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Abstract

This thesis studies some applications of feedback control design for plasma physics,

specifically plasma drift waves and plasma toroidal rotation and covers two major

steps: reduced-order modeling and controller design.

This dissertation focuses mainly on the toroidal plasma rotation but begins with

the Hasegawa-Wakatani (HW) problem, a classic model of plasma drift waves zonal

flows coupling, as a preliminary case study where the basic methodology of reduced-

order modeling and control is applied to demonstrate the effectiveness and applica-

bility of the approach.

First, the development of a model-based feedback control that stabilizes an un-

stable equilibrium in the HW equations is studied: a balanced truncation (a model

reduction technique) is applied to obtain a low-dimensional model of the linearized

HW equations. Then a model-based feedback controller is designed for the reduced

order model using a Linear Quadratic Estimator (LQE) which only requires a small

set of sensors. Results show that this controller applied to the original non-reduced

nonlinear HW equations stabilizes the equilibrium and suppresses the transition to

drift-waves instabilities.

Then the thesis dives into the core subject which is the control of plasma toroidal

rotation in tokamaks. It uses experimental measurements from the National Spherical

Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two

different types of actuation: momentum from injected neutral beams and neoclassical

toroidal viscosity generated by three-dimensional applied magnetic fields. Based on

the data-driven model obtained, a feedback controller is designed, and predictive

simulations using the TRANSP plasma transport code show that the controller is able

to attain desired plasma rotation profiles given practical constraints on the actuators

and the available measurements of rotation.
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The last part studies the rotation control on the upgraded device NSTX-U. The

major change comes from the addition of a second neutral beam injector which adds

three more actuators to the designed controller and thus gives us considerably more

flexibility, at the expense of added complexity in the modeling and control of simul-

taneously the toroidal rotation and the stored energy.

Because NSTX-U modeling is a model-based design (we rely heavily on model

predictions and sensors measurements) and experimental data from NSTX-U are not

available, a study of the robustness of our controller to some parameters uncertainties

in particular the perpendicular momentum diffusivity profile χφ and the confinement

time τe is developed.
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Plasma modeling and control
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Chapter 1

Introduction

1.1 Fusion and Tokamaks

It became general knowledge that the fossil fuel era will end during this century. Coal,

petroleum and natural gas are becoming harder and deeper to extract. Scientists agree

on the fact that a shortage of fossil fuel energy is inevitable in less than 30 years from

now as shown in figure 1.1 [1].

Renewable energy sources, such as solar and wind power are well ranked to con-

tribute to energy needs in both mature and emerging technologies, but energy from

these sources is unstable, intermittent and insufficient to satisfy our world increasing

greed of power.

Nuclear fission and fusion, two opposite reactions that occur by splitting heavy

atoms such as uranium or fusing light ones such as hydrogen respectively, can poten-

tially produce enough energy to supply the world power demands.

Although fission is a mature technology that is commercially available in all the

nuclear plants, its by-products are highly radioactive and long lasting and its reactors

are at risk of nuclear accidents due to large uncontrolled release of energy (Tchernobyl

1986, Fukushima 2011). Finally, the main nuclear fuel for fission, Uranium-235 or
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Figure 1.1: Planned energy shortfall. (Figure courtesy of Lawrence Livermore Na-
tional Laboratory. [1])

Plutonium-239 are nonrenewable resources (like all metals), non-recyclable, and not

always easily exploited under economical and environmental acceptable conditions.

Fusion, on the other hand, offers undeniable advantages, and is the best candi-

date for an abundant and clean source of energy: no environmental pollution during

operations since it releases helium, no risk of a nuclear accident since uncontrolled

release of energy seen in fission cannot happen and finally a sufficient nuclear fuel

supply due to the use of deuterium and lithium, both extremely abundant and easy

to extract from nature. All these arguments enables us to state that fusion is the

quickest energy solution available to us.

The most popular device where the fusion process occurs is called Tokamak and

this is exactly what we will focus on for the rest of this dissertation.

Nuclei do not naturally fuse. They are positively charged so they repel each other.

In order to fuse, Nuclei have to overcome this huge electrostatic repulsion before they
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can get close enough together such that the strong nuclear force which maintains

nuclei together can kick in.

In order to overcome the natural electrostatic barrier, we have to make the fuel

nuclei six to seven times hotter than the Sun’s core. In fact to initiate any fusion

reaction, a temperature of about 120 million degrees Celsius is required. At such

extremely high temperatures, the fuel atoms are dissociated into their component

electrons and nuclei, forming the fourth state of matter called plasma.

Keeping this plasma in one place long enough for the nuclei to fuse together

is not trivial. Therefore the main idea of the tokamak device is to confine plasma

using strong magnetic fields, generated by coils of electrical superconductors around a

donut-shaped magnetic bottle in which the plasma is trapped: the combined effect of

electric current flowing in the toroidal and poloidal field coils and in the plasma itself

produces helical magnetic field lines that create a configuration from which plasma

charged particles never leave the torus (inside the tokamak).

Plasmas in tokamak devices need to be confined in order to have a better fusion

reaction so increasing the confinement time is a key feature as the longer the plasma

is confined, the more fusion energy is extracted.

All existing tokamaks are pulsed devices which means that the plasma is main-

tained within the tokamak for only a few seconds to several hours (TRIAM-1M main-

tained a plasma discharge of over 100 kA for over 5 hours using lower hybrid current

drive). Each of these operating cycles of heating the plasma that cools down is called

a discharge or a shot. One goal is to increase the duration of the shot. Today’s

plasma experiments in tokamaks can confine plasmas at the required temperatures

for net power gain, but the plasma density and energy confinement time (a measure

of the cooling time of the plasma) are too low for the plasma to be self-heated (a

burning plasma).
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In current fusion experiments, neutral beams, which consist of uncharged atoms

of deuterium at high velocity, are being used to heat the plasma. These particles

collide with the moving particles of the plasma transferring their momentum to the

background plasma and eventually further heating the plasma. This is the most

frequently used method of heating the plasma [173, 187, 83, 175]. In fact this is

an important element that we will be using in our rotation research, not only as

a heater for the plasma but an important contributor of plasma rotation as during

collisions, neutral beams also transfer momentum [178, 179, 177]. Others methods

like ohmic heating through induction, or radio-frequency (RF) heating can also be

used for plasma heating. We don’t expand on these heating methods but more details

can be found in [174, 44, 94, 59].

It is very important for safety and control to be able to monitor the different

plasma properties during a shot, so we can adapt our response in real-time, and

understand better how the distributions of the plasma properties behave during the

experiment.

Plasma temperature is so hot inside the tokamak. Putting any measurement

device during an operation can cause its evaporation or melting. Luckily, we can rely

on indirect methods of measurement and diagnostics, and we can also take advantage

of our knowledge of plasma axisymmetric force balance which gives rise to magnetic

flux contours and where pressure is constant. Controlling the magnetic flux enables

us to control the plasma.

The magnetic reconstruction of these inner flux contours is done using external

probes measuring the localized magnetic fields and current flows. However these

external measurements are not sufficient to deduce all internal parameters so they

have to be complemented by measurements made using different methods. The two

most frequent methods are using lasers to see how light is scattered or slowed as it

passes through the plasma or sending a beam of neutral atoms through the plasma
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and analyzing the resulting optical emissions. This allows us to measure temperature,

pressure, density, magnetic field and current throughout the plasma. See [41, 126,

110, 111, 73] for more details.

1.2 NSTX and NSTX-U devices

A spherical tokamak is a type of fusion power device based on the tokamak principle.

It is notable for its very low aspect ratio. A traditional tokamak has a toroidal con-

finement area that gives it an overall shape similar to a donut with a large hole in the

middle. The spherical tokamak reduces the size of the hole to almost zero, resulting

in a plasma shape that is almost spherical, often compared to a cored apple. The

spherical tokamak is sometimes referred to as a spherical torus and often shortened

to ST. A comparison against a conventional tokamak is shown in Figure 1.2.

R a

Figure 1.2: Sperical tokamak vs conventional tokamak. (Figure courtesy of Culham
Centre for Fusion Energy.)

The National Spherical Torus Experiment (NSTX) (Fig 1.3) is an innovative mag-

netic fusion device based on the spherical tokamak concept. It was constructed by

the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak

Ridge National Laboratory, Columbia University, and the University of Washington

at Seattle.

NSTX has a low aspect ratio of A = R/a = 1.31, with the major radius R =

0.85 m and the minor radius a = 0.65 m. The experimental NSTX device has several
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Figure 1.3: Picture of the National Spherical Torus Experiment (NSTX). (Courtesy
of PPPL.)

advantages including plasma stability through improved confinement, but requires a

very careful design of the toroidal and poloidal field coils, vacuum vessels and plasma-

facing components. Moreover, this innovative plasma configuration has the advantage

of being able to confine a higher pressure plasma than a conventional tokamak of high

aspect ratio for a given confinement magnetic field strength. Since the amount of

fusion power produced is proportional to the square of the plasma pressure, the use of

spherically shaped plasmas could allow the development of smaller, more economical

and more stable fusion reactors. NSTX’s attractiveness may be further enhanced by

its ability to reach a high bootstrap electric current. This self-driven internal plasma

current would reduce the power requirements of externally driven plasma currents

required to heat and confine the plasma.
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The U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL)

runs the National Spherical Torus Experiment (NSTX), which has undergone a $94

million upgrade which was completed in 2015 which makes it the most powerful

spherical tokamak in the world. Experiments are currently testing the ability of the

upgraded spherical facility to maintain a high-performance plasma under extreme

heat and power conditions. Results could strongly influence the design of future

fusion reactors.

The primary components of the upgrade are the complete replacement of the cen-

ter stack (Figure 1.4), (which consists of 36 22-footlong, 350-pound copper conductors

which comprise the inner-leg of the toroidal field (TF) coils, the Ohmic heating (OH)

solenoid, and some divertor coils), and the addition of a second neutral beam injector

(Fig 1.5), aimed more tangentially compared to the present original set of beams, and

this will give us considerably more flexibility and power to heat the tokamak.

1.3 Various control problems in Tokamaks

During a tokamak pulse, several things happen:

• A plasma is created.

• The plasma is ramped up to the reference flat top current and heated to the

ignition temperature needed.

• The plasma is cooled down (ramped down) and terminated.

The key step of maintaining the plasma in a current flat-top is not quite reached yet

[64], but all the other steps are mastered. During a pulse, time variation of coil cur-

rents and plasma geometrical and physical parameters are the predetermined nominal

values computed from magnetohydrodynamic (MHD) simulation codes to determine

the magnetic field and plasma current density necessary for the equilibria [98, 180, 99].
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Figure 1.4: NSTX-U cross section (Figure courtesy of PPPL.)
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Figure 1.5: Cut-away top view of NSTX-U showing the trajectory of the neutral
beams. (Figure courtesy of PPPL.)

The performance objectives in any tokamak are:

• High plasma temperature

• High plasma pressure β

• Long energy confinement time τE

• High driving plasma current

and all these quantities in steady state configuration. Therefore feedback control of

the basic functions of plasma initiation, shaping, heating current drive, stabilization

and safe termination of discharges becomes necessary especially because tokamaks

often operate near the stability limits. Control is also highly needed due to un-

certainty and complexity in the mathematical models of the plasma dynamics and

unpredictable disturbances, and this is what makes the overall control problems very

challenging and very interesting; the most desirable high performance regimes from

the perspective of a fusion power reactor tend to be those that are the nearest to

instability.

There have been huge accomplishments and advances in reduced-order modeling

and control for plasma fusion on different tokamak devices, including vertical position
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control, shape control, kinetic and current profile control, MHD (magnetohydrody-

namic) stabilization and plasma transport reduction.

These control engineering problems can be classified into two groups:

• Electromagnetic control: which refers to controlling the magnetic and elec-

tric fields to regulate the position and shape of the plasma, as well as the total

plasma current.

• Kinetic control: which refers to controlling fueling rates and auxiliary heating

to modify the plasma density, temperature, and pressure.

This section addresses these different control problems and gives an short overview

of the methods used on different tokamaks for each control problem.

1.3.1 Electromagnetic control

NTM control

In a high pressure resistive plasma, nested magnetic surfaces can go unstable by tear-

ing and reconnecting with each others. This creates magnetic islands which connect

hotter core regions of the plasma to colder regions. This phenomena known as the

Neoclassical Tearing Mode NTM is a short circuit effect that drives the plasma heat

to leak out of the core, creating a flattening in plasma temperature, pressure and

current profile and results in bad confinement and plasma disruption.

The fundamental idea of NTM suppression comes from experimental observations

and it is done through active control laws that use highly localized Electron Cyclotron

Current Drive (ECCD) to compensate for the plasma current loss. Restoring the

current drive would shrink these magnetic islands, restore the nested flux surfaces

and stabilize the mode.

In DIII-D for example, a plasma control system based on a search and suppress

algorithm (active tracking and target lock routines) was able to make either small
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rigid radial position shifts of the entire plasma or small changes in the toroidal field

to find and lock the optimum position for complete island suppression [96].

While NTM control in tokamaks is still in constant progress, it benefited from ad-

vances in control algorithms, estimation, real-time computation, actuator technology

and diagnostic signal interpretation [15, 186, 195].

Another example, in the ASDEX Upgrade device [137, 138], the NTM dynamical

system (a second order damped system) was simulated in SIMULINK and an anti-

windup Proportional-Integral (PI) controller was designed and tuned (optimized)

through various simulation in order to obtain the best system performances. The

controller was designed such that it tries to generate invalid input commands, the

mode of operation switches to a fallback mode which requires no inputs and is safe by

design. It returns to normal functionality if all input commands are valid again. This

functionality which is included as part of a standard feature within the ASDEX Up-

grade control system bears resemblance with how we handle invalid input commands

in our rotation controller where the inputs (beam powers and coil current) cannot

exceed a certain physical threshold.

ELM control

An Edge Localized Mode (ELM) is a disruptive instability occurring in the edge

region of a tokamak plasma when it is heated above a certain power level (high

energy confinement, H-mode). ELMs can cause a loss of up to 10% of the total

plasma stored energy on a very short timescale. Therefore, the control of ELMs is an

important issue to consider.

A standard ELM control technique consists of imposing a high critical threshold

of pressure gradient to the plasma, and keep the input power low so that this crit-

ical threshold is not reached. The drawback of this technique is that ELMs can be

beneficial as they naturally reduce the sources of impurities, thus totally suppressing
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them would provoke an accumulation of impurities that can deteriorate the plasma

confinement. An ideal control strategy would allow to eliminate the ELMs while pro-

viding an alternative method for reducing these impurities through density control.

There are no sufficiently advanced methods using a feedback control approach yet but

many experimental control approaches that have been tested. For example, injecting

deuterium pellet for the ASDEX-U or DIII-D tokamaks [80, 103] or controlling by 3D

edge magnetic field perturbations [103] all allow a significant reduction of ELMs.

RWM control

The Resistive Wall Mode (RWM) is one of the major tokamak non-axisymmetric

instabilities.

Active feedback of RWMs in tokamaks was investigated in [45] using control the-

ory. Control systems were designed to stabilize the resistive wall mode and meet

certain performance specifications for a set of test equilibria. A control problem

for n > 0 RWMs in tokamaks (through system identification) was formulated then

several different controllers: P (proportional), PD (proportional-derivative) and H∞

were applied.

[46] for DIII-D and [145] for NSTX applied similar active feedback control of RWM

approaches based on simulation and experimental tuning of the controller gains to

meet some performance requirements.

A combined algorithm for resistive wall mode identification using both a matched

filter and a Kalman filter was implemented in the DIII-D plasma control system (PCS)

[77]. The Kalman filter was based on an eigenmode approach which is similar to our

model-based reduced-order control approach, it enables to build a low dimensional

controller with an observer takes advantage of the relevant magnetic sensors used for

measurements.
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Vertical position control

It has been proven theoretically that plasmas with a vertically elongated cross section

improve and increase energy confinement time, and the first experiments performed

in the seventies on tokamaks confirmed these theoretical predictions [134, 141]. A

vertical elongated plasma implies a vertical axisymmetric MHD instability that can

be stabilized by surrounding the plasma with a superconductive wall [119, 123, 14] and

applying an active feedback system [139]. A detailed investigation of techniques for

active stabilization of elongated plasmas can be found in Humphreys and Hutchinson’s

work on the Alcator C-Mod device [72].

The problem of plasma vertical position stabilization and shape control under

actuation saturation in the DIII-D Tokamak at General Atomics was studied in [152]

where an anti-windup compensator was designed for a given predesigned nominal

plasma vertical position controller guaranteeing global vertical stabilization of the

plasma in the presence of actuator saturation for all reference commands.

Current profile control

One of the first work on current control has been the work of Gran [61] on the TFTR

device (the ancestor of NSTX), where a control system design has been developed

using linear optimal control techniques. On that work, both the ohmic heating and

equilibrium field coils were controlled to maintain plasma current and plasma position

at their desired values. Due to its effect on confinement, plasma stability, and non-

inductively driven plasma current, the control of current profile became critical and

a huge advancement in controlling this profile has recently been made on several

machines.

For JET [116, 117, 97], a system identification procedure has been developed,

a system discretization was therefore performed through an expansion onto a finite

set of appropriate basis functions and a Galerkin scheme and a state space model
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structure was obtained. A combining control law of a slow (proportional + integral)

and a fast (proportional) feedback loop was then designed to reach the closest self

consistent achievable state defined by the minimization of a quadratic integral error.

For DIII-D, [19] has designed a current profile controller using a first-principles-

driven dynamic model (with minimal parameters determined from experiment). The

feedback controller was designed to complement any arbitrary set of feedforward

inputs and drive the spatial profile to the desired target profile (reference tracking).

Through a nonlinear transformation of the inputs and spatial discretization, a finite

dimensional, time-varying linear model for the profile error was obtained. A singular-

value decomposition (SVD) technique was used to reduce the multiple input multiple

output (MIMO) coupled system to a set of the most relevant control system. A

linear-quadratic-integral (LQI) controller was then designed for the reduced order

model.

This control approach used is very similar to our rotation control strategy which

builds its simplified momentum model from a dynamic model (with some experimen-

tally deduced parameters), uses linearization and model reduction as well (projections

on Bessel functions) and builds the corresponding reduced optimal controller (LQG)

which contains an integrator, an anti-windup but also an observer (Kalman filter)

which enables us to rely on inputs and outputs measurements only while taking feed-

back actions.

Another method (nonlinear PDE control) consisting of using a backstepping

boundary control technique has also been applied to current profile control in [20].

In this work, a backstepping current profile control algorithm (PI controller) was de-

signed for the DIII-D tokamak. This control design technique provided a systematic

method to obtain a boundary feedback law through the transformation of a spatially

discretized version of the original system into an asymptotically stable target system

with desirable properties.
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Motivated by the current profile control, in [191], the authors consider a 1D

parabolic system which is similar to our considered diffusion equation for rotation

control. A Proper Orthogonal Decomposition (POD) reduced order model was de-

rived and a reduced order bilinear system was obtained. A convergent successive

scheme to compute the solution of a finite-time suboptimal control problem defined

for this latter reduced order bilinear system was then designed. The drawback of

this method is that it requires to numerically solve a number of ODEs (Riccati equa-

tions) at each iteration of this algorithm whereas our method of linearizing the bilinear

term enables us to simply solve the Riccati equation once and reuse the results (gains)

through all iterations.

Shape control

To optimally use the space and to ensure good stabilization in large highly elongated

tokamaks, the plasma must be maintained as close as possible to the surrounding

walls, thus in addition to a vertical control and a plasma current control, an accurate

shape control becomes necessary. Because the coil for ohmic heating, the coil for the

vertical and radial fields and the coil for the shaping field are usually the same or

partially jointly used, this creates a coupling in the input and output parameters of

the control systems and therefore adds more complexity to the problem.

In [48], plasma shape control using real-time equilibrium reconstruction has been

implemented on NSTX. The real-time equilibria provide calculations of the flux at

points on the plasma boundary, which are used as input to a shape control algorithm

known as isoflux control. The flux at the desired boundary location is compared with

a reference flux value, and the difference is used as the basic feedback quantity for

the poloidal field coils on NSTX.

More recently, [92] gives an overview of the shape control implementations and

dynamics studies performed on NSTX, in particular, strike point position and X-
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point height control. A PID controller for the strike point was tuned by analyzing

the step response of the strike point position to the poloidal coil currents, employing

the Ziegler-Nichols method. A system identification of the plasma response to the

control inputs was used to build the model. An online automatic relay-feedback PID

tuning algorithm was then designed.

1.3.2 Kinetic control

Burn control

To become an economical alternative energy source, nuclear fusion tokamaks must

be capable of operating for extended periods of time in a burning plasma mode

characterized by a large value of Q, the ratio of fusion power to auxiliary power,

in other words, we ideally want more “power out” than “power in”. Achieving and

maintaining such conditions requires precise control over the plasma density and

temperature.

Modulation of the auxiliary power, modulation of the fueling rate, and controlled

injection of impurities are considered as possible actuators for the burn control.

In [114], a PID control law was used to regulate fusion power using the deuterium-

tritium fueling rate. In [102], a diagonal multi-input, multi-output linear control

scheme for burning plasma kinetics was developed by observing actuator influences

during numerical simulations of plasmas. The approximation of the nonlinear burning

plasma model by a linearized one for controller design is a common denominator

in many model-based controller designs. The model is linearized, a controller is

synthesized using linear techniques, and the resulting design is tested on the original

nonlinear model. These controllers succeed in stabilizing the system in nonlinear

simulations against a limited set of perturbations and disturbances.

In [152], a nonlinear model involving approximate conservation equations for the

energy and particles densities was used to synthesize a nonlinear feedback controller
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(a nonlinear backstepping algorithm) for burn conditions stabilization. The use of

nonlinear control techniques removes the limits imposed by linearization and the

resulting controller can accommodate very large perturbations but its implementation

and applicability on the PCS are not straightforward and requires several iterations

whereas linear controller are standard, simple and more adaptive to other control

problems.

Rotation control

In an operating tokamak, each particle has its own velocity and the net sum of

velocities of a particle species is the fluid velocity of that species. This fluid velocity

can be separated into components; parallel and perpendicular to the flux surfaces.

The velocity perpendicular to a flux surface is called convection, and the velocity

parallel to the flux surface is called rotation.

We will consider here the toroidal (parallel) component of the velocity Vφ and its

angular frequency ω = Vφ/R where R is the plasma major radius.

Plasma toroidal rotation and its shear have been recognized as a stabilizing mech-

anism for magnetohydrodynamic (MHD) instabilities such as the neoclassical tearing

mode (NTM) [95] where a reduced plasma rotation experimentally destabilizes these

NTMs at Lower β in the DIII-D, NSTX and JET devices by minimizing the effect

of error fields that excite these tearing modes. It also helps prevent the resistive

wall modes (RWM) [47] where these long-wavelength modes are stabilized by a rapid

plasma toroidal rotation. High plasma rotation can have a significant impact on the

plasma confinement time by suppressing energy and particle transport to the walls.

Neutral beam injection (NBI) is the dominant source of momentum and there-

fore rotation in present-day tokamaks. NBI consists of injecting beams of highly en-

ergetic neutral particles into the plasma, heating the plasma through collisions, and

naturally transferring momentum.
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The NBI system of NSTX (resp. NSTX-U) considered in this work consists of

one set (resp. two sets) of three beams which can each inject a maximum of 2 MW

of power into the plasma. Its configuration is shown in Fig 1.5 and its injection is

spread throughout the plasma flux surfaces which ensures a rotation drive across the

plasma poloidal profile.

Several mechanisms have been developed to control and affect plasma rotation

beside the main external source of neutral beams injection as toroidal rotation can

be influenced by the intrinsic rotation and the 3D magnetic fields due to MHD insta-

bilities or field errors.

The experimental work done in [171] for example focuses on investigating mech-

anisms of driving rotation in fusion plasmas without external momentum input (use

of intrinsic rotation and non-resonant magnetic fields). It has been found that the

torque from these fields can be enhanced at low rotation, which assists in spinning

the plasma from rest, and offers increased resistance against plasma slowing. In this

dissertation, we will focus exclusively on the neutral beams injection as the unique

source for driving toroidal rotation. All other sources will not be considered.

Rotation control in tokamaks has been already demonstrated using momentum

input from injected neutral beams (NBI) as actuators [153, 192].

[192] controls the combined ion temperature profile and toroidal rotation for JT-

60U device experimentally using real-time measurement and real-time control system

consisting of a tuned PID controller.

In [153], simultaneous control of the rotation and stored energy was considered

for the DIII-D device. In this work, a model-based control algorithm for simulta-

neous regulation of plasma rotation and β has been developed and casted in linear

state space form then combined with a proportional-integral-derivative (PID) transfer

function to form a closed loop control algorithm which then has been used by the

PCS for experimental testing. Our work will show similarities in controlling both the
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rotation and the stored energy with [153] but will use a different methodology (model

reduction and an optimal controller). More details in the following section.

1.4 Contribution of this dissertation

The main subject of this thesis is to explore toroidal rotation profile control

in tokamaks through its direct application on NSTX and NSTX-U devices. The

methodology used throughout the thesis relies heavily on the mechanical engineering

tools that are very commonly used in fluid mechanics and flow control such as model

reduction and linear feedback controllers. The idea here is to transpose this knowledge

and tools and apply them to control the toroidal rotation of plasma in tokamaks.

The thesis begins with a classical plasma problem as a preliminary case study

where this methodology of reduced order modeling and control is applied to demon-

strate the effectiveness and applicability of our tools.

We then focus on the main topic which is the control of plasma toroidal rotation in

a tokamak, to maintain plasma stability for long-pulse operation. We use experimen-

tal measurements from the National Spherical Torus Experiment (NSTX) and two

different types of actuation: momentum from injected neutral beams and neoclassical

toroidal viscosity generated by three-dimensional applied magnetic fields.

Whether based on the data-driven model obtained for NSTX or pure modeling

for NSTX-U, a feedback controller is designed, and predictive simulations using the

TRANSP plasma transport code show that the controller drives the plasma rotation to

various desired profiles given practical constraints on the actuators and the available

rotation measurements. Another application of simultaneously controling the toroidal

rotation profile and βn stored energy is shown for NSTX-U as well.

