
A hierarchy of models for the control

of fish-like locomotion

Juan B. Melli

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Mechanical and Aerospace Engineering

Advisor: C.W. Rowley

September 2008

c© Copyright by Juan B. Melli, 2008.

All Rights Reserved

Abstract

Inspired by the advanced capabilities of fish and other underwater swimmers, we seek

a greater understanding of fish-like propulsion and control.

Our study begins by modeling two extremes of fish-like locomotion: a potential

flow model, which ignores the effects of viscosity, and a Stokes flow model in which

inertial forces are negligible relative to viscous forces. We emphasize the importance

of the local form of a mathematical object called the connection, which appears in

the equations of motion and relates internal shape changes to body velocities. We

demonstrate how the process of designing large-amplitude gaits for systems charac-

terized by Abelian connections can be facilitated by visualizing the curvature of the

connection over the shape space. These results are partially extended for a class of

non-Abelian connections where the group is the semidirect product of an Abelian

group and a vector space.

A third model accounts for the effects of both inertia and viscosity. Although still

in potential flow, the effects of viscosity are partially modeled through the shedding

of vorticity from sharp trailing edges. Our focus is on the interaction of the swimmer

with its own vortex wake. We take a heuristic approach and perform a series of numer-

ical experiments to identify a strategy for producing near-optimal thrust-producing

gaits. We implement a phase-locked loop controller to achieve the control objective

and demonstrate its effectiveness at generating high thrust-producing gaits.

iii

Acknowledgements

This work would not have been possible without the support of friends, family and

colleagues.

I owe my greatest thanks and gratitude to my advisor Clancy Rowley for his

invaluable guidance, support, and encouragement.

I am thankful for the thoughtful feedback and constructive criticism from Naomi

Leonard and Lex Smits that helped make this a stronger and more accessible docu-

ment.

It was a true pleasure collaborating with Eva Kanso, Jerry Marsden, and Dzhelil

Rufat on deformable swimmers in potential flow. I thank George Lauder for his

insights on fish swimming and tandem foils.

Many thanks to my friends and colleagues for the numerous helpful discussions and

suggestions: Melissa Green, Sunil Ahuja, Zhanhua Ma, Miloš Ilak, Peter Norgaard

and Steve Brunton.

I gratefully acknowledge the funding sources for this work, including a U.S. De-

partment of Defense NDSEG fellowship and a National Science Foundation Graduate

Research Fellowship.

Loving thanks to my wonderful and infinitely patient wife, Stephanie.

This is dedicated to my parents for their constant love and support.

This dissertation carries the number T-3186 in the records of the Department of

Mechanical and Aerospace Engineering.

iv

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . xi

List of Figures . xii

1 Introduction 2

1.1 Motivation . 2

1.2 Literature Survey . 4

1.2.1 Theoretical models . 4

1.2.2 Numerical Models . 7

1.2.3 Control of fish-like swimmers 10

1.3 Overview of Contributions . 10

2 Mathematical Preliminaries 13

2.1 Lie algebras and Lie groups . 13

2.2 Rigid motion in the plane . 14

2.3 Actions of Lie Groups . 16

2.4 Principal bundles, connections and curvature 17

2.5 Semidirect product groups . 21

3 Motion in Potential Flow 22

3.1 Potential Flow . 24

v

3.2 The Swimmer . 25

3.3 Kinetic Energy . 27

3.4 Numerical Method . 30

3.5 Equations of Motion . 34

3.6 Example Gaits . 36

3.6.1 Forward Gait . 37

3.6.2 Turning Gait . 39

3.7 Coordinate-free Analysis . 40

3.8 Summary . 43

4 Motion in Stokes Flow 45

4.1 Transforming Stokes Equations . 45

4.2 Stokes Flow Algorithm . 46

4.3 Numerical Solution . 50

4.4 Code Validation . 55

4.4.1 Squirming Cylinder . 55

4.4.2 Purcell Swimmer . 57

4.5 Example Gaits . 58

4.5.1 Forward Gait . 60

4.5.2 Turning Gait . 60

4.6 Summary . 62

5 Control of Reversible Systems 63

5.1 Reversible Swimming Systems . 63

5.2 Holonomy in semidirect product groups 64

5.3 Curvature of the Connection . 67

5.4 Gait generation . 68

5.4.1 Gait Generation Example - Potential Flow 72

vi

5.4.2 Gait Generation Example - Stokes Flow 75

5.5 Abelian vs non-Abelian . 77

5.6 Summary . 78

6 Numerical Method for Potential Flow with Point Vortices 80

6.1 Motivation . 81

6.2 Model Overview . 83

6.3 Influence Coefficients . 87

6.4 Details of Numerical Scheme . 90

6.4.1 Wake Modeling . 90

6.4.2 Boundary Condition . 91

6.4.3 Boundary Velocity . 93

6.4.4 Kutta Condition . 95

6.4.5 Wake Convection . 100

6.4.6 Pressure Coefficient . 101

6.4.7 Velocity Potential . 105

6.4.8 Diverting Vortices . 107

6.5 Numerical Algorithm . 108

6.6 Code Validation . 111

7 Control Through a Vortex Wake 120

7.1 Development of a Heuristic Control Objective Through Numerical Ex-

periments . 122

7.1.1 Prior Work: Swimming Through a Vortex Wake 123

7.1.2 Effective Angle of Attack . 124

7.1.3 Stagnation Point . 127

7.1.4 Numerical Experiments . 128

7.1.5 Results . 131

vii

7.1.6 Analysis . 133

7.2 Literature review: Modeling and Control of Fluid Systems 134

7.3 Control Methodology . 136

7.4 Example . 139

7.4.1 Results . 141

7.4.2 Lock-in Time . 144

7.5 Swimming with and without control 146

7.6 Summary . 150

8 Conclusions and Future Work 154

A Potential flow code 172

A.1 driver.m . 172

A.2 rk4.m . 173

A.3 shape var.m . 173

A.4 connection.m . 174

A.5 getadmass.m . 175

A.6 threebody.m . 175

A.7 influence.m . 176

A.8 admass.m . 177

A.9 adjointinv.m . 181

A.10 adjoint.m . 181

A.11 vel fun.m . 181

B Stokes flow code 183

B.1 driverStokes.m . 183

B.2 shape var.m . 184

B.3 StokesConnection.m . 185

B.4 surfacemodes.m . 185

viii

B.5 threelinkbody.m . 187

B.6 influencematrix.m . 189

B.7 stressletinfluence.m . 190

B.8 vel ful.m . 190

C Potential flow + vortex shedding code 191

C.1 driver.m . 191

C.2 inputs.m . 193

C.3 initialize.m . 194

C.4 prescribedmotion.m . 196

C.5 nacacoords.m . 197

C.6 shape.m . 198

C.7 foilarea.m . 198

C.8 geometry.m . 198

C.9 centroid.m . 200

C.10 momentofinertia.m . 200

C.11 totalinertia.m . 200

C.12 nexttimestepinitialguess.m . 201

C.13 swimmershape.m . 201

C.14 initialguess.m . 201

C.15 bodyvelocity.m . 201

C.16 flowsolution.m . 202

C.17 panelinfluence.m . 205

C.18 wakepanel.m . 207

C.19 computeforces.m . 208

C.20 potential.m . 208

C.21 velatpts.m . 211

C.22 liftdragmoment.m . 212

ix

C.23 computemotion.m . 213

C.24 convergencecheck.m . 214

C.25 convergencecheck1.m . 214

C.26 updatemotionvars.m . 214

C.27 replacewakepanel.m . 214

C.28 stagpoint.m . 215

C.29 angleofattack.m . 215

C.30 controller.m . 215

C.31 convectvortices.m . 216

C.32 ptvortinfluence.m . 218

C.33 expandbody.m . 219

C.34 savedata.m . 219

C.35 plotandsave.m . 219

C.36 adjustvortexpos.m . 220

C.37 vortin.m . 221

x

List of Tables

6.1 Summary of nomenclature . 85

6.2 Influence coefficients . 90

6.3 Propulsive efficiency comparison . 119

7.1 Experiment parameter values . 131

7.2 Results for ω1 = ω2 = 7, A = 9◦ experiments for a fixed swimmer . . . 133

xi

List of Figures

2.1 Schematic of a principal bundle. 18

3.1 Schematic of 3-link articulated swimmer. 26

3.2 Coordinate frames and identification of links for 3-link articulated

swimmer . 26

3.3 Coordinate system fixed to a panel 32

3.4 Potential flow swimmer: Forward gait example 38

3.5 Potential flow swimmer: Forward gait snapshots 38

3.6 Potential flow swimmer: Turning gait example 40

3.7 Potential flow swimmer: Turning gait snapshots 41

4.1 Snapshots of the Shapere and Wilczek [105] swimmer shape during one

cycle . 56

4.2 Comparison of code with analytic result from Shapere and Wilczek [105] 57

4.3 Comparison of code with analytic result from Becker, Koehler and

Stone [12] . 58

4.4 The three-link Purcell swimmer with θ1 = 0.8 and θ2 = 0.4. 59

4.5 Stokes flow swimmer: Forward gait example 61

4.6 Stokes flow swimmer: Forward gait snapshots 61

4.7 Stokes flow swimmer: Turning gait example 62

4.8 Stokes flow swimmer: Turning gait snapshots 62

xii

5.1 Curvature components of potential flow swimmer 69

5.2 Curvature components of Stokes flow swimmer 69

5.3 Fω curvature component for potential and Stokes flow swimmers . . . 70

5.4 Two gaits resulting in same Abelian group holonomy 71

5.5 Zero contours of Fω and Fu curvature components 72

5.6 Potential flow swimmer: Lateral translation gait 73

5.7 Potential flow swimmer: A path in shape space resulting in net rotation

of π
4

radians . 74

5.8 Potential flow swimmer: Translation and rotation for a sample gait . 74

5.9 Potential flow swimmer: Snapshots of swimmer configuration during

turning gait . 75

5.10 Stokes flow swimmer: A turning gait 76

5.11 Stokes flow swimmer: Translation and rotation for a turning gait . . . 76

5.12 Stokes flow swimmer: Snapshots of swimmer configuration during turn-

ing gait . 77

5.13 Various gait starting points . 79

5.14 Translation and rotation for a family of gaits 79

6.1 Drucker and Lauder [26] experiment 82

6.2 Schematic of two-foil swimmer system 84

6.3 Flowchart of numerical algorithm for advancing one time step 88

6.4 Point vortex crossing integration path 106

6.5 Foil with surrounding region . 108

6.6 Schematic of layout and coordinate system for Tuncer and Platzer [119]

validation case . 112

6.7 Layout and integration paths not crossing wake for two foil code vali-

dation . 112

xiii

6.8 Integration path not crossing vortex wake: Unsteady drag coefficient

vs time compared to the potential flow solver of Tuncer and Platzer [119]113

6.9 Integration path not crossing vortex wake: Unsteady lift coefficient vs

time compared to the potential flow solver of Tuncer and Platzer [119] 114

6.10 Layout and integration path crossing wake for two foil code validation 114

6.11 Integration path crossing vortex wake: Unsteady drag coefficient vs

time compared to the potential flow solver of Tuncer and Platzer [119] 115

6.12 Integration path crossing vortex wake: Unsteady lift coefficient vs time

compared to the potential flow solver of Tuncer and Platzer [119] . . 115

6.13 Layout, integration paths and wake vortex distribution at t = 10 c
U∞

for two foil code validation against Tuncer and Platzer [119] Navier

Stokes solver . 116

6.14 Code validation: Unsteady drag coefficient vs time 117

6.15 Code validation: Unsteady lift coefficient vs time 118

7.1 Schematic of two foil swimmer . 121

7.2 Three components of effective angle of attack 126

7.3 Normalized effective angle of attack and stagnation point position

along the surface of the leading foil versus time 129

7.4 Normalized effective angle of attack and leading edge stagnation point

position along the surface of the trailing foil versus time for a series of

experiments . 132

7.5 Fixed velocity: Thrust coefficient versus the phase difference between

αeff and xstag at steady state for a series of experiments 134

7.6 Free-swimming: Thrust coefficient versus the phase difference between

αeff and xstag at steady state for a series of experiments where the

swimmer is free-swimming in the x direction 135

7.7 Classical phase-locked loop block diagram 137

xiv

7.8 Simplified phase-locked loop block diagram 138

7.9 With control (leading foil frequency, ω1 = 7): Normalized effective

angle of attack, αeff, and the stagnation point position along the sur-

face, xstag, of the trailing foil vs non-dimensionalized time for a self-

propelling fish-like swimmer using a phase-locked loop controller . . . 142

7.10 Non-dimensional swimmer speed relative to the freestream versus time 143

7.11 Non-dimensional steady-state speed vs. φ2 for constant phase gaits . 144

7.12 With control (leading foil frequency, ω1 = 4): Normalized effective

angle of attack, αeff, and the stagnation point position along the sur-

face, xstag, of the trailing foil vs non-dimensionalized time for a self-

propelling fish-like swimmer using a phase-locked loop controller . . . 145

7.13 Non-dimensional speed vs time for controlled and uncontrolled gaits . 146

7.14 Leading foil frequency, ω1(t) vs non-dimensionalized time 147

7.15 Swimmer performance with and without control 148

7.16 Normalized effective angle of attack and stagnation point position

along the surface vs time for the cases (a) with control and (b) without

control corresponding to the results in Figure 7.15 149

7.17 Snapshot of swimmer and vortex wake 150

7.18 Relative speed of swimmer for uncontrolled case from Figure 7.15 (red,

solid) versus non-dimensionalized time along with the low-pass filtered

product of xint and a π/2 phase-shifted version of αeff in Figure 7.16(b)

(black, dashed) . 151

7.19 Normalized stagnation point position along the surface versus effective

angle of attack for the cases (a) with control and (b) without control 152

xv

“I know the human being and fish can coexist peacefully.”

— George W. Bush, September 29, 2000 [3]

1

Chapter 1

Introduction

1.1 Motivation

Fishes and other swimmers have benefitted from the guiding hand of millions of years

of evolution which has increasingly optimized their morphology and physiology to

survive in their natural environments. Their remarkable swimming characteristics

often remain unmatched by man’s most advanced engineering accomplishments.

In recent years there has been renewed interest in underwater exploration and the

use of unmanned underwater vehicles (UUV) and particularly autonomous underwa-

ter vehicles (AUV) to explore marine environments. Improved AUV maneuverability

may benefit the study of small-scale oceanographic processes, while improved effi-

ciency could benefit the study of large-scale processes. Enhanced stealth capabilities

could benefit military or marine wildlife exploration. Furthermore, an understanding

of small-scale, highly viscous motion could play a key role in micro or nanoscale drug

delivery systems.

One area where biological swimmers outperform most underwater vehicles is in

maneuverability. Fish, sea lions, and cetaceans have minimum turning radii as small

as 5.5%, 9% and 11% of their body length, respectively [33], largely due to their

2

more flexible bodies. Even tuna — a thunniform-type swimmer with a more rigid

forebody and lunate tail — has a turning radius of 47% of its body length [16]. In con-

trast, submarines have minimum turning radii of 200–300% of their body length [79].

An improved understanding of fish-like locomotion may lead to more maneuverable

underwater vehicles.

The exploration of large-scale oceanographic processes requires sampling vast ar-

eas and may benefit from more efficient AUV propulsion systems than the more

standard propeller-driven, fixed hull designs. Bottlenose dolphins, for example, are

estimated to achieve a propulsive efficiency of about 81% during steady swimming [32].

Likewise, California sea lions (80%), harp seals and ringed seals (85%), and rainbow

trout and sockeye salmon (70%–90%) achieve similarly impressive propulsive efficiency

values [29, 31, 123].

Another challenge often faced by fixed hull propeller-driven systems is the trade-

off between thrust and noise due to cavitation [131]. Also, glider-based AUVs, which

benefit from high efficiency and stealth, suffer from low maneuverability. By contrast,

the manta ray’s low frequency, large amplitude winged motion is stealthy, maneuver-

able and thought to be highly efficient [17].

It is in this context that we pursue a deeper understanding of the locomotion

of swimmers. We seek to develop a series of models of swimmers that capture the

critical dynamical elements of the body-fluid system yet are tractable enough to apply

mathematical tools for analyzing robotic locomotion. Although we draw inspiration

from biological systems, we do so with the understanding that nature imposes different

constraints such as the need to reproduce, feed and survive which do not exist for

engineering applications. Thus it is possible and arguably likely that man-made

engineering applications could out-perform their biologically-inspired counterparts.

3

1.2 Literature Survey

Humans have been fascinated by the swimming capabilities of animals for thousands

of years. Around 343 BC, the Greek naturalist Aristotle was the first scientist to study

and document fish, whales, porpoises and dolphins in Historia Animalium [117]:

As a general rule the larger fishes catch the smaller ones in their mouths

whilst swimming straight after them in the ordinary position; but the

selachians, the dolphin, and all the cetacea must first turn over on their

backs, as their mouths are placed down below; this allows a fair chance of

escape to the smaller fishes, and, indeed, if it were not so, there would be

very few of the little fishes left, for the speed and voracity of the dolphin

is something marvellous.

Ever since, scientists have attempted to understand and explain the propulsion of

fish-like swimmers. Here we provide a brief survey of relevant progress.

1.2.1 Theoretical models

The earliest attempts [48] at understanding fish hydrodynamics was in estimating drag

by assuming that self-propelling fish experienced the same drag as that of a similar

size rigid body being towed at the same speed. British zoologist James Gray [45]

made the same assumption to estimate the drag on dolphins and concluded that the

power density of a dolphin’s muscle could not be large enough to provide the power

needed to overcome the drag force. This seeming contradiction became known as

‘Gray’s paradox’ and has been the subject of decades of debate.

Among the first attempts at modeling fish-like swimming was the work of Sir

G. I. Taylor [111], who represented an anguilliform (eel-like) swimmer as a flexible,

constant cross-section cylinder with uniform wavelength and amplitude waves trav-

eling down the length of the body. Lighthill [70] considered a similar system and

4

applied inviscid slender body theory to model a “slender fish” and determine trans-

verse undulatory motions which result in a high propulsive efficiency. Though this

work required a perturbative analysis which limited the scope to small-amplitude mo-

tions, Lighthill [71] later extended the work to allow for arbitrarily large amplitude

deformations.

Wu [128] used linearized inviscid flow theory to study the two dimensional po-

tential flow about a spatially variable-amplitude, sinusoidally waving fixed plate and

found analytical expressions for the thrust and propulsive efficiency. Wu [129] ex-

panded upon this work to allow for the plate to travel at a prescribed, variable,

unsteady forward speed.

The aerodynamic community’s work on unsteady flow over moving wings has

proven invaluable to the study of fish-like (and winged) locomotion. The groundwork

was laid by Prandtl [97], Birnbaum [14], Wagner [122], Glauert [43], Küssner [62, 63],

Theodorsen [116], Kármán [56], Sears [104] and others.

Due to the complexity of accurately modeling the rich hydrodynamics of fish-like

locomotion, some efforts have been made to understand considerably simplified mod-

els of swimmers as a first approximation. While the motion of most swimmers is

governed by both inertial and viscous effects, when the Reynolds number is large,

viscous effects are minimized and can often be reasonably modeled through the gen-

eration of vorticity by a Kutta condition as in some of the previously noted work

(however this will not give the viscous drag on the swimmer). Still, the introduction

of vorticity significantly increases the complexity of the model, and it is instructive to

understand the motion of a swimmer completely due to inertial forces. Indeed, even

without the benefit of viscosity, it is possible for a swimmer to propel through a fluid.

This was first demonstrated by Benjamin and Ellis [13] and Saffman [101]. Later,

Galper and Miloh studied the motion of general deformable shapes in potential flow

[84, 36, 37].

5

Our study is most closely aligned with a recent branch of work from the nonlinear

control and robotics community. This includes the work of Kelly [59] who used pertur-

bation theory to determine an analytical expression for a mathematical object called

the mechanical connection, which relates shape changes to body velocity, for a two-

dimensional, nearly-circular amoeba-like deformable swimmer in an incompressible,

inviscid fluid. The result is valid for small-amplitude shape deformations.

Mason and Burdick [81] formulated the motion of a deformable swimmer in po-

tential flow with tools from geometric mechanics. The authors provided an explicit

formula for the mechanical connection as a function of the velocity potential, which

they expressed as a sum of generalized Kirchhoff potentials [60, 64] corresponding to

rigid body motions and internal shape changes. By using the Magnus [74] expansion

for a Lie algebra-valued function, Mason and Burdick found an approximate expres-

sion for the displacement of the body resulting from small-amplitude periodic shape

changes. The authors observed that “the curvature [of the connection] is an excellent

measure of the effectiveness of the swimmer.”

Radford [99] modeled a fish as three articulated rigid links in an inviscid, incom-

pressible fluid. The elliptical links were assumed to be mechanically coupled but

hydrodynamically decoupled, meaning that the added masses for each of the links are

the same as that of an isolated link in an infinite fluid. In other words, under this

assumption, the individual links did not “feel” any added resistance to movement due

to the presence of the other links. This assumption allowed him to derive an analyt-

ical expression for the local connection as a function of the swimmer shape (defined

by the joint angles) and the link inertia terms.

On the other end of the spectrum from potential flow is Stokes flow where viscous

forces dominate over inertial forces. Taylor was the first to model the self-propulsion

of a two-dimensional swimmer [110] — a sheet with a traveling wave — as well as a

flexible, circular cross-section cylinder [112] in Stokes flow. Meanwhile, Lighthill [69]

6

found that the velocity of deformable, nearly-spherical bodies in Stokes flow is at

most proportional to the square of the deformation amplitude.

Unlike most realistic flows in which both friction and inertia play a role, the

“Scallop theorem” specifies that non-reciprocal motion is needed to swim in Stokes

flow. Purcell [98] introduced a hypothetical three-link, two-hinged animal which is the

simplest creature capable of achieving net motion in Stokes flow due to non-reciprocal

motion in an unbounded domain. Much of the work on locomotion in Stokes flow has

focused on the so-called Purcell swimmer [12, 24, 109].

Shapere and Wilczek [105] described a method for determining the connection for

a deformable, two-dimensional Stokes swimmer by solving a linear boundary value

problem [105]. Kelly derived this connection for a Stokesian swimmer from a dissi-

pation function [59]. Various authors have formulated the equations for Stokes flow

as boundary integral equations [49, 96, 95], and we follow a similar procedure in

Chapter 4 of this thesis to model a deformable swimmer in Stokes flow.

1.2.2 Numerical Models

The advent and advances in digital computer technology brought about the next ma-

jor wave of progress in modeling unsteady fluid effects. Hess and Smith [47] developed

a panel method for computing the steady incompressible, potential flow about an ar-

bitrary two-dimensional body. In this method, the body is discretized into panels

with a distribution of source and vorticity singularities which are determined as the

solution of a set of linear equations. Although the constant strength source distribu-

tion varied from panel to panel, the vorticity density distribution was the same on

all panels. By solving the steady problem of Hess and Smith at each time step and

prescribing a Kutta condition at the trailing edge where equal magnitude and direc-

tion of the velocity was specified, Giesing [39, 40] developed a similar panel method

for unsteady potential flow about a single body with a non-linearly deforming wake.

7

Giesing [41, 42] extended the method to handle the arbitrary motion and unsteady

flow due to the interaction between two arbitrary bodies. Basu and Hancock [10]

improved upon Giesing’s approach for the unsteady potential flow problem and intro-

duced a Kutta condition specifying equal pressures along the top and bottom of the

trailing edge. Djojodihardjo [25] developed a method to solve the three-dimensional

unsteady potential flow past an arbitrarily-shaped wing undergoing arbitrary motion.

By employing a linear rather than constant distribution of vorticity over the pan-

els, Vezza and Galbraith [120] modified the Basu and Hancock [10] method to require

the solution of only a set of linear equations, and eliminated the need to solve a

quadratic equation. Teng [115] and Pang [91] built upon the work of Basu and Han-

cock [10] to develop unsteady two-dimensional panel methods for one and two bodies,

respectively.

Two-dimensional unsteady panel methods have been applied and validated exten-

sively [53, 51, 119, 52]. Galls and Rediniotis [35] applied an unsteady two-dimensional

panel method to a deformable hydrofoil body along with a trained neural network to

autonomously navigate along a desired path. The resulting fluid-body coupling was

weak as the force was computed at the end of each time step to advance the motion

of the swimmer. Recently, three-dimensional unsteady panel methods have been used

to model the hydrodynamics of fish-like swimming [127, 9, 20, 130] though in all these

cases, the motion of the swimmer through the fluid was prescribed, not determined

as part of the solution.

In these panel methods, singularities are continuously shed into the flow and need

to be included in the computation at the next time step. Hence, the size of the state

and computation time increases at each time step. One attempt [126] at improving

the computation time adopts a precorrected fast Fourier transform (FFT) accelerated

iterative integral solver as well as a Fast Multipole Tree algorithm.

In addition to the relatively simple inviscid panel methods, various other numerical

8

models have been developed to more accurately account for the effect of the fluid

viscosity. Williams et al. [125] employed a two-dimensional Navier-Stokes model to

study the hydrodynamics about a lamprey by prescribing both the body geometry and

motion through the fluid. Liu [72, 73] solved for the flow about an undulating tadpole

by solving the Navier-Stokes equations at a Reynolds number of 7200 in two and three

dimensions. Unlike most prior work which prescribed both the shape change and

overall motion through the fluid, Carling et al. [19] solved the self-propelling motion

of an anguilliform swimmer by coupling the Navier-Stokes equations with Newton’s

equations of motion. Similarly, Leroyer and Visonneau [67] numerically solved the

Reynolds-Averaged-Navier-Stokes equations and computed the self-propelled motion

of a flexible fish-like body.

Eldredge et al. [28] developed a grid-independent viscous vortex particle method

which Eldredge [27] used to study the self-propelling motion of a three-link swimmer

at moderate Reynolds numbers.

Inspired by the experimental work of Drucker and Lauder on bluegill sunfish [26]

and their hypothesis that the presence of a dorsal fin fore of the caudal fin contributed

to increased hydrodynamic performance, Akhtar et al. [2] employed an immersed

boundary Navier-Stokes solver to model the hydrodynamic interaction between tan-

dem pitching and heaving plates at a Reynolds number of about 600. They found

that the presence of the second body downstream of the leading plate enhanced the

thrust coefficient and propulsive efficiency of the system by as much as 107% and

52%, respectively, compared to the case of a single pitching and heaving plate. They

further determined that performance improvement is sensitive to the phase difference

between the motion of the leading and trailing plate. The mechanism for the thrust

enhancement relies on the vortices shed by the upstream plate interacting in such a

way as to increase the effective angle of attack on the downstream plate and creating

a leading edge stall vortex which increases thrust due to the lower pressure.

9

1.2.3 Control of fish-like swimmers

There have been various attempts to control and optimize the motion of swimmers

and underwater vehicles. Radford [87, 99] proved local controllability of a three-link

potential flow swimmer by showing that the curvature of the connection and its co-

variant derivatives span the Lie algebra corresponding to local body velocities. This

was a generalization of prior work by Leonard and Krishnaprasad [66] in which the

local connection form was constant. Additionally, Radford presented a gait to gen-

erate forward motion in the fish. Kanso et al. [55] accurately numerically computed

the mechanical connection for a three-link swimmer that accounted for the hydro-

dynamically coupled links and presented gaits for forward and turning motions. By

applying nonlinear optimization techniques, Kanso et al. [54] found locally optimal

gaits for the three-link swimmer. Likewise, Tam et al. [109] found optimal gaits for

Purcell’s swimmer in terms of speed and efficiency.

The problem of motion planning for robotic vehicles has received considerable

recent attention [87, 100, 81, 86, 90, 22, 80]. Underwater gliders — a class of AUVs

— have been modeled for the purpose of applying feedback control [65, 44]. The

RoboTuna — a flexible hull swimmer designed to mimic the motion of a tuna — has

been studied to better understand how vorticity-control is used in fish-like locomo-

tion [118, 8, 114, 113]. A second-generation underwater vehicle with the shape of the

yellowfin tuna known as the Draper Laboratory Vorticity Control UUV (VCUUV) is

fully autonomous and has been shown to exhibit maneuverability comparable to live

tuna [6, 7, 5].

1.3 Overview of Contributions

The main contributions of this thesis are as follows:

10

• We developed hydrodynamically-accurate numerical models of two-dimensional

deformable swimmers in potential and Stokes flow (Chapters 3 and 4).

• We presented numerical computations of the components of the curvature of

the mechanical connection for such swimmers and a theory for developing gaits

to achieve motion in certain corresponding Abelian subgroup directions (Chap-

ter 5).

• We made several extensions to existing models for a self-propelling unsteady

potential flow swimmer with vorticity shedding (§6.4.7 and 6.4.8).

• We conducted an investigation of a mechanism for improving swimming through

a nearly periodic vortex wake (§7.1).

• We developed and implemented a feedback controller to nearly optimize thrust

for a swimmer traveling through a nearly-periodic vortex wake (§7.3, 7.4 and 7.5).

In Chapter 2 we present some of the mathematical tools that are used throughout

this thesis.

We begin by considering two considerably simplified cases of swimming where

(1) viscous forces and (2) inertial forces can be ignored. Chapter 3 concerns the mo-

tion of a deformable swimmer in potential flow in an inviscid fluid. The mechanical

connection which relates internal shape changes to overall group motion can be ex-

pressed simply as a function of the geometry of the swimmer. Added masses which

depend only on the system geometry account for all of the effects of the fluid. The

model and numerical code for the potential flow swimmer is based on collaborative

work with Eva Kanso et al. [55], though the control and gait design techniques for

such a swimmer are original contributions. Likewise, in Chapter 4, we present a model

for a deformable swimmer in Stokes flow. Again, the connection can be expressed as

a function of the geometry of the swimmer.

11

Both of these systems are completely time-reversible in the sense that if their

internal shape change is exactly reversed, the swimmer will return to its original po-

sition and orientation. Chapter 5 concerns the control of these types of systems, and

is an original contribution adapted from and expanding upon previously published

work [82]. If the group of motions is the semidirect product of an Abelian group

and a vector space (such as is the case for the Special Euclidean group which corre-

sponds to rigid motions in the plane, SE(2)), the equations of motion for the Abelian

subgroup decouple from the other components. In this case, we show how a plot of

the components of the curvature of the connection is useful for developing gaits by

inspection.

In Chapter 6 we introduce a more realistic fish-like potential flow swimmer which

models one effect of viscosity by shedding vorticity at sharp edges. We also employ

a very simple viscous drag model in which the drag is proportional to the square of

the relative swimmer speed. Inspired by real fish which effectively use vorticity in

the flow to enhance their swimming, we build upon well-known numerical models for

swimming in potential flow with vorticity shedding to study a self-propelling swimmer

that interacts with vorticity shed from itself.

We use the model developed in Chapter 6 to conduct a series of numerical exper-

iments in Chapter 7. These experiments lead to a heuristic control objective which

optimizes steady-state thrust for a swimmer moving through a nearly-periodic vortex

wake. A phase-locked loop controller is designed and implemented to achieve this

objective.

We conclude with suggestions for future work in Chapter 8.

12

Chapter 2

Mathematical Preliminaries

In this chapter we introduce some relevant mathematical concepts for completeness,

particularly in the areas of differential geometry, geometric mechanics and Lie group

theory. It is assumed that the reader is familiar with manifolds and multiplication

on these spaces. These concepts are particularly relevant to §3.7 and Chapter 5. The

interested reader may consider various additional references [78, 1, 77, 75] for a full

exposition on these and other related topics.

