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Abstract

In this thesis we develop model reduction/reconstruction methods that are applied

to simulation and control of fluids. In the first part of the thesis, we focus on devel-

opment of dimension reduction methods that compute reduced-order models (at the

order of 101∼2) of systems with high-dimensional states (at the order of 105∼8) that

are typical in computational fluid dynamics. The reduced-order models are then

used for feedback control design for the full systems, as the control design tools are

usually applicable only to systems of order up to 104.

First, we show that a widely-used model reduction method for stable linear time-

invariant (LTI) systems, the approximate balanced truncation method (also called

balanced POD), yields identical reduced-order models as Eigensystem Realization

Algorithm (ERA), a well-known method in system identification. Unlike ERA, Bal-

anced POD generates sets of modes that are useful in controller/observer design and

systems analysis. On the other hand, ERA is more computationally efficient and

does not need data from adjoint systems, which cannot be constructed in experi-

ments and are often costly to construct and simulate numerically. The equivalence

of ERA and balanced POD leads us to further design a version of ERA that works

for unstable (linear) systems with one-dimensional unstable eigenspace and is equiv-

alent to a recently developed version of balanced POD for unstable systems.

We consider further generalization of balanced POD/ERA methods for linearized

time-periodic systems around an unstable orbit. Four algorithms are presented: the

lifted balanced POD/lifted ERA and the periodic balanced POD/periodic ERA. The

lifting approach generates a LTI reduced-order model that updates the system once

every period, and the periodic approach generates a periodic reduced-order model.

By construction the lifted ERA is the most computationally efficient algorithm
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and it does not need adjoint data. By removing periodicity in periodic balanced

POD/ERA algorithms, they can be applied to linear time-varying systems.

A motivating and model problem of stabilization of an unstable vortex shedding

cycle with high average lift is then shown as an application of the lifted ERA

method. We consider the flow past a flat plate at a post-stall angle of attack

with periodic forcing at the trailing edge. The Newton-GMRES method is used to

find a high-lift unstable orbit at a forcing period slightly larger than the natural

period. A six-dimensional reduced-order model is constructed using lifted ERA

to reconstruct the full (with a dimension about 1.4 × 105) linearized input-output

dynamics about the orbit. An observer-based feedback controller is then designed

using the reduced-order model. Simulation results show that the controller stabilizes

the unstable orbit, and the reduced-order model correctly predicts the behavior of

the full simulation.

The second part of the thesis addresses a different type of reduction, namely sym-

metry reduction. In particular, we exploit symmetries to design special numerical

integrators for a general class of systems (Lie-Poisson Hamiltonian systems) such

that conservation laws, such as conservation of energy and momentum, are obeyed

in numerical simulations. The motivating problem is a system of N point vortices

evolving on a sphere that possesses a Lie-Poisson Hamiltonian structure. The de-

sign approach is a variational one at the Hamiltonian side that directly discretizes

the corresponding Lie-Poisson variational principle, in which the Lie-Poisson sys-

tem is regarded as a system reduced from a full canonical Hamiltonian system by

symmetry. A modified version of Lie-Poisson variational principle is also proposed

in this work. By construction the resulting integrators will not only simulate the

Lie-Poisson dynamics, but also reconstruct some dynamics for the full system or

the dual system (the so called Euler-Poincaré reduced Lagrangian system). The in-
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tegrators are then applied to a free rigid body rotation problem and to simulations

of the dynamics of N point vortices on a sphere. Numerical results show that some

of the integrators preserve the conservative quantities well in these applications.
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Chapter 1

Overview

1.1 Motivation

From the dynamical systems point of view, research problems in fluid dynamics are

challenging often due to the highly nonlinear dynamics described by the govern-

ing differential equations. Closed-form analytical solutions are rarely available in

engineering applications. However, in many fluid dynamics problems, the flow is

dominated by low-dimensional coherent structures (Holmes et al., 1996), or there

are symmetries in the models such that the dynamics obey certain conservational

laws (Arnold, 1998; Marsden & Ratiu, 1994). Mathematical tools developed in

dynamical systems, control theory and geometric mechanics can be applied to these

problems to extract the key coherent structures and conservational laws, and in

turn substantially simplify the problems. On the other hand, to solve problems

that arise in fluid dynamics, the existing mathematical tools are often not directly

applicable or sufficient, and new tools need to be developed. The interactive itera-

tion between solving specific problems in fluid dynamics and development of general
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mathematical tools has been our main research interest. In particular, in this thesis

we consider reduction and reconstruction methods with application to simulation

and control of fluids.

1.1.1 Model reduction methods for feedback flow control

In a broad sense, flow control “refers to any mechanism that manipulates a fluid

flow into a state with desired flow properties” (Kim & Bewley, 2007) for purposes

of, among many others, drag reduction, lift enhancement, noise/vibration reduction,

and mixing enhancement. Considering the practically limited energy resources and

the huge amount of fuel consumption in transportation on our planet, flow control

has been not surprisingly one of the most active research areas in fluid dynamics

in the last a few decades; see Gad-el Hak (2000) for early developments. In the

last decade, besides developments in passive control and open-loop active control,

closed-loop (feedback) active control has become the main research focus (Kim &

Bewley, 2007; Cattafesta et al., 2008; Choi et al., 2008; Sipp et al., 2010), thanks to

fast developments in flow control actuators and sensors in experiments, as well as

increasing modeling and computation power in simulations. Among other feedback

control methods, model-based feedback control makes it possible to apply sophis-

ticated control design tools from modern control theory. The challenge, however,

is that those tools are often directly applicable only to systems with dimension not

higher than 104, while dynamic models in computational fluid dynamics are typi-

cally at the order of 105∼8. One solution is to develop reduced-order models (at the

order of 101∼2) that capture the dominant low-dimensional coherent structures (if

they exist) and in turn accurately reconstruct the input-output dynamics of the

full systems. Based on these models, one can design model-based feedback control

laws for the full systems. This reduced-order model based feedback control design
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approach has been applied to a variety problems of flow control about steady states,

e.g. stabilization of globally unstable flow (Henningson & Åkervik, 2008), suppres-

sion of transition to turbulence (Ilak, 2009), noise reduction in cavity flow (Rowley &

Juttijudata, 2005; Samimy et al., 2007), drag reduction in boundary layers (Bagheri

et al., 2009a), and stabilization of an unstable steady state and suppression of vortex

shedding behind a flat plate (Ahuja & Rowley, 2010).

As a generalization to model reduction methods for feedback control around steady

states, in this thesis we develop model reduction methods for high-dimensional

periodic systems (Chapter 4), and then realize model-based feedback control of

periodic orbits found in systems governed by Navier-Stokes equations (Chapter 5).

Besides theoretical interest, in practice, control of unstable periodic orbits can serve

as a starting point for chaos control and control of turbulent flows. Also, recent

research results (Joe et al., 2008; Taira et al., 2010) show that periodic forcing at

the trailing/leading edge of an airfoil can result in high-lift periodic orbits. It is thus

desirable to realize feedback control that can enlarge the region of attraction of the

stable orbits, speed up convergence to the stable orbits, or stabilize the unstable

orbits. Besides the model reduction methods and feedback control design, we will

also introduce a necessary intermediate step on how to find unstable periodic orbits

in such high-dimensional systems.

Another important topic in model reduction is to improve the methods such that

they are more computationally efficient and easily applicable in both simulations

and experiments. In fact, in experiments certain types of data, such as data from

adjoint systems, are not available, which restricts the use of those otherwise efficient

methods, among which we will focus on the snapshot-based approximate balanced

truncation method (Rowley, 2005). We will devote Chapter 3 and parts of Chapter 4

to this topic.
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1.1.2 Geometric integrators for Lie-Poisson Hamiltonian sys-

tems: a variational approach

In the second topic in this thesis, we consider the application of a different type of

system reduction/reconstruction method that is based on symmetry to simulations

for inviscid fluids. In particular, we develop special integrators for Lie-Poisson

Hamiltonian systems and apply them to simulations of dynamics of N point vortices

on a sphere, such that the conservation laws are preserved at the discrete level.

The point vortex model was introduced by Helmholtz (1858) more than one and

half centuries ago. In the past two decades, by using tools developed in dynamical

systems, geometric mechanics and numerical analysis, researchers have concluded a

number of substantial results on the dynamics of N point vortices (Newton, 2001).

For the dynamics of N point vortices in the plane, whose canonical Hamiltonian

structure was introduced by Kirchhoff (1876), the non-integrability and chaotic

dynamical behavior for general N > 3 cases has been noticed and studied in detail

since the early 1980’s (Ziglin, 1980; Aref & Pomphrey, 1982). The dynamics of N

point vortices on a spherical shell with radius R is a generalization of the planar

case (in which R is infinite) and an important topic in geophysical fluid dynamics

modeling long time evolution of atmospheric and oceanographic flows with coherent

structures. The equations of motion are presented in Bogomolov (1977) (almost

precisely one century after Kirchhoff (1876)). In the last several decades much

theoretical analysis on the problem of N point vortices on the sphere has been

performed, especially on the integrability/non-integrability, and fixed and relative

equilibria and their stability. See, for example, the introduction and references in

Newton (2001, 2010).

The N -vortex on a sphere system possesses a Lie-Poisson Hamiltonian structure

4



(Pekarsky & Marsden, 1998). Due to the non-integrability and complex nonlinear

feature of a general system of N point vortices, further understanding on this topic

naturally requires applications of numerical techniques. However, most commonly

used ODE integrators, such as the standard Runge-Kutta fourth order methods,

can not correctly capture the qualitative behavior of the system. More precisely,

during simulations using those integrators, the Hamiltonian structure of the system

of N point vortices is not preserved, and some important theoretically conserved

quantities of the system, such as the Hamiltonian function, also drift unbound-

edly. It is thus desirable to develop geometric integrators to preserve some or all

of the geometric properties along the solution flows in numerical simulations. For

the planar N point vortices problem, since the Hamiltonian structure is canonical,

those geometric integrators developed for canonical Hamiltonian systems can be

applied. Results include the symepletic integrators introduced in Pullin & Saffman

(1991), the integrators developed by a splitting method in Zhang & Qin (1993), and

the variational integrator for the planar point vortices as a degenerate Lagrangian

system introduced in Rowley & Marsden (2002). However, as to the geometric sim-

ulation of point vortices on the sphere, whose Hamiltonian structure is not canonical

but Lie-Poisson, to our knowledge little work has been done except that in Patrick

(2000); Newton & Khushalani (2002) the splitting method (McLachlan, 1993; Re-

ich, 1993) is applied for simulations. The application of splitting method to general

Lie-Poisson systems is however restrictive, since it requires the system to have a

separable Hamiltonian function.

In this work we thus develop geometric integrators for general finite-dimensional

Lie-Poisson systems by using a systematic variational approach on the Hamiltonian

side. In the development the Lie-Poisson systems are regarded as reduced systems

resulting from symmetry reduction of canonical Hamiltonian systems. Versions of
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variational principles for Lie-Poisson systems are then discretized to obtain integra-

tors. The integrators by construction reconstruct some dynamics of the correspond-

ing full canonical Hamiltonian systems or the dual reduced Lagrangian systems.

1.2 Outline and contributions

This thesis consists of two parts. In the first part, from Chapter 2 to Chapter 5, we

present improvement and generalization to a widely used model reduction method,

the snapshot-based approximate balanced truncation method (balanced POD). In

Chapter 5, the generalized method is also applied to feedback control for high-lift

vortex shedding cycles in a flow past an inclined plate with periodic forcing. In

the second part, Chapter 6, we construct families of geometric integrators for Lie-

Poisson Hamiltonian systems using a variational approach on the Hamiltonian side,

such that conservational laws can be preserved at the discrete level. The algorithms

are applied to simulations of N point vortices interacting on a sphere.

Detailed outline and contributions of each chapter are listed below.

Chapter 2. We present a review of projection-based model reduction methods,

including the method using global eigenmodes, the POD/Galerkin method (Sec-

tion 2.1), and in particular the balanced truncation method for linear time-invariant (LTI)

systems (Section 2.2). We then review the snapshot-based approximate balanced

truncation method, i.e., balanced POD, in Section 2.3. A list of challenging open

problems is given at the end of the chapter in Section 2.4, as a guideline for our

work in the next chapters.

Chapter 3. The key contribution here is, for stable LTI systems, we show that
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theoretically the eigensystem realization algorithm (ERA) generates reduced-order

models identical to those of balanced POD. Compared to balanced POD, the key

advantage of the ERA algorithm is that it is adjoint free and computationally much

more efficient. This work was done jointly with Sunil Ahuja, where MZH established

the equivalence and SA validated the relation in a numerical experiment. Further-

more, in Section 3.4 a version of ERA applicable to systems with one-dimensional

neutral stability/instability is also presented.

Chapter 4. The contribution here is the generalization of the balanced POD

algorithm for model reduction of linear, time-periodic systems. Four algorithms, i.e.,

the lifted balanced POD (Section 4.2), the periodic balanced POD (Section 4.3), the

lifted ERA and the periodic ERA (Section 4.5), are proposed. They are applicable

to linear periodic systems with high dimensional states (at the order of 105∼7) that

may also have high dimensional outputs and be neutrally satable/unstable. The

work on lifted balanced POD was done jointly with Gilead Tadmor,who besides

other insightful discussions also suggested the lifting approach, and how to “un-lift”

the reduced-order models. Numerical experiments on the lifted/periodic balanced

POD method are given in Section 4.4. The lifted/periodic ERA are by construction

equivalent to lifted/periodic balanced POD in the sense that theoretically they

yield identical models; however the ERA methods are adjoint-free and therefore

more computationally efficient. Furthermore, the periodic balanced POD/ERA

can be directly applied to linear time-varying systems by removing assumption of

periodicity in computation procedures.

Chapter 5. The contribution here is that we design feedback control for sta-

bilization of an unstable vortex shedding cycle that has a high average lift, based
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on reduced-order models obtained by using lifted ERA. The model problem we

consider is a two-dimensional flow past a flat, inclined plate, with an open-loop pe-

riodic forcing at the trailing edge. By using Newton-GMRES method for periodic

systems, we first show that there exist high-lift stable and unstable periodic solu-

tions for the system with open-loop periodic forcing. After linearization around the

unstable orbit, we apply the lifted ERA method to obtain reduced-order models.

A reduced-order model is used to reconstruct the input-output dynamics of the full

linearized system, based on which an observer-based feedback controller is designed.

The controller is then applied onto the full linearized model and finally onto the full

nonlinear model to stabilize the unstable orbit.

Chapter 6. The contribution here is a systematic development of three families

of geometric integrators for Lie-Poisson Hamiltonian systems, using a variational

approach on the Hamiltonian side. While designing the integrators, we consider

Lie-Poisson systems as reduced systems of full canonical Hamiltonian systems, and

some integrators also numerically reconstruct part of the full dynamics. These inte-

grators are applicable to geometric simulations of Lie-Poisson Hamiltonian systems,

including those that are computationally difficult or impossible to be transformed

into the corresponding Lagrangian (i.e., Euler-Poincaré) formation. Numerical ex-

amples, one on a free rigid body rotation simulation and the other on the simulation

of N point vortices on a sphere, are presented to validate the algorithms.

Chapter 7. The conclusions of this work and outlook for future work are pre-

sented in this final chapter.
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Chapter 2

Background: Balanced truncation

for model reduction of linear

time-invariant systems

In the area of model-based feedback flow control of fluids, substantial developments

have taken place in the last decade. For instance, see the recent reviews by Kim

& Bewley (2007); Cattafesta et al. (2008); Choi et al. (2008); Sipp et al. (2010).

In many applications, the focus is on how to apply actuation to maintain the flow

around a steady state or an orbit of interest, for instance to delay transition to tur-

bulence, or control separation on a bluff body. Model-based linear control theory

provides efficient tools for the analysis and design of feedback controllers, such as

Linear-Quadratic Regulator (LQR) and Linear-Quadratic-Gaussian (LQG). How-

ever, a significant challenge is that models for flow control problems are often very

high dimensional, e.g., on the order of O(105∼9), so large that it becomes computa-

tionally infeasible to apply linear control techniques. To address this issue, model

reduction, by which a low-order approximate model is obtained, is therefore widely
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employed.

Among other model reduction techniques, such as singular perturbation and Hankel

norm reduction methods, the projection-based method is a widely used approach,

which involves projection a model onto a set of modes. These may be global eigen-

modes of a linearized operator (Åkervik et al., 2007), modes determined by proper

orthogonal decomposition (POD) of a set of data (Holmes et al., 1996), and variants

of POD, such as including shift modes (Noack et al., 2003). In particular, an efficient

projection-based method for linear control systems is balanced truncation (Moore,

1981). Compared to most other methods, including POD, balanced truncation

has key advantages, such as a priori error bounds, and guaranteed stability of the

reduced-order model (if the original high-order system is stable). While this method

is computationally intractable for systems with very large state spaces (dimension

& 105), recently an algorithm for computing approximate balanced truncation from

snapshots of linearized and adjoint simulations has been developed (Rowley, 2005)

and successfully applied to a variety of high-dimensional (for instance, up to 107)

flow control problems (Ilak & Rowley, 2008; Ahuja & Rowley, 2010; Bagheri et al.,

2009a). In this method, sometimes called balanced POD, one obtains two sets of

modes (primal and adjoint) that are bi-orthogonal, and uses those for projection

of the governing equations. Balanced POD typically produces models that are far

more accurate and efficient than standard POD models, in the sense that the num-

ber of modes needed to capture the dynamics in balanced POD is much less than

that in POD. Detailed comparisons can be found in Rowley (2005) and Ilak & Row-

ley (2008). For instance, in Ilak & Rowley (2008), a 3-mode balanced POD model

captures the transient growth in a linearized channel flow nearly perfectly, while for

a standard POD model, 17 modes were required.

In this chapter we will first review the main idea of projection-based model reduction
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and introduce several widely used projection-based model reduction methods in

Section 2.1. Then, in particular, we will focus on the method of balanced truncation

in Section 2.2 and 2.3. Review of existing balanced truncation algorithms leads to

a list of interesting challenges and open problems (not complete in any sense)

in Section 2.4. The list will serve as a starting point for further improvement

and generalization of the algorithms, which is our main task in the following three

chapters.

2.1 Petrov-Galerkin projection approach applied to

linear systems

For discussions in this and next chapter, we will consider a discrete-time, high-

dimensional, linear time-invariant (LTI) system, described by

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k),

(2.1)

where the high-dimensional state x(k) ∈ Cn can be, for instance, flow variables at all

gridpoints of a simulation, k ∈ Z is the time step index, u(k) ∈ Cp a vector of inputs

(for instance, actuators or disturbances), and y(k) ∈ Cq a vector of outputs (for

instance, sensor measurements, or other measurable quantities as linear functions

of the state). We consider a discrete-time setting, because data from numerical

simulations or experiments are essentially discrete in time. This system may arise,

for instance, by discretizing the Navier-Stokes equations in time and space, and

linearizing about a steady solution, as will be demonstrated in the example in

Section 3.3. The system (2.1) is asymptotically stable(and indeed exponentially

stable) if the spectral radius ρ(A) < 1, i.e., all eigenvalues of A are located inside a

11



unit circle. It is neutrally stable or unstable if ρ(A) = 1, or ρ(A) > 1, respectively.

In this work, the goal of model reduction, especially for feedback control design

purposes, is to obtain an approximate model that captures the dynamic relationship

between inputs u and outputs y, but with a much smaller state dimension:

xr(k + 1) = Arxr(k) +Bru(k)

y(k) = Crxr(k),

(2.2)

where the reduced state variable xr(k) ∈ Cr, r � n.

In particular, we consider a standard Petrov-Galerkin projection approach that

forms reduced order models (2.2) by projections onto a r-dimensional subspace

spanned by columns of a matrix Φr ∈ Cn×r, along a direction that is orthogonal to

a r-dimensional subspace spanned by columns of another matrix Ψr ∈ Cn×r. The

bases Φr,Ψr are bi-orthogonal, i.e.,

Ψ∗rΦr = Ir×r, (2.3)

where the asterisk denotes an adjoint matrix satisfying the inner product relations

〈a,Ψrb〉Cn = 〈Ψ∗ra, b〉Cr , for a ∈ Cn, b ∈ Cr. With the approximation x(k) ≈ Φrxr(k)

at every time k, and applying the bi-orthogonality relation (2.3), one generates

reduced-order models of the form

xr(k + 1) = Ψ∗rAΦrxr(k) + Ψ∗rBru(k)

y(k) = CrΦrxr(k).

(2.4)

This bi-orthogonal projection approach can be also used for model reduction of non-

linear systems. When Ψr = Φr, the Petrov-Galerkin projection is just an orthogonal

Galerkin projection.

Different projection-based model reduction methods employ different bases Φ and

Ψ (“modes”) and in turn generate different reduced-order models. The most widely
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applied projection-based methods include: (i) method using global eigenmodes (Åk-

ervik et al., 2007), (ii) proper orthogonal decomposition (POD)/Galerkin approach

(Holmes et al., 1996), and (iii) balanced truncation (Moore, 1981). In this subsection

we briefly review the first two methods in the following discussion to understand

their strength and weakness as model reduction methods. See Barbagallo et al.

(2009) for a detailed comparison of performance among these methods in a problem

of closed-loop control of an open cavity flow.

Petrov-Galerkin Projection using global eigenmodes. The global eigen-

mode approach has been applied to construct reduced-order models for stability

analysis and control for Navier-Stokes systems, such as for cavity flows (Åkervik

et al., 2007; Barbagallo et al., 2009), for flow over a smooth bump (Ehrenstein

& Gallaire, 2008), and for the Blasius boundary layer (Henningson & Åkervik,

2008). Global eigenmodes and the corresponding adjoint modes are indeed the right

and left eigenvectors of the state transition matrix A. By using the bi-orthogonal

global eigenmodes and adjoint modes for projection, one obtains a reduced-order

model (2.4) where the reduced transition matrix Ar = Ψ∗rAΦr is a diagonal matrix

of leading eigenvalues of A, supposing there are no repeated eigenvalues. By con-

struction, this eigenmode approach generates a reduced-order model that captures

well the uncontrolled system dynamics described by

x(k + 1) = Ax(k), (2.5)

and therefore suits best for stability analysis of a steady state, about which the

linear system (2.1) is obtained by linearization. However, since the projection does

not include any information about the control input (characterized by B) and the

system output (characterized by C), it is not a natural choice as a model reduction

method to capture the input-output dynamics. Indeed, the system dynamics is the
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“internal” dynamics, and important modes for stability analysis might be difficult

to be excited or suppressed by control inputs, or to be observed through system

outputs. On the other hand, the important modes for control or measurement

purposes might be negligible in stability analysis.

As to numerics, for high-dimensional linear systems such as those obtained by lin-

earizing Navier-Stokes equations about a steady state, the eigenmodes can be com-

puted by Krylov methods, e.g. the Arnoldi iteration method (Trefethen & Bau,

1997; Lehoucq et al., 1998).

Note that recently Rowley et al. (2009) presented a spectral analysis for nonlinear

flows using Koopman modes, which can be regarded as a nonlinear generalization

of global eigenmodes of a linearized system.

POD/Galerkin approach. Proper orthogonal decomposition, also known as

principal component analysis or Karhunen-Loève transformation, was first intro-

duced to the fluids community by Lumley (1967, 1970). It has since been widely

used in fluid problems for study of dominant, low-dimensional coherent structures

and model reduction (see Sirovich (1987); Aubry et al. (1988); Moin & Moser (1989);

Holmes et al. (1996), among others); see recent surveys on a variety of applications

of the POD/Galerkin approach to model reduction and control in fluids in Siegel

et al. (2008); Barbagallo et al. (2009). Theoretical details of this approach can be

found in Sirovich (1987); Holmes et al. (1996).

POD provides an orthogonal set of modes. Reduction of the original linear or non-

linear system is realized by an orthogonal, Galerkin projection using the leading

modes. In typical applications, the POD modes are the leading orthonormal eigen-

vectors of XX∗, where the columns of X are the snapshots taken from simulations
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of the original system. By construction, the POD models can be computed directly

from experimental data, and can be applied to both nonlinear and linear systems.

POD modes are optimal in the sense that the orthogonal projection using these

modes captures the most energy in the snapshots (Holmes et al., 1996). Modes are

ranked by their inherent energy content. However, reduced-order models obtained

by the POD/Galerkin approach do not necessarily capture the input-output dynam-

ics of the original system, as the most important modes for control or measurement

purposes can be of very small energy, as shown in Smith et al. (2005); Ilak & Rowley

(2008). For linear systems as (2.1), if the snapshots are taken from impulse-response

simulations, then the leading POD modes will contain the most important modes for

capturing the actuation (Rowley, 2005), as the simulation data includes B,AB, . . .,

the information on how the system will be excited by actuations. However, the

POD modes may still not capture the influence of system outputs. Reduced-order

models by POD/Galerkin approach for a linear system can be unstable even if the

original system is stable (Smith, 2003). Note that variants of POD have been devel-

oped to improve the performance of reduced-order models, such as including shift

modes (Noack et al., 2003; Siegel et al., 2003; Luchtenburg et al., 2009; Tadmor

et al., 2010), double POD (Siegel et al., 2008), and calibration methods applied to

POD (Galletti et al., 2004; Couplet et al., 2005; Cordier et al., 2010).

Regarding numerics, the method of snapshots (Sirovich, 1987) is widely used to

compute POD modes for high-dimensional systems. The main idea of this method

is that instead of solving the n × n dimensional eigenvalue problem for XX∗, one

solves an eigenvalue problem for X∗X where the dimension m is much smaller,

assuming the number of snapshots m is much smaller than the system dimension

n, and then reconstructs a basis for an m-dimensional subspace.
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Having reviewed the other major projection-based model reduction methods, we

now consider the method of balanced truncation in the following paragraphs and

explain why it will be our focus.

2.2 Exact balanced truncation

For a stable LTI system (2.1), define its controllability and observability Gramians

by a pair of symmetric, positive-semidefinite matrices

Wc :=
∞∑
i=0

AiBB∗
(
Ai
)∗

; Wo :=
∞∑
i=0

(
Ai
)∗
C∗CAi, (2.6)

where the asterisk ∗ stands for adjoint of a matrix. The controllability Gramian

provides a measure of the influence of a sequence of input history on the current

state( i.e., to what degree each state is excited by inputs), and the observability

Gramian measures the influence of an initial state on future outputs with zero

control input (i.e., to what degree each state excites future outputs). The larger

eigenvalues of the controllability(observability) Gramian correspond to the more

controllable (observable) states. Note that the Gramians are solutions of discrete

Lyapunov equations:

AWcA
∗ −Wc +BB∗ = 0;

A∗WoA−Wo + C∗C = 0.

(2.7)

A balanced truncation (Moore (1981)) involves first a coordinate transformation Φ,

called the balancing transformation, that can be computed by solving the eigenvalue

problem

WcWeΦ = ΦΣ2 = Φ


σ2

1

. . .

σ2
n

 , (2.8)
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where the Hankel singular values σ1 > · · · > σn > 0 are invariant under co-

ordinate transformations. The transformed Gramians Wc 7→ Φ−1Wc(Φ
−1)∗ and

Wo 7→ Φ∗WoΦ are “balanced” in the sense that they are identical and diagonal:

Φ−1Wc(Φ
−1)∗ = Φ∗WoΦ = Σ.

A reduced-order model in the form (2.4) is then obtained in the new coordinates by

truncating both the least controllable and least observable states that correspond

to the smallest Hankel singular values and having little effect on the input-output

behavior. Geometrically, it is obtained by considering a subspace spanned by the

r leading balancing modes, i.e., the r leading columns of Φ, and projecting the

dynamics (2.1) onto this subspace using the r leading adjoint modes given by leading

columns of Ψ = (Φ−1)
∗.

Main features. The reduced-order, balanced model keeps the most controllable

and observable states, and is therefore ideal for capturing the input-output dy-

namics of the original system. Quantitatively, the balanced truncation procedure

guarantees an a priori upper bound of error between the original system and the

reduced-order model:

‖G(t)−Gr(t)‖∞ < 2
n∑

k=r+1

σk,

where G(t) and Gr(t) are the impulse-response matrices of the original system and

the reduced-order model, respectively. Another feature of balanced truncation is

that the reduced-order model inherits the stability of the original system, as long as

the truncation is executed at an order between two distinguished Hankel singular

values. In contrast, the problem of losing stability can happen to other model re-

duction methods, such as reported in Smith (2003) when developing POD/Galerkin

models close to a stable equilibrium. More details of exact balanced truncations
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can be found in Dullerud & Paganini (1999); Zhou et al. (1996).

Restrictions to applications. For large-dimensional systems (e.g. on the order

of 106∼9) such as those arise from numerical discretization in fluid systems, to realize

exact balanced truncation as above becomes computationally intractable, due to

difficulties mainly in (i) solving the large-dimensional Lyapunov equations (2.7)

for Gramians and storing them, and (ii) solving the large-dimensional eigenvalue

problem (2.8). A snapshot-based approximate balanced truncation algorithm was

therefore developed by Rowley (2005). We will review the algorithm in Section 2.3.

2.2.1 Balanced truncation for unstable systems.

Balanced truncation has been extended for linear, unstable systems (Zhou et al.,

1999; Ahuja & Rowley, 2010) by decomposing the system into a stable subsystem

and an unstable subsystem.

If it is unstable, the system (2.1) can be decoupled into an ns-dimensional stable

subsystem and an nu-dimensional unstable subsystem asxs(k + 1)

xu(k + 1)

 =

As 0

0 Au


xs(k)

xu(k)

+

Bs

Bu

u(k)

y(k) = ys(k) + yu(k) =

[
Cs Cu

]xs(k)

xu(k)


(2.9)

by a coordinate transformation

x(k) = T

xs(k)

xu(k)

 =

[
Ts Tu

]xs(k)

xu(k)

 , (2.10)

where Ts ∈ Cn×ns and Tu ∈ Cn×nu are matrices of stable and unstable right eigen-
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vectors of A. Here As = (S∗sTs)
−1S∗sAT

∗
s , Au = (S∗uTu)

−1S∗uAT
∗
u , Bs = (S∗sTs)

−1S∗sB,

Bu = (S∗uTu)
−1S∗uB, Cs = CTu and Cu = CTu, where

[
Ss Su

]∗
= T−1, Ss ∈ Cn×ns

and Su ∈ Cn×nu consisting of stable and unstable left eigenvectors of A. The trans-

formed system is decoupled, as all ns eigenvalues of As are inside the unit circle,

while all nu eigenvalues are on or outside the circle.

In the new coordinates, one can realize balanced truncation on both of the sub-

systems respectively, as in Zhou et al. (1999), by defining generalized Gramians in

the frequency domain for both the stable and unstable subsystem. However, in

many physical applications, the unstable dynamics is of small dimension (e.g. at

the order of 101∼2), and is crucial for stabilization purpose. Thus, alternatively one

can choose to keep the unstable dynamics exactly, and just realize a usual balanced

truncation of order r, r � ns, for the ns-dimensional stable dynamics (Ahuja &

Rowley, 2010). Finally the “partially-balanced” truncated system of order (r + nu)

shall be transformed back into the original coordinates. See computational details

in the subsection 2.3.3.

Also note that the generalized Gramians in the frequency domain defined in Zhou

et al. (1999) have poles on the imaginary axis if A has eigenvalues on the imaginary

axis (for the continuous case). The method given in Zhou et al. (1999) is thus not

directly applicable to the neutrally stable case.

2.3 Snapshot-based approximate balanced trunca-

tion (balanced POD)

A snapshot-based approximate balanced truncation algorithm (“balanced POD”)

was introduced by Rowley (2005) for applications to high-dimensional LTI systems
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with high-dimensional outputs or inputs. Since its introduction, balanced POD has

been successfully applied in a variety of feedback flow control problems in simula-

tions, such as suppression of transition to turbulence in a channel flow (Ilak, 2009),

stabilization of unstable steady flow past a flat plate (Ahuja & Rowley, 2010), con-

trol of the convectively unstable flat-plate boundary layer (Bagheri et al., 2009a),

and suppression of the instability of separated flow past cavity (Barbagallo et al.,

2009).

2.3.1 Outline of the balanced POD algorithm

We first outline the main procedures of the algorithm:

• Step 1: Collect snapshots. Run impulse-response simulations of the primal

system (2.1) and collect mc + 1 snapshots of states x(k) in mcP + 1 steps:

X =

[
B APB A2PB · · · AmcPB

]
, (2.11)

where P is the sampling period. In addition, run impulse-response simulations

for the adjoint system

z(k + 1) = A∗z(k) + C∗v(k) (2.12)

and collect mo + 1 snapshots of states z(k) in moP + 1 steps:

Y =

[
C∗ (A∗)P C∗ (A∗)2P C∗ · · · (A∗)moP C∗

]
. (2.13)

• Step 2: Compute modes by the method of snapshots. Calculate the generalized

Hankel matrix,

H = Y ∗X. (2.14)
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Compute the singular value decomposition of H:

H = UΣV ∗ =

[
U1 U2

]Σ1 0

0 0


V ∗1
V ∗2

 = U1Σ1V
∗

1 (2.15)

where the diagonal matrix Σ1 ∈ Rn1×n1 is invertible and includes all non-zero

singular values of H, n1 = rank(H), and U∗1U1 = V ∗1 V1 = In1×n1 . Choose

r ≤ n1. Let Ur and Vr denote the sub-matrices of U1 and V1 that include their

first r columns, and Σr the first r × r diagonal block of Σ1. Calculate

Φr = XVrΣ
− 1

2
r ; Ψr = Y UrΣ

− 1
2

r . (2.16)

where the columns of Φr and Ψr are respectively the first r primal and adjoint

modes of system (2.1). The two sets of modes are bi-orthogonal: Ψ∗rΦr = Ir×r.

• Step 3: Petrov-Galerkin Projection. The system matrices in the reduced

order model (2.2) are computed by

Ar = Ψ∗rAΦr; Br = Ψ∗rB; Cr = CΦr. (2.17)

Balanced POD employs the low-rank feature of Gramians (and in turn generalized

Hankel matrices) for typical high-dimensional systems modeled in physics problems.

Assume the number of snapshots mo + 1, mc + 1 are much smaller than the system

dimension n, and the input and output dimensions are moderate(see the case for

high-dimensional outputs/inputs in 2.3.2). In balanced POD, the n × n control-

lability/observability Gramians are approximated by the empirical Gramians (Lall

et al., 2002)

Wce = XX∗; Woe = Y Y ∗. (2.18)

The empirical Gramians themselves are never computed. Instead, only the low-

rank factors X and Y are constructed by snapshots. The Hankel singular values
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and balancing modes are then computed by the method of snapshots (Sirovich,

1987) that also saves much computational cost, as the n×n dimensional eigenvalue

problem is reduced to a much smaller, q(mo + 1)× p(mc + 1) dimensional problem

of SVD. The resulting reduced-order model is balanced in the sense that Φr and

Ψr exactly balance the approximate Gramians Wce and Woe, as shown in Rowley

(2005); see more discussion in Section 3.2.

Some historical notes. Compared to other numerical methods for balanced

truncation, such as Laub et al. (1987); Tombs & Postlethwaite (1987); Safonov &

Chiang (1989) where essentially a Cholesky decomposition is used to obtain (exact)

Gramian factors, balanced POD constructs approximate factors by collecting snap-

shots through impulse response simulations. Therefore balanced POD is valid for

high-dimensional systems that are neither controllable nor observable, which is typ-

ically the case. Note that besides the snapshot-based method, there are other low-

rank, iterative methods for approximating Gramians by solving Lyapunov equations,

including Krylov subspace methods (Hu & Reichel, 1992; Jaimoukha & Kasenally,

1994) and low-rank Smith (LRS) methods (Penzl, 2000; Gugercin et al., 2003). An

interesting observation is that, for continuous systems, the low-rank Smith method

can be regarded as a special case of the snapshot-based method, in which the trape-

zoidal rule is used to discretize in time, as introduced by Daniel Sorenson and then

mentioned in Antoulas (2005), Section 12.4.5. In this sense, the approximate bal-

anced truncation method most similar to balanced POD is the low rank square

root method presented in Penzl (2006), where the method of snapshots is used to-

gether with approximate factors of Gramians that are computed by low-rank Smith

methods.
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2.3.2 Method of output projection for systems with high-

dimensional outputs

For a system in the form (2.1), the output dimension, q, can also be very large. For

instance, the outputs can be set identical to the states (e.g. the whole flow field)

for study of the system dynamics or for full-state feedback control design. In such

cases, the input dimension of the adjoint system (2.12), q, will be so large that it

is practically intractable to run the many adjoint simulations to collect snapshots

needed for approximate balanced truncation. To solve this problem, Rowley (2005)

proposed an output projection method. It employs a standard POD procedure

to find an optimal, orthogonal projection P of rank rop, rop � q, such that the

error between the impulse-response of the original system (2.1) and of the output

projected system

x(k + 1) = Ax(k) +Bu(k);

y(k) = PCx(k)

(2.19)

is minimized. The solution is P = ΘΘ∗, where the columns of Θ ∈ Cq×r are the

leading POD modes of the impulse-response matrix of the original system (2.1),

i.e., the output dataset from impulse response simulations of (2.1) that can be

approximated by CX, given by (2.11). The adjoint system of the output-projected

system (2.19) is

z(k + 1) = A∗z(k) + C∗Θvrop(k) (2.20)

where the adjoint control input vrop is only rop-dimensional. Thus, by output pro-

jection, only rop adjoint simulations are needed .