The approach used in this dissertation for NSTX-U is quite similar to the one

used in [153] for DIII-D except that the new and unique aspect of it is the use of
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non-axisymmetric (three-dimensional) magnetic fields as another actuator in closed-

loop feedback control to supplement the neutral beam actuator. Rotation alteration

by non-resonant, three-dimensional magnetic fields allows more precise, continuous

control of the plasma rotation than NBI, as the momentum delivered by the latter

occurs in significantly large, discrete increments.

The modeling and control design of the plasma rotation differ also from [153].

Starting from a diffusion equation, we first proceed to linearize it, then we apply

model reduction on it in order to reduce the dimension of the state of the linear

optimal controller (LQG) which is a more sophisticated design as it contains both

an observer and an integrator. [153] does not reduce the model but designs a PID

controller tuned through rotation simulations. A model-based controller enables us

to tune all the gains of the controller offline and therefore drastically reduce the

experimental testing.

Furthermore, using TRANSP to test a reference tracking controller for the rotation

profile (and stored energy) has never been done before, and it gives confidence in the

control design before experimental testing.

Our strategy for NSTX/NSTX-U rotation control is to obtain practical, low-

complexity dynamical models useful for implementing relatively simple controllers

for tokamaks that can be implemented in the PCS and easily be applied to experi-

ments. Because our starting equation is bilinear like the one considered in [191], the

linearization strategy enables us to use the standard linear optimal control tools that

can adapt to any other type of control.

Finally, in our work, a study of the robustness of the controller to some param-

eters uncertainties, in particular the perpendicular momentum diffusivity profile χφ

and the confinement time τe is performed. This will bring more confidence in the

controller’s robustness in stability and performance as experimental testing is not

currently available for rotation control.
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1.5 Organization of Part I

Chapter 2: We will present and explain all the background and the tools used in

this thesis for the model reduction and the controller design. This will include the

balanced truncation and the Bessel functions decomposition for the reduced-order

modeling and the different controller designs such as model-based feedback control

design and the observer control design. The methodology consisting of doing a model

reduction then building a matching controller will be applied to all our plasma control

problems.

Chapter 3: We will present our results on the first application of control on a

simple plasma drift waves problem as a preliminary case study where the approach

defined in chapter 2 of reduced order modeling and control is applied to demonstrate

the effectiveness and applicability of our tools.

Chapter 4: This chapter gets into the main topic which is the control of plasma

toroidal rotation in the NSTX and NSTX-U tokamaks. It uses experimental mea-

surements from the NSTX device but will extend the approach to NSTX-U by relying

on numerical models and simulations and eventually will increase the complexity by

trying to control the rotation and the stored energy simultaneously.

Chapter 5: We summarize our results and possible future directions for this

research.
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Chapter 2

Background: Reduced-order

modeling and feedback control for

linear time invariant systems

2.1 Overview and motivation

From the numerical simulation point of view, research problems in plasmas in toka-

maks are very challenging due to complex and highly nonlinear dynamics described

by coupled multi-variate differential equations in a multi-parameter operating space.

There are generally no analytical solutions available to describe different phenom-

ena occurring in a plasma due to the complexity of interference of different dynamics

at the same time. However there are some model simplifications that enable us to

understand some properties better; for instance, considering a plasma as a fluid (gas)

enables us to state that the pressure is proportional to the product of density and

temperature by the thermodynamic equation P ∝ nT . Even if these quantities are

not homogeneous within plasmas, it gives us the intuition needed to understand that
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the plasma in the tokamak is hotter and denser at its core thus the pressure is also

higher at the core.

Another example is the ideal magnetohydrodynamics (MHD) theory which de-

scribes the basic behavior of the plasma as a perfectly conducting fluid without dis-

tinguishing the different particles composing this fluid. This approximation is suffi-

ciently accurate to be used as a first approximation in almost every magnetic analysis

done for tokamak plasma physics, including studies of instabilities and estimation of

the plasma shape and position.

A very general and useful approximation technique is model reduction: a math-

ematical tool derived from control theory and dynamical systems which allows to

extract the key coherent structures of these plasma problems and drastically sim-

plify them. This is what we are going to describe and use in this thesis: reduction

and reconstruction methods with their direct application to simulation and control

of plasma in tokamaks.

This tool was extensively developed primarily for fluid dynamics problems espe-

cially flow control where, as in plasma physics, closed-form analytical solutions are

rarely available for engineering applications. Mathematical tools have been devel-

oped using ideas from dynamical systems, control theory, and geometric mechanics,

in order to extract some key structures and conservation laws while simplifying the

original problems.

The idea arose when researchers were focusing on flow control when trying to re-

duce some undesired properties such as drag or instabilities (vibrations) or to enhance

other ones. Major breakthroughs have been made in feedback active control due to

the increase of machine capacity in simulations and modeling [87, 74, 36, 163] thus

the focus shifted to model based feedback control methods but the drawback of these

methods was that it was applicable only for limited dimension systems (not bigger
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than 104) whereas dynamical models in computational fluids dynamics dimensions

were typically higher (over 105).

Therefore, having a reduced-order model that captures the main low dimensional

dynamical structure (when it exists) that accurately reconstructs the input-output

dynamics of the full original model is a popular solution used in flow control to

solve the problem of high dimensionality. Based on the reduced model, a feedback

controller is designed for the full system. Many applications of this methodology can

be found, applied to various problems such as noise reduction in cavity flow [142] or

stabilization of an unstable steady state in [4].

In our case, we consider the plasma in a tokamak as an ideal conducting fluid

flowing in a torus and, by analogy, we will apply the same mathematical methods of

model reduction and model-based feedback control to plasma problems to show its

validity and efficacy. Reduced order methods enable us to gain computational and

experimental time and focus on the main dynamics that will matter for our problems.

The development of engineering tools for automatic regulation and control of a

system’s behavior never stopped progressing especially in the last several decades.

As this work will only focus specifically on linear time invariant (LTI) control

theory, where we assume that plants (i.e., systems to be controlled) and controllers

have linear dynamics that do not change with time. Although the LTI assumption is

restrictive, the control theory tools specific to it are very standard and easy to apply.

In this chapter, Section 2.2 reviews some standard reduced-order modeling meth-

ods for Linear Time Invariant (LTI) systems. Section 2.3 reviews the standard linear

feedback control methods. These methods are used in Chapter 7, Chapter 8 and

Chapter 9.
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2.2 Standard reduced-order modeling methods

In this section, various standard techniques for constructing reduced-order models are

briefly reviewed for the model reduction of LTI systems used in this thesis.

2.2.1 Projection-based model reduction

This method involves the projection of a model onto a set of modes and is a widely

used approach. It is sometimes called the Petrov-Galerkin projection approach.

We start by defining a stable linear time-invariant state-space system as follows:

ẋ = Ax+Bu,

y = Cx,

(2.1)

where x ∈ Rn is the state (for instance, the state variables at all grid points of the

simulation), u ∈ Rp is a vector of inputs (for instance, actuators or disturbances), and

y ∈ Rq is a vector of outputs (for instance, sensor measurements, or other measurable

quantities as linear functions of the state). A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rq×n are

respectively the dynamics, control and sensor matrices.

This system of equations (2.1) is asymptotically stable if and only if all the eigen-

values of A are located in the left half plane (i.e., they all have negative real parts).

It is neutrally stable if it is stable and any eigenvalue of A is on the imaginary axis

(pure imaginary), and it is unstable if any eigenvalue of A is in the right-half plane

(positive real part).

The goal of model reduction is to obtain an approximate model that captures

the dynamic relationship between the inputs u and the outputs y with the smallest
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dimension possible, so we can write:

ẋr = Arxr +Bru,

y = Crxr,

(2.2)

where the reduced state variable xr ∈ Rr and r � n, Ar ∈ Rr×r, Br ∈ Rr×p, and

Cr ∈ Rq×r are respectively the corresponding reduced dynamics, control and sensor

matrices.

The standard projection approach obtains the reduced order model (2.2) by pro-

jecting the model (2.1) onto a r-dimensional subspace spanned by the columns of a

matrix Φr ∈ Rn×r along a direction that is orthogonal to a r-dimensional subspace

spanned by the columns of another matrix Ψr ∈ Rn×r. The bases Φr and Ψr are

bi-orthogonal:

Ψ†rΦr = Ir×r, (2.3)

where the dagger † denotes the adjoint operator.

By approximating the original state as x ≈ Φrxr in (2.1) and applying the orthog-

onal property (2.3), we can deduce the reduced-order model of the form:

ẋr =
(
Ψ†rAΦr

)
xr +

(
Ψ†rB

)
u,

y = (CΦr) xr.

(2.4)

This bi-orthogonal projection approach can also be used to reduce nonlinear systems,

and if Φr = Ψr, this method is just an orthogonal Galerkin projection.

We can have various projection-based model reduction methods that use different

bases Φr and Ψr modes and generate different reduced-order models, but the basic

projection idea remains the same for all these techniques.
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2.2.2 Bessel functions

One of the orthogonal Galerkin projection method that we used in this work for

rotation control (Chapters 8 and 9) is choosing the Bessel functions as our projecting

basis functions. We then write the approximate state in (2.1) as

x(ρ, t) ≈
r∑

n=1

an(t)ϕn(ρ), (2.5)

where ρ and t represent the space and time variables. The basis functions are given

by

ϕn(ρ) = J0(knρ), n = 1, . . . , r, (2.6)

where J0 denotes the Bessel function of the first kind and kn denotes the n-th root of

J0. Furthermore, the basis functions satisfy the orthogonality relation

〈ϕn, ϕm〉 = 0, for m 6= n, (2.7)

where the inner product is defined by

〈f, g〉 =

∫ 1

0

ρ f(ρ) g(ρ) dρ. (2.8)

Inserting the expansion (2.5) into (2.1) then taking the inner product with ϕm, and

using the orthogonality relation (2.7), we obtain the following reduced-order system

ȧm =
r∑

n=1

〈Aϕn, ϕm〉
〈ϕm, ϕm〉

an +
〈Bu, ϕm〉
〈ϕm, ϕm〉

,

y = C
r∑

n=1

an(t)ϕn(ρ)

(2.9)
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where m = 1, . . . , r which is a set of r coupled ordinary differential equations for the

coefficients am. Note that the reduced state becomes a vector of coefficients obtained

from the projection of the non reduced state onto the Bessel functions basis.

2.2.3 Balanced truncation method

For systems like (2.1), the concepts of controllability and observability can be defined

and quantified by a pair of symmetric, positive-semidefinite matrices

Wc =

∫ ∞
0

eAtBB†eA
†tdt, (2.10a)

Wo =

∫ ∞
0

eA
†tC†CeAtdt, (2.10b)

called controllability and observability Gramians. The dagger † denotes the adjoint

operator.

The controllability Gramian Wc provides a measure of the influence of input his-

tory on the current state (i.e, to what degree each state is excited by inputs), and the

observability Gramian Wo measures the influence of an initial state on future outputs

with zero control input (i.e, to what degree each state excites future outputs). The

larger eigenvalues of the controllability (observability) Gramian correspond to the

more controllable (observable) states.

We then define the Hankel norm of a system G (defined by its state space real-

ization (2.1)) as the maximum ratio, over all input signals, between an output signal

norm and the given input signal norm

‖G‖H =
√

max eig(WcWo) =
√

max eig(WoWc), (2.11)
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we also define the jth Hankel singular value σj(G) as the square root of the jth

eigenvalue of WoWc (or WcWo ) with the ordering

σ1(G) ≥ σ2(G) ≥ · · · ≥ σj(G) ≥ · · · .

A balanced truncation involves first a coordinate transformation T , called the

balancing transformation, that simultaneously diagonalizes the controllability and

observability matrices defined by (2.10). That is, under a change of coordinates

x = Tz, the transformed Gramians become

T−1Wc(T
−1)† = T †WoT = Σ, (2.12)

where Σ = diag(σ1, . . . , σn) is a diagonal matrix which its diagonal entries are the

Hankel singular values ordered so that σ1 ≥ · · · ≥ σn ≥ 0.

A reduced-order model may then be obtained by truncating the states that are

least controllable and observable. That is, if T =
[
T1 T2

]
, and x = Tz = T1z1 +T2z2,

then a reduced-order model is obtained by setting z2 = 0, yielding a model of the

form

ż1 = Arz1 +Bru,

y = Crz1,

(2.13)

The resulting reduced-order balanced model retains the most controllable and observ-

able states and is therefore suitable for capturing the input-output dynamics of the

original system.

Quantitatively the balanced truncation procedure guarantees an a priori analytical

upper bound of error between the original system and the reduced-order model. If

G(s) = C(sI − A)−1B denotes the transfer function of the system (2.1), and Gr(s)
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denotes the corresponding transfer function of the approximation (2.13), then

||G−Gr||∞ < 2
n∑

k=r+1

σr. (2.14)

In addition, any reduced-order model Gr with r states satisfies

||G−Gr||∞ > σr+1, (2.15)

where σr+1 is the first neglected Hankel singular value of G. This is a fundamental

limitation for any reduced-order model. The two inequalities (2.14) and (2.15) provide

error bounds. More details of this method can be found in [56] and [165].

In Chapter 7, we applied the balanced truncation method to the Hasegawa-

Wakatani (HW) problem in order to build the reduced order model. However for

a certain set of parameters, the HW system exhibited some unstable modes (its dy-

namics matrix A has some unstable eigenvalues, also called right half plane poles).

Because the balanced truncation method only applies to stable models, we could

not apply it directly to our HW problem. An extension for unstable models does exist

and consists of first decomposing the model into a stable and unstable submodels.

For instance, we can write a system as a sum of two subsystems

G(s) = Gu(s) +Gs(s), (2.16)

where Gu contains all the unstable poles (eigenvalues of A with a non-negative real

part), and Gs contains the stable ones (eigenvalues of A with a negative real part).

The balanced truncation can therefore be applied to the stable part of the system

Gs to find a reduced order approximation Gs r which can then be added to the unstable
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subsystem to obtain an approximation of the full model G(s)

G(s) = Gu(s) +Gs r(s). (2.17)

2.2.4 Methods for high dimensional systems

The fluid mechanics community has been precursor in developing high dimensional

reduced-order modeling methods due to the extremely high state sizes needed for the

conversion of partial differential equations to ordinary differential equations: modeling

flows of fluids requires state sizes of the order of 10 6 to 10 9. Very high-dimensional

model reduction is a current field of study and ongoing research. The overall ap-

proach of model reduction can still work for large systems by using the appropriate

decomposition tools.

This section briefly describes proper orthogonal decomposition (POD), balanced

POD, and the eigensystem realization algorithm (ERA), which became very standard

techniques. The methods have not been used in this thesis but are given as exam-

ples of what can be done and thus complete the overview of the main existing high

dimension model reduction tools. In fact, as seen in some examples of current profile

control, [191] uses a POD to build the reduced dynamic model.

The Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition or POD also known as the principal component

analysis or Karhunen-Loeve analysis, has been first used in fluids problems by Lumley

[106, 105], then has been used widely to study fluid flows, model reduction and control

[164, 9, 69].

This method can be applied on both linear and nonlinear systems. It constructs

an orthogonal set of modes called POD modes directly from experimental data. The
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POD model reduction consists of an orthogonal Galerkin projection onto the first r

leading modes (modes ranked by their intrinsic energy content).

We start by collecting snapshots from simulation of the full model or experimental

data and stacking them by columns in a X ∈ Rn×m matrix. n is the dimension of

the system, m is the number of snapshot taken and m � n. The POD modes

are deduced to be the orthonormal eigenvectors of X†X ∈ Rm×m). Therefore, the

orthogonal projection using these modes captures the most energetic modes of the

simulation or experiment.

It does not capture the input-output dynamics of the original model as the bal-

anced truncation does, and this is the major drawback as the most important modes

for control or measurements are not necessarily the most energetic [167, 76]. Another

drawback is that reduced order modeling using POD does not conserve stability for

stable linear systems [168].

The balanced POD

Another snapshot-based method was introduced by Rowley [142] for high dimensional

LTI systems with high dimensional inputs and outputs, and it approximates the

balanced truncation method developed in subsection 2.2.3.

The BPOD algorithm requires an impulse response of the linear dynamics for

each actuator, and an impulse response of the adjoint dynamics for each sensor.

(If the number of sensors is large, then a method known as output projection can

approximate this process with a smaller number of impulse responses.)

The algorithm computes the SVD of a matrix of inner products between direct

and adjoint impulse responses, and uses the decomposition to construct modes that

transform the high-dimensional dynamics into a reduced-order approximation of the

balanced realization.

33



The main drawback of this method as well as the balanced truncation method is

that it relies on adjoints data that in experimental situation cannot be obtained. If

we have a model defined, an adjoint system can be easily deduced, but if we want to

rely on experimental snapshots, then these methods are limited and nonapplicable.

ERA

The eigensystem realization algorithm (ERA) method is analytically equivalent to

the balanced POD [107], but has the advantage that it does not require adjoint

impulse responses. Therefore, unlike balanced POD, it is theoretically possible to use

ERA on experimental impulse response data to approximate balanced truncation.

Furthermore ERA can be less computationally expensive than balanced POD [107].

The resulting drawback of the ERA method is thus that ERA does not compute

the adjoint modes, which can be useful for observability analysis. Therefore, the

choice of method between balanced POD and ERA depends on the modeling goals

and availability.

However, both the balanced POD and ERA techniques remain a better choice

than the POD method when the dynamics are linear or nearly linear.

2.3 Optimal feedback control tools

LTI control branches into two main theories, the classical control theory and mod-

ern control theory. The main difference between the two theories is the representa-

tion and analytical approaches for dynamical systems: classical control theory relies

on frequency-domain representations whereas modern control theory relies on time-

domain representations.

These two system representations are related to each other by a simple Laplace

transform detailed in what follows.
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The general state space realization form of a finite dimensional LTI input-output

dynamical system G is given in (2.1).

Taking the Laplace transform of system G gives us a new system of equations

sx̂(s) = Ax̂(s) +Bû(s),

ŷ(s) = Cx̂(s),

(2.18)

which simplifies into

ŷ(s) = G(s)û(s) (2.19)

where G(s) is the transfer function given by G(s) = C(sI − A)−1B.

The early studies about feedback control theory were done in the domain of fluid

flows, and have only been using classical control tools, mainly because these controllers

are easy to design by hand without high-accuracy models. The tendency and focus

have then been shifted towards modern control methods because of its ability to

design high performing and robust controllers.

This section focuses on particular modern control concepts that have been used

throughout this thesis. In particular, it addresses optimal control methods.

The main idea of optimal control for LTI systems is to design a controller K that

will achieve the best control performance for a given set of performance constraints.

This section discusses the linear quadratic regulator (LQR) as the optimal full-

state feedback controller and the Kalman filter as the optimal state estimator and re-

views the linear quadratic Gaussian (LQG) which combines the LQR and the Kalman

filter. We used this type of controller for both the Hasegawa-Wakatani system and

the rotation problems.

This control is a standard topic in many textbooks, two good references would be

[165] and [7]. We are providing here a brief overview.
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2.3.1 Linear quadratic regulator design

LQR is a full-state feedback control method that consists of designing an optimal

controller gain matrix K such that when the linear state feedback law

u = −Kx (2.20)

is injected in the input-state part of (2.1). The quadratic cost function

J =

∫ ∞
0

xT (t)Qx(t) + uT (t)Ru(t) dt, (2.21)

where Q ∈ Rn×n is the cost matrix, Q ≥ 0 (positive semidefinite), R ∈ Rq×q is the

input cost matrix, R > 0 (positive definite), is minimized. Q and R are thus the

weight matrices which determine how the cost function penalizes various components

of the state and actuator inputs.

The optimal K is deduced by solving a continuous algebraic Riccati equation.

More details can be found in [165] and [7].

Although the LQR controller has guarantees on the stability and robustness of

the closed-loop system, in real-time systems its direct implementation is unfeasible

because of the lack of the full knowledge of the entire state x(t), we usually only

have point wise measurements. Therefore, it is necessary to design and implement a

state observer that estimates the state x(t) based on knowledge of the plant actuators

inputs u(t) and sensor outputs y(t).

ẋ(t) = Ax(t) +Bu(t)

K

x ∈ Rn

−
u ∈ Rp

Figure 2.1: Schematic of a full-state feedback system
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2.3.2 Observer design

The observer can be designed using a quadratic estimator known as the Kalman

filter. This method is optimal if the errors in representing the state x(t) and the

measurements y(t) are stochastic Gaussian processes. Such errors typically arise

from inaccuracies in the model, external disturbances, and sensor noise.

A standard linear observer reconstructs a state estimate x̂, with dynamics given

by

˙̂x(t) = (A− LC)x̂(t) +Bu(t) + Ly(t), (2.22)

where the matrices A,B and C are the same as those in the system (2.1), and L is a

matrix of gains chosen such that the state estimate converges quickly relative to the

system’s dynamics.

Using our linear model, we design an optimal observer (Kalman filter) to find L.

We introduce two zero-mean Gaussian white noise processes, w the process distur-

bance and v the sensor noise, with respective covariance matrices W and V , into

equations (2.1) to obtain

ẋ(t) = Ax(t) +Bu(t) + w(t), (2.23)

y(t) = Cx(t) + v(t). (2.24)

Then the covariance of the error in the state estimate is minimized (assuming the

noise models are correct) by setting

L = PCTV −1, (2.25)

where P ∈ Rn×n (P > 0) is a positive-definite symmetric matrix that solves another

algebraic Riccati equation.
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The observer generates an estimate of the state from the physics model as rep-

resented by the state matrix, the inputs and outputs, and once combined to the

feedback controller it forms a linear quadratic Gaussian compensator called LQG.

The LQG controller can stabilize any plant that is detectable and stabilizable,

meaning that the actuators can control and the sensors can observe all unstable

eigenmodes of A. The controller may not always be robust though, then robust

control tools can attempt to improve the robustness of the closed-loop systems.

ẋ(t) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t)

Full linear model

˙̂x(t) = Ax̂(t)−Bu(t)− L(y(t)− Cx̂(t))

Kalman Filter

K

LQR

x ∈ Rq

x̂

−
u ∈ Rp

v, w

−1

LQG

Figure 2.2: Schematic of an observer (Kalman filter) connected to a controller (LQR)
to form a compensator (LQG)
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Chapter 3

Hasegawa-Wakatani problem

Here, we apply the methods discussed in the previous chapter to a problem in plasma

physics known as the Hasegawa-Wakatani (HW) problem [67, 188].

3.1 Modified Hasegawa-Wakatani modeling

Drift wave instabilities are an important type of instabilities of fluid plasmas. They

occur when a non-uniform density plasma is maintained in an equilibrium by a strong

magnetic field. Drift wave instabilities can transport the thermal energy of the plasma

as it expands across a magnetic field. This undesirable transport leads to energy and

confinement loss that can lead to a plasma termination. Our control objective is

therefore to stabilize these drift waves instabilities.

The HW model which couples plasma density and electrostatic potential through

an approximation of the physics of parallel electron motion, is a simple model that

describes resistive drift wave turbulence. It was developed to investigate the observed

anomalous edge transport due to collisional drift waves [70].

Due to nonlinearity, drift waves can self-consistently generate zonal flows, which

in turn play a key role in the regulation of these drift-wave instabilities and thus in

the suppression of the anomalous transport, see Figure 3.1. The modified HW model
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Figure 3.1: Schematic of drift waves / zonal flow coupling

[67, 188] capture this coupled mechanism in the following equations

∂ζ

∂t
+ {ϕ, ζ} = α(ϕ− n)− µ∆2ζ, (3.1a)

∂n

∂t
+ {ϕ, n} = α(ϕ− n)− κ∂ϕ

∂y
− µ∆2n, (3.1b)

where n is the density and ϕ is the electrostatic potential with ζ = ∆ϕ, ∆ = ∂2/∂x2 +

∂2/∂y2 is the 2D Laplacian, {a, b} ≡ (∂a/∂x) (∂b/∂y)−(∂a/∂y) (∂b/∂x) is the Poisson

bracket, µ is the dissipation coefficient, the background density n0 is assumed to have

a fixed exponential profile, so that the background density gradient κ ≡ (∂/∂x) lnn0

is assumed constant, α is the adiabaticity operator.

In this 2D spatio-temporal evolution of the density n and the ion vorticity ζ, α,

µ, and κ are considered to be time- and space-invariant constants.

We analyze drift waves in the simplest possible configuration involving a non-

uniform plasma called plane plasma slab. In this configuration, there is a plasma

with non-uniform density n and pressure p maintained in equilibrium by a strong

magnetic field B0 as shown in Figure 3.2

Parallel electron motion is a key element for generating, stabilizing, and destabi-

lizing zonal flow. However, for computational reasons, HW model is usually studied

as a 2D model [169, 121]. Originally, the parallel dissipation operator −D‖∇2
‖ was
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Hasegawa-Wakatani Model
HW model describes evolution of density fluctu-
ation n and vorticity ζ = ∇2ϕ ( ϕ: electrostatic
potential)

∂

∂t
ζ + {ϕ, ζ} = α(ϕ − n) − Dζ∇4ζ

∂

∂t
n + {ϕ, n} = α(ϕ − n) − κ

∂ϕ

∂y
− Dn∇4n

{a, b} = ∂a/∂x∂b/∂y − ∂a/∂y∂b/∂x

∇2 = ∂2/∂x2 + ∂2/∂y2

Dζ and Dn are dissipation coefficients
κ ≡ −∂/∂x ln n0

α ≡ Tek2
z

ηn0ωcie
2 : adiabaticity parameter

x

y

B0

α>>1
α<<1

n0

κ

x (radial)

(poloidal)

✲ α

∞0 Hydrodynamic Adiabatic
(Hasegawa-Mima)

Workshop on Long Time Simulations of Kinetic Plasmas – p.3/11

Figure 3.2: Schematic of drift wave modeling location

just replaced by a constant α defined above (essentially assuming the presence of a

single, dominant, nonzero parallel wave number k‖). However, that approximation is

incorrect for zonal flows, for which k‖ = 0.

Therefore, in the modified Hasegawa-Wakatani model (MHW), the parallel term

is taken to vanish for the zonal modes [169]. The modified equations are

∂ζ

∂t
+ {ϕ, ζ} = α(ϕ̃− ñ)− µ∆2ζ, (3.2a)

∂n

∂t
+ {ϕ, n} = α(ϕ̃− ñ)− κ∂ϕ

∂y
− µ∆2n, (3.2b)

where zonal and nonzonal components of a variable f are defined as

zonal: 〈f〉 ≡ 1

Ly

∫
fdy, (3.3a)

nonzonal: f̃ ≡ f − 〈f〉, (3.3b)
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where Ly is the periodicity length in y. Since we are considering the study in a plasma

slab, periodic boundary conditions are used for simplicity.