2.1 Lie algebras and Lie groups

A Lie algebra is a vector space g on a manifold M with a binary operation, the Lie

bracket [·, ·] : g× g→ g such that for all x, y, z ∈ g and a, b ∈ R,

• [·, ·] is bilinear: [ax+ by, z] = a[x, z] + b[y, z]

• [·, ·] is skew-symmetric: [x, y] = −[y, x]

• [·, ·] satisfies the Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

A group (G, ·) is a set G with a binary operation · satisfying:

• (closure) a · b ∈ G ∀a, b ∈ G

13

• (associativity) a · (b · c) = (a · b) · c ∀a, b ∈ G

• (identity) G has an identity element e such that a · e = e · a = a ∀a ∈ G

• (inverse) for each a ∈ G, there exists b such that a · b = b · a = e

A Lie group G is a group that is also a smooth manifold such that group multi-

plication µ : G× G → G;µ : (g, h) 7→ gh is a C∞ smooth operation for all g, h ∈ G.

An Abelian group (also known as a commutative group) is a group whose operation

is commutative such that gh = hg for all g, h ∈ G. We denote the space of vectors

tangent to G at a point p as TpG and e as the identity element of G. The Lie algebra

of G, which we denote by g, is the tangent space to G at the identity, TeG, together

with the commutator [·, ·].
Left and right translation by g are represented by the maps Lg : G→ G;Lg : h 7→ gh

and Rg : G→ G; Rg : h 7→ hg, respectively. If v ∈ ThG, we may write gv ∈ ThgG
as shorthand for ThLgv.

For ξ ∈ g, the equation

ġ = TeLgξ, g(0) = e (2.1)

has a unique solution gξ(t) ∈ G ∀ t [46, 59]. The exponential map exp : g→ G maps

elements of the Lie algebra to the Lie group and is defined by exp ξ = gξ(1).

2.2 Rigid motion in the plane

Here we discuss the concepts introduced in the previous section in the context of a

planar swimmer.

The general linear group GL(n) is the set of all non-singular n×n matrices where

the group operation is ordinary matrix multiplication. The orthogonal group O(n)

is the set of all matrices A ∈ GL(n) such that AAT = e. The special orthogonal

group SO(n), also known as the set of n−dimensional rotation matrices, is the set

14

of all matrices A ∈ O(n) where detA = +1. Finally, the special Euclidean group

SE(n) is the set of all rotations and translations in Rn which can be represented by

(n+ 1)× (n+ 1) matrices of the form

 R r

0 1

∣∣∣∣∣R ∈ SO(n) and r ∈ Rn

 . (2.2)

For planar motion, n = 2 and we let r = (x, y)T and R =

 cos(β) − sin(β)

sin(β) cos(β)

,

where β ∈ S1 physically represents the angle and x and y the coordinates of the

swimmer relative to an inertial frame. Expressed in matrix form, the group operation

is the ordinary matrix product. One can readily show that SO(2), the rotation group

in the plane, is commutative, while SE(2), the special Euclidian group, is not. We

sometimes also express elements of SE(2) as triplets, g = (x, y, β).

Let h(t) be a smooth curve in SE(2) parameterized by t, and let ḣ = dh
dt

. Then

elements of se(2), the Lie algebra of the Lie group SE(2), are of the form ξ = h−1ḣ.

Physically, elements of the Lie algebra correspond to the velocity of the swimmer in

the body frame and can be expressed in matrix form as

h−1ḣ =

Cβ Sβ −xCβ − ySβ
−Sβ Cβ xSβ − yCβ

0 0 1

−β̇Sβ −β̇Cβ ẋ

β̇Cβ −β̇Sβ ẏ

0 0 0

 =

0 ω u

−ω 0 v

0 0 0

(2.3)

where Cβ = cos(β), Sβ = sin(β) and u, v, ω ∈ R. Here, u = ẋ cos(β) + ẏ sin(β)

and v = −ẋ sin(β) + ẏ cos(β) correspond to the swimmer’s forward and lateral body

velocities, respectively, while ω = β̇ is the rotational velocity. We sometimes express

elements of se(2) as triplets, ξ = (u, v, ω).

15

For SE(2), the exponential map it is given by: exp(u, v, ω) = (x, y, β) where

β = ω (2.4)

(x, y) =

(u, v) ω = 0

1
ω

(u sinω + v(1− cosω), u(cosω − 1) + v sinω) ω 6= 0.

(2.5)

The inverse of the exponential map is the logarithm map and for SE(2) is given by

log(x, y, β) = (u, v, ω) where

ω = β (2.6)

(u, v) =

(x, y) β = 0

β
2
(−x sinβ

cosβ−1
− y, x+ y sinβ

cosβ−1
) β 6= 0.

(2.7)

.

2.3 Actions of Lie Groups

The left translation induces a left action of G on a manifold Q, which is a smooth

mapping Φ : G×Q→ Q such that:

1. Φ(e, q) = q for all q ∈ Q

2. Φ(g,Φ(h, q)) = Φ(Lgh, q) for all g, h ∈ G and q ∈ Q.

We may sometimes alternatively write Φ(g, q) as Φg(q). The conjugation map ΦC :

G × G → G is defined as ΦC
g (h) = ghg−1. Conjugation can be thought of as a

generalization of a change of coordinates from one reference frame to another.

16

The adjoint action of G on g can be determined by differentiating the conjugation

map at the identity and is defined as

Ad : G× TeG→ TeG; Ad : (g, ξ) 7→ TgRg−1TeLgξ. (2.8)

The infinitesimal generator of Φ corresponding to ξ ∈ g is the vector field M given

by

ξM(x) =
d

dt

∣∣∣
t=0

Φ(exp(tξ), x). (2.9)

2.4 Principal bundles, connections and curvature

Let G be a Lie group and Q a manifold with base space S and structure group G.

In our analysis we typically consider the motion of a three-link, two hinge swimmer,

where G = SE(2) represents the orientation and position of the swimmer in the plane

and S = T 2 is the shape of the swimmer parameterized by the two joint angles such

that the configuration space is Q = SE(2) × T 2. In this section we introduce the

concept of fiber bundles which are useful in describing locomotion, where the base

space describes the internal shape of the fish-like swimmer, and the group describes

the overall position and orientation.

A (left) principal fiber bundle (refer to Figure 2.1) is a manifold Q endowed with

a (left) action such that

1. S = Q/G;

2. The natural projection π : Q→ S is differentiable;

3. Q = S ×G locally.

Fibers are the sets π−1(s) ⊂ Q for s ∈ S, and the point q ∈ Q lies in the fiber over

π(q) ∈ S. The tangent space at a point q on the fiber is denoted TqQ. A vector

17

S
s

π−1(s)

q

π

geometric
phase

θ(t)

Figure 2.1: Schematic of a principal bundle.

vq ∈ TqQ tangent to the fiber through q is said to be vertical. The space of all such

vertical vectors is VqQ.

A connection on the principal bundle Q is an assignment of a horizontal subspace,

HqQ, to VqQ ⊂ TqQ for each point q ∈ Q such that HqQ depends smoothly on q and

1. HhqQ = TqΦhHqQ;

2. TqQ = VqQ⊕HqQ.

Vectors in HqQ are called horizontal. Given a connection on Q, a tangent vector

vq ∈ TqQ can be decomposed into horizontal and vertical components as vq = hor vq+

ver vq.

Equivalently, a connection can be described by a Lie algebra-valued one-form, the

connection form. The connection form is a map Γ(q) : TqQ → g, where g is the Lie

algebra corresponding to the Lie group G, with the properties:

1. Γ(q)(ξQ) = ξ for ξ ∈ g;

2. Γ(q)vq is equivariant, ie. Γ(Φh(q))TqΦh(q)vq = AdhΓ(q)vq.

The connection one-form thus defines the horizontal subspace of TqQ as the set of all

tangent vectors upon which the connection form vanishes: HqQ = {vq | Γ(q)vq = 0}.

18

Further, it can be shown that the connection one-form can be expressed in local

coordinates q = (g, s) as:

Γ(q)vq = Adg(A(s)ṡ+ g−1ġ), (2.10)

where A : TS → g is the “local” form of the connection. Any vector that lies in the

horizontal subspace must satisfy the constraint:

g−1ġ = −A(s)ṡ. (2.11)

This is the governing equation for a particular class of nonholonomic systems where

the configuration space is that of a principal fiber bundle and the equations of motion

are specified by the connection on the bundle [100]. Equation (2.11) specifies the

relationship between internal shape changes, ṡ, and the group motion, g. In the

general case, the solution to (2.11) can be expressed as

g(T) = g(0) exp ξ(s), (2.12)

where s : [0, T]→ S is a closed curve and ξ(s) is a Lie algebra valued function given

by the expansion [74]:

ξ(s) = −A+
1

2
[A,A]− 1

3
[[A,A],A]− 1

12
[A, [A,A]] + . . . , (2.13)

where A(t) ≡ ∫ t
0
A(s(τ))ṡ(τ)dτ . In the special case where G is Abelian, all of the

bracketed terms on the right hand side of the expression in Equation (2.13) are zero,

19

and the solution simplifies to

g(T) = g(0) exp

(
−
∫ T

0

A(s(τ))ṡ(τ)dτ

)
(2.14)

= g(0) exp

(
−
∫
∂C

A(s)ds

)
(2.15)

= g(0) exp

(
−
∫∫

C

dA
)

(2.16)

where C is the area in shape space enclosed by the path ∂C, dA is the exterior

derivative of A and the final equality is by Stokes’ theorem. In component form,

dAij =
∂Aj

∂si
− ∂Ai

∂sj
.

Given vector fields X and Y on M and a connection form Γ : TQ → g, the

curvature form, γ(X, Y) : TQ× TQ→ g is given by [78]

γ(X, Y) = dΓ(X, Y)− [Γ(X),Γ(Y)], (2.17)

where [·, ·] is the Jacobi-Lie bracket of vector fields on M .

The local form of the curvature of the connection has coordinates:

Fij =
∂Aj
∂si
− ∂Ai
∂sj
− [Ai,Aj] (2.18)

whereAi is the ith component of the local form of the connection and si is the ith shape

variable. Note that in the special case when G is Abelian (and the Lie bracket is zero),

F = dA. The curvature can be thought of as an infinitesimal version of holonomy

or geometric phase. In general, the locomotion of a swimmer is composed of both

a dynamic phase and a geometric phase. In the particular case when the system

momentum is zero, as in most of the examples considered in this study, the geometric

phase completely determines the net motion. In the context of a momentum-free

swimmer, the geometric phase is the net displacement and rotation due to cyclic

20

inputs in the swimmer’s internal shape. In the language of geometric mechanics, the

geometric phase is the motion in the fiber group variables associated with a closed

path in the shape (base) space.

2.5 Semidirect product groups

Let G be a Lie group, V a vector space, g1, g2 ∈ G and v1, v2 ∈ V . One can then form

the semidirect product Lie group S = GsV where group multiplication is

(g1, v1) · (g2, v2) = (g1g2, v1 + g1v2). (2.19)

In particular, the semidirect product group SE(2) can be expressed as the semidirect

product of G = SO(2) and V = R2.

Consider S1, S2 ∈ SE(2) where S1 =

 R1 r1

0 1

 and S2 =

 R2 r2

0 1

. Ex-

pressed in this form, the semidirect product of two elements of SE(2) can be found

by the ordinary matrix product:

S1S2 =

 R1 r1

0 1

 R2 r2

0 1

 =

 R1R2 r1 +R1r2

0 1

 . (2.20)

Equivalently, S1S2 = (R1, r1) · (R2, r2) = (R1R2, r1 +R1r2).

21

Chapter 3

Motion in Potential Flow

In this chapter we consider the motion of a two-dimensional deformable body through

an inviscid, incompressible fluid. Specifically, we wish to understand the relationship

between the internal shape changes and the overall motion of a two joint, three link

swimmer which begins at rest and where the generalized notion of momentum of the

body-fluid system is zero for all time.

We consider this work to be an extension of progress in the study of momentum-

free swimming in potential flow. Benjamin and Ellis [13] and Saffman [101] were the

first to demonstrate that net motion is possible in potential flow even in the absence

of vorticity. By formulating the dynamics of a deformable swimmer in the language

of geometric mechanics, Kelly [59] elucidated how the variables parameterizing the

internal shape changes were related by the connection to those associated with the

overall motion in the plane. The connection in turn is a function of ’unit’ velocity

potentials which depend only on the shape of the swimmer surface and account for all

of the effects of the fluid. Perturbation theory was applied to derive analytical expres-

sions of the connection for an “amoeba-like” swimmer modeled by small-amplitude

deformations of a nominally circular cross-section cylinder, though the result applies

only to small-amplitude deformations.

22

Rather than attempting to compute a hydrodynamically accurate form of the

connection as Kelly did, Radford [99] took a slightly different approach in studying

the motion of a three link swimmer in potential flow. Each link was assigned constant

added masses to account for resistance due to the surrounding fluid. Although the

presence of the other body links affects the resistance to motion in a non-trivial

manner, Radford simply assumed that the added mass terms used were those for a

hydrodynamically isolated elliptical body. However no attempt was made to compute

the true added inertia terms which are a function of the swimmer’s instantaneous

shape. Still, for this simplified system Radford computed the connection and showed

that net translation — in addition to rotation — could be achieved even in the absence

of viscosity.

In this work we also consider a three linked swimmer in potential flow, and we

numerically compute the various added inertia terms which are needed to accurately

determine the connection. Whereas Radford assumed the various links to be hydro-

dynamically decoupled, our solution accounts for the coupling between links due to

the fluid. We believe this to be the first accurate solution for the motion of a multiply

connected body undergoing large amplitude shape changes in potential flow.

Although the body begins at rest, the fluid is inviscid and there are no external

forces acting on the body, it is able to achieve net translation and rotation as a result

of geometric phase. This is analogous to a cat’s rotation as it falls to the ground. A

cat that is held still and dropped upside-down will move its limbs in such a way that

it rotates and lands on its feet. Like the momentum-free swimmer-fluid system, since

no external forces are acting on the cat, this motion happens while maintaining zero

total angular momentum.

The assumptions and governing equations for the system are discussed in Sec-

tion 3.1. We introduce the geometry of the swimmer in Section 3.2. In Section 3.3 we

compute the kinetic energy of the swimmer-fluid system, and from the conservation

23

of energy, we derive the equations of motion in a classical mechanics framework in

Section 3.5 and in the context of geometric mechanics in Section 3.7. The numerical

method used to solve Laplace’s equation is described in Section 3.4. Some example

gaits are presented in Section 3.6. With the equations formulated with the structure

of a fiber bundle over the shape space, the hydromechanical connection provides in-

sight into the development of useful gaits, as detailed in Chapter 5. In Appendix A

we include a MATLAB version of the code used to numerically implement this model.

3.1 Potential Flow

Here we present the assumptions and governing equations that we will use for the

rest of this chapter to study the motion of a deformable swimmer in two-dimensional

potential flow. An inviscid fluid beginning at rest will remain irrotational such that

the velocity v satisfies

∇× v = 0, (3.1)

which implies that the velocity field may be expressed as the gradient of a potential:

v = ∇Φ. (3.2)

Further, an incompressible fluid is divergence-free:

∇ · v = 0. (3.3)

Equations (3.2) and (3.3) combined yield Laplace’s equation

∇2Φ = 0. (3.4)

24

In addition, we also assume a constant density fluid which implies incompressibility.

We will solve Laplace’s equation subject to the boundary conditions of the swimmer

to find the velocity potential.

3.2 The Swimmer

According to Purcell’s scallop theorem [98] a swimming body with only one degree

of freedom is unable to achieve net motion through cyclic shape changes in a zero

Reynolds number flow due to the time-reversibility of the system. On the opposite

end of the Reynolds number range (Re = ∞), the system is similarly reversible in

potential flow when the system is free of vorticity [101]. Hence to study both cases,

we consider a planar two degree of freedom swimmer — the simplest swimmer capable

of achieving net motion through cyclic shape changes.

This swimmer considered in the potential flow study is a three-link, neutrally

buoyant articulated body as shown in Figure 3.1. The links are chosen to be ellipses

with semi-major and semi-minor axes of lengths a and e, respectively, though the

results easily generalize to arbitrary geometries. The three links, identified by Bi, i =

1, 2, 3, are assumed to be connected by invisible hinged joints.

The joints are a distance l = a+ c from the center of each ellipse, and the angles

between the major axis of the center ellipse and that of the outer ellipses are θ1 and

θ2. The planar position and orientation of the middle link, relative to an inertial

frame is parameterized by the variables (x, y, β). The various coordinate frames fixed

to the links and the inertial reference frame are shown in Figure 3.2.

We seek to understand how to achieve overall motions as a result of internal shape

changes.

25

β

2e

2a

c

e2

e1

(x, y)

θ1

θ2

Figure 3.1: Schematic of 3-link articulated swimmer.

e2

e1

B1

B2

B3

j3

i3

i1j1

j2 i2

Figure 3.2: Coordinate frames and identification of links for 3-link articulated swim-
mer.

26

3.3 Kinetic Energy

In Section 3.5, we will use the conservation of the system impulse — a momentum-

like quantity — to derive the equations of motion for the swimmer. The impulse is

a function of the body velocities, the mass and moment of inertia of the swimmer,

and a generalized notion of mass — the added inertia terms — which incorporates

the effect of the surrounding fluid. In this section we derive the kinetic energy of the

fluid to elucidate the physical significance of the added inertia terms. We show that

the added inertia terms are functions of the velocity potential, which in turn depend

only on the swimmer geometry. Since the added inertia terms completely account for

the effect of the fluid, there is no need to directly compute the fluid properties in a

numerical simulation.

For a planar body undergoing rigid motions with translational velocities u, v and

rotational velocity ω in a perfect fluid, Kirchhoff [60, 64] showed that one can express

the velocity potential Φ as a sum of functions which depend only on the shape and

configuration of the body:

Φ = uφu + vφv + ωφω. (3.5)

Similarly, for a three link swimmer where each link has body velocity ξi = (ui, vi, ωi),

the velocity potential may be expressed as:

Φ =
3∑
i=1

(uiφui
+ viφvi

+ ωiφωi
) (3.6)

where the index i identifies the velocity components of the ith body. These functions,

which depend only on the variables of the solid bodies, capture the energy of the sur-

rounding fluid. This greatly simplifies the problem, since we no longer must explicitly

keep track of each fluid particle.

27

The kinetic energy of the unit density fluid is

KEF =
1

2

∫∫
v · vdΩ. (3.7)

Substituting Equation (3.2) into (3.7) and applying the identity ∇ · (Φ∇Φ) = ∇Φ ·
∇Φ + Φ∇2Φ plus Equation (3.4), the kinetic energy becomes

KEF =
1

2

∫∫
∇ · (Φ∇Φ)dΩ. (3.8)

Finally, Green’s theorem allows us to express Equation (3.8) as an integral over the

surface of the bodies, rather than over the fluid domain:

KEF =
1

2

∫
Φ
∂Φ

∂n
dS, (3.9)

where ∂Φ
∂n

= ∇Φ · n, and n is the outward normal at the surface. The Neumann

boundary condition at the surface of the ith body is given by

∂Φi

∂n
=
∂φui

∂n
(ui − ωiyi) +

∂φvi

∂n
(vi + ωixi) (3.10)

where xi and yi are distances in the ii and ji directions from the origin of Bi. Due

to the linearity of Laplace’s equation, finding a solution to Equation (3.4) subject to

the boundary condition (3.10) becomes significantly simplified. By the superposition

property, the nine scalar potentials φui
, φvi

and φωi
may be solved individually sub-

ject to simpler boundary conditions, and then summed to “reconstruct” the scalar

potential of the entire system. The simpler problem is to solve Laplace’s equations

28

for φui
, φvi

and φωi
with respective boundary conditions:

∂φui

∂n
= ui · ni, on ∂Bi

∂φui

∂n
= 0, on ∂Bj, j 6= i

(3.11)

∂φvi

∂n
= vi · ni, on ∂Bi

∂φvi

∂n
= 0, on ∂Bj, j 6= i

(3.12)

∂φωi

∂n
= (ωi ×Xi) · ni, on ∂Bi

∂φωi

∂n
= 0, on ∂Bj, j 6= i

(3.13)

where ui = (ui, 0, 0),vi = (0, vi, 0) and ωi = (0, 0, ωi), and where ni is the normal

vector expressed in Bi body coordinates.

Substituting (3.6) and (3.10) into (3.9), the kinetic energy of the fluid can now be

expressed as

KEF =
1

2

3∑
i=1

3∑
j=1

(Iuiujuiuj + Ivivjvivj + Iωiωjωiωj + Iuivjuivj + Iuiωjuiωj + Iviωjviωj) ,

(3.14)

29

where

Iuiuj =

 −
∫∫

φui

∂φuj

∂n
dS i = j

−1
2

∫∫
φui

∂φuj

∂n
+ φuj

∂φui

∂n
dS i 6= j

(3.15)

Ivivj =

 −
∫∫

φvi

∂φvj

∂n
dS i = j

−1
2

∫∫
φvi

∂φvj

∂n
+ φvj

∂φvi

∂n
dS i 6= j

(3.16)

Iωiωj =

 −
∫∫

φωi

∂φωj

∂n
dS i = j

−1
2

∫∫
φωi

∂φωj

∂n
+ φωj

∂φωi

∂n
dS i 6= j

(3.17)

Iuivj =

 −
∫∫

φui

∂φvj

∂n
dS i = j

−1
2

∫∫
φui

∂φvj

∂n
+ φvj

∂φui

∂n
dS i 6= j

(3.18)

Iuiωj =

 −
∫∫

φui

∂φωj

∂n
dS i = j

−1
2

∫∫
φui

∂φωj

∂n
+ φωj

∂φui

∂n
dS i 6= j

(3.19)

Iviωj =

 −
∫∫

φvi

∂φωj

∂n
dS i = j

−1
2

∫∫
φvi

∂φωj

∂n
+ φωj

∂φvi

∂n
dS i 6= j

. (3.20)

The added inertia terms, I, are functions of the body geometry and are computed

numerically by a panel method described in the next section.

3.4 Numerical Method

To compute the added inertia terms in (3.15)–(3.20), we need to solve for the nine

velocity potentials φui
, φvi

, and φωi
(i = 1 . . . 3). Each velocity potential is a solution

to Laplace’s equation subject to corresponding boundary conditions (3.11)–(3.13).

By Green’s theorem, Laplace’s equation over the fluid domain can be transformed

into a boundary integral equation [47]:

−2πσ(p) +

∮
∂

∂n

(
1

r(p, p′)
σ(p′)dA′

)
= vn(p) (3.21)

30

where p is a point on the surface of the body, σ(p) is the source (or sink) singularity

strength density at p, r(p, p′) is the distance between points p and p′ and vn(p) is

the normal component of the velocity at p. These equations can be solved by a

panel method (also known as a boundary element method). This usually results in

significant computational savings compared to solving the original partial differential

equation over the fluid domain. We follow the approach of Hess & Smith [47].

First, the surface of the swimmer is discretized into N straight line panels, or

elements. At the center of each panel we define a control point which is where the

boundary condition will be imposed. A constant unit source density is assigned

to each panel. This source density distribution over the panel induces a velocity

everywhere in the fluid, including at each control point. Consider a unit strength

point source singularity located at (xo, yo). The velocity induced at a point (x, y) due

to the singularity has components:

us =
1

2π

x− xo
(x− xo)2 + (y − yo)2

(3.22)

vs =
1

2π

y − yo
(x− xo)2 + (y − yo)2

(3.23)

We now assume that the jth panel has a constant unit source density distribution.

We fix a coordinate frame to the panel such that the center of the panel is at the

origin, the abscissa is aligned with the tangent direction of the panel, and the positive

ordinate is in the outward normal direction (See Figure 3.3). The velocity induced at

the point (x, y) — which may represent the coordinates of the ith control point in the

panel j frame — by the source distribution over the jth panel is found by integrating

the right hand side of Equations (3.22) and (3.23) over the length of the jth straight

line panel. The formulas for these velocities expressed with respect to a frame fixed

to panel j are [47]:

Vx =
1

4π
ln

[
(x+ ∆s/2)2 + y2

(x−∆s/2)2 + y2

]
(3.24)

31

Figure 3.3: Coordinate system fixed to a panel. ξ and η are coordinates along a
panel while x and y are used for points not on the panel. Reproduced from Hess and
Smith [47].

Vy =
1

2π
tan−1

[
y∆s

x2 + y2 − (∆s/2)2

]
, (3.25)

where ∆s is the length of panel j. The velocity induced at a control point by its own

panel has components Vx = 0 and Vy = 1/2π. Since the expressions for the velocity

components are in a coordinate system based on the particular panel, they must be

transformed into the reference coordinate system in which the body geometry was

defined.

Let tj = (tjx, tjy) and nj = (njx, njy) be the unit normal and tangent vectors fixed

to the jth panel. Then the inertial frame velocity components at the control point of

panel i due to a unit source density distribution on panel j are:

Xi,j = Vxtjx − Vytjy (3.26)

Yi,j = −Vxnjx + Vynjy (3.27)

Let Vi,j be the velocity induced at control point i due to a unit source distri-

bution along panel j, which can expressed with respect to an inertial frame as

Vi,j = Xi,ji + Yi,jj where i and j are unit vectors in the inertial coordinate frame.

32

If ni are the unit normal vectors corresponding to the ith panel, we can define the

following expression:

Ani,j = ni ·Vi,j, (3.28)

which represents the normal component (with respect to a frame fixed to the ith panel)

of the velocity induced at the control point of panel i due to a unit strength source

distribution on panel j. Finally, Equation (3.21) can be numerically approximated

by a set of linear equations:

An11 An12 · · · An1N

An21 An22 · · · An2N
...

...
. . .

...

AnN1 AnN2 · · · AnNN

σ1

σ2

...

σN

=

vn1

vn2

...

vnN

, (3.29)

which we can write as Anσ = vn. For each of the particular boundary conditions

(3.11)–(3.13), we determine the corresponding normal component of velocity at each

control point as a vector, vn. Since all the influence coefficients can be determined

from the geometry of the body, the system of equations is then solved for the source

density distribution by inverting the matrix of influence coefficients: σ = (An)−1vn.

For each of the source distributions, the corresponding velocity potential is computed

at the control points. The velocity potential at a point p′ due to a point source

singularity of strength σ at point p is φ(p′, p) = σ(p) log r(p, p′)/2π, where r(p, p′)

is the distance between p′ and p. Thus, the potential at a point p′ due to a distri-

bution of sources over panels on a boundary can be found from a discrete form of

Equation (3.30).

φ(p′) =

∫
σ(p) log r(p, p′)

2π
dA (3.30)

These velocity potentials are assumed to be constant along each panel – a valid

assumption for sufficiently small panels – and we discretize the integrals in Equa-

33

tions (3.15)–(3.20) to compute the added inertia terms from these velocity potentials.

3.5 Equations of Motion

Although the momentum of the system is unbounded in a fluid with infinite ex-

tent [64], an analogous quantity — the impulse which is the product of the body

velocities and the real plus added inertias — is finite. Let Ti be the transformation

Ti =

cos θi sin θi ±l sin θi
− sin θi cos θi ±l(1 + cos θi)

0 0 1

 , i = 1, 2, (3.31)

where + and − correspond to i = 1 and 2, respectively. Let Mi,j = mi,j + Ii,j be the

matrix of real plus added inertia terms where

Ii,j =

Iuiuj Iuivj Iuiωj

Iviuj Ivivj Iviωj

Iωiuj Iωivj Iωiωj

 (3.32)

and

mi,j =

m 0 0

0 m 0

0 0 J

 i = j

03×3 i 6= j

(3.33)

(3.34)

where m and J are the mass and moment of inertia about the center of mass, respec-

tively, of one link.

34

In general, the three (translational and rotational) impulse components vary in

time. However, when the system begins from rest, the total impulse of the system

expressed with respect to the body frame of the middle link (B3) is conserved and

thus equal to zero, and all components remain zero for all time:

hs =
2∑
i=1

3∑
j=1

TT
i Mi,jξj +

3∑
j=1

M3,jξj = 0. (3.35)

Since the motion of the outer links is constrained by the joints, their body velocities,

ξi = (ui, vi, ωi)
T can be expressed as functions of the velocity of the middle link plus

the velocity of the outer links relative to the middle link as follows,

ui

vi

ωi

 =

cos θ1 sin θ1 ±l sin θi
− sin θ1 cos θ1 ±l(1 + cos θi)

0 0 1

u3

v3

ω3

+

0

±l
1

 θ̇i, (3.36)

or in shorthand as ξi = Tiξ3 + Liθ̇i, where + and − correspond to i = 1 and 2,

respectively. Substituting (3.36) into (3.35), grouping and rearranging terms yields

Ilocξ3 +

(
2∑
i=1

2∑
j=1

TT
i Mi,jLj +

2∑
j=1

M3,jLj

)
θ̇j = 0, (3.37)

where

Iloc =
2∑
i=1

2∑
j=1

TT
i Mi,jTj +

2∑
i=1

TT
i Mi,3 +

2∑
j=1

M3,jTj + M3,3 (3.38)

is known as the locked moment of inertia which is equivalent to the instantaneous

moment of inertia of the body if its joints were to be locked in their current state.

When the locked moment of inertia matrix is nonsingular, the velocity of the body,

expressed with respect to the B3 body frame, may be expressed as a function of the

35

joint velocities, θ̇1 and θ̇2:

ξ3 = −I−1
loc

(
2∑
i=1

2∑
j=1

TT
i Mi,jLj +

2∑
j=1

M3,jLj

)
θ̇j. (3.39)

Equation (3.39) can be used directly to determine the planar motion of the swimmer

resulting from the prescribed motion of the joints by numerically integrating the body

velocity, ξ3, in time. Since the added inertia terms are a function of the shape of the

swimmer, they are recomputed at each time.

3.6 Example Gaits

Through intuition and numerical experiments, the code (see Appendix A) was used

to identify cyclic gaits to achieve various types of motions. In all cases, the links

consisted of ellipses discretized into 200 panels with a = 1, e = 0.1 and c = 0.2 (see

Figure 3.1). Each gait was divided into 50 equally spaced time steps. The resulting

motion is non-dimensionalized by l = a+ c.

One important and potentially counter-intuitive aspect of vorticity-free, momentum-

free motion in potential flow is that the instant the body ceases to deform, its motion

stops. The swimmer does not continue to “coast”. Further, if the deformation is

reversed, the swimmer velocity will exactly reverse. Both of these results should be

apparent from Equation (3.39) or equivalently from the fact that the local form of

the connection relating θ̇j and ξ3 is a linear map. These curious results were observed

as early as 1966 by Saffman [101]:

The situation is therefore very different from the inviscid propulsion mech-

anisms of Lighthill and Wu where there is a persistent transfer of momen-

tum from body to fluid associated with the creation of vorticity. Also

there is no energy dissipation in the present case and no net work is ex-

36

pended. There is of course a transfer of energy between body and fluid,

but this is loss-free and reversible.

Despite the seemingly non-physical nature of the dynamics of this system, an under-

standing of motion in potential flow may lend insight to generating certain types of

motions in robotic applications or enhancing our understanding of some biological

swimming maneuvers. In particular, we postulate that like the falling cat, the im-

pressive turning performance of marine animals such as sea lions [34] may be partially

due to their great flexibility which allows them to explore a large range of shape space

and generate a significant amount of geometric phase.

