
Model reduction and feedback

control of transitional channel flow

Miloš Ilak

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Mechanical and Aerospace Engineering

Advisor: Clarence W. Rowley

November 2009



c© Copyright by Miloš Ilak, 2009. All rights reserved.



iii

Abstract

This dissertation examines the use of reduced-order models for design of linear
feedback controllers for fluid flows. The focus is on transitional channel flow, a
canonical shear flow case with a simple geometry yet complex dynamics. Reduced-
order models of the linearized Navier-Stokes equations, which describe the evolution
of perturbations in transitional channel flow, are computed using two methods for
snapshot-based balanced truncation, Balanced Proper Orthogonal Decomposition
(BPOD) and Eigensystem Realization Algorithm (ERA). The performance of these
models in feedback control is evaluated in both linearized and nonlinear Direct
Numerical Simulations (DNS) of channel flow.

The first part of the dissertation describes the application of BPOD to very large
systems, and the detailed evaluation of the resulting reduced-order models. Exact
balanced truncation, a standard method from control theory, is not computationally
tractable for very large systems, such as those typically encountered in fluid flow
simulations. The BPOD method, introduced by Rowley (2005), provides a close
approximation. We first show that the approximation is indeed close by applying the
method to a 1-D linear perturbation to channel flow at a single spatial wavenumber
pair, for which exact balanced truncation is tractable. Next, as the first application
of BPOD to a very high-dimensional linear system, we show that reduced-order
BPOD models of a localized 3-D perturbation capture the dynamics very well.
Moreover, the BPOD models significantly outperform standard Proper Orthogonal
Decomposition (POD) models, as illustrated by a striking example where models
using the POD modes that capture most of the perturbation energy fail to capture
the perturbation dynamics.

Next, reduced-order models of a complete control system for linearized channel
flow are obtained using ERA, a computationally efficient method that results in the
same reduced-order models as BPOD. Linear Quadratic Gaussian (LQG) compen-
sators, which include a reduced-order estimator based on a small number of velocity
measurements, are designed for these models and used for feedback control of the
energy growth of a localized perturbation near the channel wall. The performance
of both a localized body-force near the channel wall and wall blowing/suction as
actuation mechanisms is first studied in linearized DNS. It is found that the linear
compensators are successful in reducing the growth of the perturbation energy, and
that the body force actuation results in a larger decrease of the perturbation energy
growth than actuation using wall blowing/suction. We then proceed to show that
these compensators are also able to prevent transition to turbulence for nonlinear
simulations in some cases, despite performance limitations imposed by the spatial
separation of the perturbation and the actuator.

Finally, since it is found that a fundamentally nonlinear mechanism of transition
is not captured by the linear models, it is of interest to study nonlinear models for
flow control. As a first step towards investigating nonlinear balanced truncation
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models of channel flow, a method for empirical nonlinear balanced truncation pro-
posed by Lall et al. (2002) is tested on a nonlinear 1-D model problem, the Complex
Ginzburg-Landau (CGL) equation. The performance of the resulting models is
compared to the performance of nonlinear models obtained by projection of the full
equation onto modes computed via balanced truncation of the linear part of the
CGL equation. It is found that the models obtained by the latter approach are
not only able to capture the dynamics of the nonlinear CGL equation, but that
they also outperform the models obtained using the empirical nonlinear balanced
truncation method.
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Chapter 1

Introduction

1.1 Motivation

Fluid flows are ubiquitous. Significant advances have been made in understanding
them, in particular in the past hundred years. The need to manipulate flows to our
advantage has been one of the driving forces in fluid mechanics research, and work
towards this goal has grown to be a mature discipline known as flow control.

Fluid flows are complex and thus challenging to describe fully and accurately.
Nevertheless, it has been observed that their behavior may often be described in
simple terms, with only one or a few key mechanisms. Very similar flows can arise in
physically very different situations. For example, turbulent jets of gas ejected from
galactic centers may look much like jets arising in the laboratory on earth. Behavior
dominated by these key mechanisms may often be described as low-dimensional,
since the number of degrees of freedom that determine it may be quite low.

Besides its intriguing physics, inherent low-dimensional behavior of fluid flows
has practical significance — if we are able to isolate and control only the main
mechanism, we may not need a full and completely accurate description of the
entire flow. This observation is at the heart of the model reduction approach
taken in this thesis. The idea is to extract the key features of a highly complex
system and represent them in a smaller, simple one, develop ways of controlling the
simple system, and apply the results to the original fluid flow. This approach is
not without substantial difficulties and is the subject of active research. While this
thesis addresses all the stages of the process, the main focus is on the first task —
the extraction of reliable models and the verification of their usefulness — followed
by a test of the obtained models in the specific context of control of transitional
channel flow.

1



2 CHAPTER 1. INTRODUCTION

1.2 Current advances in control of shear flows

In the effort to develop flow control strategies, understanding of the underlying
physics of the flow and applying the tools of control theory to that flow go hand
in hand. While there are many efforts in both areas, exchange of information
between the fluid mechanics and control theory communities is very important, as
emphasized by Bewley (2001). The key efforts in understanding and controlling
shear flows undertaken in the past few decades are outlined below. The focus here
is on works relevant to the topic of this dissertation. For a thorough review of
flow control efforts in general, the comprehensive book by Gad-el Hak (2000) is
recommended.

1.2.1 Results in model reduction

Besides seeking a simple description of a fluid flow, the main motivation for model
reduction is the inability to work with tractable models of the full flow. The Navier-
Stokes equations, which describe well the vast majority of flows of practical interest,
are infinite-dimensional, and their discretization results in very high-dimensional
systems. While it has become standard practice to solve these equations using high-
performance computers, standard approaches for control design for these equations
are still not tractable, and low-order descriptions are sought for that goal. The
method of Galerkin projection, in which high-dimensional equations are projected
onto an appropriate low-dimensional basis, is the main method used to obtain
tractable models of lower dimension. The directions that span the basis are also
known as modes, and the terms ‘set of modes’ and ‘low-dimensional basis’ (or
simply ‘basis’ when it is clear from the context that it is low-dimensional) are used
interchangeably in this thesis. We next outline the methods for obtaining such a
basis that are used in this thesis. A detailed discussion of these methods is given in
next chapter.

Proper Orthogonal Decomposition (POD). POD was introduced in the
context of fluid flows by Lumley (1967, 1970) A detailed treatment of the method
is given in Holmes et al. (1996). The method was initially used to identify coherent
structures in flows (see, for example, Moin & Moser, 1989).

Since the behavior of a given flow simulation or a time sequence of experimental
data may be described very well in a low-dimensional manner by projection of
the data onto POD modes, it has been assumed that low-dimensional models may
be obtained as well by Galerkin projection of the dynamics onto the leading POD
modes. Low-dimensional POD models have been shown to be successful at this task
in some flows. Examples include cavity flow (Rowley, 2001; Rowley & Juttijudata,
2005), a temporally evolving free shear layer (Wei & Rowley, 2009), flow past a
cylinder (Noack et al., 2003), boundary layer flow (Aubry et al., 1988), flow past
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an airfoil in 2-D (Luchtenburg et al., 2009) and channel flow in a minimal flow
unit (Podvin & Lumley, 1998). On the other hand, POD models often fail to capture
some of the most important aspects of the dynamics of the original system, for
example in Couette flow (Smith, 2003; Smith et al., 2005) and transitional channel
flow (Ilak & Rowley, 2008b). A major disadvantage of POD models is that in a
feedback control setting they do not capture the inputs and outputs of the original
system. This deficiency has been addressed by the introduction of techniques such
as shift modes (Noack et al., 2003). Other techniques for improvement of the
performance of POD models are reviewed by Siegel et al. (2008).

Balanced truncation and BPOD. Balanced truncation, a model reduction
method that has become standard in modern control theory, was first introduced
by Moore (1981). Standard references on the method include Dullerud & Paganini
(1999) and Zhou et al. (1996). A detailed introduction of the method will be given
in the next chapter. The essence of the method is the inclusion of both inputs
and outputs of a control system in the reduced-order model, and balancing of the
sensitivity of model states to inputs with their potential to affect outputs, resulting
in superior model performance. Balanced truncation of closed-loop control systems
was first studied by Jonckheere & Silverman (1983).

While balanced truncation has been applied to fluid flows in 1-D problems (Far-
rell & Ioannou, 2001), the first computationally tractable approximation of the
method for very large problems was recently developed by Rowley (2005). The
method, known as Balanced Proper Orthogonal Decomposition (BPOD), has been
used successfully to compute reduced-order models and design feedback control
in several recent works. Unstable steady states for 2-D flow past a flat plate
at an angle of attack were stabilized by Ahuja & Rowley (2008, 2009), and the
growth of perturbations in a 2-D linearized Blasius boundary layer was suppressed
using a BPOD reduced-order compensator by Bagheri et al. (2009b). The first
applications of BPOD to a moderately high-resolution 3-D system were in Ilak &
Rowley (2008b,a), where the application is modeling and control of transitional
flow. The results of these two works will be discussed in detail in the subsequent
chapters.

It has been shown recently (Ma et al., 2009a) that a well-known method from
system identification theory known as Eigensystem Realizaton Algorithm (ERA,
see, for example, Juang & Pappa, 1985) is equivalent to balanced truncation. This
method results in significant computational savings over both exact balanced trun-
caiton and BPOD, and will also be used in this thesis. A drawback of the method
is that the two sets of modes required to obtain balanced models via Galerkin
projection are not computed, only the models themselves are obtained. This method
is discussed further in Section 2.3.4.

Balanced truncation for nonlinear systems. While in this thesis we focus
on linear techniques, ultimately it is desirable to obtain nonlinear models that will
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capture the input/output behavior of the original nonlinear flow. The standard
balanced truncation method is defined only for linear systems, and much research
has been done on extending the method to nonlinear systems, starting with the
work of Scherpen (1993). The first-principles approach taken in that work and in
some other more recent works is not immediately applicable to high-dimensional
systems, since Hamilton-Jacobi equations need to be solved. More recent work on
similar methods includes Fujimoto et al. (2002); Verriest & Gray (2004); Fujimoto
& Tsubakino (2008). A comparison of linear and nonlinear balancing and an inter-
pretation of linear balancing that extends to nonlinear systems is given by Krener
(2006).

On the other hand, an empirical method in the spirit of snapshot-based methods
such as BPOD has been introduced by Lall et al. (2002). This method will be used
in this thesis in an application to the Complex Ginzburg-Landau (CGL) equation.
The CGL equation has been studied widely as a basic model for limit cycles such as
vortex shedding in fluid flows (see, for example, Chomaz, 2005; Cossu & Chomaz,
1997). Control of the CGL equation has been widely studied (Lauga & Bewley,
2004; Cohen et al., 2005; Bagheri et al., 2009c; Aamo et al., 2005). In Chapter 6
we compute nonlinear reduced-order models of the CGL equation both using the
method of Lall et al. (2002) and via Galerkin projection of the nonlinear equation
onto modes from linear balanced truncation.

1.2.2 Optimal control and estimation

In this thesis the reduced-order models are designed for the purpose of feedback
control. The approach to control that has become standard over the last several
decades is based on the notion of a state-space, where a vector of variables defined
as the state of the system, along with inputs and outputs, describes the dynamics
of the system. The models we compute are thus known as state-space models.
The problems the control designer needs to solve are the design of the appropriate
controller (i.e., computation of feedback gains) and the estimation of the system
state, which is typically unavailable to the closed-loop system but is required to
compute the feedback control input, from a small number of measurements. Both
problems have been thoroughly studied, leading to the development of the standard
Linear-Quadratic-Gaussian (LQG) compensator, which we use in this thesis.

Computing a suitable reduced-order model is often the most difficult part of
the control design procedure, as the methods for the computation of the LQG
compensator are standard and have negligible computational cost for models of low
order such as the ones we use. Routines for the solution of the necessary matrix
Riccati equations are readily available in MATLAB. The necessary concepts and
techniques from modern control theory will be introduced throughout the thesis
as needed. Some standard references on the state-space method and modern and
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optimal control include Stengel (1994); Ogata (1997); Friedland (1986); Zhou et al.
(1996); Dullerud & Paganini (1999).

The issue of estimation has been as important as control design, since in the
standard state-space approach the entire system state is needed, and in practice one
typically needs to recover that information from a small number of measurements.
Considerable attention has been devoted recently to the study of estimation in
shear flows (Högberg et al., 2003; Hœpffner et al., 2005; Chevalier et al., 2006), and
it has been shown that the flow can be reconstructed to a satisfactory degree using
measurements of wall skin-friction and pressure (Bewley & Protas, 2004).

Finally, the field of nonlinear control has seen significant development in the
recent decades (see, for example, Nijmeier & van der Schaft, 1990; Krstić et al.,
1995). In this thesis, we focus on preventing the growth of a small perturbation and
controlling it while it is still small and thus described well by linearized equations.
The application of nonlinear control methods to nonlinear reduced-order models
such as ones we obtain in Chapter 6 is beyond the scope of this work and is the
subject of future work.

1.2.3 Understanding transition and turbulence in shear flows

Recent research on transition in shear flows has focused on the large non-normal
transient growth of exponentially stable linear perturbations to the laminar flow,
which is thought to lead to the so-called ‘subcritical’ or ‘bypass’ transition (Schmid
& Henningson, 2001; Trefethen et al., 1993; Farrell, 1988; Butler & Farrell, 1992;
Bamieh & Dahleh, 2001; Jovanović & Bamieh, 2005; Reddy et al., 1998). A com-
prehensive treatment of the subject is given by Schmid & Henningson (2001).
Some early works on the subject demonstrated that linear growth of energy in
perturbations to inviscid flow is possible even if the laminar profile has no in-
flection points (Ellingsen & Palm, 1975; Landahl, 1980). Later, the view of non-
orthogonality of the eigenfunctions of the Orr-Sommerfeld operator, which governs
the linear dynamics of perturbations to laminar flow, was established as the likely
explanation for subcritical transition. Individually these eigenvectors (also known as
eigenmodes) grow or decay in time depending on the Reynolds number (Re) — for
most shear flow there is a critical value of Re above which there are exponentially
unstable eigenvectors. Due to the non-normality, the norm of the sum of multiple
stable eigenmodes, and thus the perturbation energy, may grow in time initially
before decay. While a purely linear perturbation will eventually decay at subcritical
Re, in the actual flow governed by the full Navier-Stokes equations nonlinear effects
may be amplified once the perturbation has grown linearly, leading to transition to
turbulence. This process is called ‘bypass transition’, since transition happens faster
than the growth of unstable eigenmodes (which are not present if Re is subcritical),
also known as Tollmien-Schlichting waves, which are thus ‘bypassed’.
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The first highly accurate numerical computations of the eigenvalues of the Orr-
Sommerfeld operator Orszag (1971), which showed when transition to turbulence
can be expected using standard linear stability theory, and the discrepancy between
this finding and experimental and numerical evidence have prompted research into
the causes of subcritical transition. In the experiments of Patel & Head (1969) it
was found that transition for channel flow may occur at Reynolds numbers as low as
1350, which is considerably lower than the lowest critical value Re ≈ 5772 computed
by Orszag (1971). Other experiments have also found evidence of subcritical transi-
tion in shear flows (Nishioka et al., 1975; Kao & Park, 1970). Subcritical transition
has also been observed in numerical computations (see, for example, Schmid &
Henningson, 1992; Reddy et al., 1998).

In the light of the evidence for its role in transition, the suppression of transient
growth is of interest in controlling transition. One of the main potential practical
applications is drag reduction, since the drag in laminar flows in significantly lower
than drag in turbulent flows. On the other hand, promotion of transition may
be desirable in some applications, such as chemical processes where fast mixing is
desirable. Farrell & Ioannou (1993, 1996); Trefethen et al. (1993) studied the non-
normal growth of perturbations to shear flows in detail. Low-dimensional models
of transition obtained by inclusion of fundamental physical mechanisms rather than
model reduction of the Navier-Stokes equations are reviewed by Baggett & Trefethen
(1997). The transition of localized perturbations was studied by Henningson et al.
(1993), and the transition of some standard classes of linear perturbations in channel
flow was studied in detail by Reddy et al. (1998).

Another approach to transition and turbulence in shear flows has been the study
of the ‘edge of chaos’. There is evidence that for some shear flows states exist that
are neither laminar nor turbulent, and divide the state-space into two — a region
where all solutions will re-laminarize, and a region where the solutions eventually
enter a ‘non-trivial’ attractor, which is interpreted as a signature of turbulence (see,
for example, Skufca et al., 2006; Schneider et al., 2008). In Kim & Moehlis (2008),
the edge states for a low-dimensional model of Couette flow were studied. This type
of study is potentially useful for control design, as it may point out the region in
phase space where solutions may be expected to re-laminarize in finite time.

The main flow of interest in this thesis is transitional channel flow. By transitional
we mean the regime during which the perturbation is assumed to be small enough for
the linearized mechanism to dominate, although nonlinear effects are present as well.
Channel flow was chosen since it is a canonical flow and a standard test problem.
The simple geometry allows for relatively inexpensive accurate Direct Numerical
Simulation (DNS). Channel flow simulations have been standard benchmarks in
the study of turbulent flows, starting with the early investigations of Moin & Kim
(1980, 1982, 1985); Kim & Moin (1986), through the well-known simulation of Kim
et al. (1987), and including a more recent simulation at a higher Reynolds number
by Moser et al. (1999). Transition in channel flow was studied, among others,
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by Orszag & Kells (1980); Orszag & Patera (1980), later by Sandham & Kleiser
(1992), and in the already mentioned works of Henningson et al. (1993) and Reddy
et al. (1998). Channel flow will be introduced in more detail in Chapter 3.

1.2.4 Control of transition and turbulence in shear flows

The application of control theory and model reduction methods to transitional shear
flows has expanded in parallel with the improved understanding of transition. In
addition to the work in control already mentioned in Section 1.2.1, other approaches
that do not necessarily involve the model reduction methods described in this thesis
have been attempted. An overview of the recent progress in flow control using linear
control theory is given by Kim & Bewley (2007).

One of the first successful attempts at controlling turbulent channel flow is the
work of Choi et al. (1994). Later, efforts to control the linearized Navier-Stokes equa-
tions were undertaken initially on single-wavenumber perturbations (Joshi et al.,
1997; Bewley & Liu, 1998). 1-D perturbations will be mentioned throughout this
thesis. The usual approach to treating discretized Navier-Stokes equations for shear
flows in 3-D is to employ a Fourier decomposition in the streamwise and spanwise
directions, resulting in a set of 1-D problems at each spatial wavenumber pair, as
discussed later in Section 3.1.2. The term ‘1-D perturbation’ in this thesis will
refer to such a 1-D problem at a particular wavenumber pair. We note that in
physical space these perturbations have three-dimensional structure, periodic in
both streamwise and spanwise directions.

In the works by Farrell & Ioannou (2001) and Lee et al. (2001), balanced trun-
cation was applied to linearized channel flow at particular wavenumber pairs the
standard algorithms are applicable, since the full system is 1-D. The controllers
of Lee et al. (2001) were then tested on nonlinear channel flow. Control and
estimation of linearized channel flow was studied by Högberg et al. (2003). In
that work, wall blowing/suction was used as actuation and the flow field was re-
created based on a measurement of wall skin-friction. The controllers were shown
to be successful, although they are designed at each streamwise and spanwise
spatial wavenumber pair separately, and then combined, and actuation at all spatial
wavenumber pairs is assumed. On the other hand, in this thesis, the controllers are
designed for the 3-D flow without a similar decomposition into wavenumber pairs,
and only localized actuators are considered.

The input/output behavior of the linearized operator was studied by Bamieh &
Dahleh (2001) and Jovanović & Bamieh (2005), and it was shown that the energy
amplification due to the non-normality of the underlying operator can be on the
order of O(Re3). The latter work demonstrates that the streamwise velocity is
most receptive to perturbations and thus correlates best to perturbation kinetic
energy. This finding is used to guide output selection in Chapter 5.
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More recently, Åkervik et al. (2007) and Barbagallo et al. (2008) studied control
of a cavity flow using the eigenfunctions of the full 2-D linearized Navier-Stokes
equations, also known as global eigenmodes. Although successful models can be
designed using these modes, the modes need to be selected carefully so that the
model captures the inputs and outputs of the system (Hœpffner, 2006). BPOD
models, on the other hand, are designed to capture well system inputs and outputs,
as will be demonstrated in this thesis.

Other techniques for control have been applied to channel flow recently, such
as motion planning (Cochran & Krstić, 2009), as well as boundary control for 2-D
channel flow (Aamo et al., 2003) and 3-D channel flow (Cochran et al., 2006).

1.3 Organization and contributions

Overall, the main contributions of this work are: the first computation of reduced-
order BPOD and ERA models for a 3-D flow with localized actuation without
decomposition into 1-D perturbations, the use of these models for feedback control
in both linear and nonlinear DNS, and a preliminary investigation of balanced
truncation for a 1-D nonlinear model problem for fluid flows. Specifically, the
contributions of each chapter are outlined below.

Chapter 2. The main idea of model reduction via Galerkin projection, along
with a discussion of the choices of basis for projection, is introduced in Section 2.1.
A brief introduction to POD reduced-order models is given in 2.2. Next, balanced
truncation and its computation for large systems is introduced in Section 2.3. Eigen-
system Realization Algorithm (ERA), a method recently shown to be equivalent to
balanced truncation, but without the need for adjoint simulations, is introduced in
Section 2.3.4. Extensions of balanced truncation to nonlinear systems are introduced
in Section 2.3.5.

Chapter 3. The governing equations for channel flow are introduced in Sec-
tion 3.1, along with the appropriate linearization and the adjoint equations derived
with the appropriate inner product. The numerical computations involved in model
reduction, including steps for verification of results, are described in Section 3.2.
The software tools used in the thesis are also introduced in 3.3, as they are tightly
coupled to the underlying flow physics.

Chapter 4. A detailed investigation of BPOD and a comparison to POD is
described in Chapter 4. The choices of actuators and measurements are discussed in
Section 4.1. A detailed comparison of BPOD to exact balanced truncation and POD
for a 1-D system, similar to the 1-D systems used in previous works (see, for example,
Farrell & Ioannou, 2001), is shown in Section 4.2. Next, the first application of
BPOD to modeling of a large 3-D system is discussed in Section 4.3, where the
reduced-order models of a localized perturbation are presented. An analysis of the
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dynamics of a POD model described in Section 4.3, inspired by the recent work
of Mezić (2004) in graph decomposition analysis of dynamical systems, is given in
Section 4.4. This chapter investigates only linearized channel flow.

Chapter 5. Next, balanced models are used to design both feed-forward and
feedback controllers, first for linearized, and then for nonlinear DNS runs. For these
cases, ERA is used to compute models. Two choices of actuation — a velocity
distribution corresponding to a body force and localized wall blowing/suction on
the lower channel wall — are considered. It is shown that significant reduction in the
perturbation energy can be obtained simply by designing a controller that minimizes
the streamwise velocity component of the perturbation at a particular location.
Preventing transition to turbulence for full nonlinear Navier-Stokes equations is
also achieved in some nonlinear DNS runs.

Chapter 6. Finally, although linear models can be useful, it is ultimately
desirable to develop nonlinear models of fluid flows, and this chapter describes our
efforts towards that goal applied to the Complex Ginzburg-Landau equation. This
work was done mostly during a visit to the Mechanics Department of the Royal
Institute of Technology in September–December, 2007, in close collaboration with
Shervin Bagheri, and under the joint guidance of Prof. Dan Henningson, Docent
Luca Brandt and Prof. Clarence Rowley.

Chapter 7. The conclusions of this work and the many possible directions for
future work are outlined in the final chapter.

Some technical details and examples of computational procedures not essential
to the main flow of the presentation have been included in appendices. Most of the
results described in this thesis and preliminary studies leading up to these results
have been published in Rowley & Ilak (2006); Ilak & Rowley (2006, 2008b) and Ilak
& Rowley (2008a), and two articles with the results of Chapters 5 and 6 respectively
are in preparation.





Chapter 2

Reduced-order models and balanced
truncation

Model reduction is at the heart of the approach to flow control taken in this thesis.
Therefore, we begin by introducing the idea of projecting a high-dimensional system
onto a low-dimensional space and we review standard methods for it, with a detailed
description of the particular methods used in this work. We focus on methods
that are tractable for very large systems typical for high-resolution discretization
of the Navier-Stokes equations for simulation of fluid flows. Such systems can have
dimension of O(105−9), rendering many standard control design methods intractable
and necessitating the use of reduced-order models to design controllers.

A standard approach for obtaining a low-dimensional description of a system is
Galerkin projection onto a low-dimensional subspace, which has been a standard
method, especially for projecting onto Proper Orthogonal Decomposition (POD)
modes (Holmes et al., 1996). The projection, however, need not be orthogonal, and
a second set of modes, bi-orthogonal1 to the original set, can be used. This method,
known as Petrov-Galerkin projection, is used in balanced truncation, a standard
method that will be shown in subsequent chapters to outperform POD significantly.

Balanced truncation (Moore, 1981) is a well-established method in linear control
theory. Compared to other methods for model reduction, balanced truncation takes
into account both the inputs and the outputs of the system, while also capturing the
underlying system dynamics that is relevant to those inputs and outputs. Snapshot-
based balanced truncation (Rowley, 2005), also known as BPOD in some cases,
which allows for the computation of balanced reduced-order models for very large
systems, is the key method used in this thesis. We also discuss the recently
discovered equivalence between the Eigensystem Realization Algorithm (ERA) (Ma
et al., 2009a; Juang & Pappa, 1985; Juang & Phan, 2001) and balanced truncation,

1See Eq. 2.5 for a definition of bi-orthogonality.
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resulting in tremendous computational savings for computing balanced models. This
method has been used for the results that will be presented in Chapter 5.

Finally, Petrov-Galerkin projection can be used for both linear and nonlinear
systems. In particular, nonlinear equations can be projected onto a basis computed
for linear equations, or alternatively, a basis of modes obtained from nonlinear simu-
lations, such as that proposed by Lall et al. (2002), described later in this chapter. In
Chapter 6 we compute nonlinear models using modes obtained from snapshot-based
balanced truncation of a linear system, first for the nonlinear Complex-Ginzburg
Landau (CGL) equation.

It would not be possible to thoroughly discuss all the mathematical and control
theoretic aspects of model reduction within the confines of a dissertation chapter.
Therefore, for an in-depth understanding, the reader is referred to standard refer-
ences, for example the textbooks of Zhou et al. (1996) and Dullerud & Paganini
(1999) for state-space systems and balanced truncation, and Holmes et al. (1996)
for Galerkin projection and POD.

2.1 Reduced-order models

A reduced-order model of a high-dimensional system has low dimension (i.e., a
smaller number of degrees of freedom) while retaining desirable properties of the
original systems. For control systems, typically the most desirable property to be
preserved is the input-output behavior. A reduced-order model for control design
may be obtained by Galerkin projection onto a set of modes.

2.1.1 Galerkin projection

The idea of Galerkin projection is, given a system:

ẋ = f(x), x(t) ∈ X , (2.1)

where X is a high-dimensional Hilbert space (for example, X = Rn, where n is
large), to project onto a low-dimensional subspace T ⊂ X , which can alternatively
be thought of as the span of the most important2 basis functions (modes) for the
state space X . We start by noting that we can represent the dynamics of x(t) in a
given basis {θj} as:

x(t) =
n∑
j=1

aj(t)θj, (2.2)

2What is meant by ‘important’ modes is different for different methods, and the criteria for
choosing the basis will become apparent from the discussion later in this chapter.
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where θj are time-independent basis functions and aj(t) are the corresponding time
coefficients. If the basis functions form an orthonormal set with respect to an inner
product defined by 〈·, ·〉, meaning that:

〈θi, θj〉 = δij, (2.3)

where δij is the Kronecker delta, a set of ODEs for the time coefficients can be
computed using:

ȧj = 〈θj, f(x)〉 . (2.4)

Galerkin projection is widely used in numerical computations, for example in finite
element methods, where appropriate basis functions (modes) are defined on the
domain of computation, and the PDE of interest is projected onto a subset of
a finite number of those functions (since a PDE is infinite-dimensional, it may be
expanded into an infinite sum of basis functions). If we consider the projection of the
infinite-dimensional PDE onto the entire subset of n modes required for an accurate
solution as the ‘full system’, a reduced-order model of order r can be obtained as
a set of ODEs for the time evolution of the first r coeffecients by projecting the
original system onto the first r modes only. This means including only the first r
modes in the expansion in 2.2, where typically r � n, so that T = Rr. Galerkin
projection is applicable to both linear and nonlinear systems, and often the basis is
chosen to be POD modes, although other choices can be made, as will be discussed
in subsequent sections.

