft lead-

ing edge, with both plates having the same third natural frequency. (The plate with

the stiff leading edge has dS∗/dx = −0.9, while the plate with the soft leading edge

has dS∗/dx varying from 0.416 to 0.445 over the range of 〈S〉 considered so that its

third natural frequency is the same as that of the plate with the stiff leading edge.)
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Figure 11.15: Thrust coefficient as a function of reduced frequency f ∗ and mean
stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01. The green
surface corresponds to a plate with a stiff leading edge (dS∗/dx = −0.9), and the
purple surface corresponds to a plate with a soft leading edge and matched third
natural frequency (dS∗/dx ∈ [0.416, 0.445]).

The thrusts produced by the plates are plotted as surfaces in figure 11.15, with the

green surface corresponding to the plate with a stiff leading edge, and the purple

surface corresponding to the plate with a soft leading edge. The surfaces are plotted

on top of each other so that the surface that is visible from above has greater thrust.

When heaved around the third natural frequency, the plate with a stiff leading edge

produces more thrust than the plate with a soft leading edge except for a very tight

range of frequencies centered about the natural frequency, as shown in the close-up

view. When pitched around the third natural frequency, the plate with a stiff leading

edge produces more thrust than the plate with a soft leading edge at all frequencies

near the natural frequency. Except when actuated right at the natural frequency, the

plate with a stiff leading edge is preferred over the plate with a soft leading edge and

equal natural frequency when it comes to thrust production.

In a similar vein, which stiffness distribution is preferred when the plate is actuated

away from a resonant frequency, that is, in the resonant gaps seen in figure 11.12?

The results show that a plate with a stiff leading edge is always preferred. In the
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resonant gaps, plates with a stiff leading edge produce the greatest trailing edge

amplitude, leading to the greatest thrust production. This is true in the entire region

of the frequency-stiffness plane dominated by Euler-Bernoulli type behaviour: the

stiffness distribution that produces the greatest trailing edge amplitude also produces

the greatest thrust.

The last observation we make about optimal thrust production in the region dom-

inated by Euler-Bernoulli behaviour concerns the difference between heaving and

pitching plates. For a heaving plate, the regions where a soft leading edge is preferred

are more expansive than for a pitching plate. In particular, regions where a very

soft leading edge is preferred for a heaving plate are replaced by a stiff leading edge

for a pitching plate (these are regions where the frequency of actuation is close but

not equal to a natural frequency of a plate with a soft leading edge). To understand

why, consider a plate starting at rest with a soft leading edge in the limiting case

dS∗/dx = 1. In this case, the stiffness at the leading edge is zero. When we pitch

such a plate at the leading edge, no moment will be generated at the leading edge

since the stiffness there is zero. Consequently, there will be no deflection, the plate

will remain parallel to the flow, and thus no thrust will be generated. When we heave

such a plate, no moment will be generated at the leading edge, but the plate still

needs to satisfy the boundary condition at the leading edge. The plate will therefore

take on something of a sideways L shape, so it will be at an angle to the flow near the

leading edge. Because the plate is at an angle to the flow, the fluid will apply a force

to the plate and cause it to deflect. Consequently, the plate is able to produce thrust.

Plates with very soft leading edges are thus better suited to heaving actuation than

pitching actuation.

The region dominated by flutter behaviour differs markedly from the region dom-

inated by Euler-Bernoulli behaviour. As we see in figure 11.11, a stiff leading edge al-

ways produces the most thrust in the flutter region. As we explained in Section 11.4.1,
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Figure 11.16: Same as figure 11.12, but compared to a plate with uniformly dis-
tributed stiffness instead of a rigid plate.

in this region the eigenvalues become more damped and move closer to each other,

causing the resonant peaks to broaden and smear together. Resonant effects become

weak, and the off-resonant behaviour dominates the response. Just as in the region

dominated by Euler-Bernoulli behaviour, plates with a stiff leading edge produce the

greatest trailing edge amplitude, leading to the greatest thrust production. That

being said, the benefits over a plate with uniformly distributed stiffness are modest

in this region (the same is true in the resonant gaps), whereas the benefits are quite

large when the behaviour is dominated by Euler-Bernoulli modes, which we illustrate

in figure 11.16.

We now shift our attention to calculating the linear stiffness distribution that

minimizes power consumption. We have plotted the optimal (power-minimizing)

linear stiffness distribution in figure 11.17, with the attendant optimal mean power

coefficient plotted in figure 11.18. The results are essentially opposite of the results

for optimal thrust. In the region where Euler-Bernoulli modes dominate the response,

the optimal stiffness distribution is the one whose natural frequencies are far from

the frequency of actuation. When maximizing thrust, it was desirable to actuate at

190



102

100

10-1
10210010-2

102

100

10-1
10210010-2

(a) (b)

10-1 101

101

0

-1
10-1 101

101

0

-1

11

Figure 11.17: Optimal linear stiffness distribution as a function of reduced frequency
f ∗ and mean stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01.
Under-resolved areas and areas that produce negative power have been whited out.
Results are for a flexible plate with linear stiffness distribution optimized for power.

resonance, whereas when minimizing power, it is undesirable to actuate at resonance.

This is consistent with our understanding of uniformly flexible plates, where actuating

at resonance maximizes trailing edge amplitude, thrust, and power.

In the resonant gaps, where no stiffness distribution has a natural frequency, a soft

leading edge is always preferred since it produces a smaller trailing edge amplitude. As

we previously explained, a plate with a soft leading edge generally produces a weaker

moment at its leading edge, leading to smaller deflection and power consumption.

Pitching accentuates this behaviour since the plate is entirely driven by a moment

applied at the leading edge, explaining why a soft leading edge occupies a larger area

of the frequency-stiffness plane when the plate is pitching than when it is heaving.

In the region dominated by flutter behaviour, a soft leading edge is also preferred.