Note that there is a “dual” case corresponding to a linear system with high-dimension

states and inputs, but only few outputs. Examples include systems with distributed

disturbances that affect the entire state simultaneously. An input projection is then
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needed to project inputs onto leading POD modes of the dataset of outputs obtained

in adjoint impulse-response simulations.

2.3.3 Balanced POD for unstable systems

For high-dimensional systems with a small dimension of instability, Ahuja & Rowley

(2010) suggest keeping the unstable dynamics exactly and realize balanced trunca-

tion for the high-dimensional stable dynamics, as mentioned in Section 2.2. How-

ever, in computations, the ns-dimensional stable subsystem given in (2.9) should not

be explicitly formed, due to the high computational cost to obtain the stable right

and left eigenvectors of A. Instead, Ahuja & Rowley (2010) suggest directly pro-

jecting out the unstable dynamics from the full system dynamics. The first step is

to compute the few unstable right and left eigenvectors of A to construct Tu and Su,

the unstable right and left eigenspaces of A. This is computationally tractable by

applying Krylov methods, for example, the Arnoldi iteration method (Trefethen &

Bau, 1997) to the operator A and its adjoint A∗. Then, one computes a projection

operator onto Es(A), the stable subspace of A, by

Ps = In×n − Tu(S∗uTu)−1S∗u. (2.21)

Ps projects the dynamics of system (2.1) onto the stable subspace of A to produce

xs(k) = Axs(k) + PsBus(k);

ys(k) = CPsxs(k)

(2.22)

where xs = Psx. Correspondingly, the adjoint P∗s projects the dynamics of the

adjoint system (2.12) onto Es(A∗), the stable subspace of A∗, by

zs(k + 1) = A∗zs(k) + P∗sC∗v(k), (2.23)
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where zs = P∗sz. Snapshot-based balanced truncation can be realized in the pro-

jected system (2.22). Note that in the impulse responses of the projected sys-

tem (2.22), to suppress numerical errors accumulated in the unstable directions,

one may project the states onto the stable subspace of A or A∗ from time to time

in simulations.

Let the columns of matrices Φ1r,Ψ1r ∈ Cn×r correspond to the leading r bi-

orthogonal balancing and adjoint modes of the projected system (2.22). It is shown

in (Ahuja & Rowley, 2010) that the reduced model of order (r+nu) for the original

system (2.1) can be obtained in the form (2.4), where

Φr =

[
Φ1r Tu

]
, Ψ∗r =

 Ψ∗1r

(S∗uTu)
−1S∗u

 . (2.24)

By using properties of left/right eigenvectors, the final reduced-order model reads

xr(k + 1) =

Ψ∗1rAΦ1r 0

0 (S∗uTu)
−1S∗uATu

xr(k) +

 Ψ∗1r

(S∗uTu)
−1S∗u

Bu(k);

y(k) = C

[
Φ1r Tu

]
xr(k),

(2.25)

where (S∗uTu)
−1S∗uATu = Λu ∈ Cnu×nu , a diagonal matrix with unstable eigenvalues

of A, supposing there are no repeated eigenvalues.

2.4 Challenges to balanced truncation methods

Balanced truncation exhibits several useful properties: there is a guaranteed up-

per error bound, and the stability of the reduced-order model is guaranteed. In

applications, the balanced POD algorithm can be used to realize approximate bal-

anced truncations for high-dimensional systems that are unstable and with high-

25



dimensional outputs, and has been successfully applied in a variety of flow control

problems, as reviewed in Section 2.3. However, balanced truncation and the bal-

anced POD algorithm summarized above have limitations, especially in situations in

which only experimental data is available. We outline several of the main challenges

below. In the following three chapters, we will present techniques that address the

first two challenges.

1. Snapshot-based approximate balanced truncation for experiments.

Snapshot-based approximate balanced truncation (balanced POD) requires

impulse-response data from an adjoint system. However, in experiments, ad-

joint information is not available. This restricts the application of balanced

POD to experimental data. In Section 3.1, we present an effective way to

circumvent this problem by connecting the eigensystem realization algorithm

to balanced POD (Ma et al., 2010a).

2. Generalization to time-periodic/time-varying linear systems. Exact

and approximate balanced truncation for general linear, time-varying systems

is still an open problem. Theoretical progress on this topic has been reported

in, for example, Verriest & Kailath (1983); Shokoohi et al. (1983); Sandberg

& Rantzer (2004); Sandberg (2006). The simplest form of a time-varying sys-

tem is a time-periodic system. Exact and approximate balanced truncation

methods for periodic systems have been developed in, e.g., Longhi & Orlando

(1999); Farhood et al. (2005); Chahlaoui & Van Dooren (2006). However, the

existing algorithms are restrictive in the sense that they are either not suit-

able for systems with high-dimensional states and/or outputs/inputs, or not

valid for neutrally stable/unstable systems. The neutrally stable case is es-

pecially important because by Floquet theory (Hartman, 1964), linearization

even about an asymptotically stable periodic orbit results in a neutrally stable
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time-periodic system. Further, no applications to high-dimensional physical

systems have been reported. In Chapter 4, we will present versions of bal-

anced POD algorithms for linear time-periodic systems, as generalization of

balanced POD for LTI systems, and illustrate numerical examples to validate

the algorithms; in Chapter 5 we will then apply the algorithms to feedback

control of flow past a flat plate with open-loop periodic forcing.

Balanced truncation for other linear systems, such as interconnected systems,

has been reported in Sandberg & Murray (2007).

3. Generalization to nonlinear systems. Balanced truncation is a method

for linear systems. Several ideas have been proposed to generalize the method

to nonlinear systems, mainly using the following approaches.

The first approach is to directly project nonlinear dynamics onto modes de-

termined by balanced truncation to a linearized system around a steady state

of the nonlinear system. In a recent example using the complex Ginzburg-

Landau equation (Ilak et al., 2010), this approach captures well the nonlin-

ear, transient dynamics by projecting the nonlinear complex Ginzburg-Landau

equation onto balancing modes corresponding to the equilibrium at the ori-

gin. In general, however, there is no guarantee that the balancing modes for

linearized systems about an equilibrium can capture the nonlinear dynam-

ics in the whole domain. Improvements can be to add “shift modes” (Noack

et al., 2003) to include the influence of the mean-field, and to include bal-

ancing modes for linearized systems about other equilibria of the system and

incorporate all the modes using an interpolation scheme (Morzyński et al.,

2006; Luchtenburg et al., 2006).

The second approach is to define generalized Gramians for nonlinear systems
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and then realize generalized balanced truncation, as in Scherpen (1993); Lall

et al. (2002); Verriest & Gray (2004); Fujimoto & Tsubakino (2008). This

is still a developing area, where different versions of generalized Gramians

and balanced realizations exist (mainly due to the complexity of nonlinear

systems). No applications to high-dimensional systems, such as problems

encountered in fluids simulation and experiments, have been reported. In

this thesis we will not consider the problem of nonlinear balanced truncation.

However it is listed here as an interesting direction for future work.

Other interesting open problems include, e.g., robust reduced-order models by bal-

anced truncation, and using reduced-order models for actuator/sensor optimization.

2.5 Summary

In this chapter we reviewed balanced truncation, a projection-based model reduc-

tion method that captures well the input-output dynamics of linear time-invariant

control systems. In particular, the balanced POD algorithm, an snapshot-based

approximate balanced truncation method, can be applied to model reduction for

high-dimensional (up to the order of 107) linear time-invariant systems with high-

dimensional outputs or inputs. Those systems need not to be controllable or ob-

servable, and can be unstable as well.

On the other hand, we list several intriguing open problems in balanced truncation

in Section 2.4. In Chapter 3, we will provide a solution to the first problem, i.e.,

snapshot-based approximate balanced truncation for experiments, by proposing an

adjoint-free balanced truncation algorithm that is suitable for application to exper-

imental data and computationally more efficient. In Chapter 4, we will provide a
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partial solution to the second problem, i.e., genearlization to time-periodic/time-

varying linear systems, by proposing versions of balanced truncation algorithms for

linear, time-periodic systems. In Chapter 5, we then apply an algorithm developed

in Chapter 4 to feedback control design for a flow past a plate with periodic forcing.
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Chapter 3

Adjoint-free snapshot-based

balanced truncation for linear

time-invariant systems

In this chapter we consider the first challenge to balanced truncation methods listed

in Section 2.4: While effective in many examples, balanced POD faces the challenge

for use with experimental data. The main restriction is that balanced POD requires

snapshots of impulse-response data from an adjoint system, and adjoint information

is not available for experiments.

To address this issue, here we describe an algorithm widely used for system identi-

fication and model reduction, the eigensystem realization algorithm (ERA) (Juang

& Pappa, 1985). This algorithm has been used for problems in fluid mechanics, pri-

marily as a system-identification technique for flow control Cattafesta et al. (1997);

Cabell et al. (2006), but also for model reduction Gaitonde & Jones (2003); Silva

& Bartels (2004). Our main result, presented in Section 3.1, is that, for linear
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systems, ERA theoretically produces exactly the same reduced-order models as bal-

anced POD, with no need of an adjoint system, and at an order of magnitude lower

computational cost. This result implies that one can realize approximate balanced

truncation even in experiments, and can also improve computational efficiency in

simulations. We note that ERA and snapshot-based approximate balanced trunca-

tion have been applied together in a model reduction procedure in Djouadi et al.

(2008). However, the theoretical equivalence between these two algorithms was not

explored in that work.

We present a comparison between balanced POD and ERA, and show that if adjoint

information is available, balanced POD also has its own advantages. In particular,

balanced POD provides sets of bi-orthogonal primal/adjoint modes for the linear

system, and can be directly generalized to unstable systems. In Section 3.2, we

discuss a modified ERA algorithm that, in the absence of adjoint simulations, uses

“pseudo-adjoint modes” to compute reduced order models; however, this method

does not produce balanced models, and performs worse than balanced POD in

examples. In Section 3.3, we illustrate these methods using a numerical example of

the two-dimensional flow past an inclined plate, at a low Reynolds number. Finally,

in Section 3.4 we propose a version of ERA that can be applied to systems with

one-dimensional instability.

Main results in Sections 3.1, 3.2 and 3.3 are reported in Ma et al. (2010a).
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3.1 Eigensystem realization algorithm as adjoint-

free snapshot-based approximate balanced trun-

cation

In this section, we first summarize the steps involved in the eigensystem realiza-

tion algorithm (ERA) (Juang & Pappa, 1985) and then present the main result of

this Chapter, i.e., the equivalence between ERA and snapshot-based approximate

balanced truncation (balanced POD).

ERA has been used both for system identification and for model reduction, and

it is well known that the models produced by ERA are approximately balanced

(Shokoohi & Silverman, 1987; Juang, 1994). Here we show further that, theoreti-

cally, ERA produces exactly the same reduced order models as balanced POD. This

equivalence indicates that ERA can be regarded as an approximate balanced trunca-

tion method, in the sense that, before truncation, it implicitly realizes a coordinate

transformation under which a pair of approximate controllability and observability

Gramians are exactly balanced. This feature distinguishes ERA from other model

reduction methods that first realize truncations and then balance the reduced order

models. Note that in ERA the Gramians, and the balancing transformation itself,

are never explicitly calculated, as we will also show in the following discussions.

3.1.1 The eigensystem realization algorithm

The eigensystem realization algorithm (ERA) was proposed in Juang & Pappa

(1985) as a system identification and model reduction technique for linear time-

invariant (LTI) systems. The algorithm follows three main steps (Juang & Pappa,
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1985; Juang, 1994):

• Step 1: Run impulse-response simulations/experiments of the LTI system

(2.1) for (mc + mo)P + 2 steps, where mc and mo respectively reflect how

much effect is taken for considering controllability and observability, and P

again is the sampling period. Collect the snapshots of the outputs y in the

following pattern:(
CB, CAB, CAPB, CAP+1B, . . .

CAmcPB, CAmcP+1B, . . . CA(mc+mo)PB, CA(mc+mo )P+1B
)
.

(3.1)

The terms CAkB are commonly called Markov parameters.

• Step 2: Construct a generalized Hankel matrix H ∈ Cq(mo+1)×p(mc+1)

H =



CB CAPB · · · CAmcPB

CAPB CA2PB · · · CA(mc+1)PB

...
...

. . .
...

CAmoPB CA(mo+1)PB · · · CA(mc+mo)PB


. (3.2)

Compute the SVD of H, exactly as in (2.15), to obtain U1, V1, Σ1. Let

r ≤ rank(H). Let Ur and Vr denote the sub-matrices of U1 and V1 that

include their first r columns, and Σr the first r × r diagonal block of Σ1.

• Step 3: The reduced Ar, Br and Cr in (2.2) are then defined as

Ar = Σ
− 1

2
r U∗rH

′VrΣ
− 1

2
r ;

Br = the first p columns of Σ
1
2
r V
∗
r ;

Cr = the first q rows of UrΣ
1
2
r

(3.3)
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where

H ′ =


CAB CAP+1B · · · CAmcP+1B

...
...

. . .
...

CAmoP+1B CA(mo+1)P+1B · · · CA(mc+mo)P+1B

 , (3.4)

which can again be constructed directly from the collected snapshots (3.1).

3.1.2 Theoretical equivalence between ERA and balanced

POD

For comparison, recall the balanced POD procedures outlined in Section 2.3.1. The

first observation is that, with X and Y given by (2.11) and (2.13), the general-

ized Hankel matrices obtained in balanced POD and ERA, respectively by (2.14)

and (3.2), are theoretically identical. The theoretical equivalence between the two

algorithms then follows immediately: First, H ′ given in (3.4) satisfies H ′ = Y ∗AX,

which implies the matrices Ar obtained in the two algorithms are identical. To show

the equivalence of Br, first note that the SVD (2.15) leads to Σ
− 1

2
1 U∗1H = Σ

1
2
1 V
∗

1 ,

which, by definition of Ur, Vr, Σr, implies Σ
− 1

2
r U∗rH = Σ

1
2
r V ∗r . (Note that it does

not imply H = UrΣrV
∗
r , since UrU∗r is not the identity.) Thus, in balanced POD,

Br = Ψ∗rB = Σ
− 1

2
r U∗r Y

∗B, which equals the first p columns of Σ
− 1

2
r U∗rH = Σ

1
2
r V ∗r ,

which is the Br given by ERA. Similarly, the SVD (2.15) leads to HV1Σ
− 1

2
1 = U1Σ

1
2
1

and then HVrΣ
− 1

2
r = UrΣ

1
2
r . Thus, in balanced POD, Cr = CΦr = CXVrΣ

− 1
2

r , which

equals the first q rows of HVrΣ
− 1

2
r = UrΣ

1
2
r , the Cr given by ERA. In summary, we

have:

Theorem 3.1.1. The reduced system matrices Ar, Br and Cr generated in balanced

POD and ERA, respectively by (2.17) and (3.3), are theoretically identical.

In model reduction procedures, balanced POD exactly balances a pair of approx-
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imate Gramians given by (2.18) (Rowley (2005); Section 3.2). This equivalence

thus describes precisely in what sense ERA is an approximate balanced truncation

method.

In practice, these two algorithms may generate slightly different reduced order mod-

els, because the Hankel matrices calculated in the two algorithms are usually not

exactly the same, due to small numerical inaccuracies in adjoint simulations, and/or

in matrix multiplications needed to compute the sub-blocks in the Hankel matrices.

In the following discussions, we compare these two algorithms in more detail.

3.1.3 Comparison between ERA and balanced POD

While ERA and balanced POD produce theoretically identical reduced-order mod-

els, the techniques differ in several important ways, both conceptually and com-

putationally. Neither ERA nor balanced POD calculate Gramians explicitly, but

balanced POD constructs approximate controllability and observability matrices X

and Y ∗, from which one calculates the generalized Hankel matrix H and balancing

transformation. Balanced POD thus incurs additional computational cost, because

one needs to construct the adjoint system (2.12), run adjoint simulations for Y ,

and then calculate each block of H by matrix multiplication. Thus we see that the

advantages of ERA include:

1. Adjoint-free: ERA is a feasible balanced truncation method for experiments,

since it needs only the output measurements from the response to an im-

pulsive input. Note that ERA has been successfully applied in several flow

control experiments (Cattafesta et al., 1997; Cabell et al., 2006), as a system-

identification technique rather than a balanced-truncation method. In prac-

tice, input-output sensor responses are often collected by applying a broad-
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band signal to the inputs, and the ARMARKOV method (Akers & Bernstein,

1997; Lim et al., 1998) can then be used to identify the Markov parameters,

or even directly the generalized Hankel matrix, from the input-output data

history.

2. Computational efficiency: For large problems, typically the most compu-

tationally expensive component of computing balanced POD is constructing

the generalized Hankel matrix H in (2.14), as this involves computing inner

products of all of the (large) primal and adjoint snapshots with each other.

ERA is significantly more efficient at constructing the matrix H in (3.2), since

only the first row and last column of block matrices, i.e., the (mc + mo + 1)

Markov parameters, need be obtained by matrix multiplication. All the other

mc × mo block matrices in H are copies of other blocks, and need not be

recomputed. For balanced POD, the matrix H is obtained by computing all

the (mc+1)×(mo+1) matrix multiplications (inner products) between corre-

sponding blocks in Y ∗ and X in (2.14). Thus, for example, if mc = m0 = 200,

the computing time needed for constructing H in ERA will be about only

1% of that in balanced POD. This reduced time could be a great advantage

for real-time model reduction and control applications. See Table 3.1 for a

detailed comparison on computational efficiency between balanced POD and

ERA in the example of the flow past an inclined flat plate.

At the same time, balanced POD also provides its own advantages:

1. Sets of bi-orthogonal primal/adjoint modes: Balanced POD provides

sets of bi-orthogonal primal/adjoint modes, the columns of Φr and Ψr. In

comparison, without the adjoint system, ERA cannot provide the primal

and adjoint modes. At best, the primal modes may be computed, using the
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first equation in (2.16), if the matrix X (2.11) is stored (in addition to the

Markov parameters). But the adjoint modes cannot be computed without

solutions of the adjoint system. In this sense, balanced POD incorporates

more of the physics of the system (the two sets of bi-orthogonal modes), while

ERA is purely based on input-output data of the system. The primal/adjoint

modes together can be useful for system analysis and controller/observer de-

sign purposes in several ways: for instance, in flow control applications, a

large-amplitude region from the most observable mode (the leading adjoint

mode) can be a good location for actuator placement. Also, as mentioned in

Section 2.4, although balanced POD is a linear method, a nonlinear system can

be projected onto these sets of modes to obtain a nonlinear low-dimensional

model. For instance, the transformation x = Φrxr, xr = Ψ∗rx can be employed

to reduce a full-dimensional nonlinear model ẋ = f(x) to a low-dimensional

system ẋr = Ψ∗rf(Φrxr). Finally, if parameters (such as Reynolds number or

Mach number) are present in the original equations, balanced POD can retain

these parameters in the reduced-order models. When the values of parameters

change, the reduced order model by balanced POD may still be valid and per-

form well; see Ilak & Rowley (2008) for an application to linearized channel

flow. More discussions following this topic will be presented in Section 3.2.

2. Unstable systems: Balanced POD has been extended to unstable sys-

tems (Ahuja & Rowley (2010); see 2.3.3). In that case, one first calculates the

right/left eigenvectors corresponding to the unstable eigenvalues of the state-

transition matrix A, using direct/adjoint simulations. Using these eigenvec-

tors, the system is projected onto a stable subspace and then balanced trun-

cation is realized for the stable subsystem. ERA for general unstable systems

is still an open problem, if adjoint operators are not available. However, we
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note that, once the stable subsystem is obtained, ERA can still be applied

to it and efficiently realize its approximate balanced truncation; see applica-

tion in Ahuja (2009). See Section 3.4 for more discussions. In Section 3.4 we

will also present a version of ERA for neutrally stable/unstable systems with

one-dimensional neutral stability/instability.

ERA for systems with high-dimensional outputs. For system with high-

dimensional outputs, such as using states as outputs, the number of rows of gen-

eralized Hankel matrices H and H ′ can be too large for SVD calculation. The

method of output projection developed in balanced POD (Rowley (2005); see Sec-

tion 2.3.2) can be directly incorporated into ERA as follows: First, run impulse

response simulations of the original system and collect Markov parameters as usual.

Then, compute the leading POD modes of the dataset of Markov parameters and

stack them as columns of a matrix Θ. Left multiply those Markov parameters by

Θ∗ to project the outputs onto these POD modes. A generalized Hankel matrix is

then constructed using these modified Markov parameters, and the usual steps of

ERA follow.

On the other hand, unlike in balanced POD, an “input projection” method (see

Section 2.3.2) for systems with high-dimensional control inputs/disturbance is not

straightforwardly available for ERA, due to the lack of the adjoint system. For

feedback control design problems, a practical treatment can be to compromise some

freedom of the control inputs, such that a smaller number of impulse responses is

needed; see Chapter 5 for more details.
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3.2 A modified ERA method using pseudo-adjoint

modes

We have seen that one of the drawbacks of ERA is that it does not provide modes

that could be used, for instance, for projection of nonlinear dynamics, or to retain

parameters in the models. More precisely, using ERA, one may still obtain primal

modes Φ1 = XV1Σ
−1/2
1 as in balanced POD (see (2.15–2.16)), as long as the state

snapshots are collected and stored in X as in (2.11). But it is not possible to obtain

the corresponding adjoint modes Ψ1 necessary for projection, without performing

adjoint simulations to gather snapshots for the matrix Y as (2.13). To find the ad-

joint modes, one idea, proposed in Or et al. (2008), is to define a set of approximate

adjoint modes using the Moore-Penrose pseudo-inverse of Φ1:

Ψ̃1 = Φ1(Φ∗1Φ1)−1. (3.5)

We will call the adjoint modes as defined above the pseudo-adjoint modes corre-

sponding to the modes Φ1. The system matrices of a r-dimensional reduced-order

model (r ≤ rank(H)) generated by this approach then read

Ar = Ψ̃∗rAΦr; Br = Ψ̃∗rB; Cr = CΦr, (3.6)

where Φr and Ψ̃r are respectively the first n× r sub-blocks of Φ1, Ψ̃1.

While this idea produces a set of modes that can be used for projection, we show

here that the resulting transformation is not a balancing transformation, and does

not produce models that are an approximation to balanced truncation. In fact,

the resulting models are closer to those produced by the standard POD/Galerkin

method: as with standard POD/Galerkin, the method performs well as long as the

most controllable and most observable directions coincide. However, when these di-
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rections differ (as is the case for many problems of interest, including the example in

Section 3.3), the method performs poorly. These systems in which controllable and

observable directions do not coincide are precisely the systems for which balanced

POD and ERA give the most improvement over the more traditional POD/Galerkin

approach.

3.2.1 Transformed approximate Gramians

First, let us recall in what sense the balanced POD procedures described in Sec-

tion 2.3 are approximations to balanced truncation. Recall that we have an approx-

imation of the controllability and observability Gramians, factored as

Wc = XX∗, Wo = Y Y ∗, (3.7)

where X and Y are the matrices of snapshots from (2.11) and (2.13). In balanced

POD, we define the primal modes as columns of Φ1 = XV1Σ
− 1

2
1 , and the adjoint

modes as columns of Ψ1 = Y U1Σ
− 1

2
1 , where U1, V1, and Σ1 are defined in (2.15). We

will assume in this section that the number of columns of X and Y (the number of

snapshots, mc and mo, respectively) is smaller than the number of rows (the state

dimension, n), which is always true for the large fluid systems of interest here.

Then balanced POD is an approximation to balanced truncation in the following

sense: as shown in the appendix of Rowley (2005) (the proof of Proposition 2), we

may construct a full (invertible, n× n) transformation

T =

[
Φ1 Φ2

]
(3.8)

by choosing Φ2 such that Ψ∗1Φ2 = 0. That is, columns of Φ2 are orthogonal to the

adjoint modes, which are columns of Ψ1. Define Ψ2 as the last n − r rows of the
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inverse transformationT−1. T−1 then has the form

T−1 =

Ψ∗1

Ψ∗2

 (3.9)

where Ψ1 is the matrix of adjoint modes. Then, Proposition 2 of Rowley (2005)

states that the transformed approximate Gramians (3.7) have the form

T−1Wc(T
−1)∗ =

Σ1 0

0 M1

 , T ∗WoT =

Σ1 0

0 M2

 , (3.10)

and furthermore the product of the approximate Gramians, in the transformed

coordinates, is

T−1WcWoT =

Σ2
1 0

0 0

 . (3.11)

In this sense, the transformation T balances the approximate Gramians as closely

as possible: the Gramians are block diagonal, and the upper-left blocks are equal

and diagonal. Furthermore, all of the states in the lower-right block (i.e., involving

M1 and M2 above) are either unobservable or uncontrollable, as they do not appear

in the product of the Gramians.

However, if the pseudo-adjoint modes Ψ̃1 are used in place of the true adjoint modes

Ψ1, then this result does not hold, as we now show. Note that, in order for the first

block of rows of T−1 to equal Ψ̃∗1, we must now define

T̃ =

[
Φ1 Φ̃2

]
(3.12)

where Ψ̃∗1Φ̃2 = 0. Since the range of Ψ̃1 equals the range of Φ1, this is then equivalent

to choosing Φ̃2 such that its columns are orthogonal to the columns of Φ1 (the primal

modes), while when the “true” adjoint modes are used, columns of Φ2 are chosen to

be orthogonal to the adjoint modes Ψ1.
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Defining Ψ̃2 by

T̃−1 =

Ψ̃∗1

Ψ̃∗2

 , (3.13)

one can then show that, as long as rank(X) ≤ rank(Y )1, the transformed Gramians

have the form

T̃−1Wc(T̃
−1)∗ =

Σ1 0

0 M̃1

 , T̃ ∗WoT̃ =

Σ1 M3

M∗
3 M̃2

 , T̃−1WcWoT̃ =

 Σ2
1 Σ1M3

M̃1M
∗
3 0

 ,
(3.14)

with

M3 = Σ1Ψ∗1Φ̃2, (3.15)

where Ψ1 = Y U1Σ
−1/2
1 are the true adjoint modes. Note that, when the true adjoint

modes are used to define the inverse (3.9), then M3 = 0, since Ψ∗1Φ2 = 0. However,

when pseudo-adjoint modes are used, then M3 is no longer zero, and in fact, can be

quite large.

An example is shown in Figure 3.1, which shows the magnitude of the elements of

the transformed Gramians, where X and Y in (3.7) are chosen at random. Note

that when true adjoint modes are used, the transformed Gramians are equal and

diagonal, while when the pseudo-adjoint modes are used, the off-diagonal blocks

of the transformed observability Gramian, and the product of the Gramians, have

significant magnitude.

Thus, when pseudo-adjoint modes are used, the resulting transformation is not,

in general, a balancing transformation: even though the upper-left blocks of the

transformed Gramians are still equal and diagonal, the transformed observability

Gramian is not block diagonal, and so its eigenvalues and eigenvectors do not cor-
1If rank(X) > rank(Y ), then the situation is worse, and the transformed controllability

Gramian is not block diagonal, nor does its upper-left block equal Σ1.
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(b) Transformed Wc, Wo and WcWo by projection using pseudo-adjoint modes

Figure 3.1: Transformed Gramian matrices: (a) using true adjoint modes (eq. (3.10–3.11)) and
(b) using pseudo-adjoint modes (eq. (3.14)). Here, X and Y in (3.7) are random matrices with
n = 200 states and mc = mo = 50 snapshots.

respond to those of the transformed controllability Gramian. Note that this is

the whole point of balanced truncation: to transform to coordinates in which the

most controllable directions (dominant eigenvectors of Wc) correspond to the most

observable directions (dominant eigenvectors of Wo). Therefore, while the approxi-

mate balanced truncation procedure described in Section 2.3.1 exactly balances the

approximate Gramians (and so does ERA), transforming by pseudo-adjoint modes

does not represent balancing in any meaningful sense.

Note that the matrix M3 describes the degree to which projection using pseudo-

adjoint modes fails to balance the approximate Gramians. This matrix equals zero if

the adjoint modes (columns of Ψ1) are spanned by the primal modes (columns of Φ1).

However, M3 is the largest when the dominant adjoint modes (columns of Ψ1) are

nearly orthogonal to the dominant primal modes (columns of Φ1). Unfortunately,

this is the case in many problems of interest, in particular those involving non-
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normality: the directions spanned by the primal modes often do not coincide with

the directions spanned by the adjoint modes.

In the next section, we apply this approach to the flow past a flat plate, and compare

it to the methods described in Section 3.1.

3.3 A numerical example: two-dimensional flow past

a flat plate

In this section, we illustrate the application of ERA as an approximate balanced

truncation method using a numerical example, by obtaining reduced-order models

of a large-dimensional fluid system. We compare the resulting models with those ob-

tained using the balanced POD method of Rowley (2005), ERA with pseudo-adjoint

modes as described in Section 3.2, and the standard POD/Galerkin method (Holmes

et al., 1996).

3.3.1 Model problem and parameters

The model problem that we consider is a two-dimensional uniform flow over a flat

plate inclined at an angle α = 25◦, at a low Reynolds number Re = 100. At these

conditions, the flow asymptotically reaches a stable steady state, the streamlines of

which are plotted in Figure 3.2. The numerical method used for all computations is

a fast formulation of the immersed boundary projection method developed by Colo-

nius & Taira (2008), and solves for the vorticity field at each time step. We treat

farfield boundary conditions using the multiple-grid scheme described in Colonius

& Taira (2008) (Section 4) with five nested grids, each with 250× 250 points. The
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Figure 3.2: Streamlines of the stable steady state past a flat plate at α = 25◦ (left), and the
contour-lines of the vorticity field obtained from an impulsive input to the actuator (right).

finest grid covers the region [−2, 3]× [−2.5, 2.5], and the largest grid covers the re-

gion [−32, 48]×[−40, 40], where lengths are non-dimensionalized by the chord of the

flat plate, whose center is located at the origin. The time step used for all simula-

tions is 0.01 (nondimensionalized by chord and freestream velocity). The numerical

model is the same as that considered in Ahuja & Rowley (2010) where balanced

POD is applied for feedback controller design to stabilize an unstable steady state

corresponding to a high angle of attack, at which there exist a stable vortex shed-

ding cycle and an unstable steady state. However, here we consider the case of a

stable steady state (with an angle of attack at 25◦), for comparison of reduced order

models.

3.3.2 Input and output

The governing equations are first linearized about the stable steady state, resulting

in a high-dimensional model in the form of equation (2.1), where the state x consists

of the discrete vorticity field at the grid points. See Ahuja & Rowley (2010) for the

details of the linearized (and adjoint) equations and their numerical formulations.

The system input u is a disturbance (or actuator) shown in Figure 3.2, modeled

as a localized body force in the vicinity of the leading edge. Its vorticity field

consists of two counter-rotating vortices, the circulation of each given by a Gaussian
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distribution; see Ahuja & Rowley (2010) for details. We consider the output to be

the entire velocity field: this is important for capturing the flow physics, and is often

needed to represent cost functions used in optimal control design. Since the output

is very high-dimensional, in ERA and balanced POD reduction procedures we use

output projection described at the end of Section 3.1, projecting the velocity field

onto the leading POD modes of the velocity snapshots obtained from the impulse

response simulation.

3.3.3 Reduced-order models

ERA is applied to the full-dimensional linearized system to construct a reduced-

order model. With a sampling period of 50 time steps, 400 adjacent pairs of Markov

parameters, as in (3.1), are collected from an impulse response simulation. Since

these parameters are a projection of the velocity fields onto the leading POD modes,

for an output projection of order m, the number of inner products required is 4m×
102 for construction of each H and H ′ (see Section 3.1.3).

For comparison, balanced POD is also used to compute the same reduced-order

models. Adjoint simulations are performed with the PODmodes as initial conditions

to compute the matrix Y of (2.13). The matricesX and Y are assembled by stacking

200 snapshots from the linearized and each of the adjoint simulations, and in turn,

the generalized Hankel matrix H = Y ∗X is computed. For an output projection of

order m, the number of inner products required to compute H is 4m × 104, which

is 50 times more than that to compute H and H ′ in total for ERA.

We also compare reduced-order models using standard POD modes, and ERA with

pseudo-adjoint modes, as described in Section 3.2. The first 100 primal modes are

used to compute the pseudo-adjoint modes..
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Steps in computing Approximate time (CPU hours)
reduced-order models balanced POD ERA
1. Linearized impulse response 2 4
2. Computation of POD modes 2 2
3. Adjoint impulse responses 30 -

(10 in number)
4. Computation of the Hankel matrix 7 0.2
5. Singular value decomposition 0.05 0.05
6. Computation of modes 1 -
7. Computation of models 0.02 0.02

Table 3.1: Comparison of the computational times required for various steps of the algorithms
using balanced POD and ERA. The times are given for a 10-mode output projected system.
The Hankel matrices are constructed using: 200 state-snapshots from each linearized and adjoint
simulations for balanced POD, and 400 Markov parameters (outputs) for ERA.

For the given case, a comparison between the computational cost using ERA and

using balanced POD is shown in Table 3.1. Results verify that ERA substantially

improves computational efficiency in forming reduced-order models.

Next, we compare the reduced-order models. Figure 3.3 shows the leading two

primal modes and true adjoint modes from balanced POD, compared with the

leading two pseudo-adjoint modes. The pseudo-adjoint modes look quite different

from the true adjoint modes, and the flow structures actually more closely resemble

the leading primal modes. This result is not surprising, since the pseudo-adjoint

modes are always linear combinations of the snapshots from the primal simulations,

while the true adjoint modes are linear combinations of snapshots from adjoint

simulations. Following the discussion in the last section, the poor approximation

of the adjoint modes suggests that the pseudo-adjoint modes may produce poor

reduced order models for this example, as we will verify below.

Figure 3.4 shows the diagonal values of the controllability and observability Grami-

ans, as well as the empirical Hankel singular values, for reduced-order models ob-

tained from three different methods: ERA, balanced POD, and ERA with pseudo-
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Figure 3.3: The first two primal and adjoint modes computed using balanced POD, and the
first two pseudo-adjoint modes computed using (3.5) and the first 100 primal modes. Modes are
illustrated using contour plots of the vorticity field.

adjoint modes. The models obtained using ERA are more accurate in the sense

that the three sets of curves are almost indistinguishable, for all orders of output-

projection. However, for balanced POD, the diagonal values of the observability

Gramians are accurate only for certain leading modes, the number of which de-

pends on and increases with the order of output projection. This inaccuracy can be

attributed to a slight inaccuracy in the adjoint formulation, which in turn results

from an approximation in the multi-domain approach used to treat farfield boundary

conditions in the immersed boundary method of Colonius & Taira (2008); see Ahuja

& Rowley (2010) for more details. Thus, ERA is advantageous as it does not need
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Figure 3.4: Comparison of Gramians computed using (a) ERA, (b) balanced POD, and (c) ERA
with pseudo-adjoint modes: The empirical Hankel singular values ( ) and the diagonal ele-
ments of the controllability ( , ◦) and observability ( , ×) Gramians with different order
of modes (e.g., 4, 10, 20) in output projection.

any adjoint simulations and results in more balanced Gramians. On the other hand,

ERA with pseudo-adjoint modes generates poorly balanced controllability and ob-

servability Gramians, as shown in Figure 3.4(c). This is because the leading primal

modes and adjoint modes are supported very differently in the spatial domain,

and thus the pseudo-adjoint modes, based on linear combination of leading primal

modes, poorly approximate the true adjoint modes.