We remark here that a low-dimensional description of the evolution of a system
for a given initial condition and forcing can be obtained by projecting stored ‘snap-
shots’ of the system state onto modes, which is different from actually integrating
the ODEs in (2.4). This is a key observation, since a good basis for the former may
not be suitable for the latter. We also remark that computationally, in the context
of fluid flows, Galerkin projection can be done in two ways – using the exact ‘right-
hand side’ of the governing equations, which may involve double or triple expansion
sums for nonlinear systems, or, for a linear system, using a ‘wrapper’ around a DNS
solver (see Bagheri et al., 2009b, for details of this approach). If the time step in
the latter approach is small enough, the two methods are equivalent. In this thesis
Galerkin projection is computed using the exact right-hand side of the governing
equations.

2.1.2 Choice of basis and direction of projection

The choice of basis for Galerkin projection in model reduction of fluid flows is
limited, and here we discuss three common choices. The first to be used historically,
the method of Proper Orthogonal Decomposition (POD) is the most widely used
for obtaining the low-dimensional basis (Sirovich, 1987; Aubry et al., 1988; Holmes
et al., 1996; Podvin & Lumley, 1998; Smith, 2003; Smith et al., 2005; Noack et al.,
2003). Recently, global eigenmodes of the Navier-Stokes equations linearized about
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equilibria have been used to obtain reduced-order models for control (Åkervik
et al., 2007; Barbagallo et al., 2008). A thorough review of this approach is given
by Henningson & Åkervik (2008). A major disadvantage of POD and global eigen-
modes is that there is no straightforward way of capturing accurately actuation
and measurements in the models. Finally, snapshot-based balanced truncation,
also known as Balanced Proper Orthogonal Decomposition (BPOD), a method
that captures the input/output behavior well, introduced to the fluid mechanics
community by Rowley (2005), has gained popularity in the recent few years. It has
been applied to flow past a plate at an angle of attack (Ahuja & Rowley, 2008, 2009),
transitional channel flow (Ilak & Rowley, 2008b,a, 2006; Rowley & Ilak, 2006) and
the Blasius boundary layer (Bagheri et al., 2009b).

An important difference between POD and the two latter techniques is that
global eigenmodes and balanced truncation involve non-orthogonal Galerkin pro-
jection using adjoint modes, also known as Petrov-Galerkin projection. Figure 2.1
illustrates the two ways of projecting the dynamics f(x) from (2.1) evolving in a
three-dimensional space onto a two-dimensional subspace T . The projection PT is
orthogonal, while the projection P̃T is non-orthogonal as illustrated by the red line,
which is not orthogonal to the subspace T . The red line is orthogonal to a different
subspace denoted by S. The modes spanning S are usually called adjoint modes,
and their significance for balanced truncation will be discussed later in this chapter.
The two sets are bi-orthogonal:

〈ψi, φj〉 = δij, (2.5)

where we denote the modes spanning T as φ and the modes spanning S as ψ. It
is evident from Fig. 2.1 that the choice of direction of projection can make a lot
of difference in capturing the system dynamics even when projecting on the same
basis, as will be shown in subsequent chapters.

2.2 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition, also known as Karhunen-Loève expansion, was
first introduced to the fluids community by Lumley (1967, 1970) in order to extract
low-dimensional behavior of the flow characterized by its coherent structures. More
details about POD can be found in standard references (Sirovich, 1987; Holmes
et al., 1996); here we only focus on the properties that are relevant for the numerical
computations and control design procedure used in the subsequent chapters.

Mathematically, POD modes are the eigenfunctions of the autocorrelation matrix
of the states of a system given by (2.1) integrated over time (Holmes et al., 1996).
Here we will focus on POD for a system that is discretized in both space and time.
The modes can then be computed by stacking simulation snapshots x(tk) at some
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f(x)

PT f(x)

P̃T f(x)

T

O

S′
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Figure 2.1: An illustration of Galerkin and Petrov-Galerkin projection onto a two-dimensional
subspace of a three-dimensional Hilbert space. The direction of the red line is the nullspace of
the non-orthogonal projection onto the subspace T . The subspace S, which contains the origin
O, and which is orthogonal to the nullspace, is spanned by the adjoint modes. For clarity of the
illustration, a two-dimensional space S′ with origin O′, parallel to S, is shown in the figure instead
of S. A translation that maps O′ to O would map S′ to S. See text for details.

times tk into a matrix X with appropriate time quadrature weights δ3:

X = [x(t1)
√
δ1 x(t2)

√
δ2 . . . x(tm)

√
δm], (2.6)

where m is the total number of snapshots, and solving the n×n eigenvalue problem

XXTΘ = ΘΛ, (2.7)

where Λ is the diagonal matrix of eigenvalues. This method is known as the direct
method for computing POD and it becomes computationally intractable when the
number of states n is very large, since the n × n matrix XXT becomes too large
to store in memory. Sirovich (1987) has shown that the first m POD modes can
also be obtained using the solutions of the considerably smaller m ×m eigenvalue
problem

XTXU = UΛ, (2.8)

the orthonormal modes being the columns of the matrix

Θ = XUΛ−1/2. (2.9)

3The time quadrature weights are necessary, since the integral of the autocorrelation matrix
XXT is computed from snapshots at discrete times, i.e., using quadrature. These weights change
if the number of snapshots or the spacing in time between two consecutive snapshots changes in
order to approximate the continuous integral appropriately (see Appendix B).
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This method is numerically tractable for very large systems, since the number of
snapshots is typically much smaller than the dimension of the system. It has become
known as the method of snapshots and it is key for most POD calculations, both
from simulations and from experimental data, as well as for other methods, such
as empirical balanced truncation, where a low-dimensional basis is computed from
simulation results. The method of snapshots was used for all POD calculations in
this thesis except for some 1-D cases for which the computational cost is negligible.

POD modes have a particularly intuitive meaning for fluid flows, since they
represent the most energetic structures in a given simulation if velocity snapshots
are taken — the set of POD modes is the optimal solution to the problem of
finding a low-order basis of given dimension that captures the largest fraction of
the kinetic energy in the simulation snapshots (Holmes et al., 1996). The energy
contained in the modes is measured by the eigenvalues which are the entries of
the diagonal matrix Λ, and the sum of the eigenvalues is equal to the total energy
in the snapshots. For flows in limited spatial domains and dominated by coherent
structures with low-dimensional behavior, the leading few POD modes often capture
well over 95% of the flow energy. While POD was initially most often used to analyze
the behavior of coherent structures (Lumley, 1967), for example in turbulent channel
flow (Moin & Moser, 1989), it was also realized that the basis could be suitable
for Galerkin projection in order to obtain a reduced-order model of the system
dynamics (Sirovich, 1987; Aubry et al., 1988; Holmes et al., 1996). It has however
been shown that the dynamics of the flow is not necessarily captured by leading
POD modes (Smith, 2003; Smith et al., 2005; Ilak & Rowley, 2008b).

For linear state-space systems, the POD modes of data from the response of
the state of the system to an impulsive input (to be discussed below) are the
modes which are most sensitive to inputs, also known as the most controllable
modes (Rowley, 2005). However, both controllability and observability, which is
the potential of states to affect system outputs, are important for the input-output
behavior of a system, and POD often fails to capture highly observable modes. On
the other hand, balanced truncation does take into account both of these properties,
and we next describe this method.

2.3 Balanced truncation

2.3.1 Exact balanced truncation

Balanced truncation is a standard model reduction method (Moore, 1981; Dullerud
& Paganini, 1999; Zhou et al., 1996) originally developed for LTI (Linear Time-



2.3. BALANCED TRUNCATION 17

Invariant) stable input-output systems of the form

ẋ = Ax+Bu

y = Cx,
(2.10)

where u ∈ U = Rp is the vector of inputs, y ∈ Y = Rq is the output, x ∈ X = Rn is
the state vector (although in general all three spaces can be complex as well), and
A, B, and C are matrices of appropriate dimension. The idea of balancing is to find
a change of coordinates in which the controllability and observability Gramians,
defined by

Wc =

∫ ∞
0

eAtBB+eA
+t dt, Wo =

∫ ∞
0

eA
+tC+CeAt dt, (2.11)

are equal and diagonal, their entries being known as Hankel singular values (HSVs).
The matrices A+, B+ and C+ in (2.11) define the corresponding adjoint system.
It should be noted that in general A+ 6= AT , the two being equal only when the
inner product used to derive the adjoint does not have an associated weight (see
Appendix A). It can be shown that balanced truncation does not depend on the
choice of the inner product on the state space X , although it does depend on
the choices of inner products for U and Y . This is discussed in more detail in
Appendix A.

The system in this new set of coordinates where the Gramians are equal and
diagonal can be thought of having a balance between the sensitivity of the states to
inputs (controllability) and their potential to affect the system outputs (observabil-
ity). One then truncates the least controllable and observable modes, corresponding
to the smallest eigenvalues of the Gramians. A graphical illustration of the method
for a 2-D system is shown in Fig. 2.2. The two ellipsoids are level sets of the
quantities xTWcx and xTWox and can be thought of as geometric measures of con-
trollability and observability for a given (two-dimensional) state x of the system. For
unit magnitudes of the inputs and outputs, the directions for which xTWcx = 1 and
xTWox = 1 are the most controllable and most observable directions respectively,
and these directions (states) are typically different.

An additional feature of balanced truncation is that some predictions about
model performance can be made. In control design we are often interested in the
worst-case error between the reduced-order model and the full simulation, which is
known as the infinity error norm of the system (see Appendix D for a definition)
and for which balanced truncation has apriori error bounds (Dullerud & Paganini,
1999). The H∞ lower bound for the error in any reduced-order system is

‖G−Gr‖∞ ≥ σr+1, (2.12)

where G(s) is the transfer function of the full system, Gr(s) is the transfer function
of a reduced-order model with state dimension r, and σj is the j-th Hankel singular
value (in decreasing order). The upper bound for the error for balanced truncation
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Figure 2.2: A graphical illustration of the balancing transformation. The most controllable states
and the most observable directions are not aligned on the left, while in the balanced coordinates
they coincide. This implies that, while neither direction can be truncated on the left-hand side,
the x′2 direction on the right-hand side has little influence on the input-output behavior of the
system.

is given by
‖G−Gr‖∞ ≤ 2Σn

j=r+1σj. (2.13)

The upper bound on the error can be very close to the lower bound if the HSVs
decrease fast, meaning that the error norm of the models is very close to the lowest
possible value, as will be shown in the subsequent chapters for models of transitional
channel flow. A detailed proof of the error bounds for balanced truncation, along
with a discussion of the related Hankel operator and an alternative model reduction
approach known as Hankel norm approximation, is given in Zhou et al. (1996).

2.3.2 Empirical balanced truncation

In order to compute the balancing transformation, the Gramians are simultaneously
diagonalized. This procedure is not computationally tractable for very large sys-
tems, as it requires the solution of very large matrix equations, known as Lyapunov
equations. A computationally tractable procedure for finding the leading modes
of the balancing transformation using the method of snapshots is given in Rowley
(2005). Here we outline the key steps. Let the system in (2.10) evolve in a state
space X = Rn. The response of the state of the system in (2.10) to an impulsive
input is defined as x(t) = eAtB (in contrast to the usual impulse response given
by y(t) = CeAtB). One begins by computing the snapshots of the impulse-state
response of both the original system and the corresponding adjoint system

ż = A+z + C+v

w = B+z,
(2.14)
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and stacking the direct and adjoint snapshots as columns of matrices X and Y with
appropriate quadrature weights (Rowley, 2005):

X = [x(t1)
√
δ1 . . . x(tm)

√
δm], Y = [z(t1)

√
δ1 . . . z(tm)

√
δm]. (2.15)

Although in the above equation it is assumed that the direct and adjoint snapshots
are taken at exactly the same times, the number of snapshots and the quadrature
weights in X and Y are generally different. One can show that the Gramians
in (2.11) may then be approximated by empirical Gramians (Lall et al., 2002) Wc,e

and Wo,e, as
Wc ≈ Wc,e = XX+, Wo ≈ Wo,e = Y Y +. (2.16)

The key idea in the method of snapshots is to compute the transformation that
balances the empirical Gramians (or at least the dominant directions of this trans-
formation) without actually computing the Gramians themselves, whose dimension
is large, resulting in significant computational savings. In this respect, this method
resembles the method of snapshots for POD. To compute the balancing transfor-
mation, one computes the singular value decomposition (SVD) of the matrix Y +X
(see Appendix A for a discussion of Y +):

Y +X = UΣV T , (2.17)

where U and V are unitary matrices, and Σ is a diagonal matrix. The balancing
transformation Φ and its inverse Ψ are then found by

Φ = XV Σ−1/2, Ψ = Y UΣ−1/2. (2.18)

The columns of Φ are the balancing modes (alternatively referred to as the direct
modes) and the columns of Ψ are the adjoint modes, and the two bi-orthogonal
sets of modes are used for the Petrov-Galerkin projection. The matrix Y +X is also
known as the Hankel matrix. The entries of the diagonal matrix Σ are the Hankel
singular values. As shown by Rowley (2005), the balancing modes are the leading
columns of the balancing transformation and the adjoint modes are the leading
rows of its inverse. If n snapshots are taken, all rows and columns of the balancing
transformation can be computed, although usually numerical roundoff errors arise
in computing the modes that correspond to very small HSVs. A balanced reduced-
order model is then given by:

ȧ = Ψ+
1 AΦ1a+ Ψ+

1 Bu

y = CΦ1a,
(2.19)

where the matrices Ψ1 : Rr → X and Φ1 : Rr → X , which contain the first r
columns of the balancing transformation and its inverse, respectively, are n× r. We
will refer to r, the number of states we want to retain in the system, as the rank of
the model throughout this thesis.

A different procedure for approximating balancing transformations has also been
used in Willcox & Peraire (2002), in which the Gramians are separately reduced
(that is, low-rank approximations of Wc,e and Wo,e are first constructed, and then
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the balancing transformation for the rank-reduced Gramians is computed by an
unspecified algorithm). However, this procedure is more computationally intensive
than BPOD, and has been shown to give worse results (Rowley, 2005), since almost-
uncontrollable modes may be strongly observable and should thus not be truncated.

An approach for obtaining empirical balanced models without adjoint simu-
lations, using the Moore-Penrose inverse (pseudoinverse) of the balancing modes
instead of adjoint modes has been proposed recently by Or et al. (2008). However
it was demonstrated by Ma et al. (2009a) that the resulting models are not a true
approximation of balanced truncation.

2.3.3 Output projection and BPOD

If we are interested in the full flow field in a fluid problem, for example to accurately
capture the energy growth of a perturbation, the number of outputs can be very large
(n = q). In this case, the computation of the adjoint simulations of the system given
by (2.14) may not be tractable, since one simulation is needed for each component
of the output. A way to reduce the number of system outputs is to first project
the output onto a low-dimensional subspace, i.e., taking ỹ = PsCx, where Ps is an
orthogonal projection onto a s-dimensional subspace of Y , as suggested in Rowley
(2005). The system is now of the form:

ẋ = Ax+Bu

ỹ = PsCx,
(2.20)

where s is the rank of the output projection. The projection Ps that minimizes
the 2-norm of the difference between the original transfer function and the output-
projected transfer function is given simply by the POD of the set of impulse-state
responses (Rowley, 2005). This projection can be written as Ps = ΘsΘ

T
s , where

columns of Θs : Rs → Y are POD modes. Another way to write the system is as
follows:

ẋ = Ax+Bu

ŷ = ΘT
s Cx.

(2.21)

Here, the outputs of the system are just the coefficients of the POD modes of the
system impulse response and ŷ ∈ Rs. This s-dimensional output carries the same
information as the n-dimensional output ỹ, which is easily shown using the fact that
for any projection P , P 2 = P (see, for example, Trefethen & Bau, 1997, Lecture 6):

‖ỹ‖2 = xTCTP T
s PsCx = xTCTPsCx = xTCTΘsΘ

T
s Cx = ‖ŷ‖2. (2.22)

The corresponding adjoint system can now be written as:

ż = A+z + (ΘT
s C)+v

w = B+z.
(2.23)
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Note that if the output is the full state, so that C = In, and the adjoint is defined
with respect to the standard L2 inner product, the initial conditions of the adjoint
simulations are just the POD modes (columns of Θs). In practical computations,
depending on the choice of inner product used in defining the adjoint system, and
on the numerical quadrature method (for example, if the computations are done
using Chebyshev polynomials) the matrix (ΘT

s C)+ is usually just the matrix Θs

pre-multiplied by a matrix of inner product weights.

The idea of Balanced POD (BPOD) is to compute the snapshot-based balanced
truncation of the system (2.21) instead of (2.10), so that only s adjoint simulations
are needed. It is easily shown that the systems (2.20) and (2.21) have the same
observability Gramian, again using the fact that for any projection P , we have P 2 =
P . Transforming (2.21) to balanced coordinates and writing x = Φ1a, analogously
to (2.19), a reduced-order model is obtained as follows:

ȧ = Ψ+
1 AΦ1a+ Ψ+

1 Bu

ys = ΘT
s CΦ1a.

(2.24)

Note that r ≤ p, where p is the number of non-zero HSVs. If we assume that C = In
(this is the case in fluid simulations where we need to know the entire flow field),
we can represent the output of (2.24) as ys = ΘT

s Φ1z, which is now the vector of
time coefficients of the s standard POD modes obtained from the impulse response
of the system. For fluid flows the full field output of the model can be recovered
from these coefficients and the corresponding modes. For a given dimension of the
output projection, all BPOD models will have s outputs regardless of the model
rank r, while the number of POD model outputs is equal to r at each rank. The
effect of output projection on model performance will be illustrated in Chapters 4
and 5.

Finally, if a system has a small number of measurement outputs (such as when
using an estimator), corresponding to a matrix C1 with a small number of rows, and
in addition the main output of interest is the energy of the entire flow field, output
projection is used for the energy part and the model reduction is performed as

ẋ = Ax+Bu

y =

[
C1

In

]
x
⇒

ȧ = Ψ+
1 AΦ1a+ Ψ+

1 Bu

ys =

[
C1

ΘT
s

]
Φ1a.

(2.25)

A summary of BPOD algorithm is given below. We remark here that, although
the acronym BPOD was introduced by Rowley (2005) in the context of systems with
a large number of outputs where output projection is necessary, it has also been
used for systems with a small number of outputs where this step is not necessary.

1. Simulate the system (2.10) and form the matrix of snapshots X as given
by (2.15).
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2. If the number of outputs is very large, such as in the case where C = In,
compute the POD modes of the set of snapshot outputs. If C = In, the
matrix X from the previous step is used, if C 6= In, the matrix of snapshots
for POD will be CX.

3. Simulate the adjoint system (2.14), with the columns of the C+ matrix as
initial conditions, or, if the number of outputs is large, with the POD modes
computed in the previous step as initial condition and form the matrix of
snapshots Y as given by (2.15).

4. Compute the SVD of the matrix Y +X = UΣV T and the direct and adjoint
modes:

Φ = XV Σ−1/2, Ψ = Y UΣ−1/2 (2.26)

5. The system (2.10) in balanced coordinates is then given by (2.19) or alterna-
tively by (2.24) or (2.25) if the system has a very large number of outputs.
The corresponding reduced-order model of rank r is obtained by using the
first r columns of Φ and Ψ. If the initial condition of the original system is
given by the vector x0, the initial condition in the reduced-order model is its
projection Ψ+

r x0.

Extensions of balanced truncation, both exact and snapshot-based, have been
introduced for time-periodic systems (Ma et al., 2009b) and unstable systems (Zhou
et al. (1999) for exact method and Ahuja & Rowley (2009) for snapshot-based
method). In this thesis we only consider balancing of stable LTI systems and
snapshot-based balancing of nonlinear systems, which will be introduced later in
this chapter.

2.3.4 Eigensystem Realization Algorithm

It has recently been observed that a well-known method from system identification,
the Eigensystem Realization Algorithm (ERA) (Juang & Pappa, 1985; Juang &
Phan, 2001) generates models theoretically identical to BPOD models (Ma et al.,
2009a). In particular, it is shown that the Hankel matrix Y +X can be formed
only using a set of measurements from an experiment, or output signals extracted
from a simulation of the full field. The advantage of this method is that adjoint
simulations are not required, resulting in tremendous computational savings in terms
of CPU time and memory requirements, as well as avoiding the challenges that can
sometimes arise in derivation and implementation of the adjoint equations for a
given problem. Also, reduced-order models can be obtained from experimental
measurements using ERA. A disadvantage, however, is that the method only com-
putes models, and does not return the direct and adjoint modes, which are useful
for investigating parameter variations in the models and for obtaining non linear
models.



2.3. BALANCED TRUNCATION 23

ERA was used for the results presented in Chapter 5, as it allows a fast com-
putation of models for different choices of measurement, thereby making a detailed
comparison of different output variables and locations feasible.

2.3.5 Balanced truncation of nonlinear systems

Balanced truncation has been shown to be an excellent method for model reduction
of linear systems, including linearized Navier-Stokes equations, which will be dis-
cussed in the next chapter. Unfortunately, the evolution of linearized perturbations
is typically restricted to a small region of validity in the neighborhood of the
corresponding equilibrium state of the nonlinear system, and the nonlinear dynamics
is omitted altogether in linear models. It is therefore desirable to obtain nonlinear
models of the flows of interest. POD has traditionally been used for this purpose,
since the application of the snapshot method is identical for linear and nonlinear
systems and models can be obtained in a straightforward fashion, but, as mentioned
earlier, the method has been shown in many cases to fail to capture dynamics
accurately. On the other hand, balanced truncation in its precise formulation
described in Section 2.3.1 is only defined for linear systems, and there is no procedure
for nonlinear systems that is its direct equivalent. Still, the appeal of the theory
of linear balancing and the successful application of the method to many problems
has spurred extensive research in the area of nonlinear balancing.

Although extensive theory has been developed from ‘first principles’, i.e., using
the extensions of the definitions of controllability and observability to nonlinear
systems, the size of systems that most methods for nonlinear balancing can be
applied to is modest at best. The original procedure proposed by Scherpen (1993)
involves the solution of Hamilton-Jabobi PDEs in order to obtain the controllability
and observability functions for a nonlinear system, which is computationally not
feasible for large systems. Other methods, which involve a degree of complexity,
such as sliding interval balancing (Verriest & Gray, 2004) or Taylor series expan-
sion (Fujimoto & Tsubakino, 2008) have also been applied to small systems. On the
other hand, the empirical snapshot-based method proposed by Lall et al. (2002) is
more straightforward to apply.

The essence of the method in Lall et al. (2002) is that the space of the pos-
sible inputs is sampled over a number of impulse response magnitudes in order
to compute an empirical controllability Gramian, and the state space is sampled
with a number of amplitudes of the basis vectors spanning the space in order to
compute an empirical observability Gramian. For nonlinear systems, the adjoint
system is not defined as precisely as for linear systems, although nonlinear adjoint
operators derived using Hamiltonian extensions of the original nonlinear system
have been proposed (Fujimoto et al., 2002). Lall et al. (2002) propose simulating
the system with all the basis vectors of the state space as initial conditions for the
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empirical observability Gramian, since in the linear case this empirical Gramian is
equal to the exact snapshot-based observability Gramian. This makes the method
computationally expensive for large systems, since the number of the required
simulations is of the order of the number of the states. For the discussion that
follows we assume a general form of a nonlinear input-output system:

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t)).
(2.27)

The following definitions are based on the ones given in Lall et al. (2002), with the
notation adepted to match the conventions used in this thesis. We start with the
empirical controllability Gramian:

Ŵc =
r∑
l=1

s∑
m=1

p∑
i=1

1

rsc2
m

∫ ∞
0

F ilm(t)dt, (2.28)

where the matrix F lm(t) ∈ Rn×n is given by:

F ilm(t) := (xilm(t)− x̄ilm)∗(xilm(t)− x̄ilm), (2.29)

where xilm(t) the state response corresponding to the impulsive input u(t) = cmTleiδ(t),
where the matrix Tl is a p × p rotation matrix in the input space, and the vectors
ei are the basis vectors of the input space. The overbar indicates a time average.

The empirical nonlinear observability Gramian, as defined by Lall et al. (2002),
is given by:

Ŵo =
r∑
l=1

s∑
m=1

1

rsc2
m

∫ ∞
0

TlGlm(t)T ∗l dt, (2.30)

where the entries of the matrix Glm(t) ∈ Rn×n are

Glmij (t) := (yilm(t)− ȳilm)∗(yjlm(t)− ȳjlm) (2.31)

and yilm(t) is the output of the original system corresponding to the initial condition
x0 = cmTlei with zero input. Here ei are the basis vectors of the state space. We
assume that the input is related to the state through the linear input matrix B.

Figure 2.3 illustrates the method of Lall et al. (2002) graphically for a sample
system with two actuators and a state of dimension three. In Figure 2.3a, the set
of rotation matrices T , with dimension 2 × 2 in this example, can be thought as
determining the direction of the unit basis vectors of the input space e1 and e2,
and the amplitude c gives their magnitude. Similarly, in Figure 2.3b, the set T of
3 × 3 rotation matrices can be thought of as determining the direction of each of
the states used as initial conditions, with c being their amplitudes.

An open question is the selection of the range of initial condition amplitudes
cm for both the controllability and observability Gramians. In fluid problems,
typically the linearized problem governs the evolution of a small disturbance about
a base flow. Beyond a certain magnitude of the perturbation, the nonlinear effects
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Figure 2.3: A graphical illustration of the method of Lall et al. (2002). (a) Sampling of an example
two-dimensional input space for the empirical controllability Gramian, where c is the magnitude
of an impulse, and T is a rotation matrix in the coordinate system e1, e2. (b) Sampling of an
example three-dimensional state space for the empirical observability Gramian. Again T is a
rotation matrix, and c is the corresponding amplitude.

dominate. If for example it is desired to study weakly nonlinear effects in transitional
flow, only small amplitudes should be used, while if fully turbulent flow is considered,
a range of large perturbation amplitudes should be selected.

Once the empirical Gramians are obtained, they are diagonalized simultaneously,
and Galerkin projection is performed as described in Section 2.1.1.

2.4 Summary

This chapter has introduced the standard approach for obtaining reduced-order
models of a large-scale dynamical system using Galerkin or Petrov-Galerkin pro-
jection onto an appropriate low-dimensional basis. The focus is on the method of
empirical balanced truncation, in which reduced-order models that capture well the
input-output behavior of the full system are computed using simulation snapshots.
Thus, solving matrix equations of dimension too large for most modern computers
is avoided. In this thesis, reduced-order models are obtained using POD, exact
balanced truncation, snapshot-based balanced truncation with output projection
(BPOD) and Eigensystem Realization Algorithm (ERA), and the corresponding
abbreviations will be used in later chapters. In addition, nonlinear models will
be obtained using the method of Lall et al. (2002) and projection of the nonlinear
system onto balancing modes computed from balanced truncation of a linear system.





Chapter 3

Numerical simulation and model
reduction of channel flow

The main effort in this thesis is the application of the model reduction methods
introduced in the previous chapter to modeling and feedback control of transitional
channel flow. Besides being a proof-of-concept study for application to more com-
plex geometries found in practical flow situations, channel flow is itself a problem
with complex dynamics, and it has become a canonical case for studying transitional
dynamics. In particular, we are interested in delaying or preventing transition to
turbulence by controlling small perturbations to the stable laminar state. The
dynamics of these perturbations can be described by the linearized Navier-Stokes
equations and is characterized by large transient growth, thought to be the key
mechanism behind ‘bypass transition’ in shear flows (Schmid & Henningson, 2001),
as described in Section 1.2. Since the required computations are closely related to
the underlying theory, this chapter summarizes the most relevant topics from both
theory and computations.