The effects of resonance are diminished in this region since the eigenvalues dampen

and smear together. Just as in the resonant gaps, where resonance does not dictate

the optimal stiffness distribution, plates with a soft leading edge produce the smallest

trailing edge amplitude, leading to the smallest power consumption. The benefits over
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Figure 11.18: Power coefficient as a function of reduced frequency f ∗ and mean
stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to
that of an equivalent rigid plate. Dashed white lines indicate where the flexible plate
has the same power coefficient as the equivalent rigid plate. Under-resolved areas and
areas that produce negative power have been whited out. Results are for a flexible
plate with linear stiffness distribution optimized for power.

a plate with uniformly distributed stiffness are modest when the plate is heaved, but

pronounced when pitched, as we illustrate in figure 11.19. In contrast, the benefits

are great in the region dominated by Euler-Bernoulli behaviour, as being able to tune

the stiffness distribution (and hence natural frequencies) allows us to avoid a resonant

condition.

Considering the optimal stiffness distributions for maximizing thrust and mini-

mizing power, it is not immediately clear what stiffness distribution will maximize

efficiency. In the former case, resonance is sought after as a maximizer of thrust,

and a stiff leading edge is preferred when resonance is not possible. In the latter

case, resonance is avoided, and a soft leading edge is preferred when resonance is

not possible. We present the optimal (efficiency-maximizing) stiffness distributions

in figure 11.20, with the attendant efficiency plotted in figure 11.21. When the plate

is heaved, the optimizer sometimes converged to a solution with absolute efficiency
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Figure 11.19: Same as figure 11.18, but compared to a plate with uniformly dis-
tributed stiffness instead of a rigid plate.

greater than unity, with both thrust and power negative; we have whited out these

cases.

Unexpectedly, the frequency-stiffness plane is essentially divided into two zones: a

lower zone where a plate with a soft leading edge is more efficient, and an upper zone

where a plate with a stiff leading edge is more efficient. (For a pitching plate, a stiff

leading edge is sometimes preferred near the zero-efficiency cutoff, where the thrust

also crosses zero, since plates with a stiff leading edge produce more thrust than

plates with a soft leading edge.) The boundary between the two zones changes quali-

tatively at 〈S〉 = 1, i.e. when the behaviour changes from Euler-Bernoulli-dominated

to flutter-dominated. In the Euler-Bernoulli region, the boundary is between the first

and second natural frequencies, and runs parallel to them. In this region, elastic and

added mass forces dominate the response, and the appropriate time scale is the bend-

ing time scale (see Section 11.B.2). We therefore expect a boundary between regions

to appear when the actuation and bending time scales are nearly equal, consistent

with the results. In the flutter region, on the other hand, the boundary is near f ∗ = 1.

In this region, lift and added mass forces dominate the response, and the appropriate
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Figure 11.20: Optimal linear stiffness distribution as a function of reduced frequency
f ∗ and mean stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01.
Under-resolved areas and areas that produce negative thrust or power have been
whited out. Results are for a flexible plate with linear stiffness distribution optimized
for efficiency.
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Figure 11.21: Efficiency as a function of reduced frequency f ∗ and mean stiffness
ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to that of
an equivalent rigid plate. Dashed white lines indicate where the flexible plate has
the same efficiency as the equivalent rigid plate. Under-resolved areas and areas that
produce negative thrust or power have been whited out. Results are for a flexible
plate with linear stiffness distribution optimized for efficiency.
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Figure 11.22: Same as figure 11.21, but compared to a plate with uniformly dis-
tributed stiffness instead of a rigid plate.

time scale is the convective time scale. Although the boundary between zones in this

region corresponds to the actuation and convective time scales being nearly equal, we

caution that the limit 〈S〉 → 0 is a singular one.

Why is a soft leading edge preferred in the lower zone, and a stiff leading edge

preferred in the upper zone? To help answer this question, we appeal to the gains in

efficiency made over a uniformly flexible plate, plotted in figure 11.22. The results

show that meaningful efficiency gains are only made in the lower zone, i.e. by the

plate with a flexible leading edge. We therefore focus on explaining this zone.

For uniformly flexible plates, meaningful gains in efficiency over rigid plates were

made when flutter modes appeared. The flutter modes induce travelling wave kine-

matics in the actuated plate, which are known to be efficient (Wu, 1961). When the

leading edge is soft, we saw that the natural frequencies decrease compared to a uni-

formly flexible plate. Moreover, flutter modes appear at higher mean stiffness ratios

for plates with a soft leading edge than for uniformly flexible plates. Consequently,

travelling wave kinematics can be induced in plates with a soft leading edge at higher

values of the mean stiffness ratio than for uniformly flexible plates. Indeed, the area
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in the frequency-stiffness plane where the most significant gains in efficiency are made

in going from a uniform stiffness distribution to an optimal stiffness distribution is

where flutter modes are present for a plate with a soft leading edge but not present

for a uniformly flexible plate (at least when the plate is heaved). When the plate is

pitched, the region of greatest efficiency gains is shifted since a pitching plate pro-

duces net drag at low enough frequency. The physical reason for the efficiency gains,

however, is unchanged: the plate with a soft leading edge has nice travelling wave

kinematics in that region.

To verify that plates with nice travelling wave kinematics are indeed the

efficient ones, we calculate the kinematics for plates with a stiff leading edge

(dS∗/dx = −0.99), uniform flexibility (dS∗/dx = 0), and a soft leading edge

(dS∗/dx = 0.99) for the (〈S〉, f ∗) pairs (8, 0.2), (0.5, 0.3), and (0.01, 2), marked by

cyan crosses in figure 11.22. In all of these cases, there is a stiffness distribution

that is clearly more efficient than the others. We represent the kinematics by the

amplitude of the displacement along the chord, and the local dimensionless phase

speed along the chord, given by

v∗p =
vp
U

=
σ

−d(∠Y0)/dx
, (11.15)

where ∠Y0 is the phase of the displacement along the chord. The kinematics are

shown in figure 11.23 for a heaving plate and figure 11.24 for a pitching plate, with

the amplitude on the left and local phase speed on the right. Note that the phase

speed is always positive, indicating that waves travel from the leading edge to the

trailing edge along the entire chord. In addition, we have also calculated the opti-

mal phase speeds for each case and marked them as horizontal lines in figures 11.23

and 11.24. By optimal phase speed, we mean the constant phase speed that, given

the distribution of the amplitude of deflection, produces the greatest efficiency. The
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point is to see how the passive kinematics determined by the fluid-structure interac-

tion compare to the optimal travelling wave kinematics for each stiffness distribution.