3.6.1 Forward Gait

By symmetry, circular paths centered about the origin of the θ1–θ2 shape space will

generate motion with zero net rotation. This family of gaits can be expressed as:

θ1 = A cos (t− φ) (3.40)

θ2 = A sin (t− φ) . (3.41)

As an example, we prescribe a gait specified by Equations (3.42) and (3.43) which

generates a net translation of approximately 1.85l and zero net rotation of the middle

link as seen in Figure 3.4:

θ1 = 1.5 cos
(
t− π

4

)
(3.42)

θ2 = 1.5 sin
(
t− π

4

)
. (3.43)

Snapshots of the swimmer motion are shown in Figure 3.5. Although the middle

link does rotate during the gait, it experiences zero net rotation after one complete

closed-path gait. Due to the rotation, the total length of the displacement path is

37

−2 −1.5 −1 −0.5 0

0

0.5

1

1.5

x

y

(a) Translation

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

β
3

(b) Rotation vs time

Figure 3.4: Potential flow swimmer: Forward gait example. (a) The translation of the
center of the middle link non-dimensionalized by l. The black dot indicates the initial
position. (b) the angle of the middle link versus time during the forward swimming
gait specified by Equations (3.42) and (3.43). Snapshots of the swimmer motion
are shown in Figure 3.5. The solid blue curves corresponds to the motion when the
hydrodynamics are accurately computed while the dashed red curve corresponds to
the motion under the assumption of hydrodynamically decoupled links.

t = 0 t = π
2

t = π t = 3π
2

t = 2π

Figure 3.5: Potential flow swimmer: Forward gait snapshots. The swimmer shape,
position and orientation is shown for five instance of time during the gait specified
by Equations (3.42) and (3.43). The blue curve is the same as in Figure 3.4(a) and
shows the path traveled by the center of the middle link.

considerably longer than the net translation of 1.85l. Changing the starting position

by choosing a different value for φ would not affect the net rotation, but would result

in a different displacement path and net translation. This is a manifestation of the

non-Abelian nature of the special Euclidean group and significantly complicates the

problem of generating more arbitrary gaits to achieve a desired net translation.

To highlight the importance of accurately computing the hydrodynamic interac-

tion between links, we also show in Figure 3.4(b) (red dashed curves) the resulting

motion for this same gait when the links are assumed to be hydrodynamically decou-

pled. This was the assumption made by Radford [99]. For this geometry, it seems that

38

the failure to account for the hydrodynamic interaction between links typically results

in over-estimating the resulting body velocity due to internal shape changes. Though

we observe that for this particular gate the net translation for the hydrodynamically

decoupled case is less than for the accurate, hydrodynamically coupled result, this

result does not hold in general due to the non-Abelian nature of the system.

3.6.2 Turning Gait

Circular paths in shape space shifted away from the origin along the θ1 = −θ2 diagonal

tend to generate net rotations in addition to translation in the plane. This family of

gaits can be expressed as:

θ1 = −B + A cos (t− φ) (3.44)

θ2 = B + A sin (t− φ) . (3.45)

Physically, these gaits corresponds to the same motion as with the forward gaits

but with a bias of B in the orientation of the joints so that the swimmer nominally

assumes a curved ‘C’ shape.

Equations (3.46) and (3.47) are a specific example gait which generates the trans-

lation and rotation of the middle link seen in Figure 3.6:

θ1 = −0.8 + 0.8 cos
(
t− π

4

)
(3.46)

θ2 = 0.8 + 0.8 sin
(
t− π

4

)
. (3.47)

Snapshots of the swimmer motion during the gait are shown in Figure 3.7. In this

example, the swimmer achieves a net rotation of about 0.59 radians, while translating

about 0.95l. Further, for fixed amplitude A, we find that for a certain range of the

bias B, the net rotation for a gait increases monotonically with increasing B. This

39

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

−0.4

−0.2

0

0.2

0.4

0.6

x

y

(a) Translation

0 1 2 3 4 5 6

−0.2

0

0.2

0.4

0.6

0.8

t

β
3

(b) Rotation vs time

Figure 3.6: Potential flow swimmer: Turning gait example. (a) The translation of the
center of the middle link non-dimensionalized by l. The black and blue dots indicate
the initial and final positions, respectively; (b) the angle of the middle link versus time
during the turning swimming gait specified by Equations (3.46) and (3.47). Snapshots
of the swimmer motion are shown in Figure 3.7. The solid blue curves corresponds to
the motion when the hydrodynamics are accurately computed while the dashed red
curve corresponds to the motion under the assumption of hydrodynamically decoupled
links.

may confirm the intuition that the more curved the swimmer is, the more rotation it is

able to achieve. This particular specific result can be used to generate a look-up table-

based algorithm to follow a given trajectory in the plane. To track higher or lower

curvature paths, the bias in the gait would be increased or decreased, respectively.

Although we have found one family of gaits to generate a desired amount of net

rotation, in Chapter 5 we explain the difficulty in identifying large-amplitude gaits

that achieve net rotation without translation.

3.7 Coordinate-free Analysis

In this section we apply a coordinate-free approach to derive the equations of mo-

tion in §3.5. This formalism often helps elucidate the system dynamics, particularly

through the appearance of the connection which relates internal shape changes to the

overall group motion. As we will later show, the geometric phase resulting from a

40

t = 0 t = π
2

t = π t = 3π
2

t = 2π

Figure 3.7: Potential flow swimmer: Turning gait snapshots. The swimmer shape,
position and orientation is shown for five instance of time during the gait specified
by Equations (3.46) and (3.47). The blue curve is the same as in Figure 3.6(a) and
shows the path traveled by the center of the middle link.

specified internal shape change can often be expressed as an integral of the curvature

of the connection over the area enclosed by the gait path in shape space. Although

our θ1–θ2 shape space is two dimensional, this concept generalizes if we wish to ex-

tend the swimmer to have N links. More generally, dynamical systems expressed in

this more abstract geometric framework lend themselves to the application of well-

known tools from control theory. One such example is satellite with internal motors,

where the dynamics are represented by a generalized form of the rigid-body phase

formula [85, 78], and feedback control is applied to reorient or stabilize the system.

We represent the position and angle of the middle link of the swimmer as an

element of the Special Euclidean Lie group, g ∈ SE(2) (see §2.5 for details on SE(2)).

Elements of the associated Lie algebra, ξ ∈ se(2), correspond to the body velocities of

the swimmer links, ξi = (ui, vi, ωi). The velocity of the outer links can be expressed

with respect to the middle link by

ξi = Adθ−1
i
ξ3 + ζi, (3.48)

where Adθ−1
i

is the adjoint map defined as the derivative of the conjugation map at

the identity, and ζi is the velocity of link i relative to the middle link, expressed

with respect to a frame fixed to link i. In the notation used in the §3.5, ζi = Liθ̇i

(Li = [0 ±l 1]T). Using the matrix representations of the Lie group and Lie

algebra elements, an explicit expression for the adjoint map’s action on an element of

41

the Lie algebra can be found from multiplying out the right hand side of the expression

Adgξ = gξg−1. Equivalently, the adjoint map may be expressed in matrix form as

Adgi
ξi = Ti

ui

vi

ωi

 , (3.49)

where Ti is given by Equation (3.31). Here, gi corresponds to the rigid motion of the

outer link relative to the middle link and may be parameterized by the angle of the

joint, θi.

We now wish to express the total impulse of the system with respect to a frame

fixed to the middle link. Since the inertia terms Mi,j are functions of scalar potentials

with respect to the ith and jth body frames, they must be expressed with respect to a

frame fixed to the middle link, B3. In the case of a free rigid body, one would achieve

this through the parallel axis theorem. Here, the adjoint map may be thought of as

a generalization of the parallel axis theorem. Hence, the total impulse of the system

relative to a frame fixed to the B3 frame is

hs =
2∑
i=1

3∑
j=1

AdT
θ−1
i

(M1,jξj) +
3∑
j=1

M3,jξj. (3.50)

Note that Equation (3.50) is equivalent to (3.35). Again, since the system begins from

rest, hs = 0 and is conserved for all time due to the lack of external forces or moments

on the body+fluid system [84]. Substituting (3.48) into (3.50), and rearranging terms

yields the expression

Ilocξ3 +

(
2∑
i=1

2∑
j=1

AdT
θ−1
i

Mi,jLj +
2∑
j=1

M3,jLj

)
θ̇j = 0, (3.51)

42

where

Iloc =
2∑
i=1

2∑
j=1

AdT
θ−1
i

Mi,jAdθ−1
j

+
2∑
i=1

AdT
θ−1
i

Mi,3 +
2∑
j=1

M3,jAdθ−1
j

+ M3,3. (3.52)

Equations (3.51) and (3.52) are equivalent to (3.37) and (3.38), respectively. Fi-

nally, when Iloc is non-degenerate (i.e., its matrix representation is invertible), Equa-

tion (3.51) may be solved for ξ3 and written as

ξ3 = −A(θ)θ̇, (3.53)

where A(θ) is the local form of the connection which is an se(2)-valued one-form on

the shape space. In other words, it maps instantaneous shape changes, parameterized

by θ̇ = [θ̇1 θ̇2]T, into body velocities. It is a function of only the instantaneous

shape, parameterized by θ = [θ1 θ2]T and is given by the expression

A = I−1
loc

[
M1 M2

]
, (3.54)

where

Mj =
2∑
i=1

AdT
θ−1
i

Mi,jLj + M3,jLj. (3.55)

Finally, the planar motion of the swimmer may be reconstructed in matrix form by

recalling that ξ = g−1ġ, such that Equation (3.53) becomes

ġ3 = −g3A(θ)θ̇. (3.56)

3.8 Summary

In this chapter, the equations of motion for an articulated swimmer in potential

flow were derived from both classical and geometric mechanics frameworks. Whereas

43

prior work ignored the hydrodynamical interactions between bodies or assumed small

amplitude deformations, the current work accurately models the motion of the swim-

mer. The hydrodynamical interactions between links are accounted for through added

inertia terms that depend only on the system geometry and which are computed

numerically at each time step. Finally, gaits determined through intuition and nu-

merical experimentation were presented for forward and turning motions. For both

the forward and turning gaits, the effect of accurately modeling the hydrodynamic

interactions between links was demonstrated by comparing the resulting motion in

both the hydrodynamically coupled and decoupled cases.

In Chapter 5, we show how to systematically develop gaits by studying properties

of the hydromechanical connection. But first, in Chapter 4 we consider a swimmer

in Stokes flow, which despite existing in an environment on the opposite end of the

Reynolds number scale, shares many similarities to a swimmer in potential flow.

44

Chapter 4

Motion in Stokes Flow

In this chapter we consider the planar motion of a deformable body through an incom-

pressible fluid where the Reynolds number is very small. A MATLAB implementation

of the model we describe in this chapter is included in Appendix B. In the limit as the

Reynolds number approaches zero, inertial forces become negligible relative to viscous

forces, and the incompressible Navier-Stokes equations become the Stokes equations:

∇p(x) = µ∇2u(x), ∇ · u = 0, (4.1)

where µ is the kinematic viscosity, p is the pressure and u is the fluid velocity. We

solve these equations subject to the no-slip boundary condition, u(ξ) = U(ξ) for all

ξ ∈ L, where L is a curve defining the surface of the swimmer and U is the swimmer

velocity at the surface.

4.1 Transforming Stokes Equations

In general, Stokes equations are expressed as in Equation (4.1). The viscosity µ

remains as a parameter in the system, though it can be eliminated via a change of

45

coordinates. Consider the following non-dimensionalization:

∇ =
1

L
∇∗, x = x∗L, u = u∗

U2L

ν
, t = t∗

L2

ν
. (4.2)

Then Equation (4.1) becomes

∇∗p(x∗) = ∇∗2u∗(x∗), ∇∗ · u∗ = 0. (4.3)

One can therefore work with the Stokes equations in a non-dimensional form —

knowing that we can always arrive at this form via a coordinate change.

4.2 Stokes Flow Algorithm

The numerical algorithm employed is based on the work of Power [95]. A solution

for two-dimensional Stokes flow is proposed as a function of singularity distributions

over the surface and in the interior of the body.

Let the domain Ω be the exterior of the body surface defined by the closed curve

L in a plane, and x = (x1, x2) ∈ Ω. Consider the reduced Stokes equations:

∂p(x)

∂xi
=
∂2ui(x)

∂x2
j

,
∂ui(x)

∂xi
= 0 (4.4)

where the subscript indices i and j specify the x and y components, respectively, with

the no slip condition at the surface boundary L:

ui(ξ) = Ui(ξ) for all ξ ∈ L, (4.5)

where Ui is the velocity of the surface of the swimmer and at infinity

ui − Ai ln |x| = O(1), p = o(1) as |x| → ∞ (4.6)

46

where A is the given drag force on the body.

Before we proceed further, we briefly focus on the logarithmic divergence of the

velocity at infinity in Equation (4.6). In two-dimensional Stokes flow, the velocity

field resulting from a point source of strength A acting on the fluid is represented

by a Stokeslet singularity. In (r, θ) polar coordinates, this singularity has the stream

function

ψStokeslet =
A

4πµ
r ln r sin θ. (4.7)

Differentiating ψ with respect to r, we get the radial velocity component of the fluid

ur =
∂ψStokeslet

∂r
=

A

4πµ
(ln r + 1) sin θ. (4.8)

From a distance, a body with a non-zero net force will appear like a Stokeslet singular-

ity, and the velocity at infinity will have a logarithmic divergence as in Equation (4.8).

Sir George Gabriel Stokes, the founder of modern hydrodynamics, was able to find

the solution for uniform flow past a sphere, but failed to solve for the uniform flow

past a stationary cylinder in two dimensions. The situation in which a finite external

force applied to an infinite cylindrical body generates a flow with diverging speed at

r = ∞ is known as the Stokes paradox. This seeming paradox, which was initially

resolved by Oseen in 1910 [89] and more rigorously half a century later by Finn [30]

and Smith [106], is due to the fact that Stokes equations are valid near a boundary,

though not farther away where it is no longer valid to neglect the convective terms.

Since the swimmer experiences no external forces and cannot generate net forces

or moments on itself through its self-deformation [105], we have A = 0 and we avoid

this issue completely.

Returning again to Equations (4.4)–(4.6), Hsiao and Kress [49] found a solution

to this problem by representing the velocity field as a combination of single and

double layer potentials over the boundary of the body. These single and double layer

47

potentials are surface integrals with corresponding density distributions where the

kernels are the Stokeslet and stresslet (the symmetric component of a Stokes doublet)

– fundamental singular solutions to the Stokes equation. The force and torque on the

body are functions of only the single layer potential, however numerical issues arise

due to the logarithmic nature of its kernel. The double layer potential is the integral

in Equation (4.10) and the stresslet kernel is given by Equation (4.11). See [49] for

further details.

Simply eliminating the single layer potential is not an option in the general case

since a double-layer potential solution can represent only those systems with zero

torque and force on the body. Further, a double-layer potential can only represent

solutions where the surface velocity U(ξ) satisfies
∫
L
Ui(y)aki (y)dσy = 0 for k = 1, 2, 3

(refer to [95] for details). Instead, Power found an equivalent solution by replacing the

single layer potential with a pair of singularities inside the body — a Stokeslet and

a rotlet — to generate a force and torque on the body, respectively. A Stokeslet and

rotlet are the singularities corresponding to a unit point force and torque in Stokes

flow, respectively. The stream function for a Stokeslet was given in Equation (4.7),

while the stream function for a line rotlet of strength w is

ψrotlet =
w

4πµ
ln(r), (4.9)

where r is the distance from the rotlet.

Power presents a solution for the velocity and pressure field as a function of a dou-

ble layer potential of density φ, a two-dimensional Stokeslet at the origin of strength

equal to A, a two-dimensional rotlet at the origin with strength w, and an unknown

constant vector α:

ui = Aju
j
i (x) +

∫
L

Kij(x, y)φj(y)dσy +
εijkwjxk
R2

− αi, (4.10)

48

where R = |x|. The two-dimensional vector x = (x1, x2) is identified with the three-

dimensional vector x = (x1, x2, 0), and the term
εijkwjxk

R2 represents the velocity due to

the rotlet with zero constant pressure. Kij(x, y) is the ith component of the influence

coefficient at the point x of the symmetric component of a Stokes doublet located at

the point y and oriented in the jth direction and is given by the expression

Kij(x, y) = − 1

π

(xi − yi)(xj − yj)(xk − yk)nk(y)

r4
(4.11)

where nk(y) is the outward normal vector at the point y ∈ L. The values for

α = (α1, α2, α3) and w = (w1, w2, w3) are taken to depend linearly on the density

distribution φ:

αi =
1

2π

∫
L

φj(x)ϕij(x)dσx for i = 1, 2 and α3 = 0, (4.12)

w1 = w2 = 0 and w3 =
1

2π

∫
L

φj(x)ϕ3
j(x)dσx, (4.13)

where ϕi represents the rigid body motion of the fluid and is given by

ϕi = (δ1i, δ2i, 0) for i = 1, 2 and ϕ3 = (x2,−x1, 0), (4.14)

and δij is the Kronecker delta: δii = 1, δij = 0 (i 6= j).

Although a Stokelet produces zero net torque, the total force exerted on the body

is equal to the strength of the Stokeslet. On the other hand, a rotlet enclosed by

a curve produces a torque equal to its strength on that body, but zero net force.

As noted previously, a double-layer distribution produces zero force or torque on the

body. Thus the force and torque acting on the curve L are given by:

Fi = Ai, T = w3 =
1

2π

∫
L

φj(x)ϕ3
j(x)dσx. (4.15)

49

By applying the boundary condition (4.5) to Equations (4.10)–(4.13) Power found

the linear system of equations for the unknown vector density (φ1, φ2, 0) on L:

Ui(ξ)−Ajuji (ξ) = −1

2
φi(ξ)+

∫
L

Kij(ξ, y)φj(y)dσy +
εijkw3δ3jξk

R2
ξ

−αi, ξ ∈ L, (4.16)

where Rξ is the distance from the origin to ξ. A is the given total drag force on the

body which we will take equal to zero since there are no external forces present and

a self-deforming body in Stokes flow is unable to generate net forces on itself.

4.3 Numerical Solution

The linear system of Equation (4.16) is solved by discretizing the body surface L into

N straight-line panels each with a constant double layer distribution. We denote the

integral of the ith component of φ along the kth panel as φki , and the length of the

kth panel is ak. Subscript indices correspond to spatial dimensions while superscript

indices correspond to panel numbers.

Equation (4.16) can be expressed as a sum over the panels as:

Uk
i = −φ

k
i

ak
+ Kkl

ijφ
l
j +

εijnwjx
k
n

Rk2 − αi (4.17)

where Kkl
ij is the influence coefficient in the ith direction at the control point (usually

specified to be the geometric center) of panel k due to the jth direction component of

a constant double layer distribution over panel l. Uk
i is the ith component of velocity

at the control point of the kth panel, xkn is the nth coordinate of the control point at

panel k.

To determine Kkl
ij , we first consider a panel of length ∆k, centered at (y1, y2) =

(0, 0), and oriented along the abscissa with constant Stokes doublet (also known as

50

stresslet) distribution. Since n1(y) = 0 and n2(y) = 1, from Equation (4.11) we have:

K11(x, y) = − 1

π

(x1 − y1)2(x2 − y2)

r4
(4.18)

K12(x, y) = K21(x, y) = − 1

π

(x1 − y1)(x2 − y2)2

r4
(4.19)

K22(x, y) = − 1

π

(x2 − y2)3

r4
(4.20)

where r4 = ((x1−y1)2+(x2−y2)2)2. To find the influence at (x1, x2) due to a constant

strength stresslet distribution over panel k, we integrate (4.18)-(4.20) over the length

of the panel:

I11(x) =

∫ ∆k

2

−∆k

2

K11(x, η)dη =

∫ ∆k

2

−∆k

2

− 1

π

(x1 − η1)2x2

r4
dη1

= − 1

2π
(−x2(C1 − C2) + (A1 − A2)) (4.21)

I12(x) = I21(x) =

∫ ∆k

2

−∆k

2

K12(x, η)dη =

∫ ∆k

2

−∆k

2

− 1

π

(x1 − η1)x2
2

r4
dη1

= − 1

2π

(−4x2
2(B1 −B2)

)
(4.22)

I22(x) =

∫ ∆k

2

−∆k

2

K22(x, η)dη =

∫ ∆k

2

−∆k

2

− 1

π

x3
2

r4
dη1

= − 1

2π
(x2(C1 − C2) + (A1 − A2)) (4.23)

where

A1,2 = arctan

(
x1 ± (∆k/2)

x2

)
(4.24)

B1,2 =
(
(∆k ± 2x1

)2
+ (2x2)2)−1 (4.25)

C1,2 = 2(2x1 ±∆k)B1,2. (4.26)

In the prior three expressions, indices 1 and 2 correspond to + and −, respectively.

These coefficients are expressed in a frame local to the panel. Since the panel actually

51

lies at an angle θ relative to the horizontal, we express the coefficients in a global

coordinate frame through the transformation

 K11 K12

K21 K22

 =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 I11 I12

I21 I22

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 . (4.27)

Expressing this result in terms of the outward normal and tangent unit vector compo-

nents associated with the panel, (t1, t2) = (cos θ, sin θ) and (n1, n2) = (− sin θ, cos θ),

one gets

K11 = I11t
2
1 + I22n

2
1 + 2I12n1t1 (4.28)

K12 = K21 = I11t1t2 + I22n1n2 + I12(t1n2 − n1t2) (4.29)

K22 = I11t
2
2 + I22n

2
2 + 2I12n2t2. (4.30)

Finally, Equation (4.17) can be expressed in block matrix form as

 v1

v2

 = Q

 φ1

φ2

 (4.31)

where vi = [v1
i v

2
i ... v

N
i]T is a vector of the ith component of velocity at the control

points, φi = [φ1
i φ

2
i ... φ

N
i]T and Q is the square block matrix given by:

Q =

 K11 K12

K21 K22

+

 −y/R2

x/R2

 · [−yT xT
]

+

 1 ·∆T 0

0 1 ·∆T

 , (4.32)

where 1 is a column vector of N 1’s, ∆ = [∆1 ∆2 ... ∆N]T, x and y are the coordinates

of the control points as column vectors, and R =
√
x2 + y2 is a column vector of the

distances from the origin to the point corresponding to the index number of the

52

coordinate.

Since all the values inside the braces of Equation (4.31) are known, the strength

of the singularity distribution φ = [φ1, φ2]T can be solved for by imposing the no-slip

boundary condition which specifies v1 and v2 and then inverting Q. At this point,

we have a solution for the singularity distribution on the body, which once computed

allows for reconstructing the velocity field around the body. But we are interested in

computing the self-propulsion of the body due to its deforming shape.

As noted by both Blake [15] and Kelly and Murray [58], the force acting on a

two-dimensional, infinite cylinder in Stokes flow is proportional to the fluid velocity

at infinity. Thus, there is a one-to-one relationship between the generalized force

vector (Fx, Fy,M) acting on the body and the unknown values (α1, α2, w3) in Equa-

tion (4.16). At each time step, we compute the value of (α1, α2, w3) resulting from the

prescribed shape changes as well as that resulting from a rigid body motion. Since

it is well known that a deforming body in a Stokes flow can not experience any net

external forces or moments [105], the forces due to the two types of motions must

exactly balance. This is how we determine the net motion of the body.

Let the shape of the body be specified via shape variables s1, s2, ..., sr with pre-

scribed shape changes in time ṡ1, ṡ2, ..., ṡr. The double layer distributions, φs1 , φs2 , ... , φsr ,

due to each of these individual shape changes are computed by imposing the appro-

priate boundary condition resulting from the corresponding unit shape change. The

vector Fs = (α1,s, α2,s, w3,s)
T, due to the shape changes can be expressed as the

product of a matrix A and a vector of the shape change velocities ṡ:

Fs =

α1,s

α2,s

w3,s

 = A

ṡ1

ṡ2

...

ṡr

(4.33)

53

where

A =

φs11k∆

k φs21k∆
k · · · φsr

1k∆
k

φs12k∆
k φs22k∆

k · · · φsr
2k∆

k

(φs12kxk − φs11kyk)∆
k (φs22kxk − φs21kyk)∆

k · · · (φsr
2kxk − φsr

1kyk)∆
k

 . (4.34)

We can also compute the values of (α1, α2, w3) for the motion of the purely rigid body

with fixed shape. In this case the solution is particularly simple: Fg = Bξ. More

explicitly,

Fg =

α1,g

α2,g

w3,g

 =

1 0 0

0 1 0

0 0 τ

u

v

ω

 (4.35)

where τ is the value of w3 resulting from a unit rotational velocity on the body,

B = diag(1, 1, τ), and ξ = (u, v, ω)T is the vector of translational and rotational

velocities expressed with respect to a body fixed frame. If g is an element of the

group representing the orientation and position of the body, the body velocity can be

expressed as ξ = g−1ġ and parameterized with (u, v, ω). Since a self-deforming body

in Stokes flow cannot exert any net forces or moments upon itself, the forces due to a

purely rigid body motion must exactly balance those due to the shape change, hence

Fg +Fs = 0. Thus the expression for the motion of the body resulting from internal

shape changes is

ξ = g−1ġ = −Aṡ, (4.36)

where A = B−1A. The matrices A and B are functions of the shape, so they must be

computed at each time step in order to determine the body velocity resulting from

the shape change. The net motion is found by integrating this velocity in time.

Note that Equation (4.36) has the same form as the result in potential flow,

54

Equation (3.53). As in the potential flow case, it is apparent from (4.36) that when

the body stops changing shape (ṡi = 0 for all i), the motion of the body will also

instantly cease.

4.4 Code Validation

As validation of the numerical implementation of Power’s algorithm, we consider two

cases: a self-propelling deforming cylinder presented by Shapere and Wilczek [105]

and Purcell’s swimmer studied by Becker et al. [12].

4.4.1 Squirming Cylinder

We first consider the case of a self-propelling deforming body studied by Shapere and

Wilczek [105].

The cylinder surface S with finite size deformations is parameterized as:

S(σ, t) = s0(t)σ + s2(t)σ−1 + s3σ
−2 (4.37)

where σ = eiθ are complex coordinates on the unit circle where θ is the angle from

the horizontal, and si correspond to the shape coefficients. Shapere and Wilczek

prescribe the shape variables as follows:

s0 = 1, (4.38)

s2 = 0.3 cos (t) + i0.0015 sin (t) (4.39)

s3 = −0.3 sin (t) + i0.0015 cos (t). (4.40)

Hence the (x, y) coordinates of the swimmer geometry may be expressed explicitly as

55

a function of time and angle:

(Sx(θ, t), Sy(θ, t)) =

(cos θ + cos(t)(0.3 cos θ + 0.0015 sin 2θ) + sin(t)(0.0015 sin θ − 0.3 cos 2θ, (4.41)

sin θ + cos(t)(0.0015 cos 2θ − 0.3 sin θ) + sin(t)(0.0015 cos θ + 0.3 sin 2θ).

By conformally mapping the deformations to the unit circle, Shapere and Wilczek

found analytical expressions for the velocity components of the swimmer in terms of

the shape coefficients. For the shape deformations specified by (4.41), the forward and

lateral translational (u, v) and rotational ω body velocity components as a function

of time are:

u(t) = a2 sin(t) + b2 cos(t) (4.42)

v(t) = 0 (4.43)

ω(t) = − 3ab

1 + 2a2 + b2 + (−a2 + b2) cos2(t)
. (4.44)

Snapshots of the swimmer’s shape during one cycle are shown in Figure 4.1. Figure 4.2

shows the three velocity components computed with the numerical code for a body

discretized into 200 panels compared to the exact solution found by Shapere and

Wilzcek.

t = 0 t =
π

3 t =
2π

3
t = π t =

4π

3
t =

5π

3
t = 2π

Figure 4.1: Snapshots of the Shapere and Wilczek [105] swimmer shape during one
cycle. The analytical expressions for the shape of the swimmer are given by Equa-
tion (4.41).

56

0 1 2 3 4 5 6−0.02

0

0.02

0.04

0.06

0.08

0.1

t

u, Shapere & Wilczek
v, Shapere & Wilczek
ω , Shapere & Wilczek
u, current model
v, current model
ω , current model

Figure 4.2: Comparison of code with analytic result from Shapere and Wilczek [105].
The three body velocity components u, v and ω are plotted versus time as lines for
the Shapere and Wilczek exact result and as markers for the numerically computed
values.

4.4.2 Purcell Swimmer

Since we wish to study how a three-link swimmer in Stokes flow compares to one in

potential flow, we also validate our code against a solution for Purcell’s swimmer (see

Figure 4.4) — a simple three-link, two joint body proposed by Edward M. Purcell [98]

as the simplest swimmer able to achieve motion in Stokes flow. Becker et al. [12] ap-

plied slender body hydrodynamics and symmetry arguments to determine the motion

of such a swimmer. They consider the case where the ratio of the middle to outer

link length is η = 2, and the maximum angle of each link is π
3
. The gait is as follows:

Initially, θ1 = π
3

while θ2 is swept from −π
3

to π
3
. Next, θ2 is held fixed while θ1 is

varied from π
3

to −π
3
. Next, while θ1 is fixed, θ2 is swept from π

3
to −π

3
. Finally,

holding θ2 fixed, θ1 is returned back to π
3
.

The motion of our exact numerical simulation, where the aspect ratio of the ellip-

tic outer links is 40 : 1 is compared to the analytical result found by Becker et al. [12]

in Figure 4.3. The two results match up reasonably well. Recall that Becker et al.

assumed slender body hydrodynamics and the effects of one link component on the

57

0 1 2 3 4 5 6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

∆x
∆y

Figure 4.3: Comparison of code with analytic result from Becker, Koehler and
Stone [12]. The numerically computed x and y displacement of the center of the
middle link, normalized by the length of the outer links, a are plotted as blue and red
open circles, respectively. The displacement of the middle of the center link found by
Becker et al. appear as dash-dotted lines on the plot. The solid lines correspond to
the displacement of one of the link hinges determined by Becker et al. The original
analytic result is reproduced from Becker et al.

other links is not accounted for in their model. Still, the results are qualitatively

similar. We note that for different link aspect ratios than 40:1, the results are qual-

itatively similar to the results in Figure 4.3, but the displacement is quantitatively

different.

4.5 Example Gaits

We consider the motion of Purcell’s swimmer [98] — a planar, deformable, symmetric,

three link swimmer — as shown in Figure 4.4. The middle segment is twice the

58

length (b) of the two outer links (a). The length:width aspect ratio of the outer links

is 10:1 and the ends of the links are defined by ellipses with the same aspect ratio.

The middle link is the same width as the outer links. The shape of the body is

specified by the two joint angles relative to the extended straight configuration. The

sign of the angles is defined such that a “C” configuration of the body corresponds

to one positive and one negative angle while an “S” configuration corresponds to two

like-signed angles. From the numerical model, we are able to determine the motion of

θ1

θ2

β

a

b

e2

e1

(x, y)

e

b

4

Figure 4.4: The three-link Purcell swimmer with θ1 = 0.8 and θ2 = 0.4.

the body as a result of prescribed cyclic shape changes. Here we present gaits found

by a combination of intuition and heuristics to achieve forward and turning motions.

To ensure sufficient convergence in these examples, the body is discretized into 678

panels (due to the nature of the discretization method of the code) and each cyclic

gait is broken up into 50 time steps.

The ratio between the length of the middle and outer links is η = 2 and the aspect

ratio of the elliptical link ends is 10:1.

59

4.5.1 Forward Gait

Although the geometry is slightly different, for the sake of comparison, we show the

motion resulting from the same gaits found for the potential flow swimmer. One

family of gaits which achieves forward motion corresponds to those paths in θ1–θ2

shape space which are circles centered about the origin as defined by Equations (3.40)

and (3.41). As an example, we choose the same gait as specified by Equations (3.42)

and (3.43), repeated here for convenience:

θ1 = 1.5 cos
(
t− π

4

)
(4.45)

θ2 = 1.5 sin
(
t− π

4

)
. (4.46)

The resulting translation and rotation is shown in Figures 4.5(a) and 4.5(b). Snap-

shots of the swimmer shape during the gait are shown in Figure 4.6. Although the

amplitude of rotation during the gait is comparable to that in Figure 3.4(b), the net

translation is roughly an order of magnitude less than that in Figure 3.4(a). The net

rotation is 0 in both cases.

4.5.2 Turning Gait

As in potential flow, one family of gaits which results in net rotation are those specified

by Equations (3.44) and (3.41). They define circular paths in shape space centered

along the θ1 = −θ2 diagonal. Again, for the sake of comparison, we prescribe the

same example turning gait to the Stokes swimmer as demonstrated for the potential

flow swimmer. The angles of the joints are specified by Equations (4.47) and (4.48).