Plane channel flow belongs to the class of shear flows, for which the velocity profile
is determined by the shear stress that the fluid experiences due to the presence of
a wall. Fully developed channel flow is a parallel shear flow, i.e., the mean velocity
profile is independent of the streamwise direction. Due to its simple geometry yet
fairly complex dynamics, channel flow has become a canonical problem for numerical
investigation of both fully turbulent and transitional flow (Moin & Kim, 1980; Kim
et al., 1987; Schmid & Henningson, 1992; Henningson et al., 1993), and recently for
development of flow control strategies (Choi et al., 1994; Lee et al., 2001; Högberg
et al., 2003; Ilak & Rowley, 2008b). Of particular significance to this work is the
study of Kim et al. (1987), in which an important benchmark Direct Numerical
Simulation (DNS) was performed and the flow statistics were carefully studied.

A DNS code based on the method described in Kim et al. (1987) is used both to
obtain the simulation snapshots for the computation of the reduced-order models

27
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and for their testing in the nonlinear case. Since adjoint simulations are required in
order to obtain the snapshots for the computation of the BPOD basis, appropriate
adjoint equations are derived for the linearized case. The adjoint equations can
be defined using different inner products, and we choose an inner product that is
convenient for the numerical simulations.

Although it is technically a postprocessing stage, the computation of the reduced-
order models is tightly coupled to the direct numerical simulation, since many of the
same numerical methods are used. Therefore we also describe some of the challenges
in model computation and some approaches to addressing those challenges, in
particular modular software design.

3.1 Plane channel flow

In this section we introduce channel flow and the appropriate linearization used
to obtain reduced-order models. A detailed treatment of shear flows and channel
flow in particular is given in standard textbooks, for example Pope (2000) or White
(1991). More details about the linearized Navier-Stokes equations for shear flows
can be found in Schmid & Henningson (2001).

3.1.1 Governing equations and dynamics

Channel flow is the flow between two infinite parallel flat plates, as illustrated by
Fig. 3.1. In order to derive the governing equations for channel flow, we start with
the incompressible Navier-Stokes equations:

∂ũi

∂t̃
+ ũj

∂ũi
∂x̃j

= −1

ρ̃

∂p̃

∂x̃i
+ ν̃

∂2ũi
∂x̃jx̃j

(3.1)

∇̃ · ũ = 0, (3.2)

with no-slip boundary conditions (i.e., all velocity components are zero at the walls).
All quantities with a tilde denote dimensional quantities, ρ̃ is the fluid density and
ν̃ is the kinematic viscosity of the fluid. Here xj=1,3 corresponds to the x, y, z
axes and uj=1,3 corresponds to the u, v, w (streamwise, wall-normal and spanwise)
velocity components in Fig. 3.1. We apply a non-dimensionalization given by:

u =
ũ

Uc
, x =

x̃

δ
, t = t̃

Uc
δ
, ρ =

ρ̃

ρ0

, p =
p̃− p0

ρ0U2
c

. (3.3)

Here Uc is the centerline velocity of the laminar flow with the same average mass
flux as the turbulent flow, δ is one-half of the channel thickness, ρ0 is a characteristic
density, and p0 is a reference pressure. For incompressible flow, we can set ρ̃ = ρ0

since the density is constant. Equation (3.1) may then be re-written in a non-
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Figure 3.1: Left: Channel flow geometry. The fields u(x, y, z), v(x, y, z) and w(x, y, z) are the
streamwise, wall-normal and spanwise components of the flow velocity. Right: A comparison
of the laminar parabolic profile u = 1 − y2 and an average profile calculated from a converged
turbulent simulation with the same mass flux.

dimensional form as:
∂ui
∂t

+ ũj
∂ũi
∂x̃j

= − ∂p

∂xi
+

1

Rec

∂2ũi
∂x̃jx̃j

, (3.4)

where the centerline Reynolds number is defined as:

Rec =
Ucδ

ν
. (3.5)

Physically, the shear forces at the walls cause the flow to lose energy. It can
be shown that, both for fully developed turbulent flow, and laminar flow, the left-
hand side of (3.4) is zero (see Appendix B). Therefore, in order to maintain fully
developed flow, a favorable streamwise pressure gradient that exactly balances the
shear forces is required. This pressure gradient can either be kept constant or
dynamically adjusted in order to enforce a constant mass flux. For simulations, the
latter approach results in a faster convergence to a statistically steady state (see
Appendix B).

If the channel walls are chosen to be at y = ±1, for the non-dimensionalization
chosen here it can be shown (see Appendix B) that the laminar profile is given by:

U(y) = −dp
dx

Rec
2

(1− y2), (3.6)

while a mean turbulent profile (see Fig. 3.1) is computed from averaging snapshots
of the velocity field in streamwise and spanwise directions in space, as well as in
time (ensemble average), also known as Reynolds averaging. The Reynolds num-
ber commonly used to characterize the fully turbulent simulation is the frictional
Reynolds number, defined as:

Reτ =
ρuτD

µ
,
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where µ = νρ is the dynamic viscosity and uτ is a frictional velocity, defined as:

uτ =

√
τw
ρ
,

with the wall shear defined as τw = µ∂u
∂y
|wall and computed from an ensemble

average profile of a converged simulation. An alternative non-dimensionalization
of the Navier-Stokes equations using uτ as the characteristic velocity is often used
in studying turbulent channel flow.

The key parameter in the simulations in this work is the centerline Reynolds
number Rec, and from now on it will be assumed that Re = Rec unless specified
otherwise. This is the appropriate Reynolds number to characterize the linearized
flow regime (Schmid & Henningson, 1992; Högberg et al., 2003), and since our
focus will be on perturbations which are small enough for the flow to remain in
the neighborhood of the linear regime, we will use Rec. On the other hand, Reτ is
usually the characterizing parameter of the turbulent regime.

3.1.2 Linearized equations

We next describe how the linearized evolution of a perturbation to the laminar
profile can be described by a state-space system in the form described in Chapter 2,
thereby fitting into a suitable modeling and control framework. For shear flows,
the linearized equations may be conveniently written in terms of the wall-normal
velocity v and the wall-normal vorticity η (see, for instance, Schmid & Henningson,
2001). We recall that the vorticity field is defined as:

ω = ∇× u, (3.7)

and η = ω2. The other flow variables (e.g., streamwise and spanwise velocities u
and w) may then be computed using the continuity equation ∂xu + ∂yv + ∂zw = 0
and the definition of wall-normal vorticity. In these coordinates, the linearized
(non-dimensional) equations have the form:[

(∂t + U∂x)∆− U ′′∂x − 1

Re
∆2

]
v = 0[

∂t + U∂x − 1

Re
∆

]
η = −U ′∂v

∂z
,

(3.8)

where U(y) is the laminar profile, ∆ = ∂2
x + ∂2

y + ∂2
z is the Laplacian and the

prime indicates differentiation with respect to y. The first equation is the Orr-
Sommerfeld equation and the second one is known as the Squire equation. It was
first shown numerically by Orszag (1971) that the Orr-Sommerfeld equation for
channel flow is stable up to Re ≈ 5772, when an exponentially unstable eigenmode
first arises. The Squire equation has stable eigenmodes for all values of Re. Still,
complex behavior due to the non-normality exists for stable eigenmodes. The term
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on the right hand side of the Squire equation represents tilting of the spanwise
component of the mean flow vorticity (which here is just U ′) by the strain rate
∂v/∂z, giving rise to wall-normal vorticity (Butler & Farrell, 1992). In the limit of
high Reynolds number, the perturbation growth is dominated by this process, in
particular for streamwise-constant perturbations. While the system also exhibits
phenomena such as degeneracies and resonances (Gustavsson, 1986; Henningson &
Schmid, 1992), non-normality has been shown to have a dominating effect on the
energy growth (Reddy & Henningson, 1993).

In operator form, we can represent the equations using more compact notation
as follows:

∂

∂t

[−∆ 0
0 I

] [
v
η

]
=

[
LOS 0
−U ′∂z LSQ

] [
v
η

]
, (3.9)

where

LOS = U∂x∆− U ′′∂x − 1

Re
∆2

LSQ = −U∂x +
1

Re
∆

are the Orr-Sommerfeld and Squire operators, respectively. If we define the matrix
operator A as:

A =

[−∆ 0
0 I

]−1 [
LOS 0
−U ′∂z LSQ

]
, (3.10)

with no-slip boundary conditions, we can write the system in standard state-space
form:

ẋ = Ax+B1u1 +B2u2

y = Cx,
(3.11)

where x = [v; η]T , B1 and B2 represent the spatial (time-independent) distributions
of the perturbations and actuators respectively, u1(t) and u2(t) are the correspond-
ing input vectors (the time-dependent amplitudes of the columns of B1 and B2), y
is the vector of system outputs, related to the state by the matrix C. The actuation
and the disturbances are equivalent mathematically as they are both inputs to the
system.

It is important to note that, in order to obtain the POD basis needed for
output projection in BPOD, we simulate the system given by (3.9) with a given
perturbation or actuator as initial condition until the response has decayed to
negligible levels. The matrix XX+ that can then be formed from the snapshots will
closely approximate the controllability Gramian given by (2.11), where the integral
extends to infinite time. Likewise, to obtain the Y matrix of adjoint snapshots
from (2.15), we simulate the adjoint system until the response has decayed to
negligible levels.
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Most investigations of linearized channel flow consider each streamwise and span-
wise spatial wavenumber pair separately after Fourier transforming the equation
in streamwise and spanwise directions. In this formulation, the three-dimensional
velocity field is represented as:

q(x, y, z, t) = Real{q̂(y, t)ei(αx+βz)}, (3.12)

where q̂(y, t) = [v̂(y, t) η̂(y, t)]T , and α and β are the streamwise and spanwise
wavenumbers, respectively. The equations for the evolution of q̂ are:[

(∂t + iαU)(D2 − k2)2 − iαD2U − 1

Re
(D2 − k2)2

]
v̂ = 0[

∂t + iαU − 1

Re
(D2 − k2)2

]
η̂ = −iβDUv̂,

(3.13)

where k2 = α2 + β2, D denotes differentiation in the y-direction, and, with a slight
abuse of notation, U is the 1-D laminar profile (Schmid & Henningson, 2001). While
this formulation has been very useful in studying the linearized flow dynamics, the
focus of this thesis is on the general form of the equations, as given by (3.8). The
single-wavenumber approach is used only in Chapter 4 for a thorough validation of
the BPOD procedure on a 1-D problem resulting from this formulation, for which
exact balanced truncation can easily be computed for purposes of comparison. We
note here that for all 1-D perturbations considered in this thesis k2 6= 0, and all 3-D
perturbations have no k2 = 0 component.

3.1.3 Derivation of the adjoint equations

To determine the corresponding adjoint equations, one first needs to define an inner
product on the vector space X of flow variables (v, η). Since balanced trunca-
tion is independent of the choice of inner product used to define the adjoint (see
Appendix A), we may choose an inner product that is convenient for numerical
computations. Let us define the inner product:

〈(v1, η1), (v2, η2)〉M =
1

V

∫
Ω

(−v1∆v2 + η1η2) dx dy dz, (3.14)

where V denotes the fluid volume and Ω denotes the computational box. Note that,
letting M : X → X denote the matrix operator on the left hand side of Eq. (3.9),
this is just the L2 inner product of (v1, η1) with M(v2, η2).

The inner product in (3.14) is related to the energy inner product commonly used
in analyzing single-wavenumber perturbations after Fourier decomposition (Gus-
tavsson, 1986; Butler & Farrell, 1992), given by:

〈(v̂1, η̂1), (v̂2, η̂2)〉E =
1

8k2

∫ y=1

y=−1

(−v̂1(D2 − k2)v̂2 + η̂1η̂2) dy. (3.15)
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Using continuity, it can be shown that at a particular wavenumber pair (α, β) the
following relation holds for k 6= 0: û

v̂
ŵ

 =

 iαD/k2 −iβ/k2

1 0
iβD/k2 iα/k2

( v̂
η̂

)
, (3.16)

where û(y) and ŵ(y) are the streamwise and spanwise velocity components at the
particular wavenumber, respectively (Hœpffner, 2006). Using this relation, it can
be shown that the norm corresponding to the inner product in (3.15) is exactly the
kinetic energy of the perturbation. The inner product in (3.15) is different from
the one we have introduced above, as there is no re-scaling at each wavenumber
in (3.14). In the case of a single-wavenumber perturbation, the two inner products
differ only by a constant factor, but for a general 3-D field with contributions at all
wavenumbers this is not the case.

With the definition of the inner product from (3.14), the adjoint equations
corresponding to (3.9) are easily found by integration by parts:

∂

∂t

[−∆ 0
0 I

] [
v
η

]
=

[
L∗OS U ′∂z

0 L∗SQ

] [
v
η

]
(3.17)

where

L∗OS = −U∂x∆− 2U ′∂x∂y − 1

Re
∆2

L∗SQ = U∂x +
1

Re
∆.

The adjoint operator thus becomes:

A+ =

[−∆ 0
0 I

]−1 [
L∗OS U ′∂z

0 L∗SQ

]
. (3.18)

3.1.4 Inner product on the output space

Although the time evolution of the linearized disturbances is fully described by the
wall-normal velocity-vorticity formulation, the output of the system may be chosen
to be in different variables. When using POD, the choice of inner product can
have a large impact on the results. For our system, since the other two velocity
components (u,w) are easily be recovered using continuity and the definition of
vorticity, we can choose the full velocity field to be the output, and use the kinetic
energy inner product given by

〈u1,u2〉 =
1

V

∫
Ω

(u1u2 + v1v2 + w1w2) dx dy dz. (3.19)

This choice is intuitively appealing, since the POD modes for the output projection
will capture the true kinetic energy of the perturbation. We therefore define the
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output space Y in our system as the space Rn (recall than n is the number of grid
points in the simulation), together with the inner product defined by (3.19). We
note here that the space X is also Rn, though endowed with a different inner product
(the M -inner product described in the previous section).

3.2 Computation of models

The computation of reduced-order models of linearized channel flow is carried out
using snapshots obtained from linearized DNS of the systems (3.9) and (3.17).
Nonlinear DNS, which typically require very high resolution, is used in this thesis
only to test the performance of the linear controllers in delaying or preventing
transition to turbulence. While the computation of modes and models using the
algorithms described in Chapter 2 is straightforward, some computational practices
resulting in more efficient calculations are discussed in this section, along with
guidelines for verification of the model computations.

3.2.1 Computation of balancing and adjoint modes

Although the grid resolution required for the linear simulations of (3.9) and (3.17)
is usually considerably lower than for turbulent runs, the computation of modes
and models may still require substantial resources, both in terms of CPU time
and memory. If the entire snapshot matrices X and Y in (2.26) are loaded in
memory when computing the direct and adjoint modes in BPOD, and the linearized
DNS has a high resolution (for example, O(105) grid points) and a large number
of snapshots (O(103)), the available memory may be insufficient. The amount
of required memory is easily reduced significantly, since a computation of modes
using (2.26) does not require loading of the entire snapshot matrices X and Y and
snapshots can be read in one by one or in smaller sets. This saving in memory may
be achieved at a cost in computation time, since typically loading small numbers of
data files may take more time than loading an entire set of snapshots at once.

Next, the largest part of the computational cost in computing BPOD models in
terms of time is the calculation of inner products for the Hankel matrix, particularly
if the inner product is different from a standard weighted inner product. This is
the case for the inner product described in Section 3.1.3, due to the computation
of the Laplacian, which involves spectral derivatives. It turns out that a significant
decrease in the time required to compute the inner products can be achieved by
exploiting the structure of the Hankel matrix Y +X. While in this thesis we treat
the linearized systems (3.9) and (3.17) as continuous-time systems, in this section
we take a discrete-time approach for illustration purposes.
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To describe the algorithm, we begin with the case where all snapshots are evenly
spaced in time. Let us define the discrete-time matrices:

Ã = eAδt, Ã+ = eA
+δt, (3.20)

where A and A+ are defined in Eqs. (3.10) and (3.18), respectively, and δt is a fixed
time step1. The evolution of the states of the direct and adjoint systems from time
tk to tk+1 is then:

xk+1 = Ãxk (3.21)
zk+1 = Ã+zk, (3.22)

where we have used the compact notation x(tk) = xk. Furthermore, the evolution
of the system from tk to tk+n for any integer n is given by:

xk+n = Ãnxk (3.23)
zk+n = (Ã+)nzk, (3.24)

Therefore, if we have m snapshots of a simulation of the direct system (3.9) and p
snapshots of a simulation of the adjoint system (3.17), the snapshot matrices defined
by (2.15) become:

X =
[
x0, Ãx0, Ã

2x0 . . . , Ãm−1x0

]
(3.25)

Y =
[
z0, Ã

+z0, (Ã
+)2z0 . . . , (Ã+)p−1z0

]
. (3.26)

We note that the difference δt = tk+1 − tk is typically larger than the time step of
the DNS simulation, and may often also be larger than the gap in time between
two consecutive snapshots written to disk (this gap is usually at least several time
steps of the DNS simulation, depending on simulation parameters and the dynamics
of the simulated flow, see Appendix C for a discussion of snapshot spacing). The
Hankel matrix Y +X of inner products may then be written as:

Y +X =


〈y0, x0〉 〈y0, x1〉 . . . 〈y0, xm−1〉
〈y1, x0〉 〈y1, x1〉 . . . 〈y1, xm−1〉

...
...

. . .
...

〈yp−2, x0〉 〈yp−2, x1〉 . . . 〈yp−2, xm−1〉
〈yp−1, x0〉 〈yp−1, x1〉 . . . 〈yp−1, xm−1〉

 , (3.27)

or equivalently:

1See (Stengel, 1994, Chapter 2) for a detailed discussion of the relationship between a
continuous-time system and the corresponding discrete-time system.
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Y +X =



〈y0, x0〉
〈
y0, Ãx0

〉
. . .

〈
y0, Ã

m−1x0

〉〈
Ã+y0, x0

〉 〈
Ã+y0, Ãx0

〉
. . .

〈
Ã+y0, Ã

m−1x0

〉
...

...
. . .

...〈
(Ã+)p−2y0, x0

〉 〈
(Ã+)p−2y0, Ãx0

〉
. . .

〈
(Ã+)p−2y0, Ã

m−1x0

〉〈
(Ã+)p−1y0, x0

〉 〈
(Ã+)p−1y0, Ãx0

〉
. . .

〈
(Ã+)p−1y0, Ã

m−1x0

〉


.

(3.28)
From the property of the adjoint:〈

Ãx1, x2

〉
=
〈
x1, Ã

+x2

〉
, (3.29)

we see that there are only p+m−1 unique elements of the matrix, and therefore we
only need to compute p+m−1 inner products instead of p×m inner products. The
number of the inner products to be computed can be orders of magnitude smaller
for a large number of snapshots. For example, for a thousand direct snapshots
and thousand adjoint snapshots, 1999 inner products need to be computed instead
of a million, resulting in computational savings of a factor of 500 in CPU time
(depending on how the reading in of data is managed, these savings may be lower,
although they are still at least one order of magnitude). When using ERA, the
computational savings are even greater, as there are no inner products involved,
however the present method is useful when it is desirable to have the bases of
balancing and adjoint modes in addition to reduced-order models.

We note that sometimes the dynamics of an impulse response is such that the
snapshot spacing in time can be varied in order to save memory, for example more
snapshots may be taken during an initial transient with fast dynamics, while fewer
snapshots may be needed for a later stage of the simulation. In this case, more
inner products would need to be computed than in the above case, although still
much fewer than p×m, since snapshots for intermediate steps between tk and tk+1

need to be used (recall that δt is often larger than the time between two consecutive
snapshots).

3.2.2 Verification of results

Since many steps are involved in the computation of models, errors can be in-
troduced into the computations and propagated through subsequent steps. While
one usually cannot verify the computation of new models against known results,
as many sources of error as possible should be eliminated from the computations.
Basic checks that were performed for the computations in this thesis are outlined
here. It is essential that these checks be included in any model reduction procedure
that employs the methods described in this thesis.
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For POD computations:

• The orthogonality of the leading POD modes was verified.

• The sum of the total energy in the snapshots must be equal to the sum of the
POD eigenvalues. The sum of the diagonal entries of the matrix XXT is the
integral of the kinetic energy over the entire dataset, and by a standard matrix
property Tr(XXT ) =

∑
j λj, where λ are the eigenvalues. A discrepancy

between the actual energy in the dataset and Tr(XXT ) may indicate an error
in the implementation of correct grid weights or time quadrature weights.

• A convergence study of POD eigenvalues and the corresponding modes for
different numbers of snapshots and spacings between snapshots was performed.
In general, the results of a POD computation should be trusted only if a
computation with a larger number of snapshots does not produce significantly
different results.

An example of the application of the above procedure to the computation of
POD modes of a localized perturbation studied in the next chapter is described in
Appendix C.

Similarly, for BPOD:

• The bi-orthogonality of balancing and adjoint modes must be verified. De-
pending on the choice of the inner product and the discretization of the adjoint
operator, the accuracy may not be as high as for orthogonality of POD modes.
For example, computing derivatives for the inner product defined by 3.14
introduces small numerical errors. We also note that due to the fact that a
discrete adjoint does not exactly satisfy the property (3.29), using the method
described in Section (3.2.1) can slightly impact the accuracy of the mode
computation, although this effect was not found to have significant effects on
the results reported here.

• A convergence study of Hankel singular values and modes for different numbers
of snapshots and spacings between snapshots was performed. While this
step is not always practical for large-scale computations, it should always
be performed for smaller calculations. In general, results should be trusted
only if a larger number of snapshots does not produce significantly different
results.

For both POD and BPOD, since the modes are linear combinations of simulation
snapshots, it was verified that the modes satisfy the same boundary conditions as
the snapshots. A visual inspection of modes should always be done for resolution,
symmetry or boundary condition issues, and to confirm that the structures are
reasonable from a physical point of view.
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3.3 Software tools

When computing reduced-order models, we require a set of software tools that allows
flexibility in the computations. To that end, here we discuss some computational
approaches to the problems described in this thesis.

3.3.1 The DNS solver

The basic nonlinear DNS code used in this thesis was written by C.W. Rowley,
following Kim et al. (1987). The code is pseudospectral, meaning that it em-
ploys Fourier transforms in the streamwise and spanwise directions and a Cheby-
shev transform in the wall-normal direction, but the nonlinear terms are com-
puted in physical space. The FFTW library (Frigo & Johnson (2005), also see
http://www.fftw.org) was used for the Fourier transforms. The discretization in
time is performed using the second-order Adams-Bashforth scheme for the nonlinear
terms and the Crank-Nicholson scheme for the linear terms (the overall scheme
is sometimes denoted as ABCN2). The code was written in Fortran 90. The
contributions to the code related to this thesis are listed below.

1. Implementation and testing of an adjoint solver, using the equations (3.17).

2. Implementation of constant mass flux (see Appendix B) for the nonlinear
simulations.

3. Addition of diagnostic outputs such as velocity probes, measurement outputs
and the energy norm.

4. Implementation of feedback control and estimation modules for testing of
control designs.

5. Re-organization of most modules to make the code more readable and more
easily modified. The addition of new features required new modules and the
division of old ones into functional units.

6. Implementation of the HDF5 data format for input/output. HDF5 (Hierarchi-
cal Data Format, see http://www.hdfgroup.org) is a standard data format
that has been implemented on various platforms and with support for many
languages including MATLAB, Fortran, and Python. Loaders for the format
are also available in commercial visualization software such as Tecplot.

The code was originally parallelized by Mingjun Wei using MPI, and all new
features are enabled in the parallel version. Previous to this work, the original
version of the channel code was used in the investigation of Lagrangian Coherent
Structures (Green et al., 2007), and a modification of the code was used to study
reduced-order models for Couette flow (Smith, 2003; Smith et al., 2005). The
linearized version (including the adjoint code) was used for the studies reported
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in this thesis (Ilak & Rowley, 2008b,a). A validation study of the channel code for
the turbulent case is presented in Appendix B.

3.3.2 A modular tool for computing modes and models

Since most of the steps in the computation of modes involve postprocessing of DNS
simulation data, some of the features of the DNS code can be used for that purpose.
These common features between the DNS code and the postprocessing codes can
be thought as ‘building blocks’ — for example, ‘black box’ Fourier and Chebyshev
transforms, a Poisson boundary-value problem solver or input/output routines.

Modular design. The goals of having a highly optimized fast parallel solver for
large problems and a flexible postprocessing tool using the same ‘building blocks’
can sometimes be incompatible. While a Fortran 90 code whose structure was based
on the DNS code data structure was used initially for postprocessing, the need for a
flexible tool for the later work led to the development of an object-oriented tool with
a modular structure. Python (http://www.python.org) was chosen for this task.
This language interpreted, object-oriented language with fairly simple syntax has
recently gained popularity in scientific computing. The main goal in developing the
new tool was that the combination of easy use and the object-oriented organization
structure would allow for fast creation of scripts, rather than more complex and
time-consuming implementation of new features in a Fortran code. The object-
oriented framework allows for easy inclusion of ‘black-box’ elements for the different
computations. The tool is similar to a simple language, as many tasks can be
performed using short scripts that call the ‘black-box’ elements.

Testing. Another important feature of the object-oriented approach is the easy
integration of tests in the code due to its modularity. In addition, testing frameworks
make incorporating automated testing into codes written in Python or C++ a
simple process. Thus, it is possible at any moment during the development process
to test the performance of the different building blocks and their interaction. Also,
problems with migration from one computer to another can be easily identified
this way, since a self-test of the code after each new installation will reveal errors
immediately. Of course, one should still carefully examine results of all simulations,
since tests can only discover problems which have occurred previously in the code
and do not guarantee that the code is completely bug-free. The Python tool is still
in its development stages; however, it has been used successfully for postprocessing
for the results presented in Chapters 5 and 6.

3.3.3 Other tools

MATLAB was used for many of the computations, in particular the flow control
design. Many of the postprocessing steps for the simulation data can be done
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in MATLAB as well on machines with sufficient memory. For example, all the
postprocessing for the channel code validation in Appendix B was done using
MATLAB. The 1-D computations in Section 4.2 were done entirely in MATLAB;
The Matrix Differentiation Suite (Weideman & Reddy, 2000) was used for some
of the computations. Visualization of 3-D fields was accomplished using Tecplot,
although MATLAB can be used for this purpose as well.

3.4 Summary

Transitional channel flow, which we attempt to control using reduced-order models
in this thesis, is described by the incompressible Navier-Stokes equations. A DNS
solver is used for both the linear and nonlinear simulations used in this work.
The evolution of linear perturbations is described by the linearized Navier-Stokes
equations in velocity-vorticity formulation, and the corresponding adjoint equations
have been derived in order to obtain the necessary snapshots for computing BPOD
from adjoint simulations. An existing parallel DNS code was thoroughly tested and
considerably upgraded. The inner product used in deriving the adjoint equations
was chosen so that minimal changes in the DNS solver were required. The compu-
tation of modes, models and controllers requires a combination of different software
tools, and a modular set of tools for computing modes and models was developed
in Python.



Chapter 4

Modeling of transitional channel flow

When reduced-order models are designed for use in feedback control, it is desirable
to investigate their properties and performance in detail. A logical first step in this
direction is to evaluate the performance of the model in capturing the dynamics
of the original system without control feedback (also known as open-loop), which
is what we undertake in this chapter. While good open-loop performance may
not always be necessary for good closed-loop performance (a model may fail to
capture all the relevant dynamics of the full system, but it may capture enough of
the input/output dynamics for the closed-loop performance to be satisfactory), a
careful investigation of open-loop performance still provides valuable insight into the
model reduction techniques used, in this case BPOD and POD. Therefore, in this
chapter we investigate the performance of BPOD and POD reduced-order models of
perturbations to linearized channel flow. The use of balanced reduced-order models
for feedback control of both linearized flow and nonlinear DNS simulations will be
presented in the next chapter.