The results are intuitive and corroborate our previous claims: the stiffness distribu-

tion that produces nice travelling wave kinematics (closest to the optimal constant

phase speed) produces the greatest efficiency in each case. One exception is for a

pitching plate at (〈S〉, f ∗) = (8, 0.2), shown in figure 11.24b, where no phase speed

produces net thrust.

11.5.2 Quadratic stiffness distributions

We now add a degree of freedom, allowing the stiffness distribution to vary quadrat-

ically along the chord. As it turns out, all of the optimal distributions for the pa-

rameter values studied here lie near the boundary of the feasible set depicted in

figure 11.10. (When performing the optimization, we slightly shrunk the feasible set

in order to avoid problems associated with the stiffness being zero somewhere along

the chord.) We may therefore represent the optimal quadratic stiffness distributions

by a one-dimensional map, which is shown in figure 11.25. As before, stiffness distri-

butions with a stiff leading edge are coded as green and those with a soft leading edge

are coded as purple. In addtion, stiffness distributions that are concave up (edges

stiffer than the interior) are coded as yellow and those that are concave down (edges

softer than the interior) are coded as blue. Distributions on the horizontal line are

linear, and distributions on the vertical line are symmetric about the mid-chord.

In figure 11.26, we have plotted the optimal (thrust-maximizing) quadratic stiff-

ness distribution, with the attendant optimal mean thrust coefficient plotted in fig-

ure 11.27. The overall trends are comparable to those for linear stiffness distributions.

In the region dominated by Euler-Bernoulli modes, the optimal stiffness distribution

at a given reduced frequency and mean stiffness ratio is the one that has a natu-

ral frequency at that frequency of actuation. The additional degree of freedom in
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Figure 11.23: Amplitude of deflection (left column) and local phase speed (right
column) along the chord for heaving plates with uniform flexibility (dS∗/dx = 0),
a stiff leading edge (dS∗/dx = −0.99), and a soft leading edge (dS∗/dx = 0.99).
Optimal constant phase speeds are shown as thin horizontal lines in the right column.

198



0

0.4

0.8

1.2

1.6

2

0

4

8

12

-1-1 0 0 11

Uniform

Soft LE

Stiff LE

(a) (b)

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

3

-1-1 0 0 11

(c) (d)

0

0.1

0.2

0.3

0

0.5

1

1.5

2

2.5

3

-1-1 0 0 11

(e) (f)

Figure 11.24: Amplitude of deflection (left column) and local phase speed (right
column) along the chord for pitching plates with uniform flexibility (dS∗/dx = 0),
a stiff leading edge (dS∗/dx = −0.99), and a soft leading edge (dS∗/dx = 0.99).
Optimal constant phase speeds are shown as thin horizontal lines in the right column
except in (b), where no phase speed produces net thrust.199
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Figure 11.25: Colour coding for quadratic stiffness distributions.

the stiffness distribution gives more freedom to tune the natural frequency of the

plate, thereby broadening the resonant response and narrowing the resonant gaps.

As for linear distributions, a stiff leading edge is preferred when a resonant con-

dition cannot be reached, both in the region dominated by Euler-Bernoulli modes

and the region dominated by flutter modes. When distributions with a stiff or soft

leading edge have the same natural frequency, a stiff leading edge is again preferred.

With the additional degree of freedom in stiffness distribution, the natural frequen-

cies of distributions with stiff leading edges are able to cover a larger portion of the

frequency-stiffness plane than linear distributions. As a result, a larger portion of the

frequency-stiffness plane is green in figure 11.26 (cf. figure 11.11); this is especially

evident for pitching motions, where distributions with a soft leading edge have almost

entirely disappeared.

We note that much of the frequency-stiffness plane has a yellow tint, reflecting

that a positive quadratic component of the stiffness distribution enhances the thrust.

The reason is quite simple: a positive quadratic component sacrifices the stiffness of

the interior of the plate to increase the stiffness of the edges. In other words, the

leading edge can be made even stiffer than with just a linear stiffness distribution

while maintaining the same mean stiffness. The quadratic component of the stiffness

distribution allows us to concentrate the stiffness toward the leading edge, which we

have seen enhances thrust. The trends for quadratic stiffness distributions are the
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Figure 11.26: Optimal quadratic stiffness distribution as a function of reduced fre-
quency f ∗ and mean stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with
R ≡ 0.01. Under-resolved areas and areas that produce negative thrust have been
whited out. Results are for a flexible plate with quadratic stiffness distribution opti-
mized for thrust.
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Figure 11.27: Thrust coefficient as a function of reduced frequency f ∗ and mean
stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to
that of an equivalent rigid plate. Dashed white lines indicate where the flexible plate
has the same thrust coefficient as the equivalent rigid plate. Under-resolved areas and
areas that produce negative thrust have been whited out. Results are for a flexible
plate with quadratic stiffness distribution optimized for thrust.
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same as for linear stiffness distributions. We posit that even higher-order distributions

would tend to further concentrate the stiffness at the leading edge.

When minimizing the power, the results mirror those for linear stiffness distribu-

tions. The optimal quadratic stiffness distribution is plotted in figure 11.28, with the

attendant optimal mean power coefficient plotted in figure 11.29. Essentially, a soft

leading edge is preferred unless it creates a condition of resonance. In other words,

the results are opposite of those when maximizing thrust. We note that much of the

frequency-stiffness plane has a pink tint, reflecting a positive quadratic component

of the stiffness distribution. The positive quadratic component allows us to concen-

trate the stiffness toward the trailing edge, making the leading edge softer than a

linear distribution could, thereby further decreasing power consumption. There are

also portions of the frequency-stiffness plane that are blue, with the stiffness being

distributed symmetrically about the mid-chord and concentrated toward the interior

of the plate. The blue regions largely replace regions where a uniform stiffness distri-

bution was preferred for linear distributions, and appear in the region dominated by

Euler-Bernoulli modes. In the blue regions, stiffness distributions with the stiffness

concentrated away from the leading edge apparently have a natural frequency present

in those regions, which would increase power consumption. The symmetric, concave-

down distribution is the best option as it still softens the leading edge compared to

the uniform distribution (although the leading and trailing edges are equally stiff).