Figure 3.3 shows a simulation of this MHW model (3.2) where the transition of

both ion vorticity and density fluctuation from a horizontally uniform state (drift

waves) to an almost vertically uniform state (zonal flow) is highlighted; the model

modification helps indeed simulating the complex coupling between drift waves and

zonal flow.

−1.5 −1 −0.5 0 0.5 1 1.5−0.4 −0.2 0 0.2 0.4

ion vorticity ζ

t
1

t
2

t
3

density n

Figure 3.3: Ion vorticity and density fluctuation (in color) of the full non linear MHW
equations at three successive times.
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3.2 Results on model reduction

To be able to apply model reduction, we need to linearize the non-linear system

around an equilibrium to obtain a LTI system that can then be reduced.

We choose an unstable equilibrium point for (3.2) which is (φ0 = 0, ζ0 = 0, n0 = 0).

The linearization about this equilibrium is

∂ζ

∂t
= α(ϕ̃− ñ)− µ∆2ζ, (3.4a)

∂n

∂t
= α(ϕ̃− ñ)− κ∂ϕ

∂y
− µ∆2n. (3.4b)

The equations can then be formatted in a matrix notation as

d

dt

(
ζ

n

)
= A

(
ζ

n

)
=

(
α∆−1 − µ∆2 −α

α∆−1 − κ ∂
∂y

∆−1 −α− µ∆2

)(
ζ

n

)
. (3.5)

A linear forcing is introduced into this equation to indirectly act as a controlled

input, allowing us to put the system in a standard state-space realization form so

as to apply the model-based feedback control methodology. An additional external

electrostatic potential causing this linear forcing is used as the actual controlled input.

It can be thought of as a probe inside the tokamak, although in practice no probe can

withstand the extreme temperatures found inside the chamber of a tokamak. The

total electrostatic potential can be written as

ϕtotal = ϕint + ϕext, (3.6)

where ϕint is the internal potential, ϕext = Φu is the external potential added as

the control input, u is a scalar, and Φ is a given column vector that specifies the

external field’s spatial distribution. This field is localized in the middle of the square

43



plate and it is determined by the function Φ(r) = 2 (1− r2/γ2) exp (−r2/γ2) where

r2 = (x− Lx/2)2 + (y − Ly/2)2 and γ = 5 is a given parameter.

Introducing this actuator into equations (3.4a–3.4b) yields the following controlled

linearized Modified Hasegawa-Wakatani equations:

∂

∂t
ζ = α(ϕ̃− ñ) + αϕ̃ext − µ∆2ζ, (3.7a)

∂

∂t
n = α(ϕ̃− ñ) + αϕ̃ext − κ

∂ϕ

∂y
− κ∂ϕext

∂y
− µ∆2n. (3.7b)

The system can then be rewritten in a state space realization form

∂

∂t

ζ
n

 = A

ζ
n

+Bu, (3.8)

where A is already defined in (3.5) and

B =

 αΦ̃

αΦ̃− κ∂yΦ

. (3.9)

We are going to numerically study three cases obtained by using a different density

gradient κ parameter while keeping the α and µ parameters fixed. We obtain three

different A matrices, one for each case, with different numbers of right half plane

(unstable) poles summarized in Table 3.1. Figure 3.4 illustrates the poles obtained

for the first case of Table 3.1.

Table 3.1: Summary of the parameters and number of unstable poles for the three
cases studied. Parameters α and µ are fixed, only κ varies.

Case κ α µ # of RHP poles
1 0.20 0.1 0.2 2
2 0.25 0.1 0.2 4
3 0.28 0.1 0.2 8
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Figure 3.4: Representation of the poles of system (3.8) with κ = 0.2 resulting in 2
right half plane (unstable) eigenvalues (Case #1)

Once the balanced truncation is applied, the error between the original and the

reduced-order model is calculated and compared to the theoretical bounds and to

errors obtained by applying two other model reduction techniques seen in Chapter 2:

POD and BPOD. The results are presented in Figure 3.5. As expected, the balanced

truncation method is the one that gives the best approximation (least error) to the

original model. In addition, Figure 3.5 allows us to decide where to truncate the

model and how many modes to keep, for instance, in Case #3 (with 8 unstable

poles), the stable subsystem exhibits a truncation error of approximately 10−5 using

only 12 modes.

Table 3.2 shows the dimensions of the reduced order model obtained using bal-

anced truncation for each case. We can see that in all three case the dimensionality

has been significantly reduced.

The original 512 dimensions come from the fact that we are numerically solving

the problem using a two-dimensional slab geometry with a grid size of 16× 16 = 256

points for both the ion vorticity and the density (full state of dimension 256×2 = 512).
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Figure 3.5: Relative error ||G−Gred.||∞/||G||∞ for balanced truncation (©), balanced
POD (4), POD (�), and upper and lower bound for the model reduction scheme.

Table 3.2: Summary of the effect of model reduction on the dimensionality of the
system. r is the dimension of the stable reduced subsystem.

Case Original dim. # of RHP poles r Final dim.
1 512 2 4 6
2 512 4 6 10
3 512 8 12 20

3.3 Results on control and stability

Once the reduced order models for all three cases are obtained, we carry on to the

next step which is the design of the reduced order observer-based feedback controller.

For Case #2, a 10 mode reduced-order model with 4 unstable and 6 stable modes

is used to design the Kalman Filter which produces an optimal estimate of the den-

sity fluctuation and ion vorticity fields. This estimate is then used by the full-state

feedback controller to determine the control input.

Figure 3.6 shows a comparison of the outputs from the reduced-order, full linear

and nonlinear models when only 4 density points are measured. The location of the
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sensors is shown in Figure 3.7. The oscillations are damped and stabilized quicker

for the linear models than the nonlinear model. The dynamics of the three systems

are approximately similar until a certain point (a transition behavior of the nonlinear

system) but at the end, the compensator is able to control even the nonlinear system

with only 1 actuator and 4 sensors.

−2000 −1000 0 1000 2000 3000 4000 5000 6000 7000 8000

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

D
en

si
ty

 f
lu

ct
u
at

io
n
 (
n
) 

at
 t

h
e 

ce
n
te

r

 

 

Nonlinear open loop
Nonlinear
Full linear
Reduced

−200 0 200 400 600 800 1000

−0.2

0

0.2

Control on

Figure 3.6: Output feedback: 4 RHP poles / only 4 density points measured (Case
#2).

The compensator stabilizes the unstable equilibrium point and furthermore the

observer reconstructs the reduced order model states accurately. Initially the observer

has no information about the states (the initial state estimate is x̂ = 0), but it quickly

converges to and follows the actual states. More detailed results can be found in

Chapter 7.

The gain margin (GM) and the phase margin (PM), which indicate the amount

by which the actual dynamics can differ from the model (either in gain or phase)
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Slab of plasma studied

sensors

Figure 3.7: Location of the sensors.

Table 3.3: Gain margin (GM) and phase margin (PM) deduced from the loop gain
of the sensitivity function

Case # of sensors Gain margin Phase margin
512 82.2 56.6◦

1 256 41.3 56◦

4 1.26 11.8◦

512 19.3 54.3◦

2 256 13.5 53◦

4 1.32 13.9◦

before the closed-loop system loses stability, are computed for different numbers of

sensors: the full state (512 sensors), the full density field (256 sensors), and just the

4 points of the density field illustrated on Figure 3.7 (4 sensors). The results are

shown in Table 3.3 for Cases #1 and #2. The cases with only 4 sensors have very

small stability margins, indicating that the model needs to be very accurate in order

for the controllers to stabilize the equilibrium. However, the case where only the full

density field is known would work well has the gain and phase margins are indicative

of a robust controller.
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3.4 Conclusion

This work introduced the technique of developing a reduced-order model of the input-

output dynamics and extended it to a plasma physics problem.

In this Hasegawa-Wakatani problem, stabilizing controllers based on reduced-order

linear models have been developed and applied to an unstable state and it was shown

that these linear controllers applied to the full nonlinear simulations were fairly suc-

cessful at suppressing the drift wave turbulence and stabilizing the density and ion

vorticity fields in the neighborhood of a chosen equilibrium point.

It was assumed for simplicity that the dimension of the unstable eigenspace is

small and the corresponding global modes can be numerically computed. Building

the reduced order model treats the unstable subspace exactly, and truncates from the

stable subspace only.

Even if the actuator and sensors considered here are not practically realizable, the

methodology presented can be extended to work with more realistic actuators and

sensors. Using and amplifying the zonal flow, for instance indirectly using RF waves

to influence poloidal mean flow [101], would be a smart choice of actuator because of

its (natural) attenuation effect: the generated zonal flow could reduce the drift wave

turbulence.

Adding more actuators and improving their design will also provide better con-

trol. Here, the whole study was done with only one actuator and in some cases, the

stabilization of the whole density and vorticity fields was possible. Furthermore, the

choice of sensor locations was not optimal either for the given actuator, and different

choices for sensor measurements may lead to improved performance.
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Chapter 4

Rotation control problem

Toroidal rotation control is the core problem of this thesis, due to its direct applica-

bility to the new NSTX-U device.

Initially, this work focused on the previous generation of the NSTX device (before

the upgrade) because experimental data was available to explore and use. But since

the device was offline at that time due to the construction for the upgrade, it was

impossible to perform live experiments to test the rotation controller. We therefore

used numerical simulations generated using the TRANSP code [23] (detailed later

on) as a device proxy instead of real-time experiments to test the designed controller.

When we started focusing on the upgraded device NSTX-U, the device was not

ready for rotation testing yet, so we chose to keep using the TRANSP upgraded

models as our control objective. For NSTX-U rotation control, beside of the toroidal

rotation we added another controllable parameter; the total stored energy, that wasn’t

included in the NSTX work.

We are going to present the results of modeling and control for both devices, NSTX

and NSTX-U, while highlighting the main differences for each one. More details and

results can be found for NSTX in chapter 8 and NSTX-U in chapter 9.
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4.1 Modeling of the plasma rotation

Rotation is essential to the performance of all present day tokamaks. Rotation can

stabilize instabilities in plasma and suppress plasma turbulence, making possible the

maintenance of the plasma in high temperature with less power and reduced operating

costs.

Rotation is considered here exclusively driven by external torques through the use

of neutral beams injectors which heat the plasma and cause it to spin (collisionality).

Consider the transport of toroidal angular plasma momentum in a tokamak with

the assumption of axisymmetry. To facilitate the analysis, an arbitrary flux surface

average ρ ∈ [0, 1] is used, where ρ = 0 and 1 denote the center and the boundary of

the plasma, respectively.

Using the work of Goldston [57] and Callen [25], the angular velocity of the plasma

ω can be described dynamically by the flux surface average 〈·〉 of the toroidal mo-

mentum equation

∑
i

nimi

〈
R2
〉 ∂ω
∂t

+ ω
〈
R2
〉∑

i

mi
∂ni
∂t

+
∑
i

nimiω
∂ 〈R2〉
∂t

+
∑
i

nimi

〈
R2
〉
ω

(
∂V

∂ρ

)−1
∂

∂t

∂V

∂ρ

=

(
∂V

∂ρ

)−1
∂

∂ρ

[
∂V

∂ρ

∑
i

nimiχφ
〈
R2(∇ρ)2

〉 ∂ω
∂ρ

]

−
(
∂V

∂ρ

)−1
∂

∂ρ

[
∂V

∂ρ

∑
i

nimiω
〈
R2(∇ρ)2

〉 vρ
|∇ρ|

]

−
∑
i

nimi

〈
R2
〉
ω

(
1

τφcx
+

1

τcδ

)
+
∑
j

Tj (4.1)

The left-hand side of the equation above represents the temporal change in the plasma

toroidal angular momentum and the right-hand side terms denote respectively the

one-dimensional fluid viscous term, pinch term, momentum loss due to charge ex-
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change and field ripple, and the torque inputs (i.e., neutral beam injection and neo-

classical toroidal viscosity).

• R is a major radial coordinate

• ni is the particle density

• mi is the particle mass for each particle species

• ∂V/∂ρ is the differential flux surface volume

• χφ is the perpendicular (to the equilibrium magnetic field) momentum diffusiv-

ity

• τφcx is the time scale of the local momentum loss associated with charge-

exchange

• τcδ is the time scale of the local momentum loss associated with field ripple

• Tj represents the various torques acting on the system

For simplicity, only the main plasma ion species (deuterium) are considered in the

dynamics. It is also assumed that the plasma cross-sectional shape is well controlled

by a separate control loop and that the time variation of the mass density is small;

therefore 〈R2〉, 〈R2(∇ρ)2〉,
∑

i nimi and ∂V/∂ρ are held fixed in time.

TNBI and TNTV which represent the torques arising from neutral beam injection

(NBI) and neoclassical toroidal viscosity are the two only external torques considered

here. The neutral beams are the main sources of momentum for the plasma and the

NTV actuator is primarily used as a source of drag on the plasma. For NSTX, TNBI

is strongest in the plasma core, whereas T NTV is strongest closer to the edge of the

plasma. For NSTX-U, TNBI is spread out along the radius.
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It is also assumed that the pinch term and the momentum loss due to charge

exchange are small [170, 86] and that the momentum loss due to field ripple is not

required, as NTV is explicitly determined in this calculation.

Although experimentally edge rotation is sometimes present, it is typically much

smaller than core rotation (for NSTX, see for instance [55]) and important simpli-

fications through the use of Bessel functions can be gained by assuming no edge

rotation.

Incorporating all these observations into equation (4.1), we obtain a simplified

diffusion equation

nm
〈
R2
〉 ∂ω
∂t

=

(
∂V

∂ρ

)−1
∂

∂ρ

[
∂V

∂ρ
nmχφ

〈
R2(∇ρ)2

〉 ∂ω
∂ρ

]
+ TNBI + T NTV (4.2)

with boundary conditions

∂ω

∂ρ

∣∣∣∣
ρ=0

= 0 and ω|ρ=1 = 0 (4.3)

The resulting toroidal rotation model will be used as the rotation model for both

NSTX and NSTX-U, but for NSTX-U, we will add another parameter to control

which is the total stored thermal energy W described by the following equation

∂W

∂t
+
W

τE
=

4∑
i=1

PNBIi(t), (4.4)

where PNBIi represents each beam power applied, and τE represents the energy con-

finement time, which is modeled by an ITER 98 empirical energy confinement scaling

[124] given by

τE = H98y,20.0562I0.93
P B0.15

T n0.41
e P−0.69

Loss(th)R
1.97
0 ε0.58κ0.78, (4.5)
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where

• IP is the plasma current

• BT is the toroidal magnetic field

• ne is the line-averaged electron density

• R0 is the major radius

• ε is the inverse aspect ratio

• κ is the elongation

• PLoss(th) is the loss power

• H98y,2 is interpolated from a user-supplied waveform

In order to control the toroidal momentum of the plasma in the tokamak, equa-

tion (4.2) uses two actuators, the neutral beam injection (NBI) and the neoclassical

toroidal viscosity (NTV).

The main difference between NSTX and NSTX-U is the increase in the number

of actuators from one (actually three beam powers but modeled as a single one for

simplification due to their similarities) to four actuators which consist of the addition

of the three new beams separately to the original single simplified beam power. These

new beams are considered individually because unlike in the old setting of NSTX, the

new set of beams is oriented more tangentially. Figure 4.1 shows the two sets of

beams injectors inside the NSTX-U tokamak.

The modeling of the NBI torque begins as a product of the spatial average of the

torque, TNBI(t) ≡ avgρTNBI(t, ρ), and a function, FNBI(ρ), that represents the spatial

profile. We then have for i = 1, ..., 4

TNBIi(t, ρ) = T NBIi(t)FNBIi(ρ). (4.6)

54



 New 2nd NBI Present NBI NBI set 1 NBI set 2

Figure 4.1: Illustration of the neutral beam injection (NBI) devices for NSTX-U with
an inside view from the top of the tokamak. (Figure courtesy of PPPL.)

0 0.2 0.4 0.6 0.8 1

0

2

4

6

ρ

F
N
B
I[
N
/
m

2
] 1st NBI set

Model for 1st NBI set

2nd NBI set: beam A

2nd NBI set: beam B

2nd NBI set: beam C

Figure 4.2: Spatial profile for the neutral beam torque (FNBI)
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Figure 4.2 represents the footprints FNBIi of the six beam power involved in the

actuation. We can notice that the three beams in the first set have a similar profile

(the three grey dotted lines) which is high at the core of the plasma and low towards

the edge. For simplicity, it will be modeled by fitting a Gaussian function as shown

by the red solid line in Figure 4.2.

The time dependency of the NBI torque TNBI(t) is governed by the power input,

PNBIi through a first-order lag

∂T NBIi

∂t
+
T NBIi

τNBIi

= κNBIiPNBIi(t), (4.7)

for i = 1, ..., 4, where τNBIi are the approximate slowing down times of the fast

neutral beam particles to impart energy to the bulk plasma and κNBIi are scalars

used to normalize the neutral beam powers PNBIi.

Modeling the momentum loss due to the neoclassical toroidal viscosity will be

based on the work done in [194] from which we can design the NTV torque as the

bilinear product of the coil current squared (I2) with the toroidal momentum ω as

follows

TNTV(t, ρ) = KG(ρ) 〈R2〉 I2(t)ω(t, ρ). (4.8)

where K is a constant and G is a Gaussian function centered towards the edge (µ =

0.7, σ = 0.1). The control actuator input will be the squared coil current I2(t).

4.2 Results on model reduction

We present here the results obtained after applying the model reduction techniques

from in Chapter 2 on a linearized version of the momentum equation (4.2) that we

use for modeling the toroidal rotation for both the NSTX and NSTX-U devices.
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4.2.1 NSTX device

In the case of NSTX, the modeling was entirely calibrated with data obtain from a

single plasma discharge (133367). In order to validate both the model and its reduced

version, we tested this latter on different discharges.

Figure 4.3 compares a simulated run of our reduced model to a different plasma

discharge (133743) using 4 and 40 Bessel modes respectively. Projecting the simplified

model onto 40 Bessel modes yields little improvement over using only 4 modes so

N = 4 modes will be the dimension of our reduced-order model. The relative error

between the reduced model and experimental data (which is the difference between

the experimental and the model rotation divided by the mean of the spatial average

of the experimental rotation data) is also shown in the same figure and is less than

25%.
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Figure 4.3: Comparison of the rotational frequency ω for plasma discharge 133743,
comparing TRANSP analysis (left), with the simplified model (4.2), projected onto
N = 40 Bessel modes, and N = 4 Bessel modes. Also shown is the relative error
between TRANSP and the reduced model (N = 4).
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The initial condition is set to be the experimental rotational frequency at time

t = 0.4 s after the start up (t = 0) and when the plasma reaches the H-mode.

An exact plasma model is not a major concern as feedback control can be designed

to tolerate errors in the model. The key is to ensure the model does not deviate

drastically from the actual profile in order to prevent control system instabilities

from dominating plasma physics dynamics, which is the case here.

The reduced model (derived from plasma discharge 133367) is then being exten-

sively validated against other plasma discharges in NSTX analysis. Figure 4.4 shows

how the model performs for yet another plasma discharge (133751). The error does

not exceed 30% for other experimental comparisons.
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Figure 4.4: Comparison of the rotational frequency ω for plasma discharge 133751,
comparing TRANSP analysis (left), with the simplified model (8.2), projected onto
N = 4 Bessel modes. Also shown is the relative error between TRANSP and the
reduced model (N = 4).

The overall behavior of the plasma is captured qualitatively very well using our

reduced model with fixed parameters.
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4.2.2 NSTX-U device

For the case of NSTX-U, we do not have any experimental data for validation, so

an exact plasma model is impossible to obtain. We rely exclusively on model based

dynamical predictions. Thus TRANSP means either TRANSP analysis (data from

real experiments) for NSTX or TRANSP predictive (pure simulation) for NSTX-U.

Figure 4.5 compares a simulated run of the model versus TRANSP (prediction

of plasma scenario 142301) when the first set of beams is activated combined with a

chosen NTV torque. We note that N = 8 Bessel modes capture the main features

of the dynamics for relative errors of about 25%. The overall behavior of the plasma

is still captured qualitatively very well, but because of many modeling uncertainties

due to the lack of real time measurements, the feedback controller will be designed to

tolerate errors in the model and its robustness in terms of stability and performance

will be carefully studied by modeling the uncertainties of the model based on known

ranges of acceptable variation of some model parameters.

We will ensure that the designed controller reaches its objectives despite these

uncertainties.

4.3 TRANSP implementation

Since the NSTX device was unavailable during the upgrade construction and since

experimental data is not yet available for NSTX-U, modeling and testing were done

from simulated data generated using predictive TRANSP simulations.

TRANSP, a time dependent code developed at Princeton Plasma Physics Labo-

ratory for both prediction and analysis of tokamak experimental data [2, 23], is one

of the primary codes used in the fusion community. Several widely used modules,

including NUBEAM [129] for calculating neutral beam heating and current drive are

available for use within TRANSP and make it well suited for the predictive simula-
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Figure 4.5: Comparison of the rotational frequency ω for plasma simulation, com-
paring TRANSP prediction (left), with the simplified model projected onto N = 8
Bessel modes. Also shown is the relative error between TRANSP and the reduced
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tions required in this work where the primary actuator of our controller is variation

of various beam powers.

Although the use of reduced models makes the control design process simpler, the

highly coupled nonlinear nature of the tokamak can potentially lead to unexpected

behavior and instabilities when controllers tuned and tested only on reduced models

are experimentally tested. Therefore the intermediate step of conducting closed loop

simulations of real-time control laws in the integrated modeling code framework of

TRANSP before testing on real device is very important. These predictive capabilities

of TRANSP mentioned above combined with a new module that enables the stored

energy to be predicted based on confinement scaling expressions (for NSTX-U) are

going to be used to mimic the device as our original system to control.

TRANSP has the flexibility to simulate a variety of control designs, and will

enable fine-tuning of control laws, studies of robustness to scenario changes, studies

of the impact of control laws on parameters not considered in the reduced models used
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for initial designs, and the demonstration of novel control schemes before devoting

experimental time to their implementation.

The inputs to TRANSP for the rotation control are the time histories of the plasma

boundary shape, total plasma current, electron temperature and density profiles, and

the power, voltage, and geometry of the neutral beam injection. With these inputs,

the TRANSP code (NUBEAM) is used to compute the correct neutral beam heating.

The free-boundary equilibrium is calculated using the ISOLVER equilibrium code

within TRANSP [71]. ISOLVER computes a free-boundary solution to the Grad-

Shafranov equation that has boundary and X-point locations that best match a

provided target plasma boundary. The target equilibria were generated using the

stand-alone version of ISOLVER, based on the NSTX-U coil set. In an iterative pro-

cedure, a free-boundary equilibrium solution is obtained, the current and pressure

profiles are computed on the new equilibrium, and the equilibrium is recalculated.

In addition to equilibrium calculations, scenario studies require simulation of the

ion and electron densities and thermal transport. Experiments indicate that ion

heat transport is reasonably well described by neoclassical theory [85, 82, 184], the

Chang-Hinton model [30] is then used to model the dynamics of the ion tempera-

ture. However, because models for electron heat transport, external fueling, impurity

sources, and particle transport are not as well validated, the evolutions of electron

temperature and particle densities were not modeled by first principles calculations.

To handle the remaining unmodeled quantities, some assumptions were made.

First, the electron density profile was taken from an experimental profile measured

on NSTX, scaled to achieve a particular Greenwald fraction [65]. The ion density

was calculated by assuming a flat Zeff = 2 profile with carbon as the only impurity.

The electron temperature was again taken from an experimental profile and scaled to

achieve a particular global confinement level. The toroidal rotation profile was also

taken from experiment and scaled inversely with the density.
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The modifications necessary for closed loop simulations have been implemented

through the so-called Expert routine. This routine is a hook, called at various places

throughout the TRANSP source code, which can be used to insert run-specific custom

code into the production version of TRANSP. A module, which contains a simplified

reduced model, is provided for performing control calculations based on user-supplied

data (controller matrices, desired target to reach, etc.). These calculations, along with

the acquisition of real-time measurements (simulated) and manipulation of TRANSP

internal variables representing the control systems actuators (like beam power and

coil current), are implemented through the Expert routine.

TRANSP typically obtains the electron temperature from an input file, a call to

the Expert routine is made just after each time TRANSP accesses the temperature

input data. At each of these calls, the Expert file code interpolates the thermal stored

energy Wth for the appropriate time based on Wtha and Wthb
, the predicted values at

ta and tb and calculates the required scale factor for the reference profile.

In these calculations, the ni, ne, and Ti profiles are taken from the TRANSP

internal variables at the current time step. Ti is calculated using the Chang-Hinton

model, and ni is calculated by assuming a Zeff profile and carbon as the only impurity.

4.4 Results on control

In this section, results of the application of the reduced order model based com-

pensator detailed in Chapter 8 on the momentum equation (Reduced and TRANSP

models) are shown for both the NSTX and NSTX-U devices.

Because the controllers will be applied on real time experiments, they have to be

discretized. The discretization is not explicitly expanded in the background chapter 2

but can be found in details in any control reference book [7, 165].
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For our particular problem, converting to a discrete model was a subtile inter-

mediate step that was applied after defining the linear simplified model and before

applying the model reduction using the Matlab command (c2d). Therefore the design

of the controller was also done in discrete time.

There are important constraints on the two type of actuators that have to be

considered. Some of these constraints are made for the safety of the operations, some

of them reflect the practicability and the feasibility of some requests to the device.

The constraints will be inserted into the dynamics equations so that the controller

will have to consider them during the closed loop.

The coil current is constrained between two numerical values, 0 and 3,000 amperes,

and because its response is fast compared to the dynamics of the system, it can be

assumed to be applied instantaneously (no time delay to consider for this actuator.)

Even if we have so far been treating the the first set of NBI actuators as a single

source outputting between 2 and 6 MW of power for both NSTX and NSTX-U, it is

actually composed of 3 beams. Each beam can either be on and produce 2 MW of

power or off and produce 0 MW. The three other beams will be considered separately

but still have to follow beam power constraint which is that each beam can only be

switched on or off a maximum of 20 times per plasma discharge to prevent device

fatigue issues, and that there is a refractory period of 10 ms after each switch during

which the beam cannot be switched again.