A comparison of BPOD to exact balanced truncation for a system where the
latter is tractable was performed by Rowley (2005) for streamwise-constant linear
perturbations to channel flow. Here we make a more detailed comparison for a one-
dimensional single-wavenumber perturbation with optimal energy growth, which
indicates that BPOD is indeed a very close approximation to balanced truncation,
and that the difference between the two methods becomes significant only for higher
modes, which typically have very little influence on capturing the system dynamics.
This analysis also confirms the conclusion of Rowley (2005) that BPOD outperforms
POD, which often fails to capture the correct input/output dynamics of the original
system.

Next, balanced truncation of a 3-D system without decomposition into single-
wavenumber pairs is performed for the first time. Balanced models of a localized
perturbation show good performance, and significantly outperform POD. The em-
phasis for this system is on capturing the non-normal growth of the perturbation

41
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energy, which is why the output is chosen to be the full velocity field, and an output
projection is necessary in order to compute the models. Some useful performance
measures of the models are described in detail, in particular the impulse response,
frequency response, off-design condition performance and capturing of actuation.
It is shown that BPOD models perform well according to those measures, making
them potentially suitable for developing closed-loop controllers.

As a result of a detailed investigation of the performance of the POD models
of the 3-D perturbation, a striking example was found in which modes containing
negligible energy are very significant for the system dynamics. A close look at the
dynamics of a model containing these modes, inspired by the recent work of Mezić
(2004) in graph decomposition analysis of dynamical systems, is presented at the
end of the chapter. Most of the results of this chapter have been published in Ilak
& Rowley (2008b).

4.1 Choice of actuators and measurements

The choice of actuators and measurements is key in any control system. In order to
motivate the selection of inputs and outputs in this chapter, we first introduce the
overall feedback control strategy used in this work. Here we have two outputs —
an output of interest y1, which we typically desire to either drive to zero or make
follow a particular reference input (this is known as a regulator problem), and a
measurement output y2 used for the computation of the control feedback. The two
inputs are a disturbance which we would like to suppress (B1) and which we have
no control over, and an actuator which we use to control the system (B2):

ẋ = Ax+B1u1 +B2u2

y1 = C1x

y2 = C2x.

(4.1)

This system (same as system (3.11), just with a second output added) belongs
to the class of MIMO (multiple-input multiple-output) systems, and a graphical
illustration for the system is shown in Fig. 4.1, along with a schematic of the inputs
and outputs for channel flow with localized inputs and outputs. The term ‘plant’ is
a standard term from control theory and it encompasses the underlying dynamical
system along with its actuators and measurements, while the term ‘compensator’
stands for the device (or devices) used to achieve the desired effect on the system
output. The control designer’s task is to design a compensator for a given plant.
The different options for inputs and outputs are discussed below. It is important to
select control inputs (actuators) that are going to affect the flow most favorably and
outputs which will be most useful for the determination of the system performance
and for computing the control input.
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Figure 4.1: A schematic of the overall feedback control system setup. Left: the basic control system
setup. Right: a schematic of channel flow with localized disturbance, measurement, actuation and
output.

4.1.1 Choice of actuation

Two main mechanisms for actively manipulating wall-bounded flows that have been
considered in numerical and experimental studies are body force actuation and wall
blowing/suction. The former choice is attractive due to easier implementation in
numerical studies, in particular when reduced-order models are developed, while the
latter is thought to be more relevant from a practical standpoint (Lundell, 2003).
The potential of plasma actuators, whose effect on the flow can be modeled by body
forces, has been discovered through experimental studies in the past decade (for a
review, see Corke et al., 2009). While these actuators may offer an advantage over
wall blowing/suction, as wall actuation may be limited due to uncontrollability of
modes which correspond to flow structures far away from the wall (Kim & Bewley,
2007), recent results in experiments with wall actuation using suction slots have
also shown promise (Lundell, 2007; Lundell et al., 2009).

The inclusion of wall blowing/suction in modeling and simulation comes with
added computational complexity. While it is straightforward to include inhomoge-
neous boundary conditions in the DNS simulation, including them in model compu-
tation as control inputs is more complex, as will be described in the next chapter.
For this reason, body forces were initially used to characterize the performance of
balanced truncation models, such as in the models described in this chapter, as well
as, for example, in the work of Bagheri et al. (2009b).

4.1.2 Choice of measurements

The key quantities of interest in shear flow diagnostics include the pressure field
or localized pressure measurements, measurements of wall shear (corresponding to
drag), and measurements of full velocity fields or from localized velocity probes.
While all these quantities are typically available in simulations, in practical flow
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plant
u1 y1
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1 C1x =

∫
V

(u2 + v2 + w2)dV

C1

Figure 4.2: A schematic of the simplified control setup for the open-loop investigation in this
chapter. The only input is a perturbation, in this case localized.

control applications this is most often not the case. It is therefore important
to design control strategies using physically realizable sensing mechanisms, and
to model those mechanisms correctly in simulations. Wall shear measurements
are especially attractive since they can be non-intrusive and sensors can be wall-
mounted, but a potential drawback, as for other wall measurements, is that they
may not capture the influence of flow structures that are far from the wall and
effectively unobservable (Kim & Bewley, 2007).

While it is feasible to measure velocity, pressure and wall shear in experiments,
the measurement of the full field in real time is still impracticable, especially in three
dimensions. In the initial study undertaken in this chapter, the output is the kinetic
energy of the entire perturbation flow field. The reason for this choice was twofold —
to evaluate the capabilities of the balanced models to capture the large transient
energy growth of linear perturbations, and to test carefully the output projection
discussed in Chapter 2. This choice of input and output for a localized perturbation
in the center of the channel, described later in Section 4.3.1, is graphically depicted
in Fig. 4.2. The use of different measurements and actuators for feedback control is
described in the next chapter.

4.2 Validation of BPOD on a 1-D problem

We start by investigating the system given by (4.1) only in the presence of dis-
turbances (without the Bu2 term) and without the measurement term C2x. In
order to validate the numerical methods, we first obtain BPOD models from three-
dimensional simulations of simple and well-known single-wavenumber perturbation
cases, described by Butler & Farrell (1992) and also investigated by Schmid & Hen-
ningson (2001). As discussed in Section 3.1.1, the general form of such disturbances
is given by

q(x, y, z, t) = q̂(y, t)e(iαx+iβz), (4.2)
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with q̂(y, t) = [v̂(y, t) η̂(y, t)]T . The standard approach to such perturbations is
to compute the time evolution of q̂(y, t), which fully describes the system, since
the velocity components u and w can easily be computed from this data. For this
one-dimensional problem, standard algorithms for computing balanced truncation
are computationally tractable. Therefore, we are able to compare the models
resulting from exact balanced truncation1, to BPOD models obtained from three-
dimensional simulations of the real part of the full field, Re {q(x, y, z, t)} at a
particular wavenumber pair (α, β) on a large grid, similar to the comparison made
by Rowley (2005) for a streamwise-constant perturbation. We note that for a given
wavenumber pair the comparison between BPOD and exact balanced truncation can
be computed using only 1-D simulations, but we also performed 3-D simulations in
order to verify our codes. We also note that, since the outputs of the output-
projected system and the reduced-order models are coefficients of POD modes, the
C1 matrix in (4.1) was modified so that the output of the full system is expressed in
the POD basis as well. In this way, a meaningful comparison between the balanced
truncation of the full system and BPOD is obtained.

The perturbations were chosen so that they exhibit the largest, or optimal
(alternatively, ‘worst-case’), energy growth. They were computed using the method
described by Reddy & Henningson (1993) and their energy growth was verified
against values reported in that work. While streamwise-constant perturbations
exhibit the largest energy growth, perturbations where both α 6= 0 and β 6= 0
exhibit more interesting dynamics. We focus on the α = 1, β = 1 perturbation
at Re = 1000, whose energy growth and streamwise velocity profile are shown in
Fig. 4.3. The computational grid used in the three-dimensional simulation was
16×65×16, corresponding to 33280 states in the system given by (3.11). Balanced
truncation of the 1-D problem with 65 Chebyshev modes is easily and accurately
computed using the algorithm described in Rowley (2005) so that BPOD performed
on the large system can be compared to exact balanced truncation.

4.2.1 Mode subspaces

It was found that 500 equally spaced snapshots are sufficient for accurate computa-
tion of the POD modes, since for a larger number of snapshots with finer spacing
there is no considerable change in the eigenvalue spectrum or the corresponding
modes. We see from Fig. 4.4 that the most significant eigenvalues and the corre-
sponding modes typically come in pairs, representing traveling structures that are
90 degrees out of phase. The first pair of modes contains 90.45% of the energy, while
the first three pairs contain 99.6% of the energy. For the balanced POD models,
four-mode and eight-mode output projections were chosen (see Section 2.3.3), cor-

1For the 1-D case, exact balanced truncation can easily be computed in MATLAB using
standard algorithms, such as the one in Laub et al. (1987)
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Figure 4.3: (a) Kinetic energy growth for the optimal perturbation at wavenumber α = 1, β = 1 at
Re = 1000. (b) The α = 1, β = 1 optimal perturbation, showing streamwise velocity u (complex).

0 5 10 1510−4

10−2

100

102

104

λj

j(a) (b)
0 5 10 1510−2

10−1

100

101

102

103

 

 

OP4
OP8
full BT

σj

j

Figure 4.4: (a) The first 15 POD eigenvalues for α = 1, β = 1 initial perturbation at Re = 1000.
(b) The first 15 Hankel singular values (HSVs) for: four-mode (4) and eight-mode (�) output
projections and full balanced truncation (◦) for the same case.

responding to respectively 98.3% and 99.9% of total energy contained in the POD
modes.

We also notice that the HSVs (Fig. 4.4) come in pairs, indicating that the most
significant modes in the BPOD mode basis are again traveling structures similar to
the POD modes. It is important to include these pairs of modes in the reduced-
order models, as stability of the models for balanced truncation is guaranteed only
if σr > σr+1 where r is the rank of the model (Dullerud & Paganini, 1999). While
for POD modes there is no such requirement, mode pairs should always be included
in the models on physical grounds. We also notice that, for each output projection
rank s (see Section 2.3.3), approximately the first s HSVs for BPOD and exact
balanced truncation are equal. The same observation was made by Rowley (2005),
although there is no proof of this property at this point.
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Figure 4.5: Streamwise velocity for the first POD mode, balancing mode and adjoint mode for the
α = 1, β = 1, Re = 1000 initial condition.
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Figure 4.6: Streamwise velocity for (a) the sixth balancing mode and (b) the tenth balancing mode
for BPOD with two different output projections and for full balanced truncation.

The first POD mode is shown in Fig. 4.5 together with the first balancing and
adjoint modes from a four-mode output projection. Figure 4.6 shows the streamwise
velocity of the sixth and tenth balancing modes, illustrating the effect of the choice
of output projection rank. The first four balancing modes from BPOD look identical
for both output projections, while the sixth mode is not very accurately captured
by a four-mode output projection. Both output projections do not capture very
accurately the higher modes such as the tenth mode, which is also illustrated by the
HSVs in Fig. 4.4. As we show below, this inaccuracy does not significantly affect
model performance, since these higher modes are not very significant dynamically.

In this single-wavenumber case, the exact eigenvalue spectrum of the A matrix
from (4.1) at a given Reynolds number can easily be computed. We note here that
the eigenvalues of the matrix A and therefore the poles of the corresponding transfer
function are independent of the initial condition (which is just the B matrix for our
impulse response simulations). Figure 4.7 shows the spectra of the full operator and
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Figure 4.7: Spectrum of the full operator and reduced-order models for rank (a) 4, (b) 8, (c) 30.
The BPOD modes are from the eight-mode output projection. Symbols: BPOD (�), POD (©),
full operator (X). Only the most important part of the full spectrum is shown (i.e., the part
closest to the imaginary axis). Some of the eigenvalues correspond to uncontrollable eigenmodes
and cannot be captured by the models (see text for explanation). The 30-mode BPOD model
includes some spurious eigenvalues on the real axis, which were not found to affect the model
performance.

three reduced-order models of different rank for the α = 1, β = 1 perturbation. Since
the spectra are symmetric about the real axis, we only show the upper half of the
complex plane. We see that, while the representation of the full spectrum improves
for both methods as the rank increases, BPOD captures more accurately some of the
most slowly decaying eigenvalues, which have the most influence on the dynamics
of the system. For the rank four model, the POD model appears to be marginally
stable, while the BPOD model closely approximates the eigenvalue closest to the
origin. At higher order, the POD models improve and capture approximately the
same eigenvalues as the BPOD models of the same rank. It is also important to
notice that some of the eigenvalues of the full system are never captured by the
reduced-order models. These eigenvalues correspond to uncontrollable eigenmodes
of the full system, and can never be excited by this particular perturbation.

4.2.2 Impulse response

We next compare the impulse response of the system to that of the reduced-order
models. The impulse response of a linear system is important, since the response of
the system to any input can be found from the convolution of the impulse response
with the input. Figure 4.8 shows the capturing of the growth of kinetic energy
by POD and BPOD models, as well as the first two outputs of the reduced-order
models. The poor performance of low order POD models for the traveling structure
perturbation is evident. Even the eight-mode POD model, which captures the
energy growth well, does not accurately capture the phase of the oscillations at
later times.
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Figure 4.8: (a) α = 1, β = 1 optimal perturbation at Re = 1000, eight-mode output projection,
4-mode and 8-mode models. Full simulation (+), 4-mode POD (©), 4-mode BPOD (�), 8-
mode POD (�), 8-mode BPOD (+). The 8-mode BPOD model impulse response is almost
indistinguishable from the full system’s impulse response. (b) First two outputs, symbols as
defined in (a).

Figure 4.9 shows the 2-norm of the error between the impulse response of the
reduced-order model and the full simulation, given by ‖G − Gr‖2, normalized by
the 2-norm of the impulse response of the full simulation ‖G‖2, as a function of
the model rank r. A discussion of the 2-norm and other transfer function norms is
given in Appendix D.
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Figure 4.9: Error 2-norms for the α = 1, β = 1, Re = 1000 perturbation for full balanced
truncation, POD and BPOD at two output projections.

This figure provides a clear demonstration of the effect of output projection.
A four-mode output projection means that we are effectively performing balanced
truncation on the dynamics of the first four POD modes of the full system. The
dashed lines in the figure indicate the 2-norms of the error between the full dynamics
of the output-projected system and the full system. As the rank of the BPOD
models is increased, the dashed lines, which are the limit of accuracy, are reached
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fast. As already seen in Fig. 4.8, for very low-order models, POD is clearly outper-
formed by balanced POD. A ten-mode POD model is necessary in order to capture
fully the dynamics of the first four POD modes (i.e., to cross the upper dashed
line), while a BPOD model with a four-mode output projection (i.e., designed to
capture well the dynamics of the first four POD modes) captures the dynamics of
the first four POD modes quite well already at rank six. The slow improvement in
POD model performance indicates that the dynamics of the perturbation cannot be
represented only by retaining the first few POD modes (which in this case are also
the most controllable modes). Adding new BPOD modes beyond rank eight and
ten (for four- and eight-mode output projections, respectively) does not improve the
model performance noticeably, since the dynamics of the output-projected system
is already captured fully. It is also important to note that the performance of the
BPOD models is identical to that of full balanced truncation almost until the rank
at which BPOD model error norms level off due to the output projection. This
indicates that the higher balancing modes which are not computed accurately due
to the approximation inherent in the output projection (such as those shown in
Fig. 4.6) do not significantly influence the reduced-order model performance, the
main limitation being the capturing of the full system by the output projection.

4.2.3 Frequency Response

The frequency response encompasses system behavior over the complete range of
possible forcing, and is perhaps the best indication of overall system performance.
Therefore, from the control designer’s point of view, having a low-order model
that represents well the frequency response of the original system is of key im-
portance. Frequency response of single-wavenumber perturbations was investigated
by (Schmid & Henningson, 2001) using the resolvent norm (see Appendix D), where
at each frequency the maximum amplification over all initial conditions is computed.
Here the frequency response of the system with a given actuator or perturbation is
of interest.

A standard way of representing synthesized frequency response for MIMO (mul-
tiple input multiple output) systems is a plot of the maximum singular value of the
transfer function matrix max(σ(H(iω))) as a function of frequency, also known as
a singular value Bode plot. The highest peak of this plot is the infinity norm of the
transfer function (see Appendix D). Fig. 4.10 shows such plots for the α = 1, β = 1
perturbation and clearly demonstrates the advantages of BPOD for capturing the
dynamics of the system. We see that even for a two-dimensional model the resonant
peak is captured well by the model, while for POD the peak is very narrow, with very
low response at other frequencies. This behavior is typical of balanced truncation,
as shown in Dullerud & Paganini (1999) — the first modes to be captured are the
ones which are most significant dynamically, while the correct response is gradually
built up in less significant frequency bands as more modes are added. For POD
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Figure 4.10: Frequency response of the models for the α = 1, β = 1 perturbation. (a) 2-mode
POD (dashed), 2-mode BPOD (full), (b) 6-mode POD (dashed), 6-mode BPOD (full).

models, on the contrary, the response improves incrementally at all frequencies as
more modes are added and a higher number of modes is needed to accurately capture
the resonant peak. For ten-mode models, both POD and BPOD perform well (not
shown in the figure), with BPOD frequency response being almost indistinguishable
from the frequency response of the the full system. POD frequency response also
includes spurious non-physical peaks at low order, which correspond to eigenvalues
very close to the imaginary axis for low order of truncation, as seen in Fig. 4.7 (a).

We are also interested in the worst-case error between the reduced-order model
and the full simulation (the infinity error norm), which was described in Sec-
tion 2.3.1. Figure Fig. 4.11 shows the infinity norm of the error transfer function
between the full system and the reduced-order model as a function of model rank
for the first fifteen orders of truncation. The infinity norms for exact balanced
truncation lie within the theoretical bounds given by Eqns. (2.12) and (2.13), while
for BPOD, for each of the two output projections, the norms stay within those
bounds up to approximately the rank of the output projection, analogous to the
two-norm behavior shown in Fig. 4.9. The infinity norms for POD at low rank are
considerably higher than those for balanced truncation and BPOD, corresponding
to the frequency responses shown in Fig. 4.10 (a) and (b).

4.2.4 Variation of Reynolds number

Another very desirable feature of a reduced-order model is good performance for
off-design values of the system parameters. We would like the models to remain
valid for a wide range of the model parameters, or at least for the range appropriate
for the physical application of the model. The only parameter we are considering
in our models is the Reynolds number, so the response of models was compared to
the full simulation when Re is changed. Separating the operators from (3.9) into
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convective and diffusive parts, we can re-write the state-space equation as

ẋ = Aconvx+
1

Re
Adiffx+Bu, (4.3)

where:

Adiff =

[−∆ 0
0 I

]−1 [−∆2 0
0 ∆

]
, (4.4)

with all the other terms in (3.8) contained in Aconv. We can then separately project
the matrices Aconv and Adiff as in Eq. (2.19) at any Reynolds number onto the
POD and BPOD modes obtained at Re = 1000, the B matrix being just the initial
condition at Re = 1000. Figure 4.12 shows the performance of 12-mode POD and
BPOD models when the value of Re in (4.3) was changed to 2000 and the impulse
response of the resulting models was compared to the impulse response of the full
system. This rank of the model was chosen since both models perform well at the



4.3. MODELS OF A 3-D LOCALIZED PERTURBATION 53

Figure 4.13: The development of the wall-normal velocity of the perturbation given by Eq. (4.5)
at t = 0 (left), t = 14 (middle) and t = 160 (right) which corresponds to the maximum energy
growth. The isosurface of half of the maximum value of v is light, and isosurface of half the
minimum of v is dark.

design condition of Re = 1000. We see that the BPOD model eigenvalues stay closer
to the full simulation eigenvalues (which move as well), and also remain in the left
half of the complex plane, while for Re = 2000 the POD model becomes unstable
due to one pair of eigenvalues crossing into the right half of the complex plane.
This indicates a greater range of validity for BPOD models and better stability at
off-design conditions than POD.

4.3 Models of a 3-D localized perturbation

We next consider an actuator with a velocity distribution that cannot be described
as a one-dimensional problem, corresponding to a localized body force in the center
of the channel. This case corresponds to (4.1) without the B2u2 term, with the
input matrix B1 representing the velocity field in Fig. 4.13. Individual localized
disturbances to channel flow were investigated by Henningson et al. (1993). Since
balanced truncation involves the approximation of the system’s Gramians (although
in BPOD we do not actually compute the Gramians explicitly), we are interested
in following both the direct and adjoint impulse-state responses until all transients
have completely decayed. The computational box necessary for following individual
localized disturbances long enough in time would be very large, and we instead
consider a periodic array of small disturbances in the channel center. It should
be noted that the behavior of this periodic array can be quite different from the
behavior of a single localized disturbance, in particular in terms of the energy
growth, since the periodic array quickly develops into a streamwise-constant vortex.
The exact form of the initial condition considered here is

v(x, y, z, 0) = A

(
1− r2

α2

)
e(−r2/α2−y2/α2

y)(cos(πy) + 1) (4.5)

where xc, 0, zc are the coordinates of the center of the computational domain and
r2 = (x−xc)2 +(z−zc)2. The wall-normal vorticity perturbation is zero. This form
was picked in order to satisfy the condition that the mean perturbation velocity
is zero at each wavenumber. The (cos(πy) + 1) term was added to make the field
satisfy exactly the boundary conditions v(±1) = vy(±1) = 0. The amplitude A was
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Figure 4.14: (a) The first 20 POD eigenvalues for the Gaussian-like disturbance impulse response.
(b) The first 20 HSVs for five-mode (◦) and ten-mode (4) output projections.

Figure 4.15: Left to right: the first, fourth and fifth POD modes for the localized actuator, showing
streamwise velocity. The isosurface of half of the maximum value of u is light, and isosurface of
half the minimum of u is dark.

set to 1 for this simulation (this has no impact on the results, since the simulation
is linear), and the parameters α and αy were set to α = 0.7 and αy = 0.6. The
Reynolds number chosen for this simulation was Re = 2000. The traveling structure
rapidly develops into a streamwise-constant form, since the growth of wall-normal
vorticity results in the development of streamwise streaks (see Fig. 4.13).

The grid size was 32× 65× 32, corresponding to 133,120 states for the full (v, η)
system. The simulation was run for 1200 dimensionless time units (t = tdUc/δ),
and the timestep used was ∆t = 0.004. During this time, the energy of the initial

Figure 4.16: Left: POD mode 10, right: POD mode 17 for the localized perturbation,
corresponding to 0.025% and 0.0074% of the total energy. The isosurface of half of the maximum
value of u is light, and isosurface of half the minimum of u is dark.
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Figure 4.17: Top row: balancing modes one, four and five (left to right) from balanced POD,
showing streamwise velocity for the localized perturbation. The modes are from a five-mode
output projection. The isosurface of half of the maximum value of u is light, and isosurface of half
the minimum of u is dark.. Bottom row: the corresponding adjoint modes. Note the similarity
between the balancing modes and the corresponding POD modes in Fig. 4.15.

disturbance decayed to approximately 1.5 percent of its initial value. The POD
modes were taken over 1000 snapshots, with fine spacing between snapshots for the
initial period in order to capture the traveling structures well and larger spacing once
the streamwise structure was developed, after it was verified that POD eigenvalues
and the corresponding modes do not change significantly if more snapshots are
used (see Appendix C). Fig. 4.14 (a) shows the POD eigenvalues of the impulse
response. The first five modes contain 99.72% of the perturbation energy, and the
first ten modes contain 99.9% of the energy. In this case the spectrum contains both
streamwise-constant (and nearly-streamwise constant modes) as well as traveling
structures due to the initial transient. The first three modes are streamwise-constant
structures, while the fourth and the fifth modes correspond to a traveling structure,
which accounts for only 0.40% of the total energy. Modes one, four and five are
shown in Fig. 4.15.

Next, the adjoint simulations were computed and the BPOD procedure was
performed on a five-mode output projection, containing only the most important
traveling structure, as well as on a ten-mode output projection. These ranks were
chosen due to large drops in energy significance after the fifth and tenth mode,
as shown in Fig. 4.14 (a). Fig. 4.14 (b) shows the HSVs for these two output
projections. We notice that the HSVs are equal for the pairs of modes 4–5 and 7–8
for five-mode output projection, corresponding to traveling structures in the basis of
BPOD modes. Even more interestingly, for the ten-mode output projection, HSVs
for the modes 4–6 are equal. Although the stability of balanced truncation models is
guaranteed only when σr+1 < σr, where r is the number of states retained (Dullerud
& Paganini, 1999), 4-mode, 5-mode and 7-mode models for both output projections
were found to be stable. The model error for impulse response, however, decreases
significantly if both modes corresponding to a traveling structure are included, as
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will be shown in Sec. 4.3.1 (see Fig. 4.19). Balanced POD modes one, four, and
five, and the corresponding adjoint modes for the five-mode output projection are
shown in Fig. 4.17. Note that the structure of modes four and five in Fig. 4.17
is almost identical, except for a spatial phase shift of exactly one quarter of the
periodic domain.

4.3.1 Impulse Response

Figure 4.18 (a) shows the perturbation energy growth as captured by three different
POD models. It was observed that the inclusion of modes which come in pairs (see
Fig. 4.14 (a)) in the basis used to form the reduced order models does not change
the system behavior appreciably — the response of a model including modes 1–9
(not shown in figure) is virtually indistinguishable from the response of the model
including only the first three modes. Hence, the traveling structure modes do not
contribute significantly to the dynamics of this perturbation. The inclusion of the
tenth mode, which is streamwise-constant, improves the performance significantly,
and the model composed of only the first three modes and the tenth mode performs
as well as one including the first ten modes. In the same fashion, including the mode
pairs 11–12, 13–14 and 15–16 does not affect the model performance. Including
the seventeenth mode, which is also a streamwise-constant mode, improves the
performance further. The tenth and the seventeenth mode (see Fig. 4.16) correspond
to 0.025% and 0.0074% of the total energy. The low-order POD models were found
to capture poorly the initial condition of the full simulation (this will be discussed in
more detail in Sec. 4.3.4), so they were also started from different initial conditions
at later times (before or around the peak energy growth), when the projection of
the simulation onto POD modes is close to the full simulation data, and they still
did not capture the correct peak and the subsequent decay of the energy.

On the other hand, the performance of very low-order BPOD models is signifi-
cantly better. Figure 4.18 (b) shows the perturbation energy growth as captured by
three different models. Although the two-mode model does not accurately capture
the initial condition, it does represent the energy growth at later stages reasonably
well. A three-mode BPOD model captures the kinetic energy of the full simulation
very well except for the initial period. While more modes are needed to capture
the initial transient exactly, if only the energy growth is of interest, the three-mode
model is sufficient. This striking difference is an illustration of the advantage of
balanced truncation — for POD it is difficult to know apriori which modes will be
important for the system dynamics, as demonstrated above, and a good low-order
model was found only after a careful examination of the mode basis which provided
some insight into the underlying physics.

Figure 4.19 shows the error ‖G−Gr‖2 for BPOD using the two output projections
and for POD. The error for the BPOD models quickly reaches the asymptotic values
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Figure 4.18: (a) Three, four and five-mode POD models formed from the indicated modes (b)
Two-mode and three-mode BPOD models. The very low-order BPOD models do not capture very
well the initial transient, as shown in the inset. The BPOD models are from the ten-mode output
projection. The full simulation is marked by the black line (+) in both (a) and (b).
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Figure 4.19: Error 2-norms for localized actuator, showing POD models and BPOD at two output
projections.

dictated by the output projection, although more modes are needed compared to
the optimal perturbation case described in the previous section due to the more
complex dynamics. POD starts to match the performance of the ten-mode output
projection BPOD only around rank 30, and also varies a lot with the model rank.
This corresponds to the already observed fact that dynamically important POD
modes are not highly ranked in terms of energy. Whenever the POD modes come in
pairs, including only one of the modes results in unphysical oscillations and incorrect
capturing of the dynamics. Eventually POD has better performance than BPOD,
however recall that these POD models have r outputs, where r is the model rank,
while the BPOD models have only s outputs and thus capture only the dynamics
of the first s POD modes (recall that s is the rank of the output projection, defined
in Section 2.3.3). It should also be noted that some POD models exhibit sustained
or very slowly decaying oscillations, and that the corresponding two-norms are in
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fact infinite, since the system 2-norm by definition corresponds to integration of
the output from t = 0 to t = ∞ (see Appendix D). Since the final simulation time
for Fig. 4.19 is finite, the 2-norms computed from simulation data for such models
appear to be large but finite as well. Although the four-mode BPOD models are
stable for both output projections, including just one of the modes corresponding
to a pair of equal HSVs 4–5 for the five-mode output projection deteriorates model
performance, while we see a large decrease in the error when the fifth mode is
included, as well as when we include subsequent pairs. For the ten-mode output
projection, there are three equal HSVs 4–6, and a significant decrease in the error
is seen only when we include all three of those modes (in particular, the error norm
of the five-mode BPOD model is significantly larger than that of the four-mode
model).