Overall, the trends are the same as for linear stiffness distributions: concentrate

stiffness away from the leading edge while avoiding resonance. For higher-order stiff-

ness distributions, we posit that the preferred distribution will continue to be the

one that most effectively concentrates stiffness away from the leading edge. Once the

order is high enough, it may be that at each point in the frequency-stiffness plane

these exists a distribution with a soft leading edge without a natural frequency at

that point in the frequency-stiffness plane.
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Figure 11.28: Optimal quadratic stiffness distribution as a function of reduced fre-
quency f ∗ and mean stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with
R ≡ 0.01. Under-resolved areas and areas that produce negative power have been
whited out. Results are for a flexible plate with quadratic stiffness distribution opti-
mized for power.
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Figure 11.29: Power coefficient as a function of reduced frequency f ∗ and mean
stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to
that of an equivalent rigid plate. Dashed white lines indicate where the flexible plate
has the same power coefficient as the equivalent rigid plate. Under-resolved areas and
areas that produce negative power have been whited out. Results are for a flexible
plate with quadratic stiffness distribution optimized for power.
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Figure 11.30: Optimal quadratic stiffness distribution as a function of reduced fre-
quency f ∗ and mean stiffness ratio 〈S〉 for a (a) heaving and (b) pitching plate with
R ≡ 0.01. Under-resolved areas and areas that produce negative thrust or power have
been whited out. Results are for a flexible plate with quadratic stiffness distribution
optimized for efficiency.

Since a stiff leading edge generally maximizes thrust production and a soft leading

edge generally minimizes power consumption, it is not immediately clear what stiffness

distribution will maximize efficiency. The efficiency-maximizing stiffness distributions

are plotted in figure 11.30, with the attendant efficiency plotted in figure 11.31. When

the plate is heaved, the optimizer sometimes converged to a solution with absolute

efficiency greater than unity, with both thrust and power negative; we have whited

out these cases.

The results mirror those for linear stiffness distributions, with the frequency-

stiffness plane essentially divided into two zones: a lower zone where a plate with

a soft leading edge is more efficient, and an upper zone where a plate with a stiff

leading edge is more efficient. For a pitching plate, there is a small region near the

zero-thrust cutoff where a plate with a stiff leading edge is more efficient. For 〈S〉 & 1,

boundary between the two zones runs parallel to the natural frequencies and is quite

broad compared to the same boundary for linear stiffness distributions. For 〈S〉 . 1,

the boundary between the two zones is irregular but still quite sharp. In most of the

204



102

100

10-1
10210010-2

102

100

10-1
10210010-2

(a) (b)

10-1 101

101

10-1 101

1010.3

0.2

0.1

0.4

0.3

0.2

0.1

0

-0.1

0.4

Figure 11.31: Efficiency as a function of reduced frequency f ∗ and mean stiffness
ratio 〈S〉 for a (a) heaving and (b) pitching plate with R ≡ 0.01 relative to that of
an equivalent rigid plate. Dashed white lines indicate where the flexible plate has
the same efficiency as the equivalent rigid plate. Under-resolved areas and areas that
produce negative thrust or power have been whited out. Results are for a flexible
plate with quadratic stiffness distribution optimized for efficiency.

frequency-stiffness plane, the optimal stiffness distributions have a positive quadratic

component, meaning that concentrating stiffness towards the edges is beneficial for

efficiency. This effect was also seen when maximizing thrust and minimizing power,

so we posit that it will continue to hold for higher-order stiffness distributions.

Again, only certain portions of the frequency-stiffness plane enjoy meaningful gains

in efficiency over a uniformly flexible plate, shown in figure 11.32. With the addition

of the quadratic component to the stiffness distribution, a significant portion of the

frequency-stiffness plane where a stiff leading edge is preferred enjoys meaningful gains

in efficiency over a uniformly flexible plate, whereas this was not the case for linear

stiffness distributions. Although we do not show it here for brevity, the regions with

meaningful gains in efficiency are those where efficient travelling wave kinematics are

induced by flutter modes.
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Figure 11.32: Same as figure 11.31, but compared to a plate with uniformly dis-
tributed stiffness instead of a rigid plate.

11.5.3 Finite Reynolds number effects

We take the opportunity to briefly remark on the effects of streamwise drag. Having

an offset drag in the system will move where the net thrust transitions from being

negative to positive to greater frequencies. Distributions with stiffness concentrated

toward the leading edge will still produce the greatest thrust, and the results for

power consumption will also be unaffected.

Efficiency is a different story, though. Drag can create peaks in efficiency nearby

where the net thrust transitions from being negative to positive (Floryan et al., 2017a,

2018). The presence of drag also makes the efficiency quite sensitive to changes in

the system. These two effects are present for both rigid and flexible plates.

For flexible plates, an additional effect emerges. As shown in figure 11.5, the

efficiency of flexible plates does not have any resonant peaks in the inviscid small-

amplitude regime, with the resonant peaks in thrust and power cancelling each other

exactly. Upon adding drag to the system, however, resonant peaks in efficiency emerge

(Floryan and Rowley, 2018). The explanation is straightforward. In moving from a

non-resonant to a resonant condition in a system without drag, the mean thrust and
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power coefficients effectively scale up by some factor a > 1. Since the efficiency is

the ratio of the two, the factor a appears in the numerator and denominator, cancels,

and there is no resonant peak. When drag is present, it reduces the baseline non-

resonant efficiency compared to the system without drag. In moving to a resonant

condition, the thrust and power scale up by the factor a, but the drag does not. The

net thrust therefore scales up by a factor greater than a, so the efficiency increases

at resonance. This effect creates local maxima in efficiency at resonance. Since drag

affects the system at first order, this effect of streamwise drag inducing resonant peaks

in efficiency should be robust to nonlinearities present at finite amplitudes.

The presence of streamwise drag will therefore have two effects on the efficiency-

maximizing stiffness distributions. The first is that it will wipe out the stiffness

distributions with a soft leading edge at low frequencies. At low frequencies, the

distributions with a soft leading edge that are highly efficient also produce very little

thrust. The drag will be comparable in magnitude to the thrust produced by plates

with a soft leading edge, causing the net thrust (and therefore the efficiency) to

plummet. Since plates with a stiff leading edge produce greater thrust, they are more

robust to the effects of drag and will be favoured in the presence of drag over plates

with a soft leading edge.