Due to diagnostic considerations, one of the first set of NBI sources is typically

always on, and so the overall injected power is considered to be between 2 and 6 MW

for NSTX and between 2 and 12 MW for NSTX-U.

These physical restrictions are the other reason that constrains the model and the

controller to be discrete and to use Pulse Width Modulation (PWM) for the beam

power actuation in order to obtain control requested values between 2 and 6 MW for

NSTX (resp. 2 and 12 MW for NSTX-U).
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At the beginning of each duty cycle, the controller sets the requested power. Dur-

ing the duty cycle, the beams switch on and off at most once to minimize the number

of switches. Because of this and the 10 ms refractory period, the exact requested power

cannot always be met. The longer the duty cycle, the better for the device because

it means less commands switches so less fatigue, but a longer duration introduces a

longer controller lag which impairs performance.

4.4.1 NSTX device

In the case of NSTX, Figure 4.7 and Figure 4.8 compares the rotation measure-

ments when the PWM controller is applied to both the reduced-order model and the

TRANSP predictive model in order to reach two targets, one at t = 0.5s, and the

other starting at t = 0.7s. Before t = 0.5 s, both models are not controlled (open

loop), at t = 0.5 s, the controller is turned on (closed loop), and the goal is to reach

the first target profile measurement points defined by the two red dots in Figure 4.6.

At t = 0.7 s, the target profile changes to the second one which is defined by the two

blue dots in Figure 4.6.
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The green line represents the reduced-order model outputs, the blue line represents

the TRANSP model. The oscillations are due to the modulations that occurs on each

of the beam power source. The total beam power is represented in Figure 4.8(b).

The coil current in this case (Figure 4.8(a)) changes to compensate for when the

beam power is too high in order to decrease the toroidal rotation and thus limit the

rotation overshoot. In this case, the duty cycle duration (6 ms) is smaller that the the

10 ms refractory period. The resulting rotation measurements are oscillatory but the

amplitude is damped. The trade off is that we have to activate the controller more

often and thus formulate more requests to the real device. The reduced-order model

is very close to the TRANSP model which again shows that the simplified model gives

us a good qualitative approximation of the TRANSP rotation prediction model.
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Figure 4.7: Comparison of the rotation measurements when PWM applied for both
the reduced-order model (green lines) and the TRANSP predictive model (blue lines).
The red dots represents the cycle times (every 0.006s).

Note that although the coil current is not directly pulsed, indirect pulses induced

by the beam powers can be seen on Figure 4.8(a). Similar pulses have been observed

to sometimes trigger ELMs [27] which can be very disruptive for control. A low pass

filter could be used to tame these coil current pulses at the cost of slightly diminishing

control performance.
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Figure 4.8: Time evolution of the coil current and the overall beam power (cycle time
0.006s).

4.4.2 NSTX-U device

The principal differences between the NSTX and NSTX-U control problems are the

addition of the stored energy as a controllable parameter and the addition of the

second NBI set which brings the number of control inputs from 2 to 5. To facilitate

the design of the controller, since it is more convenient to work with a system that

has as many inputs as outputs, we added two additional rotation profile measurement

points which brings the number of control outputs (sensors) to 5 as well.

The addition of the stored energy introduces a challenge that was not present

during the NSTX controller design. Since the stored energy is linked to the beam

powers by equation (9.3), one degree of freedom in selecting the beam powers (which

affect both the rotation and the stored energy) is lost, so it becomes harder to reach
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both the target rotation profile and the target stored energy simultaneously. To

counteract this restriction, we decided to add an integrator inside the controller which

uses accumulated tracking errors to adjust the control commands. However combining

an integrator with saturated inputs yields the well-known integrator windup problem

which tend to increase overshoot of the targets, so we also used a standard back

calculation anti-windup method which is described in [7]. However, while the addition

of the integrator gives us more flexibility for the controller design, actuator saturation

combined with the effects of equation (9.3) imposes a trade-off that prevents us from

tracking both the rotation and the stored energy perfectly depending on the choice

of targets. Assigning high costs to the tracking error can drastically improve the

performance of the controller when actuators do not have any constraints, but it can

create destabilizing oscillations when actuators saturate.

The other important difference between the NSTX and NSTX-U while designing

a controller is that due to the lack of experimental data, the models for NSTX-U are

much more uncertain. Therefore we proceed to analyze the robustness in terms of

stability and performances of the NSTX-U controller to model uncertainty caused by

variation of some parameters of the model from their nominal values.

Once we are satisfied with this design of controller, the following step is testing it

on TRANSP predictive simulation.

Figure 4.9 compares the rotation measurements when the PWM controller is ap-

plied to both the reduced-order model and the TRANSP predictive model in order

to reach two targets, one at t = 4.2 s, and the other starting at t = 4.6 s. Before

t = 4.2 s, both models are not controlled (open loop).

Figure 4.10 shows the corresponding TRANSP predictive stored energy measure-

ment. At t = 4.2 s a target of 0.55 MJ is reached then at t = 4.6 s another target of

0.65 MJ is also reached.
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Figure 4.11: Time evolution of the coil current and the beam power

The different beam power sources are represented in Figure 4.11(b) and the cor-

responding coil current in Figure 4.11(a).

When at t = 4.2 s we close the loop, the coil current saturates immediately to

enable the rotation profile to drop quickly from its high initial state (all beams on)

to the first desired rotation profile, then the coil current compensates for when the

beam power is too high in order to decrease both the toroidal rotation and the stored

energy and thus limit the overshoot. We thus reach the desired rotation and energy

targets within the momentum diffusion time (0.1 s) which is comparable to NSTX

rotation results.
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4.5 Summary and conclusions

Simple reduced-order models have been developed to capture the rotational toroidal

momentum balance for both NSTX and NSTX-U devices. These models were utilized

to control the plasma rotation about its desired profile using neutral beam injections

and the neoclassical toroidal viscosity. Stored energy has also been controlled for

NSTX-U. The outputs from these models have been compared with numerical results

from a predictive model of NSTX and NSTX-U and were found to be in good agree-

ment. Based on these simplified models, feedback controllers that enable controlling

the plasma to track a desired profile were designed using optimal control techniques.

These reduced-order controllers were then tested using the NSTX (resp. NSTX-U)

predictive model and enabled the rotation profile (resp. rotation profile and stored

energy) to reach some desired profiles (resp. desired profiles and value).

Generally, broader toroidal rotation profile brings more stability to the plasma

and local rotation shear can affect MHD modes. In the new upgrade of the device,

NSTX-U, the three additional NBI sources have been providing significantly different

torque profiles which affected a broader region of the plasma. In the NSTX-U case,

the controller used these additional beam sources allowing significantly greater control

of plasma rotation simultaneously with stored energy.

While only the n = 3 applied field configuration was considered for the NTV

actuator, it is possible to include different applied field spectra which can change the

NTV torque profile. For example, an n = 1 field configuration can allow a deeper

penetration of this torque profile which will expand the capability of rotation control.

Another NTV upgrade is programmed on NSTX-U and this would enable more NTV

(drag) actuators along the plasma so more refined control but more plasma complexity

as some actuators might fight each others to reach their targeted values.

The NSTX controllers were designed using models tuned to match experimental

data. To solve the NSTX-U rotation control problem, control-oriented models were
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developed directly from simulations. The capability to build purely model-based

controllers has a large impact: fewer experiments are needed to calibrate the mod-

els/controllers, and more importantly, it enables us to predict actuator requirements

(e.g., amplitude, bandwidth, latency), and any inherent performance limitations for

future machines such as FNSF. These control-oriented models such as those being

developed using TRANSP extrapolations for NSTX-U have been tested for their ro-

bustness in producing a greater range of target profile shapes and their results were

satisfactory in practice allowing good flexibility in parameters uncertainties while

allowing to reach the rotation and stored energy tracking goals.
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Chapter 5

Conclusion and future work

Reduced-order model based feedback control applied to plasma physics problems is

not just a simple application of known engineering methods of flow control to a new

domain. Plasma is a complex fluid within an electromagnetic field that require high

dimensional non linear models.

It is becoming crucial when building fusion devices to use and rely intensively on

these modeling and control design tools since these very important predictive methods

are necessary to help planning the adequate most stable design and help suppressing

the instabilities that can occur and grow and become a major problem that can break

and compromise the device.

This dissertation outlined some issues in plasma control through two important

challenges: suppressing drift waves to control edge located microturbulences and

setting the toroidal rotation to a desired profile for MHD stability. These challenges

bring several difficulties in a broad range of feedback control problems: stability

theory, control design, and model reduction because of their unconformity with the

classical flow control problems.

This dissertation studies the full theoretical design of different controllers that can

serve multiple purposes, but the study will be complete if a direct application of these
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controllers on NSTX-U device is possible. the Plasma Control System (PCS) that

control the plasma inside the real NSTX-U machine has been upgraded to include ro-

tation control, so the next step of testing the rotation control or stored energy control

can soon become a reality. This would complement this dissertation by providing a

direct real experimental application that can help further improve the design. Real

time control might reveal unforeseen complications which can alter the dynamics pre-

dicted by our models and force us to go back and update the design by adding new

constraints for example.

Another important design consideration is to take into account the influence that

multiple controllers with different goals can have on each other. Toroidal rotation or

stored energy are not the only quantities that must be controlled during a plasma

discharge. Current or shape control must be considered too, as well as other quanti-

ties depending on the purpose of each experimental run. Therefore many actuators

controlled by different controllers may have to operate at the same time, and some

of these actuators can influence or delay others and prevent the other controllers

from reaching their goals. Thus having an overview of all the actuators included into

the system is important and would be a very interesting problem to examine. This

would enable us to clarify what are the possible combinations of controllers that don’t

compete with each other, but instead work towards compatible objectives.

Finally, an important design consideration for both fusion devices themselves and

their various controllers is the positioning of the actuators and sensors. In every

study or application of localized feedback control (through actuators and sensors),

the designer must decide where the actuators and sensors should physically be placed.

Few studies in control applications have rigorously analyzed where the actuator and

sensor locations are most effective, and what are the implications of their placement

on the dynamics and the controller. A large number of studies simply guess or

sometimes choose purposefully or randomly the locations without any deep analysis.
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The placement of actuators and sensors can be just as important as the controller

design itself since there are fundamental limitations which can make a system almost

impossible to control due to poor placement of actuators and sensors. In plasma

physics, we are usually constrained to use the diagnostic devices locations as they

were placed originally in the machine. Moving these would cause technical hassle

that technicians would be reluctant to do. Also sometimes it is just not possible to

change the location as it can be a part of the device design. Therefore it is crucial to

study the optimal location of the actuators-sensors for rotation control and take this

into account during the design phase of next-generation fusion devices.
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Chapter 6

Overview

Part II of this dissertation contains articles that are either in the literature, or likely

will be in the near future. Only minor modifications related to formatting have been

applied to the published articles. The papers are organized into chapters as follows.

• Chapter 8 studies Hasegawa-Wakatani problem and shows that in some cases

of instability, we are able to suppress drift waves with a robust controller.

• Chapter 9 focuses on the toroidal rotation control problem applied on NSTX

device. It follows the model reduction feedback control methodology and is

able to solve the desired rotation tracking problem on some TRANSP predictive

simulations.

• Chapter 10 presents the coupled problem of toroidal rotation and stored energy

applied on NSTX-U device. More actuators have been added compared to the

NSTX problem and a closed loop simulation shows promising simultaneous

control results on TRANSP simulations.
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Chapter 7

Reduced-order model based

feedback control of the modified

Hasegawa-Wakatani model

I. R Goumiri1, C. W. Rowley1, Z. Ma1, D. A. Gates2, J. A.

Krommes2, and J. B. Parker2

1 Dept. of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

2 Princeton Plasma Physics Laboratory, Princeton, NJ 08544, USA

Appears in Physics of Plasmas, 20, 042501 (2013). doi:10.1063/1.4796190

In this work, the development of model-based feedback control that stabilizes an

unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equa-

tions, a classic model in plasma turbulence. First, a balanced truncation (a model

reduction technique that has proven successful in flow control design problems) is

applied to obtain a low dimensional model of the linearized MHW equation. Then a

model-based feedback controller is designed for the reduced order model using linear

quadratic regulators (LQR). Finally, a linear quadratic gaussian (LQG) controller,
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which is more resistant to disturbances is deduced. The controller is applied on the

non-reduced, nonlinear MHW equations to stabilize the equilibrium and suppress

the transition to drift-wave induced turbulence.

7.1 Introduction

For several decades, toroidal devices have been used to confine plasmas for the pur-

pose of studying nuclear fusion. During this time, a large number of complex dynamic

behaviors have been uncovered in toroidal plasmas, including but not limited to mag-

netohydrodynamic instability, kinetic instability, and microturbulence.

The consequences of these resulting fluctuations include: non-uniformities, in-

creased transport, and possibly even macroscopic break up. Therefore, eliminating

these instabilities and fluctuations by using feedback control tools [140, 183, 81, 37,

104, 43] has been a topic of considerable interest. Various theoretical and experi-

mental tools have been developed and applied to plasma devices in order to stabilize

unstable modes and reduce transport. [155, 34, 157, 33, 156, 154]

The Hasegawa-Wakatani [67, 188] (HW) system, which couples plasma density and

electrostatic potential through an approximation to the physics of parallel electron

motion, is a simple model that describes resistive drift wave turbulence. It was first

developed to investigate anomalous edge transport due to collisional drift waves. [70]

Due to nonlinearity, drift waves can self-consistently generate zonal flows, which

in turn play a key role in the regulation of the drift-wave turbulence and anomalous

transport. Traditionally, the mechanism was argued to be the shearing apart of the

drift-wave eddies. [189, 78] More recently, another turbulence dissipation mechanism

has been proposed involving coupling of the unstable drift waves to damped eigen-

modes. [182] This coupling can be catalyzed by the zonal flows. [108] The HW model

contains both of these mechanisms.

78



Several models have been used to study the coupling of drift waves turbulence

and zonal flow, including a predator/prey model proposed by Diamond et al. [38] a

4-dimensional model derived by Chen et al. [32], or a 10-dimensional model derived

by Kolesnikov and Krommes. [93] In this paper, the Modified Hasegawa-Wakatani

Model (MHW) is used by Numata et al. [121] for turbulence analysis.

Parallel electron motion is important for generating, stabilizing, and destabiliz-

ing the zonal flow. That is handled naturally in the 3D HW model. However, for

computational tractability, it is useful to study a 2D model, as various authors have

done. [169, 121] Originally, people just replaced the parallel dissipation operator

−D‖∇2
‖ with a constant (thereby essentially assuming the presence of a single, dom-

inant, nonzero parallel wave number k‖). However, that approximation is incorrect

for zonal flows, for which k‖ = 0. Therefore, in the MHW model, the parallel term is

taken to vanish for the zonal modes. [169]

To study stabilization of drift wave fluctuations, a linear forcing is introduced

into the governing equations as a control actuator and its effect is analyzed both

theoretically and numerically.

Before describing the control design for the model, a simplified reduced-order

model is built by performing a balanced truncation [115] that retains certain modes.

The retained modes are the most important ones in the following step, which is the

controller design.

This paper goal is to stabilize the unstable modes of this simple MHW model,

assuming that their number is computationally small. In reality, more complex dy-

namics can occur where these unstable modes are numerous, resulting in intractable

chaotic dynamics. There is an abundant literature on chaos control in general dynam-

ical systems, [136, 127, 39, 161] but those studies are exclusively focused on controlling

chaos through small variations in the system parameters on which the nature of the

dynamics depends extensively. The feedback is used only to detect the chaotic dy-
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namics; then on the basis of that information sensitive system parameters are varied

until the system makes a transition to a regular dynamical state. This methodol-

ogy could be attractive for theoretical studies or small laboratory experiments, where

feedback power is not an issue. However, for fusion plasmas, changes to parameters

such as the plasma pressure gradient are very energy intensive and impractical.

In contrast, in this paper, linear feedback plays the key role and is applied directly

on the system in order to control it. It is found to have a complete stabilizing effect

assuming that the controller is applied at the right time (details will be discussed

further).

The remainder of this paper is organized as follows. In Sec. 9.2, the MHW model

is introduced for coupling drift wave turbulence and zonal flow, its linearization and

its controlled developed version (as a state-space realization) are both derived. In

Sec. 7.3, the model reduction methodology and its background is discussed, the dif-

ferent tools of control design are presented in Sec. 7.4, the simulation setup is given

in Sec.7.5, then the results of application of both Sec. 7.3 and Sec. 7.4 on the MHW

model are shown in Sec. 7.6. Finally, summary and conclusions are presented in

Sec. 7.7.

7.2 Modified Hasegawa-Wakatani model

As stated in Numata, Ball, and Dewar, [121] the original HW model does not contain

zonal flows when restricted to 2D. This leads to consideration of the MHW model.

It describes the nonlinear dynamics of dissipative drift wave turbulence coupled

with zonal flow. It consists of two partial differential equations describing the non-

linear evolution of the ion vorticity ζ and density fluctuations n.
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A mean density gradient dn0(x)/dx is assumed in the direction of −x. A constant

equilibrium magnetic field B = B0∇z is assumed. The equations are

∂ζ

∂t
+ {ϕ, ζ} = α(ϕ̃− ñ)− µ∆2ζ, (7.1a)

∂n

∂t
+ {ϕ, n} = α(ϕ̃− ñ)− κ∂ϕ

∂y
− µ∆2n, (7.1b)

where zonal and nonzonal components of a variable f are defined as

zonal: 〈f〉 ≡ 1

Ly

∫
fdy, (7.2a)

nonzonal: f̃ ≡ f − 〈f〉, (7.2b)

where Ly is the periodicity length in y. ϕ is defined as the electrostatic potential

with ζ = ∆ϕ, ∆ = ∂2/∂x2 + ∂2/∂y2 is the 2D Laplacian, {a, b} ≡ (∂a/∂x) (∂b/∂y)−

(∂a/∂y) (∂b/∂x) is the Poisson bracket, µ is the dissipation coefficient, the background

density n0 is assumed to have a fixed exponential profile, so that the background

density gradient κ ≡ (∂/∂x) lnn0 is assumed constant, α is the adiabaticity operator.

In this 2D setting, α and µ, and κ are considered to be time- and space-invariant

constants. Periodic boundary conditions are used. See Sec. 7.5.1 for more details.

7.2.1 Linearized Modified Hasegawa-Wakatani model around

zero

For simplicity, the unstable equilibrium point of (7.1) is chosen as (φ0 = 0, ζ0 = 0,

n0 = 0). The linearization about this equilibrium is

∂ζ

∂t
= α(ϕ̃− ñ)− µ∆2ζ, (7.3a)

∂n

∂t
= α(ϕ̃− ñ)− κ∂ϕ

∂y
− µ∆2n. (7.3b)
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The equations are rewritten in a matrix notation as

d

dt

ζ
n

 = A

ζ
n

 =

 α∆−1 − µ∆2 −α

α∆−1 − κ ∂
∂y

∆−1 −α− µ∆2


ζ
n

. (7.4)

7.2.2 Controlled Modified Hasegawa-Wakatani model

The controlled version of the MHW equation is built by considering an additional

external electrostatic potential as the control input in the model. It can be realized

experimentally by introducing an electrode (a probe) inside the tokamak. [90, 89]

The total electrostatic potential is written as

ϕtotal = ϕint + ϕext, (7.5)

where ϕint is the internal potential, ϕext = Φu is the external potential added as the

control input, u is a scalar, and Φ is a given column vector that specifies the external

field’s spatial distribution.

This external potential is then injected into three of the equations that constitute a

basis for the derivation of the MHW equations: the ion continuity, electron continuity,

and electron parallel momentum equations as follows. The ion continuity equation

becomes

∂tñi
G + V∗∂y(ϕint + ϕext) + (vE int + vEext) · ∇⊥ñiG = 0, (7.6)

where ñGi denotes the internal ion gyrocenter density fluctuations, the electron con-

tinuity equation becomes

∂tñe = −V∗∂y(ϕint + ϕext)− (vE int + vEext) · ∇ñe −∇||u||e, (7.7)

82



the electron parallel momentum becomes

u||e = D∇||(ϕint + ϕext − ñe), (7.8)

where V∗ is the diamagnetic velocity, vE is the E × B velocity, ñe is the electron

density fluctuations, ∇⊥ = ∂/∂x+∂/∂y and∇|| = ∂/∂z are respectively the gradients

perpendicular and parallel to the magnetic field B. Finally, consider the gyrokinetic

Poisson equation, which is usually taken to be the statement of charge quasineutrality:

ñi = ñe. (7.9)

Here ni is the particle (not gyrocenter) density fluctuation. One has ñi = ñGi + ñpol
i ,

where npol
i is the ion polarization density. In the cold-ion limit, ñpol

i = ρ2
s∇2
⊥ϕ. Here it

is appropriate to just use ϕint. This can be argued in several ways. First, it is not hard

to see that if one tries to use ϕint +ϕext, the system is not controllable because it will

reduce to a simple change of variables, and therefore no perturbation or forcing will

be introduced. Second, an external potential should be cancelled by external charges.

Those external charges are not described here. Indeed, the physics of a probe (or

array of probes) inserted into a plasma is entirely nontrivial. It is merely assumed

that the external potential can be adjusted at will; the plasma physics associated

with the response of the plasma to the probe is not considered. Then this procedure

(using just the internal potential in Poisson’s equation) is completely analogous to the

standard test-particle calculation that is done in elementary plasma kinetic theory.

That is, we will use

ñi
G = ñe − ρ2

s∇2
⊥ϕint. (7.10)
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After manipulation, the controlled linearized Modified Hasegawa-Wakatani equa-

tions are deduced:

∂

∂t
ζ = α(ϕ̃− ñ) + αϕ̃ext − µ∆2ζ, (7.11a)

∂

∂t
n = α(ϕ̃− ñ) + αϕ̃ext − κ

∂ϕ

∂y
− κ∂ϕext

∂y
− µ∆2n. (7.11b)

It can then be rewritten as seen in the previous section Eq. (7.4), as

∂

∂t

ζ
n

 = A

ζ
n

+Bu, (7.12)

where

B =

 αΦ̃

αΦ̃− κ∂yΦ

. (7.13)

7.3 Model reduction of linear time-invariant sys-

tems

In the area of model-based feedback control of fluid flow, substantial developments

have taken place in the last decade, for instance, Cattafesta et al., [28, 35] and Sipp

et al.. [162] In many applications, the focus is on how to apply actuation in order to

maintain the flow around a steady state or an orbit of interest, for instance to delay

the transition to turbulence.

Model-based linear control theory provides efficient tools for the analysis and

design of feedback controllers such as Linear-Quadratic Regulators (LQR) and Linear-

Quadratic-Gaussian (LQG). However, a significant challenge is that models for flow

control problems are often very high dimensional O(105∼9), so large that it becomes

computationally infeasible to apply linear control techniques. To address this issue,
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model reduction, in which a low-order approximation model is obtained, is widely

employed.

In this section, various techniques for constructing reduced-order models are

briefly reviewed before concentrating on one method in particular, the balanced

truncation, which will be used for the control design.

7.3.1 Overview of model reduction techniques

Among many model reduction techniques, such as singular perturbation or Hankel

norm reduction methods, the projection-based method, which involves projection of a

model onto a set of modes, is a widely used approach. These may be global eigenmodes

of a linearized operator, [5] modes determined by proper orthogonal decomposition

(POD) of a set of data, [68] and variants of POD, such as including shift modes.

[120] In particular, an efficient projection-based method for linear control systems

is balanced truncation. [115] Compared to most other methods, including POD,

balanced truncation has key advantages, such as a priori error bounds and guaranteed

stability of the reduced-order model if the original high-order system is stable.

While this method is computationally intractable for systems with very large state

spaces (& 105), recently an algorithm for computing approximate balanced truncation

from snapshots of linearized and adjoint simulations has been developed [143] and

successfully applied to a variety of high-dimensional flow control problems. [75, 3, 10]

(with state dimension up to 107).

In this method, sometimes called balanced POD (BPOD), one obtains two sets of

modes (primary and adjoint) that are bi-orthogonal, and uses those for projection of

the governing equations. BPOD typically produces models that are far more accurate

and efficient than standard POD models, in the sense that the number of modes

needed to capture the dynamics in BPOD is much less than that in POD. Detailed

comparisons have been given by Rowley [143] and Ilak and Rowley . [75]
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One of the difficulties that BPOD users can face occurs when they deal with

experimental data: the main restriction is that balanced POD requires snapshots of

impulse-response data from an adjoint system, which is not available for experiments.

To address this issue, another technique exists, called the eigensystem realization

algorithm (ERA). [79] For linear systems, ERA theoretically produces exactly the

same reduced-order models as balanced POD, with no need of an adjoint system, and

at an order of magnitude lower computational cost.

For simplicity, the numerical problem considered in this paper will have a small

dimension state space, so the exact balanced truncation can reasonably be applied

without worrying about the computational tractability.

7.3.2 Balanced truncation of stable systems

A stable linear time-invariant state-space system is described as follows:

ẋ = Ax+Bu,

y = Cx,

(7.14)

where x ∈ Rn is the high-dimensional state (for instance, the state variables at all

grid points of the simulation), u ∈ Rp is a vector of inputs (for instance, actuators or

disturbances), and y ∈ Rq is a vector of outputs (for instance, sensor measurements,

or other measurable quantities as linear functions of the state).
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For such a system, the concepts of controllability and observability can be defined,

which are quantified by a pair of symmetric, positive-semidefinite matrices

Wc =

∫ ∞
0

eAtBB†eA
†tdt, (7.15a)

Wo =

∫ ∞
0

eA
†tC†CeAtdt, (7.15b)

called controllability and observability Gramians, where daggers denote adjoint op-

erators.

The controllability Gramian Wc provides a measure of the influence of input his-

tory on the current state (i.e. to what degree each state is excited by inputs), and the

observability Gramian Wo measures the influence of an initial state on future outputs

with zero control input (i.e. to what degree each state excites future outputs). The

larger eigenvalues of the controllability (observability) Gramian correspond to the

more controllable (observable) states.

A balanced truncation involves first a coordinate transformation T , called the

balancing transformation, that simultaneously diagonalizes these matrices. That is,

under a change of coordinates x = Tz, the transformed Gramians become

T−1Wc(T
−1)† = T †WoT = Σ, (7.16)

where Σ = diag(σ1, . . . , σn). The diagonal entries are called Hankel singular values,

and are customarily ordered so that σ1 ≥ · · · ≥ σn ≥ 0.

