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Abstract

The locomotion of fish and aquatic animals is achieved by the oscillation of fins and
flukes, which creates highly three-dimensional, unsteady flow fields that are not yet
well-understood. The principal non-dimensional parameter presently used to describe
these flows is the Strouhal number, St = fA/U , which depends on the frequency of
oscillation (f), the width of the wake (A), and the freestream velocity (U). In previous
work on two-dimensional foils, wake structure and thrust performance have been
shown to scale with this parameter, but it does not include considerations of three-
dimensionality, which become important in the study of low-aspect ratio propulsors.
In the current work, a new nondimensional scaling parameter is proposed which, for
a rigid rectangular pitching panel, collapses measurements of pressure, thrust, and
circulation when plotted again Strouhal number.

Dye flow visualization and Digital Particle Image Velocimetry (DPIV) were used
to investigate the wakes of rigid pitching panels with a trapezoidal panel geometry,
chosen to model idealized fish caudal fins. A Lagrangian Coherent Structure (LCS)
analysis was employed to investigate the formation and evolution of the panel wake.
The LCS analysis, based on calculations of the Direct Lyapunov Exponent (DLE) has
several advantages over Eulerian methods, including greater detail and the ability to
define structure boundaries without relying on a preselected threshold. A bifurcation
of the LCS structure in the wake of the trapezoidal pitching panels coincided with an
observed transition of the wake structure. Also, the LCS analysis provided evidence
of the “trapping” of vortices on trapezoidal panel surfaces with low sweep angles or
at low Strouhal numbers.
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Nomenclature

A peak-to-peak amplitude of trailing edge
a spherical vortex radius
AR panel aspect ratio
C constant
c chord length of panel
Cp pressure coefficient
CT thrust coefficient
CΓ circulation coefficient
D cylinder diameter
d image plane width
DLE Direct Lyapunov Exponent
f pitching frequency
FTLE Finite-Time Lyapunov Exponent
h height above the water channel
i integer
LCS Lagrangian Coherent Structure
k number of intermediary flow maps
n unit normal vector
na refractive index of air
nw refractive index of water
nDLE negative-time Direct Lyapunov Exponent
nLCS negative-time Lagrangian Coherent Structure
p pressure
pDLE positive-time Direct Lyapunov Exponent
pLCS positive-time Lagrangian Coherent Structure
Rec Reynolds number based on chord
Reτ Reynolds number based channel half-width and friction velocity
r radial coordinate
S rate of strain tensor
S span of panel
St Strouhal number
t time
Te period of oscillation
Tv stationary cylinder shedding frequency
u velocity vector
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U freestream velocity
u streamwise velocity
uτ friction velocity
v transverse velocity
w spanwise velocity
x location vector
x streamwise coordinate
y transverse coordinate
z spanwise coordinate
β refractive angle
δ channel half-width
Γ circulation
θ trapezoidal panel sweep angle
ν kinematic viscosity
ρ fluid density
φ phase
ϕ azimuthal coordinate
Φ flow map
ω vorticity vector
Ω rate of rotation tensor
ωz spanwise vorticity
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For instance, on the planet Earth, man had always assumed that he was more intelli-
gent than dolphins because he had achieved so much - the wheel, New York, wars and
so on - whilst all the dolphins had ever done was muck about in the water having a
good time. But conversely, the dolphins had always believed that they were far more
intelligent than man - for precisely the same reasons.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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Chapter 1

Introduction

1.1 Motivation and Goals

The locomotion of fish enables high speed, efficiency, and maneuverability. To accom-
plish this, fish undulate their bodies and an array of fins, shown in figure 1.1, which
create highly three-dimensional, unsteady flow fields that are not yet well-understood.
In the field of engineering and fluid mechanics, the first step towards exploiting the
evolutionary advances in fish locomotion has been to mimic the shape and motion of
underwater swimmers. However, different fish have evolved not only to swim quickly
or efficiently over large distances, but also to fit into different niches in the underwater
environment. Therefore, a thorough analysis is needed to determine characteristics
of fish form and function from which man-made applications could benefit.

The main goal of this work is to understand the fluid dynamics of the simple
underlying shapes and motions of fish swimming, and to distill the characteristic
phenomena that lead to efficient propulsion, large thrust, or increased maneuverabil-
ity. A comprehension of the simple physics is expected to lead to advances in both
the mechanical design of underwater vehicles and the design of control algorithms
and actuators.

Figure 1.2 shows the range of locomotory classes for fish that create thrust by
oscillating a combination of their bodies and caudal fins (BCF locomotion). At the
far left of this spectrum is anguilliform motion, in which fish (eels and lampreys)
pass a traveling wave down their bodies that has a wavelength less than the body
length. As we move to the right towards more oscillatory motion, less of the body is
undulated. For thunniform swimmers (sharks), less than half a wavelength is present
on the body, and for ostraciiform swimmers (boxfish) the caudal fin is actuated in
pure oscillation.

In the current work, we are interested in locomotion from the far right of this
spectrum: fish that propel themselves primarily by an oscillation of their caudal fin.
The caudal fin propulsor has a low aspect ratio, and therefore creates highly three-
dimensional flowfields.

While thunniform and osctraciiform swimmers are similar in that they oscillate
their caudal fin for propulsion, a wide variety of caudal fin planform geometries are
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Figure 1.1: Terminology of fins and other features of fish. From Sfakiotakis et al.
(1999).

Figure 1.2: Classes of body-caudal fin (BCF) locomotion. Shaded areas of the fish
bodies indicate the sections used in locomotion. From Lindsey (1978).

used, as shown in figure 1.3. The heterocercal caudal fins, which are externally
asymmetric, are considered to be the more primitive configuration for sharks and
ray-finned (teleost) fish. The homocercal, or symmetric, caudal fin is a derived mor-
phology prevalent in teleost fishes (Lauder, 2000).

Here, we will focus on the simple symmetric geometries in a low-amplitude purely
pitching motion as models of thunniform or ostraciiform swimmers with homocercal
tails. In particular, we will also investigate what (if any) the benefits are of the
trapezoidal planform geometry of teleost fishes. In order to separate the effects of
geometric planform and and the effects of flexibility, we will conduct experiments using
rigid panels. Future work may look to include flexibility as a parameter. Previous
work has been done to characterize the wakes of rigid rectangular low aspect ratio
propulsors, and here we will look to build on that foundation and develop additional
tools for the analysis of these wakes, as well as the wakes of trapezoidal propulsors.
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Figure 1.3: Different tail configurations for ray-finned fish, from heterocercal (with
uneven upper and lower lobes) to homocercal (symmetric). From Lauder (2000).

1.2 Approach and Objectives

In the course of this work, we explore the use of Lagrangian Coherent Structures
(LCS) as a tool for vortex identification and analysis. We use LCS to look at numerical
data sets of previously studied flowfields and demonstrate its capability to identify
coherent structures and provide additional detail about vortex dynamics.

To determine the parameters that govern three-dimensional unsteady flows, pres-
sure measurements are conducted on the surface of simple rectangular panels. The
wakes of trapezoidal panel are also investigated, and dye flow visualization and Dig-
ital Particle Image Velocimetry (DPIV) are used to examine the vortex production
and evolution both around the panels and in their wakes. The velocity data from the
DPIV was used to enable an LCS analysis of the vortex dynamics in the flow around
the trapezoidal panels as well.

1.3 Previous Work

In order to describe the qualitative structure of the wake of the pitching panels in
this and previous work, observations of the organization of vorticity shed by the
panel are reported. Vorticity is the curl of the velocity field (ω = ∇×u), and isolated
regions of concentrated vorticity are often referred to as individual vortices or coherent
structures.

A precise definition of a vortex remains elusive. Different authors have derived
mathematical criteria for the definition of a vortex from the velocity gradient tensor
(∇u), but while these criteria are able to locate vortex cores in a fluid flow, all require
the application of an arbitrary threshold to determine those regions that are inside
the vortex and those that are not. This is discussed in more detail in chapter 2. In
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Figure 1.4: Wake structures of a transversely oscillating circular cylinder. A is the
oscillation amplitude, D is the cylinder diameter, λ = TeU where Te is the period
of oscillation and U is the freestream velocity, and Tv is the shedding frequency of a
stationary cylinder . From Williamson & Roshko (1988).

the current work, we use a variety of methods in concert to identify and describe the
behavior of the coherent structures in the wake of rigid pitching panels.

The work of Williamson & Roshko (1988) was the first to characterize the organi-
zation of vortical structures downstream of bodies oscillating in a freestream flow by
investigating the wake of a circular cylinder oscillating transversely. Depending on
the frequency of oscillation, different patterns of vortex shedding were observed, and
their summary of the patterns is shown in figure 1.4. In each half-cycle of oscillation,
either a single vortex (“S”) or a pair of vortices (“P”) were shed. Hence, the naming
convention for a wake in which single vortices are shed each half-cycle is “2S,” as two
single vortices are being shed each period. In the drag-producing wake, this is also
referred to as a “von Kármán vortex street.” Similarly, when two pairs of vortices are
shed each period, the wake is said to have a “2P” structure. A combination of these
two basic structures (“P+S”) were also observed.

Early experimental work on fish swimming used two-dimensional airfoil sections
or flat plates as models of fish fins, and showed that the basic wake structures behind
oscillating cylinders could be used to describe the wakes behind the model fins. In
particular, Oshima & Natsume (1980) and Koochesfahani (1989) visualized the flow
over NACA 0012 airfoils, and observed a chain of vortical structures in the wake.
An example of the flow visualizations of Koochesfahani (1989) is shown in figure 1.5.
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At low nondimensional frequencies, the vortices were aligned similarly to the drag-
producing 2S bluff-body wake, with the induced velocity between each subsequent
pair of vortices in the upstream direction, causing a momentum deficit in the wake.

As the frequency was increased, the vortices in the wake realigned in the transverse
direction so that eventually the induced flow between the vortex pairs was in the
downstream direction, adding momentum to the streamwise flow and indicating that
thrust was being produced by the pitching and heaving airfoil. The thrust-producing
2S wake is also referred to as a “reverse von Kármán vortex street.” A schematic of
the differences between a drag-producing vortex wake (2P) and a thrust-producing
vortex wake (2S) is shown in figure 1.6.

In the work of Oshima & Natsume (1980) and Freymuth (1988) vorticity was
also observed to be shed from the leading edges of the pitching and heaving airfoils.
Depending on the pitching frequency and amplitude, this leading-edge vortex (LEV)
was sometimes seen to combine with the like-sign vortex being shed from the trailing
edge. The combination of like-sign vorticity produced a wake pattern that indicated
a stronger thrust production. Anderson et al. (1998) performed thrust measurements
and DPIV on pitching and heaving foils and found that large propulsive efficiencies
were possible (up to 87%), and were associated with the amalgamation of the LEV
amalgamated and the vorticity shed from the trailing edge.

Triantafyllou et al. (1993) used a linear stability analysis on an experimentally
measured wake of a two-dimensional oscillating foil to determine the frequency of
optimal propulsive efficiency. They nondimensionalized the frequency of optimal ef-
ficiency in terms of the Strouhal number,

St =
fA

U
. (1.1)

Here, f is the frequency of oscillation, A is the width of the wake, and U is the
freestream velocity. The peak-to-peak amplitude of the trailing edge is commonly
used as an approximation for A. The authors predicted that optimal efficiency for
flapping foils occurs in the range 0.25 ≤ St ≤ 0.35, and this was confirmed with a
two-dimensional flapping foil experiment. Furthermore, analysis of the locomotion
of a variety of fish species showed that many marine animals swim in this Strouhal
number range.

Experiments on pitching and flapping bodies of finite aspect ratio have revealed
that the wake structure is considerably more complex than the two-dimensional case,
and that it is a strong function of Strouhal number and aspect ratio AR (= S/C,
where S is the span and C is the chord). von Ellenrieder et al. (2003) and Parker et al.
(2007) used dye flow visualization and DPIV to study the flowfields of finite aspect
ratio pitching airfoils, and proposed the three-dimensional wake structure seen in
figure 1.7. Drucker & Lauder (1999) and Tytell (2006) also used DPIV to investigate
the flow around oscillating sunfish fins, and described the wakes in terms of staggered
vortex rings.

Anguilliform swimming has also been investigated by Tytell & Lauder (2004), who
performed flowfield measurements around an American eel, and Jiménez et al. (2003)
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Figure 1.5: Wake of a NACA 0012 airfoil pitching sinusoidally about the quarter-
chord point. Flow is from right to left. From Koochesfahani (1989)
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Figure 1.6: Schematic comparing (top) a drag producing 2P wake structure and
(bottom) a thrust-producing 2S wake structure (reverse von Kármán vortex street).
Freestream flow is from right to left.

Figure 1.7: Proposed sketch of flow structure around a finite aspect ratio airfoil
pitching with St = 0.35, Rec = 164, based on dye flow visualization. From von
Ellenrieder et al. (2003).
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and Hultmark et al. (2007) performed experiments around a buckling panel and a
robotic lamprey, respectively. 2P wake configurations were observed for anguilliform
swimmers at all Strouhal numbers investigated.

Several computational studies of oscillating bodies have also been done, notably
that of Guglielmini (2004) who simulated the experiments of von Ellenrieder et al.
(2003) and observed a simple chain of vortex rings at St = 0.175 and a more com-
plicated double chain of vortical structures at St = 0.35. Dong et al. (2005) and
Dong et al. (2006), who used an immersed boundary method, computed thrust and
efficiency of a pitching and heaving ellipsoidal wing and found them to depend on
Strouhal number, aspect ratio, and Reynolds number.

Zhu et al. (2002) used a nonlinear inviscid numerical method to investigate flow
structures around a fish-like body (giant danio) and showed that a constructive in-
teraction of the vorticity shed by the body and the vorticity shed by the caudal
fin resulted in high thrust, and a opposite destructive interaction resulted in high
efficiency. Zhu & Shoele (2008) numerically simulated the flow around a flexible
trapezoidal fin, as shown in figure 1.8, and showed that flexibility of the caudal fin
can increase propulsive efficiency. Borazjani & Sotiropoulos (2008) numerically sim-
ulated the hydrodynamics of an anguilliform swimmer and showed that they produce
thrust more smoothly than carangiform swimmers.

Of particular interest to the current work are the experimental results of Buchholz
& Smits (2006) and Buchholz & Smits (2008), who performed both wake studies
and time-averaged thrust measurements on a series of low-aspect ratio rectangular
pitching panel. As seen in figure 1.9, wake studies showed that at low Strouhal number
the 2S structure was present in the wake, but as the Strouhal number increased the
wake bifurcated into a 2P structure. Additionally, a spanwise compression of the wake
was observed at all Stouhal numbers. The model of the vortex skeleton of these wakes
is shown in figure 1.10. Thrust measurements showed that at the same St, thrust
increased with increasing aspect ratio, and also exhibited a weaker inverse relationship
with pitching amplitude. Buchholz proposed that the appropriate additional scaling
parameter for the effect of three-dimensionality is the ratio of amplitude to span A/S.

To study the vortical structure generation and evolution in the wakes of the rigid
pitching panels, we compute the Direct Lyapunov Exponent (DLE) from time-resolved
data and identify the Lagrangian coherent structures. This method was introduced
by Haller & Yuan (2000) and has proven to be useful in characterizing aperiodic
flows. A more complete review of the method and previous implementations is given
in chapter 2.

Also in the current work, we investigate the effects of three-dimensionality by
studying the unsteady pressure distributions on low-aspect ratio rectangular pitching
panels in order to describe the forces on the panel surface. Such measurements do
not seem to be presently available, although Hilaire & Carta (1983) performed a
survey of pressure experiments on an oscillating NACA 0012 airfoil to explore the
effects of sweep angle and mean angle of attack. The focus of their work was the
separation at the leading edge of the airfoil, and not the unsteady forces on the airfoil.
Usherwood et al. (2005) performed pressure measurements on flapping pigeon wings
by attaching transducers to the wings of flying pigeons. Other pressure measurements
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Figure 1.8: Isosurfaces of vorticity magnitude for a trapezoidal fin at St = 0.3. (a)
Rigid trapezoidal panel, (b) spanwise symmetric flexibility, and (c) spanwise asym-
metric flexibility. From Zhu & Shoele (2008).
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(a) (b) (c)

Figure 1.9: Top and side views of dye flow visualization of low-aspect-ratio rectangular
panel wakes at different Strouhal numbers, Rec = 640. (a) St = 0.23, (b) St = 0.43,
and (c) St = 0.64. From Buchholz & Smits (2005)

(a) (b)

Figure 1.10: Vortex skeletons of the wake behind rigid rectangular pitching panels.
(a) St = 0.23 and (b) St = 0.43. From Buchholz & Smits (2008)
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and calculations have been conducted on airfoils to investigate the effects of flutter
(Singh et al., 1989; Ardonceau, 1989), but the behavior of the unsteady pressure and
its relationship to thrust production does not seem to have received much attention.

1.4 Overiew and resulting publications

• In Chapter 2, we review the concept of the Direct Lyapunov Exponent (DLE)
and Lagrangian Coherent Structures(LCS). The merits of a Lagrangian vortex
investigation, as opposed to Eulerian, are considered as both are performed
on established numerical solutions of wall-bounded flows: an isolated hairpin
vortex (§ 2.3) and a fully turbulent channel flow (§ 2.4).

Resulting publication : Green, M. A., Rowley, C. W., & Haller, G.
Detection of Lagrangian coherent structures in three-dimensional turbulence.
J. Fluid. Mech. 572, 111–120.

• Chapter 3 contains details of the experimental setup and techniques used in
the course of the current work.

• In Chapter 4, we report the results from a series of pressure measurements
on rigid rectangular panels. Interpretation of this data led us to propose a new
scaling parameter in § 4.1.3 that, when plotted against Strouhal number, neatly
collapses both pressurements and previously published time-averaged thrust and
circulation measurements.

Resulting publication : Green, M. A. and Smits, A. J. Effects of three-
dimensionality on thrust production by a pitching panel. J. Fluid. Mech. 615,
211–220.

• In Chapter 5 we use dye flow visualization and Digital Particle Image Ve-
locimetry (DPIV) to investigate the fluid flow around rigid trapezoidal panels.
We describe an observed phenomenon in § 5.1 in which coherent structures
generated at the swept edges remain “trapped” on one side of the panel. This
occurs on trapezoidal panels at specific Strouhal numbers, dependent on the
panel geometry. In § 5.2, temporally- and spatially-resolved 2D DPIV data sets
were acquired for the panel pitching at two different Strouhal numbers, one
above and one below the critical Strouhal number for this panel. To analyze
the DPIV results, both Eulerian (§ 5.2.1) and Lagrangian (§ 5.2.2) methods are
used.

• A discussion of the results, concluding remarks, and plans for future work are
given in Chapter 6.
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Chapter 2

Lagrangian coherent structure
analysis

In this chapter, we use Direct Lyapunov Exponents (DLE) to identify Lagrangian
coherent structures in three-dimensional unsteady flows. Previous work on flow struc-
ture identification has been primarily Eulerian, i.e., it has been concerned with the
spatial structure of quantities derived from the instantaneous velocity field and its
gradient. The resulting Eulerian coherent structure criteria have been broadly used in
flow structure identification, although none has emerged as a definitive tool of choice.
A representative sample of these criteria is given in § 2.1.

By contrast, Lagrangian methods identify flow structures based on the properties
of fluid particle trajectories. An immediate advantage of these methods is their objec-
tivity: they remain invariant with respect to rotation of the reference frame, whereas
Eulerian criteria are only invariant for translational coordinate transforms (Galilean
invariant.) A further advantage of Lagrangian methods is their insensitivity to short-
term anomalies in the velocity field. Computing Lagrangian quantities, however, can
be computationally expensive. This chapter will explore the additional information
that an LCS analysis provides, making it worth the added computational cost.

A majority of the results and analysis presented in this chapter was published in
Green et al. (2007).

2.1 Eulerian methods

Eulerian coherent structure criteria are typically formulated in terms of the invariants
of the velocity gradient tensor ∇u. Two example criteria to be discussed here include
the Q-criterion and the swirling strength criterion.

The Q-criterion, developed by Hunt et al. (1988), locates regions where rotation
dominates strain in the flow. Letting S and Ω denote the symmetric and antisymmet-
ric parts of ∇u, one defines Q as the second invariant of ∇u, given for incompressible
flow by

Q =
1

2
(‖Ω‖2 − ‖S‖2), (2.1)
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where ‖ · ‖ is the Euclidean (or Frobenius) matrix norm. A coherent vortex is defined
as a region where Q > 0, although vortices identified by this criterion are usually
visualized as isosurfaces of the scalar quantity at some level > 0.

The swirling strength criterion, employed by Zhou et al. (1999), seeks flow struc-
tures in regions where ∇u has a complex pair of eigenvalues, which indicates locally
spiraling streamlines. The swirling strength λ2

ci is then defined as the squared magni-
tude of the imaginary part of the complex eigenvalues. Coherent vortices are defined
as areas where the swirling strength is greater than some positive threshold.

Other Eulerian criteria have also been used for structure identification, and some
of these have been compared to Lagrangian criteria in Haller (2005). These include the
∆-criterion (Chong et al., 1990), which defines the vortex as those regions where ∇u
has complex eigenvalues, and the λ2-criterion (Jeong & Hussein, 1995), which iden-
tifies pressure minima within two-dimensional subspaces. Additionally, Chakraborty
et al. (2005) proposed using the ratio of the real and imaginary parts of the complex
eigenvalues of ∇u to refine the definition of a vortex core.

These criteria identify similar structures in most flows, but they share several
disadvantages. In particular, as Haller (2005) points out, though they are invariant
with respect to Galilean transformations, they are not invariant to time-dependent
rotations, and thus are not objective (frame-independent). Furthermore, in practice
all the above Eulerian criteria require a user-defined threshold to indicate the regions
where a structure exists. For example, 3D plots of the Q criterion are often plotted as
isosurfaces defined at percentage of Qmax. The boundaries of the structures depend
on the selected threshold, lending subjectivity to the definition of the size or boundary
of structures.

2.2 Lagrangian criterion

The Lagrangian criterion used in this study is the Direct Lyapunov Exponents (DLE)
method (Haller, 2001), also referred to in the literature as Finite Time Lyapunov
Exponents (FTLE), which differs only in the scaling of the calculated value. At
each point in space, this scalar is a measure of the maximum rate of separation
of neighboring particle trajectories initialized near that point. More precisely, if
x(t,x0, t0) denotes the position of a particle at time t that began at position x0 at
time t0, one defines a coefficient of expansion σT as the square of the largest singular
value of the deformation gradient ∂x(t0 + T,x0, t0)/∂x0:

σT (x0, t0, T ) = λmax

([
∂x(t0 + T,x0, t0)

∂x0

]T [
∂x(t0 + T,x0, t0)

∂x0

])
. (2.2)

The DLE field is then defined as

DLET (x0, t0, T ) =
1

2T
log σT (x0, t0). (2.3)
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Since the maximum eigenvalue is used in the definition of σT , direction information
is not retained in DLET (x0, t0). A point x0 will have a high DLE value if there
is a great amount of expansion in one direction, even if there is compression in all
other directions. For incompressible flows, in which pure compression is not possible,
DLET ≥ 0.

Regions of maximum material stretching generate local maximizing curves (ridges)
for the DLE field. The converse is not true: local maxima of the DLE field may
indicate either locally maximal stretching or locally maximal shear. Trajectories that
stretch relative to each other when advected in negative time converge in forward time.
This is analogous to passive scalars in a fluid flow collecting in coherent structures
observed in flow visualization. Therefore, if the DLE is calculated by integrating
trajectories in backward time (T < 0), ridges in the DLE field may indicate attracting
material lines, or attracting Lagrangian coherent structures (attracting LCS) (Haller
& Yuan, 2000). Integrating trajectories in forward time (T > 0) may produce DLE
ridges that mark the location of repelling LCS. The ridges are confirmed as hyperbolic
LCS, instead of regions of maximal shear, by calculating the strain normal to the ridge.
This is discussed further in § 2.3.1. Quantitative criteria for defining ridges in 2D
DLE fields, and proof that they are indeed material lines that are advected with the
flow flow, are given by Shadden et al. (2005).

2.2.1 Example: Hill’s spherical vortex

These positive-time and negative-time LCS delineate the boundary between qualita-
tively different regions in the flow (Shadden et al., 2006). To illustrate this, we look
at a classic vortex flow: the Hill’s spherical vortex. This case is an analytic solution
of the Euler equations that yields an axisymmetric spherical vortex in a uniform flow.
The streamfunction in cylindrical coordinates (r, ϕ, z) is given in two parts, for inside
and outside the sphere of radius a, by Newton (2001),

Ψin = α
10

(a2 − z2 − r2) z2 + r2 < a2

Ψout = − α
15

a2r2
(
1− a3

(z2+r2)(3/2)

)
z2 + r2 < a2.

(2.4)

The velocity field is given by,

ur = −1

r

∂Ψ

∂z
uϕ = 0 uz =

1

r

∂Ψ

∂r
. (2.5)

For reference, the streamlines in a two-dimensional cut through the middle of the
spherical vortex are shown in figure 2.1(a). The contour plots of two Eulerian criteria,
the Q criterion and swirling strength, are shown in figure 2.1(b-c). While the Eulerian
criteria highlight the core of the vortex ring, the circular boundary between the inner
flow and that which convects with the outer flow is not present in the plot of the
swirling strength, and does not exist for a positive threshold of the Q criterion.

Figure 2.2 shows the negative-time DLE field for a cross section of Hill’s spherical
vortex, for two different integration times. The boundary of the spherical vortex is
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(a)

(b) (c)

Figure 2.1: Two-dimensional cut through Hill’s spherical vortex with radius z2 +r2 =
1. (a) Streamlines with vortex radius indicated by a green circle, (b) Q criterion, and
(c) swirling strength.
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(a) (b)

Figure 2.2: Negative-time DLE plots of Hill’s spherical vortex, with white showing
maximum values. (a) short integration time, and (b) long integration time.

clear. In Figure 2.2(a), the complete boundary is not seen, but as the integration time
is increased, the whole boundary emerges and the LCS becomes sharper and clearer.
The integration time can be increased or decreased depending on the amount of detail
desired from the calculation, but the location of the ridge indicating the boundary of
the vortex does not change.