The second effect occurs far from where the net thrust transitions between nega-

tive and positive. Since drag induces a resonant behaviour in efficiency, the efficiency-

maximizing stiffness distribution will take advantage of this resonant effect. Conse-

quently, the efficiency-maximizing stiffness distribution will tend towards the thrust-

maximizing stiffness distribution. Altogether, the presence of drag will make the

efficiency-maximizing stiffness distribution tend towards the thrust-maximizing stiff-

ness distribution everywhere in the frequency-stiffness plane.
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11.6 Conclusions

In this work, we studied a linear inviscid model of a passively flexible swimmer,

valid for small-amplitude motions. We explored how distributed flexibility modifies

the thrust production, power consumption, and propulsive efficiency compared to

swimmers with uniform flexibility. The frequencies of actuation and mean stiffness

ratios we considered spanned a large range, while the mass ratio was fixed to a low

value representative of swimmers.

The distributions of flexibility were described by a set of orthogonal polynomials,

making it easy to control the mean stiffness and isolate the effects of the flexibility

distribution. In previous studies, the effects of distribution were never isolated from

the effects of mean stiffness. We found that allowing the stiffness to vary spatially

produced no qualitative changes, with the thrust, power, and efficiency all having the

same dependence on frequency of actuation and mean stiffness as a uniformly flexible

swimmer.

Important quantitative differences do arise, however, because changing the flex-

ibility distribution changes the natural frequencies of the system, even though the

mean stiffness is unchanged. To elucidate these differences, we calculated stiffness

distributions that maximize thrust, minimize power, and maximize efficiency, and

related them to the changes in the eigenvalues of the fluid-structure system. In order

to maximize thrust at a given actuation frequency and mean stiffness, the flexibility

should be distributed in a way that a natural frequency can be created at the fre-

quency of actuation. If this is not possible or the mean stiffness is sufficiently low,

then concentrating stiffness toward the leading edge maximizes thrust. To minimize

power, the opposite conclusions hold: natural frequencies should be avoided and the

stiffness should be concentrated away from the leading edge. Meaningful increases in

efficiency are attained when the flexibility distribution elicits flutter behaviour, which
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induces efficient travelling wave kinematics. We showed that a proper distribution of

flexibility leads to travelling wave kinematics with near-optimal phase speeds.

Lastly, we considered how a finite Reynolds number (in the form of stream-

wise drag) may change the optimal behaviour. The thrust-maximizing and power-

minimizing distributions are not changed, but the presence of streamwise drag will

change the efficiency-maximizing distribution to resemble the thrust-maximizing dis-

tribution.

This work was supported by ONR Grant N00014-14-1-0533 (Program Manager

Robert Brizzolara).

11.A Method of solution

Consider the case where the imposed leading edge motion is sinusoidal in time with

dimensionless angular frequency σ = πLf/U , where f is the dimensional frequency

in Hz. We may then decompose the deflection into a product of temporal and spatial

terms, with the temporal component being sinusoidal and the spatial component

represented by a Chebyshev series:

Y (x, t) = ejσtY0(x),

Y0(x) =
1

2
β0 +

∞∑
k=1

βkTk(x),

 (11.16)

where j =
√
−1, the real part in j should be taken when evaluating the deflection,

and Tk(x) = cos(k arccosx) is the Chebyshev polynomial of degree k. For a given

deflection Y of this form, the solution to the flow is given in Wu (1961); we repeat

the basics of that analysis in the proceeding text.

Represent two-dimensional physical space (x, y) by the complex plane z = x+ iy,

where i =
√
−1 but ij 6= −1. There exists a complex potential F (z, t) = φ(z, t) +
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iψ(z, t), with φ and ψ harmonic conjugates, that is analytic in z and related to the

complex velocity w = u− iv through the momentum equation by

∂F

∂z
=
∂w

∂t
+
∂w

∂z
. (11.17)

We use the conformal transformation

z =
1

2

(
ζ +

1

ζ

)
(11.18)

to map physical space in the z-plane to the exterior of the unit circle in the ζ-plane.

This transformation maps the plate onto the unit circle. The complex potential can

be represented by a multipole expansion

F (ζ, t) = φ(ζ, t) + iψ(ζ, t) = iejσt

(
a0

ζ + 1
+
∞∑
k=1

ak
ζk

)
. (11.19)

Evaluating on the unit circle ζ = eiθ gives

φ(ζ = eiθ, t) = ejσt

(
1

2
a0 tan

θ

2
+
∞∑
k=1

ak sin kθ

)
,

ψ(ζ = eiθ, t) = ejσt

(
1

2
a0 +

∞∑
k=1

ak cos kθ

)
.

 (11.20)

In physical space, on the surface of the plate we have

φ(z = x± 0i, t) = ejσtΦ±(x) = ejσt

(
±1

2
a0

√
1− x
1 + x

±
∞∑
k=1

ak sin kθ

)
,

ψ(z = x± 0i, t) = ejσtΨ(x) = ejσt

(
1

2
a0 +

∞∑
k=1

akTk(x)

)
,

 (11.21)

where we have used x = cos θ. ψ has equal values on the top and bottom since it is

even in θ, whereas φ is odd in θ and thus has a discontinuity in physical space.
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The no-penetration condition can be written as

∂ψ

∂x
|y=0 = −

(
∂

∂t
+

∂

∂x

)2

Y, (11.22)

which simplifies to

DΨ = −(jσ +D)2Y0, (11.23)

where D = d/dx. Given Y0, this equation allows us to solve for all ak except a0. To

solve for a0, we begin by writing the vertical velocity on the surface of the plate as

v(z = x+ 0i, t) = ejσtV (x) = ejσt

(
1

2
V0 +

∞∑
k=1

VkTk(x)

)
. (11.24)

The no-penetration condition can then be written as

V = (jσ +D)Y0. (11.25)

The coefficient a0 is given by

a0 = −C(jσ)(V0 + V1) + V1, (11.26)

where

C(jσ) =
K1(jσ)

K0(jσ) +K1(jσ)
(11.27)

is the Theodorsen function, and Kν is the modified Bessel function of the second kind

of order ν. The expression for a0 is derived in Wu (1961).