A reduced-order model may then be obtained by truncating the states that are

least controllable and observable. That is, if T =

[
T1 T2

]
, and x = Tz = T1z1+T2z2,

then a reduced-order model is obtained by setting z2 = 0, yielding a model of the

form
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ż1 = Arz1 +Bru,

y = Crz1,

(7.17)

The resulting reduced-order balanced model retains the most controllable and

observable states and is therefore suitable for capturing the input-output dynamics

of the original system.

Quantitatively the balanced truncation procedure guarantees an a priori upper

bound of error between the original system and the reduced-order model. If G(s) =

C(sI − A)−1B denotes the transfer function of the system (14), and Gr(s) denotes

the corresponding transfer function of the approximation Eq. (7.17), then

||G−Gr||∞ < 2
n∑

k=r+1

σr. (7.18)

In addition, any reduced-order model Gr with r states satisfies

||G−Gr||∞ > σr+1, (7.19)

where σr+1 is the first neglected Hankel singular value of G. This is a fundamental

limitation for any reduced-order model. The two inequalities (7.18) and (7.19) provide

a priori error bounds which will be used in Sec. 7.6.

7.3.3 Balanced truncation of unstable systems

Balanced truncation has been extended to linear, unstable systems [193, 3] by decom-

posing the system into a stable subsystem and an unstable subsystem.

Consider the state-space system defined in Eq. (7.14). If it is unstable, the system

can be decoupled into an ns-dimensional stable subsystem and an nu-dimensional

unstable subsystem. Then the balanced truncation may be applied on the stable

subsystem. The number of unstable eigenvalues is typically small (if it isn’t, then
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the control task is especially difficult), so this approach is usually computationally

feasible.

Consider R =

[
Ru Rs

]
being the matrix of right eigenvectors (where the columns

of R are eigenvectors) and L =

Lu
Ls

 being the left eigenvectors (where rows of L are

eigenvectors). The state x can be expanded as

x = xu + xs, (7.20)

where xu ∈ Rn is in the unstable eigenspace (image of Ru, a subspace of dimension

nu) and xs ∈ Rn is in the stable eigenspace (image of Rs). The projection onto the

stable subspace is then

Ps = I −RuLu (7.21)

where Ru and Lu ∈ Rn×nu are matrices of right and left unstable eigenvectors that

have been normalized such that LuRu = Inu (and of course, LuRs = 0). Thus,

xs = Psx.

The reduced-order model is calculated on the stable subspace, so a balancing

transformation T =

[
T1 T2

]
is found, xs can then be written

xs = T1z1 + T2z2, (7.22)

where T1 has r columns, corresponding to the modes kept (so z1 ∈ Rr), and T2 has

n− r columns, corresponding to neglected modes (so z2 ∈ Rn−r). Define also

T−1 = S =

S1

S2

 , (7.23)
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so that P1 = T1S1 is the projection onto the image of T1, an r-dimensional subspace

of Rn. The state in the reduced-order model is then

xr =

Lux
z1

 =

 Lu

S1Ps

x. (7.24)

In this notation, the approximation to the full state is then

[
Ru T1

]
xr = RuLux+ T1S1Psx = xu + P1xs, (7.25)

That is, the unstable part of the state is captured exactly, and the stable part is the

projection onto the r balancing modes.

Note that, in order to compute xr, only the right and left unstable eigenvectors Ru

and Lu need to be computed, not the stable eigenvectors. This is thus computationally

tractable even when the state dimension n is very large, as long as the number of

unstable eigenvalues is small.

7.4 Feedback control design using reduced order

models

Once the reduced-order model is obtained and validated, standard techniques from lin-

ear control theory can be applied in order to design controllers for the low-dimensional

system. These controllers are designed on the reduced models, then applied to the

full-dimensional linearized model, and lastly tested on to the original nonlinear model

to determine if the controller can suppress disturbances in the neighborhood of the

unstable equilibrium.
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7.4.1 Full-state feedback control design

A standard linear control technique is used in order to obtain stabilizing controllers:

a linear state feedback u = −Krxr is used such that the eigenvalues of Ar−BrKr are

in the left half of the complex plane. The gain Kr is chosen to minimize the quadratic

cost function

J [xr, u] =

∫ ∞
0

(
x†rQxr + u†Ru

)
dt, (7.26)

where Q and R are positive weights computed as follows. Q is chosen such that the

first term in the integrand above represents a weighted norm of the output y = Crxr,

thus Q = q ∗C†rCr, where q is a adequately chosen weight (scalar). Since u is a scalar

(there is only one actuator), the weight R is a scalar too, and so may be taken to

be 1 without loss of generality.

Once this controller Kr is designed, It is implemented on both the full linear and

nonlinear system. The control implementation steps are sketched in Fig. 7.1: first

compute the reduced-order state xr, using the expression xr = Ψx where Ψ =

 Lu

S1Ps


and T1 (the transformation matrix), then the control input is given by u = −Krxr.

7.4.2 Observer-based feedback control design

In most engineering applications, the state of the full system is unknown, and thus a

full-state feedback controller that updates the control input based on the the current

state is not directly applicable. Instead, one typically uses an observer-based feedback

controller to update the feedback control inputs based on the sensor measurements

(outputs).

As before, using the reduced-order model, an observer is designed using a quadratic

estimator known as the Kalman filter. This method is optimal if the errors in repre-

senting the state xr and the measurements y are stochastic Gaussian processes. Such
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Figure 7.1: Schematic of the implementation of the full-state feedback control in the
full linear (top) and full non linear (bottom) simulations. The entire state is first
projected onto the unstable eigenvectors and the stable subspace of the balanced
modes in order to compute the reduced-order state xr. The state is then multiplied
by the gain K, computed based on the reduced-order model using LQR to obtain the
control input u = −KrΨx.

errors typically arise from inaccuracies in the model, external disturbances, and sen-

sor noise. The method gives us an estimate x̂r of the state xr that is optimal in the

sense that it minimizes the mean of the squared error; for more details, see Skogestad

and Postlethwaite [166].

The disturbances w comes from the model truncation and ignoring the nonlin-

ear terms in the reduced-order model (linearization). The sensor noise v (error in

measurements) comes from the output projection (the output is the projection of the

approximated state onto the finite balanced truncation modes deduced previously).
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Figure 7.2: Schematic of the implementation of the observer-based feedback control
in the linear (top) and nonlinear (bottom) simulations. The control input u and
the sensor measurements y are used as inputs to the observer, which reconstruct the
reduced-order state x̂r. This state is then multiplied by the gain Kr to obtain the
control input u. Both the controller and the observer gains Kr and L are computed
based on the reduced-order model.

The reduced-order model dynamics with process and sensor noise included is de-

fined as follows:

ẋr = Arxr +Bru+ w,

y = Crxr + v.

(7.27)
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Again, both disturbances and sensor noise are Gaussian processes whose variances

are

Q = E(ww†), w = Pbalf(x)− PbalAx, (7.28a)

R = E(vv†), v = y − CPbalx, (7.28b)

where E(.) is the expected value, Pbal(.) is the projection onto the Balancing modes,

Pbal = T1S1. The resulting estimator has the form

˙̂xr = Arx̂r −Bru− L(y − Crx̂r),

ŷ = Crxr,

(7.29)

where ŷ is the estimated output and L is the observer gain. The estimator is then

used along with the full state feedback controller designed previously to determine

the control input; a schematic is shown in Fig. 7.2.

7.5 Simulation Setup

7.5.1 Numerical parameters

The nonlinear and linearized Hasegawa-Wakatani equations are solved in a two-

dimensional slab geometry with doubly periodic boundary conditions for simplicity.

The grid size used is 16×16 with the computational domain given by [0, Lx]×[0, Ly]

and Lx = Ly = 22, where lengths are normalized by ρs, the ion sound Larmor radius

with ρs ≡ vsiω
−1
ci where vsi ≡

√
Te/m is the ion sound velocity in the cold ion limit

and Te is the electron temperature.

The time, ion vorticity and density fluctuation also have been normalized as fol-

lows:

ωcit 7→ t, eϕ/Te 7→ ϕ, n/n0 7→ n, x/ρs 7→ x. (7.30)
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7.5.2 Input and output

The system is actuated by a localized external electrostatic potential in the center of

the slab. Its shape is given in Fig. 7.3. From Eq. (7.13), the initial condition used

for each of the ion vorticity and density fluctuation simulations can be deduced. It is

then shown in Fig. 7.4.

The control objective is to prevent drift wave turbulence by stabilizing the unstable

steady states of this model by using the unique actuator defined in Fig. 7.3, and

designing a robust controller. An example of a pair of unstable eigenvectors is shown
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Figure 7.3: Actuator localized at the middle of the square plate and modeled as a dis-
tribution of the external potential ϕext that is added to the system. It is determined by
the function f(r) = 2 (1− r2/γ2) exp (−r2/γ2) where r2 = (x− Lx/2)2 + (y − Ly/2)2

and γ = 5 is a given parameter.

in Fig. 7.5.

Table 7.1 summarizes the three numerical cases studied in the following section.

Both α and µ values are fixed, the density gradient κ is varied for each case, which

gives us 3 different cases of right half plane (unstable) eigenvalues in the system.
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Figure 7.4: (left) The ion vorticity ζ and (right) density fluctuations n of the B-matrix
defined in Eq.(14). These two quantities are going to be the initial conditions of the
nonlinear, full linear, and reduced model of the MHW equations.

Table 7.1: Summary of the 3 systems that will be reduced then stabilized with only
one actuator: for fixed α and µ, only κ is varied and obtain 3 different cases with 2,
4, or 8 right half plane (unstable) eigenvalues.

Case RHP poles κ α µ
1 2 0.20 0.1 0.2
2 4 0.25 0.1 0.2
3 8 0.28 0.1 0.2

7.6 Results

The balanced truncation technique is applied to the MHW equations. In particular,

a reduced-order model of the system is obtained, actuated by a localized external

electrostatic potential in the center of the slab.

Using this reduced-order model, feedback controllers that stabilize its unstable

steady states are developped; first, a full-state feedback controller is designed, then

improved by developing a more realistic and practical observer-based controller that

uses fewer measurements of the model to reconstruct the entire ion vorticity and

density fields.

The goal is to show that these well-known flow control techniques can be applied

to this simplified plasma physics model, so that new methods for equilibria stabi-
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Figure 7.5: Representation of the two unstable eigenvectors of the linearized equa-
tions. The left part represents its real part, the right its imaginary part.

lization can be obtained, and savings of computational time and memory can be

achieved. Those are very important especially in this domain, where computational

requirements are typically large.

7.6.1 The nonlinear MHW equations

The study begins by simulating the nonlinear MHW equations, in order to understand

the fluctuations that are attempted to be stabilized. The dynamics of coupled drift

waves and zonal flows is found.

Figure 7.6 shows the transition of both ion vorticity and density fluctuation

from a horizontally uniform state (drift waves) to an almost vertically uniform state

(zonal flow); the sequence then repeats.
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Figure 7.7 shows the same information about the density but focused on one point

in the center of the grid, but for longer times, so the coupling between drift waves and

zonal flow can be clearly seen in terms of amplitude of one point of density fluctuation,

but also in terms of the whole kinetic energy distribution.

−1.5 −1 −0.5 0 0.5 1 1.5−0.4 −0.2 0 0.2 0.4

ion vorticity ζ

t
1

t
2

t
3

density n

Figure 7.6: Ion vorticity and density fluctuation (in color) of the full non linear MHW
equations at three successive times with the B-matrix as the initial condition.
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Figure 7.7: The output correspond to the density fluctuation that occurs in the center
of the square geometry with no control applied on the system.

Having insights into the physics and understanding the coupling of drift waves

and zonal flow can help to better design the controller. This idea will be discussed in

Sec. 7.7.

The aim of this paper is not to explain the complex coupling between drift waves

and zonal flow; the nonlinear simulation is only used to obtain a big picture of the

phenomena in a particular case (here case 1 of Table 7.1), it will help to compare

the model before and after applying the controller, and see whether a stabilization of

these oscillations is possible near the unstable equilibrium.
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7.6.2 Reduced-order models and validation

Once the balanced truncation is applied, the error between the original and the

reduced-order model is calculated, and compared to its bounds (which were discussed

in Sec.7.3.2), and to errors from POD and BPOD models (two other model reduction

techniques seen in Sec.7.3.1). The results are represented in Fig.7.8. As expected,

the balanced truncation method is the one that gives the best approximation (least

error) to the original model.

After validation, Table 7.2 shows for the three studied cases, the new reduced

dimensions obtained, once the balanced truncation is applied. These dimensions

have significantly decreased.

Table 7.2: Summary of the 3 new reduced systems. r is the dimension of the stable
reduced subsystem.

Case r Reduced dim. of state
1 4 512 7−→ 6
2 6 512 7−→ 10
3 12 512 7−→ 20

7.6.3 Full-state feedback control

After designing a reduced-order model as described in Sec. 7.6.2, a full-state feedback

controller is then designed, in which it is assumed that vorticity and density can be

measured everywhere.

The controller is built as in Sec. 7.4, using a LQR with Q = q ∗ C†rCr, and

implementing it in the full linear system, as well as the full nonlinear system as

shown in Fig. 7.1.

By choosing q ≈ 10 for the first case study in Table 7.1, the LQR is able to move

the right half plane eigenvalues to the left without destabilizing the already stable left

half plane ones. q is chosen by numerically experimenting with different values, and
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Figure 7.8: Error ||G − Gred||∞/||G||∞ for balanced truncation (©), balanced POD
(4), POD (�), and upper and lower bound for the model reduction scheme.

then for each value, deduce the LQR controller and visualize the modified eigenvalues

of the Ar − BrKr matrix. Thus, q is chosen to be the best value that puts the right

half plane eigenvalues of both the reduced and full linear models as far to the left as

possible without destabilizing the other modes.

Figure 7.9 compares the density fluctuation in the center of the slab predicted by

the reduced, full linear and non linear models with inputs taken from the first case

study defined in Table 7.1 and Table 7.2.

At times t < 0, the nonlinear system evolves freely without any control applied on

it, the coupling effect is then observed while the reduced and full linear models exhibit

just exponentially growing amplitudes that are not shown here. At time t = 0, the

controller is turned on and immediately for time t > 0, the controller immediately

damps the oscillations for all three systems, and their controlled dynamics become

very close to each other. Therefore, the unstable steady state can be stabilized. More

importantly, the reduced-order model predicts the outputs accurately when compared

to the full linear or nonlinear system.
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Figure 7.9: Full Linear model with 2 eigenvalues in the right half plane (RHP)

Figure 7.10 compares the density fluctuation in the center of the slab at two

different controlling times with inputs taken from the second case study defined in

Table 7.1 and Table 7.2.

The nonlinear system evolves freely, and then at time t = 2000, the controller

is turned on (the output response is represented in red), the controller immediately

damps the oscillations. But when the controller is turned on at time t = 2300, ( the

output : density in the center, is represented in blue), the controller is not able to

damp the oscillations and stabilize the system due to the fact that it went too far

from the attraction basin of the equilibrium point.

In order to see that, Fig. 7.11 (Top) shows the distance from the equilibrium for

the 2 cases: the one inside the basin of attraction of the equilibrium point (control

time at t = 2000) and the one outside the basin of attraction of the equilibrium point

(control time at t = 2300). It can be seen that for the first case, the distance from

the zero point tends to converge to zero, whereas in the second case, this distance

keeps oscillating and diverges.
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Figure 7.10: Full Linear model with 4 eigenvalues in the right half plane (RHP)

Figures 7.11 (middle and bottom) show the projection of the state on the 7th

and 8th modes of the balanced truncation reduced-order model for two different time

intervals indicated by the grey areas of the top figure and noted (B) and (C) re-

spectively. These two time intervals are chosen to illustrate when the solution is the

closest and furthest of the equilibrium point respectively.

In (B) the stable solution is converging to the equilibrium point at (0, 0) whereas

the unstable solution is initially approaching and then diverging from (0, 0). In (C) the

stable solution is still converging to (0, 0) whereas the unstable solution is following

a complex path, sometimes being apparently close to the equilibrium point, but the

projection on different modes would reveal that the distance is much larger.

For the controllable case, Fig.7.12 shows a comparison of the reduced-order, full

linear and nonlinear centered output of the system. Once again the oscillations are

damped and stabilized and the dynamics of all three systems are approximately simi-

lar. This demonstrates that the reduced-order model is accurately predicting the full

dynamics.

Finally, as the parameter κ increases to 0.28, two more pairs of eigenvalues cross

into the right-half plane (simultaneously). One of these pairs turns out to be un-
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controllable, as can be verified by the Popov-Belevitch-Hautus (PBH) test, [166] so

it is not possible to stabilize the equilibrium with this choice of actuation (shown in

Fig. 7.4).

7.6.4 Observer-based feedback control

In practice, the full-state feedback control of the system is not directly useful, since

it is not possible to measure the entire ion vorticity and density fluctuation fields.

Therefore considering a more practical approach; the reduced order models obtained

from Sec. 7.6.2 are used to design dynamic observers based on density fluctuation

measurements at a small number of sensor locations.

A 6 (resp. 10) modes reduced order model with 2 (resp. 4) and 4 (resp.6) modes

describing the dynamics on the unstable and stable subspaces respectively, is used to

design the Kalman Filter for producing an optimal estimate of the density fluctuation

and ion vorticity fields based on Gaussian approximations of error terms (7.28a) and

(7.28b). This estimate is then used along with reduced order model controller to

determine the control input as shown in Fig. 7.2. The results of this observer-based

controller, which is also called a compensator, are shown for different sensors locations,

in Figs. 7.14 and 7.15.

Two cases of measurements are considered here:

• measurement of the whole density field, thus the C matrix defined in Eq. (7.14)

can be written as

C = [0 I] (7.31)
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• measurement of only four points of the density field as shown in Fig.[7.13] , thus

the C matrix can be written as

C =



0 · · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · · 0


(7.32)

Even though these sensors may not be realizable in applications, they serve as a

reasonable testing ground for the models.

Only the second case study results, which contains 4 RHP eigenvalues are shown

here, as it contains some interesting constraints on special controlling times when it

came about designing the Full state feedback. The measurements will be done one

time only of the density field, the other time, 4 points of density only.

Figure 7.14 shows a comparison of the outputs from the reduced-order, full linear,

and nonlinear models when only the density field is measured. The oscillations are

still damped and stabilized and the responses agree well, indicating that the reduced-

order linear model is a good approximation to the full nonlinear system.

Figure 7.15 shows us a comparison of the outputs from the reduced-order, full

linear and nonlinear models when only 4 density points are measured. The oscillations

are damped and stabilized quicker for the linear models than the nonlinear model

where it wiggles a little more and increases before converging to the equilibrium

point. The dynamics of the 3 systems are approximately similar until a certain point

(a transition behavior of the nonlinear system) but at the end, the controller will be

able to control the nonlinear system with only 1 actuator and 4 sensors.

The compensator again stabilizes the unstable equilibrium point and furthermore

the observer reconstructs the reduced order model states accurately. Initially the
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observer has no information about the states ( the initial state estimate is x̂ = 0),

but it quickly converges to and follows the actual states.

Finally to test the robustness of the resulting controller, a Nyquist [166] plot of

the loop gain of the input sensitivity function (input loop transfer function) is drawn

for each unstable case (2 or 4 right half plane eigenvalues) which corresponds to Figs.

(7.16) and (7.17) respectively. These plots show the loop transfer function for different

outputs considered: measuring density and vorticity (full-state), measuring the full

density field, and measuring density at four spatial locations.

The gain (GM) and phase margins (PM) can be deduced from the plots and

are given in Table 7.3. It indicates the amount by which the actual dynamics can

differ from the model (either in gain or phase), before the closed-loop system loses

stability. The cases with only 4 sensors have very small stability margins, indicating

that the model needs to be very accurate in order for the controllers to stabilize the

equilibrium.

The small stability margins for the cases with only 4 sensors indicate that the

controllers are unlikely to work in practice unless the model is very accurate. However,

the cases where the full density field is known are.

More details about the tools and theory behind it can be found in Astrom and

Murray [8]

Table 7.3: GM and PM deduced from the loop gain of the sensitivity function
Case num. of sensors Gain Margin Phase Margin

1 pair of 512 82.2 56.6◦

RHP e-values 256 41.3 56◦

4 1.26 11.8◦

2 pairs of 512 19.3 54.3◦

RHP e-values 256 13.5 53◦

4 1.32 13.9◦
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Figure 7.14: Output feedback: 4 RHP poles/ Full density sensed
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Figure 7.15: Output feedback: 4 RHP poles/ 4 density points sensed only

109



−15 −10 −5 0 5 10
−15

−10

−5

0

5

10

15

 

 

Nyquist Diagram − 2 RHP poles

Real Axis

Im
a
g
in

a
ry

 A
x
is

Full state feedback

Full  n

Four points of  n

Figure 7.16: Nyquist diagram of the loop gain of the input sensitivity function for
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7.7 Summary and discussion

The numerical methods for developing a reduced-order model of the input-output

dynamics of linear unstable systems are briefly presented in this paper. It is assumed

for simplicity that the dimension of the unstable eigenspace is small and the corre-

sponding global modes can be numerically computed. Building the reduced order

model treats the unstable subspace exactly, and truncates from the stable subspace

only.

These techniques have been frequently used in fluid control community. The aim

of this work has been to introduce and extend these methods to the plasma physics

community. Stabilizing controllers based on the reduced-order linear models were

developed and applied on unstable state and it was showed that when it works,

the models obtained agreed well with the actual simulations.These linear controllers

applied to the full nonlinear simulations were fairly successful at suppressing the drift

wave turbulence.

A 10 modes reduced-order observer which reconstructed the density and vorticity

fields accurately was designed along with an optimal controller, and was able to

suppress the drift wave turbulence and stabilize the two fields in the neighborhood of

the equilibrium point.

Even if the actuator and sensors considered here are not practically realizable,

the methodology presented can be extended to a more practical actuation. If given

a different equilibrium point than zero, using and amplifying the zonal flow as an

actuation would be a smart choice because of its stabilizing effects; once actuated,

the zonal flow can reduce the drift wave turbulence as seen in Figs. 7.6 and 7.7. This

actuation may be a more physical particular way of actuating the plasma slab for this

special case where it has an attenuation effect.

Also, adding more actuators and improving their design will provide better con-

trol. Here, the whole study was done with only one actuator and in some cases, the
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stabilization of the whole density and vorticity fields was possible with this unique

actuator.

Furthermore, the choice of sensor locations was not optimal either for the given

actuator, and different choices for sensor measurements could lead to improved per-

formance.

Finally, a motivation for the choice of this model problem was to show all the

possibilities of these control design techniques for a simple model. In the future, for

more realistic tokamak models, it may help to make the entire stabilization procedure

more automated and rigorous.

This work was supported by the U.S. Department of Energy Grant under Con-

tract No. DEAC02-76CH03073.
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A model-based feedback system is presented to control plasma rotation in a mag-

netically confined toroidal fusion device, to maintain plasma stability for long-pulse
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operation. This research uses experimental measurements from the National Spheri-

cal Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two

different types of actuation: momentum from injected neutral beams and neoclassical

toroidal viscosity generated by three-dimensional applied magnetic fields. Based on

the data-driven model obtained, a feedback controller is designed, and predictive

simulations using the TRANSP plasma transport code show that the controller is

able to attain desired plasma rotation profiles given practical constraints on the

actuators and the available measurements of rotation.

8.1 Introduction

Spherical tokamaks such as the National Spherical Torus Experiment (NSTX [125])

are toroidal magnetic fusion devices that have been proven experimentally to realize

theoretical expectations of efficient and compact advanced tokamak operation, pro-

ducing high plasma pressures in relation to the pressure of the magnetic field used

to create the plasma equilibrium. In certain circumstances, these high pressures can

cause rapidly growing magnetohydrodynamic (MHD) plasma instabilities that can

lead to undesirable effects such as reducing the plasma pressure, or even terminat-

ing the plasma (disruption). Many of these instabilities are sensitive to the shear,

so the rotation profile plays a key role in regulating these instabilities. The goal of

the present study is to describe a model-based approach to controlling the rotation

profile in spherical tokamaks, and to apply the approach to a predictive model based

on experimental data from NSTX.

The effect of the rotation profile on MHD instabilities has been well studied in

recent years. For instance, greater stability of tearing modes has been associated

with increased rotation shear [52, 130], while rotation profile shapes that lead to

stronger kinetic resonances lead to stabilization of kink/ballooning modes and resis-
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tive wall modes [146, 12]. Furthermore, rotational shear can affect plasma turbulence

and consequently can have an impact on transport processes and the energy con-

finement performance of tokamak plasmas [13, 181, 66]. In present-day pulsed toka-

maks, plasma rotation can evolve, through normal heat and momentum transport

processes, toward profiles for which certain MHD modes are unstable. Even if these

profiles evolve by chance to a steady-state profile that is stable, transient processes

including Edge-Localized Modes (ELMs), internal transport barriers, and different

heating mechanisms can alter plasma profiles further and make them less stable, or

unstable [147]. In future large fusion-power-producing tokamak operation (e.g. the

fusion nuclear science facility, FNSF [131, 132, 133]), disruptions caused by macro-

scopic instabilities can generate electromagnetic forces and heat loads large enough to

damage device components, so it is particularly important to avoid such disruptions,

for instance through control of the rotation profile.

There is an abundant literature on plasma control such as kinetic profile control

(density and temperature) [148, 16], burn control [149, 150, 151, 185, 17], toroidal

current profile control [18, 21, 11, 128, 40], safety factor profile control [6, 109, 88], di-

rect control of tearing modes [190, 186] and resistive wall modes [144, 147]. Rotation

control in tokamaks has been demonstrated using momentum input from injected

neutral beams (NBI) as an actuator [153, 192]. A new and unique aspect of the

present work is the use of non-axisymmetric (three-dimensional) magnetic fields as

another actuator in closed-loop feedback control to supplement the neutral beam ac-

tuator. Rotation alteration by non-resonant, three-dimensional magnetic fields allows

more precise, continuous control of the plasma rotation alteration than NBI, as the

momentum delivered by the latter occurs in significantly large, discrete increments.