The complete structure of the spherical vortex can also be obtained by plotting
both the positive- and negative-time DLE fields. This is done in figure 2.3. The
contour for both data sets are only plotted in those regions where DLE> 50% of its
maximum. The full circular boundary of this vortex is present, and both the positive-
and negative-time LCS would sharpen with increased integration time.

Past applications of the DLE as a structure identification tool in two dimensions
include LCS in two-dimensional quasi-geostrophic turbulence (Haller & Yuan, 2000),
LCS near the stratospheric polar vortex (Koh & Legras, 2002), LCS in freely decaying
two-dimensional turbulence (Lapeyre, 2002), and LCS in a magnetically forced two-
dimensional conducting fluid experiment (Voth et al., 2002). Lekien & Leonard (2004)
used the DLE method to find coherent structures in the currents of Monterey Bay in
California based on radar data, and Shadden et al. (2006) employed DLE to identify
the structure of a piston-generated vortex ring and also captured the vortex ring wake
structure of a jellyfish from two-dimensional DPIV data. More recently, Lipinski et al.
(2008) studied vortex shedding on a two-dimensional airfoil using LCS, and Shadden
et al. (2007) used LCS to develop a framework for the characterization of the transport
and mixing around a laminar vortex ring.

The DLE from discrete data has been shown to be robust and relatively insensitive
to imperfect velocity data as long as the errors remain small in a special time-weighted
norm (Haller, 2002). Three dimensional DLE has been computed by Haller (2005) on
two established analytic flow solutions and Shadden & Taylor (2008) performed an
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Figure 2.3: Positive- and negative-time DLE field for Hill’s spherical vortex. Contour
is only shown for DLE > 50% DLEmax

LCS analysis on three-dimensional computational solutions of the blood flow through
abdominal aortic aneurysms. Here, we apply DLE to physically relevant turbulent
flows in the interest of detailing structures until now investigated using only Eulerian
methods.

In this study, much of the focus is on finding attracting material structures, which
correspond to structures seen using flow visualization experiments. Accordingly, the
majority of the DLE calculations shown here use a negative integration time (nDLE.)
A more thorough understanding of the dynamics of these structures is obtained by
including consideration of the positive-time DLE (pDLE), and this is addressed in
§ 2.3.2. To differentiate DLE fields and LCS calculated using positive and negative
integration times, the convention of pLCS and nLCS will be used in the remainder
of this document.

2.3 Isolated hairpin vortex

We begin by studying a single hairpin vortex, a structure commonly found in turbulent
wall-bounded flows (Theodorsen, 1955). For this case, the Eulerian and Lagrangian
criteria may be compared in an unsteady flow in which the structure location and
qualitative shape are known a priori from previous numerical results and experiments,
such as those of Head & Bandyopadhyay (1981) and Smith & Walker (1991).

The method we use to extract a single hairpin vortex was introduced by Zhou
et al. (1999). First, a Direct Numerical Simulation (DNS) of a fully developed turbu-
lent channel flow was performed in a domain periodic in the streamwise and spanwise
directions, using the method of Kim et al. (1987). The calculation used a spectral
collocation method with Fourier modes in the streamwise and spanwise directions
and with Chebyshev modes in the wall-normal direction, and a second order Adams-
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(a) (b) (c)

Figure 2.4: Evolved isolated hairpin vortex generated by linear stochastic estimation,
plotted using 10% max λ2

ci. (a) Initial condition, (b) t+ = 63, and (c) t+ = 171

Bashforth time march. Our data was validated by comparing the mean profiles,
Reynolds stresses, log law, and rms velocity fluctuations, against the original calcu-
lation of Kim et al. (1987). The Reynolds number based on wall friction velocity and
channel half width δ was Reτ = 180, with a grid resolution of 128× 129× 128 points
and a domain of length 2πδ in both streamwise and spanwise directions.

Next, statistics from this simulation are used to extract a single hairpin vortex.
One signature of a hairpin vortex is a fluctuation velocity vector in the second quad-
rant (u′ < 0, v′ > 0, w′ = 0) at the location of the vortex. As in Zhou et al. (1999),
linear stochastic estimation is used to identify the statistically most probable flowfield
that has a specified velocity, here (u′, v′, w′) = (−8.16, 3.45, 0), at a prescribed point
in the flow (here, a wall-normal location of y+ = 49). The resulting most probable
flowfield is used as an initial condition for the DNS solver to study the evolution of
the structure.

Figure 2.4(a) shows the iso-surface of the swirl criterion (10% max value) for the
initial condition generated by the procedure described above. This structure was
evolved in time, and the structure based on 10% max swirl is shown in figures 2.4(b–
c) at two later time instants, showing the formation of a hairpin vortex, and the
subsequent development of a secondary hairpin. The threshold for these plots (i.e.,
the value of the level set of λci) was chosen to correspond to Zhou et al. (1999).
As this hairpin vortex develops into a packet, there are only small differences in
structure for different threshold values, but the size of the structure varies. Swirl is
the only Eulerian criteria plotted here because for appropriate thresholds, there was
little distinction among Eulerian criteria plots.

Figures 2.5 (a–d) show three two-dimensional plots of the negative-time DLE field
evaluated at t+ = 63, as well as the location of these planes in the three dimensional
volume. In this work, two-dimensional planes are often used to study the 3D La-
grangian structure because, while we expect the LCS to depict the boundaries of
the structure, these are not constant value surfaces. Therefore, we reconstruct the
Lagrangian structure skeleton using data from a small number of two-dimensional
planes. Isosurfaces of DLE are also useful to illustrated fully 3D structures bound-
aries, as seen in figure 2.7, but they can also obscure interesting detail within the
structures. The resolution of the DLE data is higher than that of the Eulerian, as the
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Figure 2.5: Two dimensional nDLE plots of the isolated hairpin evolved to t+ =
63. (a) 10% max λ2

ci superimposed with location of the three planes, (b) constant-
streamwise (y-z) plane, (c) constant wall-normal (x-z) plane (y+ = 98), and (d)
constant-spanwise (x-y) plane

grid of trajectories to be integrated is not restricted to be the same size as the DNS
grid. For the plots of the isolated hairpin, the DLE plot resolution is greater by a
factor of 6 in both dimensions of the calculated plane. Only a portion of the domain
is plotted, including the entire streamwise domain span, half the channel width, and
the middle third of the spanwise extent. All the calculations presented used on the
order of 500–1000 instantaneous data sets for each plot.

The plots in Figure 2.5 show the results from a nDLE calculation using an in-
tegration time of t+ = 45. A distinct nLCS is seen as the boundary of the hairpin
vortex. As with the Hill’s spherical vortex, using a larger integration time introduces
detailed informations about the dynamics inside the structure boundaries, but the
size and outer shape of the structure do not change. Here, the (backward) integra-
tion time may be at most t+ = 63, as of course we cannot evolve backward in time
earlier than the initial condition. At this moment in the hairpin evolution, not many
differences exist between the nDLE results using longest possible integration time and
those using an intermediate integration time.

In figure 2.5(c) and (d) we see the nDLE field in a plane normal to the vorticity
in the core of the hairpin vortex. The outer boundary of the structure is apparent, as
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(a) (b)

Figure 2.6: Sketches from Falco (1977) of the “typical eddy” in planes (a) parallel to
the streamwise flow and normal to the wall, and (b) normal to the streamwise flow
and normal to the wall.

is internal structure due to rotational shearing. This structure in figure 2.5(c) bears
a strong resemblance to the sketched structure of a “typical eddy” proposed by Falco
(1977) based on oil droplet flow visualization in a two-dimensional plane of the same
orientation through a turbulent boundary layer. This sketch is shown in figure 2.6(a).
These “typical eddies” were described as “highly coherent three-dimensional” eddies,
and were often located on the upstream side of large scale motions. Similary, the
hairpin vortex studied here evolves into a larger “packet,” or large scale collection of
multiple individual hairpin structures.

Additionally in figure 2.5(c), there is a clear nLCS that extends upstream (to
the left) of the hairpin head. This marks the boundary between the fluid that is
convecting with the outer flow, and that which has been entrained in the counter-
rotating legs of the hairpin vortex. Figure 2.5(b) shows the nDLE in the plane normal
to the streamwise flow as the hairpin head cuts through it. Again, the sketch from
Falco (1977) based on flow visualization matches closely.

Figure 2.7 illustrates a comparison between the nLCS and the Eulerian criteria.
In figure 2.7(a), a “skeleton” of points where the nDLE is greater than 60% of its
maximum is shown over level sets of swirling strength λci. The extent of the Eulerian
structure depends on the threshold used, but the boundary indicated by nDLE is
independent of integration time or any other parameters. Although some Eulerian
criteria approximate these structures better than others, none capture interior detail
like nDLE does. Comparable level sets of 60% max nDLE are plotted in figure 2.7(b).
The three-dimensional nDLE field was calculated on one fifth the channel domain in
the streamwise and spanwise directions with four times the resolution of the DNS. In
the wall-normal direction, nDLE was calculated on one half the domain with six times
the resolution. The three-dimensional structure marks the line towards which fluid
that will be entrained into the hairpin structure is attracted. The two-dimensional
“skeleton” is again plotted to illustrate the internal nLCS detail under the outer shell.
As previously noted, the iso-surface is not an accurate depiction of the nLCS, but at
60% maximum nDLE value, the level-set approximates the nLCS surface.

As the single hairpin evolves further, it induces the formation of a secondary
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(a) (b)

Figure 2.7: (a) Isosurfaces of 10% max λ2
ci (black) superimposed on three planes of

nDLE ≥ 60% max (white) (b) Translucent isosurfaces of 60% max nDLE superim-
posed on three planes of nDLE (black)≥ 60% max (white)

hairpin vortex upstream of the primary hairpin. Eventually, this structure evolves
into a family or “packet” of structures. The nDLE fields at time t+ = 171 (calculated
for an integration time of t+ = 45) are shown in Figure 2.8. Here, the 10% max swirl
iso-surface is plotted for reference, and Figures 2.8(b–d) show three two-dimensional
plots of negative-time nDLE, demonstrating the ability of this Lagrangian method to
capture the whole packet of hairpin vortices in great detail.

A study of the LCS dependence on integration time was performed on the constant-
spanwise (x-y) plane, and those results are shown in Figure 2.9. The increasing detail
in the plot gives insight into the behaviour of the particles within the vortex head.
For longer integration times, a spiral curve of maxima develops as a result of the
shearing rotational fluid flow in that region, and the nLCS indicate the layers of fluid
that are sheared apart by the rotation in the hairpin head.

2.3.1 Formation of secondary hairpin

In addition to structure identification and characterization, an analysis of hyperbol-
icity in the nDLE field in this flow yields detailed information about how the hairpin
vortex evolves into a packet, a phenomenon described by Zhou et al. (1999). In par-
ticular, it is observed that the birth of a secondary hairpin structure corresponds to
a loss of hyperbolicity (or a bifurcation) along the nLCS.

To investigate this phenomenon, we use Theorem 3 of Haller (2002) to calculate
the hyperbolicity (i.e., exponential repulsion or attraction) of the nLCS. Specifically,
we compute the rate of strain normal to the surface of the nLCS, given by

〈
n,Sn

〉
,

where n is the unit normal to the LCS. We confirm this ridge to be an attracting
material line if this strain rate is negative along its length.

To compute the normal rate of strain, we follow the procedure employed in Mathur
et al. (2006). Specifically, we first find the locus of points on the LCS surface, using
a two-dimensional gradient climb in regions near the local maxima of DLE. The
direction of the normal vector is then approximated by calculating the Hessian of the
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Figure 2.8: Two dimensional nDLE plots of the isolated hairpin evolved to t+ =
171. (a) 10% max λ2

ci superimposed with location of the three planes, (b) constant-
streamwise (y-z) plane, (c) constant wall-normal (x-z) plane (y+ = 95), and (d)
constant-spanwise (x-y) plane
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(b)

(c)

Figure 2.9: nDLE constant-spanwise (x-y) planes for three integration times of the
isolated hairpin evolved to t+ = 171. (a) t+ = 45, (b) t+ = 90, and (c) t+ = 135
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(a)

(b)

(c)

Figure 2.10: Magnitude of
〈
n,Sn

〉
along constant-spanwise (x-y) cross sections of

nLCS surfaces at times (a) t+ = 45, (b) t+ = 63, and (c) t+ = 99. Negative strain
rate (compression normal to the surface) is black; positive strain rate (expansion) is
white with black outline.

(three-dimensional) DLE field and using the eigenvector associated with its eigenvalue
of largest magnitude.

A plot of the nLCS shaded by the sign of the rate of strain 〈n,Sn〉 is shown
in Figure 2.10 at three time instants in the development of the secondary hairpin
vortex. Figure 2.10(a) shows the structure of the hairpin in the mid-span plane at
time t+ = 45, calculated from an nDLE field which used an integration time of
t+ = 45. Here, the strain rates normal to the nLCS are negative both upstream and
downstream of the vortex head, indicating that this structure is indeed a hyperbolic
repelling line.

In Figure 2.10(b), calculated at t+ = 63 from an nDLE field obtained using an
integration time of t+ = 63, a hump in the nLCS upstream of the hairpin head legs
is seen and a magnified picture is shown in the inset. On the downstream slope of
this hump exist small white regions (outlined in black) of non-negative strain rate,
highlighted by the dashed oval. The positive rate of strain in these regions corresponds
to a loss of hyperbolicity, and this bifurcation of the nLCS indicates the beginning of
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the formation of the secondary hairpin structure.
Lastly, Figure 2.10(c) is calculated at time t+ = 99 from an nDLE field using

integration time t+ = 99. The secondary hairpin is clearly evolving and its structure
begins to resemble that of the primary hairpin, as the nLCS begins to fold and roll
up on itself. This is particularly clear in the magnified inset. Additionally, the sign
of strain rate along the nLCS alternates in a similar pattern in both hairpin heads,
indicative of the shearing rotational flow within.

Zhou et al. (1999) discuss at length the physical mechanism that results in the
development of this second and subsequent hairpin structures. The Lagrangian crite-
rion, when used in this way, offers a quantitative method for recognizing their forma-
tion and interpreting their generation as a loss of hyperbolicity along the Lagrangian
coherent structures. For the same initial condition as used in this study, Zhou et al.
(1999) observe characteristic indications of hairpin development at t+ = 72, whereas
using nLCS, the bifurcation occurs and can be detected at least as early as t+ = 63.

2.3.2 Positive-time LCS

While much information about the development of these structures is obtained through
the use of the negative-time DLE plots, more information can still be revealed when
the positive-time LCS are included in the analysis. Figure 2.11 is a three-dimensional
plot of an isosurface in both the positive- and negative-time DLE field which satisfy
the corresponding hyperbolicity conditions (〈n,Sn〉 > 0 for pLCS and 〈n,Sn〉 < 0 for
nLCS.) As shown more clearly in figures 2.12(a–b), the two LCS meet and intersect
along the outer boundary of this structure, but they do not overlap, as the hyperbol-
icity criterion can only be satisfied for both the pLCS and nLCS that overlap, but
not both. At intersections of the two LCS, highlighted in figure 2.12, the unit normal
vector is not the same, and therefore the hyperbolic material lines can coexist.

By plotting both positive- and negative-time LCS together, a more complete
boundary of the structure is obtained. One can clearly see not only the lines along
which particles collect, but also the separatrices around which particles entrained
into the hairpin separate from those which continue to convect with the outer flow.
Additionally, the intersections of the pLCS and the nLCS just upstream and just
downstream of the hairpin head are significant. If this is plotted in a frame that
moves with the upstream intersection point, the flowfield around it resembles that of
a saddle point. In figure 2.12(b), the upstream saddle points of the vortex cores are
inferred, but unresolved in this calculation.

The vector field of the flow near the hairpin head in this frame is shown in fig-
ure 2.13(a), with a black circle marking the approximate location of the saddle point.
This resembles what Falco (1977) theorized as the dynamical flowfield structure on
the upstream side of large scale motions in a boundary layer. The sketch of his
model is shown in figure 2.13(b). In the current work, we refer to these points as
time-dependent saddle points.
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Figure 2.11: Three-dimensional hyperbolic pLCS (gray) and nLCS (black) of the
isolated hairpin head, plotted by using isosurfaces of 50% max DLE that satisfy the
corresponding hyperbolicity criteria.
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(a)

(b)

Figure 2.12: Hyperbolic pLCS (gray) and nLCS (black) of the isolated hairpin head
in a two dimensional slice in (a) a constant-spanwise (x-y) plane and (b) a constant
wall-normal (x-z) plane, plotted for regions of DLE > 50% maximum value that
satisfy the corresponding hyperbolicity criteria. Time-dependent saddle points are
highlighted using a pink box. Blue arrows indicate fluid behavior in figure (a).
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(a) (b)

Figure 2.13: (a) Vector field around the hairpin head in a frame that is convecting
with the speed of the pLCS and nLCS intersection point. (b) Flowfield sketch of a
large scale motion by Falco (1977), with the observer moving with the velocity of the
saddle point.

2.4 Fully turbulent channel

Finally, the LCS analysis was applied to the fully turbulent channel data. In Fig-
ure 2.14(a), the Q criterion structures are shown as level sets of 1% maximum value.
Also shown in this plot are the locations of three two-dimensional planes on which
nDLE was calculated. The results are shown in Figure 2.14(b–d). As expected, the
nLCS curves are clean and sharp. Several of these curves have the same shape as
those of the isolated hairpin in the respective plane, and support the notion that
the fully turbulent channel is populated with similar structures. These locations are
highlighted by a white box, and can be compared with Figures 2.5–2.8.

If the hyperbolic positive-time LCS are plotted along with the hyperbolic negative-
time LCS, patterns similar to that of the isolated hairpin head are noticeable. In fig-
ure 2.15, one such structure is highlighted with a white box. This structure is bounded
by alternating pLCS and nLCS, with intersections both upstream and downstream of
a vortex core piercing through the plane. It is postulated that this is part of the head
of a hairpin vortex in this fully turbulent flow. The locations of these intersections
are easy to locate in a quantitative sense, and may be useful for future structure
identification and tracking in complicated flows.

2.4.1 Comparison with Eulerian criteria

In Figure 2.16(a–b), the nDLE and Q criterion are plotted at the same constant-
streamwise (y-z) location. This comparison highlights the fact that the nLCS clearly
depicts structures in locations where the Q criterion would not if plotted with a
large threshold. Two such structures are marked with white boxes. Also, the finer
resolution of the nDLE plot yields more detail than possible with the Eulerian criteria,
which require derivatives of the velocity field and are thus restricted to the resolution
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(a) (b)

(c) (d)

Figure 2.14: Two dimensional nDLE plots of the fully turbulent channel. (a) 1% max
Q superimposed with location of the three planes, (b) constant wall-normal (x-z)
plane, (c) constant-spanwise (x-y) plane (y+ = 33), and (d) constant-streamwise (y-
z) plane. White boxes highlight structures that resembles corresponding cuts through
the isolated hairpin.

Figure 2.15: Hyperbolic pLCS (gray) and nLCS (black) of the isolated hairpin head
in a two dimensional slice in a constant-spanwise (x-y) plane through the fully tur-
bulent channel, plotted for regions of DLE > 50% maximum value that satisfy the
corresponding hyperbolicity criteria. A possible hairpin vortex is highlighted by a
white box.
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(a)

(b)

Figure 2.16: Constant-streamwise (y-z) planes of (a) nDLE and (b) Q criterion

of the original data.

2.5 Summary

Lagrangian coherent structures (LCS) are identified for various flows in a plane chan-
nel, including an isolated hairpin vortex and a fully-developed turbulent flow, by
calculating the Direct Lyapunov Exponent (DLE). This Lagrangian method, which
yields candidate material lines, captures features of the flow that are familiar from
flow visualization experiments, and are also described by various Eulerian criteria
currently in use, but the DLE field yields greater detail than existing Eulerian cri-
teria. This is partially because, unlike Eulerian criteria, the DLE may be evaluated
on a finer grid than the original velocity data. Additionally, using the Lagrangian
criteria, one may quantify the boundary of a vortex as a local maximum of the DLE
field. Whereas the size and shape of the Eulerian structures depend on a user-defined
threshold, the locations of the LCS are independent of such parameters. Increased
integration time yields greater detail, but outer boundaries of the structures do not
vary. Lastly, the DLE is truly independent of coordinate frame and would yield the
same results for a non-Galilean invariant coordinate transformation.

The development of an isolated hairpin vortex is studied, and it is shown that the
birth of a secondary hairpin corresponds to a loss of hyperbolicity along the nLCS.
Thus, the Lagrangian criteria can provide a quantitative way of determining when
these structures are generated. Previously, such events have been identified using
qualitative, visual methods (Zhou et al., 1999), but the Lagrangian method allows
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one to detect these events at their earliest stages.
Consideration of the positive-time LCS also proves to be informative, as hyperbolic

pLCS, when plotted along with hyperbolic nLCS, yields a more complete structure
boundary. Additionally, the characteristic pattern around the core of the hairpin
includes two time-dependent saddle points observed as an intersection of the two
LCS, and this fact could be used in the future as part of a quantitative method to
track vortex cores in more complicated fluid flows.

It is important to point out that while LCS has distinct advantages over commonly
used Eulerian criteria, there are a number of factors that suggest that LCS is best
used in concert with other methods of analysis. Eulerian criteria, which are calculated
using spatial derivatives of the velocity field, are quickly computed and can be used
to guide the implementation of the LCS analysis. Furthermore, while the strength of
the vortical structures may be inferred from the dynamics of the LCS, the magnitude
of Eulerian criteria provide an immediate meaure of the relative strength of vortices.

The benefits of the Lagrangian method also come at an expense: Lagrangian
calculations are more computationally intensive than any of the Eulerian criteria, as
they involve integration of particle trajectories from each point at which the DLE
value is desired. Each DLE data set presented in this paper took on the order of
1–2 computational hours, whereas calculation of the Eulerian criteria can take less
than a minute. However, as postprocessing represents a relatively small part of the
computational time devoted to most flow calculations, this drawback is not severe.
Also, large amounts of time-resolved data are necessary for the trajectory integration.
For the work presented in this paper, 500–1000 data sets were used for each plot and
the database on which the calculations are based used approximately 150GB of hard
disk storage. Fluid flows of higher Reynolds number would naturally necessitate a
greater cost for the same calculations.

As will be shown in § 5.2.2, these methods may be especially useful for time-
resolved experimental data such as Digital Particle Image Velocimetry (DPIV), and
may also prove helpful when data sets are too noisy to compute derivatives necessary
for the Eulerian criteria. DLE may also be useful as a tool to validate the more easily-
implemented Eulerian schemes, and to calibrate appropriate thresholds analysis of
different fluid flow systems.
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Chapter 3

Experimental methods

Water channel experiments were conducted to obtain measurements of the fluid flow
around pitching rigid panels in a uniform flow. Pressure measurements were con-
ducted on the surface of rectangular panels of finite aspect ratio in order to examine
force generation on the panel surface. Subsequent experiments used rigid panels of
trapezoidal planform in order to investigate the effects of the the swept edge com-
monly seen in aquatic animal caudal fins. Flow visualization was first used to de-
termine the large scale flow characteristics, and Digital Particle Image Velocimetry
(DPIV) was used to quantify the observed effects. As this flow is three-dimensional,
spatially resolved data throughout the volume surrounding the panel was desired and
reconstructed from a collection of two-dimensional planes.

3.1 Experimental facility

Experiments were conducted in a water channel at Princeton University. The test
section of this water channel has a width of 0.46 m and a maximum depth of 0.29 m.
An acrylic plate, 12 mm thick and 1.22 m long, was used to cover the free surface and
prevent the formation of surface waves which would both influence the flow physics
in the test section and distort flow visualization from above. The water channel was
capable of speeds up to 0.4 m/s. In this work, experiments were conducted with flow
velocities in the range of 0.012 m/s< U <0.3 m/s

Upstream of the test section, a honeycomb flow straightener, two screens, and a
5:1 contraction were used to condition the flow. During the course of the experiments,
the honeycomb and screens were routinely cleared of bubbles and particles using a
water jet. Periodically, the screens were removed entirely to clean particles and other
sediment that had settled in the upstream reservoir.

As part of his thesis work, Buchholz (2006) characterized the flow quality in the
channel. The velocity profile was imaged using a hydrogen bubble wire technique
described below, and at the lowest flow velocities (≈ 5 mm/s), some large incon-
sistencies were observed. It was proposed that these were associated with thermal
plumes caused by heat transfer at the walls of the channel. Using DPIV, turbulence
intensities between 12% and 19.5% were calculated from the measured flow field with
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(a) (b) (c)

Figure 3.1: Hydrogen bubble wire experiments, flow is from left to right. (a) U =
0.012 m/s, (b) U = 0.018 m/s, and (c) U = 0.012 m/s, showing disruption from
thermal plumes.

the panel and fairing removed. For velocities in the moderate Reynolds number range
(0.057 m/s< U <0.285 m/s), turbulence intensities varied between 4.5% and 7.5%.

In the course of the current work, the bubble wire visualizations were repeated to
check the quality of the freestream flow. Short duration voltage pulses were applied
every 1.25 s to a 13 µm diameter tungsten wire installed approximately 0.13 m up-
stream of the airfoil fairing used to support the pitching panel (see § 3.2). At each
voltage pulse, a line of bubbles were released from the wire, and their trajectories
depict the flow timelines. Images of the bubbles were acquired using a consumer
grade 5.0 megapixel digital camera. Figure 3.1 shows three examples of the images
acquired. In figure 3.1(a–b) it is clear that the velocity profiles are clean, straight
lines outside of the boundary layer, indicating a low level of turbulence intensity.