With all of the ak known, the pressure difference across the plate can be written

as

∆p(x, t) = ejσtP0(x) = ejσt

(
a0

√
1− x
1 + x

+ 2
∞∑
k=1

ak sin kθ

)
. (11.28)

We note that the pressure difference depends linearly on the deflection Y0.
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Altogether, given the deflection Y0, we may calculate the coefficients ak. The

coefficients ak are used to calculate the pressure difference across the plate, which

alters the deflection of the plate via (11.3). The coupled fluid-structure problem

must be solved numerically.

11.A.1 Numerical method

Substituting the Chebyshev series (11.16) into the Euler-Bernoulli equation (11.3)

gives a fourth-order differential equation for Y0:

− 2σ2RY0 +
2

3
D2(SD2Y0) = P0. (11.29)

The corresponding boundary conditions (11.6) are re-written as

Y0(−1) = h0, Y0,x(−1) = θ0, Y0,xx(1) = 0, Y0,xxx(1) = 0, (11.30)

where h0 and θ0 are the heaving and pitching amplitudes at the leading edge, re-

spectively. We re-iterate that the pressure difference across the plate P0 is a linear

function of the deflection Y0, and so (11.29)–(11.30) give a linear, homogemeous

boundary value problem for Y0. When solving for the deflection Y0, all infinite series

are truncated to the upper limit N .

The numerical method to solve the boundary value problem is given in Moore

(2017). The method is a pseudo-spectral Chebyshev scheme that uses Gauss-

Chebyshev points. The method is fast (O(N logN)) and accurate, avoiding errors

typically encountered when using Chebyshev methods to solve high-order differential

equations by pre-conditioning the system with continuous operators. Quadrature

formulas for the thrust and power coefficients in (11.7) and (11.8) are also given in

Moore (2017).
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11.B Eigenvalues of the system

Here, we seek to determine the natural response of a flexible plate whose leading edge

is held clamped in an oncoming flow (Alben, 2008a; Michelin and Llewellyn Smith,

2009; Eloy et al., 2007). This amounts to finding the eigenvalues and eigenvectors of

the system (11.3) with homogeneous boundary conditions (h(t) ≡ 0 and θ(t) ≡ 0). To

do so, quantities that were previously written as Fourier-Chebyshev expansions (the

deflection, complex potential, and velocity) are now written as Chebyshev series with

time-varying coefficients. Following the preceding analysis, we arrive at the following

equations:

2RYtt +
2

3
(SYxx)xx = ∆p, (11.31)

Y (x, t) =
1

2
β0(t) +

∞∑
k=1

βk(t)Tk(x), (11.32)

∆p(x, t) = a0(t)

√
1− x
1 + x

+ 2
∞∑
k=1

ak(t) sin kθ, (11.33)

∞∑
k=1

akT
′
k = −1

2
β̈0 −

∞∑
k=1

[
β̈kTk + 2β̇kT

′
k + βkT

′′
k

]
, (11.34)

where a dot denotes differentiation with respect to t and a prime denotes differentia-

tion with respect to x.

As before, we need an additional equation to determine a0. For now, we use (11.26)

but treat the Theodorsen function as a constant C. The coefficient a0 is then

a0 = −C(V0 + V1) + V1, (11.35)

where Vk is the kth Chebyshev coefficient of the vertical velocity on the surface of the

plate. The Vk are obtained by evaluating the no-penetration condition (11.5):

1

2
V0 +

∞∑
k=1

VkTk =
1

2
β̇0 +

∞∑
k=1

[
β̇kTk + βkT

′
k

]
. (11.36)
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Treating a0 in this manner will yield a linear eigenvalue problem. After obtaining the

eigenvalues and eigenfunctions of the linear eigenvalue problem, we will use those as

initial guesses for the nonlinear eigenvalue problem, which will use the full Theodorsen

function. But first, we proceed with the description of the linear eigenvalue problem.

We can write the equations more compactly as follows:

2R̃β̈ +
2

3
D2(S̃D2β) = P , (11.37)

P = Aa, (11.38)

Da = −β̈ − 2Dβ̇ −D2β, (11.39)

V = β̇ +Dβ, (11.40)

with (11.35) for a0. In the above, β is a vector of the Chebyshev coefficients of the

deflection Y , and similarly for P (pressure), a (potential), and V (vertical veloc-

ity). P = Aa simply states that the Chebyshev coefficients of the pressure are linear

combinations of the coefficients ak, and D is the spectral representation of the differ-

entiation operator. Quantities with a tilde over them are spectral representations of

multiplication in space, i.e. G̃ = FGF−1, where F is the linear operator that maps

spatial coordinates to spectral coordinates.

Putting everything together, we get the following ordinary differential equation:

2R̃β̈ +
2

3
D2(S̃D2β) = A[−D−β̈ − 2D−Dβ̇ + e1(e2 − Ce1 − Ce2)T β̇

−D−D2β + e1(e2 − Ce1 − Ce2)TDβ], (11.41)

where D− is the spectral representation of the integration operator that makes the

first Chebyshev coefficient zero, and ek is the kth Euclidean basis vector. (11.41) can
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be written in state-space form as

d

dt

β
β̇

 =

 0 I

M−1A1 M−1A2


β
β̇

 ,
M = 2R̃ + AD−,

A1 = −2

3
D2S̃D2 − AD−D2 + Ae1(e2 − Ce1 − Ce2)TD,

A2 = −2AD−D + Ae1(e2 − Ce1 − Ce2)T .


(11.42)

When numerically solving the system, the infinite series are truncated to finite

series. In order to incorporate the four boundary conditions into (11.42), the last

four rows of the differential equation for β̈ are replaced by the boundary conditions.

The system is then

d

dt

I 0

0 I−4


β
β̇

 =

 0 I

M−1A1 M−1A2


β
β̇

 , (11.43)

where I−4 is the identity matrix with the last four diagonal entries being zeros. The

last four rows of the right-hand side are replaced by the boundary conditions. We

now have a generalized eigenvalue problem to solve for the eigenvalues of the system.