3.3.4 Model performance

We can quantify the performance of the various reduced-order models by computing

error norms. One such measure is the 2-norm of the error between the impulse

response of the full linearized system, denoted G(t), and that of a reduced order
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model with r modes, denoted by Gr(t). We first compute the 2-norm of the error

between the full system (with the entire velocity field as output) and the output-

projected system of order 20, shown as the horizontal dashed line in Figure 3.5. This

is the lower error bound for any reduced order model of the given output-projected

system. Results shown in Figure 3.5 indicate that the first several low-order models

obtained by ERA and balanced POD generate slightly different 2-norms of error,

presumably because of the slight inaccuracy in the adjoint, mentioned previously.

For most orders, however, they agree, and both error norms converge to the lower

bound as the order of the model increases. By running more simulation tests, we

observe that with higher-order output projections, ERA and balanced POD error

norms converge to each other faster when the order of the model increases.

Figure 3.5 also shows the 2-norm error plots for models by ERA with pseudo-adjoint

modes, using 20-mode output projection, and for models computed using standard

POD. Errors of models by ERA with pseudo-adjoint modes converge to the lower

bound much slower than ERA/balanced POD. Errors of models by POD do not

start converging until more than nearly 20 modes are used, and they converge to

a larger error bound than ERA/balanced POD, again because POD models do not

capture the input-output dynamics as well as balanced truncation based models.

In the time domain, a comparison of the transient response to an impulsive distur-

bance is shown in Figure 3.6, in which the first output of the reduced-order model

is plotted, for a 16-mode model determined by ERA, and for 30-mode models by

POD and ERA with pseudo-adjoint modes . The 16-mode ERA model already accu-

rately predicts the response for all times. The higher-dimensional, 30-mode models

using POD and pseudo-adjoint modes are both stable, and perform reasonably well;

however, they over-predict the response, particularly after time t ≈ 80.
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Figure 3.6: The first output, output a1, from the impulse-response simulation: results of full-
simulation ( , ◦), compared with those of 16-mode reduced order model by ERA( , ×),
30-mode model by ERA with pseudo-adjoint modes( , O) , and 30-mode model by
POD( ,4). A 20-mode output projection is used in ERA and ERA with pseudo-adjoint
modes.

We also compare the frequency response of reduced-order models to that of the full

system, or more precisely, the full output-projected system. One way to represent

the response of a single-input multiple-output system is by a singular-value plot, a

plot of the maximum singular value of the transfer function matrix as a function

of frequency. To generate this plot, a very long simulation of 5 × 105 time steps

for the full system is performed, with a random input sampled from a uniform

distribution in the range (−0.5, 0.5). The output snapshots are projected onto
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leading POD modes. The magnitude of the transfer function is then computed

from the cross spectrum of the input and outputs (using the Matlab command

tfestimate). Finally, singular-value plots for the full output-projected systems are

obtained, with a typical case shown in Figure 3.7.

A typical set of singular-value plots of different reduced order models are presented

in Figure 3.7. Results shown in the figure indicate that ERA and balanced POD 30-

mode models, are almost identical, and are close to the corresponding full output-

projected system. In comparison, Figure 3.7 also shows singular-value plots for

30-mode models by ERA with pseudo-adjoint modes and by POD. Note that for

computational feasibility, here the output of the POD model is the first twenty

reduced states, i.e., the full-dimensional output of the POD model are projected

onto the leading twenty POD modes. The frequency responses of the models by

POD and ERA with pseudo-adjoint modes capture the resonant peak, but do not

match well for frequencies far away from the resonant peak. These two models both

generate spurious peaks in the frequency range of [0.1, 2].
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3.4 ERA for neutrally stable/unstable systems

From the discussion in Section 3.1, we know ERA is in general not directly applicable

to unstable systems if the adjoint operator is not available. That is because Markov

parameters will diverge in impulse responses of the original LTI system (2.1). Fur-

thermore, we cannot apply the method of 2.3.3, as the projection in (2.21) is not

available, since the unstable left eigenvectors of A are unknown. One solution to

the problem is the observer/controller identification (OCID) introduced in Juang

(1994). In OCID, one first designs a feedback control to stabilize the system, and

then collects Markov parameters for the closed-loop, stable system. The Markov

parameters for the original unstable system are then obtained using closed-loop

Markov parameters and the known open-loop forcing and feedback control signals.

A recent application of OCID/ERA in feedback control design for cavity flow os-

cillations is given in Illingworth (2009). However, to obtain a stabilizing feedback

control beforehand is often non-trivial. Indeed, if this were simple, one might not

need the reduced-order models.

In this section we propose an algorithm to generalize ERA to systems with one

dimension of neutral stability/instability. This algorithm will be a counterpart

of balanced POD for unstable systems (Section 2.3.3): it decomposes the system

dynamics into stable and unstable parts, and balanced truncation is performed only

on the stable part. Again, the main feature of this version of ERA is that no adjoint

data is needed, as in the original ERA.

We are particularly interested in the one-dimensional neutral stability/instability

case, since in many physical applications when a key parameter crosses the bifur-

cation point, only one stable eigenvalue of the corresponding steady state becomes

unstable. Furthermore, as we will discuss in the following chapters, the case of
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one-dimensional neutral stability is typical in linearized periodic systems around

asymptotically stable orbits, by Floquet theory (Hartman, 1964). These neutrally

stable systems are structurally unstable (Guckenheimer & Holmes, 1983) in the

sense that with perturbations the neutrally stable eigenvalue becomes either stable

or unstable. The perturbed systems are thus either stable or of one-dimensional

instability.

In the following discussions, for the case of one-dimensional neutral stability/insta-

bility, we show that it is computationally feasible to approximately project a state

onto Es(A), the stable subspace of A, without knowing either the unstable left

eigenvector nor the projection Ps explicitly.

Let v, w ∈ Cn×1 be the right and left unstable eigenvector of A. By the power

method (Horn & Johnson, 1985), v and w are approximated by the recursive formula

vm+1 =
1

(v∗mvm)1/2
Avm;

wm+1 =
1

(w∗mwm)1/2
A∗wm,

(3.16)

with m = 0, 1, 2, . . ., and any v0 /∈ Es(A), w0 /∈ Es(A∗). For a large enough m,

v ≈
m−1∏
i=0

(
1

(v∗mvm)1/2

)
Amv0 := cv(m)Amv0;

w ≈
m−1∏
i=0

(
1

(w∗mwm)1/2

)
(A∗)mw0 := cw(m) (A∗)mw0.

(3.17)

A projection onto Es(A) in the form (2.21) reads

Ps = In×n − vw∗

w∗v
. (3.18)

Thus, for any vector α ∈ Cn not in Es(A) nor Es(A∗), choose v0 = w0 = α, and we

have

Psα =

(
In×n − vw∗

w∗v

)
α ≈ α− α∗Amα

α∗A2mα
Amα, (3.19)
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where Amα and A2mα can be obtained by a control free simulation of 2m steps

of the original system (2.1), with initial condition α. Thus, even though the left

eigenvector w and projection Ps are not explicitly known, we can compute PsB by

letting α in (3.19) is equal to B (first consider a single-input case). Then, by (3.1)

and projection properties P2
s = Ps and PsA = APs, the Markov parameters of the

projected system (2.22) are

CPsAiPsB = CAiPsB, i = 0, 1, P, P + 1, . . . . (3.20)

Let Ar, Br, Cr be the reduced matrices for the projected system (2.22) determined

by ERA. By using the equivalence between ERA and balanced POD for stable

systems (indeed, the stable dynamics of A here), the (r + 1)-dimensional reduced-

order model of the original LTI (2.1) is in the form (2.25) where Tu, Su are now

replaced by v, w, and

Ψ∗1rAΦ1r = Ar; Ψ∗1rB = Br; CΦ1r = Cr.

See Appendix A for a proof of the above relation . With the approximation (3.17),

the final (r + 1)-dimensional reduced-order model by ERA reads

xr(k + 1) =

Ar 0

0
w∗0A

2m+1v0
w∗0A

2mv0

xr(k) +

 Br

w∗0A
mB

cv(m)w∗0A
2mv0

u(k);

y(k) =

[
Cr cv(m)CAmv0

]
xr(k).

(3.21)

The value of w∗0A
2m+1v0

w∗0A
2mv0

is an approximate solution of the unstable eigenvalue of A.

Above is an extended ERA approach, as no modes are computed and no adjoint

information is needed. To save computational cost, one can choose v0 = w0 = B,

such that the terms Amv0, A2mv0, AmB have all been obtained during computations

of PsB. The scaling factor cv(m) can also be calculated in those computations. For
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a multiple-input case where B has more than one column, one repeats the procedure

in (3.19) once for each control input to compute PsB.

Equivalence between ERA and balanced POD for the one-dimensional

instability case. Theoretically, the reduced-order model by ERA (3.21) will be

identical to that by balanced POD (2.25), if in balanced POD the left/right eigen-

vector of A are also approximated by the power method as in (3.17) with the same

initial guesses v0 and w0, and the projection matrix is obtained by (2.21), with Su, Tu

replaced by w, v. However, if other more efficient methods, e.g. Arnoldi iteration

method, are used as eigensolvers in balanced POD, then the resulting models will

be different and the computational cost of projection will also be higher in ERA

than in balanced POD.

The algorithm proposed here can potentially be applied to systems with higher

dimensions of instability by iterating the above approach for the several leading

unstable eigenvectors. However, this approach will be computationally expensive

due to the iteration procedure. Investigating more efficient ERA algorithms for

systems with higher dimensions of instability will be an interesting direction for

future work.

3.5 Summary

For linear time-invariant systems, we report that, theoretically, the eigensystem

realization algorithm (ERA) and snapshot-based approximate balanced truncation

(balanced POD) produce exactly the same reduced order models. This equivalence

implies that ERA exactly balances a pair of approximate Gramians and thus can be

regarded as an approximate balanced truncation method. Compared to balanced
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POD, the main features of ERA are that it does not require data from adjoint sys-

tems and therefore can be used with experimental data; furthermore, its construc-

tion of the generalized Hankel matrix is computationally an order-of-magnitude

cheaper than balanced POD. Balanced POD does have its own advantages, how-

ever: unlike ERA, it produces sets of bi-orthogonal modes that are useful for system

analysis and controller/observer design purposes. We also examine a modified ERA

approach in which one constructs sets of bi-orthogonal modes without using adjoint

information, using a matrix pseudo-inverse, as in Or et al. (2008). Although this

approach provides sets of bi-orthogonal modes (primal/pseudo-adjoint modes), in

general it can not be regarded as an approximate balanced truncation method, since

it does not balance the approximate Gramians.

We have demonstrated the methods on an model problem consisting of a disturbance

interacting with the flow past an inclined flat plate. As expected, balanced POD

models perform nearly identically to ERA models. The small differences result

because the adjoint simulation required for balanced POD is not a perfect adjoint

at the discrete level. Both procedures work significantly better than standard POD

models, or ERA models using pseudo-adjoint modes for projection.

Finally, we report a version of ERA that can be applied to systems with one-

dimensional instability. Unlike balanced POD, ERA for linear systems with unstable

dimensions larger than one (but still small, at the order of 101∼2) is still an open

problem. In the next chapter we will also present a generalized version of ERA for

linear, time-periodic systems.
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Chapter 4

Snapshot-based balanced truncation

for linear time-periodic systems

In this chapter we develop snapshot-based approximate balanced truncation meth-

ods for linear, time-periodic (LTP) systems in detail. As promised in Section 2.4,

these algorithms are generalizations of the balanced POD algorithm for LTI systems.

These algorithms will be applied in the next Chapter for reduced-order modeling

and observer-based feedback control for periodic orbits, i.e., for vortex shedding

cycles in a flow past an inclined plate with periodic open-loop forcing. Inspired by

the adjoint-free balanced POD (ERA) for LTI systems we discussed in Chapter 3,

here we will also construct ERA algorithms for linear time-periodic systems.

4.1 Motivation and background

Since von Kármán’s pioneering papers on the vortex street behind a bluff body (von

Kármán, 1911, 1912), periodic solutions in fluid dynamics have been a focus of re-
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search interest, thanks to the rich dynamics, close relations to turbulence, and

interest in control of the orbits. Recent examples include periodic shedding in the

wake of a bluff body (Barkley & Henderson, 1996; Noack et al., 2003), stable/un-

stable periodic solutions within plane Couette turbulence (Kawahara & Kida, 2001;

Viswanath, 2007), and systems subject to periodic open-loop forcing, e.g., to reduce

the drag in a channel flow (Min et al., 2006), or to increase lift or lift-to-drag ratio

for wings (Joe et al., 2008; Taira et al., 2010). In particular, in the area of flow

control, recent simulation results presented in Joe et al. (2008) and Taira et al.

(2010) show that open-loop, periodic body force actuation at the leading/trailing

edge of an inclined wing can result in high-lift, stable vortex shedding cycles. Fur-

thermore, results in those works indicate the possible existence of high-lift, unstable

orbits. Encouraged by these results, we are interested in developing model-based

feedback control for these periodic systems to expedite the stabilization of stable

vortex shedding cycles, to enlarge their region of attraction, and to stabilize the

unstable cycles, if they exist. As discussed in the previous chapters, to realize this

goal, it is essential to first obtain reliable reduced-order models for the linearized

periodic systems to capture the linear input-output dynamics, and balanced trun-

cation is again our choice because it provides an a priori input-output error bound,

and guarantees stability of the reduced-order model if the full system is stable.

Early theoretical work on balanced truncation of linear time-varying/periodic sys-

tems includes Verriest & Kailath (1983); Shokoohi et al. (1983). For exponentially

stable linear periodic systems, several algorithms based on exact balanced trunca-

tion (Lall et al., 1998; Longhi & Orlando, 1999; Varga, 2000; Varga & Van Dooren,

2001; Sandberg & Rantzer, 2004; Farhood et al., 2005) are available for problems

with moderate dimensions. For systems with high-dimensional states, low-rank

methods have been presented in Chahlaoui & Van Dooren (2006); Kressner (2003).
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However the recursive low-rank Gramian algorithm (Chahlaoui & Van Dooren, 2006)

and the methods presented in Kressner (2003) will give poor approximations for

poorly balanced systems. The recursive low rank Hankel algorithm (Chahlaoui &

Van Dooren, 2006) overcomes this problem. However it is not tractable for systems

with high-dimensional outputs. The neutrally stable and unstable cases (see below)

were not considered in these algorithms.

In this chapter, we introduce three snapshot-based algorithms computing approx-

imate balanced truncations for linear time-periodic systems: the lifted balanced

POD algorithm(Section 4.2), the periodic balanced POD algorithm(Section 4.3),

and the corresponding lifted/periodic ERA algorithm (Section 4.5.1). These algo-

rithms are applicable to systems with high-dimensional (at the order of 105∼7) states

and outputs, and being neutrally stable or unstable. Again, the balanced POD and

ERA algorithms are, by construction, equivalent in the sense that they yield identi-

cal reduced-order models. Two numerical examples are shown for validation of the

algorithms in Section 4.4. In the next chapter we will further show how to apply

the lifted balanced POD/ERA algorithms in feedback control design for a problem

of two-dimensional flow past a flat plate with periodic forcing.

The results in Section 4.2 and Section 4.4 are also reported in Ma et al. (2010b)

and Ma & Rowley (2008).
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4.2 Snapshot-based balanced truncation for peri-

odic systems, using a lifting approach

We consider linear discrete-time periodic systems

x(k + 1) = A(k)x(k) +B(k)u(k); y(k) = C(k)x(k), (4.1)

with state x ∈ Cn, input u ∈ Cp, output y ∈ Cq, and T -periodic matrix coefficients

A(·), B(·), C(·). The transition matrix in (4.1) mapping the state from time i to

time j is F(j,i) := A(j − 1)A(j − 2) · · ·A(i) for j > i, where F(i,i) = In×n. Periodicity

implies that the eigenvalues of F(j+T,j) are independent of j. The neutrally stable

and unstable cases where the spectral radius ρ(F(j+T,j)) = 1 and ρ(F(j+T,j)) > 1,

respectively, will be discussed later. For now, assume the system is exponentially

stable, i.e., ρ(F(j+T,j)) < 1. The controllability and observability Gramians of (4.1)

are then well defined and are T -periodic in j (Varga, 2000):

Wc(j) :=

j−1∑
i=−∞

F(j,i+1)B(i)B(i)∗F ∗(j,i+1);

Wo(j) :=
∞∑
i=j

F ∗(i,j)C(i)∗C(i)F(i,j),

(4.2)

where ∗ denotes the adjoint operator.

4.2.1 The lifting approach

A standard lifting procedure (Meyer & Burrus, 1975) recasts (4.1) in T input-output

equivalent LTI forms:

x̃j(t+ 1) = Ãjx̃j(t) + B̃jũj(t);

ỹj(t) = C̃jx̃j(t) + D̃jũj(t),

(4.3)
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where j is fixed and parameterizes the lifted systems, and the state is periodically

sampled from (4.1) as

x̃j(t) = x(j + tT ).

In (4.3), the augmented inputs and outputs are

ỹj(t) =



y(j + tT )

y(j + tT + 1)

...

y (j + (t+ 1)T − 1)



ũj(t) =



u(j + tT )

u(j + tT + 1)

...

u (j + (t+ 1)T − 1)


,

(4.4)

and the constant matrices are

Ãj = F (j + T, j) = A(j + T − 1)A(j + T − 2) · · ·A(j)

B̃j =
[
F (j + T, j + 1)B(j), · · · ,

F (j + T, j + T − 1)B(j + T − 2), B(j + T − 1)
]

C̃j =



C(j)

C(j + 1)F (j + 1, j)

...

C(j + T − 1)F (j + T − 1, j)



D̃j =



0 0

Fj,2,1 0

...
...

. . .

Fj,T,1 Fj,T,2 · · · 0


,

(4.5)
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where Fj,i,k = C(j + i − 1)F (j + i − 1, j + k)B(j + k − 1). The lifted setting in

form (4.3) is a time-T map from state x(j + tT ) to state x(j + tT + T ) in the

original time-periodic setting in form (4.1). The matrix D̃j reflects the effect of

control inputs in the time period [j+ tT, j+ tT +T − 1] to the outputs in the same

period. The dimensions of the input and output of the lifted setting are Tp and Tq,

compared to q and p in the original periodic setting.

Assuming exponential stability, the controllability and observability Gramians of

the j-th lifted LTI system are

W̃jc =
∞∑
i=0

ÃijB̃jB̃
∗
j

(
Ãij

)∗
; W̃jo =

∞∑
i=0

(
Ãij

)∗
C̃∗j C̃jÃ

i
j. (4.6)

The following statement follows from the periodicity of (4.1).

Proposition 4.2.1. W̃jc = Wc(j) and W̃jo = Wo(j) for all j = 1, . . . , T .

Proposition 4.2.1 enables us to apply LTI balanced truncation, in particular bal-

anced POD (Rowley, 2005), in the lifted domain, while keeping all Gramian com-

putations carried in the original periodic setting, where the dimensions of the input

and output are much lower.

4.2.2 Factorization of empirical Gramians using snapshot-

based matrices

In snapshot-based methods (e.g. Lall et al. (2002); Rowley (2005)), the exact Grami-

ans are substituted by approximate empirical Gramians where the infinite series in

(4.2) are truncated ( Chahlaoui & Van Dooren (2006); Verriest & Kailath (1983);
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Shokoohi et al. (1983)) at a finite m <∞:

Wce(j;m) :=

j−1∑
i=j−m

F(j,i+1)B(i)B(i)∗F ∗(j,i+1);

Woe(j;m) :=

j+m−1∑
i=j

F ∗(i,j)C(i)∗C(i)F(i,j).

(4.7)

When the system is exponentially stable, truncation is justified by an induced norm

bound on the truncation error given below:

Lemma 4.2.2. Assume that the linear periodic system (4.1) is exponentially stable

and let m be an integer multiple of the period, m = l T . Then the following induced

norm error bounds hold:

‖Wc(j)−Wce(j;m)‖
‖Wc(j)‖ 6 ‖F l

(j+T,j)‖2;

‖Wo(j)−Woe(j;m)‖
‖Wo(j)‖ 6 ‖F l

(j+T,j)‖2.

(4.8)

Proof. By Proposition 4.2.1, Wc(j) = W̃jc. Also, by construction Wce(j;m) =

W̃jce(l), where W̃jce(l) :=
∑l

i=0 Ã
i
jB̃jB̃

∗
j

(
Ãij

)∗
is the empirical controllability Gramian

of the lifted LTI system at time j. Thus, Wc(j)−Wce(j;m) = W̃jc−W̃jce(l). Under

any induced norm, ‖W̃jc − W̃ce(l)‖ =
∥∥∥∑∞i=l ÃijB̃jB̃

∗
j

(
Ãij

)∗∥∥∥ =
∥∥∥ÃljW̃jc

(
Ãlj

)∗∥∥∥ 6
‖Ãlj‖‖W̃jc‖

∥∥∥(Ãlj)∗∥∥∥ = ‖Ãlj‖2‖W̃jc‖. The result for the observability Gramian fol-

lows similarly.

Empirical Gramians can be factorized using snapshot-based matrices.

Proposition 4.2.3. Let B(i), i = 1, . . . , p, denote the i-th column of B, and let

X(i) ∈ Cn×m be defined as

X(i)(j;m) :=
[
F(j,j−m+1)B

(i)(j −m), F(j,j−m+2)B
(i)(j −m+ 1), . . . , B(i)(j − 1)

]
for each j = 1, . . . , T and the horizon length m. Finally, define the matrix of
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snapshots

X(j;m) :=
[
X(1)(j;m), . . . , X(p)(j;m)

] ∈ Cn×mp. (4.9)

Then Wce(j;m) = X(j;m)X(j;m)∗.

Employing the T -periodicity of B(·) and F (·, ·)(e.g. F(j,j−m+T+1) = F(j−T,j−m+1)),

one observes that the m columns of X(i)(j;m) are snapshots taken at time j −
kT , k = 0, . . . , l − 1 (assuming m = lT ), in T impulse-response simulations of

system (4.1), each initiated at x(j −m+ t) = B(i)(j −m+ t− 1), t = 1, . . . , T . See

an illustration in Figure 4.1(a), where the snapshots (columns of X(i)(j;m)) are the

black dots at times j −m+ T, j −m+ 2T, . . . , j. In total, Tp simulations and mp

snapshots are needed to construct X(j;m).

time = t(j −m + 1)

ic = [B(j −m + T − 1)](i)

· · ·

· · ·
...

· · · } impulse-response
simulations

T

t(j −m + T ) t(j − 1) t(j)

ic = [B(j −m)](i)

(a)

· · ·

· · ·
...

· · ·

time = t(j + 1) t(j + T ) t(j + m)t(j + m− 1)

} impulse-response
simulations

T adjoint

ic= [C(j + m− T )∗](i)

ic= [C(j + m− 1)∗](i)

(b)

Figure 4.1: (a) The T impulse-response simulations corresponding to the i-th control input. (b)
The T adjoint impulse-response simulations corresponding to the i-th adjoint control input.
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An analogous observation applies to the empirical observability Gramian.

Proposition 4.2.4. Let C(i), i = 1, . . . , q, denote the i-th row of C, and let Y (i) ∈
Cn×m be defined as

Y (i)(j;m) :=
[
F ∗(j+m−1,j)C

(i)(j +m− 1)∗, F ∗(j+m−2,j)C
(i)(j +m− 2)∗, . . . , Ci(j)∗

]
for each j = 1, . . . , T and the horizon length m. Finally, let

Y (j;m) :=
[
Y (1)(j;m), . . . , Y (q)(j;m)

] ∈ Cn×mq. (4.10)

Then Woe(j;m) = Y (j;m)Y (j;m)∗.

As illustrated in Figure 4.1(b), Y (j,m) can be obtained from impulse-response

simulations of the adjoint system

z(k + 1) = Â(k)z(k) + Ĉ(k)v(k) (4.11)

where k = j, . . . , j +m− 1, z ∈ Cn, v ∈ Cq,

Â(k) := A(2j +m− k − 1)∗

Ĉ(k) := C(2j +m− k − 1)∗.

The columns of Y (i)(j;m) are the snapshots (the black dots in the plot) taken at

times j + T, j + 2T, . . . , j + m. In total, Tq adjoint simulations and mq snapshots

taken at time j + kT , k = 1, . . . , l are needed to construct Y (j;m).

4.2.3 Balanced truncation using the method of snapshots

Fix a time index 1 6 j 6 T for lifting. Assume one has computed X(j;mc) and

Y (j;mo), the factors of the empirical Gramians Wce(j;mc),Woe(j;mo) (allowing

mc 6= mo). By Lemma 4.2.2 and Proposition 4.2.1, they are in fact factors that

approximate the Gramians of the j-th lifted LTI system (4.3), as given in (4.6).
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The method of snapshots presented in Rowley (2005) then leads to approximate

balanced truncations in the lifted LTI setting, as follows: Compute the SVD

Y (j;mo)
∗X(j;mc) = UΣV ∗, (4.12)

and the transformations Φ, Ψ that exactly balance the empirical Gramians of the

lifted system

Φ = X(j;mc)V Σ−1/2; Ψ = Y (j;mo)UΣ−1/2. (4.13)

Let Φr,Ψr be the first r columns of Φ and Ψ, comprising the leading bi-orthogonal

balancing and adjoint modes of the j-th lifted system. (Note that to simplify no-

tation, the dependence of U , V , Σ, Φ, Ψ, Φr, Ψr on j is suppressed.) The reduced

state z̃j(t) ∈ Cr is defined by the projection z̃j(t) = Ψ∗rx̃j(t) = Ψ∗rx(j + tT ) and

the estimated full state x(j + tT ) ≈ Φrz̃j(t). The reduced model of order r, in the

lifted setting, reads

z̃j(t+ 1) = Ψ∗rÃjΦrz̃j(t) + Ψ∗rB̃jũj(t);

ỹj(t) = C̃jΦrz̃j(t) + D̃jũj(t),

(4.14)

In simulations, the reduced output equation in (4.14) shall be lowered to the original

periodic setting: For each i, i = 1, · · ·T ,

y(j + tT + i− 1) = C(j + i− 1)F (j + i− 1, j)Φrz̃j(t)

+
T∑
k=1

D̃j(i,k)u(j + tT + k − 1),
(4.15)

where D̃j(i,k) denotes the entry of D̃j at i-th row and k-th column.

Input-output equivalence of the original system (4.1) to the lifted LTI (4.3) means

that the reduced-order LTI system approximates the input-output dynamics of the

linear periodic system (4.1). Note that improved numerical stability of the compu-

tations above can be achieved by first representing each of the factors X(j;mc) and
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Y (j;mo) in terms of leading orthogonal bases, obtained, e.g., by SVD or by Krylov

methods.

“Un-lift” the reduced LTI system. The reduced-order lifted system updates

the state only once every period. However, as described in Ma et al. (2010b), it

is still possible to “lower” the system to a periodic one, supposing that the bal-

ancing requirement is limited to the periodically sampled system (i.e., to the lifted

system with the fixed j). The following inductive procedure is one possible solu-

tion: Consider T -periodic sets {Φ(k)}Tk=1 and {Ψ(k)}Tk=1. First, fix Φ(j) = Φr and

Ψ(j) = Ψr. Let P (j+i) be the rank-r orthogonal projection on Im(F(j+i,j)Φ(j)) and

let Φ(j + i) = Ψ(j + i) ∈ Cn×r, i = 1, . . . , T −1, satisfy P (j+ i) = Φ(j+ i)Ψ(j+ i)∗.

Then a periodic realization of the reduced order system can be defined by Ar(k) :=

Ψ(k + 1)∗A(k)Φ(k), Br(k) := Ψ(k + 1)∗B(k) and Cr(k) := C(k)Φ(k). This is

because, by construction, Ar(j + T − 1) · · ·Ar(j) = Ψ∗rÃjΦr, the reduced state

transition matrix given in the reduced-order lifted system (4.14).

4.2.4 Output projection method

The lifting approach generates a LTI system (4.3) whose dimension of output is T

times larger than that in the periodic setting (4.1); see (4.4). The number of adjoint

simulations (see Section 4.2.2) required for the above reduction procedures can thus

be untenable, if the period T is large, and/or if the original output in the periodic

setting is of high dimension. The latter case happens, for instance, when the original

output is set identical to the entire state for system dynamics analysis or full-state

feedback control design. A generalization of output projection method (Rowley

(2005); also see Section 2.3.2) for periodic systems is therefore necessary.
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In the LTI case, Rowley (2005) proposed projecting the output on a few leading

POD modes of the output dataset formed by the impulse response simulations. The

dimension of the output space is thus reduced by invoking the kinematic significance

of POD modes, while at that same time we avoid the potential weakness of standard

POD/Galerkin models that use POD modes as dynamic states. Here we extend the

output projection method to periodic systems.

The input-output map of the j-th lifted LTI system (4.3) is determined by the

Tq×Tp dimensional impulse-response matrices {G̃j(t)}. The output-projected lifted

system

x̃j(t+ 1) = Ãjx̃j(t) + B̃jũj(t);

ỹj(t)P = P̃j

(
C̃jx̃j(t) + D̃jũj(t)

)
,

(4.16)

is designed to best approximate the exact impulse response of the original lifted

system. Ideally, the low-rank orthogonal projection matrix P̃j should thus satisfy

P̃j = argmin
{P̃j∈Pr̃op}

(
∞∑
t=0

||G̃j(t)− P̃jG̃j(t)||2
)
, (4.17)

where Pr̃op is the space of orthogonal projections of rank r̃op � Tq. When the

Frobenius norm || · ||F is used in (4.17), it becomes a standard projection problem.

Its solution is P̃j = Θ̃jΘ̃
∗
j , where the columns of Θ̃j are the leading r̃op POD modes

of the datasets {G̃j(i)}∞i=0.

As described above, the optimal P̃j is generically a full matrix. Thus, ỹj(t)P =

P̃j ỹj(t) is no longer the lifted representation of the output of a periodic system, and

the projected system cannot be “lowered". Rather, for each t, the value of ỹj(t)P

is determined by the original response along an entire period. In particular, we

lose the ability to compute the Gramian in the original periodic setting. To avoid

this problem we impose on (4.17) the additional condition that the projection has
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a block diagonal form

P̃j = diag
[
P̃j(1), · · · , P̃j(T )

]
, (4.18)

where each q× q diagonal block is a rank-rop orthogonal projection with r̃op = ropT .

This enables to lower the projected lifted system (4.16) to an output-projected time-

periodic system

x(k + 1) = A(k)x(k) +B(k)u(k);

y(k)P = P (k)C(k)x(k),

(4.19)

where the T -periodic, rank-rop orthogonal projection P is defined by P (j + tT + i) =

P (j + i) := P̃j(i + 1), i = 0, . . . , T − 1. The constrained optimization prob-

lem (4.17) and (4.18) can be solved as unconstrained problems in the periodic set-

ting. First, rewrite G̃j(t) as

G̃j(t) =

[
G(j + tT, j)> · · · G(j + (t+ 1)T − 1, j)>

]>
where each block G(j + tT + i, j), i = 0, . . . , T − 1, is a q × Tp matrix. For the

periodic system (4.1), define each G(j + tT + i, j) as its impulse-response matrix

at time (j + tT + i), since it includes all different responses at the current time

respectively to corresponding unit impulse inputs during the whole time period

[j, j + T − 1]. This definition matches that in Bamieh & Pearson (1992). We have

Proposition 4.2.5. Using the Frobenius norm, the solution of the constrained op-

timization problem (4.17) and (4.18) is equivalent to the combined solution of the

problems

P̃j(i+ 1) = argmin
{P̃j(i+1)∈Prop}

(
∞∑
t=0

∥∥∥G(j + tT + i, j)− P̃j(i+ 1)G(j + tT + i, j)
∥∥∥2

F

)
,

for i = 0, . . . , T − 1.

Proof. By direct calculation, and the linearity of the trace operator.
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The computation of the structurally constrained optimal P̃j of the form (4.18) is thus

reduced to T unconstrained optimization problems for each P (k), k = j, · · · , j +

T − 1, in the periodic setting. Following standard POD rationale, the solutions are

P (k) = Θ(k)Θ(k)∗, where the rop columns of Θ(k) are the leading POD modes of

the dataset {G(tT + k, j)}∞t=0, and the approximation error between the output-

projected system and the original system is

∞∑
t=0

||G̃j(t)− P̃jG̃j(t)||2F =

j+T−1∑
i=j

∞∑
t=0

∥∥∥G(tT + i, j)− P̃j(i+ 1)G(tT + i, j)
∥∥∥2

F

=

j+T−1∑
i=j

q∑
m=rop+1

λ(i)m,

where for each i, λ(i)1, . . . , λ(i)q are the descending-ordered eigenvalues
∑∞

t=0G(tT+

i, j)G(tT + i, j)∗. The POD modes can be computed by the method of snapshots

Sirovich (1987), applied to datasets comprising the columns of the impulse-response

matrices {G(tT + i, j)}st=0. Conveniently, provided that mc > (s+ 1)T , periodicity

implies that data required to compute these snapshots have already been obtained

during the computation of X(j;mc), as described in Section 4.2.2. For instance, the

matrix C(j)X(j;mc) includes the columns of matrices {G(j + tT, j)}mc/Tt=1 .

The empirical factor Y (j;mo) of the corresponding observability Gramian

WoP (j) =
∞∑
i=j

F ∗(i,j)C(i)∗Θ(i)Θ(i)∗C(i)F(i,j)

is needed in order to realize the snapshot-based approximate balanced truncation

for the output-projected system (4.19). This is accomplished with only Trop (rop �
q) impulse-response simulations of the projected adjoint time-periodic system that

corresponds to the output-projected system (4.19), i.e.

z(k + 1) = Â(k)z(k) + ĈP (k)vrop(k) (4.20)
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where k = j, · · · , j +mo − 1, the control input vrop is rop-dimensional, and

Â(k) = A(2j +mo − k − 1)∗,

ĈP (k) = C(2j +mo − k − 1)∗Θ(2j +mo − k − 1).

In closing we note that, for additional simplicity and a requirement of a single SVD

computation, one can also use a single, time-invariant output projection. Under this

constraint, the optimal selection is P = ΘΘ∗, where the columns of Θ are the leading

POD modes of the entire impulse-response {{G(tT + k, j)}st=0}j+T−1
k=j of (4.1). This

stronger constraint implies further reduction in matching, when compared with the

optimal solution in the lifted domain.

4.2.5 Algorithm summary: the lifted BPOD

Following the terminology in Rowley (2005), the approximate balanced truncation

method for linear, time-periodic systems using a lifting approach is termed a lifted

balanced POD. Its main steps include:

• Step 0: Fix a time j, 1 6 j 6 T , as the time point for lifting.

• Step 1: Run Tp impulse-response simulations to obtain mcp snapshots and

form the n×mcp dimensional X(j;mc) as described in Section 4.2.2.

• Step 2: Compute y = Cx from stored states in simulations carried to compute

X(j;mc). Solve for the POD problems for the periodically sampled y(j+ tT +

i), to obtain the output-projection matrices Θ(j + i), i = 0, · · · , T − 1.

• Step 3: Run Trop impulse-response simulations of the adjoint output-proejcted

system, to form the n × morop dimensional matrix Y (j;mo) as described in

Section 4.2.2.
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• Step 4: Compute the SVD of Y (j;mo)
∗X(j;mc) and the balancing modes for

the lifted system given by (4.13).

• Step 5: Compute the reduced lifted system (4.14). The entries in D̃j are

outputs that can be collected in direct impulse responses.

Variants include skipping Step 2, when the output dimension in the lifted setting

qT is small, and using a single, time-invariant output projection, as discussed in

Section 4.2.4. The reduced system can be lowered to a periodic system, e.g., as

described in closing Section 4.2.3.

As discussed in Section 2.3.2 for the balanced POD method for LTI systems, one

can readily apply a “dual” version of the above algorithm for balanced truncations

of linear periodic systems with high-dimensional states and inputs, but only few

outputs. Input projections are needed to project inputs onto leading POD modes

of the dataset of outputs obtained in adjoint impulse-response simulations.