θ1 = −0.8 + 0.8 cos
(
t− π

4

)
(4.47)

θ2 = 0.8 + 0.8 sin
(
t− π

4

)
(4.48)

60

−0.2 0 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

y

(a) Translation

0 1 2 3 4 5 6

−0.5

0

0.5

t
β

3
(b) Rotation vs time

Figure 4.5: Stokes flow swimmer: Forward gait example. (a) The translation of the
center of the middle link non-dimensionalized by middle link length, a. The black and
blue dots indicate the initial and final positions, respectively; (b) the angle of the mid-
dle link versus time during the forward swimming gait specified by Equations (4.45)
and (4.46). Snapshots of the swimmer motion are shown in Figure 4.6.

t = 0 t = π
2

t = π t = 3π
2

t = 2π

Figure 4.6: Stokes flow swimmer: Forward gait snapshots. The swimmer shape,
position and orientation is shown for five instance of time during the gait specified
by Equations (4.45) and (4.46). The blue curve is the same as in Figure 4.5(a) and
shows the path traveled by the center of the middle link.

The translation and rotation resulting from this gait is shown in Figures 4.7(a) and

4.7(b), respectively while sapshots of the swimmer shape during the gait are shown

in Figure 4.8. As in the previous example, the motion is qualitatively similar to that

of the potential flow swimmer shown in Figures 3.6(a) and 3.6(b). Quantitatively

however, the net translation of 0.045a and net rotation of 0.075 radians are both an

order of magnitude less than the corresponding translation of 0.95l and rotation of

0.59 radians in the potential flow case.

61

−0.2 −0.1 0 0.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

y

(a) Translation

0 1 2 3 4 5 6
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

β
3

(b) Rotation vs time

Figure 4.7: Stokes flow swimmer: Turning gait example. (a) The translation of the
center of the middle link non-dimensionalized by middle link length, a. The black and
blue dots indicate the initial and final positions, respectively; (b) the angle of the mid-
dle link versus time during the turning swimming gait specified by Equations (4.47)
and (4.48). Snapshots of the swimmer motion are shown in Figure 4.8.

t = 0 t = π
2

t = π t = 3π
2

t = 2π

Figure 4.8: Stokes flow swimmer: Turning gait snapshots. The swimmer shape,
position and orientation is shown for five instance of time during the gait specified
by Equations (4.47) and (4.48). The blue curve is the same as in Figure 4.7(a) and
shows the path traveled by the center of the middle link.

4.6 Summary

We have implemented and validated a numerical boundary element code for solving

the motion of a deformable body in Stokes flow. Initial examples suggest — perhaps

confirming intuition — that for a given input, there is less net motion through a

highly viscous fluid than through an inviscid fluid. In Chapter 5, we present a more

systematic approach for developing gaits for swimmers in both Stokes and potential

flows. The plots of the curvature of the connection will provide numerical confirmation

that motion through a highly viscous fluid is, as intuition would suggest, more difficult

than through an inviscid fluid.

62

Chapter 5

Control of Reversible Systems

5.1 Reversible Swimming Systems

For deformable swimmers in both potential and Stokes flow, the net motion due to

internal shape changes is independent of time. In other words, regardless of how

quickly or slowly the shape changes, the resulting motion is the same. Equivalently,

if the prescribed shape changes are reversed, the swimmer will return to its original

position and orientation.

We caution that these results are not directly representative of the wide range

of swimming that occurs between the extremes of inviscid and highly viscous flow

regimes. Neither of these models accounts for the effects of vorticity which any ‘real’

swimmer would shed from its surface as it moves relative to its surrounding fluid.

Indeed, a fish that simply flaps its tail back and forth is able to propel itself forward

in a real fluid, but not in the idealized cases of potential and Stokes flow we present

here.

Still, these results are instructive for understanding certain types of swimmers.

On one extreme, the Stokes flow model could improve understanding of how micro-

or nano-robots might propel through the bloodstream to deliver targeted drugs for

63

a patient. On the other hand, the potential flow model is valid when inertial forces

dominate over viscous forces and may provide insights into how fish or other swimming

animals achieve turning motions under high Reynolds number conditions. Such high

Reynolds number examples include the sea lion, which is known to achieve unpowered

turns with a turning radius as small as 0.09 body lengths [34]. Turning radii as

small as 0.08 body lengths have similarly been observed for bottlenose dolphins [88].

Likewise, minimum turning radii for rainbow trout and smallmouth bass are 0.18 and

0.11 body lengths, respectively [124]. By demonstrating that such kinds of turning

motions are possible in the absence of vorticity, we may shed light on the mechanisms

that dominate in the turning motions of biological swimmers, which may and in turn

suggest control strategies for flexible hull vehicles.

5.2 Holonomy in semidirect product groups

We wish to understand how our models of potential and Stokes flow swimmers achieve

locomotion due to internal shape changes. In both cases, the internal shapes changes

parameterized by angles θi are related to the body velocity of the swimmer through

the connection, A. Note that the equations of motion for the potential and Stokes

flow swimmers, (3.56) and (4.36), respectively, can both be expressed in the form:

ṡ = −sA(θ)θ̇ (5.1)

where s is an element of a Lie Group S. It is well known (see §2.4) that if s is an

element of an Abelian Lie group S, then for a closed path in shape space given by

θ(t), t ∈ [0, T], the solution to (5.1) is:

s(T) = s(0) exp

(
−
∫ T

0

A(θ(τ))θ̇(τ)dτ

)
= s(0) exp

(
−
∫∫

C

dA
)
, (5.2)

64

where C is the area in shape space enclosed by the path θ(t). Physically, s(T) could

correspond to the final position or orientation of the swimmer. The net translation

or rotation would be the difference between s(T) and s(0). This is a powerful result

since it greatly simplifies the problem of generating gaits to achieve a desired motion.

To use this result one must numerically determine in advance the value of the exterior

derivative of the connection (which in the Abelian case is equivalent to the curvature)

over the shape space over a sufficiently fine grid. The process of gait generation is

reduced to finding paths in shape space that enclose a volume of curvature such that

exp
(− ∫∫

C
dA) is equal to the desired holonomy.

Unfortunately, the case when S is non-Abelian is less satisfying since the solution

to (5.1) is considerably more complicated (see [105] for details). Since Stokes’ theorem

cannot be applied, the result cannot be expressed explicitly as an integral over an area

as in (5.2). This is the case for motion in the plane, since S = SE(2) is non-Abelian.

However, since SE(2) can be expressed as the semidirect product SO(2) s R2 (see

§2.5 for details), it is possible to recover the result in equation (5.2) for the SO(2)

subgroup (but not for the R2 group).

Recall that if G is a Lie group that acts on a vector space V , one can de-

fine the semidirect product GsV as the usual product, with the group operation

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2), where g1, g2 ∈ G and v1, v2 ∈ V . We use e and 0 to

denote the identity elements of G and V , respectively. The Lie algebras corresponding

to the various groups are g = TeG, V = TeV and s = TeS.

Theorem 5.2.1. Let S = GsV , where G is Abelian. Consider a closed curve

θ(t) ∈ Q for t ∈ [0, T], and let A : TQ→ s be a principal connection with components

Ag : TQ→ g and AV : TQ→ V . Then if s(t) = (g(t), v(t)) ∈ S satisfies

ṡ = −sA(θ)θ̇ (5.3)

65

with s(0) = (e, 0), then

holonomyG := g(T) = exp

(
−
∫
∂C

Ag dθ

)
= exp

(
−
∫∫

C

dAg

)
. (5.4)

Proof. Since θ(t) is given, we may rewrite (5.3) as ṡ = −sξ(t) where ξ(t) = A(θ)θ̇(t)

is given. Writing ξ = (ξg, ξv), where ξg ∈ g and ξv ∈ V , (5.3) becomes (see [76])

ġ = −TeLgξg (5.5)

v̇ = −ρ(g)ξv, (5.6)

where ρ is a left representation of G on V . Clearly, equation (5.5) is decoupled from

(5.6), and since G is Abelian, the solution to (5.5) with g(0) = e is (see §2.4)

g(T) = exp

(
−
∫ T

0

ξg(τ)dτ

)
. (5.7)

The holonomy of S in the G component is then

holonomyG := g(T) = exp

(
−
∫
∂C

Ag dθ

)
= exp

(
−
∫∫

C

dAg

)
,

where C is the area in shape space enclosed by the curve ∂C which is defined by θ(t)

and the last equality is by Stokes’ theorem.

Although no similarly insightful result can be found for equation (5.6) and the

motion corresponding to the vector space component of the group, this result is used

to generate gaits for the Abelian component of the semidirect product group, which

in the case of rigid planar motions correspond to turning maneuvers. Later in this

chapter, Figures 5.13 and 5.14 illustrate why it is not possible to find an analogous

result for the motion in the vector space component of a semidirect product group.

66

5.3 Curvature of the Connection

For the fish-like bodies depicted in Figures 3.1 and 4.4, the shape space Q is pa-

rameterized by (θ1, θ2), so the local connection A(θ1, θ2) : T(θ1,θ2)Q → se(2) is a

Lie-algebra-valued one-form on Q, which may be written as

A(θ1, θ2) = f(θ1, θ2)dθ1 + g(θ1, θ2)dθ2 (5.8)

where f, g : TQ → se(2) depend on the shape of the body, and may be computed

numerically. The curvature F : TQ × TQ → se(2) is then a Lie-algebra valued

two-form on Q, (see (2.18)):

F =

[(
∂g

∂θ1

− ∂f

∂θ2

)
− [f, g]

]
dθ1 ∧ dθ2. (5.9)

The curvature maps two tangent vectors into a vector of velocities. Physically, at

every swimmer shape parameterized by the joint angles (θ1, θ2), when given a pair of

joint angle velocities (θ̇1, θ̇2), the curvature returns the corresponding resulting body

velocity (ω, u, v). The translational velocity components, denoted u and v, correspond

to motion parallel and perpendicular to the middle link or segment, respectively, while

ω corresponds to the rotational velocity. More explicitly, if we let ξ = (ω, u, v) =

(ξ1, ξ2, ξ3), then we may write ξi =
∑2

j=1 Fij θ̇j, where Fij are functions of (θ1, θ2)

and are given in (2.18). We introduce the notation (F1, F2, F3) = (Fω, Fu, Fv) where

Fi =
∑2

j=1 Fij. We refer to Fi as the three components of the curvature. As an

example, Fω(θ1, θ2) physically corresponds to the instantaneous rotational velocity

that the swimmer with shape parameterized by (θ1, θ2) would experience if both

joints were moved at unit speed.

The three curvature components, Fω, Fu, Fv, are computed numerically on a grid

in the (θ1, θ2) plane and plotted in Figure 5.1 for the potential flow swimmer and

67

in Figure 5.2 for the Stokes flow swimmer. For the potential flow case, the plots

correspond to a fish-like body as depicted in Figure 3.1 where a = 10, c = 2, the

aspect ratio of the ellipses is 10 and each link is discretized into 50 panels. The

geometry of the Stokes flow swimmer is depicted in Figure 4.4 where η = 2 and the

aspect ratio of the outer links is 10.

5.4 Gait generation

Since SO(2) is Abelian and SE(2) = SO(2) s R2, one can use the ω component of the

curvature plot, Fω, to develop finite-amplitude turning gaits, by applying Theorem

5.2.1. The ω-component plot is shown enlarged in Figure 5.3. Note that for both

potential and Stokes flow the regions of largest curvature occur in two opposite corners

of the shape space. These regions correspond to the fish configuration where the joints

are bent in a ‘C’-shape. The most “efficient” turning gaits will enclose these regions

of high curvature. Intuitively, this makes sense as one would expect a turning fish

to coil its body into a ‘C’-shape to minimize the inertial resistance of the fluid as it

turns. Likewise, a fish in an extended or ‘S’-shape configuration trying to rotate would

encounter larger inertial forces and would not be expected to turn easily. Furthermore,

the scale of the curvature map plots indicate that turning in potential flow is an order

of magnitude easier than in Stokes flow.

The procedure for gait-generation for the Abelian subgroup component is straight-

forward:

1. Choose the desired Abelian Lie subgroup element of the semidirect product

group (here, the desired net rotation), g(T).

2. Determine the corresponding Lie algebra element by applying the logarithm

map.

68

(a) Fω (b) Fu (c) Fv

Figure 5.1: Curvature components of potential flow swimmer. (a) Fω, (b) Fu, and (c)
Fv curvature components as a function of the shape variables (θ1, θ2) for the three-link
swimmer in potential flow with geometry depicted in Figure 3.1. The units are rad

rad2

for (a) and l
rad2 for (b) and (c). See §5.3 for details on the curvature components.

Here, a = 10, e = 1, c = 2 and (b) and (c) are non-dimensionalized by l = a+ e. Note
that for clarity, the view in (c) is from the opposite direction in shape space.

(a) Fω (b) Fu (c) Fv

Figure 5.2: Curvature components of Stokes flow swimmer. (a) Fω, (b) Fu, and (c)
Fv curvature components as a function of the shape variables (θ1, θ2) for the three-
link swimmer in Stokes flow with geometry depicted in Figure 4.4. The units are rad

rad2

for (a) and b
rad2 for (b) and (c). See §5.3 for details on the curvature components. Here,

η = 2, the aspect ratio of the outer links is 10 and (b) and (c) are non-dimensionalized
by outer link length b.

69

(a) Fω for potential flow swimmer (b) Fω for Stokes flow swimmer

Figure 5.3: Fω curvature component for potential and Stokes flow swimmers. Close-
up view of Fω curvature component for (a) potential flow and (b) Stokes flow cases
described in Figures 5.1 and 5.2. The units for (a) and (b) are rad

rad2 .

3. Find a path in shape space that encloses a volume of the curvature map equal

to the negative of the value of the Lie algebra element found in the previous

step (due to the minus sign in the right hand side of (5.4)).

Note that, since the net rotation depends only on the enclosed area, the initial shape

configuration need not be a point on the path, as shown in Figure 5.6.

We will only require the rotation component of the logarithm map given by equa-

tion (2.6). For this component of the motion, the exponential map and its inverse,

the logarithm map, are simply the identity map.

Finally, we briefly note that the Fu and Fv curvature component plots are still

useful for developing small-amplitude gaits even for non-Abelian connections. Recall

from Equation (2.12) that the solution to (5.1) for a general non-Abelian group is

s(T) = s(0) exp ξ(θ). It is well known [66, 80] that for small closed paths in shape

space ξ(θ) is proportional to the curvature of the connection. Thus the Fu and Fv

curvature plots suggest areas in shape space where small-amplitude shape deforma-

tions will achieve motion in the u and v directions, respectively. One can then apply

70

θ1

θ2

(a)

θ1

θ2

(b)

Figure 5.4: Two gaits resulting in same Abelian group holonomy. Though the start
and end points differ, the two paths will result in the same holonomy in the Abelian
subgroup component. The holonomy in the vector space components, however, may
differ.

the results of Leonard and Krishnaprasad [66] or Radford and Burdick [100] to design

small-amplitude gaits.

As an example, we demonstrate how to generate a gait to achieve net sideways

motion without net forward translation or rotation. Consider Figure 5.5 which shows

the zero-value contours of the Fω and Fu curvature components. We expect that

the points where the two contours intersect – such as (θ1, θ2) = (0.591, 0.591) – are

locations in shape space corresponding to infinitesimally small-amplitude gaits that

generate purely lateral motion. In practice, finite amplitude gaits may result in some

non-zero forward translation and rotation. We specify one such gait by the equations

θ1 = 0.591 + 0.1 cos
(
t− π

4

)
θ2 = 0.591 + 0.1 sin

(
t− π

4

) (5.10)

and indicate the path in shape space by a black circle in Figure 5.5. A small-

amplitude gait such as this expectedly generates very little net motion, however we

71

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ1
θ
2

Figure 5.5: Zero contours of Fω and Fu curvature components. The Fω and Fu
zero contours are in blue and red, respectively. One of the intersections occurs near
(θ1, θ2) = (0.591, 0.591). A small-amplitude gait centered about this point in shape
space is denoted by black circle.

can repeat the same gait to achieve larger motions. As an example, the gait was

prescribed 50 times and the resulting translation of the middle link is shown in Fig-

ure 5.6(a). Snapshots of the initial and final configurations of the swimmer are shown

in Figure 5.6(b). Indeed, the swimmer achieves almost a purely net lateral translation.

5.4.1 Gait Generation Example - Potential Flow

As an example of gait-generation, we choose a desired net rotation of β = π/4 radians.

Recall that the logarithm map for SE(2) is log(x, y, β) = (u, v, ω) where

ω = β (5.11)

(u, v) =

(x, y) β = 0

β
2
(−x sinβ

cosβ−1
− y, x+ y sinβ

cosβ−1
) β 6= 0.

(5.12)

Applying the logarithm map, equation (5.11), we see that ω = π/4 and we seek a

closed path in (θ1, θ2) space that encloses a volume equal to −π/4 (again, this is due

to the minus sign in (5.4)). Figure 5.7 illustrates one such path for the potential flow

72

−0.15 −0.1 −0.05 0

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

x

y

(a) (b)

Figure 5.6: Potential flow swimmer: Lateral translation gait. A close-up (a) of the
translation of the center of the middle link as a result of 50 repetitions of the gait given
by Equations (5.10). The start and end points are indicated by black and red dots,
respectively. For scale, the initial and final configuration of the swimmer are shown in
(b) in dotted and solid outlines, respectively, along with the same information from
Figure 5.6(a). Note that the swimmer achieves almost purely lateral net translation
as a result of the repeated gait.

swimmer, given by

θ1(t) = 1.5− .45 cos(t)

θ2(t) = −1.5− .45 sin(t)

(5.13)

where t ∈ [0, 2π]. This path was determined by first visually identifying an area of

shape space with large curvature. A circular path was chosen and the radius of the

path was increased or decreased until the volume of curvature within that path was

equal to −π
4
. The resulting translation and rotation of the center of the middle link is

shown in Figures 5.8(a) and 5.8(b), respectively. Several frames the swimmer during

the gait are shown in Figure 5.9. Note that the holonomy is independent of the speed

of travel along this path. Additionally, the rotation component of holonomy is also

independent of the starting point on the path.

73

Figure 5.7: Potential flow swimmer: A path in shape space resulting in net rotation
of π

4
radians. The path equation is given by θ1(t) = 1.5 − .45 cos(t); θ2(t) = −1.5 −

.45 sin(t). The blue dot indicates the starting and end point of the particular gait.

−0.8 −0.6 −0.4 −0.2 0

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

(a) planar displacement

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

β

(b) rotation

Figure 5.8: Potential flow swimmer: Translation and rotation for a sample gait. (a)
Translation non-dimensionalized by l = a + c and (b) rotation of the center of the
middle link resulting from the gait shown in Figure 5.7. In (a), the black and blue
dots indicates the initial and final positions, respectively. Figure 5.9 shows several
snapshots of the swimmer during the gait.

74

t = 0 t = π
2

t = π t = 3π
2

t = 2π

Figure 5.9: Potential flow swimmer: Snapshots of swimmer configuration during
turning gait. The gait is given by Equations (5.13). The blue curve is the path
traced by the center of the middle link (same as in Figure 5.8(a)). The middle link
rotates by π

4
radians and returns to the original shape after one complete gait.

5.4.2 Gait Generation Example - Stokes Flow

For completeness, we show how to develop a gait to achieve a desired rotation for

the swimmer in Stokes flow. The ω curvature component is an order of magnitude

smaller than in the potential flow case, so it will not be possible to achieve such large

rotations. Instead, we choose a net rotation of −10◦, or about -0.1745 radians. Thus

we seek an area in shape space enclosing a volume of the ω curvature component

equal to -0.1745. One such gait, displayed on the ω component of curvature plot in

Figure 5.10, is:

θ1(t) = 1.04 + .96 cos(t)

θ2(t) = −1.04 + .96 sin(t)

(5.14)

for t ∈ [0, 2π]. The gait begins at the configuration indicated by the blue dot and

proceeds counter-clockwise about the circle, returning to the initial configuration.

The resulting translation and rotation of the center of the body are shown in Fig-

ures 5.11(a) and 5.11(b), respectively. Snapshots of the swimmer during the gait are

shown in Figure 5.12.

75

Figure 5.10: Stokes flow swimmer: A turning gait. A path in shape space resulting
in net rotation of −10◦ (-0.1745 radians): θ1(t) = 1.04 + .96 cos(t); θ2(t) = −1.04 +
.96 sin(t). The blue dot indicates the starting and end point of the gait.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
−0.1

0

0.1

0.2

0.3

0.4

x

y

(a) planar displacement

0 1 2 3 4 5 6
−15

−10

−5

0

5

10

15

20

t

β
(d

eg
re

es
)

(b) rotation

Figure 5.11: Stokes flow swimmer: Translation and rotation for a turning gait. (a)
Translation non-dimensionalized by outer link length, b and (b) rotation of the center
of the middle link resulting from the −10◦ turning gait shown in Figure 5.10. In (a),
the black and blue dots indicate the initial and final positions, respectively. Snapshots
of the swimmer during the gait are shown in Figure 5.12.

76

t = 0 t = π
2

t = π t = 3π
2

t = 2π

Figure 5.12: Stokes flow swimmer: Snapshots of swimmer configuration during turn-
ing gait. The gait is shown in Figure 5.10. The blue curve is the path traced by the
center of the middle link (same as in Figure 5.11(a)). The middle link rotates by 10
degrees and returns to the original shape after one complete gait.

5.5 Abelian vs non-Abelian

We emphasize the fact that the gait design technique presented applies only to the

Abelian group component of the semidirect product group. To demonstrate this, we

return to the turning gait example of §5.4.1 and modify the gait so that the starting

point of the path in shape space may vary along the circle as a function of φ:

θ1(t) = 1.5− .45 cos(t− φ)

θ2(t) = −1.5− .45 sin(t− φ).

(5.15)

The starting points for 60 gaits are labeled by light grey dots in Figure 5.13 while

six of those gaits are highlighted by colored dots. All gaits encircle the same area in

shape space, however they begin and end at different points along the curve.

The net rotation resulting from the various gaits should be the same regardless of

the starting point of the path as implied by equation (5.4). This result is confirmed

in Figure 5.14(b) where the rotation angle of the middle link is plotted versus time

for the 60 cases, with the six cases highlighted by colored dots in Figure 5.13 plotted

in their corresponding color. The net holonomy in the Abelian rotation component

depends only on the area enclosed and not the order in which the path is followed.

By contrast, the translation component of the holonomy is not simply a function

of the area enclosed by the path, but due to the non-Abelian nature of the group, also

the order in which the path is followed. Figure 5.14(a) plots the non-dimensionalized

77

translation of the center of the middle link for the various gaits whose starting config-

urations are indicated in Figure 5.13 and with g(0) = (0, 0, 0). Again, the six colored

curves correspond to the translation resulting from the gaits identified by the same

color dots.

Because the net holonomy in these directions depends on the starting point of the

path, it is clear that for the translational component in SE(2) — as is the case for

general non-Abelian groups — a formula analogous to equation (5.4) is not possible,

as the holonomy cannot depend only on the area enclosed by the path. However, as

we demonstrated in §5.4, it is still possible to use the curvature component plots as

an aide to designing small-amplitude gaits, even for non-Abelian connections.

5.6 Summary

We have shown that for systems that can be expressed in the form of equation (3.56),

a nice result exists when the fiber group is a semidirect product group of an Abelian

group with a vector space, even if that semidirect product group is non-Abelian.

In Theorem 5.2.1, it was shown that since the equations of motion decouple, the

component of motion corresponding to the Abelian group can be solved for by equa-

tion (5.2). The task of developing gaits for this component is reduced to finding areas

in shape space enclosing a volume of curvature equal to the logarithm of the desired

net holonomy element. As examples, gaits were found to achieve a net rotation of

−π/4 for the potential flow swimmer and 10◦ for the Stokes flow swimmer. In the

potential flow case, by prescribing the same path but changing the starting point

along the path in shape space, it was shown that no analogous result exists for the

vector space component of motion, since the net translation is dependent not only on

the area enclosed by the curve, but also on the order in which the path is followed.

The same holds for Stokes flow.

78

(a) ω curvature and gait starting points

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

θ1

θ
2

(b) gait starting points

Figure 5.13: Various gait starting points. (a) Various starting points for gaits indi-
cated by colored dots on the plot of the ω curvature of the potential swimmer (b)
Colored and light grey dots indicating the start and end points of a family of gaits
specified by θ1(t) = 1.5− .45 cos(t− φ); θ2(t) = −1.5− .45 sin(t− φ)

−0.8 −0.6 −0.4 −0.2 0

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

(a) planar displacement

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

t

β

(b) rotation

Figure 5.14: Translation and rotation for a family of gaits. (a) Translation non-
dimensionalized by l = a+c and (b) rotation of the center of the middle link resulting
from the family of gaits θ1(t) = 1.5− .45 cos(t−φ); θ2(t) = −1.5− .45 sin(t−φ) where
the initial and final positions are varied by changing φ. The colored curves correspond
to the gait with starting and end position specified in the same color in Figure 5.13(b).
The start and end point of the closed path have no effect on the net rotation, but
do affect the net holonomy in the translational component. Because the translation
depends on the starting point of the path, a formula analogous to (5.4) is not possible,
as the holonomy cannot depend only on the area enclosed by the path.

79

Chapter 6

Numerical Method for Potential

Flow with Point Vortices

So far we have considered swimming at two extremes of Reynolds numbers: zero and

infinity, corresponding to Stokes and potential flow, respectively. In realistic swim-

ming, both inertial and viscous effects play a role in the fluid dynamics. To more

accurately model these effects while still retaining a relatively low-order representa-

tion, we extend the potential flow model — which accounts only for the inertial effects

— by allowing the swimmer to generate vorticity and shed it into the fluid. This effect

of viscosity is modeled by introducing a numerical unsteady Kutta condition at the

sharp trailing edges of the swimmer. Although this still does not account for viscous

drag, we additionally introduce a simple drag model.

In Section 6.1, we provide experimental and numerical motivation for the specific

geometry we consider for the swimmer. Section 6.2 gives a general overview of the

geometry and variables used in the numerical model. Critical elements of the numer-

ical model are the influence coefficients, which are described in Section 6.3. Various

details of the numerical scheme include wake modeling (§6.4.1), the boundary con-

dition (§6.4.2), determining the velocity on the boundary of the body (§6.4.3), the

80

Kutta condition at the trailing edge (§6.4.4), advancement of the position of the wake

vortices (§6.4.5) and the computation of the pressure coefficient on the surface of the

swimmer (§6.4.6). Much of the algorithm is based on well-known numerical panel

methods [47, 10, 115, 91, 93, 53, 57]. We have extended these methods to accu-

rately compute the velocity potential despite the complication of integrating through

a multi-valued field (§6.4.7). We also developed a method for avoiding the numerical

difficulties that occur when wake vortices (singularities) approach too close to the

swimmer (§6.4.8).

All of these details are placed in context in Section 6.5 which describes the algo-

rithm for the numerical model. Whereas most prior applications of panel methods

required the motion of the swimmer to be completely prescribed, we prescribe only

the shape of the swimmer and compute the overall translation as part of the solution.

This is another contribution we have made to extend the traditional panel method.

Finally, in Section 6.6, we validate our code, which we include in Appendix C,

against potential flow and Navier Stokes models of tandem foils.

6.1 Motivation

The mechanisms that fish employ to swim are as diverse as their morphology: from

the snake-like motion of anguilliforms to the more rigid, lunate tail flapping of thun-

niforms, with a broad spectrum of motion in between. A complete understanding of

this rich field is beyond the scope of this work. Instead, we seek to better understand

one particular mechanism employed by a certain class of swimmers – specifically, more

rigid swimmers such as carangiforms and thunniforms – as described next.

Our study is motivated by the experimental work of Drucker and Lauder [26] on

sunfish and the related numerical work of Akhtar, Mittal, Lauder and Drucker [2].

Drucker and Lauder [26] performed flow visualizations of a sunfish swimming in a

81

Figure 6.1: Drucker and Lauder [26] experiment. The flow around the dorsal and
caudal (tail) fins of a sunfish is visualized in the dorsal view with a laser sheet shining
at various planes, indicated in Figure D. Figure B is a lateral view of the sunfish with
the laser sheet at position 1. The laser sheet at position 2 visualizes the interaction
between the dorsal fin-generated vorticity and the caudal fin [26]. We model this
dorsal view cross-section of the interaction of the dorsal and caudal fin as a pair of
foils. Reprinted with permission.

flow channel by shining a laser sheet that cut across the dorsal and caudal fins (See

Figure 6.1). They hypothesized that the presence of the dorsal fin enhances the thrust

and efficiency of the swimmer by generating a vortex wake which the caudal fin moves

through and from which energy is extracted. Akhtar et al. [2] implemented a Navier-

Stokes solver and modeled the two fins as two-dimensional rounded plates that were

prescribed nearly the same motion as the fins of the sunfish. They found that both

propulsive efficiency and thrust were enhanced, as compared to the case where just

the “tail” body moved in the same way without the presence of a leading body and

its wake.

This hydrodynamic interaction between a leading and trailing body is the propul-

sive mechanism that we wish to better understand. Hence, we consider a simplified

swimmer composed of two connected foils thought to represent the dorsal (leading

foil) and caudal (trailing foil) fins. While both bodies shed vorticity into the flow,

the trailing foil also interacts with the vorticity shed from the leading foil.

82

6.2 Model Overview

The swimmer is made up of two two-dimensional foils with NACA0012 cross-sections.

The leading and trailing foils are identified as bodies 1 and 2, respectively. We

imagine that they are connected by (invisible) joints and actuators which specify

their positions and orientation relative to each other. There is a uniform freestream

velocity of U∞. Refer to Figure 6.2 for a schematic of the system. The swimmer is

placed in a fluid assumed to be incompressible, inviscid and irrotational everywhere

except at the source and vorticity singularities which are determined as part of the

solution. Hence, the equations for potential flow govern the fluid motion.

We wish to determine the overall motion of the swimmer through the fluid as

a result of the prescribed relative shape changes. The algorithm for our model is

largely based on the work of Pang [91], and in this chapter we present the algorithm

for completeness, along with our contributions.

Each body is discretized into N straight line panels. We use i and j to index the

panels and denote the bottom trailing edge panel of the leading body as i = 1. The

panels are numbered clockwise around the body all the way to i = N for the trailing

edge panel at the top of the leading body. Likewise, the panels of the trailing body

are numbered from i = N + 1 to i = 2N . The geometric center of each panel is the

control point — the points at which the boundary conditions are satisfied — which

is identified by the same index number as its corresponding panel.

Table 6.1 summarizes the nomenclature for the variables used throughout this

chapter. At each panel, we define an outward normal vector ni = (ni,x, ni,y) and

tangent vector ti = (ti,x, ti,y), defined in the clockwise direction around the body.

The source density strength on the ith panel is denoted qi and the strength of the

trailing vortices are denoted Γm. Note that Γb1 = γ1L1 and Γb2 = γ2L2 are used to

denote the total circulation about the first and second foils, respectively, where L1 and

L2 are the perimeters and γ1 and γ2 are the constant vorticity density strength values

83

wak e p an e l s q = 1, 2

(∆w q) k, (γ w q) k, (θ j) kp an e l 1

p an e l N

p an e l 2N

p an e l i : (q i) k, (γ 1) k

p an e l N+ 1

p oi n t v or t i c e sb od y 1 b od y 2
U∞

X

Y

Figure 6.2: Schematic of two-foil swimmer system. There is a freestream velocity U∞.
The trailing edge panels (1, N,N+1 and 2N) at which the Kutta condition is imposed
are labeled. Along each body panel, there is a constant source distribution density qi
which varies from panel to panel and a constant vorticity distribution density which
is constant for each body (either γ1 or γ2). The wake panels shed from the trailing
edge of each body are denoted by a slightly bolder line. Each wake panel has length
∆w, orientation relative to the horizontal θ and vorticity distribution density γw. At
the end of each time step — denoted by the index k — the circulation along each
wake panel is concentrated into a point vortex and convected into the wake.

of the respective foils. The freestream velocity is U∞ and the kinematic velocity at

the ith control point is Vi. The equations of motion from time t0 to tf are solved

along equally-spaced time increments, ∆t. Time steps are denoted by the index k.