11.B.1 Nonlinear eigenvalue problem

Having obtained the solution to the linear eigenvalue problem, we use it as an initial

guess for the nonlinear eigenvalue problem. The nonlinear eigenvalue problem is

obtained by making the ansatz

Y (x, t) = eλtY0(x),

Y0(x) = 1
2
β0 +

∑∞
k=1 βkTk(x).

 (11.44)
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This is the same as in Appendix 11.A, except that we allow the exponent λ to be

any complex number instead of just an imaginary number. Proceeding as in Ap-

pendix 11.B, we arrive at the following equations:

2λ2R̃β +
2

3
D2(S̃D2β) = P , (11.45)

P = Aa, (11.46)

Da = −λ2β − 2λDβ −D2β, (11.47)

V = λβ +Dβ, (11.48)

a0 = −C(λ)(V0 + V1) + V1, (11.49)

where the notation is as in Appendix 11.B.

Putting everything together, we get the following equation:

2λ2R̃β +
2

3
D2(S̃D2β) = A[−λ2D−β − 2λD−Dβ + λe1(e2 − C(λ)e1 − C(λ)e2)Tβ

−D−D2β + e1(e2 − C(λ)e1 − C(λ)e2)TDβ], (11.50)

where the notation is as in Appendix 11.B. Truncating the upper limit of the infinite

series to N , (11.50) gives N + 1 equations for N + 2 unknowns (the N + 1 elements

of β and λ). We add an equation which normalizes β in order to make the system

square. As before, the last four equations are replaced by the boundary conditions.

We solve for β and λ using the Newton-Raphson method, using absolute and relative

error tolerances 10−6. For cases where the Newton-Raphson method did not converge,

we calculated the solution by looking at a global picture of the determinant of the

system and finding its roots.

We have previously validated our method for calculating eigenvalues of flexible

plates with uniform material properties (Floryan and Rowley, 2018). To the best of

our knowledge, no prior work has calculated the eigenvalues of plates with nonuniform
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material properties, giving us nothing to compare to. We note, however, that the same

computer code calculates the eigenvalues for plates with uniform and nonuniform

material properties, the former merely a special case of the latter.

11.B.2 Quiescent fluid

Consider the case where the plate is immersed in a quiescent fluid, i.e. where the

bending velocity is large compared to the fluid velocity. How do the eigenvalues

of the system change? To answer this question, we solve the Euler-Bernoulli and

Euler equations (11.1)–(11.2) in the limit of large bending velocity. In this limit,

the appropriate time scale to use is the bending time scale, which we choose to be√
3〈ρsd〉L4/(4〈Ed3〉). Non-dimensionalizing the solid and fluid equations using the

length scale L/2 and the bending time scale yields

R∗Ytt + (S∗Yxx)xx =
1

2〈R〉
∆p,

∇ · u = 0,

ut +

√
3〈R〉
〈S〉

ux = ∇φ,


(11.51)

where R and S are as in (11.4), R∗ is the spatial distribution (mean 1) of R, S∗

is the spatial distribution (mean 1) of S, and φ = p∞ − p. In the above, x,

t, Y , u, and p are now dimensionless, with the pressure non-dimensionalized by

ρf〈Ed3〉/(3〈ρsd〉L2). The limit of a quiescent flow corresponds to 〈R〉/〈S〉 → 0, or

equivalently 〈Ed3〉/〈ρsd〉L2 � U2, which explicitly puts this limit in terms of velocity

scales. For now, we keep all terms and discuss the limit later. Intuitively, large values

of the solid-to-fluid mass ratio 〈R〉 make the fluid dynamics inconsequential to the

deflection of the plate (a heavy plate will be unaffected by the surrounding fluid).
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The fluid additionally satisfies the no-penetration condition, stated as

v|x∈[−1,1],y=0 = Yt +

√
3〈R〉
〈S〉

Yx. (11.52)

The boundary conditions on the plate are

Y (−1, t) = 0, Yx(−1, t) = 0, Yxx(1, t) = 0, Yxxx(1, t) = 0. (11.53)

We solve for the fluid motion for a given deflection as in Appendix 11.A. Writing

the deflection as

Y (x, t) =
1

2
β0(t) +

∞∑
k=1

βk(t)Tk(x), (11.54)

and the components of the complex potential evaluated on the surface of the plate as

φ(z = x± 0i, t) = ±1

2
a0(t)

√
1− x
1 + x

±
∞∑
k=1

ak(t) sin kθ,

ψ(z = x± 0i, t) =
1

2
a0(t) +

∞∑
k=1

ak(t)Tk(x),

 (11.55)

the pressure difference across the surface of the plate is

∆p(x, t) = a0(t)

√
1− x
1 + x

+ 2
∞∑
k=1

ak(t) sin kθ. (11.56)

The coefficients ak are obtained by applying the no-penetration condition,

∂ψ

∂x
|y=0 = −

(
∂

∂t
+

√
3〈R〉
〈S〉

∂

∂x

)2

Y. (11.57)

This does not yield a0, which is instead given by the Laplace domain equation

a0 = −

√
3〈R〉
〈S〉

C(V0 + V1) +

√
3〈R〉
〈S〉

V1. (11.58)
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In the limit of a quiescent fluid (〈R〉/〈S〉 → 0), a0 → 0. Thus all of the coefficients

ak are determined by (11.57), which itself simplifies since the second term in the

parentheses is zero in the limit 〈R〉/〈S〉 → 0. We note that in this limit the only fluid

force on the plate is the force due to added mass.

Putting everything together, we get the following ordinary differential equation:

R̃∗β̈ +D2(S̃∗D2β) = − 1

〈R〉
AD−β̈, (11.59)

where β is the vector of coefficients βk, D is the spectral representation of the differ-

entiation operator, and D− is the spectral representation of the integration operator

that makes the first Chebyshev coefficient zero. Quantities with a tilde over them are

spectral representations of multiplication in space, i.e. G̃ = FGF−1, where F is the

linear operator that maps spatial coordinates to spectral coordinates. The operator

A maps the coefficients ak, which are the coefficients of a sine series for the pres-

sure, into the corresponding coefficients of a cosine series. If Ts is an operator that

takes us from the x-domain to the sine domain, and Tc is an operator that takes us

from the x-domain to the cosine domain, then A = TcT
−1
s . (11.59) can be written in

state-space form as

d

dt

β
β̇

 =

 0 I

−
(
R̃∗ +

1

〈R〉
AD−

)−1

D2S̃∗D2 0


β
β̇

 . (11.60)

When numerically solving the system, the infinite series are truncated to finite

series. In order to incorporate the four boundary conditions into (11.61), the last

four rows of the differential equation for β̈ are replaced by the boundary conditions.