4.2.6 The neutrally stable/unstable case

Consider a linear periodic system (4.1) that arises from linearization of a nonlin-

ear system x(k + 1) = f(x(k)) around an asymptotically stable periodic orbit. By

Floquet theory (Hartman, 1964, §§ IV.6, IX.10), in this case Ãj = F(j+T,j) is only

neutrally stable, due to one unity eigenvalue that corresponds to persisting pertur-

bations along the periodic orbit in the linearization. Balanced truncation cannot

be directly applied to a neutrally stable system, as the infinite series used to define

Gramians may diverge.

An extended version of balanced POD for unstable LTI systems that have small

unstable dimensions is presented in Ahuja & Rowley (2010) (also see Sections 2.2.1,
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2.3.3). Following the idea presented in Zhou et al. (1999), it decomposes the system

dynamics into stable and unstable parts. Then it applies approximate balanced

truncation to the stable dynamics while keeping the unstable dynamics exactly.

This method is conceptually applied here to periodic systems through the lifted

setting, with all computations executed in the periodic setting. First, for a given

lifting time j, define a projection onto the stable subspace Es
(
Ãj

)
by

Pj = In×n −
vjw

∗
j

w∗jvj
, (4.21)

where wj, vj ∈ Cn are the left/right eigenvectors of Ãj corresponding to the unity

eigenvalue. Dynamics of the neutrally stable lifted system (4.3) is thus restricted

to the stable subspace of Ãj:

x̃j(t+ 1)s = Ãjx̃j(t)s + PjB̃jũj(t);

ỹj(t)s = C̃jPjx̃j(t)s + D̃jũj(t),

(4.22)

where x̃j(t)s = Pjx̃j(t). (The dimension of state x̃j(t)s of the projected system is

still n.) Lifted balanced POD can be realized to this projected system describing

stable dynamics. Let Φs
rs and Ψs

rs be the matrices including the leading rs balancing

and adjoint modes of the projected system (4.22). Then, a reduced model of order

r, r = rs+1, for the neutrally stable lifted system (4.3) can be obtained in the form

of (4.14), where now

Φr =

[
Φs
rs vj

]
; Ψr =

[
Ψs
rs

wj
w∗j vj

]
. (4.23)

The reduced system keeps the one-dimensional neutrally stable dynamics exactly,

while the exponentially stable dynamics is reduced to the order of rs.

Numerically, the neutrally stable eigenvectors of Ãj can be calculated using a Krylov

method, or even the power method: By running a control-free simulation of the

periodic system (4.1) with an arbitrary initial condition x(j) /∈ Es
(
Ãj

)
, one can
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approximate vj by x(j + lT ), with a large l. Similarly, a long-time control-free

simulation of the adjoint periodic system (4.11) is needed to approximate wj. Then,

when computing the transformations Φs
rs and Ψs

rs for the projected system (4.22),

one follows exactly the same procedures given in Section 4.2.5. The only difference is

that in the Tp simulations of the periodic system (4.1) described in Section 4.2.2, the

states should be projected onto Es
(
Ãj

)
by Pj at time j −m+ T . The simulations

then resume with these states as new initial conditions. Similarly, in the adjoint

simulations, the adjoint states should be left-multiplied by P∗j at time j + T before

the simulations resume.

By construction, this method is applicable to other neutrally stable/unstable pe-

riodic systems, with small neutrally stable/unstable dimensions (e.g., at the order

of 101∼2). For unstable systems, in impulse-response simulations one can repeatedly

project the states once each period, using Pj, to numerically confine the dynamics

to the stable invariant subspace.

4.3 An alternative algorithm: a periodic approach

The lifting approach enables us to apply LTI balanced truncation methods in the

lifted domain. However, unless a “lowering” method, such as the one introduced in

Section 4.2.3, is used, the lifted reduced-order system (4.14) updates the reduced-

order state indeed only once per period in the periodic setting. This might cause

delay in the feedback control input update. To avoid this problem, one can al-

ternatively use a “periodic approach” to construct a time periodic reduced-order

model.

By the “periodic approach”, we mean that the Petrov-Galerkin projection and trun-
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cation procedure is done at each time step along a whole period. T -periodic bal-

ancing transformations are computed and then a T -periodic reduced system is gen-

erated. An exact periodic balanced truncation keeps the stability of the original

system, and has an upper error bound (Longhi & Orlando (1999); Varga (2000)).

Here, we develop a snapshot-based, periodic balanced POD approach.

Consider the exponentially stable case. We need to construct the factors X(j;mc)

and Y (j;mo) of the Gramians, given by (4.9) and (4.10), now for every j = 1, · · · , T .
In Section 4.2.2 we show that Tp impulse-rsponse simulations are needed to con-

struct one X(j;mc). Indeed, by employing T -periodicity, one shows quickly that

these Tp simulations, each with a different start time and initial condition, are

enough to obtain all the mcpT snapshots needed for construction of all the T

X(j;mc)s. The difference is that now each simulation needs to be run for (mc − 1)

steps (see Figure 4.2), and that snapshots are taken at every time step in all sim-

ulations: For each j, j = 1, · · · , T , the mcp columns of X(j;mc) are just the mcp

snapshots taken at time j, j − T, j − 2T · · · , in the Tp simulations. As before, we

suppose mc to be an integer multiple of the period T .

time =

· · ·
· · ·

· · ·
... } simulations

t(j)

impulse-response
T

t(j −mc + T ) t(j + T )t(j −mc + 1)

ic = [B(j −mc + T − 1)](i)

ic = [B(j −mc)](i)

Figure 4.2: The T impulse-response simulations corresponding to the i-th control input, each
beginning with a different initial time, for the periodic approach, .

Similarly, to construct Y (j;mo), j = 1, · · · , T , only Tq (or Troq, if a output projec-

tion is needed) adjoint simulations, as those described in Section 4.2.2, are needed,
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each with a different initial time and initial condition, and running for (mo − 1)

steps. For each j = 1, · · · , T , all snapshots taken at time j, j + T, · · · shall be

collected as columns for Y (j;mo).

One then performs T SVD calculations:

Y (j;mo)
∗X(j;mc) = U(j)Σ(j)V (j)∗, j = 1, · · · , T. (4.24)

to calculate the T -periodic balancing transformations

Φ(j) = X(j;mc)V (j)Σ(j)−1/2; Ψ(j) = Y (j;mo)U(j)Σ(j)−1/2. (4.25)

Finally, the T -periodic reduced system of order r reads

x(k + 1) = Ψ∗r(k + 1)A(k)Φr(k)x(k) + Ψ∗r(k + 1)B(k)u(k)

y(k) = C(k)Φr(k)x(k),

(4.26)

where Φr(k) and Ψ∗r(k) are respectively the first r columns and rows of Φ(k) and

Ψ∗(k). The periodic procedure is regarded as approximate balanced truncation be-

cause all the T pairs of empirical Gramians, Wce(j;mc) = X(j;mc)X(j;mc)
∗,

Woe(j;mo) = Y (j;mo)Y (j;mo)
∗ are exactly balanced. One difference between the

lifting and periodic approach is that in the lifting approach the pair of bi-orthogonal

modes for projection is the balancing/adjoint modes taken at the same time phase;

whereas in the periodic approach they are taken from consecutive time phases. By

construction, both the time-periodic and the time-invariant output projection meth-

ods introduced in Section 4.2.4 are directly applicable to this periodic approach.

4.3.1 The neutrally stable/unstable case

For the neutrally stable case that has one unity eigenvalue in the lifted setting, we

outline an algorithm that is a periodic counterpart of the algorithm presented in
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Section 4.2.6. Theoretical details can be found in Appendix B. One first runs a

pair of control free primal/adjoint simulations of system (4.1), as those described

in Section 4.2.6, with initial x(0) /∈ Es
(
Ã0

)
, z(0) /∈ Es

(
Ã∗0

)
, each for a long

time (l+ 1)T . The “asymptotic residues” at different time lT + j, j = 1, · · · , T, are
approximations of the neutrally stable right/left eigenvectors vj, wj. The T -periodic

projection matrices {Pk}Tk=1 are then calculated by (4.21). One then executes the

periodic balanced truncation procedures given above for the projected, exponentially

stable, periodic system

x(k + 1) = A(k)Pkx(k) + Pk+1B(k)u(k);

y(k) = C(k)Pkx(k).

(4.27)

Note that by properties of the projections {Pk}Tk=1(see Appendix B), the direct/ad-

joint impulse-response simulations of (4.27) are indeed the same as those of the

original neutrally-stable periodic system, except the initial conditions shall now be

left-multiplied by the corresponding Pk+1 or P∗k. Let {Φrs(k)}Tk=1, {Ψrs(k)}Tk=1 be

T -periodic pairs of matrices including the T -periodic leading rs corresponding bal-

ancing/adjoint modes of the projected system (4.27). Then, a T -periodic reduced-

order model of order r, r = rs + 1, for the original periodic system (4.1) can be

obtained in the form of (4.26), where now the T -periodic transformations are

Φr(k) =

[
Φrs(k) vk

]
; Ψr(k) =

[
Ψrs(k) wk

w∗kvk

]
. (4.28)

Again, for other neutrally stable/unstable systems with small dimensions of neutral

stability/unstablity, this procedure is also applicable, where the T -periodic projec-

tion matrices can be obtained by, e.g., Krylov methods.
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4.3.2 Comparison with the lifting approach

Computational cost. Compared to the lifted balanced POD method presented

in Section 4.2, the periodic approach is much more computationally expensive, espe-

cially when T is large, due to storage of T times more snapshots, and requirement of

T SVD computations. We will see in the following numerical example(Section 4.4.1)

that although it is more computationally expensive, the periodic approach does not

necessarily outperform the lifting approach.

Reduced-order models: Lifted LTI vs time periodic. Reduced-order mod-

els yielded by the periodic approach are time T -periodic. That means the reduced

states are updated every time step, not once per period as in the lifting approach,

unless the lifted system is lowered as discussed at the end of Section 4.2. In feedback

control design, the periodic approach therefore avoids potential big delay of control

input update caused by updating the states only once a period. The trade-off is

that, instead of well-developed control theory for LTI systems, more sophisticated

control techniques for time-varying systems should be employed.

Stability Both lifting and periodic approaches are approximate balanced trunca-

tion methods, which implies there is no guarantee on the stability of reduced-order

models. In the lifting approach, the stability of the reduced-order model is deter-

mined by the reduced, lifted transition matrix (see (4.14))

Ãr = Ψ∗r(j)ÃjΦr(j) = Ψ∗r(j)A(j + T − 1) · · ·A(j)Φr(j),

where j is the time index for lifting. Compared to a reduced-order model by exact

balanced truncation (where the stability is guaranteed), the only error source of Ãr

is the pair of approximate balancing/adjoint modes Ψr(j),Φr(j) that are computed
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using factors of empirical (approximate) Gramians at time j.

In comparison, the stability of the time-periodic, reduced-order model is determined

by the T products of periodic transition matrices (see (4.26))

Ãr = Ar(j + T − 1) · · ·Ar(j)

= Ψ∗r(j)A(j + T − 1)Φr(j + T − 1) · · ·Ψ∗r(j + 1)A(j)Φr(j).

Here the error in Ãr results from using all the T pairs of approximate balanc-

ing/adjoint modes Φr(k),Ψr(k), k = 1, . . . , T . We thus speculate that, due to the

involvement of more error sources in Ãr and in turn larger error in the eigenvalues

of Ãr, reduced-order models by the periodic approach is more liable to lose stability

than those obtained by the lifting approach. More analysis is needed to make a

definite conclusion.

4.4 Numerical examples

To validate and demonstrate the balanced POD algorithms for linear time-periodic

systems, we present two numerical examples in this section.

4.4.1 Example 1: A randomly generated system

We first consider the following exponentially stable example (similar to that in Far-

hood et al. (2005)): a linear periodic system (4.1) with period T = 5, state dimension

n = 30, output dimension q = 30, control input dimension p = 1, and {A(k)}5
k=1 are

randomly generated diagonal matrices with diagonal entries bounded in [0.16, 0.96],

guaranteeing exponential stability. The matrices B(k) and C(k) are also randomly

generated, with entries bounded in [0, 1].
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Using lifted balanced POD, here we pick the “lifting time” j = 1. Choose mc =

mo = 3T = 15. Figure 4.3 (a) shows the error plots of the infinity norm, ||G̃ −
G̃r||∞/||G̃||∞ versus r, the order of the reduced lifted system. Here G̃r is the impulse-

response matrix of the reduced lifted system of order r. We see that the snapshot-

based balanced truncation gives a good approximation of exact balanced truncation.

Further, the balanced POD, even with low orders of output projection rop, generates

satisfying results. Recall that, for the lifted system, the order of output projection

is r̃op = ropT .

Results using the periodic approach are shown in Figure 4.3 (b) for comparison. Here

we lift the reduced periodic system of order r to its lifted LTI setting with lifting time

j = 1, so that we can compare the periodic and lifting approaches directly. Results

show that, with the same reduction order and order of output projection, the lifting

approach generates a reduced model whose input-output behavior is closer to that

of that full system. Note that we reach the same conclusion in a similar comparison

done in the periodic setting. In that comparison, the outputs of the reduced lifted

system by lifted balanced POD are first lowered to the periodic setting. Considering

also the higher computational cost of the periodic approach, form now on we will

focus on the applications of the lifting approach.

Figure 4.4 shows comparisons between lifted balanced POD results with the same

order of output projection, one set based on T -periodic projection matrices along

one period, and the other using a single time-invariant projection matrix (see Sec-

tion 4.2.4). For the cases where rop are low, these two approaches give almost

identical results, or even the latter one gives better results. However, when the

order of output projection rop increases, the results based on T -periodic projection

matrices are better than those by a single projection matrix, as we expect.
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Figure 4.3: Error ||G̃− G̃r̃||∞/||G̃||∞, for (a) lifted balanced POD approach, and (b) the periodic
approach. mc = mo = 3T . For exact balanced truncation(+), balanced truncation by the method
of snapshots but without output projection(�), balanced POD with rop = 1 (♦), balanced POD
with rop = 3 (◦), and the lower bound for any model reduction scheme (−).
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Figure 4.4: Time varying T -periodic output projections versus time-invariant output projections:
Error ||G̃ − G̃r̃||∞/||G̃||∞, by lifted balanced POD with rop = 1 (♦), with rop = 3 (◦) and with
rop = 5 (×). Solid lines correspond to cases using T different projection matrices along one period
for the periodic system, and dashed lines using one single projection matrix. The black solid line
is the lower bound for any model reduction scheme (−).

4.4.2 Example 2: Application to the Ginzburg-Landau equa-

tion (a neutrally stable case)

The well-known nonlinear complex Ginzburg-Landau (GL) equation is a one di-

mensional partial differential equation that demonstrates spatially developing flows
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and can be used to study convective/global instabilities in fluids. See recent review

papers Chomaz (2005); Bagheri et al. (2009b) and the references therein. Consider

the complex nonlinear GL equation

∂q

∂t
= −ν ∂q

∂x
+ γ

∂2q

∂x2
+ µ(x)q + f(q), (4.29)

where ν, γ ∈ C are convection and diffusion coefficients, the real “coefficient of

stability” µ(x) = (µ0− c2
u)+µ2x

2/2, and the nonlinear forcing term f(q) = −a|q|2q.
The model parameters cu, µ0, µ2, a ∈ R. The nonlinear GL undergoes a supercritical

Hopf bifurcation when the bifurcation parameter µ0 crosses a critical µc: For µ0 <

µc, there is a stable equilibrium; for µ0 > µc, an asymptotically stable periodic

orbit emerges, while the equilibrium loses its stability. The GL is extensively used

to model cylinder wakes that have a similar bifurcation behavior: The wake is steady

(stable equilibrium) when the Reynolds number is below a critical value. For higher

Reynolds numbers, the equilibrium state becomes unstable and a Karman vortex

street (stable periodic orbit) appears. The parameter µ0 in GL can be linked to the

Reynolds number (Roussopoulos & Monkewitz, 1996).

Bagheri et al. (2009b) studied model reduction and controller design for a linear

time-invariant GL obtained from linearization about its equilibrium state. Re-

cently, Ilak et al. (2010) studied reduced order modeling of the nonlinear, transient

dynamics by projecting the nonlinear GL onto balancing modes corresponding to

the equilibrium. Here we consider the linear periodic system obtained from lin-

earization about the stable periodic orbit in the µ0 > µc case.

The GL is first spatially discretized into a nonlinear ODE system using Hermite

collocation (Bagheri et al., 2009b). By choosing the number of Hermite collocation

points n = 50, we consider the solution of GL in a finite domain for computation

[−20.5644, 20.5644]. The parameter values used in simulations are γ = 1 − 0.1i,
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ν = 2 + 0.6i, cu = 0.3, µ2 = −0.08, a = 0.005. One computes µc = 1.1318 and

chooses µ0 = 1.1771 > µc. These parameters ensure the existence of a nonlinear

stable periodic orbit. The Crank-Nicolson method is used for time discretization.

With ∆t = 0.093271125, the nonlinear stable orbit has a period T = 100. A

linear, discrete system that has T -periodic A(k)’s is then obtained by linearization

about the orbit. Note that the nonlinear term f(q) = −a|q|2q does not satisfy the

Cauchy-Riemann conditions for any q 6= 0. Thus, linearization is done for the real

and imaginary parts of the GL separately, and the resulting system is real but twice

the dimension. We choose the system output y identical to the states, resulting in

C(k)s as a time-invariant identity matrix. Suppose a single input case, with a time-

invariant B(k) representing a Gaussian distribution exp(−[(x+
√−2µ0/µ2)/1.6]2),

as in Bagheri et al. (2009b). The resulting linear, neutrally-stable, time-periodic

system is in the form (4.1), with D(k) = 0. Figure 4.5(a) and (b) show the nonlinear

stable periodic orbit, and the oscillation that persists for the linear, neutrally-stable,

periodic system for a control free case. Figure 4.5(c) shows that, for the linear

periodic system, with a projected initial condition q(1) ∈ Es(Ã1) (see Section 4.2.6),

the oscillations due to the neutral stability are eliminated to the level of machine

precision.

The neutrally stable, linearized GL is then reduced using lifted balanced POD, at

the lifting time j = 1. Figure 4.6 shows the error plots for reduced lifted systems, in

which the impulse-response norm is computed in a finite time window [0, 30] in the

lifted setting, which corresponds to 30 periods in the periodic setting. The nota-

tion G̃, G̃r refers to the full and reduced lifted systems, respectively. The quantity

‖G̃stab‖2 is the 2-norm of the (asymptotically stable) full lifted system, in which the

outputs are the full impulse-response dynamics after the neutrally stable dynamics

have been subtracted out. Figure 4.6 shows that the error norm of a balanced POD
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Figure 4.5: (a) Contour plot of real(q): Nonlinear GL. An asymptotically stable periodic orbit
appears when µ0 = 1.1771 > µc. (b) Contour plot of real(q): Neutral stability of the linearized
periodic GL. With an arbitrary initial condition, a steady oscillation persists.(c) Projected vs
unprojected initial conditions for the linear GL: Time evolution of q at a typical position x =
3.1607.

with mc = mo = 3T and rop = 3 is already very close to that of the snapshot-

based balanced truncation without output projection, or even the exact balanced

truncation. Note that in the case of snapshot-based balanced truncation without

output projection, one needs to run qT = 104 adjoint simulations, while with out-

put projection, one needs to run only ropT adjoint simulations. The exact balanced

truncation is done by first explicitly constructing the lifted system, whose input

dimension is pT = 200 and output dimension is qT = 104, and then using Matlab

command balreal.

In this case, the outputs are the states themselves. From (4.15) we obtain the states

in the periodic setting. Figure 4.7 shows the state trajectories and error plots in

the time domain of the periodic setting, for an impulse-response simulation where

the impulse is u(1) = 1. We see small “jumps” of the error occurring at time j+ tT ,

t = 0, 1, . . . especially at early time stages. These jumps occur because the lifting

approach projects states onto the reduced space only once per period, at times
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by the method of snapshots but without output projection(+); balanced POD with rop = 1 (♦),
balanced POD with rop = 3 (◦); balanced POD with rop = 5 (�).

j + tT . The simulation results shown here indicate that the size of the jump does

not depend strongly on the order of the output projection used. Indeed, a reduced

model of order r = 4 using snapshot-based balanced truncation without output

projection, or even using exact BT, generates jumps at similar magnitudes as those

by a fourth order balanced POD with rop = 3 shown in Figure 4.7 (b-II). On the

other hand, we see that for higher order models, these jumps decrease significantly,

even if a low-order output projection is used.

4.5 ERA for linear time-periodic systems

We showed the equivalence between ERA and balanced POD for LTI systems in

Chapter 3. For linear time-periodic systems, it is natural to construct ERA-like,

adjoint-free versions of the lifted/periodic snapshot-based approximate balanced

truncation methods introduced above. The goal is to realize approximate balanced
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Figure 4.7: Error plots for reduced GL by lifted BPOD, lifting time j = 1, mc = mo = 3T where
T = 100: (a) Time evolution of real(q) at spatial position x = 3.1607: full system (−); reduced
systems with r = 4, rop = 1 (−−), with r = 4, rop = 3(−·), with r = 6, rop = 1(· · · ). The green
line is almost on top of the black line. (b) Time evolution of real(qr − qfull), the real part of errors
between full and reduced systems in one impulse-response simulation. (I) r = 4, rop = 1; (II)
r = 4, rop = 3; (III) r = 11, rop = 3.

truncation without any adjoint data and at a much lower computational cost. The

price is that the bi-orthogonal sets of balancing/adjoint modes will not be available.

There are existing algorithms for linear time-varying/time-periodic systems that are

similar to ERA (i.e., based on SVD of generalized Hankel matrices obtained from

impulse responses). For instance, the work by Liu (1997); Bauchau & Wang (2008)

considers control-free systems. Bauchau & Wang (2008) also presents essentially

an output projection method similar to the “time-invariant” version of the output-

projection method we introduce here. More general ERA algorithms for linear time-

varying/time-periodic control systems can be found in Shokoohi & Silverman (1987);

Majji et al. (2010), where the reduced models are time-varying/time-periodic (i.e.,

the “periodic approach”). Here, we will employ the key relations between modes

and the SVD factors (4.25) and then systematically construct two versions of ERA,
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the lifted/periodic ERA, based on lifted/periodic balanced POD. The lifted/peri-

odic ERA will by construction yield theoretically identical reduced-order models to

lifted/periodic balanced POD. The resulting periodic ERA also requires less compu-

tational cost than the algorithms developed in (Shokoohi & Silverman, 1987; Majji

et al., 2010), and is applicable to systems with one-dimensional neutral stability/in-

stability, as we will shortly see.

4.5.1 Lifted ERA for linear time-periodic systems

In Section 3.1.2, we showed the equivalence between balanced POD and ERA meth-

ods for LTI systems. The lifted balanced POD presented in Section 4.2 is conceptu-

ally a balanced POD for the lifted LTI system (4.3), so there is naturally an equiva-

lent lifted ERA version that theoretically generates an identical lifted reduced-order

model. Again all computations in ERA shall be carried in the periodic setting, as

in lifted balanced POD.

The equivalence and feature of T -periodicity can help us to realize the ERA al-

gorithm efficiently. First consider the exponentially stable case. Recall the defin-

tion (3.2) and relation H = Y ∗X, the generalized Hankel matrix for system lifted

at time j is (here we set the “sparse sampling parameter” P = 1)

Hj =



C̃jB̃j C̃jÃjB̃j · · · C̃jÃ
mc/T
j B̃j

C̃jÃjB̃j C̃jÃ
2
jB̃j · · · C̃jÃ

mc/T+1
j B̃j

...
...

. . .
...

C̃jÃ
mo/T
j B̃j C̃jÃ

(mo/T+1)
j B̃j · · · C̃jÃ

(mc+mo)/T
j B̃j


= Y ∗(j;mo)X(j;mc),

(4.30)

where the factors X and Y are given by (4.9), (4.10). By employing T -periodicity on

A(k), B(k) and C(k), one checks that all entries ofHj can be obtained by running pT
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input-output impulse-response simulations of the linear periodic system (4.1). For

instance, for the i-th control input, do T impulse-response simulations for (4.1) (see

Figure 4.8), each beginning at a different time phase in one period, t = j−T, . . . , j−
1. At time j, the states are, respectively,

B(i)(j − 1), F (j, j − 1)B(i)(j − 2), · · · , F (j, j − T + 1)B(i)(j − T ). (4.31)

Then continue each of the simulations for (mc + mo − 1) steps and take out-

put snapshots at every time step from time j to time (j + mc + mo − 1). The

snapshots are the “building blocks” for the generalized Hankel matrices Hj and

H
′
j = Y ∗(j;mo)ÃjX(j;mc)(see (3.4)). Then by SVD of Hj (4.12), one readily gen-

erates a reduced model of order r following the steps outlined in Section 3.1.1:

Ãjr

(
= Ψ∗r(j)ÃjΦr(j)

)
= Σ(j)

− 1
2

r U(j)∗rHj
′V (j)rΣ(j)

− 1
2

r ;

B̃jr

(
= Ψ∗r(j)B̃j

)
= the first Tp columns of Σ(j)

1
2
r V (j)∗r;

C̃jr

(
= C̃jΦr(j)

)
= the first Tq rows of U(j)rΣ(j)

1
2
r .

(4.32)

For the lifted system, there is also D̃jr = D̃j. The entries of D̃j (see Section 4.2.1)

are outputs that have been collected in impulse response simulations. The model is

theoretically identical to the lifted, reduced-order model (4.14) given by balanced

POD.

One-dimensional neutral stability/instability case. We extended the ERA

algorithm for LTI systems with one-dimensional neutral stability/instability in Sec-

tion 3.4. To implement the method here, one approximates the blocks in PjB̃j,

i.e., PjF (j, j − k + 1)B(i)(j − k), k = 1, . . . , T , by running T long-time control free

simulations for each control input for system (4.1), each with initial conditions x(j)

given by (4.31). Operations(see (3.19) and related discussions) on the snapshots

taken after enough long periods of simulation yield the projected states. Using
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t(j)time = t(j − T + 1)

· · ·ic = [B(j − T )](i)

ic = [B(j − 1)](i)

} impulse-response
simulations

T

· · ·
...

· · ·


t(j + mc + mo − 1)

Output snapshots taken from t(j) to t(j + mc + mo − 1)

left-multiplied by Pj

at t(j) for unstable case

Figure 4.8: The T input-output impulse-response simulations corresponding to the i-th control
input, for the lifted ERA method.

these as the projected initial conditions at time j, re-run the simulations, each for

(mc + mo − 1) steps (see Figure 4.8), and the outputs are the building blocks of

the generalized Hankel matrices Hj and H ′j for the projected system (4.22). The

final (r + 1)-dimensional reduced-order model includes a r-dimensional reduced or-

der model for the projected system and a one-dimensional model for the neutrally

stable/unstable dynamics, whose corresponding A, B and C matrices can also be

computed using those long simulation data (see (3.21) and related discussions).

4.5.2 Periodic ERA for linear time-periodic systems

By “symmetry” of the algorithms, the last piece on the map is naturally a “peri-

odic ERA” algorithm that theoretically yields identical time-periodic reduced-order

models as periodic balanced POD.

First, consider the exponentially stable case. The first step is to run input-output

impulse responses of the LTP (4.1) to obtain T -periodic generalized Hankel matrices
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Hj, each in the form (4.30), for every time phase j along one whole period. One

checks that by using periodicity as in periodic balanced POD, only Tp simulations

are needed to obtain all “building blocks” for all the T generalized Hankel matrices;

see illustration in Figure 4.9. Output snapshots are taken at every time step in

all simulations, subsets of which are entries of corresponding generalized Hankel

matrices.

time =

· · ·
· · ·

· · ·
... } simulations

impulse-response
T

t(j)t(j − T + 1)

ic = [B(j − T )](i)

ic = [B(j − 1)](i)

t(j + mc + mo − T )

at initial time for unstable case

t(j + mc + mo − 1)

left-multiplied by corresponding Pk+1

Figure 4.9: The T input-output impulse-response simulations corresponding to the i-th control
input, for the periodic ERA method.

One then performs SVD calculations for each Hj, j = 1, . . . , T , as in (4.24). Using

the mode relations (4.25), one checks that the T -periodic matrices for the periodic

reduced model of order r are given by (refer to (4.26))

Ar(j)
(

= Ψ∗r(j + 1)A(j)Φr(j)
)

= Σ(j + 1)
− 1

2
r U(j + 1)∗rHj

′V (j)rΣ(j)
− 1

2
r ;

Br(j)
(

= Ψ∗r(j + 1)B(j)
)

= the first p columns of Σ(j + 1)
1
2
r V (j + 1)∗r;

Cr(j)
(

= C(j)Φr(j)
)

= the first q rows of U(j)rΣ(j)
1
2
r ,

(4.33)

where here the H ′j is not Y ∗(j;mo)ÃjX(j;mc) as in the lifted ERA method, but

defined by

H ′j = Y ∗(j + 1;mo)AjX(j;mc).

The matrices H ′j, j = 1, . . . , T , can also be easily constructed using the output
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snapshots collected in the above impulse-responses. Again, notice that here we use

modes from consecutive time phases for projection (although the modes themselves

are not computed).

The Br and Cr matrices obtained here are the same as those presented in Shokoohi

& Silverman (1987); Majji et al. (2010). However, while in this algorithm only

one SVD (on Hj) is need for each Ar(j), in Shokoohi & Silverman (1987); Majji

et al. (2010) two SVDs (one on Hj and the other on H ′j) are needed for each Ar(j).

This is because the construction of the ERA algorithm here is purely based on the

corresponding balanced POD algorithm and the key relation (4.25) between modes

and SVD factors, which leads naturally to a simpler form for computing Ar(j). The

formulations presented in (4.33) are also more consistent with the original ERA

algorithm for LTI systems (see (3.3) in Section 3.1.1). The above method can

be directly applied to linear time-varying systems by removing all computational

convenience designed for periodic systems.

One-dimensional neutral stability/instability case. As to periodic ERA for

systems with one-dimensional neutral stability/instability, one needs to approxi-

mate Pj+1B(j), j = 1, . . . , T , as projected initial conditions for impulse responses;

see Figure 4.9 and the projected periodic system (4.27). Without repeating sim-

ilar details, we note that the projected initial conditions are computed using the

power method approach given in Section 3.4. Tp long-time simulations of the LTP

system (4.1) are needed.

Output projection. The output projection method outlined in Section 4.2.4 can

be directly applied in lifted/periodic ERA algorithms, where the output snapshots

are always collected and POD on the output data sets can thus be done. Also refer
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to output projection for ERA to LTI systems in Section 3.1.3 for more details.

4.6 Summary

Versions of snapshot-based approximate balanced truncation methods for high-

dimensional linear, time-periodic systems are presented, including the lifted and

periodic balanced POD algorithms and the lifted and periodic ERA algorithms.

The output projection method for systems with high-dimensional outputs is also

generalized here for time-periodic systems. The lifted/periodic balanced POD algo-

rithms are applicable to neutrally stable/unstable systems with a low-dimensional

neutrally stable/unstable subspace, while the lifted/periodic ERA is currently ap-

plicable only to systems with one-dimensional neutral stability/instability.

The lifting approach is computationally more efficient than the periodic approach.

On the other hand, the reduced-order models by the periodic approach update the

state every time step, while the models by the lifting approach update the state once

a period, which might cause delay in feedback control update. Numerical results

show that lifted balanced POD generates low-dimensional models that are close to

those obtained by exact balanced truncation, at a much lower computational cost.

By construction, the lifted/periodic ERA yields theoretically identical reduced-order

models as lifted/periodic balanced POD. The ERA algorithms do not need adjoint

data and by construction are more computationally efficient than balanced POD

algorithms; on the other hand lifted/periodic balanced POD provides bi-orthogonal

sets of modes that are useful for system analysis and control purposes.

In summary, lifted balanced POD/ERA can be efficient choices for system anal-

ysis and feedback control design for linear periodic systems encountered in fluid
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mechanics, as long as the potential delay in control update due to lifting does not

cause problems. In particular, we will apply the lifted ERA in the next chapter

for feedback control of a flow past an inclined plate with open-loop periodic forcing

that generates high-lift vortex shedding cycles.

The periodic balanced POD/ERA algorithms can be directly applied to more general

linear time-varying systems, by removing the assumption of periodicity in compu-

tations. The periodic ERA algorithm is more efficient in computing reduced state

transition matrices than those developed in Shokoohi & Silverman (1987); Majji

et al. (2010).
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Chapter 5

Feedback control of flow past a flat

plate with open-loop periodic forcing

In this chapter we show how to design a model-based feedback controller to stabilize

an unstable periodic orbit found in a high-dimensional system (on the order of 105).

The lifted ERA method, an adjoint-free approximate balanced truncation method

proposed in Section 4.5.1, is applied to compute reduced-order models (with state

dimensions smaller than 10) of the unstable time-periodic system, and these models

are then used for control design.

As a model problem, we consider a two-dimensional flow past an inclined plate at

a post-stall angle of attack, with open-loop periodic actuation at the trailing edge.

Our feedback controller will then provide small modifications to the periodic forcing,

in order to stabilize a desired periodic orbit. The motivation of the study of this

model problem is to develop control design tools for feedback control of wakes of

micro-air vehicles at low Reynolds numbers. Recent results from two-dimensional

and three-dimensional simulations (Joe et al., 2008; Taira et al., 2010) show that
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periodic forcing at the leading or trailing edge of a flat-plate wing can significantly

enhance lift. These results are consistent with earlier work reported in experiments

and simulations (see references in Joe et al. (2008); Taira et al. (2010) ), although

the purpose of most of those works is to reattach the flow or delay separation, not to

enhance lift. Furthermore, at different forcing frequencies, besides observed stable

high-lift periodic orbits, there are also quasi-periodic solutions with high average

lift that suggest the possible existence of unstable, high-lift periodic orbits. In this

work we are interested in finding those unstable orbits and then stabilizing them by

model-based feedback control. In Joe et al. (2008), an ad hoc feedback controller is

designed to lock the phase shift between the forcing and lift oscillations. The control

design approach applied here is conceptually more systematic and general, as it relies

less on specific observation of the system and more on systematic mathematical tools

in control theory and dynamical systems.

In Section 5.1 we introduce the main procedures of the model-based feedback control

design appraoch, including key theoretical and numerical details. In Section 5.2 we

then present control design results for the specific model problem of flow control

described above, including numerical solutions of stable/unstable periodic orbits, a

reduced-order model of the unstable linearized time-periodic system corresponding

to an unstable orbit, and a feedback controller that stabilizes the unstable orbit.

5.1 Main procedures of the model-based feedback

control design approach

The main steps in our control design approach are as follows:

• Step I: Find periodic solutions using the Newton-GMRES method.
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• Step II: Linearize about an orbit that we are interested in. Fix the location

of actuators and sensors, and construct a linear time-periodic input-output

system.

• Step III: Construct a reduced-order model of the linear time-periodic system

using the lifted ERA algorithm.

• Step IV: Design an observer-based feedback controller using the reduced-

order model.

• Step V: Apply the feedback controller to the full linearized time-periodic

system, and to the full nonlinear system.

As in the numerical example in Section 3.3, the fast formulation of the immersed

boundary projection method (IBPM) using a multi-domain scheme (Colonius &

Taira, 2008) is used here to solve for the two-dimensional incompressible flow past an

inclined plate. Velocities, length and time scales are non-dimensionalized by the free

stream velocity U∞ and the chord length c. The Reynolds number is Re = 300, as

in Joe et al. (2008); Taira et al. (2010). The post-stall angle of attack is fixed at α =

40◦. Three levels of grid domains are used, each with 200×120 grid points. The grid

size of the finest domain is ∆x = ∆y = 0.0252. The finest domain centered at the

center of the plate covers [x1, x2]×[y1, y2] = [−1.38302, 3.65698]×[−1.21861, 1.80539]

such that the distances between the leading edge of the plate and the left and the

lower boundary of the domain are 1 and 1.54 units. The largest domain covers

[8x1, 8x2]×[8y1, 8y2]. The Crank-Nicolson method and the third-order Runge-Kutta

method are used for time integration respectively for the linear viscous terms and

nonlinear convective terms in the Navier-Stokes equations. The initial time step

is ∆t = 0.004, with which actuation-free simulations are run and the time step is

slightly adjusted such that the natural vortex shedding period is equal to 900 time
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steps. For the input-output system, we consider the states to be the vorticity and

stream function on each grid level, and the dimension of the discretized system

is about 1.4 × 105 (which is determined by the number of variables at each grid

point (2) × the number of grid points on each level (200× 120) × grid levels (3)).