The thermal plumes reported by Buchholz (2006) were also observed during the
course of experiments, and one example is shown in figure 3.1(c). However, these
variations caused by heat transfer from the flashlight used to illuminate the bubbles
located at the bottom wall of the channel.

As a quantitative check of the flow quality, the turbulence intensity was calculated
using calibration DPIV (§ 3.3.2) image pairs acquired when the panel and fairing
were installed in the water channel but stationary and aligned with the flow. The
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turbulence intensity is defined as

√
u′

U
=

(u− U
)2

U
2

 1
2

, (3.1)

where u is the velocity at each point and U is the mean freestream velocity (bars
indicate time averages). Calibration data was available for two freestream velocities,
and at 2-3 spanwise planes at each velocity. For the turbulence intensity calculation,
velocity information was taken from approximately 1200 grid points in each of the
2-3 spanwise planes. At the lower speed at which DPIV was conducted (U = 0.036
m/s), the average turbulence intensity was approximately 1%, with a maximum as
high as 7%. At the higher speed (U = 0.06 m/s), the average turbulence intensity
was approximately 0.8%, with a maximum of 5%.

In the current work, all quantitative measurements are taken for freestream veloci-
ties greater than 0.03 m/s (Pressure measurements: Rec = 3500, DPIV: Rec = 2100),
at the lower end of the moderate Reynolds number range. Some flow visualization
experiments were conducted at flow speeds as low as 0.015 m/s (Rec = 1350).

3.2 Panel geometry and kinematics

The rigid panels were made of clear acrylic with a thickness of 2 mm. They were
attached at the leading edge to a 4.76 mm diameter pitching shaft. The angular
position of the panel was given by a 2048 count-per-revolution quadrature encoder
(US Digital model E3-2048-187-IH) mounted to the pitching shaft.

To support the pitching apparatus, the shaft was attached to the trailing edge of
a symmetric fairing based on a NACA 0012-64 airfoil, as described by Buchholz &
Smits (2008), and shown in figure 3.2. The fairing had a chord length of 50.8 mm, and
the trailing edge was truncated to allow the attachment of the pitching shaft. Tapered
NACA 0012-64 airfoil trailing edge segments were mounted behind the pitching shaft
when the finite aspect ratio panels were in use. The symmetric fairing contained
hollow cavities, and a series of 0.79 mm diameter holes were uniformly distributed
along 130 mm of the span of the fairing, which enabled dye flow injection upstream
of the panel. The panel and the fairing were mounted vertically in the water channel
test section, as shown in figure 3.3.

The actuation of the panel used the same mechanism as in Buchholz (2006), which
achieved the pitching motion using a four-bar linkage as shown in figure 3.4. In order
to adjust the trailing edge pitching amplitude, the motor and crank were mounted on
a linear traverse. The amplitude was adjusted by changing the distance between the
crank shaft and the pitching shaft along the linear traverse.
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Figure 3.2: Fairing and panel assembly. From Buchholz (2006)

3.3 Time-resolved pressure measurements: rigid

rectangular panel

Previous measurements of the flow field and time-averaged thrust of a rectangular
pitching panel indicated that quantitative and qualitative flow characteristics depend
on the Strouhal number and on the aspect ratio of the panel and its trailing edge
peak-to-peak pitching amplitude (Buchholz & Smits, 2008). In order to investigate
the force distribution on the panel surface, time-resolved pressure measurements on
similar pitching panels were desired.

In the previous work, Buchholz & Smits (2008) used four rigid rectangular panels
of aspect ratios (AR) ranging from 0.54 to 2.38. In the current work, we used panels of
two aspect ratios at the extremes of this range (see table 3.1), with the higher aspect
ratio panel spanning the water depth in a quasi-two-dimensional configuration. For
this panel, any effect of the gaps between the edge of the panel and the top surface
plate and bottom wall were evaluated by varying the gap size. Decreasing the gap
size from 10 mm to 5 mm at the top and bottom edges showed no change in the
pressure at mid-span.

A series of time-resolved pressure measurements were conducted on the rigid rect-
angular panels. The pressure was measured using a Validyne DP-15 differential pres-

38



Figure 3.3: Panel and fairing position in water channel test section. From Buchholz
(2006)

Panel chord (c) span (S) (AR=S/C)
1 120 mm 6 mm 0.5
2 120 mm 270 mm 2.25

Table 3.1: Rectangular panel dimensions

sure transducer and CD379 carrier demodulator. The pressure transducer had a
range of 3.5-5.5 inches of water, with an accuracy of ±0.25% of full range. Five 3.2
mm diameter pressure ports were placed along the mid-span of both panels. For the
low-aspect ratio panel (Panel 1), an additional three pressure ports were placed off
the mid-span, a quarter-span length away from the edge of the panel. The chordwise
locations of these three ports coincided with the three centerline ports closest to the
trailing edge, as shown in figure 3.5. The transducer was connected to the pressure
ports by tubing approximately 1.15 m long.

Experiments were conducted for a range of Strouhal numbers at moderate Reynolds
numbers, as given in table 3.2. For this range of St and Rec, the velocity was varied
from 0.03 m/s to 0.3 m/s and the pitching frequency was varied from 0.5 Hz to 2.67
Hz. Measurements were obtained for the low-aspect ratio panel (Panel 1) pitching at
two trailing edge peak-to-peak amplitudes: A = 20 mm and 40 mm. Measurements

Panel A (mm) St Rec = Uc/ν

1
20 0.133 – 1.33 3500 – 35,000
40 0.222 – 2.67 3500 – 43,200

2 20 0.167 – 1.33 3500 – 28,800

Table 3.2: Summary of pressure experiment parameters
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Figure 3.4: Four bar linkage mechanism used to actuate the pitching panel. From
Buchholz (2006)

for the high-aspect ratio panel (Panel 2) were acquired for A = 20 mm.
The time-resolved pressure was measured using one port location at a time until

the entire distribution was obtained. The phase of the panel motion was monitored
using the optical encoder mounted on the pitching shaft, and the pressure distribu-
tions were phase averaged to smooth the data.

The error bars presented in plots of pressure shown in chapter 4 represent the
composite errors (added in quadrature) arising from the limited frequency response
of the system and the effects of phase-averaging. To determine the frequency response
of the system, a dynamic calibration of the transducer was performed using a linear
solenoid to add a step input to sealed, water-filled tubing of the same length as
used in the experiment. The transducer and pressure tubing were modeled as a
combination of second order systems, and an unconstrained nonlinear minimization
method (MATLAB function fminsearch, which uses a Nelder-Mead algorithm) was
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Figure 3.5: Pressure port placement on the low-aspect ratio (AR = S/C = 0.54)
panel (Panel 1).

used to fit the step response of the system model to the experimental step response.
Figure 3.6 shows the step response of the transducer, and the step response of the
optimized transfer function.

Once the optimized transfer function was obtained, the dynamic response of this
model was used as an estimate of the dynamic response of the pressure transducer and
tubing. Figure 3.7 shows the magnitude and phase of the transfer function plotted
against frequency. It was found that the resonant frequency of the system was well
above the pitching frequencies investigated. The error of the dynamic response was
less than 5% for frequencies up to 3.9 Hz. At a pitching frequency of 2.67 Hz, the
highest used for the present results, the error of the dynamic response was less than
2.3%. Also, at the frequencies used in the pressure experiments, a maximum phase
lag of 4◦ was possible. The majority of the experiments were conducted at a frequency
of 2 Hz, with a dynamic response error of 1.25% and a phase error of 3◦. In reporting
current results, the small amount of phase lag was ignored, and only the magnitude
was taken into account in the calculation of the error bars. As to the uncertainties
due to phase-averaging, the error at each point of the cycle was estimated to be two
standard deviations based on the spread of points being averaged.

3.3.1 Flow visualization and DPIV: rigid trapezoidal panel

Subsequently, a series of experiments to visualize and measure the flow field was
conducted on rigid panels of trapezoidal planform. These panels had swept edges
that were set at an angle (θ) from the streamwise direction. A schematic of the
trapezoidal panel dimensional parameters is shown in figure 3.8 and a summary of
the panel dimensions used for the flow visualization and DPIV experiments is given
in table 3.3.

3.3.2 Dye flow visualization

Two forms of dye flow visualization were used to investigate the large scale structures
of the flow around the rigid trapzoidal panels. White light visualization was used to
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Figure 3.6: Step response of the pressure transducer and tubing. 4: experimental
response; — optimized transfer function model.

Experiment c S θ

Flow Visualization
100 mm 168 mm 30o

90 mm 213 mm 45o

DPIV 70 mm 175 mm 45o

Table 3.3: Trapezoidal panel geometries

fully observe the three-dimensional structures, while planar laser-induced fluorescence
(PLIF) was used to investigate the structures as they moved through two-dimensional
planes.

For the white light visualization images, fluorescein (Sigma-Aldrich 166308) and
sulforhodamine B (Sigma-Aldrich 230162) dyes were injected into the hollow cavities
of the airfoil fairing. The fluorescein (green) was injected from the cavity on the
right of the fairing (y > 0) and the sulforhodamine B (pink) was injected from the
left-half cavity (y < 0.). Images were acquired using a commercial digital camcorder
at flow speeds ranging from 0.015 m/s to 0.042 m/s with the panel pitching at 0.5
Hz with A =20 mm. This represented Strouhal and Reynolds number ranges of
(.24 < St < .667) and (1800 < Rec < 5040).

Dye flow visualization films of these panels were taken from two angles, shown in
figure 3.9. Both a top view and an angled, upstream-facing side view were used to
observe both the trailing edge wake and the structure generation and organization
around the swept edges.

To obtain a more detailed image of the dye flow, PLIF images were taken in a
plane normal to both the streamwise flow and the panel surface at four locations
along the panel chord: 25%c, 50%c, 75%c, and just downstream of the trailing edge.
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(a) (b)

(c) (c)

Figure 3.7: Bode plots of the model transfer function. (a) Bode magnitude plot with
log-log axes, (b) Bode phase plot with log-log axes, (c) Bode magnitude plot with
linear axes zoomed in on frequencies of interest in the current work, and (d) Bode
phase plot with linear axes zoomed in on frequencies of interest.
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Figure 3.8: Diagram of trapezoid dimensions

(a) (b)

Figure 3.9: White light flow visualization orientations. Blue arrow indicates
freestream flow direction. (a) top view, and (b) angles view.

For these experiments, only the fluorescein dye was injected into the left half (y > 0)
of the airfoil fairing. The dye was illuminated using a Spectra Physics Series 2000
argon-ion continuous-wave laser. Positioning of the laser beam and formation of the
laser sheet was accomplished by use of a fiber optic cable, collimating optics and
Powell lens (Oz Optics). The Powell lens is a line generator that transforms the
collimated beam into an approximately uniform intensity 2 mm thick laser sheet.
Images were acquired using a Redlake HG-LE CCD camera. Camera parameters,
such as frame rate, exposure time, and number of frames aquired were controlled
using the proprietary Motion Central software.

In order to image the plane normal to the streamwise direction, a mirror was
inserted downstream of the test section at a 45◦ angle to the freestream flow. Rigid,
closed-cell foam was formed into a trailing edge for the angled mirror in order to
streamline the shape and reduce disturbances caused by the mirror. The camera was
then positioned at the side wall of the water channel, as shown in figure 3.10. White
light flow visualization was recorded both before and after the insertion of the mirror,
and no appreciable difference in the structure of wake was observed.

3.3.3 Digital Particle Image Velocimetry

To obtain three-dimensional, quantitative velocity information throughout the fluid
volume, two-dimensional digital particle image velocimetry (2D DPIV) was acquired
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Figure 3.10: Schematic of PLIF orientation and setup

in 121 planes uniformly spaced 2 mm apart, which scanned through the three dimen-
sional volume in the test section. These experiments were conducted with trailing
edge amplitudes (A) of 20 mm, and at 1 Hz pitching frequency.

The two-dimensional planes were oriented parallel to the streamwise flow and
normal to the panel surface, as shown in figure 3.11. The particles used to seed the
flow were 13µm hollow silvered spheres made by Potters Industries Inc. (CONDUCT-
O-FIL R© SH400S33). They were illuminated using the Spectra Physics argon-ion
laser, and the laser beam was again manipulated using a fiber optic cable, collimator,
and Powell lens which emitted a 2 mm thick laser sheet. The lens was held by an
optical clamp and mounted on a Velmex X-Slide traverse, which was controlled by a
Velmex VXM stepper motor controller. The traverse was mounted on a table that
sat at one of the spanwise walls of the test section.

In addition, the Redlake HG-LE camera that was used to acquire the images was
mounted vertically above the water channel on a Velmex Unislide traverse, as shown
in figure 3.11. This traverse was controlled by the same Velmex VXM stepper motor
controller. The LabVIEW driver software for both the VXM and the camera software
(Motion Studio) were used such that a single LabVIEW virtual instrument controlled
both the positioning of the laser sheet and camera and the image acquisition at each
plane.

Each two dimensional velocity field was obtained at twenty-five discrete phases
in the pitching cycle. The images were acquired using the Redlake HG-LE camera,
which was externally triggered by a Stanford Research Systems four channel digital
delay/pulse generator (Model DG535). The Stanford box controlled the timing of the
experiment. The encoder mounted on the pitching shaft sent a 5V pulse each time
the pitching panel passed through zero angle of attack (twice per pitching cycle).
Each pair of pulses was converted to the rising and falling edges of a square wave
signal, which served as the input to the Stanford box. At a user-defined delay from
each rising edge of the square wave, the Stanford box sent a finite-width pulse to the
camera trigger input. Using the Motion Studio software the exposure time, frame
rate, and number of images to acquire were set.

The camera was operated in the Burst Record on Command (BROC) mode, in
which it acquires a set number of images at each external trigger. In each plane, 20

45



Figure 3.11: DPIV acquisition setup.

image pairs (∆t between each image: 0.02s) were acquired at each of the 25 phases
in the panel motion, and the resulting 20 velocity fields at each phase were phase-
averaged. This yielded 25 phase-averaged velocity data sets per pitching cycle with
a time resolution of 0.04 s.

After the images were acquired and downloaded from the camera, both Velmex
traverses were moved 2 mm in tandem and acquisition began in the next plane. Data
were taken at 121 planes through the test section volume, uniformly distributed over
a spanwise depth of 0.24 m. The extent of each DPIV data set spans 0.10 m (1.4c)
in the streamwise direction and 0.15 m (2.1c) in the transverse direction. Full data
sets were taken at two overlapping streamwise locations for a total streamwise data
length of 0.19 m (2.7c), and the upstream edge of the data is located at x = 0.45c.
To accomplish this, the pitching apparatus was moved further upstream while the
camera and laser remained in place. All 121 planes at one streamwise location are
shown in figure 3.12(a), and the resulting overlapping grids from both the upstream
and downstream locations are shown in figure 3.12(b).

The Redlake camera was operated at its full resolution of 1128 × 752 pixels. With
the camera and laser sheet aligned to image the deepest spanwise plane, there was an
image resolution of 0.136 mm/pixel. However, due to the change in refractive index
as light travels from water to air, this calibration changed with depth. The refractive
index of water (nw = 1.33) is greater than that of air (na = 1.00029) and according
to Snell’s law,

nw sin βw = na sin βa, (3.2)

Therefore, as light travels from water and across the surface into air, the refractive
angle (β) will increase. As shown in figure 3.13, the increase in refractive index means
that for those cases in which the distance between the camera and the image plane is
in air is longer than in water, i.e. when the camera is higher above the water surface,
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(a) (b)

Figure 3.12: DPIV 2D planes and and resulting 3D grids

both the height and the width of the image plane are larger. This change in pixel size
calibration is linear with depth, and hence the full velocity grids in figure 3.12(b) are
trapezoidal prisms. In order to facilitate post-processing, the velocities at these grid
points were interpolated to a regular rectangular grid with streamwise and spanwise
widths equal to those of the smallest plane at the bottom of the data volume. This
was done using a two-dimensional bi-cubic spline interpolation.

The DPIV analysis in each plane was performed using software developed by
Jiménez (2002). A multi-pass cross-correlation algorithm was used, with first 64 ×
64 and subsequently 32 × 32 pixel window sizes with 50% overlap. In each of these
windows, a two-dimensional Gaussian function was fitted to the correlation peak using
five points in the x- and y-directions, providing sub-pixel accuracy in the calculation
of pixel displacement. In general, mean-bias and RMS errors from cross-correlation
DPIV analyses are on the order of 0.1 pixels (Huang et al., 1997). Mean-bias error
can occur when the number of particles that remain in the interrogation window is
small, which can be caused by insufficient particle seeding or a large ratio of particle
displacement to pixel window size. Sources of RMS error can include improper particle
seeding, strong velocity gradients, and three-dimensional flow causing particles to
leave the image plane. Other important factors include non-uniformity in the laser
sheet or particle light reflection and electronic noise in the camera or cables.

In the current work, the three-dimensional flow, particularly the out-of-plane ve-
locities near the edges of the panel, are assumed to be the largest source of error in the
DPIV experiments. If the out-of-plane velocity (spanwise direction) is assumed to be
on the order of the transverse velocity, it will have a maximum value of approximately
50 mm/s. A particle with this spanwise velocity will travel 1 mm in 0.02 s, the time
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Figure 3.13: Illustration of optical effects. The distance between the camera and the
image plane (h) is the same in both cases. The width of the image plane when the
camera is closer to the water surface is smaller than the width of the image plane
when the camera is farther away from the water surface (d2 > d1.)

between each image. Since the laser plane is approximately 2 mm thick, this means
that in the regions of the flow where 3D effects are greatest, half the particles in the
laser sheet will leave the plane between the first and second images of a pair. The
effect on the in-plane velocity calculations will be a decreased magnitude correlation
peak which increases the RMS error. However, phase-averaging the resulting velocity
fields mitigates these effects.

Each velocity data set consisted of 88 × 67 × 121 = 713416 points, with 5896
points in each spanwise plane. The velocity data grid spacing was 2.2 mm in the
(x-y) planes, and as stated previously, 2 mm in the spanwise (z) direction.
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Chapter 4

Three-dimensional effects

The mean thrust measurements on pitching rigid rectangular panels by Buchholz &
Smits (2008) revealed that the thrust and efficiency depend on the flow Strouhal
number, the aspect ratio of panel (S/c), and also weakly on the ratio of pitching
amplitude to panel chord (A/c). In this chapter, a series of pressure measurements
were obtained to pursue a better understanding of the force distribution on the panel
surface and to give insight to this dependency. The time-resolved pressure results
not only illustrate the necessity of including three-dimensional considerations when
characterizing the panel performance, but also add insight into the panel wake orga-
nization and evolution which will be discussed in chapter 5.

Most of the results and analysis presented in this chapter was published in Green
& Smits (2008).

4.1 Pressure measurements

4.1.1 Temporal analysis

As a reference for the vocabulary used to describe the time–resolved pressure mea-
surements relative to the panel motion, a schematic of the panel in advancing motion
(toward the measurement surface) and its associated motion curve is shown in fig-
ure 3.5.

Figure 4.1: Schematic of the panel advancing, and its associated trailing edge ampli-
tude curve.

As published in Buchholz (2006) and shown in figures 4.2 and 4.3, optimal effi-
ciency of the rigid pitching panels varies with Strouhal number and aspect ratio. For
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Panel chord (c) span (S) (AR=S/C)
1 120 mm 6 mm 0.5
2 120 mm 270 mm 2.25

Table 4.1: Rectangular panel dimensions

Figure 4.2: Propulsive efficiency variation with Strouhal number for Panel 1. From
Buchholz (2006)

the low-aspect-ratio panel (Panel 1, see table 4.1), St = 0.27 corresponded closely
to that of the most efficient level of thrust production. The phase-averaged pressure
trace obtained on the centerline at 0.875c on Panel 1 at this Strouhal number is shown
in figure 4.4.

The pressure reaches its minimum at a phase of φ ≈ 100◦, shortly after the panel
stops advancing (φ = 90◦). Similarly, the pressure maximum occurs at a phase of
φ ≈ 300◦, approximately one half cycle later. The pressure extrema are approximately
associated with the maximum and minimum acceleration of the panel. The pressure
minimum coincides with the maximum panel acceleration as it begins to retreat,
and while the pressure maximum is more delayed, it still coincides closely with the
maximum panel acceleration in advancing motion. Among the Strouhal numbers
investigated in this study, there was no appreciable change in phase of the pressure
extrema.

As the panel retreats, the pressure rises quickly, then levels off for a short period
before continuing to increase. This quick rise is attributed to spanwise flow from the
edges facilitating the relief of low pressure along the midspan. As will be explained in
section 4.1.2, a strong favorable pressure gradient acts toward the midspan during this
time (φ ≈ 135◦), which causes the subsequent loss of low pressure. Similar pressure
time-traces were observed on the wings of pigeons during flight by Usherwood et al.
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Figure 4.3: Propulsive efficiency variation with Strouhal number for Panel 2. From
Buchholz (2006)

(2005), who referred to a “consistent deviation,” and associated it with the “clap” of
the wing, a “period of high acceleration and relatively low differential pressure.”

Figure 4.5(a) shows the pressure variation at the same location and amplitude of
motion on Panel 2 (see table 4.1) at St=0.33 (the Strouhal number corresponding
to the highest efficiency for these conditions according to Buchholz & Smits (2008)).
For this higher-aspect-ratio panel, the pressure signal displays a larger trough that
begins as the panel starts to retreat and ends as the panel begins to decelerate as
it approaches its opposite extremum. The period of low pressure is more extended
because the larger aspect ratio inhibits inflow from the spanwise edges which would
tend to equalize the pressures.

Figure 4.5(b) shows the pressure variation at the same location on Panel 1, with
A = 40 mm and St = 0.33 (again, this Strouhal number corresponds to the most
efficient motion for this amplitude according to Buchholz & Smits (2008)). There is
a loss of low pressure as the panel retreats, as before, but an additional period of
pressure loss appears as the panel motion reaches its maximum pitch angle (φ = 90◦)
and begins to retreat. The increased pitching amplitude increases three-dimensional
effects, which lead to additional low pressure losses.

4.1.2 Spatial analysis

The streamwise distribution of pressure on the advancing surface of Panel 1 pitching
at St = 0.27 is shown in figure 4.6 for four phases of the panel motion, with the
corresponding panel position and port locations shown superimposed. As the panel
advances through zero angle of attack (φ = 0◦), an adverse pressure gradient is present
along the midspan of the panel. When the panel reaches the extremum (φ = 90◦), the
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Figure 4.4: Unsteady pressure variation at 0.875c on Panel 1, A = 20 mm, St = 0.27.
—–, trailing edge amplitude; ◦, pressure deviation from the time-averaged mean.
Panel is “retreating” for 90◦ < φ < 270◦.

streamwise gradient on the top surface has changed, with strong favorable gradients
near x = 0.5c and 0.75c, where x is measured from the leading edge of the panel. A
slight favorable pressure gradient persists as the panel retreats through the zero angle
of attack (φ = 180◦). The pressure along the midspan then increases until the panel
reaches the opposite extremum (φ = 270◦) with relatively strong adverse gradients
again present near x = 0.5c and 0.75c. Similar streamwise distributions were observed
for the higher aspect ratio and higher amplitude configurations.

The spanwise distribution of pressure on Panel 1 was measured at 0.875c. A
strong favorable gradient acting toward the midspan is observed when the panel is
retreating (φ ≈ 135◦): the pressure magnitude at z = 0.25S is 47% higher than that
at the midspan (z = 0). As a result, flow is induced from the advancing surface over
the spanwise edges toward the midspan of the retreating surface. It is this spanwise
pressure gradient that relieves the period of low pressure on Panel 1. Half a cycle
later, a favorable gradient is directed toward the spanwise edges of the panel on the
now advancing surface, and the pressure at z = 0.25S is only 60% of its value at the
midspan. At this phase, fluid tends to flow away from the midspan upstream of the
trailing edge.

4.1.3 Scaling

The coefficient of pressure Cp is shown in figure 4.7(a) at x = 0.875c, where

Cp =
∆p

1
2
ρU2

, (4.1)
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(a)

(b)

Figure 4.5: Unsteady pressure variation at 0.875c on (a) Panel 2, A = 20 mm,
St = 0.33, and (b) Panel 1, A = 40 mm, St = 0.33. —–, trailing edge amplitude; ◦,
pressure deviation from the time-averaged mean.
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(a) (b)

(c) (d)

Figure 4.6: Streamwise distribution of pressure along the midspan for Panel 1 pitching
at St = 0.27 and A = 20 mm. (a) φ = 0◦; (b) φ = 90◦; (c) φ = 180◦; (d) φ = 270◦. In
each figure, the upper part shows the pressure distribution and the lower part shows
the position of the panel. ∗, pressure deviation from the time-averaged mean; 4,
location of pressure port.

and ∆p is the peak-to-peak amplitude of the pressure variation. The pressure coeffi-
cient follows distinct trends for each of the three experimental configurations studied
here. Buchholz & Smits (2008) showed that the thrust produced by pitching rigid
rectangular panels depends on the Strouhal number and the aspect ratio S/c. In
addition, they showed a weak inverse relationship with the amplitude of oscillation
A. Here we find that that the peak-to-peak amplitude of the oscillating pressure sig-
nal varies with aspect ratio and the ratio of pitching amplitude to chord, A/c. This
suggests a new scaling, such that

C∗
p = Cp

(
1 + f

(
S

c
,
A

c

))
. (4.2)
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A simple form of f taken as f(x, y) ∝ y/x leads to

C∗
p = Cp

(
1 + C1

A

S

)
. (4.3)

The form of the scaling was determined empirically, but was also defined to ensure
C∗

p = Cp as the aspect ratio goes to infinity, as required. The scaling suggested here
is similar to the scaling used to account for the effects of aspect ratio on the lift
coefficient in finite wing theory. As shown in figure 4.7(b), the new scaling neatly
collapses the pressure coefficient data (C1 = 7).