4.3.2 Frequency Response

Figure 4.20 shows the singular value Bode plots of POD and ten-mode output
projection BPOD models for the localized disturbance. The frequency response of
the 50-mode BPOD model, which is a very close approximation of the frequency
response of the actual disturbance, has the shape of a low-pass filter with a break
frequency of 0.01 rad/s with two resonant peaks near 1 rad/s, which are similar
to the peak observed for the single-wavenumber traveling structure perturbation in
the previous section. We see that POD models again have spurious peaks at low
model ranks. The addition of mode pairs corresponding to the traveling structures
is necessary in order to reproduce the peaks around 1 rad/s for both POD and
BPOD, however BPOD captures those peaks with only the triple 4–6 and the mode
pair 7–8, as well as modes 9 and 10 (Figure 4.20 (b)) while all POD modes 1–17
are needed to reproduce the same peaks and there are still spurious peaks. Since
the peaks correspond to the low-energy traveling structures, it is not surprising that
only a three-mode BPOD model performs so well in capturing the kinetic energy
of the full simulation, as shown in the previous section. On the other hand, if the
frequency response of the actuator around the frequency of 1 rad/s needs to be
captured accurately, the higher BPOD modes need to be included.

4.3.3 Variation of Reynolds number

Figure 4.21 shows some of the eigenvalues of the 17-mode POD and BPOD models
as the Reynolds number is increased. As in Section 4.2.4, we use the modes from
the design condition (Re = 2000 in this case) and form the models using (4.3).
Both POD and BPOD models have eigenvalues on the real axis very close to the
origin, which remain stable and correspond to the slow evolution of the streamwise-
constant structures. At each Re, the eigenvalues of both models move towards the
right half of the complex plane and while the BPOD model always remains stable,
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Figure 4.20: Singular value Bode plots for POD (a) and BPOD (b) models for the localized
disturbance. The models are compared to a 50-mode BPOD model. The close-up in (b) shows
that a six-mode BPOD model is needed to capture the larger resonant peak, and a ten-mode
BPOD model captures both peaks.

the POD model first appears marginally stable at Re = 2500 and then unstable
at Re = 3000. The effect of the eigenvalues that move to the right half of the
complex plane is clearly seen in Fig. 4.21 (b). A model that includes modes 1–
17 grows unstable at Re = 3000, showing that inclusion of modes that at design
condition do not contribute to the overall dynamics can significantly deteriorate the
performance of the model at off-design condition. This can also be seen from the
frequency responses shown in the previous section — even at the design condition,
the spurious high peaks correspond to marginally stable modes. Although stable,
the 1–3,10,17 POD model is highly inaccurate at Re = 3000, with large successive
peaks in the kinetic energy which decay very slowly, indicating the high sensitivity
of those POD models which remain stable to a change in the Reynolds number. On
the other hand, the three-mode BPOD model is still remarkably close to the full
system.

It is important to note here that as the Reynolds number is increased, the
nonlinearity will have a stronger effect on the development of the disturbance and
the linearization may not be valid for higher Re in the first place. The comparison
of the linear perturbation growth with a full nonlinear DNS solution is essential for
a true validation of the models for control applications, since we may be modeling
the linearized flow well, but the linearized flow may not be a good approximation
to the actual flow. This comparison will be presented in Chapter 5.

4.3.4 Capturing of actuation

An important property of a reduced-order model is how well it captures the effects
of the actuator in the original system, especially for models that are intended for
developing controllers. In order for a reduced-order model to capture the effect of
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Figure 4.21: (a) The eigenvalues of 17-mode models at Re = 2000, Re = 2500, and Re = 3000.
(b) The performance of the models at the off-design condition of Re = 3000.

an actuator, it is necessary at a minimum for the input term in the equations (B2u2

in (3.11)) to be contained in the subspace used for projecting the equations. Note
that here, even for the POD case, the effect of the actuator is partially included,
since the dataset used for POD is generated by an impulsive input. One way to
measure the degree to which the input ‘directions’ are captured by the modes used
in the model is to compute the projection of the columns of the input matrix B2

in (3.11) onto the basis modes. In the system we are considering here, B = B2 is
a single column vector, representing the initial disturbance given to the system (or
actuation via a body force in the center of the domain). Fig. 4.22 shows the norm of
the projection ‖PrB‖/‖B‖ of the POD and BPOD modes onto the input vector B,
which is just the initial condition for each simulation. The inset in Fig. 4.22(a) again
shows a geometric illustration of the non-orthogonal projection as seen in Fig. 2.1,
where N (P ) denotes the nullspace of a projection operator P . The balancing modes
clearly capture the input direction with many fewer modes than POD: even very
low-order models have a significant norm after projection, and in fact the norm
of B after projection is almost always greater than the norm of B due to the non-
orthogonal projection, as shown in Fig. 4.22. Any orthogonal projection such as
P must satisfy ‖Px‖ ≤ ‖x‖, while for a non-orthogonal projection we may have
‖P ′x‖ > ‖x‖, which is the case for the first several BPOD modes. Clearly, the B
matrix has a very small projection onto the POD modes unless many modes are
taken, so it is impossible for very low-order POD models to capture the response of
an actuator without introducing more modes (such as the B matrix itself, Krylov
subspaces, or shift modes (Noack et al., 2003)).
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Figure 4.22: Norm of the projection of the B matrix (a single column vector) onto subspaces
used for reduced-order models, (a) α = 1, β = 1, (b) localized disturbance. The diagram in (a)
illustrates the non-orthogonal projection used in BPOD.

4.3.5 Subspace comparison

The BPOD procedure uses both a different projection and a different set of modes
in order to form reduced-order models, and we next look at a comparison of the two
mode subspaces. A way to compare two subspaces is to compute Tr(PAPBPA) = T ,
where PA and PB are the corresponding projection operators (Everson & Sirovich,
1995). The trace of the matrix Tr(PAPBPA) as a function of the subspace rank is
shown in Fig. 4.23 for the five-mode and ten-mode output projections where PA and
PB are the orthogonal projectors onto the POD and BPOD subspaces respectively.
The value of the trace T is the same as the subspace rank r at low order, indicating
very similar modes (see Figs. 4.15 and 4.17). For both POD and five-mode OP
BPOD, modes four and five are a pair of structures, and including both modes from
the pair brings the value of s to almost exactly 5. It is interesting to observe that
for the five-mode output projection, r = T exactly at r = 5, while for the ten-mode
output projection r = T at r = 10, and that above those values the value of the
trace is lower than the rank. This can be explained by the fact that BPOD is
attempting to approximate the output projection of the data of the given rank. It
is interesting to note that the subspaces including the first three POD and BPOD
modes are virtually identical, indicating that the non-orthogonal Petrov-Galerkin
projection via adjoint modes makes the enormous difference that we have seen in
the performance of the corresponding models. As mentioned above, the POD basis
is the basis of the most controllable modes, and is indeed optimal in capturing a
given dataset, but as we have shown, it can fail to capture the dynamics correctly.
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Figure 4.23: Plots of Tr(PAPBPA) as a function of the subspace rank r for the localized
perturbation for both output projections.

4.4 Alternative view of POD model performance

We next examine in more detail the performance of the POD model from Sec-
tion 4.3.1 in the spirit of (Mezić, 2004); in particular, we represent the dynamical
system as a network and utilize the horizontal-vertical decomposition described
in that work to investigate the importance of the low-energetic modes 10 and 17
(recall that they contain 0.025% and 0.0074% of the total energy respectively). In
order to introduce the concept of ‘production lines’ in dynamical systems which
can be identified using graph representation, we first consider the very simple two-
dimensional dynamical system:

ẋ = Ax, (4.6)

where
A =

[
0 1
0 0

]
.

The solution of the system for initial condition x0 = [c ; 0] is

x1(t) = ct
x2(t) = c

,

where c is a constant. The evolution of the state variable x1 depends on x2,
while x2 is independent and decouples. A graph representation of this system is
shown Fig. 4.24, according to the theorem on horizontal-vertical decomposition
given in Mezić (2004) — the lowest level is the second state, which ‘feeds’ the
first state and thus determines its behavior. The dynamics of this system is very
simple — x1 grows without bound, and the ‘production line’ consists of x2 ‘feeding’
x1. Horizontal-vertical decompositions such as the one shown here can be used for
more complicated systems, as will be shown later in this section.
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Figure 4.24: Graphical representation of dependence in the simple example in Eq. 4.6.
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Figure 4.25: (a) A plot of the values of POD model A matrix entries. (b) A plot of the values
BPOD model A matrix entries. See text for discussion of the intermodal coupling.

(a) (b)

Figure 4.26: The first two rows of the 30-mode A matrix for the POD model (the matrix in
Fig. 4.25a). The growth of the first mode (a) depends strongly on modes 2,3,10,17, and the growth
of the second mode (b) depends strongly on modes 3,10,17. The contributions of the other modes,
which come in pairs and correspond to traveling structures, cancel themselves approximately.
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Figure 4.27: A matrix for model 1–3,10,17. Note that all the entries below the diagonal
are negative — they correspond to negative feedback, while the entries above the diagonal are
positive — they denote growth. The largest entries are the coefficients of modes 10 and 17 in the
equation for the first mode.

We next consider the POD model consisting of modes 1-3,10,17, discussed in
Section 4.3.1. The entries of the A matrices of POD and BPOD models for the
perturbation from Section 4.3.1, each computed using the 30 leading modes, are
shown in Fig. 4.25. The strong dependence of the leading POD mode evolution on
modes 2,3,10,17 can also be seen in Fig. 4.26, which shows the first two rows of the
POD model A matrix. On the other hand, there are no significant coefficients of
higher modes in the BPOD model. Fig. 4.25 indicates that the oscillating mode
pairs in the POD model are strongly coupled, as expected, and they are coupled
only amongst themselves, which is apparent from the figure, as green color indicates
zero or values very close to zero. The streamwise-constant modes 1,2,3 and 10 are
coupled only amongst themselves as well. In particular, modes 1-3 strongly depend
on modes 10 and 17 (the dependence of the first two modes is clearly shown in
Fig. 4.26). The coupling of mode 17 to some of the oscillating modes may be related
to its importance in capturing correctly the dynamics of the full system. Fig. 4.27
shows the entries of the A matrix for the POD model with the five important
modes included. A simple order-of-magnitude analysis of mode coefficients can be
used to draw an approximate graph for the interconnection of the key model in the
model. Following Mezić (2004), a network can be represented by a matrixM , whose
elements are given by

Mij =
1

li
if |Aij| > ε

Mij = 0 otherwise.
(4.7)

Here li is the number of non-zero entries in a matrix row. We note here that in Mezić
(2004) the matrixM is defined as a stochastic matrix, ε = 0, and the general case of
a system with uncertainty is considered. In order to identify a ‘production line’ in
the model, using an order-of-magnitude approximation, and picking ε = 2 × 10−2,
we may neglect all negative feedbacks on and below the diagonal in Fig. 4.27, except
for the dependence of mode 17 on mode 10 and on itself. The matrix M for the
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POD model with all five modes is then:

M5 =


0 1/4 1/4 1/4 1/4
0 0 1/3 1/3 1/3
0 0 0 1/2 1/2
0 0 0 0 1
0 0 0 1/2 1/2

 ,
while the matrix for a three-mode model excluding modes 2, 3 would be represented
by

M3 =

 0 1/2 1/2
0 0 1
0 1/2 1/2

 ,
Of course, since no terms of the A matrix shown in Fig. 4.27 are exactly zero, this
is a crude approximation. Moreover, in the actual model, the negative feedbacks
in the lower-diagonal part and on the diagonal of the matrix ultimately cause the
energy to decay — were it not for these feedbacks, the solution would grow without
bound, which is unphysical. Therefore, this picture, which excludes that important
feature of the dynamics, is meant only to illustrate qualitatively the energy growth
mechanism in the model, but not the complete dynamics. The upper-diagonal
structure of the matrix corresponds to an energy transfer pathway, similar to the
one described by Eisenhower & Mezić (2007). One can now draw an approximate
graph for the interconnection of the key modes in the model (Fig. 4.28). The key
feature of the model is the almost purely vertical structure — the low-energy modes
are feeding the leading mode with energy, and a ‘production line’ passes through
modes 2 and 3 from the tenth and seventeenth mode to the first mode. Note that
modes 10 and 17 are on the same horizontal level, since there is a two-way connection
between them, i.e. there is significant dependence of one on the other.

10
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17 10
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17

Figure 4.28: Left: Horizontal-vertical decomposition for model including modes 1,2,3,10–17, right:
horizontal-vertical decomposition for model including modes 1,10,17.

In order to examine the importance of the tenth and seventeenth modes, we
exclude modes 2 and 3 from the model, since as Figs. 4.25 and 4.26 show, their
influence on the first mode is much smaller. We would expect the dynamics to
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remain ’structurally’ similar to the model including all five important modes —
mode 1 will still grow, followed by decay. Fig. 4.29 shows the performance of the
models and the coefficient of the first mode for the different models. We note that,
although most negative feedbacks and diagonal elements in the A matrix of the
model have been neglected for the graph decomposition, they have been included in
the model, as otherwise there would be unbounded growth of the energy. It turns
out that the model with modes 1, 10, 17 is inaccurate in terms of capturing the
growth, but unlike the model with modes 1–3, the dynamics is indeed qualitatively
similar to the dynamics of the full system — growth followed by monotonic decay
once the first mode grows large enough, as opposed to the unphysical oscillations
in the energy captured by only the first three modes.
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Figure 4.29: (a) The performance of POD reduced-order models in capturing the energy of the
perturbation. Symbols: full simulation (©), POD 1–3 (×), POD 1–3,10,17 (�), POD 1,10,17 (+).
(b) The coefficient of the first mode. Symbols same as on left, full simulation not plotted.

This analysis offers another view of the POD and BPOD models — a key feature
of the input/output behavior, shown by the ‘production line’, is not captured
correctly in a reduced-order model unless the important POD modes are included.
From the plot of the entries of the matrix representing the POD model dynamics
in Fig. 4.25, we have seen that many of the modes with energy content that is high
compared to the energy content of modes 10 and 17 are not coupled to the first
three modes, and therefore do not contribute to the overall energy growth — they
represent traveling structures, as described earlier in this chapter. The qualitative
behavior of the model is captured by a simplified model that retains the same
vertical structure, but does not include the second and third modes, indicating
the importance of the low-energetic modes 10 and 17, although the result is much
different qualitatively. On the other hand, the important input/output dynamics
is captured in the dynamically much simpler BPOD modes, and just the leading
modes are able to reproduce the energy growth of the perturbation. Of course,
it should be kept in mind that neglecting the negative feedbacks and most of the
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diagonal entries of the A matrix of the POD model when representing the model as
a graph with vertical structure is a major approximation, and the present approach
can only be used to gain qualitative insight into the dynamics of the system.

4.5 Summary

In this chapter the theoretical and computational methods described in the pre-
vious two chapters were applied to both 1-D and 3-D localized perturbations to
linearized channel flow. Snapshot-based balanced truncation with output projection
(BPOD) was thoroughly compared to POD and exact balanced truncation and it
was demonstrated that BPOD produced models with superior performance. The
specific contributions of the work presented in this chapter are:

• BPOD and exact balanced truncation were computed for a 1-D system for
which the latter method is feasible, and a detailed comparison similar to the
one in Rowley (2005) was done. It was shown that the modes and HSVs are
captured well, and that a fairly low rank of output projection is sufficient to
capture well the dynamics of the system.

• The first calculation of balanced truncation models for a large-scale 3-D system
was performed — a localized perturbation on a 32 × 65 × 32 computational
grid, corresponding to 133,120 states for the full (v, η) system.

• Model performance such as impulse response, frequency response and captur-
ing of actuation in the models, was investigated in detail, and BPOD modes
were consistently found to outperform POD at comparable truncation rates. It
was also found that the BPOD models can perform well at an off-design value
of the Reynolds number, while POD models have a much smaller range of
validity with respect to the Reynolds number. In addition, a striking example
of important dynamics being concealed by low-energy POD modes was found
(1–3,10,17 POD model in Section 4.3.1).

• A comparison of the subspaces of balancing and POD modes was performed,
indicating that the two bases are quite similar, and that the non-orthogonal
Petrov-Galerkin projection using adjoint modes is responsible for the differ-
ence in the models’ behaviors.

• A more detailed investigation of the 1–3,10,17 POD model inspired by the
recent work of Mezić (2004) reveals a simple vertical structure which provides
qualitative insight about the model dynamics.





Chapter 5

Feedback control of transitional
channel flow

The main application of the reduced-order models discussed in the previous chap-
ters is the design of linear controllers using reduced-order models. As discussed
in Chapter 1, it has been argued that the growth of perturbations is governed
by an essentially linear process. It is therefore expected that the energy growth
may be suppressed using the tools of linear control theory. Specifically, while the
perturbation is small, the linear energy growth dominates, and a linear controller
should therefore be able to prevent transition. While the results presented so far
have been for the linearized system only, at the end of this chapter we apply the
linear compensator designed using balanced reduced-order models to nonlinear DNS
of channel flow.

The control design process we adopt in this work has four main stages, starting
with the choice of the control system setup and the simulations to obtain reduced-
order models. Once the models are obtained, a compensator that consists of a
controller and a state estimator is first designed at the reduced-order model level.
The computational cost of this part of the process is negligible, and typically the
control designer tries many controllers until the desired result is achieved. After
that, the controller is tested first on the full-scale linear system (linearized Navier-
Stokes equations), and then on the nonlinear system (full nonlinear DNS).

In this chapter, we first demonstrate the use of balanced reduced-order mod-
els, obtained using the Eigenstate Realization Algorithm (ERA), introduced in
Section 2.3.4, in reducing the energy growth of a localized perturbation near the
channel wall in linearized DNS simulations. The size of the computational box
and the centerline Reynolds number used in this chapter are the same as in Kim
et al. (1987), for both linearized simulations and nonlinear ones used in the last
section. ERA was used due to the tremendous computational savings over BPOD.
In Section 5.2 we find that, using a localized body force as actuation, a compensator
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designed to minimize a single velocity output is also able to reduce the perturbation
energy significantly in linearized DNS. The reduction of energy growth in this case
is comparable to the reduction achieved by using the entire flow field energy as the
output of interest. An estimator based on two velocity measurements is incorporated
into the compensator. Compensators using wall blowing/suction as actuation are
found not to perform as well, but still achieve energy growth reduction (Section 5.3).

Finally, the compensators are also tested on nonlinear simulations with the initial
amplitude of the perturbation high enough for transition to happen in the uncon-
trolled case (Section 5.4). The Reτ in the nonlinear case for these computations
is lower than in the simulation of Kim et al. (1987) due to the imposed constant
mass flux. Since the flow is not expected to transition for simulations in which a
successful controller is applied and the dynamics is expected to remain very close
to the linear dynamics, we are not concerned with the details of the turbulent
flow once transition becomes irreversible, and only examine the initial stages of
the simulations. It is found that re-laminarization is possible using a body force
actuator only if the streamwise separation of the perturbation and the actuator is
small.

5.1 Control design and implementation

There are four steps in the control design process:

1. Select system inputs and outputs, perform simulations and obtain reduced-
order models.

2. Design the compensator (i.e., compute the estimator and controller gains) at
the reduced-order model level and test its performance.

3. Test the compensator at the linearized DNS level — if the reduced-order model
captures the linearized dynamics well, the compensator should perform well.

4. Test the compensator at the nonlinear DNS level — if the previous steps in
the design are successful, and if the nonlinear dynamics remains in the neigh-
borhood of the fixed point, the compensator should perform well; however,
there are no guarantees for this.

In the previous chapters we described in detail the first step, which is often the
most complex one. In this section we describe the second step of the process — the
compensator design — in some detail, before presenting the results for feedback
control of a localized perturbation in the subsequent sections.
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5.1.1 Inputs and outputs

Here we continue the discussion of inputs and outputs started in the previous
chapter, now with the focus on the inputs and outputs for closed-loop control. In
Section 4.3 (also see Ilak & Rowley, 2008b), a localized actuator/disturbance was
the only input to the system and the output y1 was the full state, approximated
in the reduced-order models using output projection. In this work, we consider
models that incorporate both the disturbance we wish to suppress and the actuator
as inputs and the measurement and full-state output as outputs. The model is
therefore MIMO (multiple-input-multiple-output), and the B and C matrices are
given by:

B =
[
B1 B2

]
, C =

[
C1

C2

]
. (5.1)

The choice of inputs and outputs is guided by practical considerations. While
channel flow is an idealized canonical case, the actuators (B2), outputs (y1 = C1x)
and measurements for the estimator (y2 = C2x) are designed to be close to realistic
mechanisms. The two different actuators chosen are a body force near the channel
wall and a wall blowing/suction actuator, and the performance of each one is tested
separately.

Wall-normal and streamwise velocity were measured at different locations both
as outputs to be minimized and as measurements for the estimator. The models
were computes using ERA, and thus the localized measurements could be extracted
from single grid points without the need to model them as 3-D fields for adjoint
simulations. If it is desired to compute modes, the velocity measurement may be
represented by a smooth 3-D Gaussian function C(x, y, z) centered at the point of
interest in the flow (Bagheri et al., 2009c), so that the corresponding output of the
system is computed as:

y(t) =

∫
V

C(x, y, z)v(x, y, z, t) dV, (5.2)

where V is the volume of the computational box. The same function used to model
the perturbation and the actuator may be used to model localized measurements if
it is desired to run adjoint simulations and compute balancing and adjoint modes.

While the measurement of perturbation energy would not be available in an
experiment, it is available in DNS simulations, and may be included in models as
the norm of the output y1 using output projection, as shown in Section 4.3. An
optimal controller will then minimize the energy of the perturbation, as will be
shown in Section 5.1.3. In this chapter we compare the performance of controllers
that minimize a single velocity signal downstream of the initial perturbation to
controllers that minimize the perturbation energy, as we may consider the latter to
be the most desirable scenario, although impracticable in an experiment.
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Since the variables that fully define the flow are v and η, a measurement of v
would be convenient since the computation of the other two velocity components
is not necessary. The input/output behavior at different wavenumber pairs was
investigated by Jovanović & Bamieh (2005), and it was shown that the streamwise
velocity response is very well correlated to the total energy in the flow field. More-
over, the largest input/output norm was computed for the case of a perturbation in
the wall-normal direction and measurement of streamwise velocity. Therefore, it is
expected that the compensators designed with streamwise velocity as output have
better performance than those designed with other velocity components as output
to be minimized.

5.1.2 Treatment of the inhomogeneous boundary conditions
for wall blowing/suction actuation

While the implementation of wall blowing/suction into a DNS simulation is fairly
straightforward since it only involves setting non-zero boundary conditions in the
wall-normal direction, the computation of the corresponding reduced-order models
for control design requires some care. A standard method for treatment of inhomoge-
neous boundary conditions when designing the control gains is known as lifting (see,
for example, Högberg et al., 2003). In this approach, the solution is represented as
the sum x = xh + xp, where the homogeneous solution xh satisfies homogeneous
boundary conditions (u = v = vy = 0 at walls), and xp is a particular solution
satisfying the desired inhomogeneous boundary condition. In our reduced-order
models, we expand xh in terms of modes that satisfy the homogeneous boundary
conditions, and write xp = Zφ, where φ(t) is the amplitude of the wall blowing/-
suction, and Z is chosen to be a steady-state solution of the linearized equations
with boundary condition v = 1 at the wall, as in Högberg et al. (2003). For a
single wavenumber pair this solution is easily computed using a spectral collocation
method. For a localized actuator on the channel wall, Z may also be computed by
starting the simulation impulsively with the wall blowing and suction actuator as
an initial condition and letting the solution reach steady state, although the first
method is much faster.

After augmenting the full state with the control input φ, the system in (3.11)
becomes: [

ẋh
φ̇

]
=

[
A AZ
0 0

] [
xh
φ

]
+

[
B1

0

]
u1 +

[−Z
I

]
︸ ︷︷ ︸
B2

φ̇

y =
[
C CZ

] [xh
φ

]
,

(5.3)

where the input is now u2 = φ̇, where the dot indicates a time derivative. Some of the
alternative approaches to lifting for treating inhomogeneous boundary conditions
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are actuation modes (Noack et al., 2004) or using a weak formulation (Camphouse,
2005). In the former approach, the actuation is not captured by the reduced-order
models in a systematic fashion, rather it is treated separately from the system
dynamics, while in the latter approach the modes have inhomogeneous boundary
conditions, which may cause difficulties in applying feedback control (Camphouse,
2005).

Only the homogeneous part of the augmented system (5.3) is included in the
reduced-order models. When reduced-order models are obtained from modes in
usual balanced truncation, it is of particular importance to work with modes that
have homogeneous boundary conditions, since expressing model solutions as a linear
combination of modes would result in incorrect boundary conditions for the model
solution. The input for the homogeneous part of the augmented system in (5.3) has
inhomogeneous boundary conditions, and using it as an initial condition results in
the first snapshot having an inhomogeneous boundary condition, which would be
undesirable for the computation of modes, since modes are linear combinations of
snapshots. Spatial filtering of the initial condition for the impulse response of Z is
thus required. One approach is to use an ad-hoc Laplacian filter (Ilak & Rowley,
2008a), or, alternatively, the DNS solver itself may be used as the filter (Bagheri
et al., 2009a), since advancement of the initial condition by a small DNS time step
will enforce the correct boundary conditions. The latter approach is also employed
if a particular form of the localized perturbation or actuator needs to be placed near
the wall with appropriate boundary conditions, as later in Section 5.2.

5.1.3 LQR design

A Linear Quadratic Regulator (LQR) was used for feedback control. LQR design
is described in detail in standard references on control theory (for example Stengel,
1994), and here we only outline the essence of the method. In control-theoretic
terms, an LQR regulator is a proportional controller, resulting in a control law
given by u = −Kx, where the gain matrix K is computed so that it minimizes the
objective function:

J =

∫ ∞
0

(xTQx+ uTRu) dt. (5.4)

This type of controller is called a regulator, since it regulates the departure from
x = 0, in which case the first term of the integrand in the cost function would be
zero. The control input may be confused with the streamwise velocity u, as the use
of the letter is established in both fluid mechanics and control theory with different
meanings. In this chapter it is indicated in the text what is meant each time the
symbol is used and it is not obvious from the context. Given the state-space system
and the weight matrices Q and R, the gain:

K = R−1BTP (5.5)
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is computed from the solution of an algebraic matrix Riccati equation given by 1:

ATP + PA− PB2R
−1BT

2 P +Q = 0. (5.6)

The weight matrix Q is typically chosen to be Q = CT
1 C1, since xTCT

1 C1x = ‖y1‖2,
so that the cost function is then:

J =

∫ ∞
0

(yT1 y1 + uTRu) dt. (5.7)

This new cost function now minimizes the sum of the norm of a vector of a small
number of outputs of interest (in practice these are the outputs we are able to
measure in an experiment), and the control input over time. We note that the
controller penalty matrix R is a scalar when we have just one control input, as is
the case for all simulations in this thesis. We also note that, if the output C1 = I,
i.e. it is the full state, the controller will minimize the 2-norm of the total flow
field, which in the case of fluid systems corresponds to the total energy. In the
reduced-order models in which output projection is used to approximate the energy
of the full field, the weight matrix becomes Q = ΘsΘ

T
s , where Θs are the first s

POD modes.