First, for the actuation-free flow past an inclined plate, we write the spatially and

temporally discretized nonlinear system as

xNL(k + 1) = N (xNL(k)) , (5.1)

where xNL(k) is the the system state, and N is the nonlinear, spatially discretized

Navier-Stokes operator combined with the time stepper that updates the state.

Let Ω (k, xNL0) be a solution, where k is time step and xNL0 = xNL(0) is the initial

condition. The vortex shedding cycle behind the plate at a post-stall angle of attack

corresponds to a stable T0-periodic orbit of system (5.1), i.e., Ω (T0 + k, x̄NL0) =

Ω (k, x̄NL0), where x̄NL0 is a state on the periodic orbit, and T0 is the natural period

of vortex shedding in terms of time steps. See a typical snapshot of the vorticity

shedding contours in Figure 5.1 in Section 5.1.2.

The discrete dynamical system with an open-loop periodic forcing is of the form

xNL(k + 1) = N (xNL(k)) +Bf(k) (5.2)

where B is a function of the distribution matrix B0 representing the localized body

force actuation close to the leading/trailing edge. The form of this function is

determined by the time stepper. Here the body force is applied to a point on

the extended line of the plate close to the trailing edge (i.e., behind the trailing

edge of the plate) and is set upstream-directed; see a schematic in Figure 5.1 in

Section 5.1.2. This configuration is consistent with that in Joe et al. (2008) where

results show that in the two-dimensional case, upstream forcing at the trailing edge
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is more effective for lift enhancement than downstream forcing. The distribution of

the localized force in the domain is given by a discrete delta function δ(r) (Roma

et al., 1999) where r is the distance to the actuation location. The periodic forcing

is given by

f(k) =
1

2

[
1− cos

(
2π

Tf
k

)]
, (5.3)

where Tf is the forcing period. Periodic waveforms other than sinusoidal can be

found in, for example, Joe et al. (2009), where a waveform is calculated through

an adjoint-based optimization procedure.

The strength of the actuation may be quantified by the ratio between the momentum

input by the forcing and that of the free stream, called the momentum coefficient

Cµ =
ρu2

actσ
1
2
ρU2
∞c
, (5.4)

where σ = ∆x is the effective actuator width determined by the delta function δ(r).

The velocity uact is measured by the nearly constant actuator velocity obtained by

a long simulation with a constant forcing f(k) = 1 and zero background flow (U∞ =

0); see Taira et al. (2010). With uact ≈ 0.6 and σ = 0.0252 , Cµ ≈ 1.8%. Since

the value is small, the momentum added by the actuation, even with a constant

f(k) = 1, is small compared to the free stream momentum.

5.1.1 Step I: Solve for periodic orbits by using the Newton-

GMRES method

Let Ωf (k, xNL0) be a solution of the periodically perturbed system (5.2), where k is

the time step and xNL0 is the initial condition. For a forcing period Tf (see (5.3)),

the periodic solution of (5.2), if it exists, shall also have a period that is an integer

multiple of Tf . In particular, we are interested in periodic solutions with a period
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equal to the forcing period Tf , i.e., satisfying

F(xNL) := Ωf (Tf , xNL)− xNL = 0, (5.5)

that have high average lift. In this case, Tf can be regarded as an additional

unknown, and the system (5.5) of n equations, with unknowns x ∈ Rn and Tf ∈ R,

does not have a unique solution. To eliminate the indeterminacy, a “phase condition”

(Doedel et al., 1991) is added as follows:

〈xNL − xref
NL, v(xref

NL)〉 = 0, (5.6)

where xref
NL is a reference state, and v(xNL) is a vector field determined by the non-

linear system ẋNL = v(xNL) that is the continuous-time version of (5.1). The phase

condition defines a Poincaré section, such that the periodic solution, if it exists,

corresponds to a fixed point of the Poincaré map. On the other hand, if we seek a

Tf -periodic solution for a given forcing period Tf , then the phase condition is not

needed, since the problem becomes that of finding a fixed point of the time-Tf map

by solving (5.5).

For both cases, to solve the high-dimensional nonlinear equations (5.5) (on the order

of 105 in this work) is numerically challenging. In large-scale computational fluid

dynamics problems, widely-used numerical methods for finding steady solutions in-

clude the Newton-Krylov methods (Trefethen & Bau, 1997; Kelley, 2003) and the

method of selective frequency damping (Åkervik et al., 2006). See recent appli-

cations in Ahuja & Rowley (2010); Bagheri et al. (2009c). The Newton/Newton-

Krylov method has been applied to find stable/unstable periodic solutions in prob-

lems such as the plane Couette turbulence (Kawahara et al., 2006; Viswanath,

2007) and thermal convection in an annulus (Sánchez et al., 2004). In this work,

we will apply a Newton-Krylov method to find periodic solutions by solving sys-
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tem (5.5)(coupled with equation (5.6) if Tf is not specified).

To solve (5.5) by the Newton method, one iteratively updates the solution x by

xi+1 = xi −DF(xi)−1F(xi), (5.7)

where the superscript stands for the i-th iteration and DF(x) is the Jacobian matrix

of F(x). For large-scale problems, it is computationally infeasible to invert the

Jacobian directly. Instead, one solves for h in the linear system

DF(xi) · h = F(xi) (5.8)

so that xi+1 = xi−h. Iterative solvers, such as the Krylov-subspace based methods,

are often used to solve the linear system (5.8). In particular, in this work we will

use a Krylov method, the Generalized Minimal Residual Method (GMRES) (Saad

& Schultz, 1986). The GMRES method has a fast convergence property when it is

applied to a system Ax = b where most eigenvalues of A are clustered together. For

the system (5.2) that models the Navier-Stokes equations with a periodic forcing

input, we expect that most of the eigenvalues of the Jacobian of its solution Ωf (Tf , x)

are clustered close to the origin when Tf is large, due to the dissipative terms in the

Navier-Stokes operator. The Newton-GMRES method applied here (Kelley, 2003)

also includes a line search method, the Armijo rule, that determines the step length

parameter λ ∈ [0, 1] for updating xi+1 = xi − λh. In implementation, the Newton-

GMRES method is a computational wrapper around the Navier-Stokes solver (5.2)

that updates x(k0 + Tf ) = Ωf (Tf , x(k0)) from x(k0).

A significant challenge of applying the Newton-GMRES method to the large-scale

fluid problem is that it requires reasonable initial guesses to obtain convergent

solutions. In this work we first run a simulation of the system (5.2) with the forcing

period Tf = T0. The solution is not periodic but quasi-periodic. We then use states
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at different time phases of the solution as initial guesses of states on periodic orbits,

and we use the natural shedding period T0 as the initial guess of the period of the

orbit. The Newton-GMRES method is then applied to solve the (n+1)-dimensional

problem, i.e., the system (5.5) and the phase condition (5.6), for periodic solutions

(x̄, T̄f ). Once one or more solutions are obtained, a continuation study follows, with

Tf as the bifurcation parameter. Periodic solutions with different forcing periods

are obtained in turn.

5.1.2 Step II: The linearized time-periodic system with an

affine control input

A linearized, time-periodic system about a Tf -periodic orbit of (5.2) is in the form

x(k + 1) = A(k)x(k), (5.9)

where the Tf -periodic matrix A is the Jacobian of the nonlinear operator N (the

open-loop periodic forcing term Bf(k) does not depend on xNL). The nonlinearity

of N arises from the convective term q×ω in the vorticity transport equation, where

q is the flux and ω is the vorticity. The linearized form of the convective term around

the orbit at time step k is δq(k)×ω0(k)+q0(k)×δω(k), where q0(k), ω0(k) correspond

to the baseline state on the Tf -periodic orbit, and δq(k) and δω(k) correspond to

the linearized state x(k).

Stability. The original actuation-free system (5.1) has a stable T0-periodic orbit.

By Floquet theory, its linearized T0-periodic system is neutrally stable, with one

unity eigenvalue corresponding to perturbations in the direction of the periodic

orbit. However, an important observation is that the system (5.9) that is linearized

102



about an orbit for the forced system (5.2) is in general not neutrally stable. That

is because the neutrally stable linearized system about the unforced baseline orbit

is structurally unstable (Guckenheimer & Holmes, 1983). Then, by regarding the

forcing term Bf(k) in (5.2) as a perturbation, the perturbed linearized system in

the form of (5.9) will generically be either stable or unstable, depending on the

magnitude of the perturbed unity eigenvalue.

The eigenvalues mentioned above are of the lifted matrix Ã0 = A(Tf − 1) · · ·A(0),

i.e., the time-Tf map of the linear time-periodic system (5.9). The dominant

eigenvalues and eigenvectors of the time-Tf map can be found using Arnoldi it-

eration (Trefethen & Bau, 1997), a Krylov-subspace method developed by Arnoldi

(1951). Early work on stability analysis of periodic orbits in two-dimensional open

flows can be found in Tuckerman & Barkley (2000) and the references therein.

Arnoldi iteration is also used in the GMRES procedure to iteratively find the solu-

tion for a linear system.

Linear time-periodic control system. To stabilize an unstable orbit, we add

a one-dimensional affine control input to the linearized system (5.9) also through

a localized body force with the same distribution B as in (5.2). The linear time-

periodic control system reads

x(k + 1) = A(k)x(k) +Bu(k);

y(k) = Cx(k),

(5.10)

where A(k) is Tf -periodic, u(k) ∈ R and B and C are constant matrices. The output

is y(k) = Cx(k). For the model problem, we consider an ideal case that there are two

y-direction flux sensors located at downstream positions with coordinates of (1.5, 0)

and (2, 0), such that they will be in the wake flow actuated by the body force. The

linear control system has input dimension p = 1 and output dimension q = 2. Note
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that the total body force actuation for the nonlinear system is B(f(k) + u(k)); see

a schematic of the set up in Figure 5.1.
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Figure 5.1: Setup of the open-looping forcing, feedback control and sensors. The contour plot
shows a typical vorticity field snapshot taken in an actuation-free vortex shedding cycle.

Recall from Section 4.2.1 that the corresponding lifted system (which is time-

invariant) will have pTf = Tf dimensional inputs and qTf = 2T dimensional outputs.

As mentioned in the previous chapter, for a large Tf (e.g., typically on the order of

103 here), to run Tf impulse responses for system (5.10) to collect Markov param-

eters of the lifted system will be computationally expensive. In practice, here we

make a compromise on the control freedom by allowing u(k) to change only once

every s time steps, with an s such that Ts = Tf/s is on the order of 10, i.e., we add

an actuation that is slowly varying relative to time steps, but rapidly varying rela-

tive to the period of the orbit. With this restriction, the linear control system (5.10)

can be “lifted” (denoted by the check mark) to a Ts-periodic system in which one

step corresponds to s steps in (5.10):

x̌(i+ 1) = Ǎ(i)x̌(i) + B̌(i)ǔ(i);

y̌(i) = Č(i)x̌(i) + Ď(i)ǔ(i),

(5.11)
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where

x̌(i) = x(is), ǔ(i) = u(is), y̌(i) =



y(is)

y(is+ 1)

...

y((i+ 1)s− 1)


. (5.12)

The Ǎ(i), B̌(i), Č(i), Ď(i) matrices are now all Ts-periodic. For instance,

Ǎ(i) = A((i+1)s−1) · · ·A(is) = F((i+1)s,is), B̌(i) =
s∑
j=1

F((i+1)s,is+j)B(is+j−1).

(5.13)

The big-step Ts-periodic representation (5.11) is further lifted to a LTI system (see (4.3)),

where we choose the lifting time to be 0:

x̃(t+ 1) = Ã0x̃(t) + B̃0ũ(t);

ỹ(t) = C̃0x̃(t) + D̃0ũ(t),

(5.14)

with

x̃(t) = x̌(tTs) = x(Tf t), ũ(t) =



ǔ(tTs)

ǔ(tTs + 1)

...

ǔ((t+ 1)Ts − 1)


=



u(tTf )

u(tTf + s)

...

u((t+ 1)Tf − s)


,

ỹ(t) =


y̌(tTs)

...

y̌((t+ 1)Ts − 1)

 =


y(tTf )

...

y((t+ 1)Tf − 1)

 ,
(5.15)

and Ã0, B̃0, C̃0, D̃0 are constant matrices. For instance,

B̃0 =

[
F̌(Ts,1)B̌(0) . . . F̌(Ts,Ts−1)B̌(Ts − 2) B̌(Ts − 1)

]
=

[
F(Tf ,s)B̌(0) . . . F(Tf ,Tf−s)B̌(Ts − 2) B̌(Ts − 1)

]
.

(5.16)
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Now only Ts impulse responses for system (5.11) are needed to collect Markov

parameters for the lifted LTI representation. One impulse response beginning at

time step i for system (5.11) corresponds to a simulation for system (5.10) beginning

at time step is, with u(k) = 1 for k ∈ [is, (i+ 1)s− 1] and u(k) = 0 for k ≥ (i+ 1)s.

Note that one can choose different lifting times and construct different lifted LTI

systems. However the input-output behavior of those systems would essentially be

the same, as different lifting times just correspond to different reference points of

the time-Tf map on the same orbit.

5.1.3 Step III: Snapshot-based approximate balanced trun-

cation for the linearized time-periodic system

A lifted ERA procedure (see Section 4.5.1) is then executed to obtain reduced-order

lifted LTI models of system (5.14). Due to the restriction on the control input u(k),

the original periodic system (5.10) is conceptually lifted twice as described above.

For reference, we list a summary of the implementation procedure of the lifted ERA

method as follows, based on discussions in Section 4.5.1. (The steps with an asterisk

mark are needed for systems that have one unstable eigenvalue, but can be skipped

for stable systems.)

• Step III.1: Run s simulations for system (5.10), each beginning at time

step is, i = 0, . . . Ts − 1 with zero initial conditions, and u(k) = 1 for k ∈
[is, (i + 1)s − 1] and u(k) = 0 for k ∈ [(i + 1)s, Tf ]. Collect the end state of

each simulation xi(Tf ) = F̌(Ts,i+1)B̌(i) = F(Tf ,(i+1)s)B̌(i). Store the outputs at

every time step in the simulations.
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• Step III.2*: Run s control-free simulations for system (5.10), each beginning

at time 0, with initial conditions xi(0) given by the corresponding xi(Tf )

collected in the previous step. Each simulation runs for 4m steps, where m is

a large enough integer multiple of the period Tf , except that the simulation

with the initial condition x0(0) runs for (4m+ Tf ) steps for later use. In each

simulation, store the states xi(2m) and xi(4m). Store x0(4m + Tf ). Also,

store the outputs y0(2m), . . . , y0(2m+ Tf − 1).

• Step III.3*: Project each of the initial states xi(0) used in the previous step

onto the stable subspace of the lifted transition matrix Ã0 by

Psxi(0) = xi(0)− xi(m)
〈xi(0), xi(2m)〉
〈xi(0), xi(4m)〉 .

• Step III.4: Run s control-free simulations of (5.10), each beginning at time 0,

with initial condition given by corresponding Psxi(0) computed in the previous

step. Each simulation runs for (2m−1) steps. Store the outputs at every time

step during each simulation.

• Step III.5: Construct the Hankel matrices H0 and H ′0 of the lifted sys-

tem (5.14) (see (4.30)) using the outputs collected in the previous step. With

one SVD calculation on H0, compute the lifted reduced-order model of order r

for the stable dynamics using (4.32).
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• Step III.6*: Construct the lifted one-dimensional unstable dynamics by (See

(2.25) and (3.21))

x̃u(t+ 1) =
〈x0(0), x0(4m+ Tf )〉
〈x0(0), x0(4m)〉 x̃u(t) +

〈
x0(0),

[
x0(2m) . . . xTs−1(2m)

]〉
〈x0(0), x0(4m)〉 ũ(t);

ỹu(t) =


y0(2m)

...

y0(2m+ Tf − 1)

 x̃u(t),
(5.17)

where x0(0), x0(4m + Tf ), xi(2m) and y0(2m + i), i = 0, . . . , Ts − 1 are from

Step III.2.

• Step III.7: The final (r + 1)-dimensional, lifted reduced-order model is a

combination of the two decoupled models obtained in Step III.5 and Step

III.6. The final output equation includes a D̃r = D̃0 (see (4.14)), whose

entries are the outputs stored in Step III.1.

If the system is linearized from a stable orbit, then the steps 2 and 3 for the pro-

jection and step 6 for the unstable dynamics modeling can be skipped.

5.1.4 Step IV and V: Observer-based feedback control design

and implementation.

In most engineering applications, the state of the full system is unknown, and thus

a full-state feedback controller that updates the control input based on the cur-

rent state is not directly applicable. Instead, one typically uses an observer-based

feedback controller to update the feedback control inputs based on the sensor mea-

surements (outputs). For the lifted reduced-order models, standard design tools for

LTI control systems (Skogestad & Postlethwaite, 2005) can be applied. Figure 5.2
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illustrates the structure of an observer-based feedback controller for the reduced

system. The reduced-order observer reads

ˆ̃xr(t+ 1) = Ãr ˆ̃xr(t) + B̃rũ(t) + L(ỹ(t)− ˆ̃y(t));

ˆ̃y(t) = C̃r ˆ̃xr(t) + D̃rũ(t),

(5.18)

where ˆ̃xr is the estimate of x̃r and ˆ̃y is the estimate of output ỹ. The matrices K

and L are respectively the control gain and the observer gain. We emphasize that

one step for the reduced lifted model corresponds to one whole period Tf in the

original periodic setting.

Observer

ˆ̃xr(t+1) = Ãr
ˆ̃xr(t) + B̃rũ(t) + L(ỹ(t) − ˆ̃y(t))

ˆ̃y(t) = C̃r
ˆ̃xr(t) + D̃rũ(t)

ỹ
Reduced-order model

x̃r(t+1) = Ãrx̃r(t) + B̃rũ(t)

ỹ(t) = C̃rx̃r(t) + D̃rũ(t)

K
ˆ̃xr

ũ = −K ˆ̃xr

Figure 5.2: Block diagram for observer-based feedback control for the reduced-order model.

By the separation principle (Skogestad & Postlethwaite, 2005), the control gain K

and observer gain L can be designed separately. First, the control gain K can be

computed by design of a Linear Quadratic Regulator (LQR) with ũ = −Kx̃ (full-

state feedback) that minimizes the cost function

J =
∞∑
t=0

(
x̃r(t)

TQx̃r(t) + ũ(t)TRũ(t)
)

(5.19)

subject to the state dynamics x̃r(t+ 1) = Ãrx̃r(t) + B̃rũ(t) = (Ãr − B̃rK)x̃(t). By

specifying weight matricesQ and R, one can computeK by solving this optimization

problem using Matlab command dlqr, which essentially solves an algebraic Riccati
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equation.

In the current work, the observer gain L is computed by pole placement (Matlab

command place) that specifies the eigenvalues of the close-loop state transition

matrix (Ãr − LC̃r) of the observer. The observer gain can be obtained by other

methods, such as by design of a Linear Quadratic Estimator (LQE) that is based

on an assumption that the noises in the states and outputs can be represented by

stochastic Gaussian processes.

Based on the assumption that the reduced-order lifted LTI model captures well the

input-output dynamics of the full time-periodic system, we apply the controller de-

signed for the reduced-order model to the full linearized time-periodic system (5.10),

as illustrated in Figure 5.3. Notice that the the full linearized time-periodic sys-

tem sends the stored outputs for the past whole period to the observer once per

period. Then the reduced-order model based observer (in a lifted setting) updates

the reduced state estimate, and in turn updates the control input sequence for the

full system for the next whole period . Also note that here we only allow u(k) to

change once every s steps. Thus the observer updates a control input sequence with

Ts = Tf/s entries for the full system for the next whole period, each entry acting

on the full system for s steps.

The controller is designed for the linearized time-periodic system about an unstable

periodic orbit we are interested in. The controller is expected to be able to stabilize

the periodic orbit in its neighborhood in the state space where the linear dynamics

is dominant, so it is reasonable to expect the linearized model to remain valid for

the full nonlinear system, as long as the controller is capable of suppressing the

instability. The full nonlinear model with open-loop periodic forcing (5.2), now
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K
ˆ̃xr

ỹ
Full, linearized periodic N-S

Observer (state updated once a period)

ˆ̃xr(t+1) = Ãr
ˆ̃xr(t) + B̃rũ(t) + L(ỹ(t) − ˆ̃y(t))

ˆ̃y(t) = C̃r
ˆ̃xr(t) + D̃rũ(t)

y(k) = Cx(k)

x(k+1) = A(k)x(k) + Bu(k)

outputs of 

a whole period

inputs for 

a whole period

ROM state estimate

once a period

ũ = −K ˆ̃xr

Figure 5.3: Block diagram for observer-based feedback control for the full linearized time-periodic
system (5.10).

with the feedback control input, reads

xNL(k + 1) = N (xNL(k)) +Bf(k) +Bu(k);

yNL(k) = CxNL(k),

(5.20)

where yNL are the outputs from the nonlinear system, f(k) is the open-loop periodic

forcing from (5.3), and u(k) is determined by the feedback controller. The control

diagram is shown in Figure 5.4. As in the full linearized system case, the observer

is in the lifted setting and updates the state and control inputs once per period,

while the full model is running in the periodic setting. Note that before it is sent to

the observer, the reference output yorb is subtracted from yNL at the corresponding

time phase of the orbit along which the system is linearized. The time phase is

determined by the phase of the open-loop sinusoidally periodic forcing.
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reference outputs 

from the orbitỹorb
+ −

outputs of 

a whole periodFull, nonlinear N-S w/ periodic forcing
inputs for 

a whole period xNL(k+1) = N
(
xNL(k)

)
+ Bf(k) + Bu(k)

Observer ( state updated once a period)

K
ˆ̃xr ˆ̃xr(t+1) = Ãr

ˆ̃xr(t) + B̃rũ(t) + L(ỹ(t) − ˆ̃y(t))

ˆ̃y(t) = C̃r
ˆ̃xr(t) + D̃rũ(t)

ROM state estimate

once a period

yNL(k) = CxNL(k)

ũ = −K ˆ̃xr xNL(k+1) = N
(
xNL(k)

)
+ Bf(k) + Bu(k)

ỹNL

Figure 5.4: Block diagram for observer-based feedback control for the full nonlinear Navier-Stokes
model with open-loop periodic forcing.

5.2 Observer-based feedback control results

5.2.1 Stable and unstable periodic orbits

The actuation-free system has a stable periodic orbit with a natural vortex shedding

period T0(= 3.6924) = 900 time steps. Its lift coefficient CL trajectory is shown in

Figure 5.5(a). Consistent with the Floquet theory, a linear stability analysis of the

linearized time-periodic system about this orbit by the Arnoldi iteration method

shows that it is neutrally stable; see Figure 5.5(b).
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Figure 5.5: The stable periodic orbit for the baseline actuation-free case. (a) The lift coefficient
trajectory corresponding to the T0-periodic orbit of the nonlinear system (5.2). The average value
of the lift coefficient CL is 1.4530. (b) The leading eigenvalues of the time-T0 map of the linearized
time-periodic system around the orbit.
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The Newton-GMRES method is implemented as discussed in Section 5.1.1 to find

stable and unstable orbits of the flow with open-loop periodic forcing (5.2). First,

we perform a simulation with a forcing period Tf = T0. Its lift coefficient trajectory

is shown in Figure 5.6, with an average lift about 13.4% higher than the baseline

case (see Figure 5.5). With the Tf = T0 fixed, the Newton-GRMES method is used

to solve (5.5) using states corresponding to different phases on the quasi-periodic

solution as initial guesses. With Tf fixed, no convergent solution is obtained. How-

ever, by regarding the forcing period Tf as an additional unknown and using phase

condition (5.6), we find a family of periodic solutions, each with a different pe-

riod Tf . For instance, one periodic solution, the orbit I with period Tf = 1040

time steps, is shown in Figure 5.7(a). Continuation studies using these solutions as

starting points and Tf as the bifurcation parameter lead to other periodic solutions.

For example, the orbit II shown in Figure 5.8(a) is obtained in this way. Its period

is also Tf = 1040 time steps. Thus, with forcing period Tf (= 4.2667) = 1040 time

steps, there are at least two periodic orbits. Both have average lift significantly

higher than either the baseline actuation-free case or the Tf = T0 case. The aver-

age lift coefficient of the orbit I is 1.8112, higher than that of the orbit II, 1.7812.

Figure 5.9 shows a long-term simulation with a forcing period Tf = 1040 time steps

that begins at a state on the orbit I and eventually converges to the orbit II. Lin-

ear stability analyses using the Arnoldi iteration method further show that for the

orbit I there is an unstable eigenvalue of the time-Tf map of the linearized time-

periodic system, but the linearized time-periodic system about the orbit II is stable;

see Figure 5.7(b) and 5.8(b). Neither of them are neutrally stable, as expected in

Section 5.1.2.

Figure 5.10 shows the vorticity fields of the orbit I and II, both taken at time

phase 0. The noticeable phase difference between these two snapshots (and then
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the two orbits) may contribute to the difference in average lift and stability. More

detailed analysis on the flow physics is under progress.
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Figure 5.6: The lift coefficient trajectory ( ) and the periodic forcing history ( ) for the
case that the forcing period is equal to the natural period: Tf = T0 = 900 time steps. The
approximate average value of the lift coefficient CL is 1.6480.
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Figure 5.7: Orbit I: The unstable periodic orbit with a forcing period Tf = 1040 time steps. (a) The
lift coefficient trajectories of the periodic orbit with Tf = 1040 time steps ( ) and the quasi-
periodic case with Tf = T0 = 900 time steps ( ), and the actuation history for the periodic
orbit with Tf = 1040 time steps ( ) and for the quasi-periodic case with Tf = T0 = 900 time
steps ( ). The average value of the lift coefficient CL of the orbit I is 1.8112. (b) The leading
eigenvalues of the time Tf map of the time-periodic system linearized around orbit I.

5.2.2 Reduced-order models

We are interested in the stabilization of the unstable, high-lift orbit I. An unstable

linearized time-periodic control system corresponding to orbit I is formed as (5.10).
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Figure 5.8: Orbit II: The stable periodic orbit with a forcing period Tf = 1040 time steps. (a) The
lift coefficient trajectories of the periodic orbit with Tf = 1040 time steps ( ) and the quasi-
periodic case with Tf = T0 = 900 time steps ( ), and the actuation history for the periodic
orbit with Tf = 1040 time steps ( ) and for the quasi-periodic case with Tf = T0 = 900 time
steps ( ). The average value of the lift coefficient CL of the orbit II is 1.7812. (b) The leading
eigenvalues of the time Tf map of the time-periodic system linearized around orbit II.
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Figure 5.9: The lift coefficient trajectory ( ) and the periodic forcing history ( ) during
the shift from Orbit I to Orbit II. The forcing period is Tf = 1040 time steps.

Its lifted, reduced-order model is then obtained by using the lifted ERA method,

following the seven steps outlined in Section 5.1.3. We emphasize that the resulting

reduced-order model approximates the lifted version of time-periodic system (5.10),

whose control input is restricted to change once every s time steps. Equivalently,

the reduced system can be regarded as a lifted approximation of the time-periodic

system (5.11) with a large time-step corresponding to s real time steps in (5.10).

Here we choose the parameter s = 80 = Tf/13 time steps such that the control input

u(k) is allowed to change only at time steps k = 0, 80, 160, . . . , 1040, . . ., thirteen
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Figure 5.10: The vorticity field of the orbit at time phase 0: (a) Orbit I. (b) Orbit II.

times in one period.

Since the linearized time-periodic system has one unstable dimension, we need to

first run an additional set of thirteen simulations, each for 4m steps, to project out

the components in the unstable direction from the initial conditions for impulse

responses; see Section 5.1.3, Steps III.2 and 3. Here we choose m = 16Tf = 16640

time steps. Then, thirteen control-free simulations of (5.10) are performed to collect

Markov parameters. Each simulation runs for (2m− 1) steps, with projected initial

conditions, i.e., PF(Tf ,(i+1)s)B̌i, i = 0, . . . , 12; see Section 5.1.3, Step III.4. These

simulations are indeed impulse responses corresponding to thirteen different time

phases of the periodic system (5.11) with large time steps.

Note that for convenience we will denote these simulations with unprojected initial

condition F(Tf ,(i+1)s)B̌i or with projected initial condition PF(Tf ,(i+1)s)B̌i by “the

impulse-response of time phase i with unprojected/projected initial conditions”.

Figure 5.11 shows that the outputs in the impulse-response of time phase 0 with

the unprojected initial condition diverge quickly. However, with a projected ini-

tial condition, the impulse-response outputs keep decaying at least by the end of

the (2m − 1)-steps of the Markov parameter collection process. This result again
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supports the argument we proposed in Section 3.4 that a bi-orthogonal projection

using unstable left/right eigenvectors can be approximately realized through a power

method approach that is adjoint-free and only requires simulations of the primal

system.
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Figure 5.11: The outputs of impulse responses of time phase 0, with unprojected ( ) and
projected ( ) initial conditions. Time period Tf = 1040 time steps.

A lifted, 5-dimensional reduced-order model (with Ãr, B̃r, C̃r, D̃r) for the stable

dynamics and a one-dimensional model (with Au, Bu, Cu) for the unstable dynamics

are then computed. The 5-dimensional reduced-order model is perfectly balanced,

and the diagonal entries of the reduced-order Gramians are almost identical to the

leading Hankel singular values, as shown in Figure 5.12(a). This implies the reduced

model captures the most important modes for both controllability and observability

for the stable dynamics. On the other hand, the one-dimensional unstable subsystem

in the form (5.17) has an eigenvalue, i.e., the value of 〈x0(0),x0(4m+Tf )〉
〈x0(0),x0(4m)〉 in (5.17),

almost identical to the unstable eigenvalue of the full system (5.10), as shown in
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Figure 5.12(b). Furthermore, Figure 5.12(b) also shows that the leading eigenvalues

of the 5-dimensional model are also close to the leading stable eigenvalues of the

full system.

! " # $ %
!&

!"

!&
!!

!&
&

Order
!! !"#$ " "#$ !

!!

!"#$

"

"#$

!

Re
Im

(a) (b)

Figure 5.12: Reduced-order model properties. (a) The stable 5-dimensional subsystem: the lead-
ing Hankel singular values of the Hankel matrix constructed by Markov parameterrs ( , ◦),
the diagonal entries of the controllability Gramian ( , �) and those of the observability
Gramian ( , +). They are almost identical. (b) The leading eigenvalues of the time-Tf map of
the full unstable linearized time-periodic system (�), the eigenvalues of Ãr of the stable, reduced
5-dimensional subsystem (∗), and the eigenvalue of the one-dimensional unstable subsystem (+).

Note that for a higher-order reduced model of the stable dynamics, e.g., with a

state dimension higher than 10, the Ãr matrix will have an unstable eigenvalue that

converges to the unstable eigenvalue of the full Ã0 quickly as the order r increases.

This undesirable effect is not surprising. Even though the Markov parameters (out-

puts) are collected in impulse responses using projected initial conditions, numerical

errors in the unstable direction accumulate with time and are still included in the

Markov parameters. However, the Markov parameters are decaying during the im-

pulse responses, which means they are still dominated by the stable dynamics. Also,

the unstable eigenvalue does not appear until the order of truncation is higher than

10, which corresponds to very small Hankel singular values (at the order less than

10−3). This indicates that for the stable part of dynamics, the unstable direction is
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almost uncontrollable and unobservable, as we expect.

The final, combined 6-dimensional system has a lifted input ũ with pTs = 13 di-

mensions, and a lifted output ỹr with qTf = 2080 dimensions. We now compare

the impulse responses, the most representative simulations for linear control sys-

tems, of the reduced-order model and the full linear system. By construction, the

impulse response for the first control input of the reduced system corresponds to

the impulse response of time phase 0 of the full time-periodic system (5.11), with

the unprojected initial condition. Furthermore, it is easy to check that a projection

of the reduced B =

B̃r

Bu

 matrix onto the stable 5-dimensional subspace of the

reduced 6 × 6 state transition matrix results in the matrix

B̃r

0

, where 0 stands

for a zero row vector. Thus, the impulse response for the first control input of the

reduced system using the projected reduced B matrix corresponds to the impulse

response of time phase 0 of the full time-periodic system (5.11), with projected

initial condition. Again, for convenience, we denote the above impulse responses

for the reduced system by “impulse response of the reduced model, with projected/

unprojected initial conditions”.

The outputs of the impulse responses of the reduced 6-order model match very

well the outputs of the corresponding impulse responses of the full time-periodic

system (with a dimension of state about 1.4× 105), for both the projected and the

unprojected initial conditions. See Figure 5.13 for an example where the trajectories

of the first output are plotted.
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Figure 5.13: The first output y1 of the impulse response of the 6-order reduced system ( ) and
that of the impulse response of time phase 0 of the full linear system ( ): (a) with the projected
initial condition; (b) with the unprojected initial condition. In both cases, the trajectories of y1
of the reduced-order model and the full system are almost identical.

5.2.3 Observer-based feedback control results

In this section, an observer-based controller for the reduced system is designed

using LQR for the control gain K and pole placement for the observer gain L. The

weight matrices for LQR (see (5.19)) are chosen as Q = 5I6×6 and R = I13×13. The

observer gain L is obtained by placing the eigenvalues of (Ãr − LC̃r) at eig(Ã)/10,

where eig(Ã) are the eigenvalues of (Ã), such that the eigenvalues of (Ãr − LC̃r)

are close to zero. The controllers can be further tuned and more sophisticatedly

designed, such as by adjusting the weight of Q on the unstable dimension of x̃r, or by

defining Q = C̃∗r C̃r such that in LQR the “energy of the output”
∑∞

t=0 ỹr(t)
∗ỹr(t) is

minimized. The observer gain L could also be found using optimal control methods

such as LQE (Skogestad & Postlethwaite, 2005). However we emphasize that the

main tasks in this work on the model problem are (i) to design a model-based

120



feedback controller that can stabilize the unstable periodic orbit, and (ii) equally

importantly, to test whether a controller designed for the reduced-order model will

also work for the full linear system in a dynamically similar way, i.e., if the closed-

loop behavior of the full and reduced systems are similar. This will validate our

approach of control design for the full system using reduced-order models.

The closed-loop behavior of the full and reduced linear systems are indeed very

similar: to demonstrate this, we apply the observer-based controller onto the lifted

reduced-order model as illustrated in Figure 5.2. Independently, we apply the same

observer-based controller onto the full linear time-periodic system as illustrated

Figure 5.3. The control goal is to suppress the diverging impulse responses with

unprojected initial conditions (see Figure 5.11). Figure 5.14 shows that the con-

troller indeed stabilizes both the lifted reduced-order model and the full linear time-

periodic system. Further, the two output trajectories for the full and reduced-order

models are almost identical, and the two control input histories are also very close to

each other. This indicates the observer-based reduced-order control system can cap-

ture well the closed-loop behavior of the full linear time-periodic system equipped

with the same observer-based controller.

As shown in Figure 5.14, the control input is zero until the start of the second

period at time Tf = 1040 time steps, as the observer begins with a zero reduced

state estimate. Then, at time Tf , the observer uses the outputs stored in the first

period to update the reduced state estimate, with which the control input signals for

the next whole period are computed. Notice that as mentioned before the control

inputs here are designed to be constant in every time step interval [k, k + 80],

k = 0, 80, 160, . . .. Also notice that the control effort for the stabilization is one

magnitude smaller than the open-loop periodic forcing.
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Figure 5.14: The representative output y1 trajectories and control u trajectories for observer-
based feedback control respectively on the reduced-order model ( ) and on the full linear
time-periodic system ( ), for suppressing the otherwise diverging impulse response. Time
period Tf = 1040 time steps.

Finally, the observer-based controller is applied to the full nonlinear system as

illustrated in Figure 5.4. Figure 5.15 shows a typical case in which the controller

successfully stabilizes the otherwise unstable orbit. The feedback control input effort

is reasonably small compared to the open-loop periodic forcing (except during the

first three cycles of application).