At each time step, the no-penetration Neumann boundary condition is satisfied at

the control points of both bodies. The normal component of the fluid velocity at each

control point due to the contributions from the distributed singularities on the bodies

and wake plus the freestream velocity is equal to the normal velocity of the body at

that point.

In order to more realistically model a fish-like swimmer and to allow vorticity

shedding, a Kutta condition is imposed at both trailing edges. There are various

possible implementations of the Kutta condition [23], and we choose to specify that

the pressure difference across the trailing edge must be zero. In practice, the pressure

at the control points of the top and bottom trailing edge panels (slightly upstream of

the trailing edge) is specified to be equal.

84

To satisfy the Kutta condition (and the Kelvin circulation theorem) vorticity is

shed from the trailing edge of each foil in the form of a wake panel. At each time

step k, a straight panel containing a constant vorticity distribution is introduced

at the trailing edge as shown in Figure 6.2. The length (∆w1)k, (∆w2)k, orientation

(θ1)k, (θ2)k and strength (γw1)k, (γw2)k of the vorticity distribution along the panels

are computed as part of the solution.

Following the work of Basu and Hancock [10], an unknown strength constant

source density (qi)k is distributed along each panel. The source strength varies from

panel to panel. Each panel also has a constant distribution of vorticity density of

unknown strength, (γ1)k and (γ2)k on the leading and trailing foil, respectively. Unlike

the source distributions, the vorticity density distribution is constant for all the panels

in a given body.

After the solution is found, the vorticity along the wake panels is concentrated into

a point vortex at the center of the panel, and the vortices in the wake are advanced

in time due to their local velocity. Because two new vortices are shed, the dimension

of the system increases by two at each time step.

A flowchart of the overall algorithm is included in Figure 6.3. We will discuss the

various components and refer back to the figure in the following sections.

Table 6.1: Summary of nomenclature.

variable description

Vi swimmer velocity in inertial frame at ith panel control point

V
{x,y}
i {x,y} swimmer velocity components in inertial frame at ith panel

ui fluid velocity at ith panel control point

u
{n,t}
i {normal,tangent} fluid velocity at ith panel control point

U∞ freestream velocity

Continued on next page

85

Table 6.1 – continued from previous page

variable description

U
{x,y}
∞ {x,y} freestream velocity components

U
{x,y}
h {x,y} velocity components of hth point vortex

Uwi velocity at the midpoint of the ith wake panel

U
{x,y}
wi {x,y} velocity components at the midpoint of the ith wake panel

v{x,y} {x,y} velocity components of body center of mass in inertial frame

v{x,y} weighted {x,y} velocity components of body center of mass in inertial frame

(v{x,y})p adjusted {x,y} velocity components of body center of mass in inertial frame

ω angular velocity of body

ω weighted angular velocity of body

ωp adjusted angular velocity of body

(xo, yo) swimmer center of mass coordinates in inertial frame

(xh, yh) coordinates of hth point vortex

(xi, yi) coordinates of ith panel control point in inertial frame

β orientation of body relative to inertial frame

pi static pressure at ith panel control point

φi velocity potential at ith panel control point

Γbk circulation about kth body

γk vorticity density strength about kth body

γwk vorticity density strength of kth wake panel

Lk perimeter length of kth body

qi source density strength over ith panel

F {x,y} {x, y} force components acting on swimmer

F
{x,y} {x, y} weighted force components acting on swimmer

M moment acting on swimmer center of mass

Continued on next page

86

Table 6.1 – continued from previous page

variable description

M weighted moment acting on swimmer center of mass

I swimmer’s instantaneous moment of inertia

ξ force weighting parameter

γ{x,y,ω} velocity weighting parameters

∆wk length of kth wake panel

θwk angle relative to horizontal of kth wake panel

T thrust

W work

P power

ηP propulsive efficiency

ni normal vector at ith panel

ti tangent vector at ith panel

A,B,C influence coefficients (see Table 6.2)

6.3 Influence Coefficients

Influence coefficients are the scalar velocity components induced at a point due to a

unit strength singularity or distribution of singularities. They are determined solely

based on the geometry of the system.

We adopt the convention of Pang [91] where coefficients due to source and vor-

ticity distributions over panels are denoted by A and B respectively, while those

corresponding to point vortices are denoted by C.

The indices i, j range from 1, 2, ..., N,N+1, N+2, ..., 2N and refer to panels on the

87

Impose Kutta condition to solve

for circulation about bodies

Solve for source

distribution

Recompute wake panel

angles and length

Wake panel values

converged?

Compute pressure,

& forces on body

Compute body

velocities

Forces

converged?

Advance vortices and

swimmer position and

orientation

Prescribe shape

change between

time steps

Assume wake panel parameters from

previous time step or update values

Assume body velocity from

previous time step or update value

No

No

Advance to

next time step

(6.33), (6.35), (6.38), (6.39)

(6.10)

(6.5), (6.6)

(6.48), (6.57), (6.58)

(6.59), (6.60), (6.61), (6.62)

(6.40), (6.41), (6.42), (6.43),

Yes

Yes

(6.11), (6.12), (6.13)

Figure 6.3: Flowchart of numerical algorithm for advancing one time step. Equation
numbers are noted next to the corresponding step.

88

two bodies. The indices h and m refer to point vortices in the wake and w1 and w2

correspond to the wake panels currently being shed from bodies 1 and 2, respectively.

The letters n, t, x and y appear as superscripts to indicate the direction of the

influence coefficients. When n and t are used, they indicate the outward normal and

tangent direction in the frame of the panel corresponding to the first index. Table 6.2

summarizes the notation for the various influence coefficients.

As an example, consider a unit strength point source singularity located at (xo, yo).

The velocity induced at a point (x, y) due to the singularity has components (us, vs)

given by Equations (3.22) and (3.23). (If instead the singularity were a unit strength

point vortex, the induced velocities would be: uv = vs and vv = −us.) Following the

same change of coordinates described in detail in §3.4, if ni and ti are the unit normal

and tangent vectors, respectively, corresponding to the ith panel, we can define the

following expressions:

Ani,j = ni ·Vi,j and Ati,j = ti ·Vi,j, (6.1)

where Vi,j is the velocity induced at the control point of panel i due to a unit strength

source distribution on panel j. Thus, we can write

Vi,j = Ani,jni + Ati,jti (6.2)

where Ani,j and Ati,j are the normal and tangent components, respectively, of the

induced velocity at the ith panel’s control point in the coordinate frame fixed to

the ith panel due to a unit source distribution on the jth panel. These are the first

two coefficients described in Table 6.2. The other coefficients are determined in an

analogous matter.

89

Table 6.2: Influence coefficients

variable influence coefficients

A
{n,t}
i,j {normal,tangent} velocity component induced at the control point of

panel i due to a unit strength source distribution on panel j

B
{n,t}
i,j {normal,tangent} velocity component induced at the control point of

panel i due to a unit strength vorticity distribution on panel j

B
{n,t}
i,wk {normal,tangent} velocity component induced at the control point of

panel i due to a unit strength vorticity distribution on the wake panel
of the kth body

A
{x,y}
wk,j {x, y} velocity component induced at the control point of the wake panel

of the kth body due to a unit strength source distribution on panel j

B
{x,y}
wk,j {x, y} velocity component induced at the control point of the wake panel

of the kth body due to a unit strength vorticity distribution on panel j

A
{x,y}
h,j {x, y} velocity component induced at the hth wake vortex due to a unit

strength source distribution on panel j

B
{x,y}
h,j {x, y} velocity component induced at the hth wake vortex due to a unit

strength vorticity distribution on panel j

B
{x,y}
h,wk {x, y} velocity component induced at the hth wake vortex due to a unit

strength vorticity distribution on the wake panel of the kth body

C
{n,t}
i,m {normal,tangent} velocity component induced at the control point of the

ith panel due to the mth wake vortex, assuming unit strength

C
{x,y}
wk,m {x, y} velocity component induced at the control point of the wake panel

of the kth body due to the mth wake vortex, assuming unit strength

C
{x,y}
h,m {x, y} velocity component induced at the hth wake vortex due to the mth

wake vortex, assuming unit strength

6.4 Details of Numerical Scheme

6.4.1 Wake Modeling

At each time step, the circulation about the two bodies changes to satisfy the vari-

ous boundary conditions. To satisfy Kelvin’s circulation theorem, which states that

the circulation around a closed curve moving with the fluid must remain constant,

vorticity is shed from each body in the form of a wake panel at every time step.

The vorticity strength γw1 along the wake panel with length ∆w1 shedding from the

first body with perimeter L1 and circulation equal to γ1L1 is found by equating the

circulation of the wake panel to the change in circulation since the prior time step

90

about the body:

(γw1)k · (∆w1)k = L1{(γ1)k−1 − (γ1)k}. (6.3)

Likewise, the vorticity strength of the wake panel shedding from body 2 is found by

a similar expression:

(γw2)k · (∆w2)k = L2{(γ2)k−1 − (γ2)k}. (6.4)

The length and orientation of the trailing edge wake panels are unknown and are

determined by the fluid velocity near the trailing edge. Since the wake panel represents

a continuous distribution of vorticity shed from the trailing edge during the time

between tk−1 and tk, the length of the wake panel is proportional to the local fluid

velocity at its center:

(∆wi)k = ∆t ||(Uwi)k|| , (6.5)

and the orientation is such that the panel is tangential to the local velocity:

(θi)k = tan−1 (Uy
wi)k

(Ux
wi)k

, (6.6)

where Ux
wi and Uy

wi are the inertial frame x and y components, respectively, of the

fluid velocity at the center of the ith wake panel. In the flowchart in Figure 6.3, this

section of the algorithm is designated by the box titled “Recompute wake panel angles

and length”.

6.4.2 Boundary Condition

The velocity at the surface of the body should be tangential to the body, with zero

relative normal velocity component. In other words, the fluid may slip along the body

surface, but not penetrate the body. In practice, the boundary condition is imposed

only at a finite number of control points and fluid does indeed “leak” into and out

91

of the body at other points (although with a sufficiently large number of panels, this

method produces the correct forces on the body). For this reason, it is possible for

point vortices in the wake to enter inside the boundaries of the body. We present a

method to avoid this complication in Section 6.4.8.

We wish to solve for the unknown vorticity density strengths, γ1 and γ2 and the

source density strength, qj at the kth time step. At each time step, the normal com-

ponent of velocity induced at every control point due to the various flow components

must equal the normal velocity of the body at that point (in the case of a stationary

body, the normal component is zero). This condition provides one of the equations

needed to solve for the unknown quantities:

2N∑
j=1

(Ani,j)k(qj)k + (γ1)k

N∑
j=1

(Bn
i,j)k + (γ2)k

2N∑
j=N+1

(Bn
i,j)k + (γw1)k(B

n
i,w1)k

+(γw2)k(B
n
i,w2)k +

2(k−1)∑
m=1

(Cn
i,m)k(Γm)k + U∞ · ni = (Vi)k · (ni)k

(6.7)

where i = 1, 2...2N and Ani,j, B
n
i,j, B

n
i,w1, B

n
i,w2, and Cn

i,m are the influence coefficients

described in Table 6.2.

Rearranging Equation (6.7) and applying Equations (6.3) and (6.4), we can express

the source distribution as a function of the two vorticity densities on the bodies plus

a constant:

2N∑
j=1

(Ani,j)k(qj)k =

{
L1

(∆w1)k
(Bn

i,w1)k −
N∑
j=1

(Bn
i,j)k

}
(γ1)k

+

{
L2

(∆w2)k
(Bn

i,w2)k −
2N∑

j=N+1

(Bn
i,j)k

}
(γ2)k

− L1

(∆w1)k
(γ1)k−1(Bn

i,w1)k − L2

(∆w2)k
(γ2)k−1(Bn

i,w2)k

−
2(k−1)∑
m=1

(Cn
i,m)k(Γm)k −U∞ · (ni)k + (Vi)k · (ni)k.

(6.8)

92

The 2N equations (6.8) can be expressed as a matrix equation:

Ak(q)k = a1
k · (γ1)k + a2

k · (γ2)k + a3
k (6.9)

Where Ak is a 2N × 2N matrix and a1
k and a2

k are 2N × 1 column vectors equal

to the terms within the curly braces and a3
k is the sum of the remaining terms in

Equation (6.8). We can then solve for the source distribution as follows:

(q)k = (Ak)
−1a1

k · (γ1)k + (Ak)
−1a2

k · (γ2)k + (Ak)
−1a3

k

= b1
k · (γ1)k + b2

k · (γ2)k + b3
k.

Following Pang [91], we express the jth panel source density as:

(qj)k = (b1
j)k · (γ1)k + (b2

j)k · (γ2)k + (b3
j)k. (6.10)

This portion of the algorithm corresponds to the box labeled “Solve for source distri-

bution” in Figure 6.3.

We note that in Pang’s formulation, the right hand side of Equation (6.7) is simply

a function of the imposed shape change. However, since we will allow the swimmer

to self-propel, the boundary velocity Vi will also depend on the overall motion of the

swimmer. In the next section, we explain how we determine the boundary velocity.

6.4.3 Boundary Velocity

The term on the right hand side of Equation (6.7), (Vi)k · (ni)k is the kinematic

velocity of the ith control point in the direction normal to the ith panel at the kth

time step. The value of the vector (ni)k is unknown at the beginning of the time step

since it depends on the overall orientation of the swimmer, which is unknown. Also,

(Vi)k is unknown initially, since it depends on the motion of the body, which we seek

93

to compute as part of the solution. We determine (Vi)k by an iterative process that

repeats until the computed forces acting on the body converge to within a desired

tolerance. We describe this procedure in more detail in §6.5.

The velocity of the boundary of the body depends on two components. One

is the deformation in the shape of the swimmer, which is prescribed in advance or

determined by a controller. For example, the foils may be prescribed to pitch or

plunge relative to each other. On the other hand, the swimmer is interacting with

the fluid and experiencing forces which propel it through the fluid. Those forces

generate a “rigid” motion of the body, which contributes a net overall translation

and rotation of the center of mass (x0, y0).

The velocity components of the body’s center of mass and rotational velocity at

the kth time step are:

(vx)k =
(x0)k − (x0)k−1

∆t
(6.11)

(vy)k =
(y0)k − (y0)k−1

∆t
(6.12)

ωk =
(β0)k − (β0)k−1

∆t
. (6.13)

The previous three equations partially correspond to the box labeled “Advance vor-

tices and swimmer position and orientation” on the flowchart in Figure 6.3.

The position and orientation at the previous time step are known, however the

values at the kth time step are initially unknown and need to be determined through

an iterative process. The velocity of the center of mass from the previous time step

may be used to determine an initial guess for the new center of mass position and

orientation. Combined with the prescribed shape of the swimmer at the previous

and current time step, we can compute the coordinates of the boundary of the swim-

mer in an inertial frame of reference at the previous ((xi)k−1, (yi)k−1) and current

time steps ((xi)k, (yi)k). Using those coordinates, we compute the vector quantity

94

(Vi)k = (V x
i , V

y
i) at each control point as follows:

(V x
i)k =

(xi)k − (xi)k−1

∆t
(6.14)

(V y
i)k =

(yi)k − (yi)k−1

∆t
. (6.15)

Finally, the normal vector at each panel is determined from the geometry at the kth

time step.

6.4.4 Kutta Condition

We apply the unsteady form of Bernoulli’s equation to satisfy the chosen Kutta condi-

tion: that the pressure must be continuous at the trailing edge. In an incompressible,

inviscid, irrotational fluid, Bernoulli’s equation states that throughout the (unit den-

sity) fluid,

p+
1

2
||u||2 +

∂φ

∂t
= constant. (6.16)

For the first foil, this means that at panels 1 and N :

p1 +
1

2
||u1||2 +

∂φ1

∂t
= pN +

1

2
||uN ||2 +

∂φN
∂t

. (6.17)

Since the Kutta condition prescribes that p1 = pN , we get the following expression:

p1 − pN = 0 =
1

2
(||uN ||2 − ||u1||2) +

∂φN
∂t
− ∂φ1

∂t
. (6.18)

The change in potential between two points x1 and x2, connected by the path s is

given by

∆φ =

∫ x2

x1

u · ds (6.19)

where u is the fluid velocity along the path s. The integral evaluated along the surface

of the airfoil from panel 1 to panel N in the clockwise direction is also by definition

95

equal to the circulation enclosed by the path:

∫ N

1

u · ds = Γb1. (6.20)

Hence, φN = φ1 + Γ and the Kutta condition becomes:

||u1||2 − ||uN ||2 = 2
∂Γb1
∂t

. (6.21)

In discrete form, the Kutta condition on the first body may be written:

||u1||2k − ||uN ||2k = 2L1
(γ1)k − (γ1)k−1

∆t
. (6.22)

Likewise, on the second body the expression is

||uN+1||2k − ||u2N ||2k = 2L2
(γ2)k − (γ2)k−1

∆t
. (6.23)

The square of the fluid velocity at any control point on the body is equal to the square

of the tangent velocity at that point plus the square of the normal component of the

body’s kinematic velocity:

||ui||2k = (uti)
2
k + (Vi · ni)2

k. (6.24)

96

The tangent velocity at panel 1 is given by:

(ut1)k =
2N∑
j=1

(At1,j)k(qj)k +

{
N∑
j=1

(Bt
1,j)k −

L1

(∆w1)k
(Bt

1,w1)k

}
(γ1)k

+

{
2N∑

j=N+1

(Bt
1,j)k −

L2

(∆w2)k
(Bt

1,w2)k

}
(γ2)k

+
L1

(∆w1)k
(γ1)k−1 +

L2

(∆w2)k
(γ2)k−1

+

2(k−1)∑
m=1

(Ct
1,m)kΓm + U∞ · (t1)k.

(6.25)

By substituting the source density expression in Equation (6.10) into (6.25) we get

the following expression for (ut1)k:

(ut1)k = (D1
1)k(γ1)k + (D2

1)k(γ2)k + (D3
1)k (6.26)

where

(D1
1)k =

2N∑
j=1

(At1,j)k(b
1
1)k +

N∑
j=1

(Bt
1,j)k −

L1

(∆w1)k
(Bt

1,w1)k

(D2
1)k =

2N∑
j=1

(At1,j)k(b
2
1)k +

2N∑
j=N+1

(Bt
1,j)k −

L2

(∆w2)k
(Bt

1,w2)k

(D3
1)k =

2N∑
j=1

(At1,j)k(b
3
1)k

L1

(∆w1)k
(γ1)k−1 +

L2

(∆w2)k
(γ2)k−1

+

2(k−1)∑
m=1

(Ct
1,m)kΓm + U∞ · (t1)k

(6.27)

Likewise, expressions for the tangent velocities on the other panels that form the

trailing edge can be found in a similar fashion using Equations (6.27) to determine

97

the coefficients:

(utN)k = (D1
N)k(γ1)k + (D2

N)k(γ2)k + (D3
N)k (6.28)

(utN+1)k = (D1
N+1)k(γ1)k + (D2

N+1)k(γ2)k + (D3
N+1)k (6.29)

(ut2N)k = (D1
2N)k(γ1)k + (D2

2N)k(γ2)k + (D3
2N)k. (6.30)

The Kutta condition for body 1 in Equation (6.22) requires the square of the velocities

on the top and bottom trailing panels. Temporarily dropping the time index for

clarity, we find ||u1||2 and ||uN ||2 as follows:

||u1||2 = (D1
1γ1 +D2

1γ2 +D3
1)2 + (V1 · n1)2

= (D1
1)2γ2

1 + (D2
1)2γ2

2 + (D3
1)2

+ 2D1
1D

2
1γ1γ2 + 2D1

1D
3
1γ1 + 2D2

1D
3
1γ2 + (V1 · n1)2

(6.31)

||uN ||2 = (D1
Nγ1 +D2

Nγ2 +D3
N)2 + (VN · nN)2

= (D1
N)2γ2

1 + (D2
N)2γ2

2 + (D3
N)2

+ 2D1
ND

2
Nγ1γ2 + 2D1

ND
3
Nγ1 + 2D2

ND
3
Nγ2 + (VN · nN)2.

(6.32)

By substituting (6.31) and (6.32) into (6.22), the Kutta condition for the first body

may be expressed as

AA1(γ1)2
k +BB1(γ2)2

k + CC1(γ1)k(γ2)k +DD1(γ1)k + EE1(γ2)k + FF1 = 0 (6.33)

98

where

AA1 = (D1
1)2 − (D1

N)2

BB1 = (D2
1)2 − (D2

N)2

CC1 = 2(D1
1D

2
1 −D1

ND
2
N)

DD1 = 2

(
D1

1D
3
1 −D1

ND
3
N −

L1

∆t

)
EE1 = 2(D2

1D
3
1 −D2

ND
3
N)

FF1 = (D3
1)2 − (D3

N)2 + 2
L1

∆t
(γ1)k−1 + (V1 · n1)2 − (VN · nN)2.

(6.34)

There is a similar expression for the Kutta condition for the second body:

AA2(γ1)2
k +BB2(γ2)2

k + CC2(γ1)k(γ2)k +DD2(γ1)k + EE2(γ2)k + FF2 = 0, (6.35)

where

AA2 = (D1
N+1)2 − (D1

2N)2

BB2 = (D2
N+1)2 − (D2

2N)2

CC2 = 2(D1
N+1D

2
N+1 −D1

2ND
2
2N)

DD2 = 2

(
D1
N+1D

3
N+1 −D1

2ND
3
2N −

L2

∆t

)
EE2 = 2(D2

N+1D
3
N+1 −D2

2ND
3
2N)

FF2 = (D3
N+1)2 − (D3

2N)2 + 2
L2

∆t
(γ2)k−1 + (VN+1 · nN+1)2 − (V2N · n2N)2.

(6.36)

Since Equations (6.33) and (6.35) are coupled and nonlinear, Pang proposed lineariz-

ing the equations about the circulation values from the previous time step using:

(γ1)k = (γ1)k−1 + (δγ1)k

(γ2)k = (γ2)k−1 + (δγ2)k

(6.37)

99

where (δγ1)k = 0 and (δγ2)k = 0 in the first iteration. The linearized Kutta condition

for the first body is:

{2AA1(γ1)k−1 + CC1(γ2)k−1 +DD1}(δγ1)k

+{2BB1(γ2)k−1 + CC1(γ1)k−1 + EE1}(δγ2)k

+AA1(γ1)2
k−1 +BB1(γ2)2

k−1 + CC1(γ1)k−1(γ2)k−1

+DD1(γ1)k−1 + EE1(γ2)k−1 + FF1 = 0.

(6.38)

Likewise, the linearized Kutta condition for the second body is:

{2AA2(γ1)k−1 + CC2(γ2)k−1 +DD2}(δγ1)k

+{2BB2(γ2)k−1 + CC2(γ1)k−1 + EE2}(δγ2)k

+AA2(γ1)2
k−1 +BB2(γ2)2

k−1 + CC2(γ1)k−1(γ2)k−1

+DD2(γ1)k−1 + EE2(γ2)k−1 + FF2 = 0.

(6.39)

Equations (6.38) and (6.39) are two equations in two unknowns, and they are solved

in the box labeled “Impose Kutta condition to solve for circulation about bodies” on

the flowchart in Figure 6.3. The values of (δγ1)k and (δγ2)k are used to update the

guess by Equation (6.37). The process is repeated until (δγ1)k and (δγ2)k converge to

within a desired tolerance. Then the circulation values at the current time step are

updated using Equation (6.37).

6.4.5 Wake Convection

At each time step, the point vortices in the wake are convected at the local fluid

velocity. This step partially corresponds to the box labeled “Advance vortices and

swimmer position and orientation” on flowchart in Figure 6.3. The velocity compo-

100

nents (Uh) at the hth vortex are:

(Ux
h)k =

2N∑
j=1

(Axh,j)k(qj)k + (γ1)k

N∑
j=1

(Bx
h,j)k + (γ2)k

2N∑
j=N+1

(Bx
h,j)k

+ (γw1)k(B
x
h,w1)k + (γw2)k(B

x
h,w2)k +

2(k−1)∑
m=1

(Cx
h,m)k(Γm)k + Ux

∞

(6.40)

and

(Uy
h)k =

2N∑
j=1

(Ayh,j)k(qj)k + (γ1)k

N∑
j=1

(By
h,j)k + (γ2)k

2N∑
j=N+1

(By
h,j)k

+ (γw1)k(B
y
h,w1)k + (γw2)k(B

y
h,w2)k +

2(k−1)∑
m=1

(Cy
h,m)k(Γm)k + Uy

∞.

(6.41)

For the hth vortex the coordinates are (xh, yh), and we use the explicit Euler method

to advance their position in time. At the kth time step, the position is ((xh)k, (yh)k).

We assume that between time step k and k + 1, the velocity ((Ux
h)k, (U

y
h)k) of the

vortex is constant. Hence, to determine the vortex position at time step k+ 1 we use

(xh)k+1 − (xh)k
∆t

= (Ux
h)k (6.42)

(yh)k+1 − (yh)k
∆t

= (Uy
h)k. (6.43)

6.4.6 Pressure Coefficient

Assume a body-fixed coordinate system (x, y) and an inertial frame of reference (X, Y)

such that the two coincide at time t = 0. Let the location of the origin of the

body-fixed system be specified by R(t) = (x0, y0) and the orientation relative to the

horizontal by β(t).

In the inertial frame of reference, the pressure coefficient on the surface of the

101

body can be derived directly from Equation (6.16) and is given by (see [57]):

Cp :=
p− p∞

1
2
ρ ||U∞||2

= 1− ||∇X,Y φ||2
||U∞||2

− 2

||U∞||2
∂φ

∂t
. (6.44)

The difficulty in using this form of the equation arises in computing the time derivative

of the velocity potential. Using the chain rule, the time derivative in the inertial frame

is related to the time derivative in the body frame by:

∂

∂t inertial
=

∂

∂t body
+
∂X

∂t

∂

∂x
+
∂Y

∂t

∂

∂y
(6.45)

=
∂

∂t body
+ V · ∇x,y (6.46)

where V = −[V0 + ω × r] is the kinematic velocity of the freestream flow due to the

motion of the body relative to a body-fixed reference frame. The velocity of the origin

of the body frame is V0 = (ẋ0, ẏ0), ω = β̇ is the rotation rate of the body frame and

r = (x, y) is the position vector in the body frame. Here, the gradient derivatives are

with respect to the body coordinates.

Equation (6.44) can be expressed in the body reference frame by applying Equa-

tion (6.46) to yield:

Cp =
p− p∞

1
2
ρ ||U∞||2

= 1− ||∇x,yφ||2
||U∞||2

− 2

||U∞||2
[V0 +ω× r] ·∇x,yφ− 2

||U∞||2
∂φ

∂t
, (6.47)

where now, ∇x,yφ = (∂φ
∂x
, ∂φ
∂y

) is with respect to the body-fixed frame. Note that a

change of coordinates does not affect the magnitude of ∇φ. The expressions for ∇φ

102

in the inertial and body frames, respectively, are:

∇X,Y φ =

(
∂φ

∂X
,
∂φ

∂Y

)
∇x,yφ =

(
∂φ

∂x
,
∂φ

∂y

)
=

(
∂φ

∂X
cos β +

∂φ

∂Y
sin β,− ∂φ

∂X
sin β +

∂φ

∂Y
cos β

)
= (ux cos β + uy sin β,−ux sin β + uy cos β).

Then the term − 2
||U∞||2

[V0 + ω × r] · ∇x,yφ is expressed as:

− 2

||U∞||2
[V0 + ω × r] · ∇x,yφ =

− 2

||U∞||2
[V0 + ω × r] ·(ux cos β + uy sin β,−ux sin β + uy cos β).

The normal velocity component is equal to the normal velocity of the body at the

point and the tangential velocity component is determined by an equation analogous

to (6.25). These two components are projected onto the inertial axis frames to yield

ux and uy. On the other hand, [V0 + ω × r] is the velocity of the body at a point

expressed in the inertial axis frame. Since the no-slip condition does not apply, these

two terms are not equal.

Finally, Cp has the form:

Cp = 1− (ux)2 + (uy)2

||U∞||2
− 2

||U∞||2
∂φ

∂t

− 2

||U∞||2
[V0 + ω × r] · (ux cos β + uy sin β,−ux sin β + uy cos β).

(6.48)

This expression, which corresponds to the section of the flowchart in Figure 6.3 labeled

103

“Compute pressure, & forces on body”, can be expressed in discrete form as:

(Cp,i)k = 1− ||ui||
2
k

||U∞||2
− 2

||U∞||2
(φi)k − (φi)k−1

∆t

− 2

||U∞||2
[{(vx)k, (vy)k}+ ω × (ri)k]·

[(uxi)k cos βk + (uyi)k sin βk,−(uxi)k sin βk + (uyi)k cos βk].

(6.49)

The pressure over the body is integrated to compute an overall force and torque

acting on the instantaneous center of mass, and the swimmer’s motion is determined

by Newton’s equations:

dv{x,y}

dt
=
F {x,y}

m
(6.50)

d(Iω)

dt
= I

dω

dt
+ ω

dI

dt
= M. (6.51)

Note that since the body shape changes at each time step, the moment of inertia of

the body is not constant. Equations (6.50) and (6.51) are discretized by a forward

Euler scheme:

(v{x,y})k − (v{x,y})k−1

∆t
=

(F {x,y})k
m

(6.52)

Ik
(ωk − ωk−1)

∆t
+ ωk

Ik − Ik−1

∆t
= Mk. (6.53)

Rearranging Equations (6.52) and (6.53), we solve for the linear and rotational ve-

locities at the kth timestep,

(v{x,y})k = (v{x,y})k−1 +
(F {x,y})k

m
∆t (6.54)

ωk =
Mk∆t+ Ikωk−1

2Ik − Ik−1

. (6.55)

104

6.4.7 Velocity Potential

In this section we describe how to numerically compute the velocity potential when

the integration path is crossed by point vortices in the flow. Most unsteady panel

codes in the literature did not encounter this issue since the models often consider

just one body or in the cases of two bodies, they are often placed so as to not interact

with the wake of the other. This is one contribution we have made to extend the

functionality of unsteady panel codes.

The velocity potential is needed to compute the pressure distribution over the

body, which in turn is used to compute the forces and moment on the swimmer. In

a potential flow, the following expression for the velocity potential holds:

φ1 = φ0 +

∫ 1

0

u · ds. (6.56)

In order to compute the pressure on the body, the temporal change in the value of the

velocity potential is needed. Hence, we choose a point far enough upstream and away

from the body such that φ0 is essentially constant. The potential is then found by

computing the integral of the fluid velocity from this far away point to the body. The

procedure for finding the velocity at a point in the fluid is nearly identical to that for

finding the velocity at a point vortex — using Equations (6.40) and (6.41). However,

instead of computing the velocity at the location of the point vortices, the location is

that of the discretized path from upstream to the leading edge of the bodies.

Since the potential is multi-valued, care must be taken when the path of integra-

tion is crossed by point vortices in the wake. For example, a path originating and

ending at the same point that encircles a vortex will result in a different potential

value depending on the number of encirclements. In complex analysis, branch cuts

are the curves in the complex plane across which multi-valued functions are discon-

tinuous. These branch cuts originate at the singularities, known as branch points.

105

Figure 6.4: Point vortex crossing integration path. The branch cut of the vortex is
indicated by the dashed line to the left of the vortex. Since the velocity potential field
is multi-valued, when a vortex crosses the line of integration, the computed velocity
potential must be incremented by the circulation of the vortex.

Thus in our application, branch cuts at each point vortex are required to achieve a

single-valued scalar potential field.