Computation of the control gain matrix K for the full system (4.1) using (5.6)
is clearly not feasible for 3-D fields in transitional channel flow, as the required
matrices cannot even be stored in memory for a large system such as a linearized
DNS. This is one of the main reasons for using reduced-order models to design the
controllers, as the gains for the models are computed at very low computational
cost. Instead of the matrices (A,B,Q), in this case we use:

Ar = Ψ+
r AΦr, B2,r = Ψ+

r B2, Qr = ΦT
r C

T
1 C1Φr. (5.8)

This computation may be done using, for example, the standard lqr command in
MATLAB. These gains are then applied to simulations of the full non-linear system.

For the case of wall blowing/suction actuation the gains are designed for the
augmented reduced-order model, with the matrices:

Â =

[
Ψ+
r AΦr 0

0 0

]
, B̂2 =

[−Z
I

]
, Q̂ =

[
Qr QrZ

ZTQr ZTQrZ

]
. (5.9)

The last row and column of the matrix Q̂ (two rows and columns if there is actuation
on both walls) take into account the effect of the wall blowing/suction. Thus, the
feedback control gains in this case are obtained by solving a (r + 1) × (r + 1) or
(r + 2)× (r + 2) Riccati equation.

As described by Högberg et al. (2003), the contribution of the homogeneous
part of the flow to the control gains at the walls needs to be subtracted from the

1The algebraic Riccati equation is a special case of the differential Riccati equation, which also
contains a time-dependent term. For Linear Time-Invariant (LTI) systems such as those considered
in this thesis, and for infinite time-horizon, i.e. integration until t = ∞ as in (5.4), the Riccati
equation reduces to the form given here (see, for example, Stengel, 1994).
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computed values. The gains may also be written as K̂ = [Kh Kφ], and, since:

φ̇ = −Khx+KhZφ−Kφφ = −Khxh − (Kend −KhZ)φ, (5.10)

we see that if the gains are to be used in a DNS, the last gain needs to be modified
by subtracting Kend −KhZ from the value obtained. We emphasize again that the
control input u2 is the time derivative of the wall blowing and suction, which is
integrated in time. The time advancement of the control input is computed at each
step in the DNS simulations, using the same numerical scheme as the one used in
advancing the DNS solution in time.

5.1.4 LQE design

The control input term u2 = −Kx may only be computed if the state x is known.
The states of the system are often not available (i.e., cannot be measured), or, in the
case of fluid simulations, the dimension of the state is too large for the computation
of the control input (also known as full-state feedback) to be practical. Instead, often
an estimator (also known as observer) provides an estimate of the state, which is
then fed back to the controller for computing the control input.

x

z
y

disturbance

flow simulated by DNS
(linear or nonlinear)

measurement
 for estimator

output

actuationB2

B1 C1

C2

K
â

y2

y2

y1

˙̂a = Arâ + B2,ru2 + L(y2 − C2,râ)

u1

u2

u2 = −Kâ

Figure 5.1: A schematic of the control setup with reduced-order estimator in the loop. The
configuration of inputs and outputs in this figure is representative of the configurations we use
later in this chapter. The hat indicates estimated state.

The estimator is essentially a system with the same dynamics as the origi-
nal system, but with the error between the true measurement and the estimated
measurement as the quantity that needs to be minimized. Thus, the problem of
estimation is dual to the problem of optimal control, and an optimal estimator,
also known as a Linear Quadratic Estimator (LQE) is designed by solving Riccati
equations as for LQR problem.
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If we introduce noise both in the state equation (also known as ‘process noise’)
and in the measurements that the estimate is based on, the system becomes:

ẋ = Ax+B1u1 +B2u2 +Gw

y1 = C1x

y2 = C2x+ αv.

(5.11)

Here w is the process noise, and the matrix Q = wwT is known as the process
noise covariance matrix. G is the sensitivity of the state to the process noise, v
is Gaussian measurement noise (not to be confused with the wall-normal velocity
component v) with amplitude α. The Riccati equation to be solved is now given
by:

AP + PAT − 1

α2
PCT

2 C2P +GQGT = 0. (5.12)

The corresponding estimation gains given by:

L = − 1

α2
PCT

2 , (5.13)

minimize the error between the measured and estimated states.

We next discuss the choice of G and Q. If we set G = I and Q = B1B
T
1 ,

GQGT = B1B
T
1 . In Doyle & Stein (1979), it is shown that robustness of the

estimator is increased by adding ‘fictitious noise’ in Q, so that:

Q = Q0 + qBV BT , (5.14)

where Q0 is the noise covariance for the plant, and V any positive-definite symmetric
matrix. In our case, V = I, Q0 = 0 and q = 1, which would correspond to no noise
in the actual plant. The final Riccati equation we solve in order to design the
estimator is thus:

AP + PAT − 1

α2
PCT

2 C2P +B1B
T
1 = 0, (5.15)

α being the only tuning parameter. A low value of α corresponds to less noise in
the measurement, and therefore better estimator performance.

A LQR controller that incorporates an LQE estimator is also known as a Linear
Quadratic Gaussian (LQG) compensator. By the separation principle (see, for
example, Friedland, 1986), the estimator and the controller are designed separately,
and if both are stable, the entire compensator will be stable. We note that it has
been shown (Doyle, 1978) that there are no guaranteed stability margins for a system
with an estimator, i.e., in some cases the resulting closed-loop system may become
unstable under arbitrarily small perturbations, which should be kept in mind by
the control designer. A schematic of the full compensator is shown in Fig. 5.1.
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5.2 Feedback control of linearized flow using local-
ized body force as actuation

We next demonstrate the performance of the controllers designed using the proce-
dure described above. The main goal is to reduce the energy growth of a localized
perturbation placed near the wall. The perturbation is very similar in shape to the
one described in Section 4.3, although it is now placed near the lower wall at the
streamwise location x = π (see Fig. 5.3a). The resolution of the linearized DNS
was 64× 65× 32. Although the energy growth of this perturbation is considerably
lower than the typical growth of optimal perturbations (see, for example, Butler &
Farrell, 1992), it was still observed to transition in nonlinear simulations, as will be
shown in Section 5.4. In this section and next section, we design compensators for
the linearized flow and test them in linearized DNS simulations.

That the exact form of the perturbation B1 is:

v(x, y, z, 0) = A

(
1− r2

α2

)
e(−r2/α2−(y−y0)2/α2

y), (5.16)

where (xc, 0, zc) are the coordinates of the center of the computational domain and
r2 = (x − xc)

2 + (z − zc)
2. The wall-normal vorticity is zero. We note that the

term (cos(πy) + 1), added in Eq. (4.5) in order satisfy the boundary conditions
v(±1) = vy(±1) = 0 for a perturbation in centered in the channel mid-plane, places
the perturbation away from the wall even if y0 is chosen very close to the wall.
Therefore, this term was not included for the perturbations used in this chapter, and
filtering using the DNS was employed instead, i.e., the perturbation given by (5.16)
was advanced by a short linearized DNS time step, and the result was used as the
perturbation B1 in the simulations.

In this section we use a localized body force actuator, identical in shape to the
disturbance B1, and at the same distance from the wall, but placed downstream,
at x = 2π, as shown in Fig. 5.3(b). Figure 5.2 shows the schematics of the
two setups used in this section. In studies of modeling and control of spatially
developing boundary layers (see Bagheri et al., 2009b), actuators are typically
located downstream from the perturbation, and we use a similar setup in this
study. We remark again (recall Section 4.3) that due to the periodicity of the
computational box in the streamwise direction, once the perturbation ‘hits its own
tail’, the dynamics is considerably different from the dynamics of a perturbation
in an infinitely long box. In particular, the energy growth is larger due to the
streamwise structures that develop sooner than they would have developed in a
longer domain. Thus, the physical equivalent of this setup is a periodic array of
such perturbations and actuators.

Streamwise and/or wall-normal velocity signals are used for both the estimator
measurements y2 and as the output to be minimized by the controller y1, and the
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2 C2x =

∫
V

(u2 + v2 + w2)dV

C2

(b)

Figure 5.2: The control system setup for the cases considered in this section: localized body force
actuation and localized measurement as output y1 (a) and localized body force actuation and full
field output y2, corresponding to minimizing perturbation energy (b).

energy of the full field is also used as the output y1 for some cases. As discussed
earlier, the latter choice is not practically realizable, but it does provide a useful
comparison with the cases in which a single signal is used as output y1.

(a) (b)

Figure 5.3: (a) The disturbance (B1 matrix). (b) The body-force actuator (B2 matrix).

5.2.1 POD modes

In order to select the location of measurements, some knowledge of the dynamics
of the modeled system is needed. Measurements should be placed near highly
controllable directions, since these directions are most easily excited by pertur-
bations, and thus the measurement would extract most information. As shown in
Chapter 2, the POD modes of the impulse response of the perturbation are the
most controllable modes of the system. Therefore, we examine them in order to
determine suitable velocity probe locations. These modes will also be needed later
for output projection.

The POD modes taken here include data from impulse responses of both the
disturbance B1 and the actuator B2. Although the energy evolution in time is
identical for the actuator and the disturbance, the actual snapshots are different
due to the spatial shift, and it is thus necessary to take into account both sets.
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Figure 5.4: (a) A comparison of eigenvalues for the disturbance only multiplied by two (X) and
for POD with both disturbance and actuator snapshots included (©). (b) Isosurfaces of the
streamwise velocity of the sixth mode for POD of the impulse response of just B1 (top) and for
impulse responses of both B1 and B2 (bottom).

The leading modes are identical to the POD modes of B1 only, as indicated by the
eigenvalues in Fig. 5.4a, but some of the higher modes are not, which is seen from the
eigenvalues plotted in Fig. 5.4. Since the dynamics here is similar to the dynamics
of the perturbation described in Section 4.3, the modes were again computed using
uneven snapshot spacing, with a total of 2181 snapshots during the time interval
(0,3200). In Fig. 5.4 we show the a comparison of the POD eigenvalues when just
the perturbation impulse response snapshots are included and when both impulse
responses are included. The POD eigenvalues for B1 only are multiplied by two in
Fig. 5.4, since the total energy in the snapshots is exactly half of the energy of the
two sets of snapshots taken together. The leading mode (see Fig. 5.5) is streamwise
constant, and the 1-D profiles of the streamwise and spanwise velocities at z = π
are shown. Two measurement locations for the estimator are selected, one near the
wall at wall-normal coordinate y = −0.96, referred to hereinafter as y21, and one
where the velocities have maximum absolute value, which for both the streamwise
velocity u and the wall-normal velocity v is at approximately y = −0.60, referred to
hereinafter as y22

2. We also use a signal at the location (x, y, z) = (3π,−0.60, 3π/2)
for the output y1 when not using the full field.

5.2.2 Model performance - minimizing streamwise velocity

We next discuss the performance of compensators designed for the reduced-order
models. Two measurements were used for the estimator, as described above. We

2Again, the notation may be potentially ambiguous due to the use of the same letter as the wall-
normal coordinate in fluid mechanics terminology and output in the language of control theory.
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Figure 5.5: The leading POD mode for snapshots from both the localized perturbation and the
localized actuator. The 1-D profiles are shown for the streamwise (left) and wall-normal (right)
velocity, indicating the points where the velocity outputs are chosen.

first consider a single signal of streamwise velocity as y1, since we may expect
streamwise velocity to be well-correlated to the perturbation energy, which we desire
to minimize. The transfer function from the inputs to the outputs is a 3×2 matrix.
In this section and the next section, we refer to the uncontrolled linearized DNS
(impulse response the system with B1 as input matrix) as the ‘full system’ when
compared to reduced-order model outputs or controlled runs. We note that in all
simulations the input signal u1(t) is just u1(t) = δ(t = 0), i.e., we start the system
with B1 as initial condition. We do not consider disturbance inputs at later times,
such as, for example, a random forcing in time for the duration of the simulation,
as in Bagheri et al. (2009b).

In order to compute balanced modes, ERA was used here. The Hankel matrix
was 5958×5292, which is equivalent to taking 1986 adjoint snapshots and 2646 direct
snapshots in BPOD. Fig. 5.6 shows that a 30-mode ERA model captures very well
all outputs. We note that in a spatially developing flow, such as the boundary layer,
there would be no signal from the actuator to the output y21, since the information
cannot travel upstream, but since channel flow is periodic, that signal is non-zero
here. While the energy of the perturbation was found to be captured very well by
as few as three modes for the localized perturbation discussed in Section 4.3, a 30-
mode model was required to capture the dynamics very well in this case, since initial
transient dynamics is of importance, and there are multiple inputs and outputs.

A key parameter for the compensator design is the value of the control input
penalty in LQR. Since there is only one control input in all cases considered in this
thesis, R is always a scalar. Values of R = 0.1 and R = 0.001 were picked, the
latter being for a very aggressive controller. Fig. 5.7 shows the output y1 and the
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Figure 5.6: A comparison of the impulse responses of the uncontrolled linearized DNS (‘full system’,
©) and the uncontrolled ERA model (X), using body force actuation, u measurement at x = 3π
as y1, and two measurements of u at x = 3π/2 as y2. The six panels represent the six elements of
the 3× 2 transfer function matrix for the model (three outputs and two inputs). The two entries
of the output vector y2 are denoted by y21 and y22. Refer to Fig. 5.2 (a) for a schematic of the
control setup. Note that u1 and u2 are control inputs, while u is a streamwise velocity signal.

energy for the case with R = 0.1. In addition to the stages of testing the controller
described in 5.1, another stage was included here. The control input time history
obtained for the reduced-order model was fed to the linearized DNS as a feed-forward
input3, and the results were compared to those using the full compensator (with
estimation and feedback). We note that full-state feedback may be used as an
additional test of the compensator when adjoint modes are available4, as in Ilak &
Rowley (2008a). The estimator was designed as described in Section 5.1.4, using
a very clean measurement α = 0.001 (R = 1 × 10−6). This corresponds to an
‘aggressive’ estimator, i.e., fairly high values of the estimator gains L, but no effect
on the stability of the closed-loop system was observed.

We notice that the prediction of the model for the closed-loop performance
and the output for the case of open-loop forcing are almost exactly overlapping,

3The term feed-forward means that a pre-computed control input time history is fed to the
system, i.e. the control is not updated in real-time.

4In this case control is updated in real-time without an estimator, since the state of the reduced-
order model is obtained at each DNS time step by projecting the full field onto balancing modes.
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Figure 5.7: (a) Single output y1 for body force actuation with u measurements, comparing the
uncontrolled impulse response of B1 (’full’) with controlled response of the reduced model, feed-
forward controlled linearized DNS and linearized DNS with feedback control. (b) Perturbation
energy for the same run.

indicating that the model does capture very well the dynamics of the system.
While the outputs of the open-loop and closed-loop cases are slightly different, the
corresponding energy, which has been decreased significantly, is almost identical in
the two cases. It was found that there is no appreciable difference in the performance
for R = 0.001 in LQR (see Section 5.4 for a discussion of the performance limitations
in the system).

5.2.3 Model performance - minimizing wall-normal velocity

The wall-normal velocity was also considered, as both y1 and y2. Figure 5.8 shows
the performance of the uncontrolled 30-mode model. We notice that the transfer
function from the actuator to the measurement near the wall u2 → y21 is not
captured very well initially, which is not important for the controller performance,
as the entire measurement vector y2 is upstream of the actuator.

A comparison of the performance of feedback controllers designed for this model
with values of the controller penalty R = 0.1, R = 0.01 and R = 0.001 is shown
in Fig. 5.9. We see that an increasingly aggressive controller is more successful at
reducing the energy, approaching the effectiveness of the compensator based on the
streamwise velocity, although not reaching it (see Fig. 5.11).



5.2. FEEDBACK CONTROL USING BODY FORCE ACTUATION 83

0 50 100
−0.02

0

0.02

0.04

u
1
 → y

1

v

0 50 100
−0.1

0

0.1

u
2
 → y

1

v

0 50 100
−0.01

0

0.01

0.02

u
1
 → y

21

v

0 50 100
−1

0

1

2
x 10

−3 u
2
 → y

21

v

0 50 100
−0.1

0

0.1

0.2

u
1
 → y

22

time

v

0 50 100
−0.01

0

0.01

0.02

0.03

u
2
 → y

22

time

v

Figure 5.8: A comparison of the impulse responses of the uncontrolled linearized DNS (‘full system’,
©) and the uncontrolled ERA model (X), using body force actuation, v measurement at x = 3π
as y1, and two measurements of v at x = 3π/2 as y2. The six panels represent the six elements of
the 3× 2 transfer function matrix for the model (three outputs and two inputs). The two entries
of the output vector y2 are denoted by y21 and y22. Refer to Fig. 5.2 (a) for a schematic of the
control setup.
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Figure 5.9: (a) Single output y1 for body force actuation with v measurements, comparing an
uncontrolled simulation to controlled simulations at three different values of the parameter R in
LQR. (b) Perturbation energy for the same run.
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5.2.4 Model performance - minimizing energy

We have seen that significant reduction in perturbation energy growth is achieved by
a compensator that is designed to reduce the streamwise velocity as output y1. It is
of interest to compare the performance of this compensator to the performance
of a compensator with the full field as output y1, i.e. with a penalty on the
total perturbation energy in the LQR cost function, since minimizing the total
perturbation energy is potentially the most desirable option in suppressing transi-
tion. Measurements at a particular point in the flow such as the ones considered
in the previous two subsections are more readily available in an experiment than
measurements of the full velocity field. Therefore, we are interested in learning how
close the controller performance using these measurements is to performance for
minimizing the total energy.

In order to approximate the full field output at the reduced-order model level,
output projection is used, as described in Chapter 2. Thus, when evaluating the
performance of the reduced-order model, we compare the norm ‖ŷ‖2 (2.21) to the
energy of the full field. If the rank of output projection is high enough, i.e., the
reduced-order model is designed to capture well enough of the leading POD modes,
the norm ‖ŷ1‖2 will be very close to the overall perturbation energy, and we may
then design a compensator for the reduced-order model to minimize this norm.

The advantage of ERA is particularly significant here, since models with high
dimension of output projection are easily computed once the POD modes are
available. In this case, only the projection of the impulse response snapshots onto
the POD modes is needed to form the part of Hankel matrix Y +X corresponding
to the output C1 (for details on forming the Hankel matrix using output signals, see
Ma et al., 2009a). On the other hand, the computation of the same models using
BPOD would require many adjoint simulations. High rank of output projection may
be necessary in order to correctly capture the transient dynamics of the system,
as important dynamics of the initial transient is often not captured by the most
energetic POD modes, as shown in Chapter 4.

Fig. 5.10 shows a comparison of the impulse response of the uncontrolled linear
perturbation evolution and the impulse response of the reduced-order model. We
note that the energy time histories for both inputs here are identical, since the
actuator and the disturbance are identical, just with a phase shift.

Fig. 5.11a shows a comparison of the energy for linearized DNS with feedback
control for the three different choices of the output y1. Using full field as output
indeed produces results very close to the results using only streamwise velocity,
which is in agreement with the findings of Jovanović & Bamieh (2005) that the
energy contained in just the streamwise velocity component of the perturbation is
close to the full perturbation energy. Fig. 5.11b shows that the control input for
minimizing the energy has a lower peak, i.e., less control effort is needed than when
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Figure 5.10: A comparison of the impulse responses of the uncontrolled linearized DNS (‘full
system’, ©) and the uncontrolled ERA model (X), using body force actuation, full field
measurement as y1, and two measurements of u at x = 3π/2 as y2. The six panels represent
the six elements of the 3 × 2 transfer function matrix for the model (three outputs and two
inputs). The two entries of the output vector y2 are denoted by y21 and y22. Refer to Fig. 5.2
(b) for a schematic of the control setup. Note that u1 and u2 are control inputs, while u is a
streamwise velocity signal.

the velocity signal is minimized. We notice that in all cases the energy is not affected
at all by the application of the control until a certain time. This is due to a time
delay in the system introduced by the spatial separation of the actuator and the
disturbance (see Section 5.4). In Ilak & Rowley (2008a) the actuator was placed at
exactly the initial location of the disturbance, and the controller was able to affect
the energy growth immediately.

5.3 Feedback control of linearized flow using wall
blowing/suction as actuation

Next, a localized blowing/suction actuator on the lower wall was used. The zero-net-
mass-flux wall blowing/suction in the form of a circular 2-D ‘sombrero’ 5 function

5Name inspired by the shape of the function when plotted.
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Figure 5.11: Energy comparison for uncontrolled impulse response of the perturbation, feed-
forward control and feedback control for the localized body force actuator (a) and comparison
of control input histories u2(t) for three different outputs y1 (b).

given by:

v(x,−1, z, 0) =

(
1− r2

α2

)
e−r

2/α2

, (5.17)

where r2 = (x−xc)2 +(z−zc)2. The value α = 0.7 was used. This function because
its integral over the entire lower channel wall is zero and thus no net flux of wall-
normal velocity is added to the flow. The boundary conditions for this localized
function are not periodic in x, z and periodicity was enforced by adding copies of the
function centered at (xc±4π, zc±2π). Without this correction, the non-periodicity
was found to introduce spurious high-wavenumber components. Rather than using
a distributed actuator as in previous work (Högberg et al., 2003; Lee et al., 2001),
this actuator is localized and thus potentially closer to a practical device.

Since in the previous section it was shown that the measurements of wall-normal
velocity result in worse performance than streamwise velocity or energy, here we
only compare the performance of the models for streamwise velocity and energy as
C1. The particular solution B2 = −Z (after regularization by a short DNS time
step in order to enforce the correct boundary conditions) is shown in Fig. 5.13.

5.3.1 Model performance - minimizing streamwise velocity

It was found that in this case a 40-mode model is necessary in order to capture well
the dynamics of the uncontrolled system (Fig. 5.14). Fig. 5.15a shows the output
signal y1 for uncontrolled and controlled runs and the energy of the simulation. We
note that the initial energy growth is even larger than in the uncontrolled case —
with this choice of actuator, minimizing u does not minimize the energy. It was
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Figure 5.12: The control system setup for the cases considered in this section: wall blowing/suction
as actuation and localized measurement as output y1 (a) and wall blowing/suction as actuation
and full field as output y1, corresponding to minimizing perturbation energy (b).

Figure 5.13: An isosurface of the half of the maximum value of the v component of −Z. Recall
from Section 5.1.2 that B2 = [−Z; 1].

found that the aggressive controller use here (R = 0.001) even increases the overall
energy growth significantly, although it successfully reduces the single output signal
that it was designed to reduce. This controller was tested only in a feed-forward
run, i.e., the control input was pre-computed for the reduced-order model and used
in the DNS.

5.3.2 Model performance - minimizing energy

We next consider the full field as output y1. In this case, the POD modes for output
projection were computed using snapshots from both impulse responses, which now
look quite different. The leading mode is shown in Fig. 5.16. It was found that there
is no appreciable difference in the performance of models with measurements at the
location corresponding to the maximum values of these modes and the performance
using the measurements at the same locations as in the body force case.

Fig. 5.17 shows a comparison of the impulse responses of the uncontrolled model
and uncontrolled linearized DNS for this case, showing that the dynamics is captured
well by the reduced-order model. It should be noted that the energy of the impulse
response of the actuator B2 = −Z exhibits no growth at all.
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Figure 5.14: A comparison of the impulse responses of the uncontrolled linearized DNS (‘full
system’, ©) and the uncontrolled ERA model (X), using wall blowing/suction actuation,
streamwise velocity u measured at x = 3π as y1, and two measurements of u at x = 3π/2 as
y2. The six panels represent the six elements of the 3 × 2 transfer function matrix for the model
(three outputs and two inputs). The two entries of the output vector y2 are denoted by y21 and
y22. Refer to Fig. 5.12 (a) for a schematic of the control setup.
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Figure 5.15: Output y1 for wall blowing/suction actuation with u measurements (a) for
uncontrolled and controlled runs. Perturbation energy for the same case (b).
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Figure 5.16: The leading POD mode including both snapshots of the localized perturbation and
the actuator B2 = −Z. Left: streamwise velocity u isosurface (top) and 1-D profile (bottom),
right: wall-normal velocity v.
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Figure 5.17: A comparison of the impulse responses of the uncontrolled linearized DNS (‘full
system’, ©) and the uncontrolled ERA model (X), using wall blowing/suction actuation, full field
as y1, and two measurements of u at x = 3π/2 as y2. The six panels represent the six elements of
the 3× 2 transfer function matrix for the model (three outputs and two inputs). The two entries
of the output vector y2 are denoted by y21 and y22. Refer to Fig. 5.12 (b) for a schematic of the
control setup. Note that u1 and u2 are control inputs, while u is a streamwise velocity signal.
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Figure 5.18: Perturbation energy for wall blowing/suction actuation with u measurements and
energy output.

Table 5.1: Summary of results for feedback control of linearized DNS runs. Note that the quantity
u2 is the scalar control input, not to be confused with the streamwise velocity u. Also note
that the integral of the actuation over time for the localized body force actuation and the wall
blowing/suction actuation are not directly comparable due to the different actuators.

Actuation (B2) C1 C2 R in LQR Emax/Ef (%)
∫ tend

0
u2

2 dt
u u 0.1 21.3 23.18

localized near wall v v 0.1 27.4 1.62
v v 0.01 25.4 3.24
v v 0.001 25.0 4.12

Energy u 0.1 23.5 5.60
wall blowing/suction u u 0.1 56.7 28.5

Energy u 0.001 11.1 4.8

Fig. 5.18 shows the perturbation energy growth for the simulation with the
compensator on. The reduction in energy growth is not as significant as in the case
of the body force actuator, but the actuator is successful, and no large overshoot
in the energy as in Fig. 5.15. This controller was also tested only in a feed-forward
run, i.e., the control was pre-computed for the reduced-order model and used in
the DNS. The results of this section and the previous section are summarized in
Table 5.1. The ratio Emax/Ef of the maximum perturbation energy observed in
a controlled tun to the maximum energy of the uncontrolled perturbation impulse
response Ef is used as a performance measure. The integral in time of the control
input u2 is also shown for the different runs.
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5.4 Compensator performance in nonlinear DNS

Next, compensators designed for the linearized flow were tested in nonlinear DNS
simulations. We first studied the uncontrolled nonlinear evolution of the pertur-
bation from the previous two sections at different amplitudes. Fig. 5.19 shows
a comparison in energy growth between linearized DNS and nonlinear DNS at
different initial energy values. The resolution for all nonlinear runs in this section is
192×129×192, which is slightly higher than the resolution in Kim et al. (1987). As
before, the box size is 4π× 2× 2π, and Rec = 3300. Constant mass flux of ṁ = 4/3
was imposed (see Appendix B). The ratio E0/Elam of the perturbation initial energy
(in our framework this is the energy norm of B1) and the energy per unit volume
of the laminar flow (see Appendix B) above which transition occurs6 was found to
be approximately 6.85× 10−5 (a simulation at 5.81× 10−5 did not transition, while
a simulation at 7.35 × 10−5 did). This very low value of the transition threshold
is comparable in magnitude to the thresholds for some of the perturbations at
Re = 3000 found by Reddy et al. (1998).
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Figure 5.19: A comparison of energy growth for the linear evolution of the uncontrolled
perturbation and three uncontrolled nonlinear simulations. The threshold for transition is at
between values of 5.81× 10−5 and 7.35× 10−5 for the amplitude A in (5.16).

Since transition is observed in nonlinear channel flow with finite amplitude of
the perturbation as initial condition transitions, we apply a compensator from
Section 5.2 in an attempt to prevent it. The first investigation of balanced model
performance in closed-loop control of transitional channel flow was undertaken
by Ilak & Rowley (2008a), where closed-loop control with full-state feedback for
BPOD models was used (the state of the reduced-order model was computed by
projection of the DNS solution onto balanced modes at each time step). In that
work, the study was performed at a lower Reynolds number (Re = 2000), and

6This value is also known as the transition threshold for a given perturbation (see Reddy et al.,
1998).
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at a low resolution grid for the nonlinear simulations, which was still sufficient
to capture the initial stages of transition. It was shown that transition could be
delayed successfully by placing the actuator at the same location as the perturbation,
in that case the center of the channel. Here we repeat this investigation for the
current control setup, which is more realistic due to the spatial separation of the
perturbation and actuator.