The physical process creating the force on the plasma rotation generated by the

applied three-dimensional field, termed neoclassical toroidal viscosity (NTV) [158,

159, 160], has been used successfully to affect plasma rotation in a pre-programmed
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manner on NSTX over a wide range of plasma operation, with quantitative agree-

ment of the experimentally generated torque to theory [194]. NTV is caused by

non-ambipolar diffusion of plasma ions and electrons caused by the magnetic field

components that break the usual toroidal symmetry of tokamak confinement field.

As NTV depends on several important plasma parameters including temperature,

and the plasma rotation itself, its use in closed-loop feedback leads to weak non-

linearities which must be investigated to ensure successful control. Details of such

elements will be shown throughout this work.

The present work defines a model-based algorithm for plasma rotation control

based on experimental data from NSTX [125], that measures the rotational (toroidal)

momentum transport in the tokamak. More details about how to measure rotation

profile in real-time can be found in [194, 135]. Data-driven modeling techniques

have been successfully used in the past to model plasma transport dynamics for

active control design in fusion reactors [118, 18, 21, 11]. A novel contribution of

this work is the development of a one-dimensional partial differential equation model

that is computationally inexpensive, and may therefore implemented for real-time

control. The present simplified model of plasma momentum transport retains the

most important elements of the plasma momentum balance, including the effects of

NBI and NTV, and reproduces the general features of the plasma rotation evolution

measured in experiments.

Once the model is satisfactorily developed, a further step consists of applying

a spectral decomposition method, linearizing the equation about an equilibrium and

projecting onto a subspace spanned by Bessel functions, in order to obtain an approx-

imate linear model consisting of just 5 ordinary differential equations. The resulting

reduced model is then used to design a controller using standard techniques from

optimal control. The advantage of using a reduced-order model is that the resulting
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controller is also low dimensional, so that it is computable in real time, as well as

being easier to tune and design.

The paper is organized as follows. Section 9.2 describes the data-driven model

definition with details about the actuators used, model reduction process and com-

parison to experimental data. Section 9.3 describes the optimal control method used

to track a desired rotation profile, using both NTV and NBI as actuators, and its

implementation through numerical simulation. Section 8.4 presents the results of the

designed controller on a more complete rotation model that can be found in TRANSP,

a time dependent code developed at Princeton Plasma Physics Laboratory for both

prediction and analysis of tokamak experimental data [58, 23]. Conclusions and future

work are discussed in Section 8.5.

8.2 A simplified model of the toroidal momentum

balance

8.2.1 Model definition

Consider the transport of toroidal angular plasma momentum in a tokamak with

the assumption of axisymmetry. To facilitate the analysis, an arbitrary flux surface

average ρ ∈ [0, 1] is used, where ρ = 0 and 1 denote the center and the boundary of

the plasma, respectively.

Using the work of Goldston [57] and Callen [25], the angular velocity of the plasma

ω can be described dynamically by the flux surface average 〈·〉 of the toroidal mo-
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The left-hand side of the equation above represents the temporal change in the plasma

toroidal angular momentum and the right-hand side terms denote respectively the

one-dimensional fluid viscous term, pinch term, momentum loss due to charge ex-

change and field ripple, and the torque inputs (i.e., neutral beam injection and neo-

classical toroidal viscosity). R is a major radial coordinate, ∂V/∂ρ is the differen-

tial flux surface volume, χφ is the perpendicular (to the equilibrium magnetic field)

momentum diffusivity, τφcx and τcδ are the time scales of the local momentum loss

associated with charge-exchange and field ripple, Tj represents the various torques

acting on the system, ni is the particle density and mi is the particle mass for each

particle species, but for simplicity, only the main plasma ion species (deuterium) are

considered in the dynamics.

It is assumed that the plasma cross-sectional shape is well controlled by a sepa-

rate control loop; therefore 〈R2〉, 〈R2(∇ρ)2〉, and ∂V/∂ρ are held fixed. Curve-fits

from time-averaged values of these functions (4th (Figures 9.1(a) and (c)), 5th (Fig-

ures 9.1(b) and (d)) order polynomials or cubic spline (Figure 9.2) interpolation

depending on which one gives the smoothest fit) from TRANSP analysis of an ex-

perimental plasma are used as approximations. Representative data for a plasma
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discharge (133367) is shown in Figures 9.1(a), 9.1(b) and 9.1(c) respectively. As it

can be seen, the temporal fluctuations of these variables are small. Hence taking the

time-average values or even the fixed values at an adequately chosen time (t = 0.65s)

is considered to be a close approximation.

It is also assumed for simplicity that the time variation of the mass density is

small. This is a reasonable approximation, especially towards the edge (ρ = 1), as

seen in Figure 9.1(d). This assumption may later be removed allowing
∑

i nimi to

vary in time for more complex time-dependent systems, but for now, it allows the

density time derivative term in the left-hand side of equation (8.1) to be neglected,

resulting in a time-invariant system that is more amenable to control design.

Incorporating these observations into equation (8.1), we obtain a simplified diffu-

sion equation

nm
〈
R2
〉 ∂ω
∂t

=

(
∂V

∂ρ

)−1
∂

∂ρ

[
∂V

∂ρ
nmχφ

〈
R2(∇ρ)2

〉 ∂ω
∂ρ

]
+ TNBI + T NTV, (8.2)

with boundary conditions

∂ω

∂ρ

∣∣∣∣
ρ=0

= 0 and ω|ρ=1 = 0. (8.3)

Here, TNBI and TNTV represent the torques arising from neutral beam injection (NBI)

and neoclassical toroidal viscosity (NTV). Note that for this significant class of high

confinement discharges specific to NSTX, the pinch term and the momentum loss due

to charge exchange are small [170, 86] and the momentum loss due to field ripple is not

required, as NTV is explicitly determined in this calculation. Details of the models

for TNBI and TNTV are shown in Sections 9.2.2 and 9.2.2. The Dirichlet boundary

condition at the plasma edge (ρ = 1) is chosen to be consistent with experimental

observations.
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Figure 8.1: Functions describing the radial profiles of the geometrical properties:
〈R2〉, 〈R2(∇ρ)2〉, ∂V/∂ρ and the mass density

∑
i nimi from a TRANSP analysis

of plasma discharge 133367. The shaded region represents the value of the function
spanned over time interval (0.45–0.92) seconds. The time-average values are shown
by the black dashed line (– –), the fixed time values and its curve-fit are shown by
the solid blue lines (—) and the red dots (o) respectively.
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Figure 8.2: The momentum diffusivity coefficient χφ is calculated through TRANSP
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function spanned over time interval (0.45–0.92) seconds. The time-average values and
its curve-fit are shown by the circles and the solid line respectively.

A few observations can be made about this simplified model: first, equation (8.2)

is parabolic, ensuring the state operator to be negative definite (all eigenvalues are

negative); hence the system is stable, which is a desirable feature from a control

viewpoint. Second, this approach captures only the momentum balance for rotation

control and does not model potential plasma instabilities.

A key parameter in the model is the diffusion coefficient χφ, which we take to be

constant in time in (8.2). There are no direct measurements of χφ inside the tokamak,

but TRANSP is able to reconstruct a value for χφ for an experiment where ω is

measured. Figure 9.2 shows the deduced χφ from a particular run (plasma discharge

number 133775). This run is identical to the plasma discharge number 133367 except

that it does not have an applied non-axisymmetric field, and therefore TNTV = 0.

This feature is very important because each dissipation effect needs to be considered

separately from each source in the model. The data driven model will use the χφ of

discharge (133775) as its momentum diffusivity coefficient reference.

The approach here is as follows: given a range of desired profiles that the operator

wishes the system to reach and stabilize, take the simplified model (8.2) that relies on

different models of nm, NTV and NBI torques from a representative class of plasma
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discharge (χφ modeled from plasma discharge 133775), linearize the model around

an equilibrium whose basin of attraction contains the range of desired profiles and

use the linearized model to design a controller that will attempt to match any target

shape within this range.

8.2.2 Actuator models

In order to control the toroidal momentum of the plasma in a spherical tokamak,

we consider the use of two actuator mechanisms, namely, the neutral beam injection

(NBI) and the neoclassical toroidal viscosity (NTV). The neutral beams are the main

sources of momentum for the plasma and the NTV actuator is primarily used as a

source of drag on the plasma. For NSTX, TNBI is strongest in the plasma core, whereas

T NTV is strongest closer to the edge of the plasma. The momentum diffusivity χφ

allows transport of the momentum across these plasma regions on the momentum

diffusion timescale of about 0.1 s in NSTX H-mode plasmas.

Neutral Beam Injection (NBI)

In NSTX, neutral beam injection is the main method to produce positive torque to

increase plasma rotation, which is achieved by injecting high-speed neutral atoms into

the center of the plasma. Neutral atoms are able to cross the confining magnetic field

of the tokamak without being deflected, and are ionized in the plasma via collisions

with ions and electrons. The fast ions that are generated are also confined in the

magnetic field and are able to exchange their energy to plasma ions and electrons.

Typical injection acceleration voltages are in the range of 50 keV to 130 keV and for

comparison, in NSTX, the peak plasma ion thermal temperature reaches up to 1.5

keV. Figure 9.3 shows the planned neutral beam injection for the present upgrade of

NSTX. In the present study, we consider the three neutral beam sources injected from
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Figure 8.3: Illustration of the neutral beam injection (NBI) devices for NSTX-U with
an inside view from the top of the tokamak (top) and outside view (bottom).

the injector shown on the left of the figure. Furthermore, for simplicity, we model the

three sources as a single torque input, as we describe below.

A differential-equation model is introduced to relate the input power to the gener-

ated torque. First, we approximate the NBI torque as a product of the spatial average

of the torque, TNBI(t) ≡ avgρTNBI(t, ρ), and a function, FNBI(ρ), that represents the
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Figure 8.4: (a) Spatial profile for the neutral beam torque (FNBI) for plasma discharge
133367. The shaded region represents the values for times ranging from 0.45 to
0.92 seconds: time averaged values (– –); values at the fixed time t = 0.6s (– ·); and
the fit (9.6) (—). (b) Spatial average of the torque generated for the same plasma
discharge (TNBI), showing the TRANSP analysis (black) and the model (8.6) (red),
with τNBI = 0.01 s and κNBI = 2× 10−6.

spatial profile

TNBI(t, ρ) = TNBI(t)FNBI(ρ), (8.4)

where the spatial profile of the torque is taken to be a Gaussian function (based on

TRANSP analysis of NSTX discharge 133367) written as

FNBI(ρ) = aNBI exp

(
− ρ2

2σ2
NBI

)
. (8.5)

Figure 8.4(a) shows the deduced profile FNBI of the torque generated by the neutral

beams, where the parameters aNBI = 7.9090 and σNBI = 0.2219 were determined by

a least-squares fit to the time-averaged data.

In our model, the spatial average of the torque TNBI(t) is related to the power

input, PNBI(t), by a first-order lag:

∂TNBI

∂t
+
TNBI

τNBI

= κNBIPNBI(t), (8.6)

where τNBI is the approximate slowing down time of the fast neutral beam particles to

impart energy to the bulk plasma and κNBI is a scalar used to normalize the neutral
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Figure 8.5: Model representation of the three-dimensional coils (highlighted in blue)
used to create the magnetic field that produces NTV in the NSTX device.

beam power PNBI. τNBI depends on the collisionality and can affect the response time

of the beam power actuator. For values of τNBI between 10 and 30ms, the impact that

the actuator has on the control does not change significantly. By fitting equation (8.6)

with TRANSP analysis of Figure 8.4(b), τNBI is set to 0.01s.

Figure 8.4(b) shows the solution of equation (8.6) with PNBI fixed to 6 MW, com-

pared with the neutral beam torque predicted by TRANSP analysis, which uses a

more elaborate Monte Carlo model.

Neoclassical Toroidal Viscosity (NTV)

Tokamaks usually have error fields or magnetohydrodynamic (MHD) activities present

and these imperfections break the toroidal symmetry of the magnetic field and result

in enhanced neoclassical toroidal plasma viscosity which then increases the rate of

toroidal flow damping. The result will be a change of the edge rotation and shear.

For the current one-dimensional toroidal momentum model, we aim to model the

momentum loss due to the neoclassical toroidal viscosity in the toroidal average sense
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Figure 8.6: Coil current I(t) for plasma discharges 133367: the green line represents
the model from CHERS data and blue lines represent the smoothed data.

and base our model on the work done in [194] from which we can design the NTV

torque as the bilinear product of the coil (Figure 8.5) current squared (I2) with the

toroidal momentum ω as follows

TNTV(t, ρ) = −KG(ρ) 〈R2〉 I2(t)ω(t, ρ), (8.7)

where K is a constant and G is a Gaussian function. The present model will focus

on the torque generated by the n = 3 applied field “configuration,” in which the

current reverses direction in each of the six neighboring coils. Other applied field

configurations are possible (e.g., configurations with dominant n = 2 component)

and have experimentally produced effective NTV as well [146].

The approach in our model is to approximate the general shape of TNTV/ω by a

time-invariant spatial profile and a time-evolution of a scalar current, similar to the

way TNBI was treated. The resulting model has the form

TNTV(t, ρ)

ω(t, ρ)
= −GNTV(ρ) I2(t), (8.8)
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in Figure 8.6.

where

GNTV(ρ) = K 〈R2〉G(ρ), (8.9)

and G(ρ) is a Gaussian function centered towards the edge (µ = 0.7, σ = 0.1).

Figure 8.6 shows the current that flows into the coils for the plasma discharge 133367.

We notice that the current is kept constant after 0.6s. It should be noted that for

control design, the actuator input will be I2(t). Using the experimental rotation

profile, the modeled NTV torque is shown in Figure 8.7.

8.2.3 Testing and comparing the model

Discretization of the model

In order to numerically simulate the partial differential equation (8.2), we use a spec-

tral method, projecting onto suitably chosen basis functions, to obtain a system of

ordinary differential equations. In particular, we write

ω(ρ, t) =
N∑
n=1

an(t)ϕn(ρ), (8.10)
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where the basis functions are given by

ϕn(ρ) = J0(knρ), n = 1, . . . , N, (8.11)

where J0 denotes the Bessel function of the first kind and kn denotes the n-th root

of J0. With this choice of basis functions, the expansion (9.9) automatically satisfies

the boundary conditions (9.2), both at ρ = 0 (since J ′0(0) = 0) and at ρ = 1 (since

J0(kn) = 0). Furthermore, the basis functions satisfy the orthogonality relation

〈ϕn, ϕm〉 = 0, for m 6= n, (8.12)

where the inner product is defined by

〈f, g〉 =

∫ 1

0

ρ f(ρ) g(ρ) dρ.

Note that (8.2) is linear in ω, and can be written as

∂ω/∂t = L(ω, TNBI, TNTV), (8.13)

where L is a differential operator linear in each argument. Inserting the expan-

sion (9.9) into (9.11), taking inner products with ϕm, and using the orthogonality

relation (8.12) then gives

ȧm =
N∑
n=1

〈L(ϕn, TNBI, TNTV(ϕn)), ϕm〉
〈ϕm, ϕm〉

, m = 1, . . . , N,

which is a set of N coupled ordinary differential equations for the coefficients am.
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t = 0 s and t = 0.5 s respectively, comparing TRANSP analysis with fixed background
(black), with the model (8.2), with N = 4 Bessel functions (red).

Comparison Model vs TRANSP

The parameters in the model (8.2) are determined from TRANSP analysis of plasma

discharge 133367, as described in Section 9.2. Figure 8.8 shows the comparison of the

model with the TRANSP analysis (prediction of plasma discharge 133367), showing

the rotation at two values, ρ = 0.1346 and 0.5498. Given two points of measurements

of rotation (outputs), one near the core, the other one towards the edge of the tokamak

(more details in the next section); the model and TRANSP are first run with only

the NBI actuator on (6 MW), then at t = 0.5 s, the NTV actuator is turned on for

both models with the same value.

Figure 8.8 shows these rotation measurements for the simplified model (red) com-

pared against TRANSP analysis (solid black line) when the NBI and NTV actuators

are activated at t = 0 s and t = 0.5 s respectively. The blue dashed line shows the

steady values reached when only NBI is activated. It shows that the model is a good

approximation of the TRANSP analysis model.

Figure 8.9 shows how the simplified model performs for a different plasma dis-

charge (133743), at conditions different from those for which the model was calibrated.
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comparing TRANSP analysis (left), with the simplified model (8.2), projected onto
N = 40 Bessel modes, and N = 4 Bessel modes. Also shown is the relative error
between TRANSP and the reduced model (N = 4).

Projecting the simplified model onto 40 Bessel modes yields little improvement over

using only 4 modes so we use N = 4 modes for the rest of the modeling. The rela-

tive error between the reduced model and experimental data (which is the difference

between the experimental and the model rotation divided by the mean of the spatial

average of the experimental rotation data) is also shown in the same figure.

For all the models, the initial condition is set to be the experimental rotational

frequency at time t = 0.4 s after the start up (t = 0) and when the plasma reaches

the H-mode.

An exact plasma model is not a major concern as feedback control can be per-

formed to tolerate errors in the model. The key is to ensure the model does not deviate

drastically from the actual profile in order to prevent control system instabilities from

dominating plasma physics dynamics.
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Figure 8.10: Comparison of the rotational frequency ω for plasma discharge 133751,
comparing TRANSP analysis (left), with the simplified model (8.2), projected onto
N = 4 Bessel modes. Also shown is the relative error between TRANSP and the
reduced model (N = 4).

This simplified model (derived plasma discharge 133367) has been extensively

validated against other plasma discharges in NSTX analysis (showing here 133743).

The error remains acceptable starting with less than 25% for the experimental data

133743 where the original model was maintained the same, only the density and the

input torques were updated. Figure 8.10 shows how the simplified model performs

for another different plasma discharge (133751). The error does not exceed 30% for

other experimental comparisons.

The overall behavior of the plasma is captured qualitatively very well using the

simplified model of equation (8.2) with a fixed background.
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8.3 Linear plasma rotation control

The purpose of this section is to demonstrate that standard model-based control

techniques may be used to guide an experimental plasma rotation profile to track a

desired reference. Some approaches on how controllers can be designed to achieve a

desired profile with a reasonable response time are presented in the following sections.

Recall that the two actuators available to the controller are the (NBI) beam power

and the coil current producing NTV. In this case, a state-space realization is derived

and linear quadratic regulators are used to design a feedback controller that is optimal

in minimizing a prescribed quadratic cost function.

8.3.1 State space realization

In order to be able to use linear control tools, a state-space realization of equation (8.2)

shifted around a steady state has to be built. Let ω̄ be the steady state reached for

the given beam power P̄ and coil current Ī. The linearization around this steady

state profile can be written as

ω(t, ρ) = ω̄(ρ) + ω
′
(t, ρ), (8.14)

I(t) = Ī + I
′
(t), (8.15)

PNBI(t) = P̄ + P
′
(t), (8.16)

where ω
′

, I
′

and P
′

are the respective perturbations to the equilibria ω̄, Ī and

P̄ . By plugging in these equations into equations (8.2) and (8.6) and by linearizing

equation (8.7) and simplifying, we obtain

∂

∂t

 ω
′

TNBI

 =

 a11 a12

0 a22


 ω

′

TNBI

 +

 b11 0

0 b22


 I

′2

P
′

 (8.17)
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where

a11 =
1

nm 〈R2〉

[(
∂V

∂ρ

)−1
∂

∂ρ

(
∂V

∂ρ
(nm)χφ

〈
R2(∇ρ)2

〉 ∂
∂ρ

)
−KG(ρ)〈R2〉I2

0

]

a12 =
FNBI(ρ)

nm 〈R2〉

a22 = − 1

τNBI

b11 = − 1

nm 〈R2〉
KG(ρ)〈R2〉ω0

b22 = κNBI

Let x =
(
a0, a1, ..., ar, TNBI(t)

)
be the (r + 1) Bessel coefficients of the projection

of the partial state ω on the r chosen Bessel functions, let u = (I
′2, P

′
) ∈ Rp

be the perturbed input, and y ∈ Rq be the perturbed output (sensor measurements

from their equilibrium values). This system of equations can be represented in the

standard state-space form:

ẋ = Ax+Bu, (8.18)

y = Cx, (8.19)

by using the spectral decomposition described in Section 9.2.3. A ∈ R (r+1)×(r+1),

B ∈ R (r+1)×p, and C ∈ R q×(r+1) are respectively called the dynamics, control and

sensor matrices. Here, there are two actuators (p = 2), one power input for the

neutral beams and another one for the coil current producing the NTV. The outputs

y correspond to the sensor measurements of the plasma toroidal rotation. Here, two

measurements are taken, one near the core and one towards the edge of the plasma

(q = 2).
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8.3.2 Non-zero target state

Once the state-space realization is obtained, the goal is to force the shape of the

plasma rotation profile to reach a target state xd such that the sensor output y

matches a reference signal yd. In the final implementation, all one should have to

prescribe is yd (e.g., plasma rotational frequency values at certain locations). The

target state xd and the corresponding input ud are found by solving equations (9.17)

and (9.18) at steady state (ẋ = 0 = Axd +Bud and yd = Cxd). We then solve for xd

and ud by writing in matrix form

 xd

ud

 =

 A B

C 0


−1 0

I

 yd =

 Fx

Fu

 yd. (8.20)

Note that for this case, there is always a unique solution, since the number of in-

puts equals the number of outputs (p = q = 2), A is invertible, and there are no

transmission zeros at steady state.

8.3.3 Control design

Once the target states (xd, ud) are established, the controllers are designed based on

the reduced model dynamics, then applied to the full-dimensional linearized model,

and finally tested on the original nonlinear model to determine if the controller can

suppress disturbances and reach the desired profile in the vicinity of the equilibrium.

Full-state feedback control design

When the reduced-order model (in Bessel basis) is obtained, a feedback control law

can be constructed as

u = ud −K(x− xd) = −Kx+ Fyd, (8.21)
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where K is the feedback control gain to be determined from control design and F =

Fu +KFx is the feedforward gain. Therefore, the resulting closed-loop system can be

written as

ẋ = (A−BK)x+BFyd,

y = Cx.

(8.22)

In order to design the controller from equation (9.24), we have to choose the gains

K. A standard linear control technique (linear-quadratic regulators) is used in order

to determine those gains while minimizing a quadratic cost function of the form:

J =

∫ ∞
t0

(
xTQx+ uTRu

)
dt, (8.23)

where Q ≥ 0 and R > 0 are symmetric matrices chosen by the control designer. Q

will be chosen to be equal to q CTC where q is a constant and R is a 2× 2 diagonal

matrix, which reduces equation (8.23) to

J =

∫ ∞
t0

(
q yTy + uTRu

)
dt. (8.24)

The input u, from equation (9.24), that minimizes J is obtained by setting

K = −R−1BTP, (8.25)

where P is a positive-definite, symmetric matrix that solves the algebraic Riccati

equation: PA + ATP − PBR−1BTP + Q = 0. This equation is solved numerically

using standard routines in MATLAB. For more details about the method, see standard

references such as [165, 7]. It should be noted that the feedforward gain F depends

on the matrices A, B, C and K.
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Figure 8.11: Rotation profiles: definition of the initial profile, equilibrium profile w0
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Figure 8.11 defines our initial profile, the equilibrium profile used for the lineariza-

tion and the targeted profile where the measurements are done. In this paper we use

q = 104 and R = I by inspection of the magnitude of our inputs and outputs.

Observer-based feedback control design

The feedback law (9.24) we designed in the previous section requires knowledge of the

full state x. However, in an actual experiment, we cannot measure the state directly;

we measure only the outputs y. However, we may reconstruct an estimate of the

state from the available sensor measurements using an observer. A standard linear

observer reconstructs a state estimate x̂, with dynamics given by

˙̂x = Ax̂+Bu+ L(y − Cx̂)

= (A− LC)x̂+Bu+ Ly,

(8.26)
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where the matrices A,B and C are the same as those in the model (9.25), and L is a

matrix of gains chosen such that the state estimate converges quickly relative to the

system’s dynamics. Using our linear model, we design an optimal observer (Kalman

filter) to find L. We introduce two zero-mean Gaussian white noise processes, w the

process disturbance and v the sensor noise, with respective covariance matrices W

and V , into equations (9.17) and (9.18) to obtain

ẋ = Ax+Bu+ w, (8.27)

y = Cx+ v. (8.28)

Then the covariance of the error in the state estimate is minimized (assuming the

noise models are correct) by setting

L = PCTV −1, (8.29)

where P is a positive-definite, symmetric matrix that solves the algebraic Riccati

equation: AP + PAT − PCTV −1CP + W = 0. This equation is solved numerically

using standard routines in MATLAB. For more details about the method, see standard

references such as [165, 7]. In this paper, we use W = diag(104Ir, 0) and V = I. The

observer generates an estimate of the state from the physics model as represented

by the state matrix, the inputs and outputs, and once combined to the feedback

controller it forms a linear quadratic Gaussian compensator.

Integrator, actuators saturation and anti-windup design

Because the primary goal is tracking the desired rotation profile, we want to minimize

the steady state error between the output (measured) and the target profile. One way

to handle such issue is to use integral action, introducing a new state variable z that
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is the integral of the error:

ż = yd − y = yd − Cx. (8.30)

The overall system can be then written as

∂

∂t

 x

z

 =

 A 0

−C 0


 x

z

+

 B

0

u+

 0

I

 yd (8.31)

with a new feedback law designed as

u =

(
−K KI

) x

z

+ Fyd = ud +K(xd − x) +KI

∫
(yd − y) (8.32)

where the gains K and KI can be determined through the MATLAB command LQI

which solves an algebraic Riccati equation with an extended state that includes the

integrator. A drawback of integral control is that if the actuator values are limited

to some range u ∈ [umin, umax] (as they are in our case), then the integrator can

accumulate error when the actuator is “saturated,” resulting in poor transient per-

formance, a phenomenon known as “integrator windup.” We avoid these effects by

using a standard anti-windup scheme (see, e.g., [7, 172]), in which one feeds back the

difference between the desired value of u and its actual (possibly saturated) value, as

shown in the diagram in Figure 9.11.

Figure 9.11 shows the schematic of the overall controller, combining the feed-

back law (9.24) with the observer (9.26), the integrator (9.27) and the anti-windup

approach described above.
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8.4 Simulation results

The goal of the simulations is to test the controller first on the simplified reduced-

order model, and then on a higher fidelity model (TRANSP) that is closer to the

actual experiment. The desired profiles shown in Figure 8.11 will be targeted in

both cases and the results will be compared to see the effectiveness of the controller

described above.