To demonstrate this, consider Figure 6.4 showing a point vortex with a branch cut

as it crosses an integration path. Since the value of the potential has a discontinuous

jump across the branch, the integration path must be deformed to travel around the

vortex. The two straight line paths are infinitesimally near each other and cancel

out, leaving just the contribution of the path around the vortex. The integral of

the velocity around the vortex is equal to the circulation of the enclosed vortex. In

practice, this means that when a vortex in the wake “crosses” the integration path,

the value of the computed potential must jump by the value of the circulation of that

vortex. In the code, a path is chosen from far upstream to the leading edge of each

body. The path is discretized into many line segments, and at the center of each

segment the fluid velocity is computed. The tangential component of the velocity at

each point is multiplied by the length of the particular element and summed over all

the elements to compute the velocity potential at the leading edge. The potential

along the foil surface is computed by continuing the integration along the top and

bottom surfaces, by multiplying the tangential fluid velocity components by the panel

lengths and summing over prior panels. This provides the potential value along the

edges of the panels, and linear interpolation is used to compute the potential at the

106

control points.

6.4.8 Diverting Vortices

Since the point vortices in the wake are singularities, numerical difficulties arise when

they approach too closely to the surface of the swimmer. A small change in the

position of a point vortex can result in a very large change in the velocity induced

along the body, which may preclude the code from converging to a solution at that

time step. Also, the vortices may even enter within the body boundaries, since as

noted previously, the no pentration boundary condition is satisfied only at the control

points, and fluid ‘leaks’ in and out of the body everywhere else. In this section we

propose and describe a simple method to address these issues.

Most prior numerical work did not involve the interaction of a wake with a

solid body. One notable exception was the work of Zhu et al. [130] where a three-

dimensional panel method was used to study the flow structures shed from a fish-like

model. To avoid the various numerical issues, including wake singularities convecting

inside the body, they adopted a regularization technique [61] for the wake and surface

panels. We found that although regularization improved the situation, the vortices

can still convect inside the body since the no-penetration boundary condition only

holds at the control points. To avoid these complications, a region is prescribed about

each body which vortices are not permitted to enter. Any vortex which would enter

the region is instead advanced as demonstrated in Figure 6.5. The intersections of the

edge of the region with the circle with origin at the original vortex position (outside the

region) and radius equal to the distance travelled during the time step are found. The

vortex is instead advanced to the intersection that is nearest the originally-predicted

vortex position. While the motivation for this is numerical, there is a plausible phys-

ical justification based on the existence of a boundary layer in viscous flows, which

can be thought to extend the physical boundaries of the body [103, 102]. The code

107

Figure 6.5: Foil with surrounding region. Vortices are not permitted to enter the
region around the foil identified by the dark dotted line in order to avoid numerical
difficulties. A point vortex is initially at the position indicated by the black dot. Its
new position would place it at the red dot — inside the region. The vortex is instead
advanced to the position of the blue dot — the nearest intersection to the red dot of
the region border and the circle with origin at the original position and radius equal
to the initially predicted distance traveled.

validation in Section 6.6 suggests this approach yields satisfactory results.

6.5 Numerical Algorithm

In this section we bring all the previous components together and present the overall

algorithm for the code. Refer back to Figure 6.3 for a flowchart with equation numbers

labeled next to the corresponding sections. The equations that need to be solved are

nonlinear and require an iterative procedure. The circulation about the foils at the

previous time step and the position and strength of any point vortices in the flow are

known. The procedure begins by guessing values for the length and orientation of

the wake panels: (∆w1)k, (∆w2)k, (θ1)k and (θ2)k. A good guess for each is the value

at the k − 1 time step. Since the overall motion of the swimmer as it self-propels

through the fluid needs to be determined, we begin by setting the linear and angular

velocities of the center of the body to the values at the previous time step. This leaves

2N source distribution values and two vorticity distribution values to be solved for.

First, the Neumann boundary condition is imposed along both bodies so that the

fluid velocity along the body surfaces is tangent to the moving body. The source

distribution is expressed as a function of the two vorticity density strengths and a

108

constant, per Equation (6.10). Likewise, the velocity along the trailing edge panels is

expressed as a function of the two vorticity density strengths plus a constant, follow-

ing Equations (6.26) and (6.28)–(6.30). The two Kutta condition Equations (6.33)

and (6.35) are linearized about the circulation density values from the previous time

step, (γ1)k−1 and (γ2)k−1 as an initial guess. Equations (6.38) and (6.39) are solved,

new estimates of (γ1)k and (γ2)k are found, and those values are used yet again to

linearize Equations (6.33) and (6.35). The procedure is repeated until the circulation

density values converge within a desired tolerance.

With these values known, the source density along the body is found from Equa-

tion (6.10). With all values now known, the velocity induced at the midpoint of the

wake panel is recomputed by summing the induced velocity due to the source and

vorticity distributions, the point vortices in the wake and the freestream velocity. The

velocity is used to update the wake panel lengths and orientation via Equations (6.5)

and (6.6). The vorticity density along the wake panels is found from Equations (6.3)

and (6.4). Since the length and orientation of the wake panel geometry variables has

likely changed, the above procedure is repeated with the new values until all unknown

variables converge to within a desired tolerance.

Once all values have converged, the pressure along the body is computed by Equa-

tion (6.48) and the forces and moment on the swimmer are computed. Since we seek

to determine how the swimmer self-propels through the fluid, the resultant body ve-

locity due to the computed forces must be consistent with the Neumann boundary

condition imposed on the swimmer. This will require another iterative process, but

extra care must be taken since a slight change in the boundary condition imposed on

the body may result in a significant change in the computed forces, and the process

may become unstable. As a result, a relaxation scheme is adapted from Carling [19]

who used it to find the self-propulsion of anguilliform swimmers.

In Carling’s relaxation scheme, instead of directly using the computed forces and

109

moment to update the velocity of the swimmer, weighted forces F and moment M

are computed as follows:

(F {x,y})k = ξ(F {x,y})k + (1− ξ)(F {x,y})k−1, (6.57)

Mk = ξMk + (1− ξ)Mk−1, (6.58)

where ξ is chosen between 0.5 and 1.0. Carling [19] found that a value of ξ = 0.75

was optimal. Lower values resulted in unstable computations while computations

with larger values were less accurate.

Given the weighted forces and moment on the body, Fx, Fy, and M , we apply

Equations (6.54) and (6.55) to compute new values for the body velocity components:

(v{x,y})k = (v{x,y})k−1 +
(F
{x,y}

)k
m

∆t (6.59)

and

ωk =
Mk∆t+ Ikωk−1

2Ik − Ik−1

. (6.60)

Yet even this velocity computed from the weighted force may lead to large jumps

in the forces. Carling [19] suggested cautiously adjusting the velocity value at each

iteration as follows:

(v{x,y})p+1
k = γ{x,y}(v

{x,y})k + (1− γ{x,y})(v{x,y})pk (6.61)

ωp+1
k = γωωk + (1− γω)ωpk (6.62)

where γ{x,y,ω} are the weighting parameters for the corresponding velocity components

and p is the iteration number. Equations (6.59)–(6.62) correspond to the step labeled

“Compute body velocities” on the algorithm flowchart in Figure 6.3.

With the new velocity estimates (v{x,y})p+1
k and ωp+1

k , the new estimated position

110

and orientation of the body can be computed from Equations (6.11)–(6.13). With

the new guess for the position on the body, a new boundary condition can be found

from Equations (6.14) and (6.15), and the process iterated until the forces computed

converge to a desired accuracy. Finally, the position of the vortices as well as the

swimmer are advanced. In the numerical experiments presented in the next chapter,

we used γx = 0.7. In our study, we constrained the motion so that it could not rotate

or translate laterally, so the other two parameters were not needed.

6.6 Code Validation

The two-body code was validated against results from Tuncer and Platzer [119],

who utilized a multiblock Navier-Stokes solver to compute the flow about tandem

NACA0012 airfoils. They also employed an unsteady potential flow solver (UPOT)

for one flapping airfoil to validate their Navier-Stokes solver.

We used their result for a single heaving foil to validate our two foil code by

placing the bodies far enough apart that there would be no noticeable hydrodynamic

interaction between them. The two bodies are 10 chord lengths apart vertically and

are both prescribed the same relative heaving motion y(t) = −0.1c cos(3t). Refer to

Figure 6.6 for a schematic of the layout and coordinate system. The non-dimensional

reduced frequency is defined as [119, 18]:

k =
ωc

2U∞
(6.63)

where ω is the frequency of oscillation, c is the chord length of the foil and U∞ is the

speed of the freestream flow. In this case k = 1.5.

Figure 6.7 shows the locations of the two foils with their wakes near time 2π c
U∞

.

Also shown in dashed lines are the integration paths used to compute the potential

originating from the point (-10c,7c) to the leading edge of both foils.

111

10c

y(t)

y(t)

Figure 6.6: Schematic of layout and coordinate system for Tuncer and Platzer [119]
validation case. Not to scale.

−10 −8 −6 −4 −2 0 2 4 6

−10

−8

−6

−4

−2

0

2

4

6

8

Figure 6.7: Layout and integration paths not crossing wake for two foil code valida-
tion. The dashed lines are the integration paths to compute the velocity potential.
Neither integration path is crossed by wake vortices. The results of this validation
case are shown in Figures 6.8 and 6.9.

112

0 1 2 3 4 5 6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (c
U∞

)

c
d

Unsteady drag coeffic ient v s time ; A = 0.1c , ω = 3

Tuncer & Platzer potential flow
Current model

Figure 6.8: Integration path not crossing vortex wake: Unsteady drag coefficient vs
time compared to the potential flow solver of Tuncer and Platzer [119]. The geometry
of the system is as shown in Figure 6.7 and each foil is moved with the relative motion
y(t) = −0.1c cos(3t).

Since the bodies are sufficiently far apart, the unsteady drag and lift coefficients

computed over the two bodies are nearly indistinguishable from each other and are

shown in Figures 6.8 and 6.9, respectively. There is very good agreement with the

potential flow results of Tuncer and Platzer.

To ensure that the algorithm for computing the velocity potential is able to ac-

curately account for vortices that cross the path of integration, we repeated this test

case but with the lower foil shifted back slightly behind the top foil, as shown in Fig-

ure 6.10. Now, the integration path crosses the vortex wake. The unsteady drag and

lift coefficients for this case are shown in Figures 6.11 and 6.12. Again, there is ex-

cellent agreement with the Tuncer and Platzer results, and the results are unaffected

by the integration path chosen.

Next, the two bodies were placed one behind the other — with one chord length

spacing in between. This time, only the leading foil was moved with the same motion

113

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

time (c
U∞

)

c
l

Unsteady l i f t coeffic ient v s time ; A = 0.1c , ω = 3

Tuncer & Platzer potential flow
Current model

Figure 6.9: Integration path not crossing vortex wake: Unsteady lift coefficient vs time
compared to the potential flow solver of Tuncer and Platzer [119]. The geometry of
the system is as shown in Figure 6.7 and each foil is moved with the relative motion
y(t) = −0.1c cos(3t).

−10 −8 −6 −4 −2 0 2 4 6 8

−10

−8

−6

−4

−2

0

2

4

6

8

Figure 6.10: Layout and integration path crossing wake for two foil code validation.
The dashed lines are the integration paths to compute the velocity potential. The
integration path for the lower foil runs through the wake of the upper foil and is
crossed by wake vortices. The results of this validation case are shown in Figures 6.11
and 6.12. This validation case was performed to demonstrate that the code accurately
accounts for vortices crossing the integration path

114

0 1 2 3 4 5 6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (c
U∞

)

c
d

Unsteady drag coeffic ient v s time ; A = 0.1c , ω = 3

Tuncer & Platzer potential flow
Current model

Figure 6.11: Integration path crossing vortex wake: Unsteady drag coefficient vs time
compared to the potential flow solver of Tuncer and Platzer [119]. The geometry of
the system is as shown in Figure 6.10 and each foil is moved with the relative motion
y(t) = −0.1c cos(3t). The results of this case match up with those in Figure 6.8

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

time (c
U∞

)

c
l

Unsteady l i f t coeffic ient v s time ; A = 0.1c , ω = 3

Tuncer & Platzer potential flow
Current model

Figure 6.12: Integration path crossing vortex wake: Unsteady lift coefficient vs time
compared to the potential flow solver of Tuncer and Platzer [119]. The geometry of
the system is as shown in Figure 6.10 and each foil is moved with the relative motion
y(t) = −0.1c cos(3t). The results of this case match up with those in Figure 6.9

115

−10 −5 0 5 10

−1

0

1

2

3

4

5

6

7

8

Figure 6.13: Layout, integration paths and wake vortex distribution at t = 10 c
U∞

for
two foil code validation against Tuncer and Platzer [119] Navier Stokes solver. The
leading foil is prescribed a heaving motion of y(t) = −0.1c cos(3t) while the trailing
foil remains stationary. The simulation is compared to the results of Tuncer and
Platzer in Figures 6.14 and 6.15.

as before, while the trailing foil was maintained stationary. The time step used was

∆t = 0.1 c
U∞

and a region of a normal distance of 0.08c within which vortices were not

allowed to enter was established around the trailing foil. This distance was found by

numerical experimentation and chosen to ensure that all the numerical experiments

converged for the desired parameter range considered in this study. No such region

was established or needed for the leading foil since it did not encounter any point

vortices. The geometry, velocity potential integration paths and wake after t = 10 c
U∞

are shown in Figure 6.13. The unsteady drag and lift over the leading and trailing

foils is compared to the result from the Navier-Stokes solver in Figures 6.14 and 6.15,

respectively.

For the leading foil, the computed values for lift and drag are nearly identical

to those found before when the two bodies were hydrodynamically isolated. The

drag coefficients computed for the stationary trailing foil match up well. The peaks

are slightly over-estimated. The lift coefficient is not estimated as well, perhaps

due to the inability of the code to account for frictional forces. Still, the agreement

is qualitatively sufficiently good since this may be considered a worst case scenario

116

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (c
U∞

)

c
d

Unsteady drag coeffic ient v s time , d=0.05 ∆t=0.1

Leading foil
Trailing foil (stationary)

Figure 6.14: Code validation: Unsteady drag coefficient vs time. The results of the
current study are shown in blue and red for the leading and trailing foils, respectively.
The results of Tuncer and Platzer [119] appear as dashed and solid black lines for the
leading and trailing foils, respectively. The dotted black line indicates the heaving
motion of the leading foil. Our results are superimposed on the actual figure in Tuncer
and Platzer.

117

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

time (c
U∞

)

c
l

Unsteady li f t coeffic ient v s time , d=0.08 ∆t=0.1

Leading foil
Trailing foil (stationary)

Figure 6.15: Code validation: Unsteady lift coefficient vs time. The results of the
current study are shown in blue and red for the leading and trailing foils, respectively.
The results of Tuncer and Platzer [119] appear as dashed and solid black lines for the
leading and trailing foils, respectively. The dotted black line indicates the heaving
motion of the leading foil. Our results are superimposed on the actual figure in Tuncer
and Platzer.

118

where the stationary body experiences relatively lower pressure forces.

For a more quantitative comparison, consider the propulsive efficiency which we

define as

ηP =
T · ||U∞||

P
, (6.64)

where T and P are the average thrust produced and power input into the system,

respectively, over one period of motion. The power is time rate of change of work, dW
dt

,

or equivalently, the product of the bodies’ instantaneous forces and velocities. For the

case of a simple heaving body, the instantaneous work is the product of the derivative

of the y position with respect to time and the instantaneous lift. We computed the

efficiency for the cases when one foil is heaving on its own as well as when a second

stationary foil is added in its wake, as in Figure 6.13. The results are summarized in

Table 6.3. For the isolated foil case, the computed efficiency matches that found by

Table 6.3: Propulsive efficiency comparison

current code Tuncer and Platzer
Heaving foil only 37% 37%
Heaving leading foil + stationary trailing foil 53% 56%

Tuncer and Platzer’s Navier-Stokes simulation. For the case where a second foil was

added, we slightly underestimate the efficiency as 53% compared to the 56% found

by Tuncer and Platzer’s Navier-Stokes solver. The discrepancy may be attributed to

the way in which the trailing foil interacts with the vorticity shed from the leading

body or the fact that our code does not account for frictional forces. It should be

noted again that point vortices were not allowed to enter within a distance of 0.08c

of the trailing foil, but were instead diverted around the body. Despite the fact that

the Navier-Stokes solver also accounts for the effects of viscosity, while our solution

only includes forces due to pressure, the results agree well.

119

Chapter 7

Control Through a Vortex Wake

This chapter presents a method for controlling the motion of a swimmer through

a nearly-periodic vortex wake in order to produce a near-optimal thrust-generating

gait.

Section 7.1 begins with a brief review of prior work on motion through a vortex

wake. We discuss how the effective angle of attack is a useful metric for determining

the lift on a body undergoing unsteady motion, and it is shown that the position of the

leading stagnation point on a foil may serve as an acceptable proxy for determining

the phase and frequency of the true effective angle of attack of a body. The results of

the numerical experiments performed suggest that the steady state thrust coefficient

for a two foil swimmer is nearly optimized when these two quantities – the effective

angle of attack of the trailing foil (due to only the motion of the foil while ignoring

the influence of the wake) and the stagnation point position on the leading edge of

the trailing foil – are in phase.

Before presenting our own control strategy, we review recent attempts in the

literature to model and control fluid systems in Section 7.2. While much of the prior

work required estimating the location of flow structures throughout the flow field

from measured quantities, our formulation is unique in that it requires knowing flow

120

y2

β2

β1

positive thrust direction

freestream flow direction

y2

Figure 7.1: Schematic of two foil swimmer. The shape of the swimmer is defined
by the time-varying heaving amplitudes of the leading and trailing foils, y1(t) and
y2(t), respectively along with their respective pitching amplitudes, β1(t) and β2(t). A
uniform freestream velocity exists to the right, and the positive thrust direction is to
the left. The filled circles indicate point vortices shed from the trailing edges of the
foils.

quantities only on the surface of the swimmer so that the position of the stagnation

point can be determined.

In Section 7.3 we describe the heuristic control objective based on the results

of the numerical experiments performed on the swimmer – shown in Figure 7.1. A

phase-locked loop controller is designed to synchronize the phase of the effective angle

of attack of the trailing foil with the position of the leading stagnation point on the

trailing foil by adjusting the foil’s pitching and heaving frequency. We note that the

classical phase-locked loop and the corresponding simplified theory do not strictly

apply since the feedback variable is a more complex function of the phase than in the

classical case. Despite this complication, an appropriately-tuned controller is able to

achieve the control objective.

We demonstrate the effectiveness of the controller with an example in Section 7.4.

Whereas the swimmer’s overall position and orientation is fixed in the experiments

performed in Section 7.1, we implement the controller on a swimmer that is free to

propel itself in the forward direction in Section 7.4. Since the fluid is inviscid and

we wish to reach a steady-state swimming speed, we impose a drag force oppos-

ing the motion of the swimmer and proportional to the square of the speed. The

121

appropriately-tuned controller is able to synchronize the phase of the effective angle

of attack and stagnation point position, although the lock-in time varies depending

on the initial starting conditions as well as the controller parameters. For comparison,

a series of numerical experiments are conducted where the phase between the leading

and trailing foil is fixed for each trial and the swimmer is allowed to reach a steady

state swimming speed. It is shown that the highest thrust-producing phase value

corresponds to nearly the same phase achieved by the controller. We also present a

second example where the frequency of the swimmer’s motion is changed to a smaller

value to demonstrate that the controller is still able to achieve its objective.

Finally, we provide an example to demonstrate the benefits of controller-based

feedback. This example compares the performance of two swimmers — one which is

unable to adapt to changing conditions (no feedback) and another that uses the phase-

locked loop controller. We have a swimmer that is initially prescribed a constant-

frequency leading and trailing foil pitching and heaving motion with the appropriate

leading to trailing foil phase lag to achieve maximum steady state thrust. The motion

of the trailing foil remains constant, but the frequency of the leading foil is later

reduced and then increased to simulate an unpredictable environment or unmodeled

dynamics. We compare the resulting motion of the cases with and without control

and show that not only does the controller generate a faster gait, but also that the

propulsive efficiency is significantly improved.

7.1 Development of a Heuristic Control Objective

Through Numerical Experiments

With the numerical model described in Chapter 6, we can prescribe various open-

loop gaits — cyclic shape changes in time — and observe how the swimmer propels

through the fluid. This simply provides us with the resulting motion if the gait is

122

known in advance.

But the characteristics of an “optimal” gait are not immediately obvious. As

the swimmer moves through the fluid, it may encounter a time-dependent vortex

wake. It is reasonable to expect that introducing an appropriate control algorithm

which takes into account the changing fluid environment could improve the swimmer’s

performance.

In this section we present the numerical experiments performed with our model

to gain an improved understanding of the system hydrodynamics. We show that

the effective angle of attack and the leading edge stagnation point position play an

effective role in determining the performance of the swimmer. We use the results of

the study to formulate a physically-based, heuristic control objective for improved-

performance swimming.

7.1.1 Prior Work: Swimming Through a Vortex Wake

We expect that the motion of the swimmer relative to the vortex wake plays an

important role in the swimmer’s performance. Previous experimental and numerical

work on similar systems provide guidance for our own study.

Liao et al. [68] studied the motion of a trout in the periodic vortex wake of

an upstream cylinder and found that the fish slalom between vortices as a way of

extracting energy from the oncoming flow. Slaloming describes motion in which the

fish moves with the lateral flow and against the downstream flow. They found that

this approach minimizes power input and increases propulsive efficiency.

Beal et al. [11] summarized the main modes of vortex-foil interaction as vortex

interception mode and slaloming mode. In vortex interception mode, the leading edge

of the foil travels through the vortices, increasing thrust and significantly modifying

the downstream wake. In slaloming mode, the foil travels between, but not through,

the oncoming vortices. In this case the wake generated consists of pairs of vortices

123

— one from upstream and one generated by the foil. Vortex interception mode was

found to increase thrust, while slaloming mode improved propulsive efficiency.

In experimental studies of a passive foil through a wake, Beal [11] identified two

mechanisms responsible for improving performance by appropriately maneuvering

through the oncoming flow. The first is the relative angle of attack due to the lateral

flow which is responsible for producing lift and thrust. As observed by others, the

forces are larger when moving against the lateral flow. The other mechanism generates

thrust through suction from oncoming vortices interacting with the leading edge of

the foil and is dependent on the timing between the lateral position of the foil and

the position of the oncoming vortices.

Beal [11] also studied a euthanized fish in the wake of a cylinder and found that

it was able to passively propel itself upstream by extracting energy from the vortex

structures in the flow. Both fish and high aspect ratio foils were found to be highly

efficient in slalom modes, or in an equivalent mode where opposite-sign vortices are

shed from the trailing edge to pair with the oncoming vortex.

In a numerical study of tandem foils designed to mimic the motion of sunfish

fins, Akhtar et al. [2] demonstrated that the thrust and propulsive efficiency are very

sensitive to the timing (phase difference) between the leading and trailing foil.

7.1.2 Effective Angle of Attack

Two quantities will play an important role in the control algorithm of our swimmer.

One is what we will refer to as the effective angle of attack, although strictly speaking,

we really mean an approximate effective angle of attack that accounts for the unsteady

motion of the foil but does not account for the influence of a non-uniform wake, such

as vortices. Still, we will show how this quantity is very useful for controlling the

motion of a swimmer through a vortex wake.

In steady motion with attached flow, the lift produced by a foil is proportional to

124

the angle of attack — the angle between the foil’s chordline and the velocity of the

foil motion relative to the freestream. But when a foil undergoes unsteady motion,

the amount of lift it generates is a function of more than just the angle of attack.

The unsteady motion generates additional forces on the foil, and these forces are

accounted for by the effective angle of attack. This quantity serves as a meaningful

metric of the lift-generating capability of a foil’s unsteady motion. Similarly, we note

that flow structures such as vortices around the foil may also enhance or detract from

the lift produced by the body. It is beyond the scope of this study to attempt to

model this very complicated relationship, so while we will not include the effect of

non-uniform flow distributions in our definition of the effective angle of attack, we

demonstrate that our definition is still useful in the context of the controller which

we will introduce later.

We consider a foil that is propelling at a non-uniform speed in the forward direction

as a result of vertical heaving and pitching about a fixed point relative to the foil.

We define the effective angle of attack as the sum of three components: the angle

of incidence (αeff,i) between the chordline of the foil and its motion relative to the

freestream, a heaving motion component (αeff,h) and a pitching motion component

(αeff,p). Refer to Figure 7.2. Since the freestream velocity is horizontal and to the right

and we will constrain the swimmer so that it may only propel forward or backward

relative to the freestrem velocity, the angle of incidence component is simply αeff,i = β,

the prescribed angle of the foil relative to the freestream velocity. For the other two

components, we use a assume a small angle approximation. The heaving component

results in an angle of attack that is constant along the length of the chord: αeff,h =

ẏ/Vrel, where Vrel = ||V∞||−vx is the freestream velocity component in the x-direction

relative to the foil and ẏ is the heaving (lateral) velocity of the foil. This component

has a fairly straightforward physical interpretation. In the frame of the foil, the

relative freestream velocity due to the heaving motion is at an angle of tan−1(ẏ/Vrel),

125

ẏ2
β̇2β2

(a) (b) (c)

Figure 7.2: Three components of effective angle of attack. Here we show the three
components for the trailing foil. (a) The angle of incidence between the chordline of
the foil and its motion relative to the freestream: αeff,i = β2. (b) A heaving motion

component: αeff,h = ẏ/Vrel. (c) A pitching component: αeff,p(x) = β̇c)
Vrel

, where c is the
chord length and Vrel is the speed of the swimmer relative to the freestream velocity
in the direction of the freestream velocity.

or ẏ/Vrel in the small-angle approximation. Thus, the contribution to the effective

angle of attack due to the heaving motion is ẏ/Vrel. The pitching component is less

straightforward. Since the velocity of the foil relative to the fluid varies along the

chord while pitching, the angle of attack is a function of the chord position:

αeff,p(x) =
β̇(x− x0)

Vrel

, (7.1)

where x0 is the point about which the foil is pitching and β̇ is the rotational velocity

of the foil. In this study, x0 = c
4
, the quarter-chord point. The pitching motion

effectively changes the camber of the foil and hence, the effective angle of attack. For

a foil with parabolic shape, it has been shown that the angle at the 3
4
−chord point

is the best representation for the effective angle of attack [121]. Thus, substituting

x = 3c
4

in Equation (7.1) yields a ‘representative’ pitching effective angle of attack

component: αeff,p = β̇c/2
Vrel

.

In the absence of upstream vorticity, the effective angle of attack for a foil pitching

126

about the quarter-chord point may then be expressed as

αeff = αeff,i + αeff,h + αeff,p (7.2)

= β +
ẏ + β̇c/2

Vrel

. (7.3)

7.1.3 Stagnation Point

Recall that in the previous section, our expression for the effective angle of attack

consisted of just three components – the angle of incidence, a heaving component and

a pitching component. In reality, other factors may influence the “true” effective angle

of attack as well. For example, when a foil is moving through a fluid with non-uniform

velocity distribution, determining the actual effective angle of attack is considerably

more difficult. In this case, the velocity of the fluid along the body may vary spatially

and temporally as a result of the vorticity in the fluid. Even if the precise velocity

is known, it is still not obvious what the effective angle of attack should be. We will

demonstrate that one potential alternative to computing this value from the fluid and

kinematic properties is to consider the stagnation points on the foil. One stagnation

point will always remain fixed at the trailing edge, while a second stagnation point

will vary in position near the leading edge as the foil moves through the fluid. We will

later demonstrate how the value of our simplified expression for the effective angle of

attack along with the position of the stagnation point position can be used as part of

a controller.

Anderson et al. [4] showed that the effective angle of attack can be related to the

position of the stagnation point. For steady potential flow, Anderson’s results indicate

that the distance from the leading edge along the surface of the foil of the forward

stagnation point is monotonically increasing with effective angle of attack, though

the exact relationship varies depending on whether or not there is circulation around

the foil. Since we consider the unsteady motion of a foil through a fluid for which

127

the circulation about the body will vary, it is not guaranteed that such a monotonic

relationship exists.

Due to the geometry of our swimmer (see Figure 7.1), the trailing foil will interact

with the vorticity wake shed from the leading foil. Thus, the effective angle of attack

determined from Equation (7.3) is not a “true” effective angle of attack since it fails to

account for the effect of the vorticity. On the other hand, the leading foil encounters

no such vortex wake, so we expect this approximate expression to be close to the true

effective angle of attack. Hence, we may use the leading foil to check the relationship

between the leading stagnation point position and our expression for the effective

angle of attack. The stagnation point is determined numerically by finding the zero

velocity location through linear interpolation of the velocity values at the control

points. We perform a numerical experiment and plot the resulting stagnation point

position relative to the leading edge along with the effective angle of attack for the

leading foil in Figure 7.3. Both quantities are normalized to unity at steady-state.

Although there is some small leading or lagging between the two variables at times,

they are sufficiently in phase that the stagnation point location serves as an acceptable

proxy for determining the phase and frequency of the effective angle of attack for the

parameter space considered in this study. This greatly simplifies the otherwise more

difficult challenge of directly determining the effective angle of attack of the trailing

foil as it travels through a non-uniform vortex wake.

7.1.4 Numerical Experiments

As observed in prior work, the timing of the motion of the body relative to the wake

appears to play a critical role in determining swimming performance. A series of

numerical experiments were performed to understand this relationship in our system.

Instead of studying the motion for a free-moving swimmer, we first consider the

swimmer changing its shape by moving its front and rear foils while remaining pegged

128

0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

t
tω

αeff
xstag

αeff
xstag

Figure 7.3: Normalized effective angle of attack and stagnation point position along
the surface of the leading foil versus time. In the parameter space considered here,
the two values are nearly in phase, suggesting that the stagnation point location is
an acceptable proxy for the effective angle of attack. For the red curve, the y axis
represents the (scaled) distance from the leading edge along the surface of the foil.

down and unable to propel itself. We are interested in measuring the average thrust

coefficient of the swimmer.

Since the wake is periodic at steady state, the average thrust coefficient CT is

defined as

CT =
〈T 〉

1
2
ρV 2

rel

, (7.4)

where the 〈T 〉 represents the thrust averaged over one period of motion, tω = 2π
ω

. We

note that in this chapter (particularly in the results in Figure 7.6 where the swimmer

is permitted to self-propel), we adopt a different non-dimensionalization of the thrust.

Since a higher thrust-producing swimmer results in a higher swimming speed, non-

dimensionalizing by the relative velocity between the swimmer and the freestream

would result in lower thrust coefficients for the fastest gaits. Instead, we use the

chord length c and period of motion, tω to non-dimensionalize the thrust as follows:

129

CT = 〈T 〉/(1
2
ρ(c/tω)2).

In these experiments, each foil is prescribed its own heaving y(t) and pitching

β(t) motion, where we have assumed that the frequency of oscillation is the same for

pitching and heaving of both foils:

β1 = A sin(ωt) (7.5)

y1 = h sin
(
ωt− π

2

)
(7.6)

β2 = A sin(ωt+ φ2) (7.7)

y2 = h sin
(
ωt− π

2
+ φ2

)
(7.8)

where −π
2

is the phase between pitching and heaving for both foils and φ2 is the

phase lag between the leading and trailing foil. We note that to avoid numerical

convergence difficulties associated with the start of a gait, all pitching and heaving

motions discussed in this thesis are also multiplied by an exponentially decaying

envelope that quickly approaches unity (1− exp(−t)). We fix the heaving amplitude

to h = 0.05c and vary the pitching amplitude A and frequency ω. The heaving

amplitude was chosen such that the pitching and heaving effective angle of attack

components would be of the same order of magnitude. Since we expect performance

to be a strong function of the timing between the vortex wake of the trailing foil and

the motion of the trailing foil, for each combination of A and ω, we vary the phase

difference between the leading and trailing foil (φ2) from 0 to 2π radians in increments

of 36◦.

Six frequency values and two pitching amplitude values were chosen. We note in

particular that the pitching amplitude values chosen preclude applying any results to

large-amplitude motions without further investigation. Table 7.1 contains a summary

of the parameter values for the 120 numerical experiments performed.