4.2 Application of scaling

The pressure measurements along the midspan showed that the maximum and mini-
mum pressures were associated with the extrema of the panel acceleration. When the
panel motion reached an extremum, a positive streamwise pressure gradient existed
along the surface that is beginning to advance, which is in contrast to steady flow at
the same angle of incidence where a negative pressure gradient would be expected.

Buchholz (2006) used flow visualization and vorticity contours to infer the di-
rection and relative magnitude of the pressure gradient on the advancing surface of
the panel, as shown in figure 4.8. The measurements presented here confirm that a
strong favorable streamwise gradient occurs over the region close to the trailing edge
(0.8 < x/c < 1), but this pressure gradient began to exert its influence as the panel
stopped and began to advance a quarter cycle earlier.

For the experiments reported here, the pressure signal deviated from a smooth
sinusoid during periods of low pressure, suggesting the presence of strong three-
dimensional effects. Flow visualizations by Buchholz & Smits (2008), shown in fig-
ure 4.9, showed spanwise ejections of fluid, and this was seen to occur at the extrema
of motion, when a strong favorable pressure gradient acts towards the spanwise edges.
A strong spanwise adverse gradient was shown to exist a half cycle later, indicating
flow toward the midspan of the panel. This low-aspect-ratio effect also explains the
loss of low pressure along the midspan ports.

It was shown that a new pressure coefficient C∗
p that included the effects of aspect

ratio and oscillation amplitude successfully collapsed the pressure results onto a single
curve. Since the pressure distribution is directly related to the thrust T produced by
the panel, we suggest a similar scaling for the thrust, and define C∗

T ,

C∗
T = CT

(
1 + C2

A

S

)
, (4.4)

where CT is the common coefficient of thrust,

CT =
T

1
2
ρU2Sc

, . (4.5)
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(a)

(b)

Figure 4.7: Peak-to-peak pressure amplitude at x = 0.875c: (a) Cp; (b) C∗
p with

C1 = 7.
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Figure 4.8: Pressure gradient on advancing surface of panel inferred by Buchholz
(2006). Magnitude indicated by arrow length. Flow is from left to right.

Here, T is the resultant force in the streamwise direction. Mean thrust measurements
on these panels of different aspect ratio and pitching amplitude were reported by
Buchholz & Smits (2008). The results shown in figures 4.10(a–b) demonstrate that
this scaling indeed collapses the thrust results within the uncertainty limits. As it
turns out, the constant used to scale both the pressure and thrust data is the same,
with C1 = C2 = 7. Additional experiments with panels of varying chord are needed
to generalize the proposed scaling.

Additionally, in the course of his thesis work, Buchholz (2008-2009) calculated the
spanwise circulation in the wake of the pitching rectangular panels. The circulation is
defined as the line integral of the fluid velocity around a closed curve, and by Stokes
Theorem may also be calculated as the area integral of vorticity,

Γ =

∮
C

V · ds =

∫∫
ωdA. (4.6)

Buchholz (2008-2009) calculated the circulation of the spanwise vortex shed after
one half-cycle of the pitching panel. This was done for two low-aspect ratio panels,
pitching with two different trailing edge amplitudes. Buchholz showed that if these
data are non-dimensionalized using the freestream velocity and pitching frequency as
the relevant length- and time-scales, such that,

CΓUf
=

Γ

U2(1/f)
, (4.7)

the circulation varies with St as shown in figure 4.11(a). Buchholz then proposed
that if the scaling proposed in the current work is applied to the circulation coefficient
defined in this way, such that

C∗
ΓUf

= CΓUf

(
1 + C3

A

S

)
, (4.8)

the results seem to collapse, as shown in figure 4.11(b), with C3 = C1 = 7. Moreover,
if instead the circulation is non-dimensionalized using the pitching amplitude and
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Figure 4.9: Flow visualization of panel 1 pitching at a St=0.6, which the spanwise
ejection of fluid highlighted with a white box. Image from Buchholz (2006).

frequency as the relevant length- and time-scales, such that,

CΓAf
=

Γ

A2f
, (4.9)

the variation of circulation with St is as shown in figure 4.12(a). Using this non-
dimensionalization, the dependence of the circulation on the Stouhal number is sig-
nificantly weaker. If the scaling proposed in the current work is again applied to the
circulation coefficient as suggested by Buchholz, such that

C∗
ΓAf

= CΓAf

(
1 + C4

A

S

)
, (4.10)

the results appear to collapse even better, as shown in figure 4.12(b), with C4 = C1 =
7.

By continuing to consider the effects of varying aspect ratio and pitching ampli-
tude, a new interpretation can also be given to the Digital Particle Image Velocimetry
(DPIV) results of Buchholz (2006). Figure 4.13 shows isocontours of spanwise vortic-
ity in the wakes of Panels 1 and 2 pitching with the same trailing edge amplitude. In
figure 4.13(a), Panel 2 is pitching at St = 0.36 and the wake has a 2S structure, with
two single vortices being shed each flapping cycle. Panel 1, pitching at St = 0.26, is
shown in figure 4.13(b), and exhibits a 2P structure, with two pairs of vortices shed
each cycle. Previous work has shown that the transition from a 2S structure to a 2P
structure is associated with an increase in Strouhal number, but in this case the the
transition is observed to occur at lower St, and may be a consequence of the increase
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(a)

(b)

Figure 4.10: Thrust coefficient measured by Buchholz & Smits (2008) . (a) CT ; (b)
C∗

T with C2 = 7.
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(a)

(b)

Figure 4.11: Circulation coefficient calculated by Buchholz & Smits (2008) non-
dimensionalized using panel pitching frequency and freestream velocity (CΓUf

); (b)
Circulation coefficient with additional scaling (C∗

ΓUf
with C3 = 7). From Buchholz

(2008-2009).
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(a)

(b)

Figure 4.12: Circulation coefficient calculated by Buchholz & Smits (2008) non-
dimensionalized using panel pitching amplitude and frequency (CΓAf

); (b) Circulation
coefficient with additional scaling (C∗

ΓAf
with C3 = 7). From Buchholz (2008-2009).
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of three-dimensionality (decreased aspect ratio).
The phase averaged pressure traces at 0.875c shown in figure 4.14 indicate that

as the panel retreats from the measurement surface, the pressure on Panel 2 stays at
or near its minimum value for a larger fraction of the pitching period than in the low
aspect ratio or high amplitude cases. The vorticity contours in figure 4.13(b) show
that downstream of the trailing edge of Panel 1, pitching with an amplitude of 31mm,
the spanwise structure is at a lateral distance y/c ≈ −0.30. However, downstream
of the trailing edge of Panel 2, pitching with the same amplitude, at the same phase
of motion it is closer to the edge at y/c ≈ −0.15. The prolonged low pressure on
Panel 2 may cause the spanwise structure at the trailing edge to keep rolling up as the
trailing edge moves across the wake, and hence transverse wake expansion is inhibited.
Hultmark et al. (2007), Tytell & Lauder (2004), and Buchholz et al. (2003) observed a
2P configuration in the wakes of a robotic lamprey, american eel, and flexible flapping
membrane, respectively, and they described the formation of the 2P wake structure
as a consequence of the segmentation of the shear layer being shed from the trailing
edge. If, as in the higher aspect ratio case presented here, the trailing edge structure
is pulled along with the panel surface, it will not spread into a shear layer and be
susceptible to segmentation and transition into a 2P structure.

Similarly, an increase in pitching amplitude will enable the elongation and seg-
mentation of the spanwise structure as it is shed from the trailing edge sweeping
across the wake. Figure 4.13(c) shows the wake of Panel 1 pitching at A = 20 mm
and St = 0.27. At φ = 90◦, the structure has travelled a shorter lateral distance than
that seen for the same panel with a larger pitching amplitude (A = 31 mm), and
is located at y/c ≈ −0.10, compared to y/c ≈ −0.30 for the higher amplitude case.
The pressure traces shown in figure 4.14 indicate that when pitching with a higher
amplitude, the panel experiences additional losses of low pressure. This loss of low
pressure decreases the suction force, allowing the trailing edge structure to spread
across the wake and break into two segments, forming the pairs that comprise the 2P
structure.

4.2.1 Summary

Previous work showed that an increase in unsteadiness (an increase in Strouhal num-
ber), affects the propulsive performance of pitching panels and causes the wake to
transition from a 2S structure to the more complicated 2P structure. Here, we pro-
pose a new scaling law for pressure and thrust results that includes a consideration
of three-dimensional effects. The new scaling nicely collapses both current pressure
results and previously published mean thrust measurments and circulation calcula-
tions.

Improved understanding of the influence of three-dimensionality also led to a new
interpretation of the wake transition. Three-dimensionality is increased when the
aspect ratio of the panel is decreased or when the pitching amplitude is increased,
and it is believed to be related to the time the shed vorticity dwells near the trailing
edge. It is also believed that this interaction between the shed vorticity and the panel
trailing edge affects the organization of the vortex wake, and can inhibit or facilitate
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(a) (b)

(c)

Figure 4.13: PIV taken by Buchholz & Smits (2008) at the midspan of a panel at
φ = 90◦: (a) Panel 2, A = 31 mm, St = 0.36, (b) Panel 1, A = 31 mm, St = 0.26, and
(c) Panel 1, A = 20 mm and St = 0.27. Contour levels are ±n2s−1, n = 2, 3, 4, ..., 10.
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Figure 4.14: Unsteady pressure variation on the centerline at 0.875c with A = 20 mm
and St = 0.27: (——) Panel 1, A = 20 mm; (· · ··) Panel 1, A = 40 mm; and (- - - -)
Panel 2, A = 20 mm.

wake transition. In this way, the qualitative wake characteristics are also consistent
with the new scaling.
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Chapter 5

Three-dimensional panel wake

In this chapter, we continue the study of caudal fin-inspired unsteady propulsors with
a series of experiments conducted on pitching rigid trapezoidal panels. This work
builds on the results of chapter 4 but adds complexity to the problem by introducing
another parameter: edge sweep angle (θ). Flow visualizations were acquired for
two trapezoidal panels with different sweep angles: θ = 30◦andθ = 45◦. Digital
particle image velocimetry (DPIV) was acquired for the panel with 45◦ edges at two
Strouhal numbers, where the large scale structure generation and evolution was found
to display some interesting qualitative differences when analyzed using a Lagrangian
Coherent Structure (LCS) framework.

5.1 Dye flow visualization

Dye flow visualization was used to observe the large-scale structures produced by the
trapezoidal panel pitching in a uniform flow. The two panel geometries, given in
table 5.1, were chosen to vary sweep angle but to keep surface area constant. For
all experiments with the trapzoidal panels, the trailing edge pitching amplitude (A)
was 20 mm, and the Strouhal number was varied by changing the freestream velocity.
The dye was injected into the flow through small holes in the airfoil fairing. These
dye injection ports spanned a 130 mm section of the fairing, and therefore, the width
of the dye sheet was 61% of the trailing edge span of panel B, and 77% of the trailing
edge span of panel C. For this reason, interactions of the flow close to the spanwise
tips of the trailing edge were not captured with the flow visualization.

Panel c S A/S θ
B 100mm 168mm 0.012 30o

C 90mm 213mm 0.009 45o

Table 5.1: Trapezoidal panel geometries
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(a) (b)

(a) (b)

Figure 5.1: White light flow visualization of panel C pitching at St = 0.33, Rec =
2690, and A/S = 0.009, viewed from above. (a) φ ≈ 0◦, (b) φ ≈ 90◦, (c) φ ≈ 180◦,
and (d) φ ≈ 270◦.

5.1.1 White light illumination

Figure 5.1 shows a view parallel to the pitching axis of white light illuminated dye
in the flowfield around panel C with St = 0.33. There is a clear organization of
the dye on the top and bottom surfaces of the panel. In particular, in figure 5.1(b)
one organized structure is observed on the top surface, and two are observed on the
bottom surface. Each structure is identified by a collection of dye, including both
the green fluorescein and pink rhodamine, injected from opposite sides of the fairing.
As we will discuss in this section, these structures are rolling up around the swept
edges of the trapezoidal panel, and therefore entrain both dyes injected upstream of
the swept edge.

As the Strouhal number is increased by decreasing the outer flow velocity, this
organization of the dye does not persist. In figure 5.2(a–b), the Strouhal number
has been increased to 0.42, and while there is still some coherence in the dye pattern
around panel C, the packets are closer together and boundaries become less clear.
When the Strouhal number is increased to 0.55, and as shown in figure 5.2(c–d), all
coherence is lost.

A closer look at the dye flow dynamics at St = 0.33 is shown in figure 5.3. The
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(a) (b)

(c) (d)

Figure 5.2: White light flow visualization of panel C pitching at two different Strouhal
numbers, viewed from above. (a) St = 0.42, Rec = 2150, A/S = 0.009, φ ≈ 0◦, (b)
St = 0.42, Rec = 2150, A/S = 0.009, φ ≈ 90◦, (c) St = 0.55, Rec = 1615, A/S =
0.009, φ ≈ 0◦, and (d) St = 0.55, Rec = 1615, A/S = 0.009, φ ≈ 90◦.
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panel is shown at three phases of motion as it sweeps into the page. At the near
extremum (figure 5.3(a)), a line of fluoroscein is visible that extends onto the far side
of the panel surface. As the panel sweeps through zero angle of attack (5.3(b)), the
dye stretches across the swept edge. When the panel reaches the far extremum of its
motion (5.3(c)), the dye has detached from the swept edge, leaving a packet on the
far side of the panel as it begins to collect on the near side. This packet of dye will
detach from the panel in the next half-cycle.

If the same three phases are examined when the panel is pitching at the higher
Stouhal number (St = 0.55), the detachment of the dye-marked structure is no longer
apparent, as shown in figure 5.4. One particularly bright collection of dye is high-
lighted at each phase. When the panel is at its near extremum (5.4(a)), the dye has
rolled up on the far surface. As the panel pitches into the page (5.4(b)), no stretching
or detachment occurs, and the dye begins to flow over the swept edge. When the
panel reaches the far extremum (5.4(c)), the dye has rolled up on the near side of the
panel.

5.1.2 Planar laser-induced fluorescence

The structure generated by the motion of the swept edge is more clearly seen using
Planar Laser-Induced Fluorescence (PLIF). Figure 5.5 shows PLIF images acquired
at x = 0.25c at four phases of the panel motion with St = 0.33. This view is from
downstream of the panel looking upstream, and the image plane is normal to both
the streamwise flow. In this view, swirling dye flow marks the streamwise component
of vorticity. In figure 5.5(a), the panel is at the right-most extremum, and the dye
clearly marks the creation of a counterrotating vortex pair on the left side of the
panel surface. This vortex pair has a component in the streamwise direction, but it is
also expected to have a component in the spanwise direction, since it is aligned with
the swept edge. We shall refer to this structure as a “quasi-streamwise structure” or
as a “swept edge structure.” It is created as the pressure difference between the two
surfaces of the panel draws fluid from the advancing surface (right) to the retreating
surface (left). The fluid rolls around the swept edge, and the vortex pair is created
as this flow impinges on the panel surface.

Figure 5.5(b) shows that this vortex pair persists as the panel crosses through the
zero angle of attack, and by the time it has reached the left-most extremum (5.5(c)),
a similar pair has been created on the now advancing surface (right) of the panel.
This structure also persists as the panel sweeps to the right (5.5(d)).

The swept edge structure retains its coherence as it convects along the panel
suface, as shown in figure 5.6. In this figure, PLIF images are shown at four locations
along the panel chord, at phases chosen so that the swept edge structure generated
at x ≈ .025c passes through the laser plane. Similar vortex roll-ups at the swept edge
are not observed downstream of x = 0.25c due to the limited spanwise extent of the
dye injection, as indicated earlier. At x = 0.5c (5.6(b)), the counter-rotating vortices
generated upstream are observed one quarter pitching period later. At this location,
they have spread apart in the spanwise direction, but as they move downstream, their
relative distance does not continue to increase.

68



(a)

(b)

(c)

Figure 5.3: Angled view white light flow visualization of panel C pitching at St =
0.33, Rec = 2690, and A/S = 0.009. Yellow boxes highlight the line of dye stretching
as fluid that was pulled onto the far surface in the previous half cycles remains trapped
there, and does not wash back on the near surface as the panel pitches into the page.
(a) φ ≈ 90◦, (b) φ ≈ 180◦, and (c) φ ≈ 270◦.
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(a)

(b)

(c)

Figure 5.4: Angled view white light flow visualization of panel C pitching at St =
0.55, Rec = 1615, A/S = 0.009. Yellow box highlights fluid pulled from the far surface
to the near surface as the panel pitches into the page. (a) φ ≈ 330◦, (b) φ ≈ 30◦, and
(c) φ ≈ 90◦.
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(a) (b) (c) (d)

Figure 5.5: PLIF images on panel C pitching at St = 0.33, Rec = 2690, and A/S =
0.009, acquired at x = 0.25c. Blue boxes highlight counterrotating vortex pairs rolling
up at the swept edge. (a) φ ≈ 90◦, (b) φ ≈ 180◦, (c) φ ≈ 270◦, and (d) φ ≈ 360◦.
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(a) (b) (c) (d)

Figure 5.6: PLIF images on panel C pitching at St = 0.33, Rec = 2690, and A/S =
0.009, acquired at different streamwise locations along the chord. Phases are chosen
to correspond to the crossing of the swept edge structure through the laser plane.
(a) x = 0.25c, φ ≈ 90◦, (b) x = 0.5c, φ ≈ 180◦, (c) x = 0.75c, φ ≈ 270◦, and (d)
x ≈ c, φ ≈ 360◦.
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Just downstream of the trailing edge, the structure generated at the swept edge
at 0.25c retains its shape, and is being shed by the trailing edge (figure 5.6(d)). It
is expected that this quasi-streamwise structure interacts with the spanwise vortex
shed by the trailing edge, but the nature of the interaction cannot be described using
the flow visualization.

PLIF images were also acquired with the panel pitching at St = 0.55, and these
are shown in figures 5.7 and 5.8. In figure 5.7, it is clear that a vortex pair rolls up
along the swept edge as the panel moves from left to right. However, as the advancing
surface decelerates, this pair does not continue to develop, and instead interacts with
the swept edge. As shown in chapter 4, at this point in the phase the pressure on the
advancing surface is high, with a favorable gradient toward the spanwise edges. This
favorable gradient will induce the flow toward the edges, and break up the swept edge
structures. In figure 5.7(b), it can be seen that this structure is already being pulled
over the swept edge and losing coherence.

Figure 5.8 shows the PLIF visualization just downstream of the trailing edge
with the panel pitching at St = 0.55. The vortex pair clearly seen at St = 0.33
(figure 5.6(d)) is not observed at the same phase of motion, or indeed at any phase
of motion.

We refer to the behavior of the swept edge structure at lower Stouhal numbers,
especially with regard to its continued coherence down the panel and in the wake, as
“structure trapping.” This phenomenon was observed to depend not only on Strouhal
number, which was varied by changing the freestream velocity, but on the panel
geometry as well. For example, flow visualization was also acquired for a trapezoidal
panel with swept edges at a smaller angle to the freestream (panel B). As shown in
figures 5.9(a–b), the swept edge structure generated at 0.25c on panel C pitching at
St = 0.42 retains coherence and is “trapped” on the left surface as the panel sweeps
from right to left. Images at x = 0.5c on panel B pitching at the same Strouhal
number are shown in figures 5.9(c–d). Here, we see a structure roll up, but as the
panel sweeps from right to left, the quasi-streamwise structure is pulled over the swept
edge, and no trapping occurs. However, trapping was observed to occur on panel B
for St < 0.37. Trapping was observed on panel C for St < 0.47. The swept edge
structure trapping occurs when either freestream velocity is increased, or the swept
edge angle is increased. To explain this, a schematic of the swept edge structure
dynamics is shown in figure 5.10.

The swept edge structures outlined by the blue ovals were created in the previous
half-cycle, as the panel pitched into the page. In this half-cycle, as it is pitching out
of the page, they have convected downstream along the panel surface. It is expected
that structure trapping occurs when the vortex has travelled far enough away from
the swept edge such that it does not interact with the edge in the subsequent half-
cycle. The “edge distance” in this half-cycle, indicated by a red line in figure 5.10,
can be increased in two ways: by decreasing the Strouhal number by either decreasing
the frequency or increasing the freestream velocity, or by increasing the sweep angle
of panel. Both of these have proven successful in the current work. Increasing the
freestream velocity increases the downstream distance the structure travels from the
edge. Increasing the sweep angle of the panel geometry increases the streamwise
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(a) (b)

Figure 5.7: PLIF images on panel C pitching at St = 0.55, Rec = 1615, and A/S =
0.009, acquired at x = 0.5c. Blue boxes highlight the quasi-streamwise structure as
it is created and then pulled over the swept edge. (a) φ ≈ 270◦ and (b) φ ≈ 315◦.
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Figure 5.8: PLIF image of panel C pitching at St = 0.55, Rec = 1615, and A/S =
0.009, acquired x ≈ c and φ ≈ 180◦

75



(a) (b) (c) (d)

Figure 5.9: PLIF images of swept edge structure roll-up on panels B (at x =
0.25c, St = 0.42, Rec = 2390, and A/S = 0.012) and C (at x = 0.5c, St = 0.42, Rec =
2150, and A/S = 0.009). Blue box highlights the structure of interest. (a) Panel C,
φ ≈ 180◦, (b) panel C, φ ≈ 270◦, (c) panel B, φ ≈ 90◦, and (d) panel B, φ ≈ 180◦.
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Figure 5.10: Schematic of quasi-streamwise structure dynamics. Structure outlined
in blue, distance from the swept edge indicated in red.

component of the edge distance.
Between panels B and C at the same freestream velocity, swept edge structures

achieve a larger edge distance on panel C due to the larger sweep angle. Therefore, a
higher freestream velocity (lower St) was needed for the same phenomenon to occur
on panel B.

5.2 Digital particle image velocimetry

To quantitatively investigate the three-dimensional wake around the rigid trapezoidal
panel, spatially- and temporally-resolved two-dimensional digital particle image ve-
locimetry (2D DPIV) was acquired, as described in chapter 3. The trapezoidal panel
used for these experiments had a sweep angle θ = 45◦, chord c = 70 mm, and trailing
edge span S = 175 mm. Eulerian and Lagrangian methods were used to analyze the
resulting data sets.

5.2.1 Eulerian analysis

At each point in the volume, velocities in the streamwise (u) and transverse (v)
directions are acquired. A second-order accurate central differencing scheme is used
to calculate the spatial derivatives of these quantities, and these were in turn used to
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calculate spanwise vorticity,

ωz =
∂v

∂x
− ∂u

∂y
. (5.1)

In figure 5.11, the spanwise vorticity distribution in four planes along the span of
the trapezoidal pitching panel at St = 0.33 are plotted. The contour levels are the
same in all planes. At both Strouhal numbers, ωz,max/min = ±20 s−1. An appreciable
decrease in spanwise vorticity magnitude is apparent away from the midspan of the
panel. In addition, near the midspan (plane 1), the vortices are slightly staggered
along the transverse centerline. Induced flow between each consecutive vortex pair
is directed slightly downstream, adding a small amount of streamwise momentum,
as shown by the black arrows in figure 5.11. However, as we move away from the
midspan, the alignment of the vortices shifts, and near the trailing edge tip (plane 4)
the induced jets between pairs of vortices is directed upstream, indicating momentum
loss (drag production).

The spanwise vorticity is also plotted for the trapezoidal panel pitching at St =
0.55 in figure 5.12. Again, at the midspan the vortices are aligned to induce velocity
downstream, but this changes towards the trailing edge tip. In addition, at the
midspan the 2S vortex configuration is observed to break down approximately one
chord length downstream of the trailing edge.

For a clearer illustration of the organization of spanwise vorticity, isosurfaces of
ωz are shown in figure 5.13 at two phases of motion with St = 0.33. The spanwise
extent of the wake is contained within the span of the trailing edge, and decreases
slightly as the structures move downstream. Isosurfaces of ωz with the panel pitching
at St = 0.55 are shown in figure 5.14. Here, the spanwise compression of the wake
is more exaggerated, and there is also a marked decrease in vorticity magnitude
downstream, consistent with a breakdown of the 2S wake structure.

A view of the edge of both wakes, from downstream and above the panel, is shown
in figure 5.15. For both Strouhal numbers, the change in vortex alignment away from
the midspan is observed. Structures of positive spanwise vorticity (red) bend to the
left, and those of negative spanwise vorticity (blue) bend to the right.

5.2.2 LCS analysis

To more thoroughly describe the vortex interactions caused or induced by three-
dimensional effects and wake breakdown, an LCS analysis like that of chapter 2 was
conducted using the 2D velocity fields obtained by the DPIV experiments. The
spanwise velocity (w) was assumed to be zero, which is not a good assumption in
these highly three-dimensional flows, but the large-scale structures in this wake are
expected to be associated primarily with the spanwise vorticity. A series of two-
dimensional planes is used to present the LCS results, as the boundary of the wake
as indicated by the LCS would obscure the inner detail.

In figure 5.16, positive- and negative-time LCS, pLCS and nLCS, respectively, are
shown at three spanwise locations in the wake of the panel pitching at St = 0.33. At
this Strouhal number, all DLE calculations were done using an integration time of two
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Figure 5.11: Two-dimensional planes of spanwise vorticity in four planes along the
span of the trailing edge. St = 0.33, Rec = 2390, and A/S = 0.012. Plane 1: 0.5S,
plane 2: 8.67S, plane 3: 0.79S, and plane 4: 0.9S.
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Figure 5.12: Two-dimensional planes of spanwise vorticity in four planes along the
span of the trailing edge. St = 0.55. Plane 1: 0.5S, plane 2: 0.79S, plane 3: 0.84S,
and plane 4: 0.95S.
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Figure 5.13: Spanwise vorticity for the panel pitching at St = 0.33. Red and blue
surfaces are 18% maximum and minimum ωz, respectively. (a) φ = 0◦ and (b)
φ = 180◦.
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Figure 5.14: Spanwise vorticity for the panel pitching at St = 0.55. Red and blue
surfaces are 17% maximum and minimum ωz, respectively. (a) φ = 0◦ and (b)
φ = 180◦.
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Figure 5.15: Angled view of the isosurfaces of ωz at both Stouhal numbers. Red and
blue surfaces are 18% maximum and minimum ωz, respectively. (a) St = 0.33, φ = 0◦

and (b) St = 0.55, φ = 180◦.

pitching periods for both positive- and negative-time calculations. The integration
scheme in the DLE calculation was accelerated by exploiting the periodicity of the
phase-averaged velocity fields. A description of this algorithm is given in Appendix A.