A velocity signal at the location of the body force actuator from Section 5.2
is plotted in Fig. 5.20 for three different positions of the actuator, x = 2π, x =
3/2π and x = 5/4π, corresponding to streamwise separation of π, π/2 and π/4
respectively. A close-up of the perturbation energy for both uncontrolled and
controlled cases is shown in the same figure, indicating that the controller only
starts affecting the energy growth once the perturbation reaches it. This delay is
imposed by the geometry of the problem. The same kind of time delay was observed
by Bagheri et al. (2009a). In Ilak & Rowley (2008a), the actuator was located at
the center of the channel, the same location as the disturbance, and was thus able
to immediately suppress the energy growth. The spatial separation in the current
setup (see Figs. 5.2 and 5.3), however, is more likely to be encountered in physical
applications. In each case, feed-forward control was used to test the actuators.
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Figure 5.20: (a) A single-point measurement of the u velocity at the point where the actuator
is centered for three different streamwise locations (uncontrolled runs), corresponding to spatial
separation in streamwise direction of: π (+), π/2 (X), π/4 (©). (b) Energy growth of the
full linearized simulation (black solid line), and energy growth of controlled runs using the three
setups. Same symbols as on left, solid lines represent linear feedback control runs, and dashed lines
represent nonlinear feed-forward controlled runs. The only nonlinear simulation that eventually
re-laminarizes is the one corresponding to spatial separation of π/4 (©, dashed line).

The time delay imposes a performance limitation on the model (Skogestad &
Postlethwaite, 2005, Chapter 5). The time delay imposes a minimum value of the
cost function in the LQR problem, i.e., the overall energy of the controlled flow can
never be zero, no matter how low the value of the control penalty R is, while in the
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absence of such a limitation an arbitrarily ‘cheap’ controller (i.e., no penalty on the
controller, meaning that infinite control inputs are allowable) would immediately
kill the energy growth. We next explore the effect of this performance limitation on
delaying transition in the nonlinear simulations.

A mechanism of transition in localized perturbations in channel and boundary
layer flows was described as ‘β-cascade’ by Henningson et al. (1993), due to the
rapid introduction of spanwise wavenumbers (corresponding to β in the Fourier
expansion u = u(y) exp(i(αx + βz))). Since the perturbations that exhibit most
linear energy growth are streamwise-constant (see, for example, Butler & Farrell,
1992; Schmid & Henningson, 2001), in a localized perturbation with components at
many wavenumbers, it can be expected that over time streamwise-constant (α = 0)
components will dominate, and thus the introduction of new wavenumbers will be
primarily at low streamwise wavenumber α and higher β.

Fig. 5.21 shows the 2-D Fourier transform of the v velocity at y = −0.60
(transformed both in x and z) at t = 5.4, and at a later time, t = 12, for linear and
nonlinear uncontrolled evolution of the perturbation, as well as linear and nonlinear
controlled cases. This figure demonstrates that the linear controller does not act
early enough to affect the development of the β-cascade.

Figure 5.22 shows a time history of the 2-D Fourier transform of the v velocity for
the case where the separation in the streamwise direction between the perturbation
and the actuator was π/4. This simulation (red lines in Fig. 5.20) was found to
relaminarize, reaching peak energy growth of 6.46 at t = 94. As seen in Fig. 5.22,
there is still a β-cascade mechanism, although the initial action of the controller
reduces the magnitudes at the high spanwise wavenumbers to low magnitudes.
Due to the action of the controllers, the amplitudes of the newly arising spanwise
components are low and the overall energy growth of the perturbation is small
enough for it to re-laminarize.

5.5 Summary

In this chapter, ERA was used to compute balanced reduced-order models of a
system with two inputs and two outputs. Optimal LQG compensators were designed
for the models, and tested in both linear and nonlinear DNS runs. The Reynolds
number and the box size in both linearized and nonlinear DNS were the same as in
the benchmark work of Kim et al. (1987), and the resolution in the nonlinear case
was slightly higher than in that work. ERA was used, since balanced models are
obtained much faster than computing BPOD.

It was found in Section 5.2 that, using localized body force actuation, a com-
pensator designed to minimize a signal of the streamwise velocity u work as well as
compensator designed to minimize the total perturbation energy, although at the
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Figure 5.21: Spatial Fourier transform for the x, z-plane at y = −0.60 at t = 5.4 (a-d) and t = 12
(e-h). From left to right: linear evolution (a,e), nonlinear evolution (b,f), linear evolution with
compensator on (c,g) and nonlinear evolution with compensator on (d,h). While it appears that
there are no high spanwise wavenumbers introduced in the nonlinear controlled simulation at
t = 5.4 (d) when the controller starts to act (recall Fig. 5.20), a β-cascade is still apparent later
at t = 12 (h), and the linear controller thus fails to prevent transition. The ratio E0/Elam for the
nonlinear simulations is 7.35× 10−5.

expense of some control effort. In 5.3, using wall blowing/suction as actuation,
the same kind of compensator introduced a significant energy overshoot in the
total perturbation energy. The overshoot was not present when the compensator
with wall blowing/suction is designed to minimize the total perturbation energy.
It was also found that, due to the time delay introduced in the system by the
spatial separation of the perturbation, the measurement and actuator imposes
performance limitations on the compensator, and using more aggressive controllers
(corresponding to a smaller weight R in the LQR problem) does not improve the
performance.
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Figure 5.22: A time evolution of the spatial Fourier transform for the x, z-plane at y = −0.60,
plotted at t = 0.8 (a), t = 4 (b), t = 12 (c), t = 120 (d). The ratio E0/Elam is 7.35× 10−5.

It was found that transition in nonlinear simulations for an initial perturbation
amplitude above the transition threshold can only be prevented by the linear con-
trollers if the actuation is placed close to the location in the initial perturbation in
the streamwise direction. While controllers with actuators that were placed at π and
π/2 spatial distance units downstream from the peturbation were not successful at
reducing transition growth, an the actuator was placed at π/4 units downstream was
found to suppress transition at a value of E0/Elam above the transition threshold.
It was observed that in all cases the β-cascade mechanism arises despite the action
of the compensator, but in the last case the compensator is able to act early enough
in suppressing spanwise wavenumbers, so that the amplitude of the introduced
wavenumbers is very small and they decay without transition.





Chapter 6

Towards nonlinear reduced-order
models

The linear models of transitional channel flow were found in the previous chapters
to be successful at capturing and controlling the linear dynamics of localized pertur-
bations. It was shown that a nonlinear mechanism that governs the interaction of
linearly growing perturbations at different spatial wavenumber pairs, known as the
β-cascade (Henningson et al., 1993), is not captured by the linear models, which do
not include interaction among wavenumber pairs. It is therefore desirable to obtain
nonlinear reduced-order models that may capture this mechanism.

The empirical method of Lall et al. (2002), described in Chapter 2, which in
this thesis we refer to as nonlinear balanced truncation, is not practical for very
large systems, since the number of simulations required to compute the empirical
observability Gramian is too large. Therefore, the Complex Ginzburg-Landau
(CGL) equation, a 1-D complex PDE, is used as a model problem. This equation
has been widely studied recently, both in as a model problem for flows such as
flow past a cylinder (Chomaz, 2005), and in the context of control design (Lauga
& Bewley, 2004; Bagheri et al., 2009c). In the latter work balanced truncation
models for the linear part of the equation were found to perform well when used for
feedback control, motivating the present extension of the investigation to nonlinear
models.

Nonlinear models are also computed using balancing and adjoint modes computed
using standard balanced truncation of the linear part of the equation. This approach
avoids the computational expense and difficulty of nonlinear balanced truncation.
It was shown in the previous chapters that linear balanced truncation and BPOD
models capture well the linear dynamics of perturbations. Thus, we may expect
that, if the form of the nonlinear terms is known exactly, which is the case for the
CGL equation (and also the Navier-Stokes equations), nonlinear models formed by
projection onto these modes may also be able to capture the nonlinear dynamics.
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We show that this is indeed the case, and that the results warrant an investigation
of nonlinear models of transitional channel flow.

The work presented in this chapter was started during a visit to the Mechan-
ics Department at the Royal Institute of Technology, Stockholm in September–
December, 2007, in close collaboration with Shervin Bagheri, and under the guid-
ance of Prof. Dan Henningson, Docent Luca Brandt and Prof. Clarence Rowley.

6.1 The Complex Ginzburg-Landau equation

We begin by briefly introducing the CGL equation. Details can be found in Chomaz
(2005); Cossu & Chomaz (1997); Bagheri et al. (2009c). The CGL equation is a 1-D
PDE of convection-diffusion type, with an extra term representing linear exponential
disturbances, defined on the infinite domain x ∈ {−∞,∞}, and it is given by:

∂q

∂t
= Aq + f(q) (6.1)

where the linear part is given by:

Aq = (−ν ∂
∂x

+ γ
∂2

∂x2
+ µ)q. (6.2)

Since the spatial domain is infinite, there are no boundary conditions, but the
complex solution q(x, t) is required to remain finite as x → ±∞. The complex
convective velocity is defined as ν = U + 2icu, γ = 1 + icd is a diffusion parameter,
and the parameter µ is defined as:

µ(x) = (µ0 − c2
u) + µ2

x2

2
. (6.3)

The spatially varying parameter µ(x) models the presence of exponential distur-
bances, and in this form defines a region:

−
√
−2(µ0 − c2

u)/µ2 < x <
√
−2(µ0 − c2

u)/µ2,

in which disturbances are amplified. The upstream and downstream ends of the
unstable region are called branch I and branch II, respectively. Details on reduced-
order modeling and control of the linear part of the CGL equation are given in
Bagheri et al. (2009c). The nonlinear term f(q) is given by:

f(q) = −a‖q‖2q, (6.4)

where a is a real parameter. This nonlinear term corresponds to the normal form for
a Hopf bifurcation, and also appears in Landau amplitude equations. It determines
the stability of the solutions that branch from the trivial solution as the bifurcation
parameter µ0 varies, as derived by Chomaz (2005). For a > 0, the solution of
the CGL equation saturates to a limit cycle in the cases where the linear part of
the problem is unstable. This represents a 1-D model of a cylinder wake. An
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Figure 6.1: The disturbance (B) and measurement (C) for the 1-D domain of the CGL equation.

important feature of this nonlinear term is that, for real a, it does not introduce
new frequencies, which is easily shown. Rather, it behaves as a nonlinear damping
mechanism, the damping being proportional to the norm ‖q‖2 at each point in space.
Therefore, when the system is forced at a given frequency, the steady-state response
will have exactly the same frequency if the linear part is stable.

Introducing actuation and measurement, we can write the CGL equation in a
state-space form:

q̇ = Aq + f(q) +Bu

y = Cq
(6.5)

We assume a linear disturbance term, described by B, which would correspond
to B1 in the notation of the previous chapters. We do not consider actuation,
which would be represented by a B2 term. The output is related to the state by
a linear measurement matrix C. The system is therefore single-input single-output
(SISO). The setup of the control problem is shown in Figure 6.1. The disturbance is
Gaussian and is located at branch I, since this is the beginning of the region receptive
to disturbances. We note that the maximum of the absolute value of an optimal
(‘worst-case’) disturbance is located near branch I (Bagheri et al., 2009c). The
measurement is also a Gaussian function in x with the same parameters located
at branch II, as this is the location where the perturbation grows largest before
starting to decay in space in the convectively unstable case. The exact form of the
function used for the B and C matrices is:

g(x) = e−(x−x0)2/σ2

, (6.6)

with x0 being the location of branches I and II for B and C respectively, and with
σ = 1.6. The first step in Galerkin projection is the expansion of the field q onto a
set of modes as q = Φz. Then, after taking the inner product of the equations with
the inverse transformation Ψ, the CGL equation is projected onto a basis of modes
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as follows:
ż = ΨTAΦz − a(ΨT |Φz|2(Φz)

)
+ ΨTBu

y = CΦz,
(6.7)

where we have used Eq. 6.4 to expand the nonlinear term in the basis Φ. From
the above expression it may be expected that any basis that captures the linear
dynamics and the actuation correctly (assuming zero initial condition on the state)
will reproduce the dynamics of the state successfully, since the form of the nonlinear
term is known exactly. If, in addition, the projection basis captures correctly the
output C, the output of the reduced-order model will match the output of the full
system. This means that modes from linear balanced truncation, which typically
capture well the linear dynamics and actuation (see Chapter 4), are expected to
provide a suitable basis for Galerkin projection of the nonlinear CGL equation.

6.2 Reduced-order models of the CGL equation

Reduced-order models of the CGL equation were computed using linear balanced
truncation and the method of Lall et al. (2002), introduced in Chapter 2, for
three different sets of parameters. The nonlinear term is stabilizing, as described
above. If the linear part is locally convectively unstable, the nonlinear solution
also exhibits only a convective instability, with the nonnormal growth reduced
significantly compared to the linear solution due to the damping effect of the
nonlinearity. We have labeled this case as Case A, and we have investigated it for
a value of the parameter µ0 only slightly below the critical value of µcr, specifically
at 95% of its value. We also investigate two cases with µ0 > µcr, labeled B and
C, with µ0 at 105% and 110% of the critical value respectively. In all simulations,
U = 2.0, cu = 0.3, cd = −1.0, µ2 = −0.08, µcritical = 1.132 and a = 0.1.

The CGL equation was discretized pseudospectrally using Hermite polynomials,
and the Crank-Nicolson scheme was used for time advancement (for details, see
Bagheri et al., 2009c). All simulations in this paper have been performed with
N = 100, i.e. the full system has 100 complex states, corresponding to 200 degrees
of freedom. Two sets of ten amplitudes cm (see Chapter 2) each were chosen for
the initial conditions in Case A: a set of low amplitudes between 0.01 and 0.3 on
a logarithmic scale, and a set of higher amplitudes between 0.3 and 3.0, also on
a logarithmic scale. For Cases B and C, five amplitudes were used in each set of
initial conditions. All the cases investigated are summarized in Table 6.1. For case
C, narrow Gaussians were used as initial conditions for the impulse responses of the
basis vectors of the state space for the empirical observability Gramian in nonlinear
balanced truncation. This was necessary, since it was found that numerical artifacts
due to the discontinuity in setting just one point to 1 and all other points to zero are
amplified in the unstable region, leading to unphysical limit cycle oscillations even
for the case where the initial condition is downstream from the unstable region.
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Table 6.1: Summary of the different cases for model reduction of the CGL equation.

case u amplitudes µ0/µcr stability of linear part
A1 {0.01, ..., 0.3} 0.95 stable
A2 {0.3, ..., 3.0} 0.95
B1 {0.01, ..., 0.3} 1.05
B2 {0.3, ..., 3.0} 1.05 unstable
C1 {0.01, ..., 0.3} 1.10
C2 {0.3, ..., 3.0} 1.10

Since the system has a single input, the set of rotation matrices T (recall the
definitions from Section 2.3.5) consists only of ±1, and the set E consists of just
e = 1, i.e. both sets consist of scalars instead of matrices. The number of simulations
for the empirical controllability Gramian ŴC is therefore equal to twice the number
of amplitudes cm which we choose. Both positive and negative amplitudes of the
initial conditions were used, corresponding to T = I and T = −I in the Lall
et al. (2002) method. We note here that in the linearly unstable cases B and C all
simulations saturate to the limit cycle, and the amplitude of the initial condition
plays a role only in the transient behavior before the steady-state oscillation is
reached. The amplitude of the initial condition in the convectively unstable Case A
has more influence on the dynamics, since the damping due to the nonlinear term
will be stronger for higher amplitudes.

6.3 Case A

Figure 6.2 shows the Hankel singular values corresponding to the two sets of modes
for each of the initial condition amplitude sets. As expected, in Case A1, the leading
HSVs from linear balanced truncation are very close to the HSVs from the nonlinear
simulations. The first mode for linear balanced truncation and the method of Lall
et al. (2002) for Case A is shown in Figure 6.3. The spatial support of the nonlinear
balancing and adjoint modes is very similar to that of the linear ones. The peaks of
the adjoint modes are localized near branch I, while the peaks of the balancing modes
are localized near branch II. The overlap of the balancing and adjoint modes is not
very large, although it is sufficient in the first mode for the flow to be susceptible
to convective instabilities (see Chomaz, 2005).

Figure 6.4 shows the impulse responses of rank 5 models for the Lall et al.
(2002) method and linear balanced truncation. It is interesting to note that the
performance of the models based on the linear modes is very good for all the
simulations, but that the models based on nonlinear balanced truncation for case
A2 do not capture the output as well. We note here that at a higher rank of the
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Figure 6.2: The Hankel singular values for high (a) and low (b) amplitudes of the initial condition
for Case A (cases A1 and A2 respectively). The abbreviation LMG02 refers to results of the
empirical nonlinear balanced truncation method of Lall et al. (2002) in all figures in this chapter.
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Figure 6.3: Absolute value of first balancing mode (black) and adjoint mode (red) for linear
balanced truncation (circles) and nonlinear balanced truncation (squares) for Case A1 (a) and
Case A2 (b). The grey shading indicates the unstable region. The peaks of the nonlinear balancing
modes for the large IC amplitudes are shifted slightly upstream with respect to the linear mode.
The modes are normalized by their L2 norm.
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Figure 6.4: Impulse responses for case A, with rank 5 models and initial condition amplitude 0.1.
(a) Response of models using modes from case A1. (b) Response of models using modes from case
A2. The response of the models that use modes from linear balancing almost exactly overlaps
with the response of the full system.

reduced-order model, the model based on the method of Lall et al. (2002) also
performs well.

The unit impulse response amplitude of 0.1 used in all of the simulations in
Figure 6.4 is in the lower amplitude range, so one may expect nonlinear bal-
anced truncation for Case A2 to have inferior performance for this initial condition.
However, the models based on nonlinear balanced truncation modes from case A2
perform poorly even for high amplitudes of the initial condition (not shown). The
performance of the linear modes is superior, and the nonlinear modes computed
from the simulations with low impulse response amplitudes are more similar to the
linear modes, as shown above, which explains the difference in performance.

The good performance of linear balanced truncation and the similarity of the
linear and nonlinear modes may be explained in terms of nonlinear systems analysis.
We may think of the linear part of the CGL equation as evolving on a ‘flat’ manifold
of the linear state space tangent to the ‘curved’ manifold of the nonlinear state space.
For this linearly stable case, the further the initial condition is from the equilibrium,
the faster it gets attracted to the equilibrium by the cubic nonlinearlity. Hence
most of the dynamics of the impulse responses ‘happens’ on the ‘flat’ manifold near
the equilibrium, and that is what the snapshots in nonlinear balanced truncation
capture. It is therefore not surprising that the linear modes capture well the
dynamics of the nonlinear system and that the modes obtained using the method
of Lall et al. (2002) are very similar to the modes obtained from linear balanced
truncation. We may conclude that modeling this case (and similar more complex
flows without saturation) using linear balanced truncation is sufficient and there is
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(a) (b)

Figure 6.5: The real part of the response of the nonlinear CGL equation for different values of the
parameter µ0: (a) Case B: µ0 = 1.188 (105% µc), (b) Case C: µ0 = 1.245 (110% µc).

(a) (b) (c)

Figure 6.6: Absolute value of the entries of the empirical observability Gramians from nonlinear
balanced truncation for cases A2 (a), B2 (b) and C2 (c). See definitions in Section 2.3.5. Red
indicates large values.

no need to apply the more complicated nonlinear method. This is unlikely to be
the case for more complex systems.

6.4 Cases B and C

For cases B and C, the equilibrium at q = 0 is unstable, and methods for balanced
truncation of unstable systems need to be used. Since the system here is small, we
have used the method of Zhou et al. (1999). We note that for large systems where
the exact Gramians are not available, this method is not tractable, an extension of
the method for large systems by Ahuja & Rowley (2008) may be used.

The empirical observability Gramians for the are shown in Fig. 6.6. As the value
of the critical parameter is increased, the regions of the domain that affect the



6.4. CASES B AND C 105

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

Mode 1 (abs), case B1

x

q

 

 

unst. reg.
linear
LMG02

(a)

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

Mode 1 (abs), case B2

x

q

 

 

unst. reg.
linear
LMG02

(b)

Figure 6.7: Absolute value of first balancing mode (black) and adjoint mode (red) for linear BT
(circles), nonlinear balanced truncation (squares) and approximate Lall method (x) for Case B,
for small (a) and large (b) amplitudes of the initial condition. The grey shading indicates the
unstable region. The modes are normalized by their L2 norm.

output strongly (in case B and C this implies saturation of the limit cycle) become
larger, which can also be seen from the plots of the leading modes in the cases.
The empirical controllability Gramians (not shown) look very similar in all three
cases. Physically, this corresponds to the higher value of the critical parameter
which makes the upstream part of the domain more receptive to perturbations, and
thus makes the highly observable part of the domain larger. On the other hand, the
controllability in the three cases, which is a measurement of how well states respond
to inputs, does not change considerably.

In the case of saturated oscillations (Fig. 6.5), the usual infinite-time Gramians
cannot be computed as in Case A and therefore finite-time Gramians need to be
taken into account. In this case, the duration of the simulation is of key importance,
since the initial transient behavior becomes less important as the simulations become
longer. In this work the Gramians were computed using relatively short simulations
where some of the transient can be expected to play a role, although for the set of
parameters investigated, the transient is very fast. More precise determination of
appropriate selection of snapshots that ensures capturing the transient is a subject
of future work.

The leading mode for case B is shown in Fig. 6.7. While the leading mode from
nonlinear balanced truncation has similar support as the linear mode, and looks very
similar to the nonlinear mode in case A, the adjoint modes from nonlinear balanced
truncation have much wider spatial support than both the linear and nonlinear
adjoint modes shown in Fig. 6.3. This corresponds to the plot of the empirical
observability Gramian shown in Fig. 6.6b. It is interesting to note that for case B2,
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Figure 6.8: Impulse responses for case B2, with rank 5 models. Responses for initial condition
amplitude 0.1, which was not included in the sampling for the nonlinear balanced truncation, are
shown in (a), and responses for initial condition amplitude 1.0, which was included in the sampling,
are shown in (b). The response of the models that use modes from linear balancing almost exactly
overlaps with the response of the full system. At higher model rank, both methods perform really
well.

the adjoint mode has much wider spatial support than in case B1, which can be
explained by the easier excitation of the unstable region at higher initial condition
amplitudes.

As shown by the results in Fig. 6.8, the linear modes capture the dynamics of the
full system very well, even better than the empirical nonlinear modes, for a value
of the parameter µ0 close to the critical value. This may be expected in the light
of the results for Case A. At higher model ranks (not shown), nonlinear balanced
truncation models also capture well the output of the original system.

We have also investigated the forcing of the CGL equation at a particular fre-
quency. The nonlinear modes were obtained by forcing the equation at the same
frequency, but different amplitudes. Figure 6.9 shows the responses from the result-
ing models based on amplitudes from case B1 at two amplitudes, a lower one where
both the driving frequency and the frequency of the limit cycle can be seen in the
response, and a higher one where the driving frequency dominates. Surprisingly,
the models based on linear modes are able to capture the behavior well at a low
rank, while nonlinear balanced truncation models can perform poorly. At higher
ranks of the models (not shown), both capture the output really well.

Figure 6.10 shows the first mode for cases C1 and C2. We note that the nonlinear
balancing modes from the two subcases look quite similar, as opposed to cases A
and B, where the modes computed using impulse responses at different amplitudes
are different. This can be expected, since as the value of the parameter µ0 increases,
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Figure 6.9: Responses for case B1, models with rank 6, forced at frequency ω = 1.35, with
amplitude of forcing 0.19 (a) and amplitude of forcing 0.53 (b). The response of the models that
use modes from linear balancing almost overlaps with the response of the full system. At higher
ranks of the models, both linear and nonlinear balanced truncation models capture the response
perfectly.
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Figure 6.10: Absolute value of first balancing mode (black) and adjoint mode (red) for linear BT
(circles) and nonlinear balanced truncation (squares) for Case C. The grey shading indicates the
unstable region. Case C1 is shown in (a), and case C2 is shown in (b). The modes are normalized
by their L2 norm. Note the change in scale of the x-axis compared to Figs. 6.3 and 6.7.
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the initial condition amplitude has less influence on the impulse response, as the
saturation happens immediately. Similar to cases A and B, the performance of the
models based on linear modes was found to be superior for both impulse responses
and forcing at a specific frequency (results not shown).

It was also found that the models, all of which were obtained for the amplitude
of the nonlinear term a = 0.1, also perform well if the amplitude in the model
is changed to a different value (results not shown), again with the linear modes
performing better at low rank than then nonlinear balanced truncation.

6.5 Summary

In this chapter, we applied the method of Lall et al. (2002) for empirical nonlinear
balanced truncation to the Complex Ginzburg-Landau equation and compared the
performance of the resulting nonlinear reduced-order models with the performance
of nonlinear models obtained from using linear balanced truncation. We found
that nonlinear models obtained via Galerkin projection of the CGL equation onto a
basis of balancing modes computed for the linearized system using standard linear
balanced truncation can perform very well, while using the proposed method for
nonlinear balancing often results in models that do not capture the key dynamics.
These results indicate that linear balanced truncation, which involves considerable
fewer computational challenges, can potentially be used successfully in modeling of
some nonlinear systems.

Further efforts in this direction would include the investigation of nonlinear
models using linear balanced truncation or BPOD modes for larger problems such
as transitional channel flow, or a cylinder in crossflow, which has already been
investigated using POD by Noack et al. (2003). In these cases, the behavior
of the nonlinear system can be much more complex than the simple nonlinear
saturation observed and the method of Lall et al. (2002) or a similar method
for computing nonlinear reduced-order models may be required to obtain good
performance, despite the necessary computational expense.



Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis presented the application of balanced truncation and Balanced Proper
Orthogonal Decomposition (BPOD) to reduced-order modeling of linearized channel
flow, and the use of the resulting models for feedback control. It was demonstrated
that BPOD models capture the dynamics of linearized channel flow very well, and
in particular much better than Proper Orthogonal Decomposition (POD). Further-
more, it was shown that controllers designed using BPOD models are successful
in significantly reducing the energy growth of localized perturbations in linearized
DNS simulations. However, the same controllers fail to capture a key nonlinear
mechanism in nonlinear DNS simulations, and are effective only in a limited set
of cases. While more detailed studies of actuator/measurement placement and
model performance limitations are likely to improve the effectiveness of the linear
controllers, it is also desirable to investigate nonlinear reduced-order models that
would fully capture the transition mechanism. To that end, an empirical method
for balanced truncation of nonlinear systems proposed by Lall et al. (2002) was
evaluated by computing reduced-order models of the Complex Ginzburg-Landau
equation, a 1-D model of fluid flows, as a first step towards similar investigations of
channel flow.

The key feature of BPOD — capturing of effects of actuation and measurement
in reduced-order models, along with a priori error bounds and its tractability for
large systems, makes it the method of choice for model reduction in this work.
Some of the technical details of the application of balanced truncation to channel
flow, including the derivation of the appropriate adjoint equations, were presented
in Chapters 2 and 3.

The thorough investigation of the capturing of the uncontrolled dynamics of
linearized channel flow in Chapter 4 demonstrated first on a 1-D system that BPOD
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is an excellent approximation for exact balanced truncation, thus reinforcing the
findings of Rowley (2005). It was then shown in Chapter 4 that some important
features from the control designer’s point of view for the 3-D system, such as impulse
response, frequency response, capturing of actuation and performance at off-design
Reynolds number, were captured very well by the balanced reduced-order models.

It was also found that, while the leading POD modes capture very well the
energy of the perturbation, the corresponding models do not capture the dynam-
ics well: in particular, POD models fail to reproduce the energy growth of the
perturbation, which was demonstrated by the particularly striking example for a
POD model including low-energetic modes in Section 4.3.1. It was shown that the
energy growth of the perturbation is captured only if modes with very low energy
content are included in the POD models, while BPOD models that include only the
leading balancing modes performed very well. The dynamics of this model, which
includes modes (1-3,10,17), was further investigated in Section 4.4 using a graph
decomposition method proposed by Mezić (2004).