130

Table 7.1: Experiment parameter values

ω A φ2

2 6◦ 0◦, 36◦, 72◦, 108◦, 144◦, 180◦, 216◦, 252◦, 288◦, 324◦

3 6◦ 0◦, 36◦, 72◦, 108◦, 144◦, 180◦, 216◦, 252◦, 288◦, 324◦

4 6◦, 9◦ 0◦, 36◦, 72◦, 108◦, 144◦, 180◦, 216◦, 252◦, 288◦, 324◦

5 6◦, 9◦ 0◦, 36◦, 72◦, 108◦, 144◦, 180◦, 216◦, 252◦, 288◦, 324◦

6 6◦, 9◦ 0◦, 36◦, 72◦, 108◦, 144◦, 180◦, 216◦, 252◦, 288◦, 324◦

7 6◦, 9◦ 0◦, 36◦, 72◦, 108◦, 144◦, 180◦, 216◦, 252◦, 288◦, 324◦

7.1.5 Results

As an example, consider the set of gaits where ω1 = ω2 = 7, A = 9◦ and φ2 is varied

between 0 and 2π radians. In Figure 7.4, we show the effective angle of attack and

the forward stagnation point position of the leading foil versus time for all ten cases.

Both are normalized to unity at steady state. It appears that the thrust coefficient at

steady state is maximized when the two curves are nearly in phase. To examine this

possibility, we numerically determined the phase difference between the two curves,

φD, by identifying the first Fourier mode coefficients of each curve at steady state and

subtracting the phases of the subsequent curve fits. Table 7.2 summarizes the results

and includes the thrust coefficient, CT and phase difference between the stagnation

point position and effective angle of attack curves at steady state, φD for each of

the cases considered here. These results indicate that the thrust coefficient is near

a maximum when the effective angle of attack and stagnation point positions are in

phase. We repeat this procedure for all values of ω and A noted in Table 7.1 and plot

the thrust coefficient versus phase difference in Figure 7.5. Finally, a similar series of

experiments are performed with the same parameters as in Table 7.1 and where the

swimmer is able to self-propel. The results are shown in Figure 7.6.

131

φ2 = 0◦

φ2 = 36◦

φ2 = 72◦

φ2 = 108◦

φ2 = 144◦

αeff
xstag

αeff
xstag

φ2 = 180◦

φ2 = 216◦

φ2 = 252◦

φ2 = 288◦

0 1 2 3 4 5 6 7 8

φ2 = 324◦

max
thrust
case

min
thrust
case

t
tω

Figure 7.4: Normalized effective angle of attack and leading edge stagnation point
position along the surface of the trailing foil versus time for a series of experiments.
In these experiments, ω1 = ω2 = 7 and A = 9◦ and φ2 is varied from 0 to 2π radians.
The steady state average thrust coefficient and phase angle between the effective angle
of attack and leading foil stagnation point position for each case is summarized in
Table 7.2. It appears that thrust is nearly maximized when the effective angle of
attack and stagnation point positions are in phase.

132

Table 7.2: Results for ω1 = ω2 = 7, A = 9◦ experiments for a fixed swimmer. The
swimmer is constrained to prevent self-propulsion. The thrust coefficient, CT versus
φD is plotted in Figure 7.5 along with the corresponding data for other combinations
of ω and A.

ω A φ2 φD CT
7 9◦ 0◦ -1.67 0.508
7 9◦ 36◦ -2.37 0.446
7 9◦ 72◦ 3.09 0.446
7 9◦ 108◦ 2.44 0.485
7 9◦ 144◦ 1.80 0.5815
7 9◦ 180◦ 1.30 0.639
7 9◦ 216◦ 0.80 0.692
7 9◦ 252◦ 0.23 0.717
7 9◦ 288◦ -0.37 0.691
7 9◦ 324◦ -0.97 0.612

7.1.6 Analysis

The qualitative similarity between Figures 7.5 and 7.6 suggests that the non-dimensonalization

for the thrust used in the free-swimming case is a reasonable one. It is evident from

Figures 7.5 and 7.6 that for the parameter range considered in this study, the thrust

coefficient is nearly maximum when the phase difference between the effective angle

of attack and the position of the leading stagnation point of the trailing foil is close

to zero.

For all cases considered, the thrust coefficient when φD = 0 is within a few per-

cent of the maximum thrust coefficient. Although the exact operating condition for

maximum thrust may be a function of the gait parameters, we will use the zero phase

difference condition as a first approximation. Further, while this result is based on

the average thrust coefficient at steady state, we use it to develop a controller to

control the motion during the entire gait, including the initial transient period.

Based on this study, we will develop a controller which seeks to phase-synchronize

the effective angle of attack with the measured stagnation point position on the

leading edge of the trailing foil. We expect that such a controller would result in

133

−2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

φD

C
T

ω = 7, A = 9◦
ω = 6, A = 9◦
ω = 5, A = 9◦
ω = 4, A = 9◦
ω = 7, A = 6◦
ω = 6, A = 6◦
ω = 5, A = 6◦
ω = 4, A = 6◦
ω = 3, A = 6◦
ω = 2, A = 6◦

Figure 7.5: Fixed velocity: Thrust coefficient versus the phase difference between αeff

and xstag at steady state for a series of experiments. The swimmer is constrained to
prevent self-propulsion.

near-optimal thrust-producing gaits.

7.2 Literature review: Modeling and Control of

Fluid Systems

There have been significant recent efforts to develop models of fluid systems suit-

able for the purposes of control. From the time history of a few pressure sensors,

Suzuki et al. [107] developed an inverse imaging technique to identify the position

and circulation of a vortex in a channel. For more complex systems, inverse algo-

134

−2 0 2
0

0.1

0.2

0.3

0.4

0.5

φD

C
T

ω = 7, A = 9◦
ω = 6, A = 9◦
ω = 5, A = 9◦
ω = 4, A = 9◦
ω = 7, A = 6◦
ω = 6, A = 6◦
ω = 5, A = 6◦
ω = 4, A = 6◦
ω = 3, A = 6◦
ω = 2, A = 6◦

Figure 7.6: Free-swimming: Thrust coefficient versus the phase difference between
αeff and xstag at steady state for a series of experiments where the swimmer is free-
swimming in the x direction

Note that a variation of the thrust coefficient defined by Equation (7.4) is used here.

rithms can quickly become difficult to implement. One common alternate approach

involves the use of observers. Tadmor [108] used an extended Kalman filter to es-

timate the distance between two same-sign vortices as well as the position of their

vorticity centroid and regulated these quantities through observer-based feedback.

To suppress vortex shedding in the wake of a cylinder, Gerhard et al. [38] employed

low-dimensional Galerkin models to develop an observer-based controller. And Pas-

toor et al. [92] used two first-order low pass filters as an observer to estimate the

135

phase and frequency of a nearly-periodic vortex wake behind a backward-facing step.

A control method which we adopt in our own study is the phase-locked loop controller,

which was successfully implemented by Joe et al. [50] to improve the lift performance

of a flat plate at a fixed moderate to high angle of attack.

By contrast, our system does not require explicit knowledge or estimation of the

fluid structures in the flow. The only information needed for the purposes of control

is the position of the leading stagnation point and the effective angle of attack of the

trailing foil.

7.3 Control Methodology

The control objective is based on the idea of exploiting the near-periodicity of the

wake to optimize the swimmer’s performance.

Based on the numerical experiments described in §7.1.4–7.1.6, a reasonable strat-

egy to maximize thrust is to ensure that xstag and αeff are in phase. Therefore, the

control objective we pursue is to achieve φD = 0 during the motion of the swimmer.

We implement this using a phase-locked loop controller.

Figure 7.7 is a block diagram of a classical phase-locked loop controller. Note

that ω? is an initial value for the control variable u which we usually set equal to

ω1, the constant frequency of the leading foil. The signals zi and zo have the form

zi(t) = A sin(ωit+ϕi) and zo(t) = b cos(ωot+ϕo). We note that in our application, the

variables zi and zo correspond to the observed leading edge stagnation point position

and approximate effective angle of attack of the trailing foil, respectively. In practice,

the controller will modify the frequency of the trailing foil, u which will produce a

pitching and heaving motion as follows:

β2(t) = A cos

(∫ t

0

u(τ)dτ + ϕ∗
)

(7.9)

136

× +K

1

Ki

s

+ 1
s

cos(·)zi zo
φo

PI

b
u

ω⋆

low-pass filter

Figure 7.7: Classical phase-locked loop block diagram.

y2(t) = h sin

(∫ t

0

u(τ)dτ + ϕ∗
)
, (7.10)

where ϕ∗ is an initial prescribed phase offset. Another difference with the classi-

cal phase-locked loop controller is that rather than producing an output zo(t) =

b cos(ωot+ϕ), zo will be the effective angle of attack as determined by Equation (7.3).

Multiplying the signals one gets:

zizo =
Ab

2
{sin((ωi + ωo)t+ ϕi + ϕo) + sin((ωi − ωo)t+ ϕi − ϕo)} . (7.11)

In the ideal case when the signals have close to equal frequencies, the resulting signal

will have a high frequency component of frequency ωi +ωo plus a low frequency com-

ponent of frequency ωi − ωo. An appropriately designed low-pass filter will eliminate

the high-frequency component. Then, letting φi = ωit + ϕi and φo = ωot + ϕo, we

have:

zizo ≈ Ab

2
sin(φi − φo). (7.12)

Finally, assuming the two phases are sufficiently close, we can use the small angle

approximation to further simplify Equation (7.12):

zizo ≈ Ab

2
(φi − φo). (7.13)

Under these assumptions, the block diagram can be equivalently represented as in

137

+K

1

Ki

s

+ 1
s

φo

PI

+
φi −

u

ω⋆

Ab

2

Figure 7.8: Simplified phase-locked loop block diagram.

Figure 7.8. The error is e = φi − φo, and the closed-loop transfer function is

φo
φi

=
K̃s+ K̃iK

s2 + K̃s+KiK̃
, (7.14)

where K̃ = KAb
2

accounts for the magnitudes of the signals zi and zo. The error

response is then

e

φi
= 1− φo

φi
=

s2

s2 + K̃s+KiK̃
. (7.15)

This is in standard second-order form where ωn =
√
KiK̃ and ζ =

√
K̃

4Ki
. Then, the

proportional-integral (PI) controller gains are given by:

K =
4ζωn
Ab

(7.16)

Ki =
ωn
2ζ
. (7.17)

As observed previously [21], tuning such a controller requires knowing the amplitudes

of the signals in advance. We determined estimates for these values by performing

trial numerical experiments in advance. For our system, we chose the damping ratio of

ζ = 1 and tuned the gains by using intuition to manually adjust ωn (held constant for

each trial) during a series of numerical experiments to produce the desired response

characteristics.

Recall that in practice zi and zo correspond to the observed stagnation point

position and effective angle of attack, respectively. Unlike in the classical phase-locked

138

loop, our feedback variable (αeff) has a more complex expression and the classical

phase-locked loop construction does not strictly apply. Here, the frequency u varies

such that the corresponding pitch and heave values of the trailing foil are given by

Equations (7.9) and (7.10). As shown in Equation (7.3), the effective angle of attack

is a function of the pitch angle, the heaving velocity, the pitching rate and the speed of

the swimmer relative to the freestream flow. Further, since the classical phase-locked

loop controller synchronizes signals 90 degrees out of phase from each other, we feed

back a “fictional” effective angle of attack that is phase-shifted by 90 degrees from

the true effective angle of attack such that the stagnation point signal is synchronized

with the true effective angle of attack.

Despite these differences between our system and the classical phased-locked loop

configuration, we found that in practice the appropriately-tuned controller worked

successfully and the tuning is similar to that of a second-order system. We caution

that this fortunate result may not apply outside the limited parameter space explored

here.

7.4 Example

In this section we present an example where a phase-locked loop controller is used to

synchronize the effective angle of attack of the trailing foil with the observed position

of its leading edge stagnation point. We demonstrate that the controller generates a

gait which produces a near-optimal thrust coefficient at steady state.

A discrete-time 3rd-order low-pass Butterworth filter (see Figure 7.7) with cutoff

frequency 0.023 was used for this example. The leading and trailing bodies have

NACA 0012 profiles and are discretized into 100 straight line panels each. The leading

edge of the trailing foil is placed 2.5 chord lengths behind the leading edge of the

leading foil, leaving 1.5 chord lengths of space in between. Both foils pitch about

139

their quarter chord points. The pitching angle, β1(t), and heaving amplitude, y1(t),

of the leading foil are prescribed as follows:

β1(t) =
9π

180
sin(7t) (7.18)

y1(t) = 0.05 sin
(

7t− π

2

)
. (7.19)

Refer to Figure 7.1 for a schematic of the swimmer geometry. To avoid numerical

difficulties due to the singular nature of point vortices, wake vortices that approach

within 0.03 chord lengths of the surface of the trailing foil are diverted around the

body. For simplicity of analysis, the swimmer is constrained to propel only along the

direction of the freestream. The swimmer was constrained to prevent overall lateral

or angular motions resulting from fluid forces. Since the numerical model is inviscid,

a simple drag model was adopted in order to ensure that the swimmer reaches a

steady swimming speed. Viscous drag is modeled in only the freestream direction as

proportional to the square of the relative velocity of the swimmer:

Drag =
1

2
ρCfAsV

2
rel, (7.20)

where Cf is a drag coefficient and As is the surface area of the swimmer. In our

model, the two foils represent the propulsors (or fins) on a larger swimmer with a

body further upstream of the foils. Although the combined length of the two foils is

2 chord lengths; for simulation purposes, we take the total length of the body to be

about 9 chord lengths for a total surface area of 18c.

The total body length to caudal fin length ratio varies greatly among swimmers.

For two different morphologies of Zebrafish Danio rerio [94], the ratio is 2.99 and

5.34, while for the false killer whale Pseudorca crassidens [132] it is 8.08. Our chosen

ratio of 4.5 falls comfortably within this range.

140

We assume Cf = 0.0146, the experimentally-determined friction drag coefficient

for a swimming dogfish Mustelus canis in a flume [4]. Using a different friction

coefficient value will affect the steady state swimming speed.

The motion of the trailing foil is as follows:

β2(t) =
9π

180
cos

(∫ t

0

u(τ)dτ + ϕ∗
)

(7.21)

y2(t) = 0.05 sin

(∫ t

0

u(τ)dτ + ϕ∗
)

(7.22)

where ϕ∗ is an initial prescribed phase offset and u(t) is determined by the controller.

From the block diagram for the phase-locked loop, we see that u = ω?+K
(
1 + Ki

s

)
e.

To avoid a long start-up time and allow u to more quickly reach a constant steady-

state value, ω? is set equal to ω1.

7.4.1 Results

We prescribe the gait in Equations (7.18), (7.19), (7.21) and (7.22) and use the

phase-locked loop controller described in Section 7.3 to synchronize the motion of the

trailing foil to the oncoming wake. Figure 7.9 shows that the normalized effective

angle of attack and the position of the stagnation point versus time are effectively

synchronized by the controller after a transient period. Time is non-dimensionalized

by the period, tω = 2π/ω1, and speed is non-dimensionalized by the chord length, c

and the period. The speed of the swimmer relative to the freestream versus time is

shown in Figure 7.10. The average non-dimensional steady-state speed is 1.296, and

the Strouhal number based on tip-to-tip excursion and speed relative to the freestream

is 0.20.

A series of several numerical experiments without control plus one with control on

a self-propelling swimmer were performed to check how well the controller achieves its

goal of generating the fastest gait. Most of the experiments performed were similar

141

0 2 4 6 8 10 12 14

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t
tω

αeff
xstag

αeff
xstag

Figure 7.9: With control (leading foil frequency, ω1 = 7): Normalized effective angle
of attack, αeff, and the stagnation point position along the surface, xstag, of the trailing
foil vs non-dimensionalized time for a self-propelling fish-like swimmer using a phase-
locked loop controller. Both quantities are scaled to facilitate visual comparison.
After a transient period, the two signals are synchronized. The gait is given by
Equations (7.18), (7.19), (7.21) and (7.22).

to those described previously and served as a “brute force” method for mapping the

swimming speed at various operating conditions. The motion of the leading foil is

again given by Equations (7.18) and (7.19), while in the experiments without control,

the trailing foil is prescribed the gait:

β2(t) =
9π

180
sin(7t+ φ2) (7.23)

y2(t) = 0.05 sin
(

7t− π

2
+ φ2

)
, (7.24)

where the motion is the same as the leading foil but with a constant phase difference,

φ2, between the leading and trailing foils. A total of 20 numerical experiments with

142

0 2 4 6 8 10 12 14 16

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

t
tω

V
r

e
l

c
/
t ω

Figure 7.10: Non-dimensional swimmer speed relative to the freestream versus time.
After a transient period, the swimmer reaches a steady-state non-dimensional average
speed of 1.296. The swimmer gait is prescribed by Equations (7.18), (7.19), (7.21)
and (7.22) and a phase-locked loop controller described in Section 7.3 is employed to
synchronize the motion of the trailing foil to the oncoming wake.

evenly-spaced phase differences between 0 and 2π were performed. The steady state

speed as a function of the phase difference for these runs are indicated by blue dots

in Figure 7.11. One additional experiment was performed where the motion of the

trailing foil is regulated by the controller. On the same figure, a red plus sign indicates

the steady-state speed achieved by the controller, which appears to be at or near the

fastest achievable speed for this family of gaits. This speed was achieved by the

controller at an effective constant phase difference between the leading and trailing

foils of φ2 = 0.635 at steady state. This suggests that the controller is effective at

achieving near-optimal speed gaits. To demonstrate that the controller is effective in

a broader parameter space, another experiment was performed with nearly the same

gait as prescribed by Equations (7.18), (7.19), (7.21) and (7.22) except the absolute

frequency of the leading foil was changed from ω1 = 7 to 4. A non-dimensional steady-

143

0 π 2π
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

φ2

V
r

e
l

c
/
t ω

controlled case

Figure 7.11: Non-dimensional steady-state speed vs. φ2 for constant phase gaits. The
motion of the leading foil is given by Equations (7.18) and (7.19) while the trailing foil
motion is prescribed by Equations (7.23) and (7.24), where φ2 is the phase difference
between the leading and trailing foils. The red plus sign indicates the steady-state
speed for value φ2 = 0.635, the equivalent phase difference at steady-state for the
controlled case. Among all the experiments performed, the maximum steady-state
speed is achieved when φ2 = 0.635, suggesting that the control algorithm is effective
at maximizing speed.

state speed of 1.37 was achieved. Figure 7.12 shows how the controller synchronizes

the effective angle of attack and the leading stagnation point position of the trailing

foil (both normalized to unity at steady state).

7.4.2 Lock-in Time

Although we showed that the phase-locked loop controller works effectively to reach

an optimum steady-state speed, there is no guarantee that it will do so quickly, or

even that it will do so more quickly than simply prescribing the optimal constant-

phase gait with no controller. This difficulty partially arises from the fact that the

controller is based on the linearized model of a phase-locked loop. Whereas the model

144

0 2 4 6 8 10 12 14

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t
tω

αeff
xstag

αeff
xstag

Figure 7.12: With control (leading foil frequency, ω1 = 4): Normalized effective
angle of attack, αeff, and the stagnation point position along the surface, xstag, of
the trailing foil vs non-dimensionalized time for a self-propelling fish-like swimmer
using a phase-locked loop controller. After a transient period, the two signals are
synchronized. The gait is given by Equations (7.18), (7.19), (7.21) and (7.22) but with
the absolute frequency of the leading foil changed to ω1 = 4 in order to demonstrate
the effectiveness of the controller across a range of pitching/heaving frequency.

assumes that the error is equal to the difference in the phases between the signals, in

reality the error is the sine of the difference of the phases. This means, for example,

that when the two signals are π radians out of phase, the “error” will be zero and the

controller will not adjust the frequency as desired. This can substantially increase

the lock-in time needed to synchronize the two signals.

To demonstrate this effect, the same controller was initialized with two different

initial phase values, ϕ∗ (See Equations (7.21) and (7.22)). Figure 7.13 shows the

relative swimmer speed versus time for these two cases as well as for the optimal

constant-phase case with no control. In all three cases, the swimmer achieves the

same steady-state speed. When ϕ∗ = 5.293, the controller is able to reach a steady-

145

0 2 4 6 8 10 12 14 16

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

t
tω

V
r

e
l

c
/
t ω

w/controller, ϕ∗ = 1.722

w/controller, ϕ∗ = 5.293
no controller, φ2 = 0.635

Figure 7.13: Non-dimensional speed vs time for controlled and uncontrolled gaits.
All gaits reach the same steady-state speed, though the choice of initial phase ϕ∗

significantly impacts performance in the controlled case.

state speed slightly faster than the constant-phase case with no control. On the other

hand, when ϕ∗ = 1.722, the controller took considerably longer to reach steady-state.

It is not apparent how one should choose ϕ∗ to optimize performance. It is also

possible that without proper tuning, a poor initial phase choice could result in the

controller being unable to converge.

7.5 Swimming with and without control

In this section we demonstrate by example the performance gain achieved from this

control algorithm. Consider a case where the frequency of the leading foil is set to

a constant value. From the results of a parametric study, such as in Figure 7.11,

the phase of the trailing foil can be set to a fixed value to optimize the steady-state

speed. Now, consider that the frequency of the leading foil deviates slightly from the

146

0 10 20 30 40 50
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

t
tω

ω
1

Figure 7.14: Leading foil frequency, ω1(t) vs non-dimensionalized time. The frequency
of the leading foil is varied from its initial value in order to evaluate the effectiveness
of applying control to the trailing foil.

assumed value. We compare the resulting performance between two cases: (a) where

the trailing foil has no ability to detect the change in frequency and maintains a

constant phase difference and (b) where the trailing foil is able to detect the position

of its leading stagnation point and a controller is implemented to modify its motion.

The frequency versus time of the leading foil in this example is shown in Fig-

ure 7.14. The trailing foil in case (a) maintains a constant absolute frequency of

ω2 = 7. Two sets of parameters are used in the controlled case. Initially, the same

gains are used as in Section 7.4.1. Less aggressive gains were needed to ensure that

the controller did not go unstable. After the lock-in time (around t/tω1 = 8), the

controller switches to a more aggressive set of parameters in order to more effectively

track variations in the frequency of the flow. Without more aggressive control gains,

the controller is unable to track the variations in the frequency of the flow.

Figure 7.15 shows the resulting non-dimensional forward speed versus time of the

swimmer for the cases with and without control. A snapshot of the swimmer and

its vortex wake for the controlled case is shown in Figure 7.17. The controlled case

147

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

t
tω

V
r

e
l

c
/
t ω

with control

without control

Figure 7.15: Swimmer performance with and without control. Comparison of relative
speed vs non-dimensionalized time for a swimmer with (blue) and without (red) con-
trol. The gait of the swimmer is given by Equations (7.18), (7.19), (7.21) and (7.22),
except instead of a constant frequency motion for the leading foil, the prescribed
frequency versus time is as shown in Figure 7.14. A snapshot of the swimmer and
flow field for the controlled case is shown in Figure 7.17. In the uncontrolled case,
the frequency of the trailing foil remains constant.

was able to achieve a higher speed at all times, even when the trailing foil frequency

was lower than in the uncontrolled case. At steady state the controlled case reaches

a constant average speed. On the other hand, the uncontrolled case reaches a limit

cycle due to the fact that the frequency of the leading foil and vortex wake is different

from that of the trailing foil.

Figures 7.16(a) and 7.16(b) show the normalized effective angle of attack and loca-

tion of the leading stagnation point position versus time for the cases with and without

control, respectively. As expected, in Figure 7.16(a), the two curves remain nearly

in phase after the initial lock-in period. By contrast, the signals in Figure 7.16(b)

go in and out of phase due to the lack of compensation for the frequency difference

between the leading and trailing foils. Figures 7.19(a) and 7.19(b), which are plots of

the stagnation point position versus the effective angle of attack, illustrate this result

148

0 10 20 30 40 50

−1

−0.5

0

0.5

1

t
tω

αeff
xstag

αeff
xstag

(a) With control.

0 10 20 30 40 50

−1

−0.5

0

0.5

1

t
tω

αeff
xstag

αeff
xstag

(b) Without control.

Figure 7.16: Normalized effective angle of attack and stagnation point position along
the surface vs time for the cases (a) with control and (b) without control corresponding
to the results in Figure 7.15. Since the frequency of the leading and trailing foils are
different in the uncontrolled case, the stagnation point position and effective angle of
attack are not usually in phase. By comparing Figures 7.16(b) and 7.15, it is apparent
that the higher speed portions of the limit cycle of the red curve in Figure 7.15
correspond to when the two curves in Figure 7.16(b) are in phase, while the slower
speeds correspond to when the curves are out of phase. Refer to Figure 7.18 for more
details.

149

Figure 7.17: Snapshot of swimmer and vortex wake. A portion of the wake of the
swimmer is shown for the controlled case described in §7.5 at t/tω = 44.5. The
red and blue circles represent clockwise and counterclockwise vorticity, respectively.
The larger, darker circles correspond to stronger strength vortices while the smaller,
lighter circles are weaker strength vortices.

more clearly. By comparing Figures 7.16(b) and 7.15, it is apparent that the higher

speed portions of the limit cycle of the red curve in Figure 7.15 correspond to when

the two curves in Figure 7.16(b) are in phase, while the slower speeds correspond to

when the curves are out of phase. In Figure 7.18 we plot the speed of the swimmer in

the uncontrolled case as well as a measure of the phase between αeff and xint. Higher

swimming speeds correspond to when the two quantities are in phase while lower

speeds occur when they are out of phase. See Figure 7.18 for more details.

The use of a controller has noticeable benefits in addition to generating faster

gaits. At steady state, although the controlled case resulted in a higher trailing foil

frequency than in the case without control, the power required in the uncontrolled

case was still about 7% more than in the case with control. Overall, for the entire

gait in this example, the controller improves the average propulsive efficiency from

28.6% in the uncontrolled case to 40.8% in the controlled case.

7.6 Summary

We have considered the problem of controlling the motion of a swimmer through a

self-generated, nearly-periodic wake. It is apparent that the timing of the motion

150

0 5 10 15 20 25 30 35 40 45 50 55
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t
tω

V
r

e
l

c
/
t ω

Figure 7.18: Relative speed of swimmer for uncontrolled case from Figure 7.15 (red,
solid) versus non-dimensionalized time along with the low-pass filtered product of xint

and a π/2 phase-shifted version of αeff in Figure 7.16(b) (black, dashed). The low-pass
filtered product of these terms acts as a phase detector and provides a measure of the
phase difference between the two curves. The value is zero both when the curves are
in phase and when they are π radians out of phase. The maximum value occurs for
a phase difference of π/2 and −π/2. The in-phase zero points are labeled by closed
blue circles and the out of phase points by open red circles. Note that the swimmer
speed is nearly maximum when the curves are in phase and nearly minimum when
the curves are out of phase.

of the swimmer through such a wake will affect performance. The effective angle

of attack plays an important role in determining the performance of the swimmer,

however determining the effective angle of attack for a swimmer moving through a

non-uniform wake is not trivial. For the range of parameters considered in this study,

it was shown that the position of the leading stagnation point on the trailing foil

serves as an effective proxy for determining the phase and frequency of the effective

angle of attack of a nearly periodically oscillating foil. Based on a series of numerical

experiments, the highest thrust coefficient gaits were achieved when the effective

angle of attack of the swimmer (due to only the motion of the foil while ignoring the

influence of the wake) was in or nearly in phase with the “true” effective angle of

attack as indicated by the stagnation point position.

151

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

αeff

x
st

ag

(a) With control.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

αeff

x
st

ag

(b) Without control.

Figure 7.19: Normalized stagnation point position along the surface versus effective
angle of attack for the cases (a) with control and (b) without control. The last three
periods of motion are indicated by the black portion of the curves. These figures
were produced from the same data in Figure 7.16 to more clearly visualize how the
controller is able to effectively synchronize the two variables after an initial transient
period. Perfect synchronicity would correspond to the curves lying directly along the
diagonal dotted line.

A phase-locked loop controller was implemented to attain a nearly optimal steady-

state thrust-producing swimming gait by synchronizing the two signals. It was shown

that after a transient “lock-in” period, the controller successfully synchronized the two

signals. To verify the performance of the controller, a parametric study was conducted

on a family of constant-phase gaits in which only the phase between the leading and

lagging foil was varied between runs. The fastest gaits indeed corresponded to the

same phase difference achieved by the controller at steady state. In other words,

after a transient period, the controller was able to find a near-optimal gait in terms

of swimming speed.

To demonstrate the usefulness of such a controller, an example was presented in

which the frequency of the leading foil deviated slightly from the presumed frequency.

Two simulations were run: one with a controller to adapt to the changing frequency

of the vortex wake, and another without control that assumed a known constant

152

leading foil frequency. It was shown that for this example, the controller led to a

higher speed, decreased power use and higher propulsive efficiency.

Due to the assumptions made in the controller design, performance is limited. The

transient time before the controller converges and is able to synchronize the signals

may depend significantly on the initial phase of the system. A non-linear controller

may be needed to further improve performance.

Additionally, the numerical experiments performed only explored a limited range

of the parameter space. In particular, only relatively low-amplitude motions were

considered. Additionally, some parameters such as the heaving amplitude were fixed

to a constant value. Our conclusions which focused on the effective angle of attack

may not extend to swimming outside of the parameter range considered here. In

particular, we note that Beal et al. [11] suggested there were two main mechanisms

for a moving foil to improve performance: the effective angle of attack and the suction

created by the interaction of vortices with the leading edge. This later effect was

not considered in this analysis and may play an important role in larger-amplitude

swimming gaits.

153

Chapter 8

Conclusions and Future Work

In this chapter we highlight the contributions of this thesis and offer suggestions for

future study.

In Chapters 3 and 4 we presented models for fish-like swimmers in potential and

Stokes flow and used them to design forward and turning gaits. Our models accurately

account for all hydrodynamical effects even for large-amplitude body deformations.

This improves upon previous work, which assumed either small-amplitude deforma-

tions or hydrodynamically decoupled swimmer links. In both the potential flow and

Stokes flow cases the local form of the connection — which relates shape changes

to the body velocity — appears as an important term in the equations of motion.

We demonstrated in Chapter 5 that the curvature of the connection plays a critical

role in the gait design process by highlighting the areas of shape space correspond-

ing to useful gaits. However, the large-amplitude gait design method we introduced

is limited to motion in which the group characterizing the position and orientation

of the swimmer is Abelian or in special cases when a semidirect product group is

composed of an Abelian group and a vector space. In the latter case, our result only

applies for the Abelian component of the semidirect product group but not the vector

space directions. One particularly challenging open area for future study is identify-

154

ing approaches useful for developing large-amplitude gaits for motion corresponding

to non-Abelian groups.

To model more realistic swimming that partially accounts for the effects of vis-

cosity, we reviewed a numerical model of a potential flow swimmer with vorticity

shedding in Chapter 6. Unlike most prior work, our model computed the overall

self-propelling motion of the swimmer as part of the solution. We also extended these

models by describing a method for computing the velocity potential in the presence

of a vortex wake as well as for diverting vortices around a body to avoid some numer-

ical issues. To facilitate the analysis, the swimmer was constrained to propel in only

the freestream direction. Future work should permit full motion in the plane and

attempt to develop techniques to achieve optimal turning gaits as well. In Chapter 7

we developed a control technique for maximizing thrust during forward swimming.