Particles that leave the domain were assumed to travel in the streamwise direction
with the freestream velocity. For those trajectories that are advected upstream of
the data domain, a uniform freestream assumption seems reasonable, as this is the
boundary condition upstream of the pitching apparatus. Downstream of the data,
however, the loss of information inherent in this assumption causes a lack of sharp
ridges in the positive-time DLE field. In many of the figures in this chapter, the pLCS
often are not revealed in the downstream half of the data domain for this reason.

At the midspan (figure 5.16(a)), two spanwise vortices downstream of the trailing
edge are clearly indicated by both the pLCS and nLCS. Away from the midspan
(5.16(b–c)), the qualitative structure of the LCS changes. There is little or no detail
in the interior of the vortex cores, and the alignment has changed. Close to the
spanwise tip of the trailing edge (5.16(c)), there are no clear pLCS, and therefore no
clear repelling material lines in the wake structure. At this spanwise location, three-
dimensional effects are assumed to be relatively large (compared to the midspan) and
so the loss of information could be the result of not accurately following trajectories
as they are leaving the plane.

To more closely describe the dynamical structure of the wake in each 2D plane, the
hyperbolicity criteria were applied to the pLCS and nLCS, and the resulting structures
are shown in figure 5.17. At the midspan (5.17(a)), the familiar pattern appears

83



(a)

(b)

(c)

Figure 5.16: pLCS (red) and nLCS (blue) in three two-dimensional planes along the
span of the panel pitching at St = 0.33. LCS are represented by DLE fields that
are blank for values less than 33% maximum of the field. (a) 0.5S, (b) 0.79S, and
(c)0.95S.
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(a)

(b)

Figure 5.17: Hyperbolic pLCS and nLCS in three two-dimensional planes along the
span of the panel pitching at St = 0.33. Hyperbolic LCS are represented by DLE fields
that are blank for values less than 33% maximum of the field, and if the applicable
strain criterion is not satisfied. (a) 0.5S and (b) 0.79S.

around the spanwise vortex cores. The boundary of these structures is indicated by
a time-dependent saddle point at each transverse end of each structure. Within each
vortex core, an alternating pattern of pLCS and nLCS is apparent, similar to that
of the vortex cores seen in the wall-bounded turbulence of chapter 2. Again, this
pattern is only obvious for approximately one half of the streamwise domain, because
of the loss of information during the pDLE calculation.

The spanwise vorticity isosurfaces are plotted simultaneously with the LCS in
figure 5.18. It is clear that both the Eulerian and Lagrangian techniques are revealing
the same large scale structures in the pitching panel wake. It is clear that the spanwise
structures are losing strength away from the midspan, and realigning. It is unclear
whether the loss of magnitude in the vorticity calculation and loss of detail in the
LCS calculation are caused by a strict weakening of the structures, or if the vortices
are bending such that there is a component of the vorticity in the transverse and
streamwise directions, and larger out of plane velocities.

In figure 5.19, ωz and LCS are compared more directly in 2D planes along the
span of the wake. Both methods track the locations of the spanwise vortices well,
especially as the alignment changes, as seen in (5.19(b–c)) at distances from the lower
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Figure 5.18: Isosurfaces of spanwise vorticity and two-dimensional slices of nLCS
around the panel pitching at St = 0.33. Red and blue surfaces are 18% maximum
and minimum ωz, respectively. LCS are represented by regions where nDLE > 43%
maximum value.
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trailing edge tip of 0.79S and 0.84S. One detail apparent in the Eulerian results that
does not appear in the Lagrangian structures is the roll-up of the vortex sheet that
occurs just downstream of the trailing edge, which is highlighted in figure 5.19(a).
This structure is a coherent concentration of vorticity, but seems to have relatively
small dynamical influence compared to the larger scale spanwise vortices.

LCS of the panel wake at St = 0.55 is shown in figure 5.20. For this Strouhal num-
ber, an integration time of four pitching cycles was used. Immediately downstream
of the trailing edge, the qualitative structure of this wake is similar to that at the
lower Strouhal number with the familiar scroll pattern bounding the spanwise vortex
cores. As the vortices move downstream, however, they become more complicated.
As was shown in figure 5.14, three spanwise structures are arranged in a 2S street
upstream of the spanwise vorticity break down. Here, we see a transition in the LCS
pattern at the same location. Also, there is a similar change in pattern and vortex
pair alignment observed in the 2D LCS away from the midspan, and these changes
are occuring even closer to the midspan than observed at St = 0.33.

The hyperbolicity criteria were also applied to the pLCS and nLCS of the higher
Strouhal number wake, and the results are shown in figure 5.21. At the midspan
(5.21(a)), the characteristic pattern of vortex cores bounded by two time-dependent
saddles and an alternating pLCS/nLCS boundary is apparent in the near wake. Away
from the midspan, the distance downstream of the trailing edge over which the LCS
retain their coherence decreases.

The hyperbolic LCS following the evolution of the wake at the midspan are shown
in figure 5.22 at four phases. A bifurcation in the structure of the LCS is seen as
the structures move downstream. Black circles highlight two time-dependent saddle
points as they convect downstream. The distance between them decreases until they
merge into each other after one pitching cycle. More information is needed, partic-
ularly pLCS further downstream, to understand the dynamics of this progression.
It is unclear whether the two saddle points are converging or if a more complicated
bifurcation is occurring.

The isosurfaces of spanwise vorticity are superimposed on planes of nLCS in fig-
ure 5.23. In two planes, a yellow box indicates on the nLCS the location of the saddle-
point merging, confirming that the dynamical system bifurcation and the qualitative
wake transition are occuring at the same location.

This feature is further illustrated in figure 5.24, which shows the spanwise vorticity
and nLCS in 2D planes. Again, both the Eulerian and Lagrangian techniques capture
the same structures, and both the saddle-point merging and the spanwise vorticity
breakdown are shown to occur at the same streamwise location.

The existence of the trapped structure observed in § 5.1.2 was not obvious when
plotting spanwise vorticity in § 5.2.1. In the DLE calculation, the trajectories were
assumed to have no spanwise velocity and to stay in the plane in which they were
initialized. Therefore, in order to investigate the quasi-streamwise structure observed
in the flow visualizations, nDLE was calculated in a plane normal to the streamwise
flow and normal to the panel surface.

The results are shown in figure 5.25. As the panel pitches from right to left,
a stong nLCS, associated with the intersection of the nDLE field with the finite-
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Figure 5.19: nLCS superimposed on two-dimensional planes of spanwise vorticity.
nLCS are represented by regions where nDLE > 33% maximum value. (a) 0.5S (pink
box highlights secondary vorticity sheet roll-up), (b) 0.79S, and (c)0.84S.
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Figure 5.20: pLCS and nLCS in three two-dimensional planes along the span of the
panel pitching at St = 0.33. LCS are represented by DLE fields that are blank for
values less than 33% maximum of the field. (a) 0.5S, (b) 0.67S, and (c)0.79S.
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(a)

(b)

Figure 5.21: Hyperbolic pLCS and nLCS in three two-dimensional planes along the
span of the panel pitching at St = 0.55. Hyperbolic LCS are represented by DLE fields
that are blank for values less than 32% maximum of the field, and if the applicable
strain criterion is not satisfied. (a) 0.5S and (b) 0.67S.
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Figure 5.22: Hyperbolic pLCS and nLCS at the midspan of the panel pitching at
St = 0.55. Hyperbolic LCS are represented by DLE fields that are blank for values
less than 32% maximum of the field, and if the applicable strain criterion is not
satisfied. (a) φ = 100◦, (b) φ = 260◦, (c) φ = 345◦, and (d) φ = 100◦.
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Figure 5.23: Isosurfaces of spanwise vorticity and two-dimensional slices of nLCS
around the panel pitching at St = 0.33. Red and blue surfaces are 18% maximum
and minimum ωz, respectively. LCS are represented by regions where nDLE > 43%
maximum value. Yellow boxes indicate locations of time-dependent saddle merges in
the two planes closest to the midspan.
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Figure 5.24: nLCS superimposed on two-dimensional planes of spanwise vorticity.
nLCS are represented by regions where nDLE > 32% maximum value. (a) 0.5S(time-
dependent saddle merge highlighted by yellow box), (b) 0.67S, and (c)0.79S.
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Figure 5.25: Two-dimensional nDLE field at x = 0.83c on the panel pitching at both
Strouhal numbers. (a) St = 0.33 and (b) St = 0.55.

thickness panel, is observed at both Strouhal numbers. For the lower Strouhal number
(5.25(a)), an additional nLCS demarcates a boundary between section of fluid close
to the panel surface and the outer flow. This is the case for which flow visualization
showed that structures generated by the swept edge were trapped. At the higher
Stouhal number (5.25(b)), at which no structure trapping was observed in the flow
visualization, no clear boundary is apparent in the nDLE field that would separate
flow near the panel from the freestream.

5.3 Summary

A series of flow visualization and DPIV experiments were conducted to investigate
the three-dimensional wake structure of the rigid trapezoidal pitching panel. Flow
visualization indicated that at lower Strouhal numbers, quasi-streamwise structures
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were being generated at the swept edges of the panel and convecting along the panel
surface while maintaining their coherence. This phenomenon was called “vortex trap-
ping.” At higher Strouhal numbers, these structures continually interacted with the
swept edge and did not retain coherence, and the vortices were not “trapped.” The
trapped structures were not conclusively identified using Eulerian methods, but a
negative-time LCS analyses confirmed that for St = 0.33, a region of fluid is sepa-
rated by material lines from the outer flow during one half-cycle. A clear boundary
was not apparent at St = 0.55. The fact that this phenomenon occurs at a Strouhal
number closer to that at which real fish swim, and that it is not observed on panels
of rectangular planform, might indicate an advantage of trapezoidal geometry.

The LCS analysis was employed, in addition to spanwise vorticity, to form a more
complete description of the full three-dimensional wake downstream of the panel. At
two Strouhal numbers, the spanwise extent of the wake was observed to decrease as the
structures convected downstream. Also, the alignment of the spanwise vortices rela-
tive to each other was observed to change away from the midspan. In planes further
from the midspan, the alignment was such that induced velocities between consecu-
tive pairs of vortices pointed upstream, subtracting momentum from the streamwise
flow and indicating drag production. This reinforces the conclusions of chapter 4,
that three-dimensionality affects both the forces on the panel and wake structure and
evolution.

A relationship between the qualitative structure of the wake and an underlying
quantitative dynamical systems structure was found by using the LCS analysis. In
those regions in which the wake consisted of a street of vortices, a characteristic pat-
tern was seen in the hyperbolic nLCS and pLCS plots, which was similar to that
described in chapter 2 around the core of a hairpin vortex. At St = 0.55, when
the wake was observed to break down and possibly transition into a 2P structure,
the dynamical structure of the flow, as represented by the LCS, exihibited a bifur-
cation in which two time-dependent saddle points merged. Because the hyperbolic
saddle points can be quantitatively identified, the presence of the bifurcation in the
Lagrangian results can provide a more accurate notification and description of the
wake transition.
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Chapter 6

Conclusions and Future Work

6.1 Discussion and conclusions

6.1.1 Coherent structure identification

Lagrangian Coherent Structures (LCS) are employed as a vortex identification and
analysis tool in chapters 2 and 5. One of the greatest benefits of using LCS, instead
of previously published Eulerian criteria, is shown to be the ability of the method
to capture clear boundaries between qualitatively different regions of the flow. This
provides a way to measure the size of the coherent structures that is not dependent
on arbitrarily applied thresholds.

It was noted that using both the positive-time and the negative-time LCS, as
well as applying conditions of hyperbolity, are important to provide a full picture of
the vortex boundaries and dynamics. Additional information about the dynamical
systems structure becomes evident, such as the loss of hyperbolicity along the LCS
upstream of the isolated hairpin head indicating the birth of a secondary hairpin
vortex. Also, the presence of time-dependent saddle points on opposite sides of vortex
cores was shown to be an LCS structure that appears in the analysis of both wall-
bounded turbulent structures (§ 2.3 and 2.4) and the pitching panel wake (§ 5.2.2).
This result suggests that it may be possible to track individual coherent structures
in more complicated flow fields using tracking algorithms that follow these time-
dependent saddles.

The capability to follow the quantitatively defined saddle points is particularly
useful in the analysis of the low-aspect-ratio pitching panel. In § 5.2.1, Eulerian results
of the wake of the trapezoidal panels indicates a transition of the wake structure
from 2S to 2P as Strouhal number increases. This transition is represented by a
lateral spreading of the spanwise vorticity and a loss of spanwise vorticity magnitude.
In the LCS analysis, it is clear that this transition of the wake coincides in space
and time with a bifurcation of the dynamical systems structure as two nearby time-
dependent saddle points seemingly merge. A more exact description of this event and
the associated flow physics will be facilitated by the solution of the three-dimensional
velocity fields, additional downstream data which will improve the calculation of the
pLCS, and implementation of methods to extract LCS curves from DLE fields.

96



It is important to point out that while LCS has distinct advantages over commonly
used Eulerian criteria, there are a number of factors that suggest that LCS is best
used in concert with other methods of analysis. DLE calculations involve a greater
computational cost and require additional data upstream and downstream of the
region of interest, as well as forward and backward in time. It would be sensible to
focus the DLE calculation on those regions of the flow in which structures of interest
are known to exist. Eulerian criteria, which are calculated using spatial derivatives of
the velocity field, are quickly computed and can be used to guide the implementation
of the LCS analysis. Furthermore, while the strength of the vortical structures may
be inferred from the dynamics of the LCS, the magnitude of Eulerian criteria provide
an immediate measure of the relative strength of vortices.

6.1.2 Three-dimensionality

The flow fields around simple, unsteady rigid propulsors are shown to be highly
three-dimensional, and the three-dimensional effects can hurt performance. In § 4.1.3
measured quantities such as pressure, time-averaged thrust, and spanwise circulation
of vortices in the wake of a rigid rectangular panel are shown to vary not only with
Strouhal number, which takes unsteady and inertial effects into account, but also
with pitching amplitude and aspect ratio. An additional nondimensional scaling
based on the ratio of amplitude to span, which are paramaters associated with the
three-dimensionality of the flow, neatly collapses these quantities.

Visualizations of the wake using isocontours of spanwise vorticity show a span-
wise compression of the wake as the vortical structures move downstream from the
panel trailing edge. Also, within the wake, the transverse alignment of the vortices
changes away from the midspan. Specifically, in the case of the trapezoidal panel
pitching at St = 0.55, near the midspan vortices are aligned such that induced flow
between consecutive vortex pairs is directed downstream, adding momentum to the
wake and indicating production of thrust. Away from the midspan, vortices drift in
the transverse direction. Close to the tips, this results in the induced velocity from
vortex pairs directed upstream, indicating a momentum deficit and drag on the panel.
These observations are consistent with those in § 4.1.3 where it was shown that at one
Strouhal number, an increase in three-dimensionality caused by a decrease in aspect
ratio decreases the thrust production.

6.1.3 Trapezoidal planform geometry

Rigid pitching panels of trapezoidal planform geometry are studied to explore the ef-
fects of the angled spanwise edge commonly seen in fish caudal fins used in thunniform
or ostraciiform locomotion. In flow visualization results, coherent structure generation
is observed along the swept edge. For large sweep angles or large freestream veloci-
ties (low St), the swept edge structures generated in one half-cycle convect away from
the edge and remain trapped on one side of the panel, eventually interacting with
the spanwise vorticity from the trailing edge. An LCS analysis provided preliminary
evidence to support to the existence of these “trapped” structures.
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At higher Strouhal numbers or lower sweep angles, the edge distance of the struc-
ture in the subsequent half-cycle is relatively small, and the structure continually
interacts with the swept edge and not retain coherence.

Because the trapped structures are rolling up along the swept edge, they contain
components of both streamwise and spanwise vorticity. Transverse vorticity is as-
sumed to be small for the low pitching amplitudes studied here. In figure 6.1, we
provide a sketch of a possible benefit of the trapped structure phenomenon. Close
to the spanwise tip of the panel, the trapped structure created in one half-cycle is
expected to interact with the vorticity being shed by the trailing edge in the next half-
cycle. If this is true, this is a like-sign interaction which may strengthen the spanwise
vortical structures near the tip, and possibly buffer the wake from three-dimensional
effects. Oshima & Natsume (1980), Freymuth (1988), and Anderson et al. (1998)
observed this amalgamation of vorticity from both the leading and trailing edges of
pitching and heaving airfoils, and proposed that it led to higher thrust production
and efficiency. In the case of pitching swept edge panels, it could possibly explain why
the spanwise compression of the wake observed in § 5.2.1 is exaggerated at St = 0.55,
when trapping was not observed.

(a) (b)

Figure 6.1: Proposed schematic of swept edge structure dynamics in the trapping
situation. (a) As panel pitches into the page, a negative spanwise vortex is shed from
the trailing edge, while a swept edge structure (bold) with components in the positive
streamwise direction and positive spanwise direction. (b) In the next half-cycle as
the panel pitches out of the page, the swept edge structure undergoes a like-sign
interaction with the positive spanwise vortex being shed from the trailing edge. The
swept edge structure forming on the far side of the panel is indicated by a dotted line.
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Further work is needed to confirm the trapped structures’ existence and signifi-
cance, as described in the next section. The phenomenon could provide an explanation
to why fish caudal fins have evolved to this shape, and an incentive to use similar
shapes in engineering design. In addition, a trapezoidal planform geometry with with
a trailing edge notch, as shown in figure 6.2 may enhance this effect, and could be
studied in future work as well.

Figure 6.2: Schematic of trapezoidal panel geometry with trailing edge notch.

6.2 Future work

• 3D velocity By using the principle of continuity in an incompressible flow
(∇ · u = 0), we can solve for the spanwise derivative of the out of plane veloc-
ity, ∂w

∂z
. The spanwise extent of the DPIV data around the trapezoidal panel

extends into the freestream, where an assumption of w = 0 at the spanwise
boundary is acceptable. Therefore, it should be possible to solve for the out of
plane velocity by numerically integrating ∂w

∂z
. Once the fully three dimensional

velocity field is acquired the LCS analysis will be recomputed to more precisely
investigate the three-dimensional effect and the phenomenon of trapped swept
edge structures. Alternatively, stereoscopic or tomographic PIV could be used
in future experiments to measure all three components of velocity.

• Downstream data As mentioned in § 5.2.2 and § 6.1.1, plots of positive-time
DLE do not yield sharp LCS ridges in the downstream half of the field, due
to the lack of velocity information downstream of the DPIV data set. Un-
fortunately, this effect on the pLCS coincides with the dynamically significant
saddle-point bifurcation at St = 0.55. An additional volume of data acquired
downstream is desired in order to conduct a more complete LCS analysis of the
transition/bifurcation, and could be acquired with the current experimental
setup by positioning the pitching apparatus further upstream.
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• LCS extraction LCS are plotted in this work as though regions of the DLE
field which a relatively high threshold of DLE is exceeded. In Lekien et al.
(2007), a method to mathematically extract these regions (“ridges”) is provided.
Future work that looks to use LCS as a quantitative tool to identify and track
coherent structures, will involve the implementation of this method to facilitate
visualization and location of LCS in complicated fluid flows.

• Performance measurements Direct thrust and efficiency measurements are
desired to directly associate wake characteristics with propulsive performance.

• Future experiments In the course of describing the full flow physics of these
simple rigid propulsors, we are creating a framework in which to compare similar
unsteady flow fields of increasing complexity. Relative benefits and disadvan-
tages of different planform geometries (such as a notched trailing edge), large
pitching amplitudes, flexibility, and multiple fin interactions may be assessed
more readily. The effects of incoming flow fields, such as those from the wakes
of other fish, can also be explored, and may lead to insights into phenomena
such as fish schooling.

• Design and control implications A clear understanding of the three-dimensional
effects in these flows could provide ways to improve design of both underwater
vehicles and their controls systems. Body shapes and control inputs that affect
the flow by mitigating three-dimensional effects may be especially useful.
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Appendix A

Accelerated DLE calculation

The periodicity of the DPIV velocity fields was exploited to reduce the computation
time of the DLE calculations. Typically, DLE fields are computed by intializing
particle trajectories on a user defined grid. The trajectories are then advected in
time using a Runge-Kutta fourth-order integration scheme (RK4), which numerically
solves the ordinary differential equation,

ẋ = u(x(t), t), (A.1)

where u is the Eulerian velocity field obtained either numerically, as in § 2.3, or
experimentally, as in § 5.2.2. The stability of the RK4 scheme was established by
decreasing step size until the results converged.

Integrated trajectories define a flow map, which takes a location x at time t and
maps its location after an integration time T ,

Φt+T
t : x(t) 7→ x(t + T ) (A.2)

The flow map can also be written as a composition of k smaller consecutive flow
maps of uniform integration time T/k,

Φt+T
t = Φt+T

t+
(k−1)T

k

◦ Φ
t+

(k−2)T
k

t+
(k−1)T

k

◦ · · · ◦ Φ
t+ 2T

k

t+T
k

◦ Φ
t+T

k
t . (A.3)

The method to speed up the DLE calculation was taken from Brunton & Rowley
(2009). Using the twenty-five phase-averaged DPIV velocity data sets that span the
pitching period, we compute a series of twenty-five flow maps (Φ

ti+1

ti , i = 0, 1, ..., 24)
on the uniform grids on which we are computing DLE. Each flow map is defined at a
time ti that coincides with one of the twenty-five phase-averaged data sets. Therefore,
the integration time of each flow map, ti+1 − ti = 1/(25f), where 1/f is the pitching
period. For the DLE field at t = t0, we integrate the field of trajectories by,

Φ
2/f
t0 = Φt24

t23 ◦ Φt23
t22 · · ·Φ

t1
t0 ◦ Φt0

t24 · · ·Φ
t2
t1 ◦ Φt1

t0 (A.4)

Consider a trajectory initialized at point (x0, y0, z0) at time t0. Its location in space
at time t1 is given by (x1, y1, z1) = Φt1

t0(x0, y0, z0). To calculate its location at time t2,
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we use the flow map Φt2
t1 . We calculate all the intermediate flow maps ahead of time,

so we already have Φt2
t1 defined on the grid on which DLE is being computed. Using

the eight nearest neighbors on that grid to the point (x1, y1, z1), we use a three-
dimensional linear interpolation scheme to compute Φt2

t1(x1, y1, z1). This process is
repeated until the desired integration time is reached.

For the DLE results reported in § 5.2.2, 2000 integration steps were used for an
integration time of two pitching periods (2/f). To implement the new algorithm,
an initial computational investments of 1000 integration steps is necessary, but each
subsequent DLE calculation involves of only 50 interpolation steps. The interpo-
lation schemes consists of fewer computations than the integration schemes, so the
new algorithm offers at least a 40 fold computational time savings after the initial
investment.