8.4.1 Actuator constraints

Both actuators (NTV coil current and NBI beam power) have constraints that need

to be satisfied when applied on the real device (NSTX). Some of these constraints

are made for the safety of the operations, some of them reflect the practicability and

the feasibility of some requests to the device. The constraints will be added to the

dynamics equations.
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The coil current will be constrained between 0 and 3000 amperes. The coil current

response is fast compared to the dynamics of the system that it can be assumed to

be applied instantaneously.

Although we have so far been treating the NBI actuator as a single source out-

putting between 2 and 6 MW of power, it is actually composed of 3 beams. Each

beam can either be on and produce 2 MW of power or off and produce 0 MW. In ad-

dition, each beam can only be switched on or off a maximum of 20 times per plasma

discharge to prevent device fatigue issues, and there is a refractory period of 10 ms

after each switch during which the beam cannot be switched again. Due to diagnos-

tic considerations, one NBI source is typically always on, and so the overall injected

power is considered to be between 2 and 6 MW here.

These physical restrictions constrain the model and controller to be discrete and

to use Pulse Width Modulation (PWM) for the beam power actuation in order to

obtain control requested values between 2 and 6 MW.

8.4.2 Simulation without PWM

The discretized controller is first applied to the reduced-order model, considering only

the constraint of saturation for both actuators. It is thus considered that any values

of beam power between 2 and 6 MW and coil current between 0 and 3000 Amps can

be applied instantaneously.

Figure 8.13 shows the rotation profile, comparing the actual profile, the desired

profile, and the profile estimated by the observer. Four different times are shown:

0.5 s (at which time the controller is turned on), 0.51 s, 0.52 s and 0.57 s respectively.

The two sensors locations are indicated in the figure, and it can be noticed that the

targeted profile is reached in less than 0.1 s.
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Figure 8.13: Time evolution of the rotation in the model as it evolves toward the
target values and its estimate at 4 different times. The green profile is the targeted
rotation profile.
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Figure 8.14 shows the time evolution of the rotation measurement focused at the

two sensor points located at the core and towards the edge of the plasma only. The

outputs track the desired values well after about 50ms.

Figure 8.15 represents the requested inputs (coil current and overall beam power)

needed to reach the desired profile of Figures 8.13 and 8.14. It can be noticed that

the current does not saturate whereas the beam power does.

Because the initial profile (Figure 8.13(a)) before turning the controller on, is

above the targeted profile (Figure 8.13(d)), and the difference between the two profiles

is higher towards the core of the plasma (where the beam power acts), the controller

tries to first push the power down starting from 6 MW at the initial state before

controlling, up to 2 MW when it hits saturation. The green dashed line in Figure 8.15

shows how the controller would apply the beam power if no saturation was in effect.

During the rapid decrease of the beam power, the controller increases the coil current

in order to increase the drag and forces rapid deceleration towards the edge of the

plasma. The controller and the actuators, when they can be activated instantaneously,

enable the rotation profile to reach its target about 2 times faster (about 60 ms) than

the momentum diffusion time (about 100 ms).
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Figure 8.15: Time evolution of the coil current and the overall beam power and its
saturation, needed to reach the 1st desired profile

8.4.3 Computational approach for TRANSP

In order to predict the toroidal rotation for NSTX, the TRANSP code running in

predictive mode is used for a given beam power and coil current. It also takes as

inputs the time histories of the plasma boundary shape, plasma current, electron and

ion (Chang-Hinton model [29]) temperature and density profiles and the momentum

diffusivity coefficient.

The actuator commands needed for closed-loop rotation control simulations are

entered into the TRANSP code, which serves as a plasma simulator for testing the

present controller. For more details on the TRANSP implementation, see [22].
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Figure 8.16: Comparison of the rotation measurements when PWM is applied for
both the reduced-order model (green lines) and the TRANSP predictive model (blue
lines). The red dots represents the cycle times (every 0.015s).

8.4.4 Simulation with PWM

The discretized controller is now applied to the reduced-order model and the TRANSP

predictive model, considering all the constraints listed in Section 8.4.1 for both ac-

tuators. The main difference with Section 8.4.2 will be that instead of applying the

exact beam power numerical value as requested by the controller, each of the 3 beams

will be modulated individually while satisfying all the constraints.

At the beginning of each duty cycle, the controller sets the requested power. Dur-

ing the duty cycle, the beams switch on and off at most once to minimize the number

of switches. Because of this and the 10 ms refractory period, the exact requested

power cannot always be met.

Durations greater and smaller than 10 ms are chosen to compare output results

for different duty cycle durations. The longer the duty cycle, the better for the

device because it means less commands switches so less fatigue, but a longer duration

introduces a longer controller lag which impairs performance.
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Figure 8.17: Time evolution of the coil current and the overall beam power (cycle
time 0.015s).

Figure 8.16 compares the rotation measurements when the PWM controller is

applied to both the reduced-order model and the TRANSP predictive model in order

to reach two targets, one at t = 0.5s, and the other starting at t = 0.7s. Before

t = 0.5 s, both models are not controlled (open loop), the measurements are already

shown to be the steady-state values shown in Figure 8.8. At t = 0.5 s, the controller is

turned on (closed loop), and the goal is to reach the first target profile measurement

points defined by the two red dots in Figure 8.11. At t = 0.7 s, the target profile

changes to the second one which is defined by the two blue dots in Figure 8.11. The

green line represents the reduced-order model outputs, the blue line represents the
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Figure 8.18: Comparison of the rotation measurements when PWM applied for both
the reduced-order model (green lines) and the TRANSP predictive model (blue lines).
The red dots represents the cycle times (every 0.006s).

TRANSP model. The oscillations are due to the modulations that occurs on each of

the beam power source. The total beam power is represented in Figure 8.17(b). The

coil current in this case (Figure 8.17(a)) changes to compensate for when the beam

power is too high in order to decrease the toroidal rotation and thus limit the rotation

overshoot. In this example, the duty cycle duration is 15 ms which gives a reasonable

amplitude of oscillation while reaching both targets within the momentum diffusion

time (0.1s).

Figure 8.18 and Figure 8.19 represent the same quantities as in Figure 8.16 and

Figure 8.17 respectively, but for a different duty cycle duration (6 ms) which is smaller

that the the 10 ms refractory period. The resulting rotation measurements are more

oscillatory but the amplitude is better damped. The trade off is that we have to

activate the controller more often and thus formulate more requests to the real device.

The reduced-order model in both cases is very close to the TRANSP which again

shows that the simplified model gives us a good qualitative approximation of the

TRANSP rotation prediction model.
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Figure 8.19: Time evolution of the coil current and the overall beam power (cycle
time 0.006s).

A more peaked profile represented in figure 8.11 by the third blue desired shape is

finally tested. Figure 8.20 shows the rotation measurements when the PWM controller

is applied to the TRANSP predictive model in order to reach this target starting at

t = 0.5s. The corresponding total beam power is represented in Figure 8.21(b) and

the coil current in Figure 8.21(a). We can see that this case uses a much higher coil

current quantity (about 1.6kA) in order to push the rotation profile’s tail down while

keeping the plasma core rotation high.
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Figure 8.21: Time evolution of the coil current and the overall beam power (cycle
time 0.006s) for the third target.
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8.5 Summary and conclusions

A simple reduced-order model has been developed to capture the rotational toroidal

momentum balance for the NSTX device. This model was utilized to control the

plasma about its desired profile with the neutral beam injection and the neoclassical

toroidal viscosity. The output from the model have been compared with analysis

from a predictive model of NSTX and were found to be in good agreement. Based

on this simplified model, a complete feedback control design using optimal control

techniques as shown above and enables controlling the plasma about a desired profile.

This reduced-order controller was then tested using the NSTX predictive model and

enabled the rotation profile to reach the desired profile.

Generally, broader toroidal rotation profile brings more stability to the plasma

[146] and local rotation shear can affect MHD modes [52]. In the new upgrade of the

device, NSTX-U, three additional NBI sources (Figure 9.3) will provide significantly

different torque profiles which can affect a broader region of the plasma, specifically

towards the edge and can change the shear locally. In this case, the controller can use

these added beam sources allowing significantly greater control of plasma instabilities.

Furthermore, while only the n = 3 applied field configuration was considered for the

NTV actuator, it is possible to include different applied field spectra which can change

the NTV torque profile. For example, an n = 1 field configuration can allow a deeper

penetration of this torque profile which will expand the capability of rotation control.

The present controller was designed using models tuned to match experimental

data. A next step could be to develop control-oriented models directly from simula-

tions. This capability would have a large impact: fewer experiments would be needed

to calibrate the models/controllers, and more importantly, one could predict actuator

requirements (e.g., amplitude, bandwidth, latency), and any inherent performance

limitations for future machines such as FNSF. These control-oriented models such

as those being developed using TRANSP for NSTX-Upgrade will be tested for their
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robustness in producing greater range of target profile shapes.
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A model-based feedback system is presented enabling simultaneously the control

of the stored energy through βn and the toroidal rotation profile of the plasma in
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NSTX-U. The computational simulations for NSTX-U scenarios will use momentum

from six injected neutral beams and neoclassical toroidal viscosity generated by

three-dimensional applied magnetic fields as actuators. Based on the momentum

diffusion and torque balance model obtained, a feedback controller is designed and

predictive simulations using TRANSP for closed loop simulations will be presented,

showing promising results for motivating on going experimental implementations.

9.1 Introduction

The National Spherical Torus eXperiment Upgrade device (NSTX-U) [113], which

was completed in late 2015, is designed to make the previous device (NSTX [125]) the

most powerful experimental fusion facility of its type in the world (spherical tokamak).

Current experiments are testing the ability of the upgraded machine to maintain a

high-performance plasma under conditions of extreme heat and power. Results could

strongly influence the design of future fusion reactors like the fusion nuclear science

facility FNSF [131, 132, 133], by helping understanding some key physics issues such

as sustaining non-inductive high βn behaviors [50, 112, 51, 53, 24, 31].

The two main components of the upgrade are the complete replacement of NSTX-

U center stack by 36 22-footlong, 350-pound copper conductors which contains the

inner-leg of the toroidal field (TF) coils, the Ohmic heating (OH) solenoid, and some

divertor coils, and the addition of a second neutral beam injector, oriented more

tangentially compared to the old set for NSTX. This will enable the temperature

inside NSTX-U to exceed the 15 million degree Celsius core of the sun, it will double

the toroidal field (TF) capability reaching about 1.0T, and will also double the plasma

current reaching about 2.0 MA.

The high-performance operational goals of NSTX-U require the development and

the extension of advanced feedback control algorithms based on the successful ad-
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vances made on NSTX to the upgraded device, including the control of βn [54],

plasma boundary shape [49, 92], current [22] and rotation [60] profiles, and edge

transport barrier [91]. Major advancements in plasma control will be essential to

help scientists achieving some important NSTX-U experimental goals, and work has

already been undertaken to upgrade the hardware and software of the plasma control

system (PCS) for NSTX-U [42], and to develop the new control algorithms needed

to optimally handle the complete complex dynamics of the system: treat all global

aspects of plasma control.

Toroidal rotation has been shown to have an important effect on MHD instabilities

as shown in [52, 130, 146, 12, 47] where increasing rotation shear stabilizes tearing,

ballooning and resistive wall modes. Controlling the total stored energy is also an

important factor towards avoiding disruptions in tokamaks: a loss of the plasma

stored energy can cause severe damages inside the vessel of the device.

One of the many causes of disruption is the increasing of the plasma pressure. The

plasma pressure is typically normalized by the toroidal magnetic field strength BT . It

is denoted by βT and is equal to βT = 2µ0〈P 〉/B2
T where 〈P 〉 is the volume averaged

total pressure and µ0 is the permeability of free space. However, this toroidal βT is

not a good indicator of proximity to instability [176], thus we define another quantity

known as the normalized βN which is given by βN = 100aBTβT/IP where IP is the

plasma current and a is the minor radius. βN is the desired controllable quantity in

order to operate safely near stability boundaries by avoiding disruption and enabling

other parameters to vary while βN is kept fixed [54].

The importance of the stored energy control has been shown by the implementa-

tion of βN control system on several tokamaks: DIII-D [26] TFTR [100], JET [196]

and NSTX [53, 54]. Another recent work in this area has been done at JT-60, where

a functional parameterization method was used to calculate the stored energy in real

time [122]. Recent DIII-D studies [153] have extended these studies to simultane-
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ous control of βN and plasma rotation using the capability provided by having both

counter and co-injecting neutral beams.

In this paper, a new approach to simultaneously control the toroidal rotation

profile and βn similarly to [153] but through variation of the total beam power and

the three dimensional magnetic field coil current is proposed for NSTX-U. Although

rotation control has been studied for NSTX [60] and was based on data driven models,

this time, we are adding another constraint which is combining the stored energy βn

control to the rotation control problem and apply it to the upgraded device which

will have more actuators (more beam power actuators).

Since experimental data is not yet available for NSTX-U, robustness in stability

and performance will be studied to predict the limits of our controller when the

energy confinement time (τE) and the momentum diffusivity coefficient (χφ) vary.

The dynamical models for the stored energy and rotation profile will be identified

from simulated data generated using predictive TRANSP simulations (methods for

system identification can later be applied to experimental data).

TRANSP is a time dependent code developed at Princeton Plasma Physics Lab-

oratory for both prediction and analysis of tokamak experimental data [23, 58], it is

also one of the primary codes used in the fusion community. This flexible framework

(TRANSP) will enable high-fidelity testing of a variety of control algorithms, while

reducing the amount of expensive experimental time needed to implement new control

algorithms on NSTX-U or other devices.

This paper is organized as follows. Section 9.2 describes the ”model-driven” model

with details about the actuators used, model reduction process and a comparison to

TRANSP predictions. Section 9.3 describes briefly the optimal control method used

to track a desired rotation profile and a desired stored energy, using both NTV and

NBI as actuators, and its implementation through numerical simulation. Section 9.4

presents the results of the designed controller on a more complete rotation and energy

154



models that can be found in TRANSP. Conclusions and future work are discussed in

Section 9.5.

9.2 A simplified model of the toroidal momentum

and stored energy balance

9.2.1 Model definition

The modeling will consist of two coupled equations: one for the transport of toroidal

angular plasma momentum in a tokamak with the assumption of axisymmetry, the

other for its corresponding stored energy. An arbitrary flux surface average ρ ∈ [0, 1]

is used, where ρ = 0 and 1 denote the center and the boundary of the plasma,

respectively.

Based upon the work by Goldston [57] and Callen [25], then simplified by Goumiri

[60], the angular velocity of the plasma ω can be described dynamically by the flux

surface average 〈·〉 of a simplified version of the toroidal momentum equation

(nm)
〈
R2
〉 ∂ω
∂t

=

(
∂V

∂ρ

)−1
∂

∂ρ

[
∂V

∂ρ
(nm)χφ

〈
R2(∇ρ)2

〉 ∂ω
∂ρ

]
+

4∑
i=1

TNBIi +TNTV, (9.1)

with boundary conditions

∂ω

∂ρ

∣∣∣∣
ρ=0

= 0 and ω|ρ=1 = 0. (9.2)

This Dirichlet boundary condition at the plasma edge ( = 1) is chosen to be consistent

with NSTX experimental observations. The left-hand side of equation (9.1) represents

the temporal change in the plasma toroidal angular momentum and the right-hand

side terms denote respectively the viscous dissipation term, and the torque inputs

from neutral beam injection and neoclassical toroidal viscosity. R is the major radius,
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∂V/∂ρ is the differential flux surface volume and χφ is the perpendicular (to the

equilibrium magnetic field) momentum diffusivity. n is the particle density and m is

the particle mass. For simplicity, only the main plasma ion species are considered in

the dynamics. TNBIi and TNTV represent the neutral beam and neoclassical toroidal

viscosity torques respectively. Full details of these models are shown in section 9.2.2.

The total stored thermal energy W used is given by the following equation

∂W

∂t
+
W

τE
=

4∑
i=1

PNBIi(t), (9.3)

where PNBIi represents each beam power applied, and τE represents the energy con-

finement time, which is modeled by an ITER 98 empirical energy confinement scaling

[124] given by

τE = H98y,20.0562I0.93
P B0.15

T n0.41
e P−0.69

Loss(th)R
1.97
0 ε0.58κ0.78, (9.4)

where IP is the plasma current, BT is the toroidal magnetic field, ne is the line-

averaged electron density, R0 is the major radius, ε is the inverse aspect ratio, and κ

is the elongation. The loss power PLoss(th) is defined as total input heating power less

∂W
∂t

and fast ion losses through charge-exchange, bad orbits, and shine-through [84].

H98y,2 is interpolated from a user-supplied waveform.

Figure 9.1 shows a TRANSP simulation of plasma discharge (142301) for NSTX-U

device compared to a representative data for a plasma discharge of NSTX (133367).

The first quantities are time averaged (black lines) for NSTX-U, the other ones (blue

lines) are chosen to be fixed values at an adequately chosen time (t = 0.65s) for NSTX.

We can notice that there are not that much difference between these geometrical

quantities in the two devices except the density due to the additional effect of the

three new beams injection.
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Figure 9.1: Functions describing the radial profiles of the geometrical properties:
〈R2〉, 〈R2(∇ρ)2〉, ∂V/∂ρ and the mass density nm from a TRANSP simulation of
plasma discharge 142301 (NSTX-U). In blue the same corresponding functions for
TRANSP analysis of plasma discharge 133367 (NSTX) are shown for comparison.
The time-average values are shown by the black dashed line (– –), its curve-fits are
shown by the dots (o) respectively.
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Figure 9.2: The momentum diffusivity coefficient χφ is calculated through TRANSP
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function spanned over time interval (4–6) seconds. In blue the same corresponding
quantity for TRANSP analysis of plasma discharge 133367 (NSTX) is shown for
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Figure 9.2 shows the deduced χφ from the same NSTX-U run (plasma simula-

tion number 142301) compared to the model taken for NSTX device (133367). The

model based system will use the χφ of discharge (142301) as its momentum diffusivity

coefficient reference which can be noticed to be roughly half of NSTX model.

Some observations can be noticed about this coupled simplified model: equa-

tion (9.1) is parabolic, this ensures that the system is stable (desirable feature for

control). Equation (9.3) is a first order ODE that links directly the stored energy to

the beam power actuators. Its steady state depends on the energy confinement time.

The two important parameters in the modeling are the diffusion coefficient χφ

and the energy confinement time τE which are considered to be constant profile and

constant value in time in (9.1) and (9.3) respectively. There are no direct measure-

ments of χφ nor τE inside the tokamak, but TRANSP is able to reconstruct the value

for χφ parameter for a simulation where ω is given (simulated), and modeling of τE
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has already been encapsulated inside TRANSP through the Expert file code (more

details in [22]).

The strategy applied is similar to the one applied for NSTX rotation control [60];

given a range of desired profile of toroidal rotation and stored energy values that the

operator wants the system to reach and stabilize, take the simplified model (9.1 to

9.3), linearize it around an equilibrium whose basin of attraction contains the range

of desired profiles and values then apply model reduction before designing a controller

that will attempt to match any target shape within this range.

Because of the lack of experimental data, a full robustness study of stability and

performance of the designed controller when uncertainties occur on certain model’s

parameters will be presented as a consolidation of our controller design.

9.2.2 Actuator models

In NSTX-U as well as in the previous NSTX rotation work [60], neutral beam injection

is the main method considered here to produce positive torque to increase plasma

rotation, which is achieved by injecting high-speed neutral atoms into the center of

the plasma.

Figure 9.3 shows the neutral beam injection for the present upgrade of NSTX.

The Neutral Beam Injection (NBI) and Neoclassical Toroidal viscosity (NTV)

modeling relies heavily on our previous work done on NSTX [60]. In the following,

only the major differences will be emphasized and a recall of the main equations

involved will be presented.

Neutral Beam Injection (NBI)

The main difference between NSTX and NSTX-Upgrade is the increase of the number

of actuators from one (3 beam powers modeled as one for simplification due to its

profile similarities) to four actuators which consist of the addition of the three new
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Figure 9.3: Illustration of the neutral beam injection (NBI) devices for NSTX-U with
an inside view from the top of the tokamak (top) and outside view (bottom).
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beams separately to the simplified one beam power. These new beams are considered

individually because unlike the old setting of NSTX, the new set of beams is oriented

more tangentially. As done previously, we start by modeling the NBI torques as

a product of the spatial average of the torques, TNBIi(t) ≡ avgρTNBIi(t, ρ), and a

function, FNBIi(ρ), that represents the spatial profile. We then have for i = 1, ..., 4

TNBIi(t, ρ) = TNBIi(t)FNBIi
(ρ). (9.5)

Figure 9.4 represents the footprints FNBIi of the six beam power involved in the actu-

ation. We can notice that the first set of beam has a similar profile (the three grey

dash lines) which is high at the core of the plasma and low towards the edge. For

simplicity, it will be modeled by a Gaussian function (red solid line in Figure 9.4)

written as

FNBI1(ρ) = aNBI exp

(
− ρ2

2σ2
NBI

)
, (9.6)

where the parameters aNBI = 4.8212 and σNBI = 0.2219 are determined by a least-

squares fit to the time-averaged data for NSTX. We have kept the same modeling

for the first beam set as the one done in [60]. We notice also that the footprints of

the beam power of the second set are more spread out along the plasma, with some

high peaks towards the middle of the plasma, this enables us to vary the location of

actuation of the beam power which allows better control. This latter set of profiles

is kept as it is and treated individually.

The time dependency of the NBI torque TNBI(t) is governed by the power input,

PNBIi through a first-order lag

∂T NBIi

∂t
+
T NBIi

τNBIi

= κNBIiPNBIi(t), (9.7)
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Figure 9.4: Spatial profile for the neutral beam torque (FNBI) for plasma simulation
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Figure 9.5: Time dependent profile for the neutral beam torque (TNBI) for plasma
simulation 142301. (2nd NBI set, beam A) with τNBI = 0.008 s and κNBI = 1.3×10−5.

for i = 1, ..., 4, where τNBIi are the approximate slowing down times of the fast neutral

beam particles to impart energy to the bulk plasma and κNBIi are scalars used to

normalize the neutral beam powers PNBIi.
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Figure 9.5 shows the solution of equation (9.7) with only PNBI2 fixed to 2 MW,

compared with the neutral beam torque predicted by TRANSP analysis, which uses

a more elaborate Monte Carlo model (beam A of the second set). It can be noticed

that by choosing the parameters (τNBI and κNBI) adequately, TNBI model captures

very well the TRANSP simulation of this latter. The same procedure will be applied

to the rest of the beams time dependency torques (beam B and C of the 2nd set of

beams of NSTX-U).

Neoclassical Toroidal Viscosity (NTV)

Some imperfections due to magnetohydrodynamic (MHD) can lead to breaking the

toroidal symmetry of the magnetic field in tokamaks. As a result of it, neoclassical

toroidal plasma viscosity increases which results in an increase of the rate of toroidal

flow drag. The effect will appear at the edge by a slowing of the rotation.

For the current one-dimensional toroidal momentum model, modeling the momen-

tum loss due to the neoclassical toroidal viscosity will be based on the work done in

[194] from which we can design the NTV torque as the bilinear product of the coil

current squared (I2) with the toroidal momentum ω as follows

TNTV(t, ρ) = KG(ρ) 〈R2〉 I2(t)ω(t, ρ). (9.8)

As in our previous work on NSTX [60], K is a constant and G is a Gaussian function

centered towards the edge (µ = 0.7, σ = 0.1). The control actuator input will be the

coil current I2(t).

Figure 9.6 shows a model of current that flows into the coils for a plasma simu-

lation. Because of the absence of experimental data, and by inspiring from NSTX

CHERS data, similar model has been considered since the NTV torque model did not

change.
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Figure 9.6: Coil current I(t) for plasma simulation 142301 model.

Figure 9.7: Model of the three-dimensional coils (highlighted in red) used to create
the magnetic field that produces NTV in the NSTX-U device.
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Figure 9.8: 3D representation of the NTV torque model (9.8) where ω is taken from
TRANSP prediction simulation of 142301, and I2 is as shown in Figure 9.6

Figure 9.7 represents the actual physical schematic of the 3D magnetic coils that

are wrapped up around the NSTX-U tokamak and enable to create the three dimen-

sional field that by an induced rippling effect will create a drag: the NTV torque.

Figure 9.8 represents the TNTV torque where the given coil current I2 shown in

Figure 9.6 and ω modeled from TRANSP predictive simulation 142301 are combined.

We can notice that the peak of the NTV torque (towards the edge) overlaps with

the peaks of the second set of NBI torques. This would create regions where a drag

(NTV) and a drive(NBI) are applied simultaneously.

A direct consequence of this opposite coexistence is that while calculating the

feedforward values of inputs (coil current and beam power) necessary for the tracking

problem, several solutions do exists for the same desired profile, and some of these

solutions do not respect the physical constraints (threshold limits) imposed on the

inputs. A solution to overcome this issue will be presented in the controller design in

Section 9.3
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9.2.3 Testing and comparing the model

Discretization of the model

In order to numerically simulate the partial differential equation (9.1), we use a spec-

tral method, projecting onto suitably chosen basis functions, to obtain a system of

ordinary differential equations. This work has been derived in more details in [60],

only the main results are given as a recall. We start by writing

ω(ρ, t) =
N∑
n=1

an(t)ϕn(ρ), (9.9)

where the basis functions are given by

ϕn(ρ) = J0(knρ), n = 1, . . . , N, (9.10)

where J0 denotes the Bessel function of the first kind and kn denotes the n-th root of

J0.

Note that (9.1) is linear in ω, and can be written as

∂ω/∂t = L(ω, TNBI, TNTV), (9.11)

where L is a differential operator linear in each argument. After some manipulation,

equation (9.11) simplifies into

ȧm =
N∑
n=1

〈L(ϕn, TNBI, TNTV(ϕn)), ϕm〉
〈ϕm, ϕm〉

, m = 1, . . . , N,

which is a set of N coupled ordinary differential equations for the coefficients am.

Equation 9.3 is considered as a scalar ODE equation which will be added to the

projected rotation equation as an additional line in the matrice from.
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Comparison Model vs TRANSP simulation

The parameters in the model (9.1) are determined from TRANSP predictive model

of plasma discharge 142301, as mentionned in Section 9.2.