Although the current controller stabilizes the desired periodic orbit even for the

full nonlinear system, its region of attraction is small. For instance, the controller

can not control the system with an initial state on the stable orbit II to evolve to

the unstable orbit I. A likely reason is that the controller is intrinsically designed

for the linearized time-periodic system. However, nonlinear dynamics dominates if

the state is far from the orbit. In such a situation, other control methods, such as

open-loop optimal control, could be applied first to bring the system state close to
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Figure 5.15: Stabilization of the unstable periodic orbit I with the observer-based feedback con-
troller. The top plot shows a comparison between without control ( ) and with control
on ( ). The one without control eventually converges to the stable orbit II. The one with
control on converges to the unstable orbit I. Time period Tf = 1040 time steps.

the desired orbit, and then the feedback control could be turned on to stabilize the

orbit. Also, it would be interesting to compute time-periodic reduced-order models

by using the periodic ERA/balanced POD algorithms. With this approach, there

would not be a large delay in updating control inputs, as we have with the current

approach in which the reduced state is updated only once per period. As mentioned

previously, a disadvantage is that control tools for LTI systems would no longer be

applicable.
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5.3 Summary

In the model problem of flow past a two-dimensional plate with open-loop periodic

forcing, we stabilize an unstable high-lift periodic orbit using an observer-based

feedback controller. The unstable periodic orbit is found using the Newton-GMRES

method. The lifted ERA method, an adjoint-free approximate balanced truncation

method proposed in Chapter 4, is applied here to compute a reduced-order model

of the unstable linearized time-periodic system corresponding to the unstable orbit.

Simulation results show that the reduced-order model captures the full linearized

input-output dynamics well. The reduced-order model is then used to design an

observer-based feedback controller for the full linearized system. The observer-based

feedback controller stabilizes the unstable equilibrium of the lifted full linearized

system. Furthermore, the reduced-order lifted model equipped with the observer

also captures well the closed-loop input-output behavior of the full linearized time-

periodic system equipped with the observer. Finally, the controller is applied to

the full nonlinear system to stabilize the unstable high-lift orbit (the orbit I, see

Figure 5.7), whose average lift is 24.7% higher than that of the baseline case (see

Figure 5.5), 9.90% higher than that of the quasi-periodic case where the forcing

period is identical to the natural vortex shedding period (see Figure 5.6), and 1.68%

higher than that of the stable orbit II (see Figure 5.8).

The current controller has a relatively small range of region of attraction for the full

nonlinear system. Possible improvements include better tuning of the controller and

observer gains K, L, the usage of LQE and other linear controller design methods,

or nonlinear control techniques to attract the state to a neighborhood of the orbit

within which the linearized dynamics dominates such that the feedback controller

developed here can be applied for the stabilization.
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Chapter 6

Variational Lie-Poisson Hamiltonian

integrators

6.1 Introduction

In Chapters 2, 3, 4 and 5, we discussed model dimensional reduction for control

systems with high-dimensional states. The reduced-order models can capture (re-

construct) the correct input-output dynamics of the original system. These model

reduction methods are therefore applicable to feedback control design for dynam-

ical systems in fluids that are dominated by low-dimensional coherent structures.

In this chapter, we consider another important feature in fluidic dynamical systems

and its applications. It is well known that the governing equations for ideal fluids

and fluid-body interactions (without dissipation) are Hamiltonian, which implies

there are symmetry-induced conservation laws in these systems. The conservation

laws can include, for example, the conservation of Poisson structure, Hamiltonian

function, Casimir function(s), and momentum map(s) (Marsden & Ratiu, 1994).

125



Practically, most Hamiltonian systems are nonlinear ordinary differential equations

(ODEs) or partial differential equations (PDEs) for which closed forms of ana-

lytic solutions are not available, and therefore numerical simulations play a crucial

role for understanding their behavior. However, standard finite difference schemes,

such as Runge-Kutta methods, often cannot satisfy the conservation laws at the

discrete level, which can result in qualitatively incorrect behavior: for instance,

a conservative Hamiltonian system typically becomes dissipative in simulations.

This drawback can be serious, especially in simulations of long-term and/or chaotic

Hamiltonian dynamics. To solve this problem, in the last two decades the so-called

geometric integrators have been developed to preserve some or all of the conserva-

tion laws at the discrete level. Specifically, for canonical (symplectic) Hamiltonian

systems, this subject is well studied: symplectic integrators can be constructed in

a systematic way; see Hairer et al. (2006); Leimkuhler & Reich (2004); Marsden &

West (2001) and the references therein. However, for more general non-canonical

Hamiltonian systems, this is still an open problem.

In this work, we present a variational approach for construction of geometric in-

tegrators for Lie-Poisson Hamiltonian systems, a special class of non-canonical

Hamiltonian systems that plays an important role in fluid dynamics. Lie-Poisson

Hamiltonian systems arise in ideal fluid mechanics, such as the Euler equations

for an inviscid fluid and the equations of motion for N point vortices on a sphere;

rigid body dynamics, such as the Euler equations for free rigid body rotation; and

many other settings (Marsden & Ratiu, 1994). Our approach is based on regarding

the Lie-Poisson system as a reduced form of a full canonical Hamiltonian system,

and then in the resulting integrators some of the dynamics in the “full space” is

reconstructed. The approach is systematic and valid for general finite-dimensional

Lie-Poisson systems. It is a natural generalization, on the Hamiltonian side, of the
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variational approach for integrators of Euler-Poincaré Lagrangian systems devel-

oped by Marsden and collaborators in Marsden et al. (1999a); Bou-Rabee (2007).

Note that the study of geometric integrators for Lie-Poisson systems was originated

by Ge & Marsden (1988) using generating functions. Since then, several approaches,

including Lie group methods, the splitting method, and integrators based on the

Darboux-Lie theorem that converts the Lie-Poisson system into a canonical Hamil-

tonian system, have been established. However, the latter two approaches are only

applicable to Lie-Poisson systems with certain special structure, while the Lie group

method does not in general preserve the Lie-Poisson/symplectic structure in sim-

ulations. More details and comments can be found, for example, in Hairer et al.

(2006).

In this chapter, Section 6.2 introduces the background on Lie-Poisson systems. In

Section 6.3, 6.4 and 6.5 we present three different categories of Lie-Poisson integra-

tors developed using a variational approach: schemes defined on G × g∗, g × g∗,

and g∗. In Section 6.6, simulation results are shown for two examples, namely the

dynamics of free rigid body rotation, and the dynamics of N point vortices on a

sphere. We note that the second example is the main motivating application for

this work. Results in this chapter are reported in Ma & Rowley (2010).

6.2 Background: Lie-Poisson systems

6.2.1 Preliminaries

A Lie-Poisson Hamiltonian system is defined on g∗, the dual of a Lie algebra g.

In this work we restrict our study to the case where g is finite dimensional, which

guarantees the existence of a certain Lie group G such that the g is its Lie algebra.
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The Poisson bracket form of Lie-Poisson systems is

Ḟ (µ) = {F, h}∓LP (µ) (6.1)

where the dot stands for time derivative, µ ∈ g∗, F : g∗ → R, h: g∗ → R is the

Hamiltonian function, and the Lie-Poisson structure is

{F, h}∓LP (µ) = ∓
〈
µ,

[
dF

dµ
,
dh

dµ

]〉
, (6.2)

in which dF/dµ, dh/dµ ∈ g, 〈·, ·〉 : g∗ × g→ R is the pairing between elements in a

vector space and its dual, and [·, ·] : g× g→ g is the Lie bracket in g. Equivalently,

the intrinsic coordinate-free form of Lie-Poisson systems is

µ̇ = ± ad∗dh
dµ
µ (6.3)

where ad∗ stands for the dual of the usual ad operator on g. Note that ada b = [a, b]

for a, b ∈ g.

A key remark is that the Lie-Poisson system on g∗ ≈ T ∗G/G can be regarded as

a reduced system resulting from Lie-Poisson reduction of a canonical Hamiltonian

system on the cotangent bundle T ∗G in which the Hamiltonian H : T ∗G → R

is left / right invariant under action of G. The +/− in Lie-Poisson equations

(6.3) correspond to the left/right invariant cases respectively. We refer readers to

Marsden & Ratiu (1994) for a general discussion on Lie-Poisson systems and Lie-

Poisson reduction.

Since a Lie-Poisson system is a reduced Hamiltonian system, it is natural to define

a reduced Legendre transform to link the Lie-Poisson system to an Euler-Poincaré

system, the corresponding reduced Lagrangian system defined on g (Marsden &

Ratiu, 1994). An Euler-Poincaré system reads

d

dt

(
dl

dξ

)
= ± ad∗ξ

dl

dξ
, (6.4)
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where ξ ∈ g, l(ξ) is the reduced Lagrangian mapping g → R, and +/− represents

left/right invariant cases, respectively. Then g ≈ TG/G, where TG is the tangent

bundle on which the full Lagrangian system is defined, with variable (g, ġ), g ∈ G,

and the reduced variable ξ(t) = g−1(t)ġ(t) := Tg(t)L
−1
g(t)

dg
dt
∈ g (for the left-invariant

case) or ξ(t) = ġ(t)g−1(t) := Tg(t)R
−1
g(t)

dg
dt
∈ g (for the right-invariant case). If the

mapping defined by the reduced Legendre transform µ = dl/dξ, h(µ) = 〈µ, ξ〉 − l(ξ)
and the inverse transform ξ = dh/dµ, l(ξ) = 〈µ, ξ〉 − h(µ) is a diffeomorphism, the

reduced Euler-Poincaré Lagrangian and Lie-Poisson Hamiltonian are hyperregular,

and the Euler-Poincaré system (6.4) is equivalent to the Lie-Poisson system (6.3).

In summary, for systems with hyperregular Lagrangians/Hamiltonians, the diagram

in Figure 6.1 commutes.

-�

-�

6

?

6

?

E-L on TG Ham. on T ∗G

E-P on g L-P on g∗

(I)

(III)

(II)(IV)

Figure 6.1: Relations between Euler-Lagrange (E-L) systems, canonical Hamiltonian (Ham.) sys-
tems, Euler-Poincaré (E-P) systems and Lie-Poisson (L-P) systems. (I): Legendre transform; (II):
Lie-Poisson reduction/reconstruction; (III): reduced Legendre transform; (IV): Euler-Poincaré re-
duction/reconstruction.

We emphasize that the point here is not to regard a Lie-Poisson system as an isolated

system, but to relate it to a canonical Hamiltonian system on T ∗G by Lie-Poisson

reduction/reconstruction and to a reduced Lagrangian system on g by the reduced

Legendre transform, even if the forms of the canonical Hamiltonian system and the

Euler-Poincaré system may be not explicitly known.
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6.2.2 Conservation laws

Along solution flows of a Lie-Poisson system, the Lie-Poisson structure is pre-

served. Its Hamiltonian function is also conserved along the solution flow since

ḣ = {h, h}LP ≡ 0. Any Casimir function C, defined by Ċ = {C,K}LP ≡ 0 for

any real valued function K : g∗ → R, is also conserved if it exists. Furthermore, if

the Hamiltonian h is invariant under the action of a symmetry group Gs, then by

the Hamiltonian version of Noether’s theorem, the corresponding momentum map

is conserved along the solution flow too.

Another feature of a Lie-Poisson system is the preservation of its coadjoint orbits

along solution flows. The solution of a Lie-Poisson system for the left-invariant case

(with ‘+’ sign in (6.3)) is in form of

µ(t) = Ad∗g(t) µ(t0), (6.5)

where µ(t0) is the initial condition, Ad∗, the dual of the adjoint action operator Ad,

stands for coadjoint action, and the curve g(t) ∈ G satisfies dh
dµ

(t) = g−1(t)ġ(t) ∈ g.

Starting from µ(t0) ∈ g∗, the solution stays on Orb(µ(t0)), the coadjoint orbit of

µ(t0). For the right-invariant case, the solution is in form of µ(t) = Ad∗g(t)−1 µ(t0)

with g(t) ∈ G satisfying dh
dµ

(t) = ġ(t)g−1(t) ∈ g. If all the coadjoint orbits are

connected, Casimir functions are also preserved along each coadjoint orbit (Marsden

& Ratiu, 1994). This is another way to show the Casimir functions are constant

along solution flows.

6.2.3 Lie-Poisson Variational Principle

As a counterpart of the well-known Euler-Poincaré variational principle that is

equivalent to the Euler-Poincaré equations on the reduced Lagrangian side, Cen-
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dra et al. (2003) presented the Lie-Poisson variational principle on the reduced

Hamiltonian side:

δ

∫ T

0

(〈µ(t), ξ(t)〉 − h(µ(t)) dt = 0, (6.6)

where µ ∈ g∗, h is the reduced Hamiltonian, and for the left-invariant case ξ =

g−1ġ ∈ g, g ∈ G. Here δµ is arbitrary while δξ = η̇ + [ξ, η], with η = g−1δg

and δg(t) arbitrary everywhere except that δg(0) = δg(T ) = 0. For the right-

invariant case, the above setting is replaced by ξ = ġg−1 ∈ g and δξ = η̇ − [ξ, η]

where η = δgg−1. Cendra et al. (2003) showed the principle is equivalent to the

Lie-Poisson equations (6.3). More precisely, it is equivalent to the pair of equations

µ̇ = ± ad∗ξ µ; (6.7)

ξ =
dh

dµ
. (6.8)

The Lie-Poisson principle implies the preservation of a symplectic two-form along

the Lie-Poisson flow; see Proposition C.0.7 in Appendix C.

6.2.4 Why variational Lie-Poisson integrators?

Formally, a variational integrator is an integrator obtained by discretization of vari-

ational principles. Variational integrators for canonical Hamiltonian systems / full

Lagrangian systems are by construction symplectic (Marsden & West, 2001), i.e.,

they preserve a discrete sympelctic two form exactly. This is an appealing property

since by backward error analysis (Hairer et al., 2006) it follows that the simulation

results are exponentially close to a Hamiltonian system nearby the original one.

Following the same spirit, we would like to develop variational Lie-Poisson (VLP)

integrators for Lie-Poisson reduced Hamiltonian systems. A cautionary note is that,

depending on its construction, the integrators may or may not conserve a discrete
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Lie-Poisson structure or symplectic structure. The fundamental reason why certain

integrators do not preserve discrete Hamiltonian structures is that, in the discrete

setting, Lie algebra elements ξ ∈ g depend on Lie group elements g ∈ G, and there-

fore variations δξ are not arbitrary, which may causes the issue that the one-form

defined by δξ at the discrete level is not closed. We will see details concerning this in

Section 6.4, 6.5. To be consistent with the terminology convention in the literature,

in this note an integrator will be referred to as a variational integrator only when it

is obtained by discretization of a variational principle and preserves a Hamiltonian

structure.

Note that on the reduced Lagrangian side, i.e., for Euler-Poincaré systems, Marsden

and collaborators (Marsden et al., 1999a; Bou-Rabee, 2007) have developed varia-

tional integrators by discretizing the Euler-Poincaré variational principle. The work

here is a natural analog on the reduced Hamiltonian side. Indeed, if a Lie-Poisson

system can be rewritten as an Euler-Poincaré system using the reduced Legendre

transform, then those variational Euler-Poincaré integrators are readily applicable.

However, it is important to obtain variational Lie-Poisson integrators directly on

the reduced Hamiltonian side, especially for cases when the reduced Lagrangian

form is not available, due to a degenerate reduced inverse Legendre transform, or

it is computationally difficult to invert the transform. For instance, the problem of

N point vortices evolving on a sphere (Section 6.6.2) has been shown to be a Lie-

Poisson system for the right-invariant case; see, e.g., Pekarsky & Marsden (1998).

However, to convert the mechanics to the reduced Lagrangian side using the reduced

Legendre transform is computationally complicated; as a result, no Euler-Poincaré

form of this system is available so far.
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6.3 Variational Lie-Poisson integrators on G× g∗

We begin by defining Θ : g∗ × g→ R by

Θ(µ, ξ) = 〈µ, ξ〉 − h(µ). (6.9)

It is essentially a reduced Lagrangian, expressed in terms of the reduced Hamilto-

nian. Then, we approximate the variational principle (6.6) by

0 = δ

∫ T

0

Θ(µ(t), ξ(t)) dt = δ
K−1∑
k=0

∫ tk+1

tk

Θ(µ(t), ξ(t)) dt ≈ δ
K−1∑
k=0

Θ(µ(tk), ξ(tk))∆t,

(6.10)

where ∆t = T
K

is small, tk = k∆t, k = 0, · · · , K−1. Consider the left-invariant case

where ξ = g−1ġ. A natural way to approximate ξ(tk) is ξk = ξk(gk, gk+1) ≈ ξ(tk)

where gk ≈ g(tk). For example, one choice is ξk = g−1
k+1

gk+1−gk
∆t

= 1
∆t

(Id−g−1
k+1gk)

where Id is the identity element of G (this choice is consistent with that in Marsden

et al. (1999a) for variational Euler-Poincaré integrators on G). Note that besides

the finite difference approximation, other general methods of relating Lie group and

Lie algebra elements are also available, e.g., retraction maps (Shub, 1984) arising

from the embedding of the group into a linear space. Define

fk+1k = g−1
k+1gk (6.11)

and approximate ξ(tk) ≈ ξk = ξk(fk+1k). Let µk ≈ µ(tk). Note that in the discrete

approximation we would like to keep gk ∈ G, ξk ∈ g and µk ∈ g∗.

Let

Θ̄k = Θ̄(µk, fk+1k) := Θ(µk, ξk) = 〈µk, ξk〉 − h(µk). (6.12)

Proposition 6.3.1. For the left-invariant case, with the above setting, the discrete

133



variational principle

0 = δ
K−1∑
k=0

Θ̄(µk, fk+1k), (6.13)

where

δfk+1k = −g−1
k+1δgk+1g

−1
k+1gk + g−1

k+1δgk, (6.14)

δgk, k = 1, · · · , K − 1, arbitrary, δg0 = δgK = 0 and δµk, k = 0, · · · , K − 1,

arbitrary, is equivalent to the sets of equations〈
∂Θ̄k

∂fk+1k

, fk+1kηk

〉
−
〈
∂Θ̄k−1

∂fkk−1

, ηkfkk−1

〉
= 0, k = 1, · · · , K − 1; (6.15)

ξk − dhk
dµk

= 0, k = 0, · · · , K − 1, (6.16)

where ηk = g−1
k δgk and hk := h(µk).

Proof. Direct calculation leads to (6.14). Then,

0 = δ
K−1∑
k=0

Θ̄(µk, fk+1k)

=
K−1∑
k=0

〈
δµk,

∂Θ̄k

∂µk

〉
+

K−1∑
k=0

〈
∂Θ̄k

∂fk+1k

, δfk+1k

〉

=
K−1∑
k=0

〈
δµk,

∂Θ̄k

∂µk

〉
+

K−1∑
k=0

〈
∂Θ̄k

∂fk+1k

,
(−g−1

k+1δgk+1g
−1
k+1gk + g−1

k+1δgk
)〉

=
K−1∑
k=0

〈
δµk, ξk − dh(µk)

dµk

〉
+

K−1∑
k=1

(〈
∂Θ̄k

∂fk+1k

, fk+1kηk

〉
−
〈
∂Θ̄k−1

∂fkk−1

, ηkfkk−1

〉)
in which the last step is obtained from (6.12) and by relabelling indices and using

the boundary conditions δg0 = δgK = 0. Equations (6.15) and (6.16) follow since

δgk, k = 1, · · · , K − 1, and δµk, k = 0, · · · , K − 1, are arbitrary. The derivation

from (6.15) and (6.16) to (6.13) is obvious using the relations above.

The statement above provides the Variational Lie-Poisson integrator on G×g∗

(6.15) and (6.16) mapping (µk, fk+1k) 7→ (µk+1, fk+2k+1) for k = 0, · · · , K − 2. By
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the chain rule and the definition of Θ̄k, (6.12), the VLP on G× g∗ can be rewritten

as 〈
µk

dξk
dfk+1k

, fk+1kηk

〉
−
〈
µk−1

dξk−1

dfkk−1

, ηkfkk−1

〉
= 0, k = 1, · · · , K − 1; (6.17)

ξk(fk+1k) =
dh(µk)

dµk
, k = 0, · · · , K − 1.

(6.18)

Proposition 6.3.2. A symplectic two-form is preserved along a solution sequence

of the VLP on G× g∗ (6.15) and (6.16).

Proof. Rewrite the sum in the discrete Lie-Poisson principle (6.13) as

Sd({gk, µk}) =
K−1∑
k=0

Θ̄(µk, fk+1k). (6.19)

For short, define vk = ((δgk, δµk), (δgk+1, δµk+1)). We have

dSd({gk, µk}) · ({δgk, δµk}) =
K−1∑
k=0

(
dΘ̄(µk, fk+1k) · vk

)
=

K−1∑
k=0

[〈
∂Θ̄

∂µk
, dµk · vk

〉
+

〈
∂Θ̄

∂fk+1k

, dfk+1k · vk
〉]
(6.20)

where

dµk · vk = δµk; dfk+1k · vk = δfk+1k = −g−1
k+1δgk+1g

−1
k+1gk + g−1

k+1δgk. (6.21)
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Thus, by direct calcuation and the equality of mixed partials,

d2Sd({gk, µk}) · ({δg1
k, δµ

1
k}, {δg2

k, δµ
2
k})

=
K−1∑
k=0

[
d
(
dΘ̄(µk, fk+1k) · v2

k

) · v1
k − d

(
dΘ̄(µk, fk+1k) · v1

k

) · v2
k

]
=

K−1∑
k=0

[〈
∂Θ̄

∂fk+1k

, d(dfk+1k · v2
k) · v1

k − d(dfk+1k · v1
k) · v2

k

〉
+

〈
∂Θ̄

∂µk
, d(dµk · v2

k) · v1
k − d(dµk · v1

k) · v2
k

〉]
,

in which, by definition, d(dµk · v2
k) · v1

k = d(dµk · v1
k) · v2

k = 0, and

d(dfk+1k · v2
k) · v1

k =d(−g−1
k+1δg

2
k+1g

−1
k+1gk + g−1

k+1δg
2
k) · v1

k

=− g−1
k+1δg

2
k+1g

−1
k+1δg

1
k + g−1

k+1δg
2
k+1g

−1
k+1δg

1
k+1g

−1
k+1gk

+ g−1
k+1δg

1
k+1g

−1
k+1δg

2
k+1g

−1
k+1gk − g−1

k+1δg
1
k+1g

−1
k+1δg

2
k,

d(dfk+1k · v1
k) · v2

k =− g−1
k+1δg

1
k+1g

−1
k+1δg

2
k + g−1

k+1δg
1
k+1g

−1
k+1δg

2
k+1g

−1
k+1gk

+ g−1
k+1δg

2
k+1g

−1
k+1δg

1
k+1g

−1
k+1gk − g−1

k+1δg
2
k+1g

−1
k+1δg

1
k,

which leads to

d2Sd({gk, µk}) · ({δg1
k, δµ

1
k}, {δg2

k, δµ
2
k}) = 0. (6.22)

On the other hand, along the solution sequence of the discrete Lie-Poisson principle

(6.13), by discrete integration by parts, one can rewrite dSd given in (6.20) as

dSd({gk, µk}) · ({δgk, δµk}) =θ+(gK−1, µK−1, , gK , µK) · (δgK−1, δµK−1, δgK , δµK)

− θ−(g0, µ0, g1, µ1) · (δg0, δµ0, δg1, δµ1),
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where the one forms on (G× g∗)× (G× g∗), θ+ and θ−, are given by

θ+(gk, µk, , gk+1, µk+1) · ((uk, wk), (uk+1, wk+1)) =

〈
wk+1,

∂Θ̄k+1

∂µk+1

〉
+

〈
∂Θ̄k

∂fk+1k

, g−1
k+1uk+1g

−1
k+1gk

〉
;

θ−(gk, µk, , gk+1, µk+1) · ((uk, wk), (uk+1, wk+1)) = −
〈
wk,

∂Θ̄k

∂µk

〉
−
〈

∂Θ̄k

∂fk+1k

, g−1
k+1uk

〉
where (uk, wk) ∈ T(gk,µk)(G × g∗). When K = 1, we see that along the Lie-Poisson

solution sequence

θ−(g0, µ0, , g1, µ1) · (δg0, δµ0, δg1, δµ1) = θ+(g0, µ0, , g1, µ1) · (δg0, δµ0, δg1, δµ1).

So 0 = d2Sd =
(
ΦK
)∗

dθ+ − dθ+, where ΦK : (G × g∗) × (G × g∗) × Z → (G ×
g∗) × (G × g∗) is the discrete Lie-Poisson flow map given by the discrete VLP on

G× g∗ (6.15) and (6.16) . It follows that the discrete symplectic two-form ω = dθ+

is preserved along a solution sequence of VLP on G× g∗ (6.15) and (6.16).

This symplecticity allows us to expect that, by backward error analysis, the solution

of VLP onG×g∗ is exponentially close to the exact solution of a modified Lie-Poisson

system which is close to the original system, and thus the Hamiltonian function and

Casimir functions are preserved in simulations in the sense that no unbounded drifts

of the values of these functions are generated.

Further, recall the Discrete Euler-Poincaré integrator (DEP) on G developed

for Euler-Poincaré systems with a reduced Lagrangian l(ξ(t)), ξ ∈ g in Marsden

et al. (1999a). The variational DEP on G is constructed by discretization of the

Euler-Poincaré variational principle, the counterpart of the Lie-Poisson variational

principle at the reduced Lagrangian side. Still consider the left invariant case, and

use the same definition of ξk, ηk, fk+1k as in VLP on G × g∗. Discretizing the

Euler-Poincaré variational principle gives 0 = δ
∑K−1

k=0 l(ξk). With the notation

lk = l(ξk) = l̄(fk+1k) = l̄k, the DEP on G integrator derived from the discrete
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variational principle for fkk−1 7→ fk+1k is:〈
dl̄k

dfk+1k

, fk+1kηk

〉
−
〈
dl̄k−1

dfkk−1

, ηkfkk−1

〉
= 0, k = 1, · · · , K − 1, (6.23)

i.e., by the chain rule,〈
dlk
dξk

dξk
dfk+1k

, fk+1kηk

〉
−
〈
dlk−1

dξk−1

dξk−1

dfkk−1

, ηkfkk−1

〉
= 0, k = 1, · · · , K − 1. (6.24)

In the continuous case, as mentioned in Section 6.2, Lie-Poisson systems and Euler-

Poincaré systems are equivalent to each other if the map ξ 7→ µ defined by reduced

Legendre transform is a diffeomorphism. At the discrete level we have a similar

result for hyperregular discrete Lagrangians and Hamiltonians, as follows.

Proposition 6.3.3. The DEP on G (6.24) and VLP on G× g∗(6.17), (6.18) inte-

grators are equivalent if the map ξk 7→ µk for each k is a diffeomorphism defined by

the discrete reduced Legendre transform

µk =
dlk
dξk

; (6.25)

hk = 〈µk, ξk〉 − lk (6.26)

and the inverse discrete reduced Legendre transform

ξk =
dhk
dµk

; (6.27)

lk = 〈µk, ξk〉 − hk (6.28)

where hk = h(µk) and lk = l(ξk).

Proof. First, consider the transform from DEP on G to VLP on G × g∗. At each

step, by the Legendre transform (6.25) and (6.26),

dhk
dµk

= −
〈
dlk
dξk

,
dξk
dµk

〉
+

〈
µk,

dξk
dµk

〉
+ ξk = ξk, (6.29)

which is (6.18). Also, plugging the discrete reduced Legendre transform (6.25) into

138



DEP on G (6.24), one obtains the equation (6.17).

The converse transfrom from VLP on G×g∗ to DEP on G with the inverse Legendre

trasnform (6.27) and (6.28) can be shown in a similar way.

Theorems 2.1, 2.2 and 2.3 in Marsden et al. (1999a) ensure that DEP on G is Lie-

Poisson and by discrete reconstruction / reduction it is equivalent to the normal

discrete Euler-Lagrange (DEL) equations obtained by discretization of Hamilton’s

principle. By discrete Legendre transform the DEL is equivalent to the discrete

canonical Hamilton (DH) equations at the Hamiltonian side (Marsden & West,

2001). To summarize, we introduce the following almost commuting cube in Fig-

ure 6.2 for systems with hyperregular Lagrangians/Hamiltonians. The contribution

of this work to this cube includes the construction of VLP on G × g∗ through dis-

cretization of L-P equations on g∗, given by Proposition 6.3.1 and referred to by the

relation (X) in the figure, and the relation (VI), given by Proposition 6.3.3, that

shows the equivalence between VLP on G×g∗ and DEP on G. The symplecticity of

VLP on G× g∗ is shown directly at the Hamiltonian side by Proposition 6.3.2, and

not depending on the equivalence between DEP on G and VLP on G × g∗, which

will not be valid if either side is a degenerate system.

Remark 6.3.1. Marsden et al. (1999a) introduced an algorithm named ‘DEP/DLP’

for calculating µk. In this algorithm, one updates µk by a coadjoint action of fk+1k,

where fk+1k is obtained by the DEP on G. For the left-invariant case, the discrete

coadjoint action is

µk+1 = Ad∗
f−1
k+1k

µk. (6.30)

This DEP/DLP algorithm preserves not only a discrete Lie-Poisson structure but

also the coadjoint orbits by construction, which is different from the VLP on G×g∗

introduced here. Thus, though DEP on G (e.g. (6.23)) and VLP on G × g∗ (e.g.
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Figure 6.2: The almost commuting cube that links the full/reduced Lagrangian/Hamiltonian sides
in both continuous and discrete domains. (I): Legendre transform; (II): Lie-Poisson reduction/re-
construction; (III): reduced Legendre transform; (IV): Euler-Poincaré reduction/reconstruction;
(VI): discrete Legendre transform; (IX): discrete reduction/reconstruction at the Lagrangian side;
(XI): discrete reduced Legendre transform defined by (6.25)-(6.28); (V), (VII), (VIII) and (X) are
transforms between the corresponding continuous and discrete systems.

(6.15) with (6.16)) are equivalent, generally DEP/DLP (e.g. (6.23) with (6.30)) and

VLP on G× g∗ generate different results of µk. Also, compared to VLP on G× g∗,

which needs to solve for both µk and fk+1k implicitly at each time step, DEP/DLP

only needs to solve implicitly for fk+1k from its DEP on G integrator. However, the

advantage of the VLP onG×g∗ introduced here is that it is constructed directly from

the Lie-Poisson side, so one needs not to convert the Lie-Poisson system into Euler-

Poincaré system by Legendre transform, which is necessary for the application of

DEP/DLP. When the conversion by Legendre transform is computationally difficult,

or even degenerate, this advantage becomes crucial. See the problem of N point

vortices interacting on a sphere in Section 6.6.2 as an example.

Remark 6.3.2. For the right-invariant case,

µ̇ = − ad∗ξ µ, (6.31)

where ξ = dh/dµ = ġg−1. Using the same method as that for the left-invariant
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case, with ξk = ξk(fkk+1) where fkk+1 = gkg
−1
k+1, one obtains the VLP on G× g∗ for

the right-invariant case〈
∂Θ̄k

∂fkk+1

, ηkfkk+1

〉
−
〈
∂Θ̄k−1

∂fk−1k

, fk−1kηk

〉
= 0, k = 1, · · · , K − 1; (6.32)

ξk − dhk
dµk

= 0, k = 0, · · · , K − 1. (6.33)

where ηk = δgkg
−1
k . All above results on symplecticity and equivalence to the

reduced Lagrangian side hold for the right-invariant case.

Remark 6.3.3. Note that we can obtain higher order VLP integrators on G ×
g∗ by using higher-order approximations of the action integral in the Lie-Poisson

variational principle, instead of the Riemann sum approximation in (6.13).

Remark 6.3.4. Bou-Rabee & Marsden (2009) introduced a discrete version of the

reduced Hamilton-Pontryagin Principle for the left-invariant case

δ

∫ T

0

(l(ξ) + 〈µ, g−1ġ − ξ〉) dt = 0, (6.34)

where δg, δµ, δξ are arbitrary, except that δg = 0 at endpoints. The VLP on G×g∗

given above can also be regarded as a counterpart at the Hamiltonian side to the

variational Hamiltonian-Pontryagin integrators in Bou-Rabee & Marsden (2009).

As a summary, we note that VLP on G × g∗ is symplectic, and by construction it

should be valid for general finite dimensional Lie-Poisson systems. Its drawbacks,

however, are (i) the construction of the scheme is quite involved and the scheme is in

general implicit. Note that the integrator (6.17) & (6.18) is not directly applicable

for simulation due to the ηk terms, the elimination of which depending on individual

Lie-Poisson systems. (ii) At each time step a Lie group element, fk+1k or fkk+1,

is calculated. Thus a numerical reconstruction is done by the VLP on G × g∗

algorithm in simulations, which is unnecessary in applications where only the time

evolution of µ(t) ∈ g∗ is concerned. Since the Lie group involved is in general a
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manifold but not a vector space, calculation of Lie group elements will also cost

much computation effort. See Section 6.6 for numerical examples. This is the

motivation of the development of VLP on g× g∗ and VLP purely on g∗, which will

be introduced in the next two sections.

6.4 Variational Lie-Poisson integrators on g× g∗

Consider the left-invariant case. In Section 6.3, we approximate ξ(tk) in the discrete

version of Lie-Poisson variational principle (6.10) by discretizing the relation ξ =

g−1ġ, which inevitably involves the appearance of Lie group elements in numerical

schemes. To avoid that, we start directly from the approximation of δξ = η̇+ [ξ, η],

in which η, ξ ∈ g and η arbitrary except at the endpoints, such that only Lie algebra

elements appear for δξ approximation. The above idea was first introduced by Bou-

Rabee (2007) for construction of variational Euler-Poincaré integrators purely on g.

The work here is a generalization to the reduced Hamiltonian side.

Approximating the Lie-Poisson variational principle (6.6) by

0 = δ

∫ T

0

(〈µ(t), ξ(t)〉 − h(µ(t))) dt = δ
K−1∑
k=0

∫ tk+1

tk

(〈µ(t), ξ(t)〉 − h(µ(t))) dt

≈ δ

K−1∑
k=0

(〈µk+β, ξk+γ〉 − h(µk+β)) ∆t,

(6.35)

where µk+β = (1 − β)µk + βµk+1 and ξk+γ = (1 − γ)ξk + γξk+1, {µk}K−1
k=0 ⊂ g∗,

{ξk}K−1
k=0 ⊂ g, and γ, β ∈ [0, 1] are two parameters, we introduce the following

statement:

Proposition 6.4.1. For the left-invariant case, let the discrete variational principle

δ

K−1∑
k=0

(〈µk+β, ξk+γ〉 − h(µk+β)) ∆t = 0 (6.36)
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hold with δµk+β = (1−β)δµk +βδµk+1 in which δµk arbitrary for k = 0, · · · , K−1,

and δξk+γ := (1− γ)δ+ξk + γδ−ξk+1 in which δ+ξk = ηk+1−ηk
∆t

+ adξk+α ηk;

δ−ξk = ηk−ηk−1

∆t
+ adξk+α ηk,

(6.37)

α ∈ [0, 1], i.e.,

δξk+γ =
ηk+1 − ηk

∆t
+ (1− γ) adξk+α ηk + γ adξk+1+α

ηk+1, (6.38)

where ηk = g−1
k δgk ∈ g, gk ∈ G, δgk arbitrary for k = 1, · · · , K−1 and δg0 = δgK =

0. Then, the discrete variational principle is equivalent to the sets of equations on

g× g∗

1

∆t
(µk+β − µk−1+β) = ad∗ξk+α ((1− γ)µk+β + γµk−1+β) , k = 1, · · · , K − 1 (6.39)

ξk+γ =
dh

dµ

∣∣∣∣∣
µk+β

, k = 0, · · · , K − 1. (6.40)

Proof. The conditions on {δgk} imply that ηk is arbitrary for k = 1, · · · , K − 1 and

η0 = ηK = 0. Then, the result follows by direct calculation similar to that in the

proof of Proposition 6.3.1 and using the conditions on δµk, and ηk.

Note that the δξk given in (6.38) was first proposed by Bou-Rabee (2007). Though

in this setting we have a whole family of integrators on g×g∗, (6.39) & (6.40), with

three parameters α, β, γ ∈ [0, 1], only certain subsets of it will preserve a discrete

Hamiltonian structure.