One drawback to the new method is an increase in error. The error of the inter-
polation is on the order of (∆xDLE)2. However, it should be noted for the results
reported in this work, the DLE spatial resolution is greater than that of the velocity
data, such that ∆xDLE = ∆xDPIV /6.
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Appendix B

DLE program

B.1 Fortran90 code to compute DLE

B.1.1 Main program to compute DLE in turbulent channel

program dleprog
use grid
use intsubs
use trajsubs
use inout
implicit none
integer :: n,m,i,j,k,t,tjump
real, dimension(:,:,:,:), allocatable :: vel, traj
real, dimension(:,:,:), allocatable :: dle

! Read input variables
call initialize
! Allocate data velocity variables
call velsmem
! Set up data and DLE grids
call setup_grid

allocate(dle(ox,oy,oz))
allocate(vel(ox,oy,oz,3))
allocate(traj(ox,oy,oz,3))

do tstart = 0,tend

tjump = 0

! Initialize DLE variables on the DLE grid
call setup_traj(traj)

forall(i=1:ox, j=1:oy, k=1:oz)
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dle(i,j,k) = 0.
end forall

! Initialize two sets of data velocity arrays between
! which to interpolate
call readdata(nstart+(tjump*irestart))

forall(i=1:nx,j=1:ny,k=1:nz)
u1(i,j,k) = u(i,j,k)
v1(i,j,k) = v(i,j,k)
w1(i,j,k) = w(i,j,k)

end forall

call readdata(nstart+((tjump+(dir*1))*irestart))

! Start DLE integration
do t=0,int((inttime/(delta)))

print *, t, int((inttime/(delta))), abs((dir*t)*delta), &
&abs(irestart*(tjump+(dir*1))*delt)

! If current timestep is no longer between two velocity arrays,
! must update arrays
if(abs((dir*t)*delta).gt.abs(irestart*(tjump+(dir*1))*delt))then

tjump = tjump+(dir*1)

forall(i=1:nx,j=1:ny,k=1:nz)
u1(i,j,k) = u(i,j,k)
v1(i,j,k) = v(i,j,k)
w1(i,j,k) = w(i,j,k)

end forall

call readdata(nstart+((tjump+(dir*1))*irestart))

endif

! Interpolate in time to a velocity grid
call velst(dir*t, tjump)
! Interpolate velocity in space from data grid to current location
! of DLE trajectories
call step_vels_dis(dir*t,vel,traj)
! Use updated velocity on at DLE points to step forward in time
call step_traj_dis(dir*t,tjump,vel,traj)

! Output routines
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if(t.eq.0) then
call writemesh

elseif(mod(t,iplt).eq.0) then
dle = dle_calc(t, traj)
call writedle(dle, vel,t)

end if
end do

! If cinematic loop being used
nstart = nstart + int(tinc/delt)
if(mod(nstart,2).gt.0) nstart = nstart+1

end do

print *, ’program finished!’

deallocate(vel,traj,dle,u,v,w,u1,v1,w1,velt,x,y,z,x1,y1,z1)

call cleanup_grid

end program dleprog

B.1.2 Supporting modules

module grid
real, dimension(:), allocatable :: x,y,z,x1,y1,z1
integer :: ox, oy, oz
integer :: oxm, oym, ozm
integer :: oxs=1,oys=1,ozs=1
integer :: nx, ny, nz, nxa, nya, nza
integer :: nstart,irestart, tstart, tend, dir
integer :: wherecut
real :: xrat, yrat, zrat
real :: tinc, delta, inttime, pi
real :: xscale, yscale, zscale
integer :: xstart, ystart, zstart
character(64) :: outname
integer :: re,nsteps,iplt
real :: lx,lz,delx,delz, delt
character(125) :: idir, odir

namelist /inputdata/ nx, ny, nz, lx, lz, re, delt, nstart, nsteps, &
irestart, iplt, idir, odir, &
tend, tinc, delta, inttime, outname, xscale, yscale, zscale, &
oxm, oym, ozm, wherecut, xrat, yrat, zrat, xstart, ystart, zstart, &
dir
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contains

subroutine setup_grid
implicit none
integer :: j, status
character(1) :: hi
real :: dx, dy, dz
real :: dx1, dy1, dz1
character (125) fname
integer*4 :: hi1, hi2, hi3
real*4, dimension(nx,0:ny-1,nz) :: xtemp, ytemp, ztemp
integer, parameter :: fp=67
integer :: i,k

allocate(x(nx),y(ny),z(nz))
allocate(x1(ox),y1(oy),z1(oz))

pi = 4*atan(1.0)

! velocity grid -- can get from dataset

fname=trim(idir)//’/grid.dat’
print *,’== Reading mesh file: ’// trim(fname)
open(unit=fp, file=trim(fname), status="old", form="unformatted", &

iostat=status)
! print *, ’file opened’
if (status .ne. 0) then

print *,"Error: could not open "//trim(fname)//" for reading.", status
stop

end if

read(fp) hi, hi2, hi3
read(fp) (((xtemp(i,j,k),i=1,nx),j=0,ny-1),k=1,nz), &

(((ytemp(i,j,k),i=1,nx),j=0,ny-1),k=1,nz), &
(((ztemp(i,j,k),i=1,nx),j=0,ny-1),k=1,nz)

close(fp)

do j=1,nx
x(j) = real(xtemp(j,1,1), 8)

end do
do j=1,ny

y(j) = real(ytemp(1,j-1,1), 8)
end do
do j=1,nz

z(j) = real(ztemp(1,1,j), 8)
end do
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dx1=abs((lx*2*pi)/xrat/((float(nx)*xscale)))
dy1=abs(y(ny)-y(1))/yrat/((float(ny-1)*yscale))
dz1=abs((lz*2*pi)/zrat/((float(nz)*zscale)))

! trajectory grid -- base on factor of resolution,
! startpoints, and fraction of domain

if(x(nx).gt.x(1))then
do j=1,ox

x1(j) = x(1) + ((j-1)*dx1) + x(xstart)
end do

else
do j=1,ox

x1(j) = x(nx) + ((j-1)*dx1) + x(xstart)
end do

end if

if(y(ny).gt.y(1)) then
do j=1,oy

y1(j) = y(1) + ((j-1)*dy1) + y(ystart)
end do

else
do j=1,oy

y1(j) = y(ny) + ((j-1)*dy1) + y(ystart)
end do

end if

if(z(nz).gt.z(1)) then
do j=1,oz

z1(j) = z(1) + ((j-1)*dz1) + z(zstart)
end do

else
do j=1,oz

z1(j) = z(nz) + ((j-1)*dz1) + z(zstart)
end do

end if

! 2D cuts
if(oxm.eq.1.and.ox.eq.5)then

do j=1,ox
x1(j) = x(wherecut) + (dx1*(j-3))

end do
print *, ’constant streamwise plane centered at x of ’, x1(3)
print *, ’requested plane at i=’, wherecut, ’, where x=’, x(wherecut)

elseif(oxm.eq.1.and.wherecut.eq.nx)then
do j=1,ox

x1(j) = x(wherecut) + (dx1*(j-3))
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end do
print *, ’constant streamwise plane centered at x of ’, x1(3)
print *, ’requested plane at i=’, wherecut, ’, where x=’, x(wherecut)

elseif(oxm.eq.1.and.wherecut.eq.1)then
do j=1,ox

x1(j) = x(wherecut) + (dx1*(j-1))
end do
print *, ’constant streamwise plane centered at x of ’, x1(1)
print *, ’requested plane at i=’, wherecut, ’, where x=’, x(wherecut)

endif

if(oym.eq.1.and.oy.eq.5)then
do j=1,oy

y1(j) = y(wherecut) + (dy1*(j-3))
end do
print *, ’constant spanwise plane centered at y of ’, y1(3)
print *, ’requested plane at j=’, wherecut, ’, where y=’, y(wherecut)

elseif(oym.eq.1.and.wherecut.eq.ny)then
do j=1,oy

y1(j) = y(wherecut) + (dy1*(j-3))
end do
print *, ’constant spanwise plane centered at y of ’, y1(3)
print *, ’requested plane at j=’, wherecut, ’, where y=’, y(wherecut)

elseif(oym.eq.1.and.wherecut.eq.1)then
do j=1,oy

y1(j) = y(wherecut) + (dy1*(j-1))
end do
print *, ’constant streamwise plane centered at y of ’, y1(1)
print *, ’requested plane at j=’, wherecut, ’, where y=’, y(wherecut)

endif

if(ozm.eq.1.and.oz.eq.5)then
do j=1,oz

z1(j) = z(wherecut) + (dz1*(j-3))
end do
print *, ’constant spanwise plane centered at z of ’, z1(3)
print *, ’requested plane at k=’, wherecut, ’, where z=’, z(wherecut)

elseif(ozm.eq.1.and.wherecut.eq.nz)then
do j=1,oz

z1(j) = z(wherecut) + (dz1*(j-3))
end do
print *, ’constant spanwise plane centered at z of ’, z1(3)
print *, ’requested plane at k=’, wherecut, ’, where z=’, z(wherecut)

elseif(ozm.eq.1.and.wherecut.eq.1)then
do j=1,oz

z1(j) = z(wherecut) + (dz1*(j-1))
end do
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print *, ’constant streamwise plane centered at z of ’, z1(1)
print *, ’requested plane at k=’, wherecut, ’, where z=’, z(wherecut)

endif

end subroutine setup_grid

subroutine initialize
implicit none
integer :: status
integer :: fp=310

open(unit=fp, file="channel.inp", status="old", iostat=status)

print *, "Reading channel.inp..."
read(unit=fp, nml=inputdata)

close(fp)

! Set ox, oy, oz in the cases that there is a 2D cut
if(oxm.eq.1)then

oxs = int(wherecut*int(xscale*nx))
oy = int(yscale*ny)
oz = int(zscale*nz)
oym=oy
ozm=oz

if(oxs.eq.1 .or. oxs.eq.xscale*nx)then
ox=3

else
ox=5

endif

elseif(oym.eq.1)then
oys = int(wherecut*int(yscale*ny))
ox = int(xscale*nx)
oz = int(zscale*nz)
oxm=ox
ozm=oz

if(oys.eq.1 .or. oys.eq.yscale*ny)then
oy=3

else
oy=5

endif

elseif(ozm.eq.1)then
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ozs = int(wherecut*int(zscale*nz))
ox = int(xscale*nx)
oy = int(yscale*ny)
oxm=ox
oym=oy

if(ozs.eq.1 .or. ozs.eq.zscale*nz)then
oz=3

else
oz=5

endif

else

ox = int(xscale*nx)
oy = int(yscale*ny)
oz = int(zscale*nz)
oxm = ox
oym = oy
ozm = oz

endif

print *, "nx = ", nx, "ox = ", ox
print *, "ny = ", ny, "oy = ", oy
print *, "nz = ", nz, "oz = ", oz

end subroutine initialize

subroutine cleanup_grid
implicit none
deallocate(x,y,z)

end subroutine cleanup_grid

end module grid

module intsubs
use grid
use inout
implicit none
real, dimension(:,:,:,:), allocatable :: velt

contains

subroutine velsmem
implicit none
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allocate(u(nx,ny,nz), v(ny,ny,nz), w(nx,ny,nz), u1(nx,ny,nz), &
v1(nx,ny,nz), w1(nx,ny,nz), velt(nx,ny,nz,3))

end subroutine velsmem

subroutine step_vels_dis(t,vel,traj)
implicit none
integer, intent(in) :: t
real, dimension(ox,oy,oz,3), intent(inout) :: vel
real, dimension(ox,oy,oz,3), intent(in) :: traj
integer, dimension(3) :: spos
integer :: i,j,k,m

do i=1,ox
do j=1,oy

do k=1,oz

spos = getbound(traj(i,j,k,:))

vel(i,j,k,1) = interp3d(spos, traj(i,j,k,:), getcube(spos, velt(:,:,:,1)))
vel(i,j,k,2) = interp3d(spos, traj(i,j,k,:), getcube(spos, velt(:,:,:,2)))
vel(i,j,k,3) = interp3d(spos, traj(i,j,k,:), getcube(spos, velt(:,:,:,3)))

end do
end do

end do

end subroutine step_vels_dis

subroutine step_traj_dis(t,tjump,vel,traj)
implicit none
integer, intent(in) :: t,tjump
real, dimension(ox,oy,oz,3), intent(in) :: vel
real, dimension(ox,oy,oz,3), intent(inout) :: traj
real, dimension(nx,ny,nz,3) :: midv,endv
real, dimension(3) :: loc
integer, dimension(3) :: spos
integer :: i,j,k,m
real :: k1x,k1y,k1z,k2x,k2y,k2z,k3x,k3y,k3z,k4x,k4y,k4z

! Set up midpoint and endpoint velocity values needed for RK4 integration
do i=1,nx

do j=1,ny
do k=1,nz
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midv(i,j,k,1) = interp(tjump*irestart*delt,(tjump+1)*irestart*delt, &
& u1(i,j,k), u(i,j,k), (t+(dir*.5))*delta)
midv(i,j,k,2) = interp(tjump*irestart*delt,(tjump+1)*irestart*delt, &
& v1(i,j,k), v(i,j,k), (t+(dir*.5))*delta)
midv(i,j,k,3) = interp(tjump*irestart*delt,(tjump+1)*irestart*delt, &
& w1(i,j,k), w(i,j,k), (t+(dir*.5))*delta)

endv(i,j,k,1) = interp(tjump*irestart*delt,(tjump+1)*irestart*delt, &
& u1(i,j,k), u(i,j,k), (t+(dir*1))*delta)
endv(i,j,k,2) = interp(tjump*irestart*delt,(tjump+1)*irestart*delt, &
& v1(i,j,k), v(i,j,k), (t+(dir*1))*delta)
endv(i,j,k,3) = interp(tjump*irestart*delt,(tjump+1)*irestart*delt, &
& w1(i,j,k), w(i,j,k), (t+(dir*1))*delta)

end do
end do

end do

! RK 4
do i=1,ox

do j=1,oy
do k=1,oz

k1x = dir*vel(i,j,k,1)*delta
k1y = dir*vel(i,j,k,2)*delta
k1z = dir*vel(i,j,k,3)*delta

loc(1) = traj(i,j,k,1)+(k1x/2)
loc(2) = traj(i,j,k,2)+(k1y/2)
loc(3) = traj(i,j,k,3)+(k1z/2)

spos = getbound(loc)

k2x = dir*delta*interp3d(spos, loc, getcube(spos, midv(:,:,:,1)))
k2y = dir*delta*interp3d(spos, loc, getcube(spos, midv(:,:,:,2)))
k2z = dir*delta*interp3d(spos, loc, getcube(spos, midv(:,:,:,3)))

loc(1) = traj(i,j,k,1)+(k2x/2)
loc(2) = traj(i,j,k,2)+(k2y/2)
loc(3) = traj(i,j,k,3)+(k2z/2)

spos = getbound(loc)

k3x = dir*delta*interp3d(spos, loc, getcube(spos, midv(:,:,:,1)))
k3y = dir*delta*interp3d(spos, loc, getcube(spos, midv(:,:,:,2)))
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k3z = dir*delta*interp3d(spos, loc, getcube(spos, midv(:,:,:,3)))

loc(1) = traj(i,j,k,1)+(k3x)
loc(2) = traj(i,j,k,2)+(k3y)
loc(3) = traj(i,j,k,3)+(k3z)

spos = getbound(loc)

k4x = dir*delta*interp3d(spos, loc, getcube(spos, endv(:,:,:,1)))
k4y = dir*delta*interp3d(spos, loc, getcube(spos, endv(:,:,:,2)))
k4z = dir*delta*interp3d(spos, loc, getcube(spos, endv(:,:,:,3)))

traj(i,j,k,1) = traj(i,j,k,1) + k1x/6 + k2x/3 + k3x/3 + k4x/6
traj(i,j,k,2) = traj(i,j,k,2) + k1y/6 + k2y/3 + k3y/3 + k4y/6
traj(i,j,k,3) = traj(i,j,k,3) + k1z/6 + k2z/3 + k3z/3 + k4z/6

end do
end do

end do

end subroutine step_traj_dis

function interp(a1,a2,b1,b2,am) result(bm)
implicit none
real, intent(in) :: a1,a2,am
real, intent(in) :: b1,b2
real :: bm

bm = b2 + ((b1-b2)*(am-a2)/(a1-a2))

end function interp

function interp3d(spos,loc,cube3d) result(yea)
implicit none
integer, dimension(3), intent(in) :: spos
real, dimension(3), intent(in) :: loc
real, dimension(2,2,2), intent(in) :: cube3d
real :: yea
real :: xp, yp, zp
real :: fx1y1,fx1y2,fx2y1,fx2y2,fx1,fx2

xp = loc(1)
yp = loc(2)
zp = loc(3)

! If the current location is out of the domain, brings it back
! into the domain using the spanwise and streamwise
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! periodicity. If it has gone through the walls, just
! puts the points on the wall exactly.
if(x(nx).gt.x(1)) then

15 if(xp.gt.x(nx)) then
xp = xp - abs(x(nx)-x(1))
goto 15

endif
25 if(xp.lt.x(1)) then

xp = xp + abs(x(nx)-x(1))
goto 25

endif
else

75 if(xp.gt.x(1)) then
xp = xp - abs(x(nx)-x(1))
goto 75

endif
85 if(xp.lt.x(nx)) then

xp = xp + abs(x(nx)-x(1))
goto 85

endif
endif

if(y(ny).gt.y(1)) then
if(yp.ge.y(ny)) then

yp = y(ny)
endif
if(yp.le.y(1)) then

yp = y(1)
endif

else
if(yp.ge.y(1)) then

yp = y(1)
endif
if(yp.le.y(ny)) then

yp = y(ny)
endif

endif

if(z(nz).gt.z(1)) then
55 if(zp.gt.z(nz)) then

zp = zp - abs(z(nz)-z(1))
goto 55

endif

65 if(zp.lt.z(1)) then
zp = zp + abs(z(nz)-z(1))
goto 65
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endif
else

115 if(zp.gt.z(1)) then
zp = zp - abs(z(nz)-z(1))
goto 115

endif
125 if(zp.lt.z(nz)) then

zp = zp + abs(z(nz)-z(1))
goto 125

endif
endif

!interpolate along corner lines of 3d cube

fx1y1 = interp(z(spos(3)), z(spos(3)+1), cube3d(1,1,1), cube3d(1,1,2), zp)
fx1y2 = interp(z(spos(3)), z(spos(3)+1), cube3d(1,2,1), cube3d(1,2,2), zp)
fx2y1 = interp(z(spos(3)), z(spos(3)+1), cube3d(2,1,1), cube3d(2,1,2), zp)
fx2y2 = interp(z(spos(3)), z(spos(3)+1), cube3d(2,2,1), cube3d(2,2,2), zp)

!interpolate the x = x1 and the x = x2 faces

fx1 = interp(y(spos(2)), y(spos(2)+1), fx1y1, fx1y2, yp)

fx2 = interp(y(spos(2)), y(spos(2)+1), fx2y1, fx2y2, yp)

!interpolate between the two faces to get the final data point

yea = interp(x(spos(1)), x(spos(1)+1), fx1, fx2, xp)

end function interp3d

function getcube(spos,thing) result(cube)
implicit none
integer, dimension(3), intent(in) :: spos
real, dimension(nx,ny,nz), intent(in) :: thing
real, dimension(2,2,2) :: cube

!obtain cube of 8 data points to pass to interp3d
cube(1,1,1) = thing(spos(1),spos(2),spos(3))
cube(1,2,1) = thing(spos(1),spos(2)+1,spos(3))
cube(2,1,1) = thing(spos(1)+1,spos(2),spos(3))
cube(2,2,1) = thing(spos(1)+1,spos(2)+1,spos(3))
cube(1,1,2) = thing(spos(1),spos(2),spos(3)+1)
cube(1,2,2) = thing(spos(1),spos(2)+1,spos(3)+1)
cube(2,1,2) = thing(spos(1)+1,spos(2),spos(3)+1)
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cube(2,2,2) = thing(spos(1)+1,spos(2)+1,spos(3)+1)

end function getcube

function getbound(loc) result(spos)
implicit none
real, dimension(3), intent(in) :: loc
integer, dimension(3) :: spos
real :: xp, yp, zp
integer :: j

spos(1) = nx-1
spos(2) = ny-1
spos(3) = nz-1

xp = loc(1)
yp = loc(2)
zp = loc(3)

! Need to make sure that the points are still in the domain, otherwise
! take care of them (here, by imposing periodic conditions in x- and
! z- directions, and just stick to the wall in y

if(x(nx).ge.x(1)) then
15 if(xp.gt.x(nx)) then

xp = xp - abs(x(nx)-x(1))
goto 15

endif
25 if(xp.lt.x(1)) then

xp = xp + abs(x(nx)-x(1))
goto 25

endif
else

75 if(xp.gt.x(1)) then
xp = xp - abs(x(nx)-x(1))
goto 75

endif
85 if(xp.lt.x(nx)) then

xp = xp + abs(x(nx)-x(1))
goto 85

endif
endif

if(y(ny).gt.y(1)) then
if(yp.ge.y(ny)) then
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yp = y(ny)
endif
if(yp.le.y(1)) then

yp = y(1)
endif

else
if(yp.ge.y(1)) then

yp = y(1)
endif
if(yp.le.y(ny)) then

yp = y(ny)
endif

endif

if(z(nz).gt.z(1)) then
55 if(zp.gt.z(nz)) then

zp = zp - abs(z(nz)-z(1))
goto 55

endif
65 if(zp.lt.z(1)) then

zp = zp + abs(z(nz)-z(1))
goto 65

endif
else

115 if(zp.gt.z(1)) then
zp = zp - abs(z(nz)-z(1))
goto 115

endif
125 if(zp.lt.z(nz)) then

zp = zp + abs(z(nz)-z(1))
goto 125

endif
endif

! Go through data arrays to find indices corresponding to a bounding
! cube around current location of DLE trajectory
if(x(nx).gt.x(1))then

do j=1,nx
if(xp.lt.x(j)) then

spos(1) = j-1
exit

end if
end do
if(spos(1).eq.0) spos(1)=1

else
do j=1,nx
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if(xp.gt.x(j)) then
spos(1) = j-1
exit

end if
end do
if(spos(1).eq.0) spos(1)=1

end if

if(y(ny).gt.y(1))then
do j=1,ny

if(yp.lt.y(j)) then
spos(2) = j-1
exit

end if
end do
if(spos(2).eq.0) spos(2)=1

else
do j=1,ny

if(yp.gt.y(j)) then
spos(2) = j-1
exit

end if
end do
if(spos(2).eq.0) spos(2)=1

end if

if(z(nz).gt.z(1))then
do j=1,nz

if(zp.lt.z(j)) then
spos(3) = j-1
exit

end if
end do
if(spos(3).eq.0) spos(3)=1

else
do j=1,nz

if(zp.gt.z(j)) then
spos(3) = j-1
exit

end if
end do
if(spos(3).eq.0) spos(3)=1

end if

end function getbound
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subroutine velst(t,tjump)
implicit none
integer, intent(in) :: t,tjump
integer :: i,j,k

do i=1,nx
do j=1,ny

do k=1,nz

velt(i,j,k,1) = interp(tjump*irestart*delt,(tjump+(dir*1)) &
& *irestart*delt, u1(i,j,k), u(i,j,k), t*delta)
velt(i,j,k,2) = interp(tjump*irestart*delt,(tjump+(dir*1)) &
& *irestart*delt, v1(i,j,k), v(i,j,k), t*delta)
velt(i,j,k,3) = interp(tjump*irestart*delt,(tjump+(dir*1)) &
& *irestart*delt, w1(i,j,k), w(i,j,k), t*delta)

end do
end do

end do

end subroutine velst

end module intsubs

module trajsubs
use grid
implicit none

contains

subroutine setup_traj(traj)
implicit none
real, dimension(ox,oy,oz,3), intent(inout) :: traj
integer :: i,j,k

do i=1,ox
do j=1,oy

do k=1,oz

traj(i,j,k,1) = x1(i)
traj(i,j,k,2) = y1(j)
traj(i,j,k,3) = z1(k)

end do
end do

end do
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end subroutine setup_traj

function dle_calc(num,traj) result(dle)
implicit none
integer :: num
real, dimension(ox,oy,oz,3) :: traj
real, dimension(ox,oy,oz) :: dle
real, dimension(3) :: xa,xb,xc,ya,yb,yc,za,zb,zc, st9
real :: xoa,xob,xoc,yoa,yob,yoc,zoa,zob,zoc
integer :: i,j,k

! Setup finite difference scheme -- don’t actually use xb, yb, zb
! anymore, since use a central different scheme.
do i=1,ox

do j=1,oy
do k=1,oz

if(i.eq.1)then
xa = traj(i,j,k,:)
xb = traj(i,j,k,:)
xc = traj(i+1,j,k,:)
xoa = x1(i)
xob = x1(i)
xoc = x1(i+1)

elseif(i.eq.ox)then
xa = traj(i-1,j,k,:)
xb = traj(i,j,k,:)
xc = traj(i,j,k,:)
xoa = x1(i-1)
xob = x1(i)
xoc = x1(i)

else
xa = traj(i-1,j,k,:)
xb = traj(i,j,k,:)
xc = traj(i+1,j,k,:)
xoa = x1(i-1)
xob = x1(i)
xoc = x1(i+1)

end if

if(j.eq.1)then
ya = traj(i,j,k,:)
yb = traj(i,j,k,:)
yc = traj(i,j+1,k,:)
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yoa = y1(j)
yob = y1(j)
yoc = y1(j+1)

elseif(j.eq.oy)then
ya = traj(i,j-1,k,:)
yb = traj(i,j,k,:)
yc = traj(i,j,k,:)
yoa = y1(j-1)
yob = y1(j)
yoc = y1(j)

else
ya = traj(i,j-1,k,:)
yb = traj(i,j,k,:)
yc = traj(i,j+1,k,:)
yoa = y1(j-1)
yob = y1(j)
yoc = y1(j+1)

end if

if(k.eq.1)then
za = traj(i,j,k,:)
zb = traj(i,j,k,:)
zc = traj(i,j,k+1,:)
zoa = z1(k)
zob = z1(k)
zoc = z1(k+1)

elseif(k.eq.oz)then
za = traj(i,j,k-1,:)
zb = traj(i,j,k,:)
zc = traj(i,j,k,:)
zoa = z1(k-1)
zob = z1(k)
zoc = z1(k)

else
za = traj(i,j,k-1,:)
zb = traj(i,j,k,:)
zc = traj(i,j,k+1,:)
zoa = z1(k-1)
zob = z1(k)
zoc = z1(k+1)

end if

st9 = stretcher(xc, xa, yc, ya, zc, za, xoc, xoa, yoc, yoa, zoc, zoa)

dle(i,j,k) = Log(max(st9(1), st9(2), st9(3)))/(2*num*delta)

end do
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end do
end do

end function dle_calc

function stretcher(xd1,xd2,yd1,yd2,zd1,zd2,x01,x02,y01,y02,z01,z02)result(eigs)
implicit none
real, dimension(3), intent(in) :: xd1,xd2,yd1,yd2,zd1,zd2
real, intent(in) :: x01,x02,y01,y02,z01,z02
real, dimension(3,3) :: dlemat, mult
real, dimension(3) :: eigs
real :: orgp, orgq, tilq, orgr, tilr, discr, theta

! Set up Cauchy-Green strain tensor
dlemat(1,1) = (xd1(1)-xd2(1))/(x01-x02)
dlemat(2,1) = (xd1(2)-xd2(2))/(x01-x02)
dlemat(3,1) = (xd1(3)-xd2(3))/(x01-x02)

dlemat(1,2) = (yd1(1)-yd2(1))/(y01-y02)
dlemat(2,2) = (yd1(2)-yd2(2))/(y01-y02)
dlemat(3,2) = (yd1(3)-yd2(3))/(y01-y02)

dlemat(1,3) = (zd1(1)-zd2(1))/(z01-z02)
dlemat(2,3) = (zd1(2)-zd2(2))/(z01-z02)
dlemat(3,3) = (zd1(3)-zd2(3))/(z01-z02)

dlemat = matmul(transpose(dlemat), dlemat)