Figure 9.9 represents the comparison of the model vs the TRANSP analysis (pre-

diction of plasma scenario 142301) when all beams are activated combined with the

NTV torque deduced from the coil current defined in figure 9.6 .

Figure 9.10 represents the same information as figure 9.10 but with a diffrent coil

current model. We can notice that N = 8 Bessel modes captures the main features

of the dynamics for relative errors of about 25%. The overall behavior of the plasma

is captured qualitatively very well using the simplified model of equation (9.1) with

a fixed (averaged) background.

Because we don’t have any experimental data for validation, an exact plasma

model is impossible to obtain. We rely exclusively on model based dynamical pre-

dictions. Feedback control will be performed and designed to tolerate errors in the

model and its robustness to stability and performance will be studied by modeling

the uncertainties of the model by some intervals of variation of model parameters.

We will ensure that the designed controller will reach its objectives within this range

of variations.

9.3 Linear plasma rotation control

The purpose of this section is to demonstrate that standard model-based control

techniques may be used to guide a future experimental plasma rotation profile to

track a desired reference. Some approaches on how controllers can be designed to

achieve a desired profile with a reasonable response time are presented in the following

sections.
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Recall that the actuators available to the controller are the (NBI) beam power and

the coil current producing NTV. In this case, a state-space realization is derived and

linear quadratic regulators are used to design a feedback controller that is optimal in

minimizing a prescribed quadratic cost function.

9.3.1 State space realization

The goal is to rewrite our original simplified nonlinear system as a linearized state

space realization, in order to use the appropriate linear control tools on it.

Let ω̄ and W̄ be the steady state reached for the given P̄i and current Ī. The

linearization around this given steady state profile can be written as

ω(t, ρ) = ω̄(ρ) + ω
′
(t, ρ), (9.12)

W (t) = W̄ +W
′
(t), (9.13)

I(t) = Ī + I
′
(t), (9.14)

PNBIi(t) = P̄i + P
′
i(t), (9.15)

where ω
′
, W

′
, I

′
, and P

′
i are the respective perturbations to the equilibria ω̄, W̄ , Ī,

and P̄i. By plugging in these latter equations into equations (9.1), (9.3), (9.5) and

(9.8) then simplifying, we obtain

∂

∂t



ω
′

T 1

T 2

T 3

T 4

W
′


=



a11 a12 a13 a14 a15 0

0 a22 0 0 0 0

0 0 a33 0 0 0

0 0 0 a44 0 0

0 0 0 0 a55 0

0 0 0 0 0 a66





ω
′

T 1

T 2

T 3

T 4

W
′
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+



b11 0 0 0 0

0 b22 0 0 0

0 0 b33 0 0

0 0 0 b44 0

0 0 0 0 b55

0 1 1 1 1





I
′2

P
′
1

P
′
2

P
′
3

P
′
4


(9.16)

where

a11 =
1

nm 〈R2〉

(
∂V

∂ρ

)−1
∂

∂ρ

[
∂V

∂ρ
(nm)χφ

〈
R2(∇ρ)2

〉 ∂
∂ρ

]
− 1

nm
KG(ρ)I2

0

a1,i+1 =
FNBIi

(ρ)

nm 〈R2〉

ai+1,i+1 = − 1

τNBIi

a6,6 = − 1

τe

b11 = − 1

nm 〈R2〉
KG(ρ)〈R2〉ω0

bi+1,i+1 = κNBIi

Equation (9.16) is the state-space realization needed for the linear control design.

Let x =
(
a0, a1, ..., ar, T 1, T 2, T 3, T 4,W

′)
be the (r+ 1) Bessel coefficients of the pro-

jection of the partial state ω on the r chosen Bessel functions combined with the four

time dependency torques and the scalar thermal energy. let u = (I
′2, P

′
1, P

′
2, P

′
3, P

′
4) ∈

Rp be the perturbed input, and y ∈ Rq be the perturbed output (sensor measure-

ments from their equilibrium values). This system of equations can be represented in

the standard state-space form:

ẋ = Ax+Bu, (9.17)

y = Cx, (9.18)
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by using the spectral decomposition described in Section 9.2.3. A ∈ R (r+6)×(r+6),

B ∈ R (r+6)×p, and C ∈ R q×(r+6) are respectively called the dynamics, control and

sensor matrices. Here, there are five actuators (p = 5), four power input for the

neutral beams and another one for the coil current producing the NTV. The outputs

y correspond to the sensor measurements of the plasma toroidal rotation. Here, five

measurements are taken, spread from the core towards the edge of the plasma (q = 5).

Scaling plays a very important role in our application: it simplifies the model

analysis and the controller design (weight selection). In order to do that, expected

magnitudes of the disturbances and reference changes on the magnitude of each input(
I

′2, P
′
1, P

′
2, P

′
3, P

′
4

)
and output (ω1, ω2, ω3, ω4,W ) signal has to be known respectively.

After a matrix manipulation, we obtain the following scaled linear model

˙̂x = Âx̂+ B̂û, (9.19)

ŷ = Ĉx̂, (9.20)

where (̂.) is used for scaled quantity. From this point on, without loss of generality,

we will always refer to the scaled quantities and omit the (̂.) signs.

9.3.2 Non-zero target state

The purpose here is to force the shape of the plasma rotation profile and thermal

energy to reach a target state xd such that the sensor output y matches a refer-

ence signal yd. In the final implementation, all one should have to prescribe is yd

(e.g., plasma rotational frequency values at certain locations and the desired thermal

energy). The target state xd and the corresponding input ud are found by solving

equations (9.19) and (9.19) at steady state (ẋ = 0 = Axd + Bud and yd = Cxd). We
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then solve for xd and ud by writing in matrix form

 xd

ud

 =

 A B

C 0


−1 0

I

 yd =

 Fx

Fu

 yd. (9.21)

While this solution is mathematically valid and unique, it violates the physical lim-

itations of our actuators. An approximate solution which respects our actuator con-

straints is thus required. Intuitively, since both a drag (NTV torque) and a drive

(NBI torque) are present in the middle of the plasma, it is clear that there are multi-

ple approximate solutions. We use convex optimization to solve for xd and ud while

respecting our actuators constraints. More details can be found in [63, 62].

Figure 9.24 defines our initial profile, the equilibrium profile used for the lineariza-

tion and the targeted profile where the measurements are done.

The location of existing sensors on NSTX has not been carefully chosen with ro-

tation control in mind. A good positioning of sensors maximizes the ratio of the mag-

nitude of measured outputs to inputs. Conveniently, this ratio is comprised between

the smallest and the largest singular values of the system (equations 9.19 and 9.20)

which are easy to compute at any frequency. Furthermore, since we are mostly inter-

ested in the steady-state regime, it is enough to compute them at frequency 0 rad/s.

With just 4 sensors located at 4 distinct locations on a coarse discretization of the

radial variable, we simply use brute-force to find the optimal arrangement such as to

maximize the average value of this ratio, that is, the average of the singular values of

the system.

9.3.3 Control design

Once the target states (xd, ud) are established, the controller is designed based on

the reduced model dynamics, then applied to the full-dimensional linearized model,

and finally tested on the original nonlinear model to determine if the controller can
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Figure 9.11: Global schematic of the controller that combine a feedforward (F ), a
LQR (K), an observer, an integrator (KI) and an anti-windup (AW).

suppress disturbances and reach the desired rotation profile and thermal energy value

at the same time, in the vicinity of the equilibrium. The control design has been

extensively detailed in [60]. Only the main components are briefly explained in the

following subsection.

Figure 9.11 represents the schematic of the controller design. It has five main

components:

Feedforward design

From the set of measurements of the desired rotation profile and thermal energy

combined in the vector yd, the feedforward gain converts it to the desired state xd

and input ud needed in order to reach the target.

If the model of the dynamics has no errors or uncertainties, and is stable, a

feedforward controller is enough to reach the target. We write

ud = Fu yd. (9.22)

xd = Fx yd, (9.23)
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where Fu and Fx are the feedforward gains corresponding to the input and state

respectively. The total feedforward gain F depends on the matrices A, B, C and K

(explained in the following subsection).

Linear quadratic regulator (LQR) design

The feedback control law links the input u to the state x by

u = ud −K(x− xd) = −Kx+ Fyd, (9.24)

where K is the feedback control gain to be determined from control design and F =

Fu + KFx is the total feedforward gain. Therefore, the resulting closed-loop system

of equations (9.19) and (9.20) can be written as

ẋ = (A−BK)x+BFyd,

y = Cx.

(9.25)

A standard linear control technique (linear-quadratic regulators) is used in order

to determine those gains K while minimizing a quadratic cost function. For more

details about the method, see standard references such as [165, 7].

Observer design

The feedback law (9.24) requires the knowledge of the full state x. However, in

an actual experiment, we cannot measure the state directly; we measure only the

outputs y. However, we may reconstruct an estimate of the state from the available

sensor measurements using an observer. While running TRANSP simulations, we do

have access to the full state, however this won’t be true for the real experiments,

therefore we assume that our controller receive only five sensors measurements from

TRANSP. The observer will then reconstruct the state estimate x̂, with dynamics
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given by

˙̂x = Ax̂+Bu+ L(y − Cx̂) = (A− LC)x̂+Bu+ Ly, (9.26)

where the matrices A,B and C are the same as those in the model (9.25), and L is a

matrix of gains chosen such that the state estimate converges quickly relative to the

system’s dynamics. Using our linear model, we design an optimal observer (Kalman

filter) to find L.

For more details about the method, see standard references such as [165, 7].

The observer generates an estimate of the state from the physics model as rep-

resented by the state matrix, the inputs and outputs, and once combined to the

feedback controller it forms a linear quadratic Gaussian compensator.

Integrator design

The goal is to track both the desired rotation profile and thermal energy value (ref-

erence tracking). In order to do that, the steady state error between the output

(measured) and the target profile has to be minimized by using an integrator and

introducing a new state variable z that is the integral of the error:

ż = yd − y = yd − Cx. (9.27)

The new feedback law can be then written as

u =

(
−K KI

) x

z

+ Fyd = ud +K(xd − x) +KI

∫
(yd − y) (9.28)

where KI be the gain of the integrator. More derivations can be found in [60].
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Anti-windup design

A drawback of integral control is that if the actuator values are limited to some

range as in our case, then the integrator can accumulate error when the actuator

is “saturated,” resulting in poor transient performance, a phenomenon known as

“integrator windup.”

We use a standard anti-windup scheme (see, e.g., [7, 172]), in which one feeds

back the difference between the desired value of u and its actual (possibly saturated)

value to eliminate this effect.

9.3.4 Study of robustness in stability and performance

We want to control system (9.19–9.20) to be able to reach desired rotation profiles

and stored energy (this is the role of the feedforward part of the controller) with

good performance (this is the role of the feedback part of the controller) given the

constraints we have on the actuators while ensuring closed-loop stability. This would

be an easy task in the absence of any actuator limitations as system (9.19–9.20) does

not present any fundamental limitations for control, so in theory we could make the

controller as fast as we want, at the expense of requiring huge actuator inputs. In

practice, actuator saturation severely limits the possibilities for designing a controller

exhibiting good performance, and saturation being a non-linear process, linear design

tools cannot be used directly. So to design a controller with the best performance

given these limitations, we start by ignoring actuator saturation and building a fast

and robust controller, then we back off on the design until we get reasonable actuator

inputs (they may saturate but only for a short time). This procedure ensures that

we push performances near the top of what is achievable with the given actuator

limitations.

Observer-based controllers, like Kalman filters, use an internal linear reduced-

order model of the system which by its very nature cannot be 100% accurate. Fur-
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thermore, because of the lack of data for NSTX-U, our model relies heavily on data

from NSTX experiments so there is an increased risk that it might be inaccurate,

that it might be missing some of the dynamics, or that some parameters might be

off. These various inaccuracies, referred as model uncertainty, might make the closed-

loop system unstable or adversely affect its performance even though we designed

the controller to be stable and fast. Fortunately it is possible to precisely describe

this uncertainty, put proper bounds on it, and guarantee that our closed-loop system

stays stable and meets all performance specifications in spite of it.

In this section, we design a nominal controller and define performance specifica-

tions that should be maintained under uncertainty. Then we show how to represent

system uncertainty resulting from parameter uncertainty and we ensure that the

controller previously designed offers robust stability and performance. Finally we

consider the effect of actuator saturation while designing a final controller that works

well in practice.

Nominal Stability and Performance Designing a fast controller requires assign-

ing large weights to the cost matrices of the LQR and the integrator, with caveats.

Large weights on the output (instantaneous) errors generally lead to faster response

times but also produces large inputs with fast variations. Large weights on the inte-

grator can improve the settling time as the steady-state error is driven to zero faster

but they also tend to increase the overshoot and produce oscillations. Finding the

perfect balance requires a fair amount of trial and error as one has to be careful

not to introduce destabilizing oscillations.. Since the model is uncertain, it is better

to tune the Kalman filter to rely more on sensor measurements than on its internal

model. The performance specifications are best expressed in terms of properties of

the output sensitivity function So, in particular its bandwidth, often defined as the

smallest frequency to be transmitted, for which higher values means faster responses
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but also a higher sensitivity to noise, its peak value, which should be small for greater

stability (a peak of less than 2, approximately 6 dB, is considered good), and its at-

tenuation at steady-state (or at the lowest frequency considered). Since the duration

of a plasma discharge is a few seconds, we only consider frequencies above 1 rad/s,

and since we use a discrete-time controller (integrated into TRANSP), we only need

to consider frequencies below the Nyquist frequency ωN = log(π/∆t) rad/s where ∆t

is our time step. To compute the sensitivity function, we need to split our controller

into its feedback and feedforward parts, as shown in Figure 9.12, since the feedforward

is irrelevant to the sensitivity. Note that F and K in this section are different from

the F and K defined above. We have

So = (I +GK)−1. (9.29)

yd F G y

K

−

Figure 9.12: Controller split into feedforward block (F ) and feedback block (K).

Ignoring actuator saturation, we can get very high theoretical performance by

carefully assigning costs to the outputs and the integrator, and the weights of the

Kalman filter. Figure 9.13 shows the singular values of the output sensitivity function

for a fast controller. The high bandwidth (above 100 rad/s) guarantees a short rise

time while the limited peak value (less than 2) provides a good stability margin.

Figure 9.14 shows the outputs of the closed-loop system while tracking a target

when this controller is used to control the linearized reduced system without actuator

saturation. The target is reached in about 25 ms and there is no steady-state error.

However, the inputs requested to achieve this performance often exceed the saturation

limits even in steady-state (Figure 9.15) because the integrator is working to bring
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Figure 9.13: Singular values of output sensitivity function for a fast controller designed
ignoring actuator saturation. The dark blue line highlights the largest singular value.
The red line is the upper bound corresponding to the performance specifications. The
bandwidth is larger than 100 rad/s, the peak is smaller than 6 dB, and the attenuation
at low frequencies is more than 40 dB.

the steady-state error to zero by requesting different inputs than those prescribed by

the feedforward (which are within bounds).

We use this nominal controller as our reference for choosing performance specifi-

cations that must be met in the face of uncertainty. It is standard to encode these

specifications in a weight WP whose inverse forms an upper bound to the sensitivity

function of the system. For simplicity we choose WP diagonal with all diagonal el-

ements equal to the inverse of the upper bound of the largest singular value of the

sensitivity function. The specifications are as follows: the bandwidth must be larger

than 50 rad/s with a -20 dB/decade roll-off, and the peak of sensitivity must be less

than 2 (6 dB). The corresponding upper bound for the sensitivity function is shown

in red on Figure 9.13. The closed-loop system formed using our nominal controller is

stable and meets these specifications so we can now address robustness.
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Figure 9.14: Rotation measurements and stored energy over time while tracking a
target for the linear system without actuator saturation. The target is reached in
about 25 ms and there is no steady-state error.
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Figure 9.15: Coil current and NBI power over time while tracking a target for the
linear system without actuator saturation. The inputs requested often exceed the
saturation limits, even in steady-state.

181



Robust Stability and Performance Next we want to introduce perturbations in

our system. Without data from NSTX-U, we choose to introduce parameter uncer-

tainty. The two parameters that are most likely to be varying significantly from their

nominal value are χφ and τE. Let χ̄φ be the nominal value (which depends on the

radial variable ρ) of χφ, and let τ̄E be the nominal value of τE. We assume that the

perturbed model Gp is built from perturbed values of the parameters χφp and τEp,

where χφp is a random perturbation of bounded magnitude around χ̄φ generated us-

ing 1D Perlin noise, and τEp = µ · τ̄E for some µ. Let Π be the set containing all such

perturbed versions of our nominal model G. Robust stability (resp. performance) is

obtained when all plants in Π are stable (resp. performant).

In order not to arbitrarily restrict the allowable magnitude of the perturbations,

we start with a large range of allowed perturbations and progressively restrict the

range until we get robust stability and performance.

To greatly simplify the analysis while being strictly conservative about stability

and performance, we will use a norm-bounded description of uncertainty where Π is

allowed to contain H∞ norm-bounded perturbations of our nominal model G. To

determine the best way to integrate this uncertainty into our model, we superimpose

the Nyquist plots of many perturbed plants and we observe that right multiplicative

uncertainty adequately represents the pattern we obtain. Thus we write

Gp = G(I + ∆W ), (9.30)

where W is a weighting transfer function matrix, and ∆ satisfies ‖∆‖∞ < 1. A block

diagram of the perturbed plant is shown in Figure 9.16.

u

W ∆

G y

Figure 9.16: Perturbed model Gp = G(I + ∆W )
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Figure 9.17: Block diagrams of the loop of the perturbed closed-loop system stripped
of all exogenous inputs and outputs. a) Expanded system. d) M∆ structure for
robust stability analysis.

To find W , we first observe that ∆W = G−1Gp − I. Thus we can superimpose

the Bode plots of G−1Gp−I for many perturbed plants and choose a low-order upper

bound which will prescribe W . Note that G−1Gp− I and W are matrices so we must

find upper bounds for each element.

Now equipped with a mathematical description of our perturbed system, we can

address robust stability. Using block diagram algebra, we start by rearranging our

system of Figure 9.17a into the M∆ configuration of Figure 9.17b to obtain the

transfer function block matrix M :

M = −WKSoG. (9.31)

When the nominal closed-loop system is stable and when the largest singular

value of M is less than 1 for all frequencies, by theorem 8.4 of [165] (small-gain

theorem), the closed-loop system is robustly stable. We found that we could achieve

robust stability for perturbations obtained from up to 10% variations of the nominal

parameters (Figure 9.18).

To test for robust performance, we generate many perturbed plants and check

that each one of them satisfies the performance specifications by superimposing the

Bode plots of the largest singular value of all perturbed plants (Figure 9.19). We

verify that our controller has robust performance for the set of perturbed plants and

the specifications stated above.
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Figure 9.18: Robust stability. The singular values of M are always less than 1.
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Figure 9.19: Robust performance. The singular values of the transfer functions of 256
perturbed plants are shown superimposed in blue. All perturbed transfer functions
meet the performance specifications indicated by the upper bound in red.
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Actuator saturation The controller studied above is fast at the expense of requir-

ing large input values but also negative values which are impossible to produce in

practice. Introducing actuator saturation without otherwise modifying the controller

does not work as the large and oscillatory requested input values drive the actual

inputs to constantly saturate one way or another which is particularly ineffective at

controlling the system as can be seen in Figures 9.20 and 9.21.

So instead we progressively reduce the weights assigned to the cost function un-

til the input values get within reasonable bounds such that saturation only occurs

for short durations, which allows us to obtain the best controller we can design in

practice. Note that since the saturation process is non-linear, we can no longer rely

on linear control design tools like putting an upper bound on the sensitivity function

for specifying performance specifications so we have to rely on time responses of the

closed-loop system. The closed-loop system exhibits a fast response time for sensor

measurements (Figure 9.22) while only saturating the inputs for a short time after a

command is received (Figure 9.23). However, the time response for the stored energy

is slower than for the rotation measurements and the target is not perfectly reached.

This is a design choice made to improve the tracking of the rotation at the expense

of the stored energy. Indeed, equation (9.3) imposes a trade-off between the stored

energy and the beam powers by removing one degree of freedom in how the controller

can set the inputs making it impossible to simultaneously and efficiently track both

the rotation and the energy.

As shown in the next section, this controller works well in practice despite the

additional burden of the full actuator constraints (saturation, PWM, limited on/off

switches, refractory period) and the fact the the actual system to be controlled is

non-linear.
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Figure 9.20: Rotation measurements and stored energy over time while tracking a
target with actuator saturation and the nominal controller designed above. The time
response is erratic because the controller is requesting too large inputs which get
saturated.
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Figure 9.21: Coil current and NBI power over time while tracking a target with
actuator saturation and the nominal controller designed above. The beam powers are
constantly saturating and sometimes jumping between their upper and lower limit.
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Figure 9.22: Rotation measurements and stored energy over time while tracking a
target with actuator saturation and a controller designed to account for it. By design,
the response is slower for the stored energy and the target is not perfectly reached.
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Figure 9.23: Coil current and NBI power over time while tracking a target with
actuator saturation and a controller designed to account for it. Saturation only occurs
for short periods during the transient.
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9.4 Simulation results

The goal of the simulations is to test the controller on both higher fidelity model

(TRANSP) as well as the simplified reduced-order model. The desired profiles shown

in Figures 9.24 will the targets in both cases and the results will be presented to see

the effectiveness of the controller.
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Figure 9.24: Rotation profiles: definition of the initial profile, equilibrium profile w0

used for the linearization and the desired profiles to reach wd. The measurement
points r are the intersections of the different profiles with the measurement channels

9.4.1 Actuators constraints

Like in the NSTX device, the two different actuators (NTV coil current and NBI beam

power) have constraints that need to be taken into account when applied on the real

device (NSTX-U) through TRANSP. These constraints are made for the safety of the

operations, they reflect the practicability and the feasibility of some requests to the

device. The constraints will be added to the dynamics equations through restrictions

on the actuators of the controller.

For the coil current, the restriction is only a limitation of its value between 0 and

3000 amperes. The coil current response is so fast compared to the dynamics of the
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system that it can be assumed to be applied instantaneously (no lag between the

controller action and its application).

For the NBI actuators in NSTX-U, each of the 6 beams has to be treated individ-

ually. Fusing the three beams of the first set was just a simplification in our model

but because we apply the controller on TRANSP, each beam is coded separately and

each beam can either be on and produce 2 MW of power or off and produce 0 MW.

In addition, each beam can only be switched off a maximum of 20 times per plasma

discharge to prevent device fatigue issues, and there is a refractory period of 10 ms

after each switch on or off during which the beam cannot be switched again. Also,

due to diagnostic considerations, one NBI source is typically always on, and so the

overall sum of the injected power is considered to be between 2 and 12 MW.

These physical restrictions constrain the model and controller to be discrete and

to use Pulse Width Modulation (PWM) for each beam power actuator in order to

obtain the requested control values between 2 and 12 MW.

9.4.2 Computational approach (TRANSP implementation)

To predict the toroidal rotation and the stored energy for NSTX-U, TRANSP is

running in a predictive mode for a given set of beam powers and coil current. It also

takes as inputs models for the plasma boundary shape, plasma current, electron and

ion (Chang-Hinton model [29]) temperature and density profiles and the momentum

diffusivity coefficient.

The actuator commands required for closed-loop rotation and stored energy con-

trol simulations are entered into TRANSP, which serves as a plasma simulator for

testing the present controller. For more details on the TRANSP implementation, see

[22].
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Figure 9.25: Comparison of the rotation measurements when PWM is applied for
both the reduced-order model (red lines) and the TRANSP predictive model (blue
lines).

9.4.3 Simulation on TRANSP

The discretized controller is now applied to the reduced-order model and the TRANSP

predictive model, considering all the constraints listed in Section 9.4.1 for all the

actuators and instead of applying the exact beam powers numerical value as requested

by the controller, each of the 6 beams will be modulated individually while satisfying

all the constraints. The coil current is limited by the value of 3000 Amperes

At the beginning of each duty cycle, the controller sets the requested power.

During the duty cycle, the beams switch on and off at most once to minimize the

number of switches. Because of the 10 ms refractory period and the limited switches,

the exact requested power cannot always be met.

The longer the duty cycle, the better for the device because it means less com-

mands switches so less fatigue, but a longer duration introduces a longer controller lag

which impairs performance. A duration smaller than the refractory period is chosen

for the duty cycle (6 ms).
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Figure 9.26: Stored energy measurements when PWM is applied for the TRANSP
predictive model (blue line).

Figure 9.25 compares the rotation measurements when the PWM controller is

applied to both the reduced-order model and the TRANSP predictive model in order

to reach two targets, one at t = 4.2 s, and the other starting at t = 4.6 s. Before

t = 4.2 s, both models are not controlled (open loop).

Figure 9.26 represents the corresponding TRANSP predictive stored energy mea-

surement. At t = 4.2 s a target of 0.55 MJ is reached then at t = 4.6 s another target

of 0.65 MJ is reached.

The oscillations in both figures are due to the modulations that occur on each

of the beam power source. The different beam power sources are represented in

Figure 9.27(b) and the corresponding coil current in (Figure 9.27(a)).

When at t = 4.2 s we close the loop, the coil current saturates immediately to

enable the rotation profile to drop quickly from its high initial state (all beams on) to

the first desired rotation profile, then compensates for when the beam power is too

high in order to decrease both the toroidal rotation and the stored energy and thus

limit the overshoot. We thus reach the desired rotation and energy targets within the

momentum diffusion time (0.1 s).
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Figure 9.27: Time evolution of the coil current and the beam power

The resulting measurements are very oscillatory but their amplitudes are damped

and measurements from the reduced-order model are very close to those from

TRANSP which again shows that the simplified model gives us a good qualitative

approximation of the TRANSP rotation and energy prediction model.

9.5 Summary and conclusions

A “model-based” model of the plasma toroidal rotation and stored energy has been

developed. The model is linear, and validations show good agreement between model

predictions and actual TRANSP predictive simulations.
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The closed loop feedback system incorporates the delays and time constraints of

the physical actuators, mainly the beam power actuators, and the results obtained

using TRANSP simulations show promising time behavior, especially with the demon-

stration of the controller robustness in stability and performances.

Results predicted from the TRANSP simulations will be used to define the op-

erating feedback system within the PCS. Simultaneous PCS feedback control of the

plasma stored energy and rotation will enable exploration of new physics regimes in

experiments on the NSTX-U machine.

This work was supported by the U.S. Department of Energy under contract No.
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