Proposition 6.4.2. With α = 0, γ = 1
2
, the integrators on g×g∗, (6.39) & (6.40),

preserve a symplectic two-form along its solution sequence.
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Proof. Define

Sd({gk, ξk, µk}) =
K−1∑
k=0

Θ(Y ((µk, µk+1), X(ξk, ξk+1)) (6.41)

where Y ((µk, µk+1) = µk+β, X(ξk, ξk+1) = ξk+γ. Define

vk = ((δgk, δ
+ξk, δµk), (δgk+1, δ

−ξk+1, δµk+1)),

such that

dX · vk = (1− γ)δ+ξk + γδ−ξk+1 = δξk+γ; dY · vk = δµk+β. (6.42)

where δ+ξk, δ−ξk and δξk+γ are given by (6.37) and (6.38). Similar to that in

Proposition 6.3.2, we have

d2Sd({gk, ξk, µk}) · ({δg1
k, (δ

+ξk)
1, (δ−ξk)

1, δµ1
k}, {δg2

k, (δ
+ξk)

2, (δ−ξk)
2, δµ2

k})

=
K−1∑
k=0

[
d
(
dΘ(Y,X) · v2

k

) · v1
k − d

(
dΘ(Y,X) · v1

k

) · v2
k

]
=

K−1∑
k=0

[〈
∂Θ

∂X
, d(dX · v2

k) · v1
k − d(dX · v1

k) · v2
k

〉
+

〈
∂Θ

∂Y
, d(dY · v2

k) · v1
k − d(dY · v1

k) · v2
k

〉]
.

Consider the case when α = 0. By direct calculation, d(dX ·v2
k)·v1

k−d(dX ·v1
k)·v2

k =

1
∆t
Q+ P with

Q = (1− 2γ)(adη2
k+1

η1
k+1 + adη2

k
η1
k + adη1

k
η2
k+1 + adη1

k+1
η2
k);

P = (1− γ)(adξk adη2
k
η1
k + adη1

k
adξk η

2
k + adη2

k
adη1

k
ξk)

+ γ(adξk+1
adη2

k+1
η1
k+1 + adη1

k+1
adξk+1

η2
k+1 + adη2

k+1
adη1

k+1
ξk+1) = 0

where ηik = g−1
k δgik, and the Jacobi identity is used in the last equality. Also, it is

clear that d(dY ·v2
k)·v1

k = d(dY ·v1
k)·v2

k = 0. Thus, when γ = 1
2
, Q = 0 and d2Sd = 0.

It implies, by the same argument used in the proof of Proposition 6.3.2, that along

a solution sequence of VLP on g×g∗ with α = 0, γ = 1
2
, a symplectic two-form ω =

dθ+ = −dθ− is preserved, where the one forms θ+ and θ− on (G×g×g∗)×(G×g×g∗)
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are

θ+(gk, ξk, µk, gk+1, ξk+1, µk+1) · ((uk, vk, wk), (uk+1, vk+1, wk+1))

= β

〈
wk+1, ξk+ 1

2
− dh

dµ

∣∣∣
k+β

〉
+

〈
1

2
ad∗ξk+1

µk+β +
1

∆t
µk+β, g

−1
k+1uk+1

〉
;

θ−(gk, ξk, µk, gk+1, ξk+1, µk+1) · ((uk, vk, wk), (uk+1, vk+1, wk+1)

= (1− β)

〈
wk,

dh

dµ

∣∣∣
k+β
− ξk+ 1

2

〉
+

〈
1

∆t
µk+β − 1

2
ad∗ξk µk+β, g

−1
k uk

〉
,

where (uk, vk, wk) ∈ T(gk,ξk,µk)(G× g× g∗).

We thus have a whole family of symplectic, variational Lie-Poisson integrators

on g× g∗ for the left-invariant case

1

∆t
(µk+β − µk−1+β) =

1

2
ad∗ξk (µk+β + µk−1+β) , k = 1, · · · , K − 1 (6.43)

ξk+ 1
2

=
dh

dµ

∣∣∣∣∣
µk+β

, k = 0, · · · , K − 1. (6.44)

where β ∈ [0, 1].

Following the approach of Bou-Rabee (2007) on the Euler-Poincaré side, a symplec-

tic, variational Euler-Poincaré (VEP) integrator on g for the left-invariant case can

be presented in the form

1

∆t

 dl

dξ

∣∣∣∣∣
ξ
k+1

2

− dl

dξ

∣∣∣∣∣
ξ
k− 1

2

 =
1

2
ad∗ξk

 dl
dξ

∣∣∣∣∣
ξ
k+1

2

+
dl

dξ

∣∣∣∣∣
ξ
k− 1

2

 , k = 1, · · · , K − 1.

(6.45)

The following statement, again based on a pair of discrete reduced Legendre trans-

forms, shows the equivalence of the VEP on g and the VLP on g× g∗.

Proposition 6.4.3. The VEP on g (6.45) and VLP on g× g∗ (6.43), (6.44) inte-

grators are equivalent if the map ξk 7→ µk for each k is a diffeomorphism defined by
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the discrete reduced Legendre transform

µk+β =
dl

dξ

∣∣∣∣∣
ξ
k+1

2

; (6.46)

h(µk+β) = 〈µk+β, ξk+ 1
2
〉 − l(ξk+ 1

2
), (6.47)

and the inverse discrete reduced Legendre transform

ξk+ 1
2

=
dh

dµ

∣∣∣∣∣
µk+β

; (6.48)

l(ξk+ 1
2
) = 〈µk+β, ξk+ 1

2
〉 − h(µk+β). (6.49)

Proof. By direct calculation as that in the proof of Proposition 6.3.3.

Figure 6.3 illustrates the relation between VEP on g and VLP on g × g∗ for sys-

tems with hyperregular Lagrangians/Hamiltonians, by a commuting square. Our

contribution here includes the relation (IV) and the construction of VLP on g× g∗

through Proposition 6.4.1, and the relation (III) that shows the equivalence between

VEP on g and VLP on g × g∗ given by Proposition 6.4.3. Also, Proposition 6.4.2

shows the symplecticity of VLP on g× g∗ directly from the Hamiltonian side. No-

tice that unlike VLP on G× g∗ or DEP on G that numerically gives reconstruction

information, here everything stays in the reduced space.

Remark 6.4.1. For the right-invariant case where δξ = η̇ − [ξ, η], assume

δξk+γ =
ηk+1 − ηk

∆t
− (1− γ) adξk+α ηk − γ adξk+1+α

ηk+1 (6.50)

where ηk = δgkg
−1
k . Following the same process for the left-invariant case, with
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(IV), Prop. 6.4.1(II)

Figure 6.3: Relations between Euler-Poincaré (E-P) systems, Lie-Poisson (L-P) systems, VEP on
g and VLP on g×g∗. (I): reduced Legendre transform; (III): discrete reduced Legendre transform
defined by (6.46)-(6.49); (II) and (IV): transforms between corresponding continuous and discrete
systems.

α = 0, γ = 1
2
, one obtains the symplectic VLP on g× g∗ for the right-invariant case

1

∆t
(µk+β − µk−1+β) = −1

2
ad∗ξk (µk+β + µk−1+β) , k = 1, · · · , K − 1 (6.51)

ξk+ 1
2

=
dh

dµ

∣∣∣∣∣
µk+β

, k = 0, · · · , K − 1. (6.52)

Remark 6.4.2. Though in general the VLP on g× g∗ (6.43)&(6.44) is implicit, for

the case β = 0, the integrator will be semi-explicit: the equation (6.44) updating

ξk is explicit while the equation (6.43) updating µk is implicit. In special cases the

scheme can be explicit due to certain special structure of Lie algebra. See examples

in Section 6.6 for details.

Compared with VLP on G×g∗, the main advantages of the VLP on g×g∗ are that it

is easier to construct, sometimes explicit, and not involved with Lie group elements.

The drawback is that it still needs to ‘unnecessarily’ compute those Lie algebra

elements {ξk}. Though the computation is not so costly as that for Lie group

elements since the Lie algebra is a vector space, the dimension of the numerical

scheme on g × g∗ will be double of that of the original Lie-Poisson system on g∗.

Naturally, one would like to develop variational Lie-Poisson integrators purely on
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g∗, which is the topic we will turn to in the next section.

6.5 Lie-Poisson integrators on g∗ based on discretized

variational principles

6.5.1 Integrators on g∗ based on the Lie-Poisson variational

principle

Consider the left-invariant case. Instead of (6.38), approximate δξk+γ := (1 −
γ)δ+ξk + γδ−ξk+1 in which δ+ξk = ηk+1−ηk

∆t
+ adξk+α ηk;

δ−ξk = ηk−ηk−1

∆t
+ adξk−1+α

ηk,
(6.53)

i.e.,

δξk+γ =
ηk+1 − ηk

∆t
+ (1− γ) adξk+α ηk + γ adξk+α ηk+1, (6.54)

Proposition 6.5.1. For the left-invariant case, let the discrete variational principle

(6.36) hold with δµk+β = (1 − β)δµk + βδµk+1 in which δµk are arbitrary for k =

0, · · · , K − 1, and δξk+γ are given by (6.54) in which ηk = g−1
k δgk, gk ∈ G, δgk are

arbitrary for k = 1, · · · , K − 1 and δg0 = δgK = 0. Then, the discrete variational

principle is equivalent to the following sets of equations on g× g∗

1

∆t
(µk+β − µk−1+β) = (1− γ) ad∗ξk+α µk+β + γ ad∗ξk−1+α

µk−1+β, k = 1, · · · , K − 1

(6.55)

ξk+γ =
dh

dµ

∣∣∣∣∣
µk+β

, k = 0, · · · , K − 1. (6.56)
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Proof. By direct calculation similar to that in the proof of Propositions 6.3.1 and 6.4.1.

When α = γ, the above integrators on g× g∗ (6.55)&(6.56) becomes purely defined

on g∗ for the left-invariant case:

1

∆t
(µk+β−µk−1+β) = (1−γ) ad∗

dh
dµ

∣∣
µk+β

µk+β+γ ad∗
dh
dµ

∣∣
µk−1+β

µk−1+β, k = 1, · · · , K−1.

(6.57)

Unfortunately, this integrator on g∗ is not symplectic:

Proposition 6.5.2. The integrator on g∗ (6.57) is not symplectic for any γ ∈ [0, 1].

Proof. We follow the same arguments as in the proof of Proposition 6.4.2, and only

need to show that d2Sd 6= 0 for any γ ∈ [0, 1]. The only difference here is that δ+ξk,

δ−ξk and δξk+γ are now given by (6.53) and (6.54). This change does not affect

the fact d(dY · v2
k) · v1

k = d(dY · v1
k) · v2

k = 0. However, the Q and P terms in the

expression d(dX · v2
k) · v1

k − d(dX · v1
k) · v2

k = 1
∆t
Q+ P now become

Q = (1− 2γ)(adη2
k+1

η1
k+1 − adη2

k
η1
k + adη1

k
η2
k+1 − adη2

k
η1
k+1)

and

P = adξk+γ

[
(1− γ) adη2

k
η1
k + γ adη2

k+1
η1
k+1

]
+ adη1

k+γ

[
(1− γ) adξk η

2
k + γ adξk+1

η2
k+1

]
− adη2

k+γ

[
(1− γ) adξk η

1
k + γ adξk+1

η1
k+1

]
.

The term Q vanishes only if γ = 1/2. However, when γ = 1/2, by the Jacobi

identity,

P =
1

4
(adξk adη2

k+1
η1
k+1 + adη2

k+1
adη1

k
ξk + adη1

k+1
adξk η

2
k

+ adξk+1
adη2

k
η1
k + adη2

k
adη1

k+1
ξk+1 + adη1

k
adξk+1

η2
k+1),
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and it does not vanish for arbitrary ηik, ηik+1, i = 1, 2. Thus, for any γ ∈ [0, 1],

1
∆t
Q+ P 6= 0, and it follows immediately that d2Sd 6= 0.

When γ = 1/2, the term 1
∆t
Q, which dominates when ∆t is small, vanishes. In

particular, when γ = 1/2, β = 0, the integrator on g∗ is just the trapezoidal rule:

1

∆t
(µk − µk−1) =

1

2

(
ad∗

dh
dµ

∣∣
µk

µk + ad∗
dh
dµ

∣∣
µk−1

µk−1

)
, k = 1, · · · , K − 1, (6.58)

In examples given in Section 6.6 we will see that the trapezoidal rule, though not

exactly symplectic, preserves conserved quantities well in simulations of Lie-Poisson

systems.

Remark 6.5.1. Similarly, for the right-invariant case, by approximating

δξk+γ =
ηk+1 − ηk

∆t
− (1− γ) adξk+α ηk − γ adξk+α ηk+1, (6.59)

where ηk = δgkg
−1
k , and letting α = γ we obtain integrators on g∗ for the right-

invariant case

1

∆t
(µk+β−µk−1+β) = −(1−γ) ad∗

dh
dµ

∣∣
µk+β

µk+β−γ ad∗
dh
dµ

∣∣
µk−1+β

µk−1+β, k = 1, · · · , K−1.

(6.60)

Analysis on symplecticity gives the same results as presented in Proposition 6.5.2.

Remark 6.5.2. To construct integrators purely on g∗ by discretizing the Lie-

Poisson variational principle, one can also directly use the scheme developed in Sec-

tion 6.4 with α = γ. However, numerical results for free rigid body rotation example

by this scheme with typical values of α = γ and β, for example α = γ = β = 1/2,

etc, give discouraging results, such as dissipating Hamiltonian and Casimir func-

tions. Besides, for the general α = γ 6= 0 case, theoretical analysis for checking

symplecticity of the scheme, such as that in the Proof of Proposition 6.5.2, will be

much more involved since, by definition of δξk+γ given in (6.38), terms including

ξk+2 will appear in equations like (6.42) that define dX.

150



6.5.2 Integrators on g∗ based on a modified Lie-Poisson vari-

ational principle

The Lie-Poisson variational principle (6.6) involves both µ ∈ g∗ and ξ ∈ g and is

equivalent to the pair of equations (6.7) and (6.8), which is always trivially equiva-

lent to the Lie-Poisson equations (6.3) in the continuous case. However, as we see

in Section 6.3 and 6.4, due to the appearance of ξ, discretization of this variational

principle in general leads to a pair of difference equations involving not only the

elements in g∗ but also Lie group elements or Lie algebra elements, which prevents

us from obtaining integrators purely on g∗. To overcome this difficulty, we intro-

duce a modified version of the Lie-Poisson variational principle that includes only

the µ ∈ g∗ elements, such that the discretization of this principle naturally leads to

integrators purely on g∗.

Proposition 6.5.3. The Lie-Poisson equation (6.3) for the left-invariant case is

equivalent to the modified Lie-Poisson variational principle

δ

∫ T

0

(〈
µ(t),

dh

dµ
(t)

〉
− h(µ(t))

)
dt = 0 (6.61)

where µ ∈ g∗ and dh
dµ

= g−1ġ ∈ g, g ∈ G, with restricted variations δµ defined by

(d2h/dµ2)δµ = δ
(
dh
dµ

)
= η̇ + [dh

dµ
, η] where η = g−1δg, δg(t) arbitrary everywhere

except that δg(0) = δg(T ) = 0. The Lie-Poisson equation (6.3) for the right-

invariant case is equivalent to (6.61) with the above setting replaced by dh
dµ

= ġg−1 ∈
g, d2h

dµ2 δµ = δ
(
dh
dµ

)
= η̇ − [dh

dµ
, η] where η = δgg−1.
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Proof. Consider the left-invariant case. Start from the principle,

0 = δ

∫ T

0

(〈
µ,
dh

dµ

〉
− h(µ)

)
dt

=

∫ T

0

(〈
δµ,

dh

dµ

〉
+

〈
µ, δ

(
dh

dµ

)〉
−
〈
δµ,

dh

dµ

〉)
dt

=

∫ T

0

〈
µ, η̇ +

[
dh

dµ
, η

]〉
dt

=

∫ T

0

〈
−µ̇+ ad∗dh

dµ
µ, η
〉
dt+ 〈µ, η〉

∣∣∣T
0
.

This leads to the Lie-Poisson equation µ̇ = ad∗dh
dµ
µ on [0, T ] since η is arbitrary

on the time interval except η(0) = η(T ) = 0. The converse direction can also be

proved using the relation obtained above. Proof for the right-invariant case follows

the same process.

Proposition 6.5.4. The modified Lie-Poisson variational principle (6.61) given in

Proposition 6.5.3 implies that along a Lie-Poisson flow a symplectic two-form is

preserved.

Proof. See the proof of Proposition 6.5.4 in Appendix C.

The next step is to discretize the modified Lie-Poisson variational principle to obtain

integrators on g∗. Define µk+β the same as in the last section. We have:

Proposition 6.5.5. For the left-invariant case, consider the discrete variational

principle

δ

K−1∑
k=0

(〈
µk+β,

dh

dµ

∣∣∣
µk+β

〉
− h(µk+β)

)
∆t = 0, (6.62)

with δµk+β = (1 − β)δµk + βδµk+1, where δµk is restricted such that δ dh
dµ

∣∣∣
µk+β

:=
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(1− β)δ+ dh
dµ

∣∣∣
µk

+ βδ− dh
dµ

∣∣∣
µk+1

in which
δ+ dh

dµ

∣∣∣
µk

= ηk+1−ηk
∆t

+ ad dh
dµ

∣∣
µk

ηk;

δ− dh
dµ

∣∣∣
µk

= ηk−ηk−1

∆t
+ ad dh

dµ

∣∣
µk

ηk,

i.e.,

δ
dh

dµ

∣∣∣
µk+β

=
ηk+1 − ηk

∆t
+ (1− β) ad dh

dµ

∣∣
µk

ηk + β ad dh
dµ

∣∣
µk+1

ηk+1, (6.63)

where ηk = δgkg
−1
k , δgk ∈ G arbitrary for k = 1, · · · , K−1 and δg0 = δgK = 0. The

discrete variational principle is equivalent to the set of difference equations on g∗

1

∆t
(µk+β−µk−1+β) = ad∗

dh
dµ

∣∣
µk

((1− β)µk+β + βµk−1+β) , k = 1, · · · , K−1 (6.64)

Proof. Start from (6.62),

0 =δ
K−1∑
k=0

(〈
µk+β,

dh

dµ

∣∣∣
µk+β

〉
− h(µk+β)

)

=
K−1∑
k=0

(〈
δµk+β,

dh

dµ

∣∣∣
µk+β

〉
+

〈
µk+β, δ

dh

dµ

∣∣∣
µk+β

〉
−
〈
δµk+β,

dh

dµ

∣∣∣
µk+β

〉)

=
K−1∑
k=0

〈
µk+β,

ηk+1 − ηk
∆t

+ (1− β) ad dh
dµ

∣∣
µk

ηk + β ad dh
dµ

∣∣
µk+1

ηk+1

〉

=
K−1∑
k=1

(〈
1

∆t
(µk−1+β − µk+β) + (1− β) ad∗

dh
dµ

∣∣
µk

µk+β + β ad∗
dh
dµ

∣∣
µk

µk−1+β, ηk

〉

+

〈
−µβ

∆t
+ (1− β) ad∗

dh
dµ

∣∣
µ0

µβ, η0

〉
+

〈
µK−1+β

∆t
+ β ad∗

dh
dµ

∣∣
µK

µK−1+β, ηK

〉)
.

The conditions on δgk imply that ηk is arbitrary for k = 1, · · · , N − 1 and η0 =

ηK = 0. Thus, the equations (6.64) follow. The derivation in the reverse direction

can be done in a similar way.

The set of difference equations (6.64) obtained above is a Lie-Poisson integrator
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purely on g∗, referred to as Modified Lie-Poisson (MLP) integrator on g∗. The

symplecticity of this family of schemes can be checked by the approach we used in

the proof of Proposition 6.5.2. Here we give a positive result for a special case.

Proposition 6.5.6. Suppose the discrete inverse Legendre transform (6.48)&(6.49)

is invertible at each time k. If a finite dimensional Lie-Poisson system for the left-

invariant case has a quadratic Hamiltonian h(µ), then, with β = 1/2, the MLP on

g∗ (6.64) applied to this system preserves a discrete symplectic two-form along its

solution sequence.

Proof. The discrete Hamiltonian hk = h(µk) is also a quadratic function of µk. In

the inverse discrete reduced Legendre transform (6.48)&(6.49) defined in Proposi-

tion 6.4.3, if hk is quadratic, ξk+ 1
2

= dh
dµ

∣∣
µk+β

implies ξk = dh
dµ

∣∣
µk

when β = 1/2. It is

then readily seen that the MLP (6.64) can be equivalently rewritten in the form of

the VEP (6.45), which is symplectic.

Explicitly, the MLP on g∗ with β = 1/2 for the left-invariant case reads

1

∆t
(µk+ 1

2
− µk− 1

2
) =

1

2
ad∗

dh
dµ

∣∣
µk

(
µk+ 1

2
+ µk− 1

2

)
. k = 1, · · · , K − 1 (6.65)

Note that it is a two-step scheme.

Remark 6.5.3. For the right-invariant case where δµ = − ad∗η µ, δ
(
dh
dµ

)
= η̇ −

[dh
dµ
, η], assume

δ
dh

dµ

∣∣∣
µk+β

=
ηk+1 − ηk

∆t
− (1− β) ad dh

dµ

∣∣
µk

ηk − β ad dh
dµ

∣∣
µk+1

ηk+1, (6.66)

where ηk = δgkg
−1
k . Following the same process for the left-invariant case one

obtains the MLP on g∗ for the right-invariant case

1

∆t
(µk+β − µk−1+β) = − ad∗

dh
dµ

∣∣
µk

((1− β)µk+β + βµk−1+β) , k = 1, · · · , K − 1

(6.67)
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The MLP on g∗ with β = 1/2 for the right-invariant case is

1

∆t
(µk+ 1

2
− µk− 1

2
) = −1

2
ad∗

dh
dµ

∣∣
µk

(
µk+ 1

2
+ µk− 1

2

)
. k = 1, · · · , K − 1 (6.68)

6.6 Numerical examples

Here we test the Lie-Poisson integrators developed in previous sections, including

the variational integrators VLP on G× g∗ and VLP on g× g∗, and the trapezoidal

rule (an integrator on g∗) and MLP on g∗ with β = 1/2.

6.6.1 Example 1: Free Rigid Body Rotation

The dynamics of the free rigid body rotation forms a left-invariant Lie-Poisson

system (Marsden & Ratiu, 1994). In this example g = R ∈ G = SO(3) (R is the

rotation matrix), µ = Π̂ ∈ g∗ = so(3)∗ where Π = (Π1,Π2,Π3) ∈ R3 is the angular

momentum expressed in the body-fixed frame and ‘̂·’ is the hat map defined in

Marsden & Ratiu (1994), ξ = g−1ġ = Ω̂ ∈ g = so(3) where Ω = dh
dΠ
∈ R3 is the

body angular velocity, and the reduced Hamiltonian is

h(Π) =
1

2

(
(Π1)2

I1
+

(Π2)2

I2
+

(Π3)2

I3

)
. (6.69)

where Ii, i = 1, 2, 3, are the principal moments of inertia of the rigid body. The

equation of motion is the Euler equation for a rigid body:

Π̇ = Π×Ω = Π× dh(Π)

dΠ
(6.70)

or equivalently ˙̂
Π = ad∗

Ω̂
Π̂ = ad∗dh(Π̂)

dΠ̂

Π̂. The system has the Casimir function

|Π|2/2 (conservation of the magnitude of the angular momentum in the body frame).
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Schemes of VLP on G× g∗

Recall from Section 6.2 that for the left-invariant case, fk+1k = g−1
k+1gk, ηk = g−1

k δgk.

To approximate ξ(tk) = g(tk)
−1ġ(tk) by ξk ∈ g, i.e., keeping ξk skew-symmetric, we

set an intermediate variable

ξIk = g−1
k+1

gk+1 − gk
∆t

=
1

∆t
(Id−fk+1k),

where Id is the 3× 3 identity matrix, and thus

ξk =
1

2

(
ξIk − (ξIk)

T
)

=
1

2∆t
(fTk+1k − fk+1k) ∈ g. (6.71)

The VLP on G× g∗(6.15)&(6.16) is thus in the form

〈Π̂k, (fk+1kηk)
T − fk+1kηk〉 − 〈Π̂k−1, (ηkfkk−1)T − ηkfkk−1〉 = 0, k = 1, · · · , K − 1;

(6.72)

1

2∆t
(fTk+1k − fk+1k) =

dhk

dΠ̂k

, k = 0, · · · , K − 1. (6.73)

which will be solved for fk+1k ∈ G and Π̂k ∈ g∗ at each time step. For two

skew-symmetric matrices A and B, 〈A,B〉 = 1
2

Trace(ATB). Equation (6.72) thus

becomes

Trace
[(

(Π̂k − Π̂T
k )fk+1k − fkk−1(Π̂k−1 − Π̂T

k−1)
)
ηk

]
= 0, k = 1, · · · , K − 1.

(6.74)

Defining (Lee et al., 2005) gεk = gke
εγk where γk ∈ so(3), we get δgk = dgεk/dε|ε=0 =

gkγk, and thus ηk = g−1
k δgk = γk ∈ so(3) is skew-symmetric. Therefore, the matrix(

(Π̂k − Π̂T
k )fk+1k − fkk−1(Π̂k−1 − Π̂T

k−1)
)
in (6.74) must be symmetric, i.e.,

Π̂kfk+1k − fTk+1kΠ̂
T
k = fkk−1Π̂k−1 − Π̂T

k−1f
T
kk−1, k = 1, · · · , K − 1. (6.75)
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Schemes of VLP on g× g∗

The VLP on g × g∗ (6.43)&(6.44) is ready for simulation. Here we choose β = 0,

which gives a semi-explicit scheme (explicit in updating ξk and implicit in updating

Π̂k):

1

∆t
(Π̂k − Π̂k−1) =

1

2
ad∗ξk

(
Π̂k + Π̂k−1

)
, k = 1, · · · , K − 1 (6.76)

ξk+1 = 2
dhk

dΠ̂k

− ξk, k = 0, · · · , K − 1. (6.77)

Further, by the fact that ĉ = ad∗â b̂ is equivalent to c = −âb for a,b, c ∈ R3, the

above scheme can be rewritten as an explicit one:

Πk = (Id +
∆t

2
ξk)
−1(Id−∆t

2
ξk)Πk−1, k = 1, · · · , K − 1 (6.78)

ξk+1 = 2
dhk

dΠ̂k

− ξk, k = 0, · · · , K − 1. (6.79)

Notice that (Id +∆t
2
ξk)
−1(Id−∆t

2
ξk) is a Cayley transform Cay(∆tξk) mapping ∆tξk ∈

g = so(3) to elements in the orthogonal group G = SO(3). Thus (6.78) is in the form

Πk = Cay(ξk)Πk−1, implying that the Casimir function |Π|2/2 will be preserved

exactly in simulation.

Schemes of Lie-Poisson integrators on g∗

For the free rigid-body case, the trapezoidal rule (6.58), a not exactly symplectic

integrator on g∗, is

1

∆t
(Πk+1 −Πk) =

1

2

(
Πk × dhk

dΠk

+ Πk+1 × dhk+1

dΠk+1

)
, (6.80)

and the MLP on g∗ with β = 1/2 (6.65) for the free rigid-body case is a two-step

method:
1

∆t

(
Πk+ 1

2
−Πk− 1

2

)
=

1

2

(
Πk+ 1

2
+ Πk− 1

2

)
× dhk
dΠk

. (6.81)
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Note that by Proposition 6.5.6, the above scheme is symplectic since the discrete

Hamiltonian is quadratic.

Simulation results

Simulations are done in Matlab using double precision. Newton’s method is used

to solve nonlinear equations for implicit schemes. The tolerance of error allowed in

Newton method is set to be 10−15, close to machine precision.

For the rigid body example, the initial condition is Π(0) = (7/8, 5/8, 1/4)T . I1 =

7/8, I2 = 5/8, and I3 = 1/4. ∆t = 0.1 for all schemes tested here. Figure 6.4

shows simulation results of the time evolution of Hamiltonian and Casimir func-

tions by VLP on G×g∗ (6.75) and (6.73), VLP on g×g∗ with β = 0 (6.78)&(6.79),

trapezoidal rule (6.80) and symplectic MLP on g∗ (6.81). For comparison purpose,

we also show the results by Runge-Kutta fourth order method (RK4) in the same

figure. As an example, the individual trajectories of (Π1,Π2,Π3) by VLP G × g∗,

together with the reference trajectories, are shown in Figure 6.5. As to the accu-

racy, Figure 6.6 shows the error plot for the above schemes, verifying that those

tested schemes are second order. The results show that though RK4, as a fourth

order scheme, generates more accurate individual trajectories, it generates linearly

increasing unbounded drifts with finite magnitude in both Hamiltonian and Casimir

functions. As comparison, the tested second-order schemes, including the not ex-

actly symplectic trapezoidal rule, preserve the Hamiltonian and Casimir functions

well in the sense that the oscillations of those quantities are bounded around the

initial values. Thus, qualitatively, these schemes capture the conservative feature

of the freely-rotating rigid body system, while by RK4 the system is discretized as

a dissipative one. Also notice that the Casimir function is preserved at machine
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precision in the VLP on g× g∗ with β = 0 scheme, as we expect.

As to the comparison of simulation speed and accuracy among these schemes, VLP

on G×g∗ needs most CPU time for simulation, while the VLP on g×g∗ with β = 0

is the fastest, since it is explicit. Figure 6.6 shows that with small time steps, the

VLP on G×g∗ has the worst accuracy, and the trapezoidal rule is the most accurate.

However, these results depend on the particular system, as the next example shows.
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(I) Hamiltonian h− h(0) vs time (II) Casimir ‖Π‖2/2− ‖Π(0)‖2/2 vs time

Figure 6.4: Example of the free rigid body rotation problem. ∆t = 0.1. Simulation time t ∈
[0, 1000]. (I): Hamiltonian h − h(0) versus time; (II): Casimir function ||Π||2/2 − ||Π(0)||2/2
versus time.

6.6.2 Example 2: Dynamics of N point vortices on a sphere

The problem of N point vortices interacting on a sphere is an example of a right-

invariant Lie-Poisson system (Pekarsky & Marsden, 1998). It was pointed out

in Marsden et al. (1999b) that variational Euler-Poincaré integrators can be ap-

plied to this system, once one obtains its corresponding Euler-Poincaré representa-

tion. However, due to computational difficulty in performing the reduced Legendre

transform, the Euler-Poincaré form of the system is not known yet.
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Figure 6.5: The trajectories of Π(t) = (Π1(t),Π2(t),Π3(t))T versus time. Dotted line: RK4 with
∆t = 0.001 as reference; solid line: VLP on G × g∗ with time step ∆t = 0.1. Simulation time
t ∈ [0, 50]. The time interval displayed in the graph is [25, 50].
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Figure 6.6: Example of the free rigid body rotation problem. Error plot for the schemes RK4 (�),
VLP on G× g∗ (·), VLP on g× g∗ (+), Trapezoidal rule (∆) and symplectic MLP on g∗ (◦). The
error is calculated in the time interval [0, 40] by error = 1

K

∑K−1
k=0 ||Πsim(tk) −Πref (tk)||, where

Πsim is the simulation result and Πref stands for the reference trajectory generated by RK4 with
∆t = 0.001.

Consider a system of N point vortices interacting on a sphere with radius R. In

a Cartesian coordinate system with origin located at the center of the sphere,

denote the position vector of the α-th point vortex, with strength Γα, as xα =

(xα1, xα2, xα3)T . ||xα|| ≡ R. Recall the equations of motion expressed in Cartesian
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coordinates (Newton, 2001) are

ẋα =
1

2πR

N∑
β 6=α

Γβ
xβ × xα

(lβα)2
, (6.82)

for α = 1, · · · , N , where lβα = ||xβ − xα|| is the chord distance between the β-th

and α-th point vortices on the sphere. The Hamiltonian of this system is

h = − 1

4πR2

N∑
β<α

ΓβΓα ln((lβα)2), (6.83)

This system possesses a weighted Lie-Poisson (‘LPW’) structure (Pekarsky & Mars-

den, 1998)

{F,K}LPW (x) =
N∑
α=1

R

Γα
xα ·

(
∂F

∂xα
× ∂K

∂xα

)
(6.84)

where real valued function F and K: x 7→ R, in which x =
(
(x1)T , · · · , (xN)T

)T ∈
R3N . The system is Lie-Poisson defined on g∗ = so(3)∗ × · · · so(3)∗ ' R3N , the

dual space of the Lie algebra of the Lie group G = SO(3)× · · · × SO(3), since it is

obtained by a Lie-Poisson reduction from T ∗G to g∗ with a Hamiltonian defined on

T ∗G which is right invariant under action of G (Pekarsky & Marsden, 1998).

Introduce a set of vector valued variables, ρα = (ρα1, ρα2, ρα3)T ∈ R3 ' so(3)∗,

α = 1, · · · , N , as

ρα =
Γα

R
xα. (6.85)

Define ρ =
(
(ρ1)T , · · · , (ρN)T

)T ∈ R3N ' g∗. The equations of motion in ρ variable

can thus be written in Lie-Poisson bracket form

Ḟ = {F, h}LP (6.86)

with a ‘standard’ (cleaner) Lie-Poisson structure

{F,K}LP (ρ) =
N∑
α=1

ρα ·
(
∂F

∂ρα
× ∂K

∂ρα

)
. (6.87)
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The conserved quantities and preserved structure of the system (Pekarsky & Mars-

den, 1998; Newton, 2001) include its Lie-Poisson structure, its Hamiltonian, its

Casimir functions such as Cα := ||xα||2 = (R/Γα)2||ρα||2 ≡ R2, α = 1, · · · , N ,

which imply that all point vortices stay on the sphere, and the three components of

the momentum map corresponding to the symmetry group Gs = SO(3)

M =
N∑
i=1

Γix
i =

1

R

N∑
i=1

ρi. (6.88)

M is also called the moment of vorticity.

The above setting allows us to put the equations of motion in the intrinsic form of

Lie-Poisson systems for the right-invariant case (6.31):

˙̃ρ = − ad∗dh/dρ̃ ρ̃, (6.89)

where the tilde map ρ 7→ ρ̃ gives the skew-symmetric matrix

ρ̃ =


ρ̂1 0

. . .

0 ρ̂N

 . (6.90)

In this case we identify µ = ρ̃ ∈ g∗ and ξ = dh/dρ̃ = ġg−1 ∈ g, where g ∈ G =

SO(3)× SO(3)× · · · × SO(3) is identified as

g =


g1 0

. . .

0 gN

 (6.91)

where each gα ∈ SO(3).

Remark 6.6.1. Geometric integrators can also be developed for this system using

approaches other than the variational Lie-Poisson one. For example, since the sys-

tem has a separable Hamiltonian, the splitting method is applicable (Patrick, 2000;
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Newton & Khushalani, 2002). Also, the Lie-Poisson Hamiltonian system can be

rewritten as other Hamiltonian systems through coordinate transformations (New-

ton, 2001). For instance, the system can be converted into canonical Hamiltonian

form, for which canonical symplectic integrators are applicable. However, in the

canonical Hamiltonian representation, the SO(3) symmetry of the Hamiltonian is

broken due to the coordinate transformation. Consequently, in simulations using

those canonical symplectic integrators, one in general does not expect that the drifts

of the moment of vorticity M will be bounded over time. Stereographic projection

is another coordinate transformation often used in point vortex dynamics, but this

approach also breaks the symmetry. In this case, the projected system is still non-

canonical and therefore canonical symplectic integrators are not applicable to it.

Schemes of VLP on G× g∗

For the right-invariant case we choose fkk+1 = gkg
−1
k+1, ηk = δgkg

−1
k . As we did for

the rigid body case, to approximate ξ(tk) = ġ(tk)g(tk)
−1 by ξk ∈ g, let

ξk =
1

2∆t
(fTkk+1 − fkk+1) ∈ g. (6.92)

The VLP on G× g∗ for the right-invariant case (6.32)&(6.33) is thus in the form

〈ρ̃k, (ηkfkk+1)T − ηkfkk+1〉 − 〈ρ̃k−1, (fk−1kηk)
T − fk−1kηk〉 = 0, k = 1, · · · , K − 1;

(6.93)

1

2∆t
(fTkk+1 − fkk+1) =

dhk
dρ̃k

, k = 0, · · · , K − 1, (6.94)

which will be solved for fkk+1 ∈ G and ρ̃k ∈ g∗ at each time step. Again use

〈A,B〉 = 1
2

Trace(ATB) for two skew-symmetric matrices A and B. Also, by the

same argument used in the rigid body case one shows that ηk here is also skew-
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symmetric. Thus by rearrangement of (6.93) one obtains

fkk+1ρ̃k − ρ̃Tk fTkk+1 = ρ̃k−1fk−1k − fTk−1kρ̃
T
k−1, k = 1, · · · , K − 1. (6.95)

The equations (6.94) and (6.95) are the VLP on G× g∗ integrator for the N point

vortices problem. Note that we can recover the results in terms of the vortex

positions {xk}K−1
k=0 by converting {ρk}K−1

k=0 using (6.85).