! Since dlemat is symmetric, all eigenvalues will be real
! Use algorithm from Ellen Taylor to calculate eigenvalues.
orgp = -( dlemat(1,1)+dlemat(2,2)+dlemat(3,3) )
mult = matmul(dlemat,dlemat)
orgq = 0.5*( orgp**2 - ( mult(1,1)+mult(2,2)+mult(3,3) ) )
tilq = orgq - orgp**2/3.
mult = matmul(mult,dlemat)
orgr = ( -orgp**3 + 3.*orgp*orgq - ( mult(1,1)+mult(2,2)+mult(3,3) ) )/3.
tilr = orgr + 2.*orgp**3/27. - orgp*orgq/3.

theta = acos( (-.5*tilr) / ((-1./3.)*tilq)**(1.5) )
eigs(1) = 2 * ((-1./3.)*tilq)**.5 * cos(theta/3.)
eigs(2) = 2 * ((-1./3.)*tilq)**.5 * cos((theta+(2*pi))/3.)
eigs(3) = 2 * ((-1./3.)*tilq)**.5 * cos((theta+(4*pi))/3.)

eigs(1) = eigs(1) - (1./3.)*orgp
eigs(2) = eigs(2) - (1./3.)*orgp
eigs(3) = eigs(3) - (1./3.)*orgp
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end function stretcher

end module trajsubs

module inout
use grid
implicit none
real, dimension(:,:,:), allocatable :: u,v,w
real, dimension(:,:,:), allocatable :: u1,v1,w1

contains

subroutine writedle(dle,vel, t)
! write a tecplot file
implicit none
integer :: ierr, npts
integer, parameter :: bufsize = 128, fp=10
real, dimension(ox,oy,oz), intent(in) :: dle
real, dimension(ox,oy,oz,3), intent(in) :: vel
integer, intent(in) :: t
character(40) :: fname
integer :: i,j,k

if(dir.lt.0) then
write(fname,’(a,i6.6,a,i6.6,a)’) trim(odir) // trim(outname) &
& // ’neg_’,nstart,"_",t,".dat"

else
write(fname,’(a,i6.6,a,i6.6,a)’) trim(odir) // trim(outname) &
& // ’pos_’,nstart,"_",t,".dat"

end if

print *, ’Writing data file ’, fname
open(24,file=trim(fname),form="unformatted")
write(24) ox,oy,oz,1
write(24) (((real(dle(i,j,k),4),i=1,ox),j=1,oy),k=1,oz)
close(24)

end subroutine writedle

subroutine writemesh

integer :: i,j,k

print *, ’Writing mesh file’
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open(31,file=trim(odir)//’/grid.dat’,form=’UNFORMATTED’)
write(31) ox,oy,oz
write(31)(((real(x1(i),4),i=1,ox),j=1,oy),k=1,oz),&

& (((real(y1(j),4),i=1,ox),j=1,oy),k=1,oz),&
& (((real(z1(k),4),i=1,ox),j=1,oy),k=1,oz)

close(31)

end subroutine writemesh

subroutine readdata(itime)
implicit none

integer, intent(in) :: itime
character(150) :: fname
integer, parameter :: fp=65
integer :: status, i, j, k
integer*4 :: hi, hi2, hi3, hi4
real*4, dimension(nx, ny, nz) :: u4, v4, w4

write(fname,’(a,i6.6,a)’) trim(idir) // "/chan", itime, ".dat"
print *,"Reading data file ",trim(fname)
open(unit=fp, file=trim(fname), status="old", form="unformatted", &

iostat=status)
! print *, ’file opened’
if (status .ne. 0) then

print *,"Error: could not open "//trim(fname)//" for reading.", status
stop

end if

read(fp) hi, hi2, hi3, hi4
read(fp) u4(:,:,:), v4(:,:,:), w4(:,:,:)
close(fp)

do i=1,nx
do j=1,ny

do k=1,nz
u(i,j,k) = real(u4(i,j,k), 8)
v(i,j,k) = real(v4(i,j,k), 8)
w(i,j,k) = real(w4(i,j,k), 8)

end do
end do

end do

end subroutine readdata

end module inout
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B.1.3 Main program to compute the intermediary flow maps
for the panel data

program intprog
use grid
use inout
use intsubs
implicit none
integer :: n,m,i,j,k,t,tjump,filenum
real, dimension(:,:,:,:), allocatable :: vel, traj
integer, dimension(:,:,:), allocatable :: timetraj

! Read input variables
call initialize
! Allocate data velocity variables
call velsmem
! Set up data and DLE grids
call setup_grid

allocate(timetraj(ox,oy,oz))
allocate(vel(ox,oy,oz,3))
allocate(traj(ox,oy,oz,3))

call writemesh

do tstart = 0,tend

tjump = 0

! Initialize DLE variables on the DLE grid
call setup_traj(traj)

forall(i=1:ox, j=1:oy, k=1:oz)
timetraj(i,j,k) = 0.

end forall

! Initialize two sets of data velocity arrays between
! which to interpolate
call readdata(nstart+(tjump*irestart))

forall(i=1:nx,j=1:ny,k=1:nz)
u1(i,j,k) = u(i,j,k)
v1(i,j,k) = v(i,j,k)
w1(i,j,k) = w(i,j,k)

end forall

filenum = nstart+((tjump+(dir*1))*irestart)
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if(filenum.lt.0) filenum = filenum+25
call readdata(filenum)

! Start DLE integration
do t=0,int((inttime/(delta)))-1

!print *, t, (dir*t)*delta, irestart*(tjump+(dir*1))*delt
! If current timestep is no longer between two velocity arrays,
! must update arrays
if(abs((dir*t)*delta).gt.abs(irestart*(tjump+(dir*1))*delt))then

tjump = tjump+(dir*1)

forall(i=1:nx,j=1:ny,k=1:nz)
u1(i,j,k) = u(i,j,k)
v1(i,j,k) = v(i,j,k)
w1(i,j,k) = w(i,j,k)

end forall

call readdata(nstart+((tjump+(dir*1))*irestart))

endif

! Interpolate in time to a velocity grid
call velst(dir*t, tjump)

! Interpolate velocity in space from data grid to current location
! of DLE trajectories
call step_vels_dis(dir*t,timetraj,vel,traj)

! Use updated velocity on at DLE points to step forward in time
call step_traj_dis(dir*t,tjump,vel,traj, timetraj)

end do

call writetraj(vel, timetraj, traj, t)

! If cinematic loop being used
nstart = nstart + ceiling(tinc/delt)
print *, ’nstart’, nstart, int(tinc/delt)

end do

print *, ’program finished!’

deallocate(vel,traj,u,v,w,u1,v1,w1,velt,x,y,z,x1,y1,z1)
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call cleanup_grid

end program intprog

B.1.4 Main program to compute DLE using a composition
of the intermediary flow maps

program dleprog
use grid
use inout
use intsubs
use trajsubs
implicit none
integer :: n,m,t
real, dimension(:,:,:,:), allocatable :: traj
real, dimension(:,:,:), allocatable :: dle
real, dimension(:,:,:), allocatable :: timetraj

! Read input variables
call initialize
! Allocate data velocity variables
! Set up data and DLE grids
call setup_grid

allocate(dle(ox,oy,oz))
allocate(trajin(ox,oy,oz,3), traj(ox,oy,oz,3))
allocate(timetraj(ox,oy,oz), timetrajin(ox,oy,oz))

call writemesh

do tstart = nstart,tend

forall(i=1:ox, j=1:oy, k=1:oz)
dle(i,j,k) = 0.
timetraj(i,j,k) = 0.
traj(i,j,k,1) = x1(i)
traj(i,j,k,2) = y1(j)
traj(i,j,k,3) = z1(k)

end forall

! Start DLE integration
do t=0,int(numper*inttime) -1

call read_traj((dir*t)+nstart, trajin, timetrajin)

call step_traj_dis(t, dir, traj, timetraj)

132



! Output routines

if(mod(t+1,numper).eq.0) then
dle = dle_calc(t+1, timetraj, traj)
call writedle(dle, timetraj, traj, t)

end if
end do

! If cinematic loop being used
nstart = nstart + 1
print *, ’nstart’, nstart

end do

print *, ’program finished!’

deallocate(traj,trajin, timetraj, timetrajin, dle,x1,y1,z1)

end program dleprog

B.2 Fortran90 code to compute hyperbolicity cri-

teria

B.2.1 Main program

program strain
use grid
use strainsubs
use velgradsubs
use inout
implicit none
real, dimension(:,:,:), allocatable :: dle
real, dimension(:,:,:,:), allocatable :: dlegrad
real, dimension(:,:,:,:,:), allocatable :: dlehess
real, dimension(:,:,:,:), allocatable :: dlenorm
real, dimension(:,:,:,:,:), allocatable :: gvel
real, dimension(:,:,:), allocatable :: strainprod
integer :: t, ios
character(150) :: fname

call setup_grid

allocate(dle(ox,oy,oz))
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allocate(dlegrad(ox,oy,oz,3))
allocate(dlehess(ox,oy,oz,3,3))
allocate(dlenorm(ox,oy,oz,3))
allocate(gvel(ox,oy,oz,3,3))
allocate(strainprod(ox,oy,oz))

do t=nstart,tend

print *, ’time to read data’
call readdle(dle, t)
print *, ’time for Hessian calculation’
call hesscalc(dle, dlehess)
print *, ’time for norm calculation’
call normcalc(dlehess, dlenorm)

print *, ’hold breath, time for velocity gradient’
call velst(gvel, t)
print *, ’time for strain calculation’
strainprod = strainprodcalc(dlenorm, gvel)

call writestrain(strainprod, dle, t)

end do

deallocate(dle, dlegrad, dlehess, dlenorm, gvel, strainprod)

end program strain

B.2.2 Supporting modules

module grid
real, dimension(:), allocatable :: x,y,z,x1,y1,z1
integer :: ox, oy, oz, i, j, k
integer :: nx, ny, nz
integer*4 :: ox4,oy4,oz4,nx4,ny4,nz4
integer :: nstart, dlesteps, tend
character(100) :: odir, chandir, dledir, dlename

namelist /inputdata/ nstart, tend, odir, chandir, dledir, &
dlename, dlesteps

contains

subroutine setup_grid
implicit none
integer :: status
character (125) fname, fname2
real*4, dimension(:,:,:), allocatable :: xtemp, ytemp, ztemp
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real*4, dimension(:,:,:), allocatable :: x1temp, y1temp, z1temp
integer, parameter :: fp=67, fp2=68
integer :: fp3=310

open(unit=fp3, file="strain.inp", status="old", iostat=status)

print *, "Reading strain.inp..."
read(unit=fp3, nml=inputdata)

close(fp3)

! velocity grid -- can get from dataset

fname=trim(chandir)//’/gridint.dat’
print *,’== Reading mesh file: ’// trim(fname)
open(unit=fp, file=trim(fname), status="old", form="unformatted", &

iostat=status)
! print *, ’file opened’
if (status .ne. 0) then

print *,"Error: could not open "//trim(fname)//" for reading.", status
stop

end if

read(fp) nx,ny,nz
allocate(x(nx),y(ny),z(nz))
allocate(xtemp(nx,ny,nz),ytemp(nx,ny,nz),ztemp(nx,ny,nz))
read(fp) (((xtemp(i,j,k),i=1,nx),j=1,ny),k=1,nz), &

(((ytemp(i,j,k),i=1,nx),j=1,ny),k=1,nz), &
(((ztemp(i,j,k),i=1,nx),j=1,ny),k=1,nz)

close(fp)

do j=1,nx
x(j) = real(xtemp(j,1,1), 8)

end do
do j=1,ny

y(j) = real(ytemp(1,j,1), 8)
end do
do j=1,nz

z(j) = real(ztemp(1,1,j), 8)
end do

fname2=trim(dledir)//’/grid5.dat’
print *,’== Reading mesh file: ’// trim(fname2)
open(unit=fp2, file=trim(fname2), status="old", form="unformatted", &

iostat=status)
! print *, ’file opened’
if (status .ne. 0) then
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print *,"Error: could not open "//trim(fname2)//" for reading.", status
stop

end if

read(fp2) ox,oy,oz
allocate(x1(ox),y1(oy),z1(oz))
allocate(x1temp(ox,oy,oz),y1temp(ox,oy,oz),z1temp(ox,oy,oz))
read(fp2) (((x1temp(i,j,k),i=1,ox),j=1,oy),k=1,oz), &

(((y1temp(i,j,k),i=1,ox),j=1,oy),k=1,oz), &
(((z1temp(i,j,k),i=1,ox),j=1,oy),k=1,oz)

close(fp2)

do j=1,ox
x1(j) = real(x1temp(j,1,1), 8)

end do
do j=0,oy

y1(j) = real(y1temp(1,j,1), 8)
end do
do j=1,oz

z1(j) = real(z1temp(1,1,j), 8)
end do

print *, "nx = ", nx, "ox = ", ox
print *, "ny = ", ny, "oy = ", oy
print *, "nz = ", nz, "oz = ", oz

end subroutine setup_grid

subroutine cleanup_grid
implicit none
deallocate(x,y,z,x1,y1,z1)

end subroutine cleanup_grid

end module grid

module strainsubs
use grid
implicit none

contains

subroutine hesscalc(dle, dlehess)
implicit none
real, dimension(ox,oy,oz), intent(in) :: dle
real, dimension(ox,oy,oz,3,3), intent(inout) :: dlehess
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integer, dimension(3) :: spos
real :: dx, dy, dz
integer :: i,j,k

dx = x1(2)-x1(1)
dy = y1(2)-y1(1)
dz = z1(2)-z1(1)

do i=2,ox-1
do j=2,oy-1

do k=2,oz-1

dlehess(i,j,k,1,1) = (dle(i+1,j,k) - (2*dle(i,j,k)) + &
& dle(i-1,j,k))/(dx**2)
dlehess(i,j,k,2,2) = (dle(i,j+1,k) - (2*dle(i,j,k)) + &
& dle(i,j-1,k))/(dy**2)
dlehess(i,j,k,3,3) = (dle(i,j,k+1) - (2*dle(i,j,k)) + &
& dle(i,j,k-1))/(dz**2)

dlehess(i,j,k,2,1) = ((dle(i+1,j+1,k)-dle(i+1,j-1,k)) - &
& (dle(i-1,j+1,k)-dle(i-1,j-1,k)))/(4*dx*dy)
dlehess(i,j,k,1,2) = dlehess(i,j,k,2,1)

dlehess(i,j,k,3,1) = ((dle(i+1,j,k+1)-dle(i+1,j,k-1)) - &
& (dle(i-1,j,k+1)-dle(i-1,j,k-1)))/(4*dx*dz)
dlehess(i,j,k,1,3) = dlehess(i,j,k,3,1)

dlehess(i,j,k,2,3) = ((dle(i,j+1,k+1)-dle(i,j-1,k+1)) - &
& (dle(i,j+1,k-1)-dle(i,j-1,k-1)))/(4*dy*dz)
dlehess(i,j,k,3,2) = dlehess(i,j,k,2,3)

end do
end do

end do

end subroutine hesscalc

subroutine normcalc(dlehess,dlenorm)
implicit none
real, dimension(ox,oy,oz, 3, 3), intent(in) :: dlehess
real, dimension(ox,oy,oz, 3), intent(inout) :: dlenorm
real, dimension(3,3) :: mat, mult
real, dimension(3) :: eigs
real :: orgp, orgq, tilq, orgr, tilr, theta, pi
integer :: i, j, k, m, n
real :: a, b, c, d, e, hold
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pi = 4.0*atan(1.0)

do i=1,ox
do j=1,oy

do k=1,oz

do m=1,3
do n=1,3

mat(m,n) = dlehess(i,j,k,m,n)
end do

end do

orgp = -( mat(1,1)+mat(2,2)+mat(3,3) )

mult = matmul(mat,mat)

orgq = 0.5*( orgp**2 - ( mult(1,1)+mult(2,2)+mult(3,3) ) )
tilq = orgq - orgp**2/3.

mult = matmul(mult,mat)

orgr = ( -orgp**3 + 3.*orgp*orgq - ( mult(1,1)+mult(2,2) + &
& mult(3,3) ) )/3.
tilr = orgr + 2.*orgp**3/27. - orgp*orgq/3.

theta = acos( (-.5*tilr) / ((-1./3.)*tilq)**(1.5) )

eigs(1) = 2 * ((-1./3.)*tilq)**.5 * cos(theta/3.)
eigs(2) = 2 * ((-1./3.)*tilq)**.5 * cos((theta+(2*pi))/3.)
eigs(3) = 2 * ((-1./3.)*tilq)**.5 * cos((theta+(4*pi))/3.)

eigs(1) = eigs(1) - (1./3.)*orgp
eigs(2) = eigs(2) - (1./3.)*orgp
eigs(3) = eigs(3) - (1./3.)*orgp

if(abs(eigs(1)).ge.abs(eigs(2))) then
hold = eigs(1)

else
hold = eigs(2)

end if

if(abs(eigs(3).gt.abs(hold))) hold = eigs(3)

a = mat(1,1)
b = mat(1,2)
c = mat(1,3)
d = mat(2,2)
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e = mat(2,3)

dlenorm(i,j,k,1) = (c*b) - (e*(a-hold)) - (((c*b*b) - &
& (c*(a-hold)*(d-hold)))/b)
dlenorm(i,j,k,2) = ((-b*c*(a-hold)) + (e*(a-hold)*(a-hold)) )/ b
dlenorm(i,j,k,3) = ((b*b*(a-hold)) - ((a-hold)*(a-hold)*(d-hold)))/b

hold = sqrt((dlenorm(i,j,k,1)**2) + (dlenorm(i,j,k,2)**2) + &
& (dlenorm(i,j,k,3)**2))

dlenorm(i,j,k,1) = dlenorm(i,j,k,1) / hold
dlenorm(i,j,k,2) = dlenorm(i,j,k,2) / hold
dlenorm(i,j,k,3) = dlenorm(i,j,k,3) / hold

end do
end do

end do

end subroutine normcalc

function strainprodcalc(dlenorm, gvel) result(strainprod)
implicit none
real, dimension(ox,oy,oz, 3), intent(in) :: dlenorm
real, dimension(ox,oy,oz, 3, 3), intent(in) :: gvel
real, dimension(ox,oy,oz) :: strainprod
integer :: i, j, k, m, n
real, dimension(3,3) :: strain
real, dimension(3) :: Sn

do i=1,ox
do j=1,oy

do k=1,oz

do m=1,3
do n=1,3

strain(m,n) = .5*(gvel(i,j,k,m,n) + gvel(i,j,k,n,m))
end do

end do

Sn(1) = (strain(1,1)* dlenorm(i,j,k,1)) + (strain(1,2))* &
& (dlenorm(i,j,k,2)) + (strain(1,3)*dlenorm(i,j,k,3))
Sn(2) = (strain(2,1)* dlenorm(i,j,k,1)) + (strain(2,2))* &
& (dlenorm(i,j,k,2)) + (strain(2,3)*dlenorm(i,j,k,3))
Sn(3) = (strain(3,1)* dlenorm(i,j,k,1)) + (strain(3,2))* &
& (dlenorm(i,j,k,2)) + (strain(3,3)*dlenorm(i,j,k,3))

if(i.eq.1.or.i.eq.ox.or.j.eq.1.or.j.eq.oy.or.k.eq.1.or.k.eq.oz) then
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strainprod(i,j,k)=0
else

strainprod(i,j,k) = (dlenorm(i,j,k,1)*Sn(1)) + &
& (dlenorm(i,j,k,2)*Sn(2)) + (dlenorm(i,j,k,3)*Sn(3))

end if

end do
end do

end do

end function strainprodcalc

function interp(a1,a2,b1,b2,am) result(bm)
implicit none
real, intent(in) :: a1,a2,am
real, intent(in) :: b1,b2
real :: bm

bm = b2 + ((b1-b2)*(am-a2)/(a1-a2))

end function interp

function interp3d(spos,loc,cube3d) result(yea)
implicit none
integer, dimension(3), intent(in) :: spos
real, dimension(3), intent(in) :: loc
real, dimension(2,2,2), intent(in) :: cube3d
real :: yea
real :: xp, yp, zp
real :: fx1y1,fx1y2,fx2y1,fx2y2,fx1,fx2

xp = loc(1)
yp = loc(2)
zp = loc(3)

fx1y1 = interp(z1(spos(3)), z1(spos(3)+1), cube3d(1,1,1), cube3d(1,1,2), zp)
fx1y2 = interp(z1(spos(3)), z1(spos(3)+1), cube3d(1,2,1), cube3d(1,2,2), zp)
fx2y1 = interp(z1(spos(3)), z1(spos(3)+1), cube3d(2,1,1), cube3d(2,1,2), zp)
fx2y2 = interp(z1(spos(3)), z1(spos(3)+1), cube3d(2,2,1), cube3d(2,2,2), zp)

!interpolate the x = x1 and the x = x2 faces

fx1 = interp(y1(spos(2)), y1(spos(2)+1), fx1y1, fx1y2, yp)

fx2 = interp(y1(spos(2)), y1(spos(2)+1), fx2y1, fx2y2, yp)

!interpolate between the two faces to get the final data point
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yea = interp(x1(spos(1)), x1(spos(1)+1), fx1, fx2, xp)

end function interp3d

function getcube(spos,thing) result(cube)
implicit none
integer, dimension(3), intent(in) :: spos
real, dimension(ox,oy,oz), intent(in) :: thing
real, dimension(2,2,2) :: cube

!obtain cube of 8 data points to pass to interp3d

cube(1,1,1) = thing(spos(1),spos(2),spos(3))
cube(1,2,1) = thing(spos(1),spos(2)+1,spos(3))
cube(2,1,1) = thing(spos(1)+1,spos(2),spos(3))
cube(2,2,1) = thing(spos(1)+1,spos(2)+1,spos(3))
cube(1,1,2) = thing(spos(1),spos(2),spos(3)+1)
cube(1,2,2) = thing(spos(1),spos(2)+1,spos(3)+1)
cube(2,1,2) = thing(spos(1)+1,spos(2),spos(3)+1)
cube(2,2,2) = thing(spos(1)+1,spos(2)+1,spos(3)+1)

end function getcube

function getbound(pos) result(spos)
implicit none
real, dimension(3), intent(in) :: pos
integer :: posx1, posy1, posz1
integer, dimension(3) :: spos
integer :: j

spos(1) = ox-2
spos(2) = oy-2
spos(3) = oz-2

do j=1,ox-1
if(pos(1).lt.x1(j)) then

spos(1) = j-1
exit

end if
end do

if(spos(1).eq.0) spos(1)=1
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do j=1,oy-1
if(pos(2).lt.y1(j)) then

spos(2) = j-1
exit

end if
end do

if(spos(2).eq.0) spos(2)=1

do j=1,oz-1
if(pos(3).lt.z1(j)) then

spos(3) = j-1
exit

end if
end do

if(spos(3).eq.0) spos(3)=1

end function getbound

end module strainsubs

module velgradsubs
use grid
use inout
use derivs
use strainsubs
implicit none

contains

subroutine velst(gvel, t)
implicit none
real, dimension(ox,oy,oz, 3, 3) :: gvel
real, dimension(:,:,:), allocatable :: u,v,w
real, dimension(:,:,:), allocatable :: ux, uy, uz, vx, vy, vz, wx, wy, wz
real, dimension(3) :: hold
integer, dimension(3) :: spos
integer :: status, t
character(150) :: fname
integer, parameter :: fp=65

allocate(u(nx,ny,nz), v(nx,ny,nz), w(nx,ny,nz))
allocate(ux(nx,ny,nz), vx(nx,ny,nz), wx(nx,ny,nz))
allocate(uy(nx,ny,nz), vy(nx,ny,nz), wy(nx,ny,nz))
allocate(uz(nx,ny,nz), vz(nx,ny,nz), wz(nx,ny,nz))
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call readvel(u,v,w, t)

ux = ddx(u)
uy = ddy(u)
uz = ddz(u)
vx = ddx(v)
vy = ddy(v)
vz = ddz(v)
wx = ddx(w)
wy = ddy(w)
wz = ddz(w)

do i=1,ox
do j=1,oy

do k=1,oz
hold(1) = x1(i)
hold(2) = y1(j)
hold(3) = z1(k)

spos = getboundvel(hold)

gvel(i,j,k,1,1) = interp3dvel(spos,hold,getcubevel(spos,ux(:,:,:)))
gvel(i,j,k,1,2) = interp3dvel(spos,hold,getcubevel(spos,uy(:,:,:)))
gvel(i,j,k,1,3) = interp3dvel(spos,hold,getcubevel(spos,uz(:,:,:)))
gvel(i,j,k,2,1) = interp3dvel(spos,hold,getcubevel(spos,vx(:,:,:)))
gvel(i,j,k,2,2) = interp3dvel(spos,hold,getcubevel(spos,vy(:,:,:)))
gvel(i,j,k,2,3) = interp3dvel(spos,hold,getcubevel(spos,vz(:,:,:)))
gvel(i,j,k,3,1) = interp3dvel(spos,hold,getcubevel(spos,wx(:,:,:)))
gvel(i,j,k,3,2) = interp3dvel(spos,hold,getcubevel(spos,wy(:,:,:)))
gvel(i,j,k,3,3) = interp3dvel(spos,hold,getcubevel(spos,wz(:,:,:)))

end do
end do

end do

end subroutine velst

subroutine readvel(u,v,w, t)
implicit none
real, dimension(nx, ny, nz), intent(inout) :: u,v,w
character(150) :: fname
integer, parameter :: fp=65
integer :: status, t
integer :: hi, hi2, hi3, hi4
real*4, dimension(:,:,:),allocatable :: u4, v4, w4
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allocate(u4(nx,ny,nz), v4(nx,ny,nz), w4(nx,ny,nz))

write(fname,’(a,i2.2,a)’) trim(chandir) // "/Velavgint_phase_",t, ".dat"
print *,"Reading data file ",trim(fname)
open(unit=fp, file=trim(fname), status="old", form="unformatted", &

iostat=status)
! print *, ’file opened’
if (status .ne. 0) then

print *,"Error: could not open "//trim(fname)//" for reading.", status
stop

end if

read(fp) hi, hi2, hi3, hi4
read(fp) u4(:,:,:), v4(:,:,:), w4(:,:,:)
close(fp)

do i=1,nx
do j=1,ny

do k=1,nz
u(i,j,k) = real(u4(i,j,k), 8)
v(i,j,k) = real(v4(i,j,k), 8)
w(i,j,k) = real(w4(i,j,k), 8)

end do
end do

end do

end subroutine readvel

function interp3dvel(spos,loc,cube3d) result(yea)
implicit none
integer, dimension(3), intent(in) :: spos
real, dimension(3), intent(in) :: loc
real, dimension(2,2,2), intent(in) :: cube3d
real :: yea
real :: xp, yp, zp
real :: fx1y1,fx1y2,fx2y1,fx2y2,fx1,fx2

xp = loc(1)
yp = loc(2)
zp = loc(3)

if(x(nx).gt.x(1)) then
15 if(xp.gt.x(nx)) then

xp = x(nx)
goto 15

endif
25 if(xp.lt.x(1)) then
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xp = x(1)
goto 25

endif
else

75 if(xp.gt.x(1)) then
xp = x(1)
goto 75

endif
85 if(xp.lt.x(nx)) then

xp = x(nx)
goto 85

endif
endif

if(y(ny).gt.y(1)) then
if(yp.ge.y(ny)) then

yp = y(ny)
endif
if(yp.le.y(1)) then

yp = y(1)
endif

else
if(yp.ge.y(1)) then

yp = y(1)
endif
if(yp.le.y(ny)) then

yp = y(ny)
endif

endif

if(z(nz).gt.z(1)) then
55 if(zp.gt.z(nz)) then

zp = z(nz)
goto 55

endif

65 if(zp.lt.z(1)) then
zp = z(1)
goto 65

endif
else

115 if(zp.gt.z(1)) then
zp = z(1)
goto 115

endif
125 if(zp.lt.z(nz)) then

zp = z(nz)
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goto 125
endif

endif

!interpolate along corner lines of 3d cube

fx1y1 = interp(z(spos(3)), z(spos(3)+1), cube3d(1,1,1), cube3d(1,1,2), zp)
fx1y2 = interp(z(spos(3)), z(spos(3)+1), cube3d(1,2,1), cube3d(1,2,2), zp)
fx2y1 = interp(z(spos(3)), z(spos(3)+1), cube3d(2,1,1), cube3d(2,1,2), zp)
fx2y2 = interp(z(spos(3)), z(spos(3)+1), cube3d(2,2,1), cube3d(2,2,2), zp)