This is fine to do since the last four rows read β̈k = 0 due to four applications of the
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differentiation operator D. The system is then

d

dt

I 0

0 I−4


β
β̇

 =

 0 I

−
(
R̃∗ +

1

〈R〉
AD−

)−1

D2S̃∗D2 0


β
β̇

 , (11.61)

where I−4 is the identity matrix with the last four diagonals being zeros. The last

four rows of the right-hand side are replaced by the boundary conditions. We now

have a generalized eigenvalue problem to solve for the eigenvalues of the system.

11.C Green’s function of the system

Here, we seek to determine the response of a flexible plate to a spatially-localized,

periodic-in-time fluid forcing. This amounts to finding the Green’s function of the

system (11.29). For this system, the Green’s function is a function G(x, ξ) that

satisfies

−2σ2RG(x, ξ) +
2

3
(SGxx(x, ξ))xx = δ(x− ξ), −1 < x, ξ < 1,

G(−1, ξ) = 0, Gx(−1, ξ) = 0, Gxx(1, ξ) = 0, Gxxx(1, ξ) = 0,

 (11.62)

where δ is the Dirac delta function. That is, G(x, ξ) is the solution for a localized

forcing at x = ξ, with homogeneous boundary conditions. Once we know G(x, ξ), we

can construct the solution for any forcing function by superposition. This is beyond

our interests, so we refer the interested reader to any book dealing with boundary

value problems.

Let G1 be the solution of the ordinary differential equation in (11.62) for x ∈

(−1, ξ) with boundary conditions

G(−1, ξ) = 0, Gx(−1, ξ) = 0, Gxx(−1, ξ) = 1, Gxxx(−1, ξ) = 0, (11.63)
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let G2 be the solution of the ordinary differential equation in (11.62) for x ∈ (−1, ξ)

with boundary conditions

G(−1, ξ) = 0, Gx(−1, ξ) = 0, Gxx(−1, ξ) = 0, Gxxx(−1, ξ) = 1, (11.64)

let G3 be the solution of the ordinary differential equation in (11.62) for x ∈ (ξ, 1)

with boundary conditions

G(1, ξ) = 1, Gx(1, ξ) = 0, Gxx(1, ξ) = 0, Gxxx(1, ξ) = 0, (11.65)

and let G4 be the solution of the ordinary differential equation in (11.62) for x ∈ (ξ, 1)

with boundary conditions

G(1, ξ) = 0, Gx(1, ξ) = 1, Gxx(1, ξ) = 0, Gxxx(1, ξ) = 0. (11.66)

The desired Green’s function will have the form

G =


c1G1 + c2G2 for x ≤ ξ

c3G3 + c4G4 for x ≥ ξ.

(11.67)

The constants c1, c2, c3, c4 (which will depend on ξ) are set such that G,Gx, and Gxx

are all continuous at x = ξ, and the jump condition on Gxxx at x = ξ is met. We

obtain the jump condition by integrating the ordinary differential equation in (11.62)

from x = ξ − ε to x = ξ + ε for vanishingly small ε, giving

SGxxx|ξ+ε =
3

2
+ SGxxx|ξ−ε, (11.68)

where we have assumed that Sx is continuous.
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Because the values of G and its derivatives depend linearly on c1, c2, c3, c4, we get

four linear equations in four unknowns, and we just need to solve a 4×4 linear system

for the unknown parameters c1, c2, c3, c4:



G1 G2 −G3 −G4

G1,x G2,x −G3,x −G4,x

G1,xx G2,xx −G3,xx −G4,xx

G1,xxx G2,xxx −G3,xxx −G4,xxx





c1

c2

c3

c4


=



0

0

0

− 3

2S


. (11.69)

In the above, all quantities are evaluated at x = ξ.

11.D Some useful formulas

The following is a collection of useful definitions and formulas from Moore (2017) for

the Chebyshev method employed here. The (interior) Gauss-Chebyshev points are

xn = cos θn, θn =
π(2n+ 1)

2(N + 1)
, for n = 0, 1, . . . , N. (11.70)

Consider a function f(x) interpolated at these points by the polynomial pN(x) of

degree N :

f(xn) = pN(xn), for n = 0, 1, . . . , N,

PN(xn) =
1

2
b0 +

N∑
k=1

bkTk(x).

 (11.71)

On the θ-grid this is

f(xn) =
1

2
b0 +

N∑
k=1

bk cos kθn, for n = 0, 1, . . . , N. (11.72)

Thus we may use the fast discrete cosine transform to transform between a function’s

values on the collocation points, f(xn), and the Chebyshev coefficients bk.
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The antiderivative of pN(x) is

D−1pN(x) =
1

2
B0 +

N+1∑
k=1

BkTk(x),

Bk =
1

2k
(bk−1 − bk+1), for n = 1, 2, . . . , N.

 (11.73)

B0 is a free constant of integration.

The derivative of pN(x) is

DpN(x) =
1

2
b′0 +

N∑
k=1

b′kTk(x),

b′N+1 = b′N = 0,

b′k = b′k+2 + 2(k + 1)bk+1, for n = N − 1, N − 2, . . . , 0.


(11.74)

Since the endpoints x = ±1 are not part of the collocation grid, we give a formula

to evaluate the function at the endpoints:

pN(±1) =
1

2
b0 +

N∑
k=1

(±1)kbk. (11.75)
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rigid joukowski foil in a kármán vortex street. Bioinspiration & Biomimetics, 13
(3):035001, 2018.

I. E. Garrick. Propulsion of a flapping and oscillating airfoil. Technical Report 567,
NACA, 1936.

M. Gazzola, M. Argentina, and L. Mahadevan. Scaling macroscopic aquatic locomo-
tion. Nature Physics, 10(10):758, 2014.

H. Glauert. The force and moment on an oscillating aerofoil. In Vorträge aus dem
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