Schemes of VLP on g× g∗

With β = 0, the VLP on g × g∗ (6.51)&(6.52) for the point vortex case is a semi-

explicit scheme:

1

∆t
(ρ̃k − ρ̃k−1) = −1

2
ad∗ξk (ρ̃k + ρ̃k−1) , k = 1, · · · , K − 1 (6.96)

ξk+ 1
2

=
dhk
dρ̃k

, k = 0, · · · , K − 1. (6.97)

Again it can be rewritten as an explicit scheme as what we did in the free rigid-body

case: For each α, α = 1, · · · , N ,

ραk = (Id−∆t

2
ξαk )−1(Id +

∆t

2
ξαk )ραk−1, k = 1, · · · , K − 1 (6.98)

ξαk+1 = 2
dhk
dρ̂αk
− ξαk , k = 0, · · · , K − 1. (6.99)

where the ξαk ∈ so(3) is defined by denoting

ξk =


ξ1
k 0

. . .

0 ξNk

 . (6.100)

As in the rigid-body case, this scheme guarantees that the Casimir functions |ρα|,
α = 1, · · · , N will be preserved exactly in simulation because ραk = Cay(−∆tξαk )ραk−1

where Cay : so(3)→ SO(3).
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Schemes of Lie-Poisson integrators on g∗

The trapezoidal rule for the point vortex case is, for each α, α = 1, · · · , N ,

1

∆t
(ραk+1 − ραk ) = −1

2

(
ραk ×

dhk
dραk

+ ραk+1 ×
dhk+1

dραk+1

)
, (6.101)

and the MLP on g∗ for β = 1/2 (6.68) for the point vortex case is, for each α,

α = 1, · · · , N ,

1

∆t

(
ρα
k+ 1

2
− ρα

k− 1
2

)
= −1

2

(
ρα
k+ 1

2
+ ρα

k− 1
2

)
× dhk
dραk

, (6.102)

which is a two-step method. The discrete Hamiltonian is not quadratic so we cannot

conclude that this MLP is symplectic by Proposition 6.5.6. Simulation results shown

below indicate that it is not symplectic.

Simulation results

To numerically verify the above schemes, we run an ‘inclined ring’ case (See Fig-

ure 6.7) where the angles Ψ and θ are arbitrarily chosen. In this case, the radius of

the sphere R = 1, and there are six identical point vortices with strength Γi = 1,

i = 1, · · · , 6, initially positioned on the sphere like an inclined ring. It is a stable

relative equilibrium (Polvani & Dritschel, 1993; Kurakin, 2003), and the trajectory

of each vortex shall be an inclined circle as shown in Figure 6.8.

Figure 6.9 shows simulation results of the time evolution of Hamiltonian, a typical

Casimir function C1 = ||x1||2, and the three components of M, by VLP on G× g∗

(6.95)&(6.94), VLP on g×g∗ with β = 0 (6.98)&(6.99) and trapezoidal rule (6.101),

together with results by RK4 as comparison. As an example, the individual time

trajectory of the first point vortex simulated by VLP on G×g∗ is also shown in Fig-

ure 6.10. Though RK4 does preserve the moment of vorticity M that is a linear first
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Figure 6.7: Inclined ring case. Initially, the six identical vortices are symmetrically positioned on
the surface of the sphere as an ‘inclined ring’. θ is the ‘latitude’ of the vortices if the ring were not
inclined, and ψ is the angle of inclination, i.e., the angle between the z axis and the vector from
the center of the sphere to the center of the ring, which is also the direction of the initial moment
of vorticity M. M is parallel to the x− z plane. In this case, θ = 20◦ and ψ = 30◦.

Figure 6.8: In the inclined ring case, the trajectory of each vortex shall be an inclined ring.

integral (Hairer et al., 2006), it generates linearly increasing unbounded drifts with

finite magnitude in both Hamiltonian and Casimirs. The drift of Casimir Cα means

the trajectories even leave the surface of the sphere. As comparison, in the time in-
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terval of simulation the VLP on G×g∗ preserves the Hamiltonian, Casimir C1, and

M close to the machine precision. Note that the 10−14-level drifts in Hamiltonian

and M2 are due to the Newton method but not the VLP on G× g∗ algorithm. The

explicit VLP on g × g∗ with β = 0 preserves Hamiltonian and x, z components of

M with bounded oscillations, and preserves the Casimir to machine precision, as we

expect. The y component of M oscillates in an envelope with increasing magnitude

at 10−13 level. This is however not due to the algorithm but related to the errors

caused by the coordinate transforms used in the code for the inclined ring. The

trapezoidal rule also shows good preservation of conserved quantities. The MLP

with β = 1/2, if tested with ∆t = 0.1 as other schemes, generates trajectories that

oscillate sharply and leave the surface of the sphere. Even though with a much

smaller ∆t = 0.01 the scheme can generate reasonable trajectories, the Hamilto-

nian, Casimir and moment of vorticity M oscillate in envelopes with increasing

magnitudes at a finite level(see Figure 6.11). This numerical result indicates that

MLP with β = 1/2 for the point vortex case is not symplectic.

The simulation results, together with the previous theoretical analysis, suggest that

the VLP on G×g∗, the VLP on g×g∗ and the trapezoidal rule are good candidates

for geometric simulations of the point vortex case. An interesting observation is

that the Hamiltonian, though much more complicated than that in the free rigid

body case, is preserved nearly to machine precision for VLP on G× g∗, and for the

trapezoidal rule. Recall that in the free rigid body case the Hamiltonian oscillates

for both of these integrators.

Figure 6.12 shows the error plot for the above schemes. We see that for the point

vortex case, with small time steps the VLP on G× g∗ is the most accurate among

those tested schemes, while the VLP on g × g∗ is the worst, which is different as

that for the rigid body case given in Figure 6.6. This comparison implies that the
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Figure 6.9: The inclined ring case. ∆t = 0.1. Simulation time t ∈ [0, 500]. (I): Hamiltonian
h − h(0) versus time; (II): Casimir function ||x1||2 − ||x1(0)||2 versus time; (III): M1 −M1(0)
versus time; (IV): M2 −M2(0) versus time; (V): M3 −M3(0) versus time.

accuracy of these schemes may be Hamiltonian dependent.
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Figure 6.10: The trajectory of the first point vortex, x1(t) = (x11(t), x12(t), x13(t))T , versus time.
The time interval displayed in the graph is [36, 40]. Dotted line: Theoretical trajectory; solid line:
VLP on G× g∗ with ∆t = 0.1.

6.7 Summary

In this chapter, we presented a systematic approach for construction of Lie-Poisson

integrators by discretization of variational principles corresponding to finite-dimensional

Lie-Poisson systems. These integrators include a scheme defined on G× g∗, a fam-

ily defined on g × g∗, a family defined purely on g∗ and a family defined on g∗

using a modified Lie-Poisson variational principle . The first three integrators are

constructed from the Lie-Poisson variational principle introduced in Cendra et al.

(2003); the modified Lie-Poisson variational principle used by the last one is pro-

posed in this work and defined only on g∗ with restricted variations on δµ. The

schemes on G × g∗ and on g × g∗ are variational (symplectic). In the family of

integrators on g∗, there is a subset of schemes that are not exactly symplectic but

may work well for preservation of conserved quantities, as we see in both numer-

ical examples. Among the modified Lie-Poisson integrators on g∗, if the discrete

Hamiltonian is quadratic, there is a corresponding symplectic scheme. By back-

ward error analysis, one therefore expects good performance as far as preservation
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Figure 6.11: Simulation results of the MLP on g∗ with β = 1/2. Time step ∆t = 0.01. (a) The
trajectory of the first point vortex, x1(t) = (x11(t), x12(t), x13(t))T , versus time. The time interval
displayed in the graph is [36, 40]. Dotted line: Theoretical trajectory; solid line: MLP on g∗ with
β = 1/2. These two trajectories are almost identical to each other in the graph. (b) Hamiltonian
h−h(0) versus time. (c) Casimir function ||x1||2− ||x1(0)||2 versus time. (d) Moment of vorticity
M−M(0) versus time.

of conserved quantities in simulations is concerned. Numerical tests given in the

last section confirm these expectations. In particular, we apply those algorithms to

the simulations of N point vortices on a sphere, and the algorithms VLP on G× g∗

and VLP on g× g∗ preserve the conversation laws at the discrete level properly. In

comparison, in the simulation tests the standard Runge-Kutta fourth-order method

does not preserve the Hamiltonian function and the Casmir functions in spite of its

higher order of accuracy.
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Figure 6.12: The inclined ring case. Error plot for the schemes RK4 (�), VLP on G× g∗ (·), VLP
on g × g∗ with β = 0(+), Trapezoidal rule (∆) and MLP on g∗ with β = 1/2 (◦). The error is
calculated in the time interval [0, 40] by error = 1

K

∑K−1
k=0 ||x1

sim(tk) − x1
ref (tk)||, where x1

sim is
the simulated trajectory of the first point vortex and x1

ref stands for the theoretical trajectory as
reference.

For practical applications, the ultimate goal of our work is to find a general way

to construct fast (or even explicit) and stable symplectic/Lie-Poisson integrators

defined purely on g∗ that are easy to use. In this sense, the work presented here

is just a beginning. It will also be interesting to apply these integrators to other

important Lie-Poisson systems, such as the KdV equation.

Note that higher-order schemes can be constructed by composition methods or using

a higher-order approximation of the integral in the variational principle (Marsden

& West, 2001).
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Chapter 7

Conclusions and future work

7.1 Conclusions

In the first part of the thesis (Chapters 3, 4 and 5), we first show that two widely-

used methods in model reduction and system identification for linear time-invariant

(LTI) systems, i.e., the approximate balanced truncation (balanced POD) and the

eigensystem realization algorithm (ERA), are in fact equivalent in the sense that

they generate identical reduced-order models, given the same input data (and as-

suming infinite-precision arithmetic). ERA is more computationally efficient and

adjoint-free. On the other hand, balanced POD provides bi-orthogonal sets of modes

that are useful, for example, in system analysis and control design.

Inspired by this equivalence, we construct an ERA algorithm that is also adjoint

free for LTI systems with one-dimensional instability.

We then generalize the balanced POD/ERA methods for applications to stable or

unstable high-dimensional linear time-periodic systems. Four algorithms are pre-

sented, including the lifted balanced POD/lifted ERA algorithms and the periodic
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balanced POD/periodic ERA algorithms. The periodic balanced POD/periodic

ERA algorithms also lead to model reduction methods for linear time-varying sys-

tems.

The lifted ERA method is then used to compute reduced-order models for a lin-

earized time-periodic model around an unstable orbit corresponding to a flow past

a two-dimensional flat plate with a periodic forcing. A reduced-order model is then

used for observer-based feedback control design for the stabilization of the unstable

orbit. Numerical results show that this reduced-order-model based control design

approach works well in the sense that the controller stabilizes the unstable orbit, and

the reduced-order model equipped with the observer captures well the closed-loop

behavior of the full linearized model equipped with the same observer.

In the second part of the thesis (Chapter 6), we present a systematic and gen-

eral method, in which a variational approach at the Hamiltonian side is used, to

develop geometric integrators for Lie-Poisson Hamiltonian systems living in a finite-

dimensional space g∗, the dual of Lie algebra associated with a Lie group G. These

integrators are essentially different discretized versions of the Lie-Poisson variational

principle, or a modified Lie-Poisson variational principle proposed in this work. We

present three different integrators, including symplectic, variational Lie-Poisson in-

tegrators on G× g∗ and on g× g∗, as well as an integrator on g∗ that is symplectic

under certain conditions on the Hamiltonian. These Lie-Poisson integrators are

defined directly on the reduced Hamiltonian side. They can be applied to cases

where the reduced Lagrangian form is not available and the Euler-Poincaré inte-

grators on the reduced Lagrangian side are not applicable, for instance when the

reduced inverse Legendre transform is degenerate or computationally difficult to

invert. Examples of applications include simulations of a free rigid body rotation

and the dynamics of N point vortices on a sphere. Simulation results verify that
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some of these variational Lie-Poisson integrators are good candidates for geometric

simulations of those two Lie-Poisson Hamiltonian systems. The problem of N point

vortices interacting on a sphere is an example of a case where the reduced Hamil-

tonian formation is known, but the reduced Lagrangian formation is currently not

known.

7.2 Future research directions

ERA for linear systems with more than one unstable eigenvalue. The

ERA method is generalized in this thesis for linear systems with a one-dimensional

unstable manifold. This method can be also used for a linear system with a higher

dimensional unstable manifold by iterating the procedures for the one-dimensional

case. However, that will be computationally infeasible if the dimension of the un-

stable manifold is higher than the order of 100. More efficient methods are of future

research interest.

Model reduction methods for nonlinear systems with multiple equilibria

and/or periodic orbits. The balanced truncation/ERA methods are designed

for linear systems, and generalizing these methods to nonlinear systems is an in-

teresting and challenging problem. One specific interesting direction, as a contin-

uation of the study in this thesis, is to apply the time-varying ERA method (see

Section 4.5.2) to a nonlinear system for which the equilibria/periodic orbits are

known: linearization about each equilibrium and periodic orbit yields separate lin-

ear systems. If the nonlinear dynamics can be described by the equilibria/orbit

information and a linear time-varying system that connects the separate linear sys-

tems, then the time-varying ERA method can be used to construct a reduced-order
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time-varying model that could potentially capture the nonlinear dynamics (together

with the equilibria/orbit information).

Observer-based feedback control for three-dimensional flow. The motiva-

tion of the study of the two-dimensional model problem considered in Chapter 5 is

to develop control design tools for feedback control of wakes of micro-air vehicles at

low Reynolds numbers. It would be interesting to apply the approach presented in

Chapter 5 to the more realistic three-dimensional flow past a low-aspect-ratio wing.

The three-dimensional dynamics is much richer than that in the two-dimensional

case, as discussed in Taira & Colonius (2009): depending on the aspect ratio, angle

of attack and Reynolds number, the three-dimensional flow past a low-aspect-ratio

flat-plate wing can have a stable steady state, a periodic orbit or aperiodic shedding.

The aperiodic shedding regime might correspond to a large number of unstable peri-

odic orbits, as commonly occurs in chaotic attractors. The Newton-GMRES method

can be applied for seeking those unstable orbits as in the two-dimensional model

problem considered in Chapter 5. If there exists a high-lift unstable orbit, then the

lifted ERA method can be applied to compute reduced-order models for the lin-

earized time-periodic system about the orbit, and then an observer-based feedback

controller can be designed. Note that studies of the three-dimensional flow over a

low-aspect-ratio plate have indicated that open-loop forcing at the trailing edge can

be beneficial for lift enhancement (Taira et al., 2010). The approach presented in

Chapter 5 for the two-dimensional case with periodic forcing could also be applied

to the three-dimensional case.

Control of turbulence through stabilization of unstable periodic orbits.

Following the discussions above, we note that a continuation study using the Newton-
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GMRES method (or other methods) to seek stable/unstable orbits in the three-

dimensional flow could lead to a better understanding of the transition to turbu-

lence, for instance if the turbulent flow is comprised of a large (possibly infinite)

number of unstable periodic orbits. An interesting direction is to suppress turbu-

lence by the stabilization of a particular unstable orbit using the approach presented

in Chapter 5.

Variational integrators for other non-canonical Hamiltonian systems. Re-

cent work by Shashikanth et al. (2002); Shashikanth (2005); Shashikanth et al. (2008)

shows non-canonical Hamiltonian structures for models of a neutrally buoyant, ar-

bitrarily shaped smooth rigid body interacting with N point vortices/vortex rings

of arbitrary shape in an infinite two or three-dimensional ideal fluid. These models

are useful tools for understanding fish swimming, and it is interesting to construct

geometric integrators for numerical simulations of these models. The variational

approach applied in Chapter 6 for design of Lie-Poisson integrators can be applied

to those systems. However the challenge is that one needs to first establish a corre-

sponding variational principle.
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Appendix A

Equivalence between the ROM for

projected stable dynamics and the

stable part of a ROM for the full

unstable system

In this Appendix we show that in balanced POD, the reduced order model (ROM)

for the projected system (2.22) that describes stable dynamics of the unstable

LTI (2.1) are identical to the stable part of (2.25), the reduced order model of (2.1).

This relation becomes important for ERA with application to unstable systems, as

shown in Section 3.4, where the modes used in (2.25) are not available.

Proposition A.0.1. Let Ar, Br, Cr be the matrices of a reduced model of order r

for the projected system given by (2.22), determined by using balanced POD. Then

Ψ∗1rAΦ1r = Ar; Ψ∗1rB = Br; CΦ1r = Cr, (A.1)

where Φ1r,Ψ1r are as given in (2.25), the reduced model of order (r + nu) of sys-
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tem (2.1).

Proof. For convenience, here we rewrite the projected system (2.22)

xs(k) = Axs(k) + PsBus(k);

ys(k) = CPsxs(k)

(A.2)

and the (r + nu)-dimensional reduced-order model (2.25)

xr(k + 1) =

Ψ∗1rAΦ1r 0

0 Λu

xr(k) +

 Ψ∗1r

(S∗uTu)
−1S∗u

Bu(k);

y(k) = C

[
Φ1r Tu

]
xr(k).

(A.3)

By construction (see Section 2.3), Φ1r and Ψ1r are matrices consisting of the r

leading balancing/adjoint modes for the projected system (A.2). Thus,

Ar = Ψ∗1rAΦ1r; Br = Ψ∗1rPsB; Cr = CPsΦ1r. (A.4)

Also, Φ1r and Ψ1r are obtained by the method of snapshots and satisfy (see (2.16))

Φ1r = XVrΣ
− 1

2
r =

[
AmcPPsB · · · PsB

]
VrΣ

− 1
2

r ;

Ψ1r = Y UrΣ
− 1

2
r =

[
P∗sC∗ · · · (A∗)moPP∗sC∗

]
UrΣ

− 1
2

r .

where X and Y are impulse-response snapshots taken for the projected system (A.2)

and its adjoint (2.23). By projection properties P2
s = Ps and PsA = APs, the

realation (A.1) follows.
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Appendix B

Periodic balanced truncation for

linear time-periodic systems: the

neutrally stable/unstable case

This work on periodic systems is a generalization to the work for LTI case (Ahuja

& Rowley, 2010). The main idea of realizing periodic balanced truncation for a

neutrally stable/unstable linear periodic system (4.1) is to decompose the system

into a periodic, stable subsystem and a periodic, neutrally stable/unstable subsys-

tem; see Ahuja & Rowley (2010) for the LTI case. A periodic balanced truncation

is realized for the stable part, while exact dynamics are kept for the neutrally

stable/unstable part, supposing its dimension is small. Since it is often computa-

tionally difficult to explicitly obtain the periodic stable subsystem, we suggest to

instead find a balanced realization for a projected, stable periodic system. The

following are theoretical details.

First, for each time k, 1 ≤ k ≤ T , consider Tu(k), Su(k) ∈ Cn×nu , whose nu columns
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are respectively the right and left neutrally stable/unstable eigenvectors of FA(k +

T, k) := A(k + T − 1) · · ·A(k), where the time-periodic state transition matrix A

is defined in (4.1). Choose Ts(k), Ss(k) ∈ Cn×ns , each with rank ns = n − nu,

such that S∗s (k)Tu(k) = 0, S∗u(k)Ts(k) = 0. For each k, define a projection onto

Es(FA(k + T, k)), the stable subspace of FA(k + T, k)), by

Ps(k) := Ts(k) (Ss(k)∗Ts(k))−1 Ss(k)∗. (B.1)

Clearly, Tu(k), Su(k), Ts(k), Ss(k),Ps(k) are time T -periodic.

Lemma B.0.2. For any k, Ps(k) satisfies

(i) Ps(k) = In×n − Tu(k) (Su(k)∗Tu(k))−1 Su(k)∗;

(ii) Ps(k)2 = Ps(k);

(iii) Ps(k)FA(k + T, k) = FA(k + T, k)Ps(k). The eigenvalues of FA(k + T, k)Ps(k)

include nu zeros and the ns stable eigenvalues of FA(k + T, k).

(iv) A(k)Ps(k) is a projection onto Es(FA(k + T + 1, k + 1)).

Proof. (i)-(iii) are by definition of the projection. To show (iv), consider an eigenvec-

tor q of FA(k+T, k) corresponding to an eigenvalue λ inside the unit circle. On both

sides of FA(k + T, k)q = qλ, left multiplying A(k + T ) and using A(k + T ) = A(k),

one shows that A(k)q is an eigenvector of FA(k + T + 1, k + 1) corresponding to λ.

It implies for any z ∈ Es(FA(k + T, k)), A(k)z ∈ Es(FA(k + T + 1, k + 1)). Since

Ps(j) is a projection onto Es(FA(k + T, k)), the result follows.

It follows immediately from (iv) that

Corollary B.0.3. For any k,

Ps(k + 1)A(k)Ps(k) = A(k)Ps(k). (B.2)
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Also, for any j > 0,

FAPs(k + j, k) = FA(k + j, k)Ps(k), (B.3)

where FAPs(k + j, k) := A(k + j − 1)Ps(k + j − 1) · · ·A(k)Ps(k).

By (B.3) and Lemma B.0.2 (iii), one shows that

Corollary B.0.4. For any k, the matrix FAPs(k + T, k)is exponentially stable. Its

eigenvalues include nu zeros and the ns exponentially stable eigenvalues of FA(k +

T, k).

Now consider the decomposition of the LTP (4.1).

Lemma B.0.5. With a coordinate transformation

x(k) =

[
Ts(k) Tu(k)

]xs(k)

xu(k)

 , (B.4)

where xs(k) ∈ Cns , xu(k) ∈ Cnu, the system (4.1) can be decoupled into an ns-

dimensional exponentially stable T -periodic subsystem

xs(k + 1) = As(k)xs(k) +Bs(k)u(k); ys(k) = Cs(k)xs(k), (B.5)

and an nu-dimensional neutrally stable/unstable T -periodic subsystem

xu(k + 1) = Au(k)xu(k) +Bu(k)u(k); yu(k) = Cu(k)xu(k), (B.6)

where As(k) = (S∗s (k+1)Ts(k+1))−1S∗s (k+1)A(k)Ts(k), Au(k) = (S∗u(k+1)Tu(k+

1))−1S∗u(k + 1)A(k)Tu(k), Bs(k) = (S∗s (k + 1)Ts(k + 1))−1S∗s (k + 1)B(k), Bu(k) =

(S∗u(k + 1)Tu(k + 1))−1S∗u(k + 1)B(k), Cs(k) = C(k)Ts(k), Cu = C(k)Tu(k), and

ys(k) + yu(k) = y(k).

Proof. The subsystems (B.5) and (B.6) are obtained by direct calculation, in which

one uses relations S∗s (k)Tu(k) = 0, S∗u(k)Ts(k) = 0, as well as S∗s (k+ 1)A(k)Tu(k) =
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0, S∗u(k+ 1)A(k)Ts(k) = 0. The latter two relations hold since, similar to the proof

of Lemma B.0.2, one can show that the columns of A(k)Tu(k) and S∗u(k + 1)A(k)

span Eu(FA(k + T + 1, k + 1)) and Eu(FA(k + T, k)) respectively.

For any k, consider the ns × ns matrix

FAs(k + T, k) = (S∗s (k)Ts(k))−1S∗s (k)FAPs(k + T, k + 1)A(k)Ts(k).

It is easy to check that the ns eigenvalues of this matrix are those “ns exponen-

tially stable eigenvalues” of FAPs(k+ T, k) in Corollary B.0.4. Thus, the T -periodic

subsystem (B.5) is exponentially stable. Similarly, one shows the nu-dimensional

subsystem (B.6) has only neutrally stable/unstable eigenvalues.

In practice, before realizing a balanced truncation to the exponentially stable sub-

system (B.5), one needs first construct this system. The construction can be very

numerically expensive when ns is large, due to calculations of Ts(k) and Ss(k). On

the other hand, S∗u(k) and Tu(k) can be numerically approximated relatively easily,

since nu is small. Thus, instead of construction of the subsystem (B.5), we compute

Ps(k) = In×n − Tu(k)(S∗u(k)Tu(k))−1S∗u(k) and consider an n-dimensional system

x(k + 1) = A(k)Ps(k)x(k) + Ps(k + 1)B(k)u(k);

y(k) = C(k)Ps(k)x(k).

(B.7)

which by Corollary B.0.4 is exponentially stable. it is easy to check that for this

projected system, for any time k, the nu dimensional subspace Eu(FA(k + T, k)) is

neither controllable nor observable. Its controllability and observability Gramians

at time k, Wc1(k) and Wo1(k), by

Wc1(k) =
k−1∑
i=−∞

FAPs(k, i+ 1)Ps(i+ 1)B(i)B(i)∗Ps(i+ 1)∗FAPs(k, i+ 1)∗;

Wo1(k) =
∞∑
i=k

FAPs(i, k)∗Ps(i)∗C(i)∗C(i)Ps(i)FAPs(i, k).

(B.8)
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Exact or approximate balanced truncation of this system can be realized using

methods for exponentially stable cases. The following result gives a relation be-

tween the balancing modes of this system and those of the exponentially stable

subsystem (B.5).

Proposition B.0.6. For an arbitrary time k, let Φ1(k) ∈ Cn×n be the balanc-

ing transformation for system (B.7) at that time, whose last nu columns corre-

spond to the nu zero singular values due to the uncontrollable/unobservable subspace

Eu(FA(k + T, k)). Let Φ1s(k) ∈ Cn×ns be the block including the first ns columns

in Φ1(k). Then, Φs(k) = (Ss(k)∗Ts(k))−1Ss(k)∗Φ1s(k) ∈ Cns×ns is the balancing

transformation for the subsystem (B.5) at time k. Moreover, Φ1s(k) = TsΦ(k).

Proof. By definition and given conditions, Wc1(k)Wo1(k) = Φ1(k)Σ1(k) (Ψ1(k))∗,

where Ψ1(k)∗ = (Φ1(k))−1 and the last nu diagonal entries of the diagonal matrix

Σ1(k) are zero. Denote Σ1s(k) ∈ Cns×ns as the block in Σ1(k) including its upper-

left ns × ns entries, and (Ψ1s(k))∗ ∈ Cns×ns as the block in (Ψ1(k))∗ including

its first ns rows. Note that Ψ1s(k)∗Φ1s(k) = Ins×ns . Clearly W1c(k)W1o(k) =

Φ1s(k)Σ1s(k)Ψ1s(k)∗.

The controllability and observability Gramians of the system (B.5) at time k,W s
c (k)

and W s
o (k), read

W s
c (k) =

k−1∑
i=−∞

FAs(k, i+ 1)Bs(i)Bs(i)
∗FAs(k, i+ 1)∗;

W s
o (k) =

∞∑
i=k

FAs(i, k)∗Cs(i)
∗Cs(i)FAs(i, k).

(B.9)

Using the definition of Ps(k), its property Ps(k)2 = Ps(k), and relation (B.3), one
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shows by direct calculation that

W s
c (k)W s

o (k) = (S∗s (k)Ts(k))−1S∗s (k)Wc1(k)Wo1(k)Ts(k)

= (S∗s (k)Ts(k))−1S∗s (k)Φ1s(k)Σ1s(k) (Ψ1s(k))∗ Ts(k)

(B.10)

Let

Φs(k) = (Ss(k)∗Ts(k))−1Ss(k)∗Φ1s(k).

By construction Φ1s(k) ∈ Es(FA(k + T, k)), so Ts(k)Φs(k) = Ps(k)Φ1s(k) = Φ1s(k).

One also checks that (Φs(k))−1 = (Ψ1s(k))∗ Ts(k). Thus,

W s
c (k)W s

o (k) = Φs(k)Σ1s(k) (Φs(k))−1

and Φs is a balancing transformation for system (B.5).

Thus, if at time k, xsB(k) is the “balanced coordinates” of sub-system (B.5) such

that xs(k) = Φs(k)xsB(k), then the “partially balancing” coordinate transformation

in original coordinates is x(k) = Φ(k)

xsB(k)

xu(k)

, where the T -periodic Φ(k) =

[
Φ1s(k) Tu(k)

]
. Let Φ1r(k), Ψ1r(k) be matrices including the first r columns of

Φ1s(k) and Ψ1s(k), respectively. Truncation on the stable dynamics part can be

done and the reduced T -periodic model of order (r + nu) is given byxsr(k + 1)

xu(k + 1)

 = Ψr(k + 1)∗A(k)Φr(k)

xsr(k)

xu(k)

+ Ψ∗r(k + 1)B(k)u(k);

y(k) = C(k)Φr(k)

xsr(k)

xu(k)


(B.11)

where Φr(k) =

[
Φ1r(k) Tu(k)

]
, Ψr(k)∗ =

 (Ψ1r(k))∗

(S∗u(k)Tu(k))−1S∗u(k)

.
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Appendix C

Proofs of preservation of a

symplectic two-form along a

Lie-Poisson flow.

Proposition C.0.7. The Lie-Poisson variational principle (6.6) given in Section 6.2

implies that along a solution flow satisfying Lie-Poisson equations (6.3), a symplec-

tic two-form is preserved. Further, define a map φ : G× g× g∗ → T ∗G by

φ(g, ξ, µ) = (g, TeL
∗
g−1µ), (C.1)

then the symplectic two-form on G × g × g∗ is the pullback φ∗Ω of the canonical

symplectic form Ω on T ∗G.

Proof. Let

S(g, ξ, µ) =

∫ T

0

(〈µ(t), ξ(t)〉 − h(µ(t)) dt. (C.2)

Consider the left-invariant case. The differential one-form of S with restricted vari-
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ation δξ = η̇ + [ξ, η], where η = g−1δg, is given by

dS(g, ξ, µ) · (δg, δξ, δµ) =

∫ T

0

(〈
δµ, ξ − dh

dµ

〉
+

〈
µ,

d

dt
(g−1δg) + adξ g

−1δg

〉)
dt.

(C.3)

Taking exterior derivative of dS gives

d2S(g, ξ, µ) · ((δg1, δξ1, δµ1), (δg2, δξ2, δµ2)
)

=

∫ T

0

d

(〈
δµ2, ξ − dh

dµ

〉
+

〈
µ,

d

dt
(g−1δg2) + adξ g

−1δg2

〉)
· (δg1, δξ1, δµ1) dt

−
∫ T

0

d

(〈
δµ1, ξ − dh

dµ

〉
+

〈
µ,

d

dt
(g−1δg1) + adξ g

−1δg1

〉)
· (δg2, δξ2, δµ2) dt

=

∫ T

0

(〈
δµ2, δξ1 − d2h

dµ2
δµ1

〉
+

〈
µ, adδξ1(g

−1δg2)− d

dt
(g−1δg1g−1δg2)− adξ(g

−1δg1g−1δg2)

〉
+

〈
δµ1,

d

dt
(g−1δg2) + adξ(g

−1δg2)

〉)
dt

−
∫ T

0

(〈
δµ1, δξ2 − d2h

dµ2
δµ2

〉
+

〈
µ, adδξ2(g

−1δg1)− d

dt
(g−1δg2g−1δg1)− adξ(g

−1δg2g−1δg1)

〉
+

〈
δµ2,

d

dt
(g−1δg1) + adξ(g

−1δg1)

〉)
dt,

which, by δξi = d
dt

(g−1δgi)+adξ(g
−1δgi), i = 1, 2 and using Jacobi identity, vanishes.

Define a one-form θLP (‘LP’ for ‘Lie-Poisson’) on G× g× g∗ as

θLP (g, ξ, µ) · (u, v, y) = 〈µ, g−1u〉. (C.4)

By integration by parts, along the Lie-Poisson flow the dS given in (C.3) becomes

dS(g, ξ, µ) · (δg, δξ, δµ) =

∫ T

0

(〈
δµ, ξ − dh

dµ

〉
+
〈
ad∗ξ µ− µ̇, η

〉)
dt+ 〈µ, η〉

∣∣∣T
0

= θLP (g, ξ, µ) · (δg, δξ, δµ)
∣∣∣T
0
.

It follows that, along the Lie-Poisson flow, since d2S = 0, the symplectic two-form
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ωLP = −dθLP is preserved. Explicitly,

ωLP (g, ξ, µ) · ((u1, v1, y1), (u2, v2, y2))

= 〈µ, g−1u1g−1u2 − g−1u2g−1u1〉+ 〈y2, g−1u1〉 − 〈y1, g−1u2〉.
(C.5)

This ωLP can be shown to be the pullback φ∗Ω of the canonical symplectic two-form

Ω on T ∗G. The same result holds for the right-invariant case.

Proof of Proposition 6.5.4. The proof is similar to that for Proposition C.0.7.

Denote dh
dµ

= h′(µ). Let

S(g, µ) =

∫ T

0

(〈µ(t), h′(µ)〉 − h(µ(t)) dt. (C.6)

Consider the left-invariant case. The differential of S with restricted variation

δ(h′(µ)) = η̇ + [h′(µ), η], where η = g−1δg, is given by

dS(g, µ) · (δg, δµ) =

∫ T

0

(〈δµ, h′(µ)〉+
〈
µ, η̇ + adh′(µ) η

〉− 〈δµ, h′(µ)〉) dt
=

∫ T

0

(〈
µ,

d

dt
(g−1δg) + adh′(µ)(g

−1δg)

〉)
dt

(C.7)

Define a one-form θMLP (‘MLP’ stands for modified Lie-Poisson principle) on G×g∗

θMLP (g, µ) · (u, y) = 〈µ, g−1u〉. (C.8)

Along the Lie-Poisson flow, using integration by parts,

dS(g, µ) · (δg, δµ) = θMLP (g, µ) · (δg, δµ)
∣∣∣T
0
.

So to prove a symplectic two-form ωMLP = −dθMLP is preserved along the Lie-

Poisson flow, it is enough to show that d2S = 0.
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Taking exterior derivative of dS given in (C.7), one checks that

d2S(g, µ) · ((δg1, δµ1), (δg2, δµ2)
)

=

∫ T

0

d

(〈
µ,

d

dt
(g−1δg2) + adh′(µ)(g

−1δg2)

〉)
· (δg1, δµ1) dt

−
∫ T

0

d

(〈
µ,

d

dt
(g−1δg1) + adh′(µ)(g

−1δg1)

〉)
· (δg2, δµ2) dt

=

∫ T

0

(〈
µ,− adh′(µ)(g

−1δg1g−1δg2) + adh′′(µ)δµ1(g−1δg2)− d

dt
(g−1δg1g−1δg2)

〉
+

〈
δµ1, adh′(µ)(g

−1δg2) +
d

dt
(g−1δg2)

〉)
dt

−
∫ T

0

(〈
µ,− adh′(µ)(g

−1δg2g−1δg1) + adh′′(µ)δµ2(g−1δg1)− d

dt
(g−1δg2g−1δg1)

〉
−
〈
δµ2, adh′(µ)(g

−1δg1) +
d

dt
(g−1δg1)

〉)
dt

=

∫ T

0

〈
µ, adh′(µ) adg−1δg2(g

−1δg1) +
d

dt
(adg−1δg2 g

−1δg1)

− adg−1δg2

(
d

dt
(g−1δg1) + adh′(µ)(g

−1δg1)

)
+ adg−1δg1

(
d

dt
(g−1δg2) + adh′(µ)(g

−1δg2)

)〉
dt

+

∫ T

0

(〈δµ1, h′′(µ)δµ2〉 − 〈δµ2, h′′(µ)δµ1〉) dt
which vanishes by the symmetry of the second derivative of h(µ) and using the

Jacobi identity

adh′(µ) adg−1δg2(g
−1δg1)− adg−1δg2 adh′(µ)(g

−1δg1) + adg−1δg1 adh′(µ)(g
−1δg2) = 0.

Note that the ωMLP on G× g∗ is given by

ωMLP (g, µ) · ((u1, y1), (u2, y2)) = 〈µ, g−1u1g−1u2 − g−1u2g−1u1〉+ 〈y2, g−1u1〉 − 〈y1, g−1u2〉.
(C.9)

Same result holds for the right-invariant case. �
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