!interpolate the x = x1 and the x = x2 faces

fx1 = interp(y(spos(2)), y(spos(2)+1), fx1y1, fx1y2, yp)

fx2 = interp(y(spos(2)), y(spos(2)+1), fx2y1, fx2y2, yp)

!interpolate between the two faces to get the final data point

yea = interp(x(spos(1)), x(spos(1)+1), fx1, fx2, xp)

end function interp3dvel

function getcubevel(spos,thing) result(cube)
implicit none
integer, dimension(3), intent(in) :: spos
real, dimension(nx,ny,nz), intent(in) :: thing
real, dimension(2,2,2) :: cube

!obtain cube of 8 data points to pass to interp3d
cube(1,1,1) = thing(spos(1),spos(2)-1,spos(3))
cube(1,2,1) = thing(spos(1),spos(2)+1-1,spos(3))
cube(2,1,1) = thing(spos(1)+1,spos(2)-1,spos(3))
cube(2,2,1) = thing(spos(1)+1,spos(2)+1-1,spos(3))
cube(1,1,2) = thing(spos(1),spos(2)-1,spos(3)+1)
cube(1,2,2) = thing(spos(1),spos(2)+1-1,spos(3)+1)
cube(2,1,2) = thing(spos(1)+1,spos(2)-1,spos(3)+1)
cube(2,2,2) = thing(spos(1)+1,spos(2)+1-1,spos(3)+1)

end function getcubevel

function getboundvel(loc) result(spos)
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implicit none
real, dimension(3), intent(in) :: loc
integer, dimension(3) :: spos
real :: xp, yp, zp
integer :: j

spos(1) = nx-1
spos(2) = ny-1
spos(3) = nz-1

xp = loc(1)
yp = loc(2)
zp = loc(3)

! Need to make sure that the points are still in the domain,
! otherwise take care of them (here, by imposing periodic
! conditions in x- and z- directions, and just stick to the wall in y

if(x(nx).ge.x(1)) then
15 if(xp.gt.x(nx)) then

xp = x(nx)
goto 15

endif
25 if(xp.lt.x(1)) then

xp = x(1)
goto 25

endif
else

75 if(xp.gt.x(1)) then
xp = x(1)
goto 75

endif
85 if(xp.lt.x(nx)) then

xp = x(nx)
goto 85

endif
endif

if(y(ny).gt.y(1)) then
if(yp.ge.y(ny)) then

yp = y(ny)
endif
if(yp.le.y(1)) then

yp = y(1)
endif

else
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if(yp.ge.y(1)) then
yp = y(1)

endif
if(yp.le.y(ny)) then

yp = y(ny)
endif

endif

if(z(nz).gt.z(1)) then
55 if(zp.gt.z(nz)) then

zp = z(nz)
goto 55

endif
65 if(zp.lt.z(1)) then

zp = z(1)
goto 65

endif
else

115 if(zp.gt.z(1)) then
zp = z(1)
goto 115

endif
125 if(zp.lt.z(nz)) then

zp = z(nz)
goto 125

endif
endif

if(x(nx).gt.x(1))then
do j=1,nx

if(xp.lt.x(j)) then
spos(1) = j-1
exit

end if
end do
if(spos(1).eq.0) spos(1)=1

else
do j=1,nx

if(xp.gt.x(j)) then
spos(1) = j-1
exit

end if
end do
if(spos(1).eq.0) spos(1)=1

end if
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if(y(ny).gt.y(1))then
do j=1,ny

if(yp.lt.y(j)) then
spos(2) = j-1
exit

end if
end do
if(spos(2).eq.0) spos(2)=1

else
do j=1,ny

if(yp.gt.y(j)) then
spos(2) = j-1
exit

end if
end do
if(spos(2).eq.0) spos(2)=1

end if

if(z(nz).gt.z(1))then
do j=1,nz

if(zp.lt.z(j)) then
spos(3) = j-1
exit

end if
end do
if(spos(3).eq.0) spos(3)=1

else
do j=1,nz

if(zp.gt.z(j)) then
spos(3) = j-1
exit

end if
end do
if(spos(3).eq.0) spos(3)=1

end if

end function getboundvel

end module velgradsubs

module derivs
use grid
use inout
implicit none
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contains

function ddx(u) result(diffx)
real, dimension(nx,ny,nz) :: u
real, dimension(nx,ny,nz) :: diffx
real :: xa, xc, ua, uc

do i=1,nx
do j=1,ny

do k=1,nz

if(i.eq.1)then
xa = x(i)
xc = x(i+1)
ua = u(i,j,k)
uc = u(i+1,j,k)

elseif(i.eq.nx)then
xa = x(i-1)
xc = x(i)
ua = u(i-1,j,k)
uc = u(i,j,k)

else
xa = x(i-1)
xc = x(i+1)
ua = u(i-1,j,k)
uc = u(i+1,j,k)

end if

diffx(i,j,k) = (ua - uc) / (xa - xc)

end do
end do

end do

end function ddx

function ddy(u) result(diffy)
real, dimension(nx,ny,nz) :: u
real, dimension(nx,ny,nz) :: diffy
real :: ya, yc, ua, uc

do i=1,nx
do j=1,ny

do k=1,nz
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if(j.eq.1)then
ya = y(j)
yc = y(j+1)
ua = u(i,j,k)
uc = u(i,j+1,k)

elseif(j.eq.ny)then
ya = y(j-1)
yc = y(j)
ua = u(i,j-1,k)
uc = u(i,j,k)

else
ya = y(j-1)
yc = y(j+1)
ua = u(i,j-1,k)
uc = u(i,j+1,k)

end if

diffy(i,j,k) = (ua - uc) / (ya - yc)

end do
end do

end do

end function ddy

function ddz(u) result(diffz)
real, dimension(nx,ny,nz) :: u
real, dimension(nx,ny,nz) :: diffz
real :: za, zc, ua, uc

do i=1,nx
do j=1,ny

do k=1,nz

if(k.eq.0)then
za = z(k)
zc = z(k+1)
ua = u(i,j,k)
uc = u(i,j,k+1)

elseif(k.eq.nz)then
za = z(k-1)
zc = z(k)
ua = u(i,j,k-1)
uc = u(i,j,k)

else
za = z(k-1)

151



zc = z(k+1)
ua = u(i,j,k-1)
uc = u(i,j,k+1)

end if

diffz(i,j,k) = (ua - uc) / (za - zc)

end do
end do

end do

end function ddz

end module derivs

module fourier
! Routines for transforming to Fourier coefs, and computing derivs
! Note: uses FFTW library for fast Fourier transforms
!
! Clancy Rowley
! 2 November 2001

implicit none
include "fftw_f77.i"

type fourier_type
integer*8 :: plan, planinv
integer :: size
logical :: not2pi
real :: lengthfac ! 2pi/L

end type fourier_type

type fourier2_type
integer*8 :: plan, planinv
integer :: n1, n2, size
real :: len1, len2 ! length = 2*pi * (len1, len2)

end type fourier2_type

contains
function create_fourier(n, length) result(p)

implicit none
type(fourier_type) :: p
real, optional :: length
integer :: n

if (present(length)) then
p%not2pi = .true.
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p%lengthfac = (8. * atan(1.)) / length ! 2pi/L
else

p%not2pi = .false.
p%lengthfac = 1

end if
p%size = n
call rfftw_f77_create_plan(p%plan, n, FFTW_REAL_TO_COMPLEX,FFTW_MEASURE)
call rfftw_f77_create_plan(p%planinv, n, FFTW_COMPLEX_TO_REAL,FFTW_MEASURE)

end function create_fourier

function create_fourier2(n1, n2, length1, length2) result(p)
implicit none
type(fourier2_type) :: p
real, optional :: length1, length2
integer :: n1, n2

p%n1 = n1
p%n2 = n2
p%size = n1 * n2
p%len1 = 1.
p%len2 = 1.
if (present(length1)) then

p%len1 = length1
end if
if (present(length2)) then

p%len2 = length2
end if

call rfftw2d_f77_create_plan(p%plan, n1, n2, &
FFTW_FORWARD, FFTW_MEASURE + FFTW_IN_PLACE)

call rfftw2d_f77_create_plan(p%planinv, n1, n2, &
FFTW_BACKWARD, FFTW_MEASURE + FFTW_IN_PLACE)

end function create_fourier2

subroutine destroy_fourier(p)
implicit none
type(fourier_type) :: p
call rfftw_f77_destroy_plan(p%plan)
call rfftw_f77_destroy_plan(p%planinv)

end subroutine destroy_fourier

subroutine destroy_fourier2(p)
implicit none
type(fourier2_type) :: p
call rfftwnd_f77_destroy_plan(p%plan)
call rfftwnd_f77_destroy_plan(p%planinv)

end subroutine destroy_fourier2
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function phys2fourier(p, u) result(a)
! transform physical variable u to Fourier coefs a
! Fourier coefs are stored in the following order: (n even)
! r(0), r(1), r(2), ..., r(n/2), i(n/2 - 1), ..., i(2), i(1)
implicit none
type(fourier_type) :: p
real, dimension(:) :: u
real, dimension(size(u)) :: a

call rfftw_f77_one(p%plan, u, a)
a = a / p%size

end function phys2fourier

function fourier2phys(p, a) result(u)
! transform Fourier coefs a to physical space u
! NOTE: destroys the array ’a’ (the Fourier coefs)
implicit none
type(fourier_type) :: p
real, dimension(:) :: a
real, dimension(size(a)) :: u

call rfftw_f77_one(p%planinv, a, u)

end function fourier2phys

subroutine phys2fourier2(p, u)
! transform physical variable to Fourier coefs, in place
implicit none
type(fourier2_type) :: p
real, dimension(p%n1+2, p%n2) :: u

call rfftwnd_f77_one_real_to_complex(p%plan, u, 0)
u = u / p%size

end subroutine phys2fourier2

subroutine fourier2phys2(p, a)
! transform Fourier coefs to physical space, in place
implicit none
type(fourier2_type) :: p
real, dimension(p%n1+2, p%n2) :: a

call rfftwnd_f77_one_complex_to_real(p%planinv, a, 0)
end subroutine fourier2phys2

function fourier_d1(p, a) result(da)

154



! compute first derivative of Fourier coefficients a
implicit none
type(fourier_type) :: p
real, dimension(:) :: a
real, dimension(size(a)) :: da
! real :: tmp
integer :: k, n

! multiply by ik
n = p%size
da(1) = 0
da(n/2 + 1) = 0
do k=1,n/2-1

da(k+1) = -k * a(n+1-k)
da(n+1-k) = k * a(k+1)

end do
if (p%not2pi) da = da * p%lengthfac

end function fourier_d1

function fourier_d2(p, a) result(da)
! compute second derivative of Fourier coefficients a
implicit none
type(fourier_type) :: p
real, dimension(:) :: a
real, dimension(size(a)) :: da
integer :: k, n2

! multiply by -k^2
da(1) = 0
da(p%size/2 + 1) = -a(p%size/2 + 1) * (p%size/2)**2
n2 = p%size + 2
do k=2,p%size/2

da(k) = -(k-1)**2 * a(k)
da(n2 - k) = -(k-1)**2 * a(n2 - k)

end do
if (p%not2pi) da = da * (p%lengthfac)**2

end function fourier_d2

function fourier2_d1(p, a) result(da)
! compute first derivative of Fourier coefficients a, w.r.t. first coord
implicit none
type(fourier2_type) :: p
real, dimension(p%n1+2, p%n2) :: a, da
integer :: k1

! multiply by i*k1
do k1 = 0,p%n1/2
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da(2*k1+1, :) = -k1 * a(2*k1+2, :) / p%len1
da(2*k1+2, :) = k1 * a(2*k1+1, :) / p%len1

end do
end function fourier2_d1

function fourier2_d2(p, a) result(da)
! compute first derivative of Fourier coefficients a, w.r.t. second coord
implicit none
type(fourier2_type) :: p
real, dimension(p%n1+2, p%n2) :: a, da
integer :: k1, k2

! multiply by i*k2
do k1 = 0,p%n1/2

do k2 = 0,p%n2/2-1
da(2*k1+1, k2+1) = -k2 * a(2*k1+2, k2+1) / p%len2 ! real part
da(2*k1+2, k2+1) = k2 * a(2*k1+1, k2+1) / p%len2 ! imag part

end do
do k2 = -p%n2/2,-1

da(2*k1+1, k2+1+p%n2) = -k2 * a(2*k1+2, k2+1+p%n2) / p%len2 ! real part
da(2*k1+2, k2+1+p%n2) = k2 * a(2*k1+1, k2+1+p%n2) / p%len2 ! imag part

end do
end do

end function fourier2_d2

function fourier2_lap(p, a) result(da)
! compute Laplacian of Fourier coefficients a
implicit none
type(fourier2_type) :: p
real, dimension(p%n1+2, p%n2) :: a, da
integer :: k1, k2

! multiply by -(k1^2 + k2^2)
! do j = 1,p%n2
! k2 = mod(j + p%n2/2 - 1,p%n2) - p%n2/2
! do k1 = 0,p%n1/2
! da(2*k1+1, j) = -(k1**2 / p%len1**2 + k2**2 / p%len2**2) * a(2*k1+1, j)
! da(2*k1+2, j) = -(k1**2 / p%len1**2 + k2**2 / p%len2**2) * a(2*k1+2, j)
! end do
! end do

do k1 = 0,p%n1/2
do k2 = 0,p%n2/2-1

da(2*k1+1, k2+1) = -((k1 / p%len1)**2 + (k2 / p%len2)**2) * &
a(2*k1+1, k2+1) ! real part

da(2*k1+2, k2+1) = -((k1 / p%len1)**2 + (k2 / p%len2)**2) * &
a(2*k1+2, k2+1) ! imag part

end do
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do k2 = -p%n2/2,-1
da(2*k1+1, k2+1+p%n2) = -((k1 / p%len1)**2 + (k2 / p%len2)**2) * &

a(2*k1+1, k2+1+p%n2) ! real part
da(2*k1+2, k2+1+p%n2) = -((k1 / p%len1)**2 + (k2 / p%len2)**2) * &

a(2*k1+2, k2+1+p%n2) ! imag part
end do

end do
end function fourier2_lap

end module fourier

module cheby
! Routines for transforming to Chebyshev coefs, and computing derivs
! Note: uses FFTW library for fast Fourier transforms
!
! Clancy Rowley
! 1 November 2001

implicit none
include "fftw_f77.i"

type cheby_type ! real data
integer*8 :: plan
integer :: size
real, dimension(:), pointer :: tmp

end type cheby_type

type chebyc_type ! complex data
integer*8 :: plan
integer :: size
complex, dimension(:), pointer :: tmp

end type chebyc_type

private :: cosft, cosftc

contains
function create_cheby(n)

implicit none
integer :: n
type(cheby_type) :: create_cheby

create_cheby%size = n
call rfftw_f77_create_plan(create_cheby%plan, n, &

FFTW_REAL_TO_COMPLEX, FFTW_MEASURE)
allocate(create_cheby%tmp(0:n))

end function create_cheby
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function create_chebyc(n) result(p)
implicit none
integer :: n
type(chebyc_type) :: p

p%size = n
call fftw_f77_create_plan(p%plan, n, FFTW_FORWARD, FFTW_MEASURE)
allocate(p%tmp(0:n))

end function create_chebyc

subroutine destroy_cheby(p)
implicit none
type(cheby_type) :: p
call rfftw_f77_destroy_plan(p%plan)
deallocate(p%tmp)

end subroutine destroy_cheby

subroutine destroy_chebyc(p)
implicit none
type(chebyc_type) :: p
call fftw_f77_destroy_plan(p%plan)
deallocate(p%tmp)

end subroutine destroy_chebyc

function phys2cheby(p, u) result(a)
! transform physical variable u to Chebyshev coefs
implicit none
type(cheby_type) :: p
real, dimension(0:) :: u
real, dimension(0:ubound(u,1)) :: a

call cosft(p, u, a)

a = a * 2 / p%size
a(0) = a(0) / 2
a(p%size) = a(p%size) / 2

end function phys2cheby

function cheby2phys(p, a)
! transform Chebyshev coefs a to physical space
implicit none
type(cheby_type) :: p
real, dimension(0:) :: a
real, dimension(0:ubound(a,1)) :: cheby2phys

a(0) = a(0) * 2
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a(p%size) = a(p%size) * 2
call cosft(p, a, cheby2phys)
! restore a
a(0) = a(0) / 2
a(p%size) = a(p%size) / 2

end function cheby2phys

function phys2chebyc(p, u) result(a)
! transform physical variable u to Chebyshev coefs
implicit none
type(chebyc_type) :: p
complex, dimension(0:) :: u
complex, dimension(0:ubound(u,1)) :: a

call cosftc(p, u, a)
a = a / p%size

end function phys2chebyc

function cheby2physc(p, a) result(u)
! transform Chebyshev coefs a to physical space
implicit none
type(chebyc_type) :: p
complex, dimension(0:) :: a
complex, dimension(0:ubound(a,1)) :: u

a(0) = a(0) * 2
a(p%size) = a(p%size) * 2
call cosftc(p, a, u)
u(0) = u(0) * 2
u(p%size) = u(p%size) * 2
u = u / 2
! restore a
a(0) = a(0) / 2
a(p%size) = a(p%size) / 2

end function cheby2physc

function cheby_d1(p, a)
! compute first derivative of Chebyshev coefficients a
implicit none
type(cheby_type) :: p
real, dimension(0:) :: a
real, dimension(0:ubound(a,1)) :: cheby_d1
integer :: k

cheby_d1(p%size) = 0
cheby_d1(p%size-1) = 2 * p%size * a(p%size)
do k = p%size-1, 2, -1
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cheby_d1(k-1) = 2*k*a(k) + cheby_d1(k+1)
end do
cheby_d1(0) = a(1) + cheby_d1(2)/2

end function cheby_d1

function cheby_d2(p, a)
! compute second derivative of Chebyshev coefficients a
! (not implemented yet)
implicit none
type(cheby_type) :: p
real, dimension(0:) :: a
real, dimension(0:ubound(a,1)) :: cheby_d2

cheby_d2 = cheby_d1(p,a)
cheby_d2 = cheby_d1(p,cheby_d2)

end function cheby_d2

function cheby_d1c(p, a) result(da)
! compute first derivative of complex Chebyshev coefficients a
implicit none
type(chebyc_type) :: p
complex, dimension(0:) :: a
complex, dimension(0:ubound(a,1)) :: da
integer :: k

da(p%size) = 0
da(p%size-1) = 2 * p%size * a(p%size)
do k = p%size-1, 2, -1

da(k-1) = 2*k*a(k) + da(k+1)
end do
da(0) = a(1) + da(2)/2

end function cheby_d1c

function cheby_d2c(p, a) result(da)
! compute second derivative of Chebyshev coefficients a
! (not implemented yet)
implicit none
type(chebyc_type) :: p
complex, dimension(0:) :: a
complex, dimension(0:ubound(a,1)) :: da

da = cheby_d1c(p,a)
da = cheby_d1c(p,da)

end function cheby_d2c

subroutine cosft(p, in, out)
! compute cosine transform of data, from Numerical Recipes
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implicit none
type(cheby_type) :: p
real, dimension(0:) :: in, out
integer :: j,n
real :: sum, y1, y2, theta, wi, wpi, wpr, wr, wtemp

n = p%size
theta = 4. * atan(1.) / n
wpr = -2. * sin(0.5 * theta)**2
wpi = sin(theta)
sum = 0.5 * (in(0) - in(n))
out(0) = 0.5 * (in(0) + in(n))
out(n/2) = in(n/2)
! out(n) = in(n)
wi = 0
wr = 1
do j=1,n/2-1

wtemp = wr
wr = wr * wpr - wi * wpi + wr
wi = wi * wpr + wtemp * wpi + wi
y1 = 0.5 * (in(j) + in(n-j))
y2 = (in(j) - in(n-j))
out(j) = y1 - wi * y2
out(n-j) = y1 + wi * y2
sum = sum + wr * y2 ! carry along for later use in unfolding xform

end do
call rfftw_f77_one(p%plan, out, p%tmp)

out(0) = p%tmp(0)
out(1) = sum
do j=1,n/2-1

out(2*j) = p%tmp(j)
sum = sum - p%tmp(n-j)
out(2*j+1) = sum

end do
out(n) = p%tmp(n/2)

end subroutine cosft

subroutine cosftc(p, in, out)
! compute cosine transform of complex data, from Numerical Recipes
implicit none
type(chebyc_type) :: p
complex, dimension(0:) :: in, out
integer :: j,n
complex :: sum, y1, y2, im
real :: theta, wi, wpi, wpr, wr, wtemp

161



im = (0.,1.)
n = p%size
theta = 4. * atan(1.) / n
wpr = -2. * sin(0.5 * theta)**2
wpi = sin(theta)
sum = 0.5 * (in(0) - in(n))
out(0) = 0.5 * (in(0) + in(n))
out(n/2) = in(n/2)
! out(n) = in(n)
wi = 0
wr = 1
do j=1,n/2-1

wtemp = wr
wr = wr * wpr - wi * wpi + wr
wi = wi * wpr + wtemp * wpi + wi
y1 = 0.5 * (in(j) + in(n-j))
y2 = (in(j) - in(n-j))
out(j) = y1 - wi * y2
out(n-j) = y1 + wi * y2
sum = sum + wr * y2 ! carry along for later use in unfolding xform

end do
call fftw_f77_one(p%plan, out, p%tmp)

out(0) = p%tmp(0)
out(1) = 2 * sum
do j=1,n/2-1

out(2*j) = p%tmp(j) + p%tmp(n-j)
out(2*j+1) = out(2*j-1) + im * (p%tmp(j) - p%tmp(n-j))

end do
out(n) = p%tmp(n/2)

end subroutine cosftc

end module cheby

module inout
use grid
implicit none

contains

subroutine readdle(dle, t)
implicit none
real, dimension(ox,oy,oz), intent(inout) :: dle
integer :: ios, t
integer :: hi1, hi2, hi3, hi4
character(125) :: fname
real*4, dimension(ox,oy,oz) :: temp
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integer, parameter :: fp=42

write(fname, ’(a,i6.6, a, i6.6, a)’) trim(dledir) // trim(dlename),t, &
& "_",dlesteps,".dat"
print *, ’Reading dle data file ’, fname
open(unit=fp, file=trim(fname), status="old", form="unformatted", &

iostat=ios)

if (ios .ne. 0) then
print *,"Error: could not open "//trim(fname)//" for reading.", ios
stop

end if

read(fp) hi1, hi2, hi3, hi4
read(fp) (((temp(i,j,k),i=1,ox),j=1,oy),k=1,oz)
close(fp)

do i=1,ox
do j=1,oy

do k=1,oz
dle(i,j,k) = real(temp(i,j,k),8)

end do
end do

end do

end subroutine readdle

subroutine writestrain(strainprod,dle, t)
implicit none
real, dimension(ox,oy,oz), intent(in) :: strainprod, dle
character(100) :: fname
integer :: t

write(fname,’(a,i6.6,a,i6.6,a)’) trim(odir) // trim(dlename) // &
& "strain_",t,"_",dlesteps,".dat"
print *, ’Writing data file ’, fname
open(24,file=trim(fname),form="unformatted")
write(24) ox,oy,oz,2
write(24) (((real(strainprod(i,j,k),4),i=1,ox),j=1,oy),k=1,oz), &

(((real(strainprod(i,j,k),4),i=1,ox),j=1,oy),k=1,oz)
close(24)

end subroutine writestrain

end module inout
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