Linear Quadratic Gaussian (LQG) compensators were designed in Chapter 5
using the Eigensystem Realization Algorithm (ERA), which is equivalent to BPOD
and yields the same models at a small fraction of the computational cost, as shown
by Ma et al. (2009a). These compensators were then tested, first on linear, and
then on nonlinear runs. It was found that a compensator designed to reduce the
streamwise velocity of the perturbation at a single point in the flow reduced the
perturbation energy growth as much as a compensator designed to reduce the full
perturbation energy. These results are in line with the findings of Jovanović &
Bamieh (2005) about the correlation between streamwise velocity component of
the perturbation and total perturbation energy. The LQG compensators include
reduced-order estimators based on the ERA models, which were found to perform
very well based on just two point measurements of streamwise or spanwise pertur-
bation velocity.

A wall blowing/suction actuator, typically thought to be more practicable than
body forces inside the flow, was found to have more severe performance limitations
in comparison to a localized body force actuator. This limitation may have been
expected, since actuation only at the wall has a more limited effect on the flow inside
the channel than body force actuation, and further investigation in order to improve
the performance of wall blowing/suction actuators is warranted. However, recent
experimental work on introduction of body forces through plasma actuators (Corke
et al., 2009) indicates the potential of such devices in practical applications, and
also warrants further studies using body force actuation.

The spatial separation of the perturbation and the actuator in the feedback
control setup introduces an effective time delay in the system. In Ilak & Rowley
(2008a), it was shown that the placing the actuator at the exact location of the
perturbation results in successful suppression of transition for the nonlinear DNS,
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since the controller is able to act immediately. A more realistic setup with separation
in the streamwise directon between the actuator and the initial perturbation was
used in Chapter 5, as we typically do not know where in the flow a perturbation will
arise. As demonstrated by the study of perturbation energy growth and transition
suppression for different spatial separation between the disturbance and the actua-
tor, the β-cascade mechanism is not captured by the linear models, and thus only
controllers that reduce the energy in low spanwise wavenumbers quickly are able to
completely prevent transition. The results presented in Chapters 4 and 5 are the
first BPOD computations for 3-D linearized flow, and for a large-scale system.

Since a key mechanism for coupling of linearly growing perturbation components
at different spatial wavenumbers in transition is inherently nonlinear, and cannot be
captured by linear models, resulting in linear controllers with limited effectiveness,
nonlinear reduced-order models were also studied. A proposed method for empirical
nonlinear balanced truncation was evaluated on a 1-D model vortex shedding, the
Complex Ginzburg-Landau equation, in Chapter 6. It was found that reduced-
order models computed using the method of Lall et al. (2002) do not capture well
the dynamics of the CGL, and often perform worse than nonlinear models computed
using modes from linear balanced truncation. Since linear balanced truncation is
much simpler to compute than nonlinear balanced truncation, this finding indicates
that nonlinear models of more complicated flows, such as channel flow, may be
obtained at a relatively low computational expense.

7.2 Future work

The study performed here may be considered ‘proof-of-concept,’ as it uses a canon-
ical test case, but it opens the door to many opportunities for future work, some of
which we outline below.

Further work on channel flow. While perhaps the ultimate goal in flow
control research is to extend the methods that are proven effective to flows encoun-
tered in practical applications, channel flow still remains an attractive problem for
further development of flow control strategies. The simple geometry and relatively
low cost of simulation, compared to, for example, the boundary layer, or 3-D flows
in more complicated geometries, makes channel flow attractive for initial studies of
new flow control methods. Besides linearized channel flow in the case of transition
mechanisms, the minimal flow unit (Jiménez & Moin, 1991; Podvin & Lumley,
1998) has been shown to be a good test case for turbulent flows, as key dynamics is
exhibited in a fairly low spatial domain, and advanced control strategies, nonlinear
models and controllers, and other future approaches may be tested on this flow at
relatively low computational expense.
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Extension to other flows. It is of interest to extend the techniques demon-
strated here to other flows, in particular ones with more practical relevance, such
as the flat plate boundary layer. Efforts for this flow have already been under-
taken (Bagheri et al., 2009b) by applying the BPOD method. Control of flow past
a flat plate in 2-D using BPOD was investigated by Ahuja & Rowley (2009), and
potential extensions of this work for airfoils, first in 2-D and then in 3-D would
be useful in bringing the flow control approach presented here closer to practical
applications in aircraft. The use of ERA allows for computation of models with a
larger number of inputs and outputs easily and quickly, and allows for exploration
of different designs more efficiently for truly high-dimensional problems.

Balanced truncation for nonlinear systems. Both theoretical work and
work on implementation of existing proposed methods is needed in order to obtain
models that describe well the nonlinear dynamics, and in particular transition. The
attractiveness of the snapshot-based method of Lall et al. (2002) makes it a potential
candidate for large systems. The work presented in this thesis has identified some
difficulties with that method, but further investigation, and in particular extensions
for very large systems would be desirable.

Actuator and sensor placement. The placement of sensors and actuators is
still somewhat ad-hoc, and relies on insights about flow dynamics. For example,
in Chapter 5 POD modes were used to find a suitable location for measurements.
Using ERA, models are computed easily once impulse response snapshots are avail-
able, and techniques using ‘ERA-in-the-loop’ as part of an optimization iteration
procedure may potentially be designed in order to obtain truly optimal models.

Performance limitations and robustness. The performance limitations of
the controllers based on the reduced-order models were demonstrated in Chapter 5.
The detailed treatment of the subject in Skogestad & Postlethwaite (2005) and in
works such as Qiu & Davison (1993) should be used as a starting point for predicting
and evaluating performance limitations of models. Based on this work, techniques
that guide actuator and sensor placement for control design may be developed. In
existing systems where the placement is limited by other factors, these techniques
may help predict the system performance and make the control designer aware of
the limitations.

Another important property of both models and compensators is their robustness.
In this thesis we have considered only localized perturbations of known structure
introduced at a particular location and a particular point in time, i.e., as initial
conditions to the problem. The performance of reduced-order compensators subject
to additional disturbances, such as free stream turbulence in boundary layers, or
surface roughness on the walls, was not investigated. This would be an important
further step for the practical application of controllers designed using the models
developed in this thesis. Balanced models were shown to be promising in this
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respect, as demonstrated by the performance of the models in Chapter 4 at off-
design Reynolds number.

Edge of chaos. Recent work on computation of edge states in turbulent
flows (see, for example, Schneider et al., 2008) has shown that such states exist in
shear flows. Low-dimensional descriptions of such states can be given by reduced-
order models(Kim & Moehlis, 2008) . The edge of chaos may be of interest to the
control designer, since it may indicate regions in the state space where controllers
will be successful, thus guiding control design.





Appendix A

BPOD using a continuous adjoint

When computing the exact balanced truncation, the balancing transformation is
found from the eigenvalue problem WcWoT = TΣ2 where Wc and Wo are the
controllability and observability Gramians with A+ = AT . We show here that,
although the product WcWo does not depend on the inner product on the state
space used to define the adjoint system, the appropriate weightM must be included
in the computations via the method of snapshots.

We can represent the weighted inner product of two vectors q1 and q2 as:

〈q1, q2〉M =

∫
Ω

q∗1Mq2 dΩ, (A.1)

where the domain of integration Ω is the Hilbert space itself. The star denotes the
complex conjugate transpose. The inner product weight M is part of the definition
of the Hilbert space itself. We define the so-called continuous adjoint of an operator
A with respect to this inner product as:

〈Aq1, q2〉M =
〈
q1, A

+q2

〉
M
. (A.2)

We use the symbol + in order to distinguish the adjoint from the standard matrix
transpose AT . From this definition it is easily shown that the adjoint system (2.14)
is derived from the system (2.10) as follows:

〈Ax, z〉M =
〈
x,A+z

〉
M

⇒ A+ = M−1ATM

〈Bu, x〉M =
〈
u,B+x

〉 ⇒ B+ = BTM

〈Cx, y〉 =
〈
x,C+y

〉
M

⇒ C+ = M−1CT .

(A.3)
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In the above, we have assumed that the input and output spaces use the standard
(unweighted) inner product. Next, we obtain for the Gramians:

Gc =

∫ ∞
0

eAtBB+eA
+tdt

=

∫ ∞
0

eAtBBTMM−1eA
T tMdt

Go =

∫ ∞
0

eA
+tC+CeAtdt

=

∫ ∞
0

M−1eA
T tMM−1CTCeAtdt,

(A.4)

where Gc and Go denote the Gramians obtained with the weighted inner product.
Since the matrices M and M−1 are constant, we can take them out of the integrals,
obtaining:

GcGo = WcWo. (A.5)

Thus, we have shown that balanced truncation does not depend on the choice
of the inner product used to derive the adjoint system, and this allows us to use
a convenient inner product. (In numerical simulations the ‘simple’ discrete adjoint
A+ = AT may in fact be more difficult to compute than a continuous adjoint which
may retain a similar form of the equations; for instance, this is the case for linearized
channel flow).

Next, we consider the computation of balancing and adjoint modes via the
method of snapshots. From the definition of the empirical Gramians (Eq. (2.16)) it is
easily shown that Y + = Y TM (recall that the snapshots of the adjoint simulations,
which are the columns of Y , are given by z(t) = eA

+tC+). Thus, we can write the
SVD in Eq. (2.17) as:

Y TMX = UΣV T . (A.6)

If we define the inverse of the balancing transformation as ΨT = Σ−1/2UTY T we can
easily compute the adjoint modes just from the SVD and from the adjoint snapshots.
Recall that the columns of Ψ give the adjoint modes. The two sets of modes will
now be bi-orthogonal with respect to the M inner product, so that ΨTMΦ = I.

An alternative, more intuitive explanation is that, since both the direct and
the adjoint snapshots ‘live’ in the state space, the correct inner product is that
including the weight M (which is a part of the definition of the Hilbert space in
which they reside). It is therefore this weighted inner product that should be used
for forming the matrix for the SVD. Furthermore, the balancing and adjoint modes
are bi-orthogonal with respect to this weighted inner product.



Appendix B

Validation of turbulent channel DNS
code

Here we summarize the definitions of relevant Reynolds numbers and their rela-
tionship for laminar and turbulent channel flow, the non-dimensionalization used
in the simulations, the driving of the flow in simulations, as well as some useful
quantities in laminar flow that are useful when investigating the linear evolution
of perturbations. Finally, some results of converged turbulent runs using the DNS
code discussed in Chapter 3 are given.

B.1 Reynolds number definitions and relations

The Reynolds number is defined as the ratio of the inertial to viscous forces in the
flow:

Re =
ρUD

µ
, (B.1)

where ρ is the fluid density, U is a characteristic velocity and D is a characteristic
length scale. The length scale for channel flow is typically taken to be half of the
channel width, δ = 1, but different choices of velocity can be made. The Reynolds
numbers used are:

• Centerline Reynolds number, Rec, which is defined as:

Rec =
ρUcD

µ
,

where Rec is the centerline velocity of the flow.

• Frictional Reynolds number, Reτ , defined as:

Reτ =
ρuτD

µ
,
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where uτ is a frictional velocity, defined as:

uτ =

√
τw
ρ
,

with the wall shear defined as τw = µ∂u
∂y
|wall, where y is the wall-normal

direction.

It can easily be shown that the relationship between Rec and Reτ for laminar flow
is:

Reτ =
√

2Rec.

The relationship for turbulent channel flow will be discussed below.

B.2 Nondimensionalization

The non-dimensionalized momentum equations were derived in Section 3.1.1. We
note here that an alternative non-dimensionalization is often used for turbulent
flow (Kim et al., 1987), where the characteristic velocity is uτ defined above, and
the characteristic length scale is still the half-thickness of the channel δ:

u =
ũ

uτ
, x =

x̃

δ
, t = t̃

uτ
δ
.

The relevant Reynolds number in Kim et al. (1987) is thus Reτ , and the non-
dimensionalized equations are:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Reτ

∂2ui
∂xjxj

. (B.2)

Here, however, we will use the non-dimensionalization by Uc and δ. We can define
the velocity field as:

u(t) = ū+ u′(t), (B.3)

where ū is the mean velocity. In this context, the averaging is over both x, z and
time, i.e., it is an ensemble average, as discussed by Pope (2000), and u′(t) is the
fluctuation part. The overbar over any other quantity also indicates this same
ensemble average.

B.3 Driving the flow

B.3.1 Constant pressure gradient

One way to drive the flow is to use a constant pressure gradient in the streamwise
direction. At the wall, the mean wall shear stress is exactly balanced by the pressure
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gradient in the streamwise direction, so keeping a constant pressure gradient imposes
a constant value of Reτ .

In order to show the relation between the pressure gradient and the wall shear
stress, we start with the Reynolds-averaged momentum equation in the x-direction:

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
−
(
∂u′2

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

)
+

1

Rec
∇2u. (B.4)

This is the equation for the mean flow, but involves time averages of fluctuations.
For channel flow, all terms on the LHS are zero, since there is no mean spanwise
or wall-normal velocity, and no streamwise dependence of u. Since there is also no
variation in x and z of the fluctuation terms, the equation reduces to:

0 = −∂p
∂x
− ∂u′v′

∂y
+

1

Rec
∇2u. (B.5)

It is shown by (Pope, 2000) that the shear stress can be written as:

τ(y) =
1

Rec

du

dy
− u′v′, (B.6)

so that Eq. (B.5) can be written as:
dτ

dy
=
dp

dx
. (B.7)

It now becomes apparent that the shear stress in the flow is exactly balanced by
the pressure gradient, and fixing one of the two quantities will determine the other
one. Also, both sides have to be constant since τ depends only on y and p depends
only on x. It is also shown by Pope that the pressure gradient is uniform across the
flow (including, of course, the wall). It can also be shown that the shear stress is
given by:

τ(y) = τw(1− y), (B.8)

where τw is the shear stress at the lower wall (y = −1). Also, at the wall, using our
non-dimensionalization,

− τw =
dp

dx
. (B.9)

Alternatively, this relationship may be derived from a momentum balance in the
streamwise direction. Recalling the definition of uτ , and remembering that as part
of the non-dimensionalization we divided the Navier-Stokes equations by ρ, we now
have:

uτ =
√
τw. (B.10)

Finally, it follows from the definitions ofRec andReτ that, for flow forced at constant
pressure gradient:

Reτ = Rec

√
−dp
dx
, (B.11)

which for laminar flow can be shown to be exactly Reτ =
√

2Rec.
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B.3.2 Constant mass flux

A constant mass flux (corresponding to a constant bulk velocity) can also be used to
drive the flow. This type of simulation converges to a statistically steady state much
faster than a simulation with constant pressure gradient, as will be shown below.
In this case, one needs to solve for the pressure gradient that would be required to
impose the desired mass flux at each time step. Thus, the relation (B.11) is not
useful here due to the varying pressure gradient. For this case, there is a correlation
given in (Chevalier et al., 2007):

Reτ ≈ 0.116Re0.88
c . (B.12)

This is a modified form of a correlation given in Pope (2000), which in turn is based
on the correlation of Dean (1978). Here Rec is the centerline Reynolds number of the
laminar flow with the desired mass flux. The true (turbulent) centerline Reynolds
number is, like Reτ , also a result of the simulation, and typically it is about 0.77 of
Rec (Philipp Schlatter, private communication).

Since the streamwise mass flux ṁ is a linear function of the pressure gradient,
the pressure gradient is updated in the DNS at each time step as follows.

1. Calculate the mass flux ṁ1 with the current pressure gradient (dp/dx)1.

2. Calculate the mass flux ṁ2 with twice the current pressure gradient. The
factor of two is arbitrarily chosen, since the mass flux is a linear function of
the pressure gradient.

3. Calculate the pressure gradient for the next step necessary to enforce the
desired (’target’) mass flux ṁT from

dp

dx
=

(
dp

dx

)
1

(
1 +

ṁT − ṁ1

ṁ2 − ṁ1

)
.

B.3.3 Summary

It should be kept in mind that, for constant-pressure gradient flow, there is one
‘free parameter’ for a channel flow simulation out of the three values: Rec, Reτ
and the pressure gradient. That means that choosing a combination of any two
determines the third one from Eq. (B.11). Typically one chooses Reτ and Rec. On
the other hand, for constant mass flux, the two parameters are the mass flux and
Reτ . In this case, in a converged simulation Reτ is a statistical average, which can
be computed from simulation data, or alternatively from the correlation (B.12),
which should be used to verify simulation results. Rec is the laminar value which
directly corresponds to the chosen mass flux, but the turbulent centerline Reynolds
number can also be computed from a converged simulation, and is usually 0.77 of
Rec.
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B.4 Laminar flow

It is easily shown using (B.4) that the laminar velocity profile is:

U(y) = −dp
dx

Rec
2

(1− y2). (B.13)

Now we can define some relevant quantities that are useful for simulations:

• The centerline velocity Uc. When constant mass flux is imposed, the value is
typically chosen so that Uc = 1 for laminar flow with that mass flux (Uc will
fluctuate in a turbulent simulations), which corresponds to setting the initial
pressure gradient to − dp

dx
= 2

Rec
(this is just a guess, the pressure gradient will

adjust in order to satisfy the mass flux requirement).

• The half-width δ is the half of the distance between the channel walls. This is
typically set to δ = 1. Note that this is a non-dimensional δ (abuse of notation
here since δ was used above).

• The mass flux for the non-dimensionalized equations is defined as:

ṁ =
1

2LxLz

∫ Lx

0

∫ Lz

0

∫ 1

−1

U(x, y, z) dx dy dz =
1

2

∣∣∣∣y − y3

3

∣∣∣∣1
−1

= 4/3. (B.14)

So, for laminar flow with Uc = 1 and δ = 1 the mass flux is 1.333333333.

• The laminar flow energy is defined as the kinetic energy of the flow per unit
volume:

EK =
1

2LxLz

∫ Lx

0

∫ Lz

0

∫ 1

−1

U2(x, y, z) dx dy dz =
1

2

∣∣∣∣y − 2y3

3
+
y5

5

∣∣∣∣1
−1

= 4/15.

(B.15)

So, for laminar flow with Uc = 1 and δ = 1 the kinetic energy per unit volume
is 0.266666667.

• The bulk velocity Ubulk would be the velocity for a uniform profile (U = const)
with the same mass flux as the laminar profile. The bulk velocity is defined
as:

Ubulk =
1

2δ

∫ 1

−1

U(y) dy = 2/3. (B.16)

So, for laminar flow with Uc = 1 and δ = 1, Ubulk is 0.666666667. In turbulent
channel simulations, setting Ubulk = 2/3 is equivalent to setting the mass flux
to be 4/3.

• Another quantity that is often used is the bulk Reynolds number :

Reb =
ρUbulkD

µ
,

which for laminar flow is easily shown to be Reb = 2/3Rec.
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B.5 Example results

We show results of two simulations, both with box size 4π×2×2π and Rec = 3300,
one ran at constant mass flux of 4/3 and the other one at fixed dp/dx corresponding
to Reτ = 180. In both cases the initial condition is the perturbation from Chapter 5
at an amplitude above its transition threshold.

B.5.1 Constant mass flux

For the constant mass flux simulation (Fig. B.1), it was found that Reτ is in excellent
agreement with the correlation (B.12), which predicts Reτ = 144.79. The averaging
is performed between t=400 and t=774.2, with a total of 1871 snapshots. The
turbulent Rec was found to be Rec,t ≈ 2584, or 0.78 of Rec, as predicted.
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Figure B.1: Log law, shear stress, perturbation energy and pressure gradient history for constant
mass flux value of 4/3 at Rec = 3300. The log law curves for the top (not shown) and bottom
walls are identical, and Reτ = 144.07 for both. The perturbation energy (lower left panel) and
pressure gradient (lower right panel) history indicates that the simulation quickly converges to a
mean energy and pressure gradient values.
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B.5.2 Constant pressure gradient

The constant pressure gradient simulation takes a considerably longer time to
converge. The value of Reτ in the example shown has leveled off at approximately
Reτ ≈ 180 after 800 time units. Plots of the log law and total and Reynolds
stresses is shown in Fig. B.2. The averaging in this figure is performed between
t = 400 and t = 800, with a total of 1000 snapshots. The pressure gradient here is
(180/3300)2 = 0.002975.
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Figure B.2: Log law, shear stress, energy and mass flux history for constant pressure gradient at
Rec = 3300. The bottom log law curve (not shown) is almost identical to the top one, and the
corresponding Reτ = 178.85 for the bottom. The perturbation energy (lower left panel) and mass
flux (lower right panel) histories show that the simulation needs a much longer time to converge.
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B.5.3 Comparison

We next compare the Reynolds stresses and velocity profiles in inner coordinates for
the two cases (see Fig. B.3). Fig. B.4 compares the root-mean-square fluctuations
for the two runs, and the one for Reτ = 180 matches Fig. 6 in Kim et al. (1987)
really well.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y

R
ey

no
ld

s 
st

re
ss

Reynolds stresses comparison

 

 

re
tau

=144

re
tau

=180

0 5 10 15 20 25 30
0

5

10

15

20
Near−wall profile comparison

y+

u+

 

 

re
tau

=144

re
tau

=180

Figure B.3: Left: comparison of Reynolds stresses for the two runs, constant mass with Reτ = 144
and constant pressure gradient with Reτ = 180. Right: comparison of velocity profiles for the two
simulations in inner coordinates.
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Figure B.4: RMS velocity fluctuations for the two cases, constant mass flux with Reτ = 144 and
constant pressure gradient with Reτ = 180. vrms appears to have higher peaks for Reτ = 180
than for Reτ = 144, which can be expected for the higher value of Reτ .



Appendix C

Validation of POD computations

Here we describe the verification of convergence of POD modes and eigenvalues for
the localized perturbation modeled in Section 4.3. Fig. C.1 shows the leading POD
eigenvalues for four different choices of snapshot number and spacing. The largest
computation was for 3000 evenly spaced snapshots over 1200 dimensionless time
units. The first few hundred POD eigenvalues are identical to the POD eigenvalues
obtained from 2000 evenly spaced snapshots (not shown), which establishes conver-
gence of the computation. Thus, the results using 3000 snapshots will be regarded
as the ‘true’ eigenvalues and modes.
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Figure C.1: Convergence of POD eigenvalues for a perturbation.

While the modes from the calculation with the highest available resolution should
be used whenever possible, if computations are to be repeated, for example for
different perturbations with very similar dynamics, or using with a different inner
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product, it may be desirable to take a smaller number of snapshots. We next study
the possibility for this type of computational savings.

a) b)

c) d)

Figure C.2: A comparison of the tenth POD mode (streamwise velocity) for the four computations.
a) 500 snapshots, b) 1000 snapshots with even spacing, c) 1000 snapshots with uneven spacing, d)
3000 snapshots.

Although the integral of the kinetic energy over time, which is equal to the
sum of the POD eigenvalues, is almost equal for all four simulations (within about
10−3 %), the eigenvalues are different. Taking five hundred snapshots turns out to
be insufficient to match the finest computation. Taking a thousand evenly spaced
snapshots results in better match of the first nine eigenvalues, but does not converge
for higher modes. These higher modes are desirable if one is to compute models
of higher rank. Savings can still be achieved by using unevenly spaced snapshots,
if the dynamics of the perturbation is known, as in this case, where there is fast
initial dynamics due to traveling structures which grow into streamwise structures.
Thus, taking smaller snapshot spacing during the initial transient and larger spacing
during the later part may be able to capture all the relevant energy structures.
Fig. C.1 shows that this is indeed the case. The ‘uneven’ spacing is 500 snapshots
with a gap of 0.2 time units, for the first 100 time units and 500 snapshots with a gap
of 2.2 time units for the period, during which the perturbation dynamics is a fairly
slow growth and decay. The slower decay of eigenvalues for the computations with
more snapshots indicates that more energetically significant modes are captured in
the basis than in the case for a small number of snapshots.

Fig. C.2 shows the streamwise velocity for the tenth mode in the same four
computations of Fig. C.1. For 500 equally spaced snapshots, the tenth mode looks
completely different from the correct one, indicating that the flow structure in
this computation are not captured in the correct order of importance according
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to kinetic energy. For 1000 evenly spaced snapshots, the mode is visually almost
indistinguishable from the ‘true’ mode, but the eigenvalue still has a different value,
as seen in Fig. C.1.
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Figure C.3: The eigenvalues for the four calculations for up to j = 120, and the corresponding
orthogonality matrices, as indicated by the arrows. The unresolved computations result in a fewer
number of ‘useful’ modes due to numerical roundoff error buildup for very small values of λj .

The orthogonality of the modes was also verified. Fig. C.3 shows the eigenvalues
for the four calculations again (plotted up to a higher j) together with the absolute
values of the entries of the corresponding matrix O for which Oij = 〈θi, θj〉 for each
computation. The POD modes should be orthogonal as long as the corresponding
eigenvalues are larger than about λ1/1015, beyond which numerical roundoff errors
start to dominate the computations. The orthogonality ‘breaks’ first for the case
with 500 snapshots, since fewer structures are captured in the POD modes and
the eigenvalues decay faster. We see that for 1000 uneven snapshots, the first 120
modes are perfectly orthogonal and thus useful for computing reduced-order models
or output projection in BPOD. In most cases, however, the use of more than 50-60
POD modes for either task is not practical, as the resulting models are not truly
low-dimensional anymore.





Appendix D

Transfer function norms for linear
systems

Here we define the transfer function norms mentioned in Chapter 2 and used in
Chapter 4 for evaluating model performance. For an in-depth discussion, see Dullerud
& Paganini (1999) or Zhou et al. (1996). The transfer function of a control system is
simply a function relating the inputs and outputs of the system. For a single-input
single-output (SISO) system, it is defined as:

G(s) =
ŷ(s)

û(s)
, (D.1)

where ŷ(s) and û(s) are the output and the input, respectively, after the Laplace
transform of the system has been taken. The absolute value of the transfer function
for a SISO system can be thought of as the gain of the system in control theory
terms. It is easily shown that for the state space system given by:

ẋ = Ax+Bu

y = Cx+Du,
(D.2)

the transfer function is defined by:

G(s) = C(sI − A)−1B +D. (D.3)

In this thesis we do not deal with the feed-through term D, which has been included
for completeness here. For a multiple-input multiple-output (MIMO) system, the
transfer function is a thus a matrix with as many rows as the number of outputs
and as many columns as the number of inputs. The following norms of this matrix
can be computed:

• The 2-norm ‖G(s)‖2 is also known as the H2 norm in control system termi-
nology. For any matrix G the 2-norm is defined by:

‖G‖2 =
√
max(λ(GTG)), (D.4)
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where λ are the eigenvalues of the matrix. For stable systems, this norm
physically corresponds to integrating the impulse response in time from t = 0
to t = ∞, which is why we find it useful for evaluating the capturing of the
impulse response in Chapter 4. We also use the error norm between two
systems, ‖G1(s) − G2(s)‖2, which in the physical domain corresponds to the
integral in time of the difference between the outputs of two systems with
transfer functions G1(s) and G2(s), in order to evaluate how close to each
other two systems are. In our case, we compare the transfer function of the
full system to the reduced-order model. We note that, in order for this error
norm to be defined, the number of outputs of the two systems that are being
compared needs to be the same, which is true for the reduced-order models in
Chapter 4 and the output-projected system.

• The infinity norm ‖G(s)‖∞ is also known as the H∞ norm in control system
terminology. By definition, the infinity norm of any matrix is defined as
the maximum singular value of the matrix. Physically, it corresponds to the
magnitude of the response of the system at the frequency where its frequency
response has the peak, i.e. this is the maximum value of the transfer function
over all possible frequencies. The error norm ‖G1(s) − G2(s)‖∞ is analogous
to the 2-error norm.

The resolvent norm for a linear system whose dynamics is governed by a matrix
A is defined as ‖(sI − A)−1‖2, where s = jω, ω being the frequency of forcing.
This quantity was used by Schmid & Henningson (2001) to study the behavior of
perturbations at different frequencies, but it is not a transfer function norm, as it
does not include the effects of the B and C matrices. In Chapter 4 we study the
true frequency response of linear channel flow, corresponding to the actual transfer
function.
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