Through a series of numerical experiments, we demonstrated that an optimal control

strategy should ensure that two quantities on the trailing foil – the position of the

leading stagnation point (xstag) and the approximate effective angle of attack, which

ignores the effect of the vortex wake (αeff) – should be in phase. We note that we

do not expect these results to necessarily hold outside of the narrow parameter range

considered in our study. In fact, Figures 7.5 and 7.6 suggest that the steady-state

phase difference between xstag and αeff may be a function of pitching amplitude, fre-

quency or perhaps other parameters. In our work we employed a control technique

based on steady state results even during the transient portion of the gait. In fact an

optimal control technique may depend on a parameter such as the Strouhal number

which accounts for the swimmer speed relative to the freestream. Other authors [11]

have observed that performance in foil-like propulsion through a vortex wake is de-

pendent on the effective angle of attack and the suction created by vortices interacting

with the foil. This latter effect may be dominant for larger amplitude motions, and

the ability to identify vortex structures upstream of the foil may prove necessary for

155

effective control algorithms.

As an alternative to the heuristic approach considered in this work, one might

pursue the use of numerical optimal control methods [83] to navigate along a desired

path or around obstacles. Since the numerical model adopted here increases the state

space dimension of the system at each time step due to the creation of vortices, we

anticipate that one challenge to using such tools will be the requirement that the state

dimension remain constant. Although a full Navier-Stokes simulation could address

this particular issue, the computational cost associated with such a large state may be

prohibitively high. A more fruitful approach might involve the adaption of a relatively

low-order model like the one presented in this thesis or reduced order models, perhaps

based on proper orthogonal decomposition techniques.

Ultimately, these results should be tested and applied experimentally. We an-

ticipate that the turning gaits identified in the potential flow case may serve as a

reasonable first approximation for relatively large, fast-moving robotic swimmers. In

the field of nanomedicine, the design of drug delivery or cell repair machines might

benefit from an improved understanding of motion in Stokes flow. Finally, based on

the control techniques we have introduced for swimming through a vortex wake, we

envision fish-like robots — with a series of surface sensors mimicking the lateral line in

their biological counterparts — that are aware of their surrounding fluid environments

and navigate through them efficiently.

156

Bibliography

[1] R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and Ap-

plications. Springer-Verlag, 2nd edition, 1991.

[2] I. Akhtar, R. Mittal, G. Lauder, and E. Drucker. Hydrodynamics of a biologi-

cally inspired tandem flapping foil configuration. Theoretical and Computational

Fluid Dynamics, 21(3):155–170, 2007.

[3] M. Allen. Bush’s gaffes are back as debates near. The Washington Post,

page A8, October 1 2000.

[4] E. Anderson, W. McGillis, and M. Grosenbaugh. The boundary layer of swim-

ming fish. J. Exp. Biol., 204(1):81–102, 2001.

[5] J. Anderson and N. Chhabra. Maneuvering and Stability Performance of a

Robotic Tuna 1. Integrative and Comparative Biology, 42(1):118–126, 2002.

[6] J. Anderson and P. Kerrebrock. The vorticity control unmanned undersea ve-

hicle (VCUUV)—An autonomous vehicle employing fish swimming propulsion

and maneuvering. Proc. 10th Int. Symp. Unmanned Untethered Submersible

Technology, pages 189–195, 1997.

[7] J. Anderson and P. Kerrebrock. The vorticity control unmanned undersea ve-

hicle (VCUUV) performance results. Eleventh International Symposium on

Unmanned Untethered Submersible Technology, 369, 1999.

157

[8] D. Barrett, M. Grosenbaugh, and M. Triantafyllou. The optimal control of a

flexible hull robotic undersea vehicle propelled by an oscillating foil. Proceedings

of the 1996 Symposium on Autonomous Underwater Vehicle Technology, pages

1–9, 1996.

[9] D. Barrett, M. Triantafyllou, D. Yue, M. Grosenbaugh, and M. Wolfgang. Drag

reduction in fish-like locomotion. Journal of Fluid Mechanics, 392:183–212,

2000.

[10] B. Basu and G. Hancock. The unsteady motion of a two-dimensional aerofoil

in incompressible inviscid flow. J. Fluid Mech., 87(1):159–178, 1978.

[11] D. Beal, F. Hover, M. Triantafyllou, J. Liao, and G. Lauder. Passive propulsion

in vortex wakes. Journal of Fluid Mechanics, 549:385–402, 2006.

[12] L. Becker, S. Koehler, and H. Stone. On self-propulsion of micro-machines at low

Reynolds number: Purcell’s three-link swimmer. Journal of Fluid Mechanics,

490:15–35, 2003.

[13] T. Benjamin and A. Ellis. The Collapse of Cavitation Bubbles and the Pres-

sures thereby Produced against Solid Boundaries. Philosophical Transactions

for the Royal Society of London. Series A, Mathematical and Physical Sciences,,

260(1110):221–240, 1966.

[14] W. Birnbaum. Der Schlagflügelpropeller und die kleinen Schwingungen elastisch

befestigter Tragflügel. Z. f. Flugtechn. u. Motorluftschiffahrt, 15:128–134, 1924.

[15] J. Blake. Self propulsion due to oscillations on the surface of a cylinder at low

Reynolds number. Bull. Austral. Math. Soc, 3:255–264, 1971.

158

[16] R. Blake, L. Chatters, and P. Domenici. Turning radius of yellowfin

tuna(Thunnus albacares) in unsteady swimming manoeuvres. Journal of fish

biology, 46(3):536–538, 1995.

[17] T. Brower. Design of a Manta Ray Inspired Underwater Propulsive Mechanism

For Long Range, Low Power Operation. PhD thesis, Tufts University, 2006.

[18] J. H. J. Buchholz. The Flowfield and Performance of a Low Aspect Ration Un-

steady Propulsor. PhD thesis, Princeton University, Princeton, NJ, September

2006.

[19] J. Carling, T. L. Williams, and G. Bowtell. Self-propelled anguilliform swim-

ming: simultaneous solution of the two-dimensional navier-stokes equations and

Newton’s laws of motion. J. Exp. Biol., 201(23):3143–3166, 1998.

[20] J. Cheng and G. Chahine. Computational hydrodynamics of animal swimming:

boundary element method and three-dimensional vortex wake structure. Com-

parative Biochemistry and Physiology, Part A, 131(1):51–60, 2001.

[21] D. Clarke. Designing phase-locked loops for instrumentation applications. Mea-

surement, 32(3):205–227, 2002.

[22] J. Cortes, S. Martinez, J. Ostrowski, and K. McIsaac. Optimal Gaits for Dy-

namic Robotic Locomotion. The International Journal of Robotics Research,

20(9):707, 2001.

[23] D. Crighton. The Kutta Condition in Unsteady Flow. Annual Review of Fluid

Mechanics, 17(1):411–445, 1985.

[24] G. de Araujo and J. Koiller. Self-Propulsion of N-Hinged ‘Animats’ at Low

Reynolds Number. Qualitative Theory of Dynamical Systems, 1:1–28, 2003.

159

[25] R. Djojodihardjo and S. Widnall. A numerical method for the calculation of

nonlinear, unsteady lifting potential flow problems. AIAA Journal, 7(10):2001–

2009, 1969.

[26] E. G. Drucker and G. V. Lauder. Locomotor function of the dorsal fin in teleost

fishes: experimental analysis of wake forces in sunfish. J. Exp. Biol., 204:2943–

2958, 2001.

[27] J. Eldredge. Numerical simulations of undulatory swimming at moderate

Reynolds number. Bioinspiration and Biomimetics,, 1(4):S19–S24, 2006.

[28] J. Eldredge, T. Colonius, and A. Leonard. A vortex particle method for two-

dimensional compressible flow. Journal of Computational Physics, 179(2):371–

399, 2002.

[29] S. Feldkamp. Swimming in the California sea lion: morphometrics, drag and

energetics, 1987.

[30] R. FINN. Stationary Solutions of the Navier-Stokes Equations. Proceedings of

Symposia in Applied Mathematics, 35, 1965.

[31] F. Fish. Kinematics and estimated thrust production of swimming harp and

ringed seals, 1988.

[32] F. Fish. Power Output and Propulsive Efficiency of Swimming Bottlenose Dol-

phins (Tursiops Truncatus), 1993.

[33] F. Fish. Performance constraints on the maneuverability of flexible and rigid

biological systems. Proceedings of the Eleventh International Symposium on

Unmanned Untethered Submersible Technology, pages 394–406, 1999.

160

[34] F. Fish, J. Hurley, and D. Costa. Maneuverability by the sea lion Zalophus

californianus: turning performance of an unstable body design. J. Exp. Biol.,

206(4):667–674, 2003.

[35] S. F. Galls and O. K. Rediniotis. Computational simulation of the autonomous

navigation of a biomimetic underwater vehicle. AIAA Journal, 41(4):605–611,

April 2003.

[36] A. Galper and T. Miloh. Generalized Kirchhoff Equations for a Deformable

Body Moving in a Weakly Non-Uniform Flow Field. In Mathematical and Phys-

ical Sciences, volume 446, pages 169–193. JSTOR, 1994.

[37] A. Galper and T. Miloh. Dynamic equations of motion for a rigid or deformable

body in an arbitrary non-uniform potential flow field. J. Fluid Mech., 295:91–

120, 1995.

[38] J. Gerhard, M. Pastoor, R. King, B. Noack, A. Dillmann, M. Morzynski, and

G. Tadmor. Model-based control of vortex shedding using low-dimensional

Galerkin models. AIAA Paper, 4262, 2003.

[39] J. Giesing. Unsteady Two-Dimensional Potential Flow with Lift. Douglas Air-

craft Report No. CB-32144, March, 1965.

[40] J. Giesing. Unsteady Two-Dimensional Potential Flow For Two Bodies With

Lift. Technical Report AD0654200, DTIC Research Report, 1967.

[41] J. Giesing. Nonlinear Interaction of Two Lifting Bodies in Arbitrary Unsteady

Motion. Journal of Basic Engineering, 90(3):387–394, 1968.

[42] J. Giesing. Nonlinear Two-Dimensional Unsteady Potential Flow with Lift.

Journal of Aircraft, 5(2):135–143, 1968.

161

[43] H. Glauert. The force and moment on an oscillating airfoil. Rep. Memo. Aero-

naut. Res. Comm.(Great Britain, 1929.

[44] J. Graver, P. University, D. of Mechanical, and A. Engineering. Underwater

Gliders: Dynamics, Control and Design. PhD thesis, Princeton University,

2005.

[45] J. Gray. Studies In Animal Locomotion VI. The propulsive powers of the dol-

phin. J. Exp. Biol., 13:192–199, 1936.

[46] M. Hausner and J. Schwartz. Lie groups, Lie algebras. Gordon and Breach,

New York, 1968.

[47] J. Hess and A. Smith. Calculation of potential flow about arbitrary bodies.

Prog. Aeronaut. Sci., 8:1–138, 1967.

[48] F. Houssay. Forme, puissance et stabilité des poissons. A. Hermann et fils,

1912.

[49] G. Hsiao and R. Kress. Integral equation for the two-dimensional exterior Stokes

problem. Appl. Numer. Math., 1(1):77–93, 1985.

[50] W. T. Joe, K. Taira, T. Colonius, D. G. MacMynowski, and G. Tadmor. Closed-

loop control of vortex shedding on a two-dimensional flat-plate airfoil at a low

reynolds number. In 46th AIAA Aerospace Sciences Meeting and Exhibit, Jan-

uary 2008.

[51] K. Jones, C. Dohring, and M. Platzer. Wake Structures Behind Plunging Air-

foils: A Comparison of Numerical and Experimental Results. AIAA Paper,

1996.

[52] K. Jones and M. Platzer. An experimental and numerical investigation of

flapping-wing propulsion. AIAA Paper, pages 99–0995, 1999.

162

[53] K. Jones, M. Platzer, and C. Monterey. Time-Domain Aeroelastic Analysis of

a Two Airfoil System with Application to Unsteady Rotary Wing Flowfields.

In AIAA 33rd Aerospace Sciences Meeting and Exhibit. Reno, NV, 1995.

[54] E. Kanso and J. Marsden. Optimal Motion of an Articulated Body in a Perfect

Fluid. Decision and Control, 2005 and 2005 European Control Conference.

CDC-ECC’05. 44th IEEE Conference on, pages 2511–2516, 2005.

[55] E. Kanso, J. E. Marsden, C. W. Rowley, and J. B. Melli-Huber. Locomotion of

articulated bodies in a perfect fluid. J. Nonlin. Sci., 2005.

[56] T. Karman and W. Sears. Airfoil theory for non-uniform motion. Journal of

the Aeronautical Sciences, 5:6–17, 1938.

[57] J. Katz and A. Plotkin. Low-Speed Aerodynamics. Cambridge University Press,

2nd edition, May 2001.

[58] S. Kelly and R. Murray. The geometry and control of dissipative systems.

Decision and Control, 1996., Proceedings of the 35th IEEE, 1, 1996.

[59] S. D. Kelly. The Mechanics and Control of Robotic Locomotion with Appli-

cations to Aquatic Vehicles. PhD thesis, California Institute of Technology,

Pasadena, California, May 1998.

[60] G. Kirchhoff. Ueber die bewegung eines rotationskörpers in einer flüssigkeit.

Crelle, lxxi:237, 1869.

[61] R. Krasny. Desingularization of periodic vortex sheet roll-up. Journal of Com-

putational Physics, 65(2):292–313, 1986.

[62] H. Kussner. Untersuchung der Bewegung einer Platte beim Eintritt in eine

Strahlgrenze. Luftfahrt Forschung, 13:425, 1936.

163

[63] H. Kussner. Zusammenfassender Berichtuber den instationaren Auftrieb von

Flugeln. Luftfahrtforschung, 13(12):410–424, 1936.

[64] H. Lamb. Hydrodynamics. Dover, 1945.

[65] N. Leonard and J. Graver. Model-based feedback control of autonomous un-

derwater gliders. Oceanic Engineering, IEEE Journal of, 26(4):633–645, 2001.

[66] N. E. Leonard and P. S. Krishnaprasad. Motion control of drift-free, left-

invariant systems on lie groups. IEEE Trans. Automat. Contr., 40, 1995.

[67] A. Leroyer and M. Visonneau. Numerical methods for RANSE simulations of a

self-propelled fish-like body. Journal of Fluids and Structures, 20(7):975–991,

2005.

[68] J. Liao, D. Beal, G. Lauder, and M. Triantafyllou. Fish Exploiting Vortices

Decrease Muscle Activity. Science, 302(5650):1566–1569, November 2003.

[69] M. Lighthill. On the squirming motion of nearly-spherical deformable bodies

through liquids at very small reynolds numbers. Communications on Pure and

Applied Mathematics, 5:100–118, 1952.

[70] M. J. Lighthill. Note on the swimming of slender fish. J. Fluid Mech., 9, 1960.

[71] M. J. Lighthill. Large-amplitude elongated-body theory of fish locomotion.

Proc. R. Soc. Lond. B, 179, 1971.

[72] H. Liu. A computational fluid dynamics study of tadpole swimming. J. Exp.

Biol., 199(6):1245–1260, 1996.

[73] H. Liu. The three-dimensional hydrodynamics of tadpole locomotion. J. Exp.

Biol., 200(22):2807–2819, 1997.

164

[74] W. Magnus. On the exponential solutions of differential equations for a linear

operator. Communications on Pure and Applied Mathematics, VII:649–673,

1954.

[75] J. Marsden and T. Ratiu. Introduction to Mechanics and Symmetry, volume 17.

Springer-Verlag, New York, second edition, 2003.

[76] J. Marsden, T. Ratiu, and A. Weinstein. Semidirect products and reduction in

mechanics. Trans. Amer. Math. Soc., 281(1), January 1984.

[77] J. E. Marsden. Lectures on Mechanics, volume 174 of London Mathematical

Society Lecture Note Series. Cambridge University Press, 1990.

[78] J. E. Marsden, R. Montgomery, and T. S. Ratiu. Reduction, symmetry, and

phases in mechanics. Mem. Amer. Math. Soc., 88(436), November 1990.

[79] N. Maslov. Maneuverability and controllability of dolphins. Bionika, 4:46–50,

1970.

[80] R. Mason. Fluid locomotion and trajectory planning for shape-changing robots.

PhD thesis, California Institute of Technology, Pasadena, California, 2003.

[81] R. Mason and J. W. Burdick. Propulsion and control of deformable bodies in

an ideal fluid. In IEEE International Conference on Robotics and Automation,

1999.

[82] J. B. Melli, C. W. Rowley, and D. S. Rufat. Motion planning for an articulated

body in a perfect planar fluid. SIAM J. Appl. Dyn. Sys., 5(4):650–669, 2006.

[83] M. Milam, K. Mushambi, and R. Murray. A new computational approach to

real-time trajectory generation forconstrained mechanical systems. Decision

and Control, 2000. Proceedings of the 39th IEEE Conference on, 1, 2000.

165

[84] T. Miloh and A. Galper. Self-Propulsion of General Deformable Shapes in a

Perfect Fluid. In Mathematical and Physical Sciences, volume 442, pages 273–

299, 1993.

[85] R. Montgomery. How much does the rigid body rotate? A Berry’s phase from

the 18th century. American Journal of Physics, 59:394, 1991.

[86] K. Morgansen, V. Duidam, R. Mason, J. Burdick, and R. Murray. Nonlin-

ear control methods for planar carangiform robot fish locomotion. In IEEE

International Conference on Robotics and Automation, volume 1, 2001.

[87] R. M. Murray, J. W. Burdick, S. D. Kelly, and J. Radford. Trajectory gener-

ation for mechanical systems with application to robotic locomotion. In Proc.

Workshop on Algorithmic Foundations of Robotics, 1998.

[88] S. Nowacek. High Performance Turning Capabilities During Foraging By Bot-

tlenose Dolphins (Tursios Truncatus). Marine Mammal Science, 20(3):498–509,

2004.

[89] C. Oseen. Über die Stokessche Formel und über die verwandte Aufgabe in der

Hydrodynamik. Arkiv Mat., Astron., Fysik, 6:29, 1910.

[90] J. Ostrowski, J. Desai, and V. Kumar. Optimal Gait Selection for Nonholo-

nomic Locomotion Systems. The International Journal of Robotics Research,

19(3):225, 2000.

[91] C.-K. Pang. A Computer Code (USPOTF2) for Unsteady Incompressible Flow

Past Two Airfoils. Master’s thesis, Naval Postgraduate School, Monterey, Cal-

ifornia, September 1988.

166

[92] M. Pastoor, B. Noack, R. King, and G. Tadmor. Spatiotemporal Waveform

Observers and Feedback in Shear Layer Control. 44 th AIAA Aerospace Sciences

Meeting and Exhibit, pages 1–9, 2006.

[93] M. Platzer, K. Neace, and C. Pang. Aerodynamic analysis of flapping wing

propulsion. AIAA, Aerospace Sciences Meeting and Exhibit, 31 st, Reno, NV,

page 1993, 1993.

[94] I. Plaut. Effects of fin size on swimming performance, swimming behaviour and

routine activity of zebrafish Danio rerio. J. Exp. Biol., 203(4):813–820, 2000.

[95] H. Power. The completed double layer boundary integral equation method for

two-dimensional stokes flow. IMA J. Appl. Math., 51:123–145, 1993.

[96] C. Pozrikidis. Boundary integral and singularity methods for linearized viscous

flow. Cambridge University Press, New York, 1992.

[97] L. Prandtl. Applications of modern hydrodynamics to aeronautics. Technical

report, NACA TR-116, June 1921.

[98] E. M. Purcell. Life at low Reynolds number. Am. J. Phys., 45(1):3–11, Jan.

1977.

[99] J. E. Radford. Symmetry, Reduction and Swimming in a Perfect Fluid. PhD

thesis, California Institute of Technology, Pasadena, California, 2003.

[100] J. E. Radford and J. W. Burdick. Local motion planning for nonholonomic

control systems evolving on principal bundles. In Proc. Mathematical Theory

of Networks and Systems, 1998.

[101] P. Saffman. The self-propulsion of a deformable body in a perfect fluid. Journal

of Fluid Mechanics, 28:385–389, 1967.

167

[102] T. Sarpkaya. An inviscid model of two-dimensional vortex shedding for transient

and asymptotically steady separated flow over an inclined plate. Journal of

Fluid Mechanics, 68(01):109–128, March 1975.

[103] J. W. Schaefer and S. Eskinazi. An analysis of the vortex street generated in a

viscous fluid. Journal of Fluid Mechanics, 6:241–260, 1959.

[104] W. SEARS. Some Aspects of Non-Stationary Airfoil Theory and Its Practical

Application. AIAA Journal, 8(3):104–108, 1941.

[105] A. Shapere and F. Wilczek. Geometry of self-propulsion at low Reynolds num-

ber. J. Fluid Mech., 198:557–585, 1989.

[106] D. Smith. Estimates at infinity for stationary solutions of the Navier-Stokes

equations in two dimensions. Archive for Rational Mechanics and Analysis,

20(5):341–372, 1965.

[107] T. Suzuki, T. Colonius, and D. MacMartin. Inverse technique for vortex imaging

and its application to feedback flow control. AIAA, 4260, 2003.

[108] G. Tadmor. Observers and feedback control for a rotating vortex pair. IEEE

Transactions on Control Systems Technology, 12(1):36–51, 2004.

[109] D. Tam and A. Hosoi. Optimal Stroke Patterns for Purcell’s Three-Link Swim-

mer. Physical Review Letters, 98(6):68105, 2007.

[110] G. Taylor. Analysis of the Swimming of Microscopic Organisms. Proceedings

of the Royal Society of London. Series A, Mathematical and Physical Sciences,

209(1099):447–461, 1951.

[111] G. Taylor. Analysis of the Swimming of Long and Narrow Animals. Proceedings

of the Royal Society of London. Series A, Mathematical and Physical Sciences,

214(1117):158–183, 1952.

168

[112] G. Taylor. The Action of Waving Cylindrical Tails in Propelling Microscopic

Organisms. Proceedings of the Royal Society of London. Series A, Mathematical

and Physical Sciences, 211(1105):225–239, 1952.

[113] A. Techet. Experimental visualization of the near-boundary hydrodynamics

about fish-like swimming bodies. PhD thesis, Massachusetts Institute of Tech-

nology, 2001.

[114] A. Techet and M. Triantafyllou. Boundary Layer Relaminarization in Swim-

ming Fish. Proceedings of the International Offshore and Polar Engineering

Conference, 1999.

[115] N. Teng. The Development of a Computer Code for the Numerical Solution of

Unsteady, Inviscid and Incompressible Flow over an Airfoil,”. Master’s Thesis,

Naval Postgraduate School, Monterey, CA, June, 1987.

[116] T. Theodorsen. General theory of aerodynamic instability and the mechanism

of flutter. Technical report, NACA TR-496, 1935.

[117] D. Thompson. Historia Animalium, Book XI, 1910.

[118] M. Triantafyllou and G. Triantafyllou. An efficient swimming machine. Scien-

tific American, 272(3):64–70, 1995.

[119] I. H. Tuncer and M. F. Platzer. Thrust generation due to airfoil flapping. AIAA

J., 34(2), February 1996.

[120] M. Vezza and R. Galbraith. A method for predicting unsteady potential flow

about an aerofoil. International Journal for Numerical Methods in Fluids,

5:347–356, 1985.

[121] T. von Karman and J. Burgers. General Aerodynamic Theory – Perfect Fluids,

volume II. Dover Publications, New York, 1963.

169

[122] H. Wagner. Uber die entstehung des dynamischen auftriebes von tragflugeln.

Zeitschrift für Angewandte Mathematik und Mechanik, 5(1):17–31, 1925.

[123] P. Webb. Efficiency of pectoral fin propulsion of Cymatogaster aggregata. Swim-

ming and Flying in Nature, 2:573–584, 1974.

[124] P. Webb. Speed, Acceleration and Manoeuvrability of Two Teleost Fishes.

Journal of Experimental Biology, 102(1):115–122, 1983.

[125] T. Williams, G. Bowtell, J. Carling, K. Sigvardt, and N. Curtin. Interactions

between muscle activation, body curvature and the water in the swimming

lamprey. Symp Soc Exp Biol, 49:49–59, 1995.

[126] D. Willis, J. Peraire, and J. White. FastAero–A Precorrected FFT–Fast Mul-

tipole Tree Steady and Unsteady Potential Flow Solver. High Performance

Computation for Engineered Systems, 2005.

[127] M. Wolfgang, J. Anderson, M. Grosenbaugh, D. Yue, and M. Triantafyllou.

Near-body flow dynamics in swimming fish. Journal of Experimental Biology,

202(17):2303–2327, 1999.

[128] T. Y. Wu. Swimming of a waving plate. J. Fluid Mech., 10, 1961.

[129] T. Y. Wu. Hydrodynamics of swimming propulsion. part 1. swimming of a

two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J.

Fluid Mech., 46, 1971.

[130] Q. ZHU, M. Wolfgang, D. Yue, and M. Triantafyllou. Three-dimensional flow

structures and vorticity control in fish-like swimming. Journal of Fluid Me-

chanics, 468:1–28, 2002.

[131] S. Zimmerman. Submarine Technology for the 21st Century. Trafford Publish-

ing, 2000.

170

[132] M. Zylber, G. Failla, and A. Le Bas. Stenurus globicephalae Baylis et Daubney,

1925 (Nematoda: Pseudaliidae) from a False Killer Whale, Pseudorca crassi-

dens (Cetacea: Delphinidae), Stranded on the Coast of Uruguay. Memórias do

Instituto Oswaldo Cruz, 97:221–225, 2002.

171

Appendix A

Potential flow code

This potential flow code written in MATLAB was developed in collaboration with Eva

Kanso. Refer to Chapter 3 for a description of the potential flow swimmer model.

A.1 driver.m

% Driver f i l e f o r running p o t e n t i a l f l ow swimmer s imu la t i ons
% INPUTS: a , e , c , N, t s t e p s , mode1 , mode2 , phi
% OUTPUTS: g (group motion)

% e l l i p s e semi−major (a) and semi−minor (e) axes l eng t h
a = 1 ; e = . 1 ;

% e : o f f s e t d i s t ance between j o i n t and t i p o f e l l i p s e
c = . 2 ;

% N: # of pane l s per e l l i p s e
N = 50 ;

% t s t e p s : # of time s t e p s / per iod
t s t e p s = 50 ;

% mode1 , mode2 and phi s p e c i f y shape changes (see shape var .m)
mode1 = 1 ; mode2 = 1 ; phi = 0 ;

l = a+e ;

% time vec tor (one per iod)
h = 2∗pi/ t s t e p s ; t = 0 : h :2∗ pi ; nbt = length (t) ;

% i n i t i a l i z e group v a r i a b l e s
g = zeros (nbt , 3) ;

% d i s c r e t i z a t i o n o f each e l l i p s e
[zcg1 , t1 , n1 , de l1] = e l l i p s e (a , b ,N) ;

% Actual mass and i n e r t i a o f each e l l i p s e
m = a∗b/ l ˆ2 ;

global I I
I I = [(m∗(aˆ2+bˆ2)/4)/ l ˆ2 , 0 , 0 ; 0 , m, 0 ; 0 , 0 , m] ;

172

% In t e g ra t i on by c l a s s i c a l 4 th−order Runge−Kutta method
for i = 1 : nbt−1

g (i +1 , :) = rk4 (t (i) , g (i , :) , h , l , zcg1 , t1 , n1 , del1 ,N, mode1 , mode2 , phi) ;
end

A.2 rk4.m

function g1 = rk4 (t0 , g0 , h , l , zcg1 , t1 , n1 , del1 , npts , mode1 , mode2 , phi)
% Fourth order f i x e d time s t ep Runge−Kutta scheme to advance motion in
% time .

% shape v a r i a b l e s
[th1 0 , th2 0 , th1dot 0 , th2dot 0] = shape var (t0 , mode1 , mode2 , phi) ;
[th1 1 , th2 1 , th1dot 1 , th2dot 1] = shape var (t0+h/2 ,mode1 , mode2 , phi) ;
[th1 2 , th2 2 , th1dot 2 , th2dot 2] = shape var (t0+h , mode1 , mode2 , phi) ;

% connect ion
A0 = connect ion (th1 0 , th2 0 , th1dot 0 , th2dot 0 , l , zcg1 , t1 , n1 , del1 , npts) ;
A1 = connect ion (th1 1 , th2 1 , th1dot 1 , th2dot 1 , l , zcg1 , t1 , n1 , del1 , npts) ;
A2 = connect ion (th1 2 , th2 2 , th1dot 2 , th2dot 2 , l , zcg1 , t1 , n1 , del1 , npts) ;

% non−d imens iona l i z e connect ion − mul t i p l y u & v v e l o c i t i e s by l
A0 = [l 0 0 ;0 l 0 ; 0 0 1]∗A0 ;
A1 = [l 0 0 ;0 l 0 ; 0 0 1]∗A1 ;
A2 = [l 0 0 ;0 l 0 ; 0 0 1]∗A2 ;

K1 = v e l f u n (A0 , g0) ;
K2 = v e l f u n (A1 , g0 + h∗K1/ 2) ;
K3 = v e l f u n (A1 , g0 + h∗K2/ 2) ;
K4 = v e l f u n (A2 , g0 + h∗K3) ;

g1 = g0 + h∗(K1+2∗K2+2∗K3+K4) / 6 ;

A.3 shape var.m

function [th1 , th2 , th1dot , th2dot] = shape var (t , mode1 , mode2 , phi)
% Prescr i be shape changes o f ang l e s between bod ie s

% A1 = Amplitude o f motion
% o f f s e t = Of f s e t a long d iagona l
% phi = phase s h i f t

switch mode1
case 1

% c i r c l e s in shape space
switch mode2

case 1
% for c i r c l e about o r i g i n
A1=1.5;
o f f s e t =0;

case 2
% for c i r c l e s h i f t e d ,
A1 = 0 . 8 ;
o f f s e t = 0 . 8 ;

case 3
% for c i r c l e s h i f t e d ,
A1 = −0.45;
o f f s e t = −1.5;

end
th1 = −o f f s e t+A1∗(cos (t−phi)) ;
th2 = o f f s e t+A1∗(sin (t−phi)) ;

th1dot = −A1∗ sin (t−phi) ;
th2dot = A1∗cos (t−phi) ;

173

case 2
Amp = 2 . 0 ;
% counter−c l o ckw i s e square in shape space
i f t<pi/2

th1 = 0 ;
th2 = Amp∗(t)/ (pi / 2) ;
th1dot = 0 ;
th2dot = Amp/(pi / 2) ;

else i f t<pi & t>=pi/2
th1 = −Amp∗ ((t−pi /2)/(pi / 2)) ;
th2 = Amp;
th1dot = −Amp/(pi / 2) ;
th2dot = 0 ;

else i f t>=pi & t<3∗pi/2
th1 = −Amp;
th2 = Amp−Amp∗ ((t−pi)/ (pi / 2)) ;
th1dot = 0 ;
th2dot = −Amp/(pi / 2) ;

else i f t<=2∗pi+eps & t>=3∗pi/2
th1 = −Amp+Amp∗ ((t−3∗pi /2)/(pi / 2)) ;
th2 = 0 ;
th1dot = Amp/(pi / 2) ;
th2dot = 0 ;

end
end

end
end

end

A.4 connection.m

function A = connect ion (th1 , th2 , th1dot , th2dot , l , zcg1 , t1 , n1 , del1 , npts) ;
% Computes the hydromechanical connect ion which r e l a t e s the shape changes
% to the group motion

global I I ;

% non−dimensional added i n e r t i a s
[I33 , I11 , I22 , I31 , I32 , I12] = getadmass (th1 , th2 , l , zcg1 , t1 , n1 , del1 , npts) ;

% motions o f 1 and 2 r e l a t i v e to 3
x1 = [th1 ,(1+ cos (th1)) , sin (th1)] ;
x2 = [th2 ,−(1+cos (th2)) ,− sin (th2)] ;

ze ta1 = [th1dot ; 0 ; th1dot] ; % (th1dot , x1dot , y1dot)
zeta2 = [th2dot ; 0 ; −th2dot] ;

% Inverse ad j o in t ac t ion
Adx1inv = a d j o i n t i n v (x1) ;
Adx2inv = a d j o i n t i n v (x2) ;

% Adjoint ac t ion
Adx1 = a d j o i n t (x1) ;
Adx2 = a d j o i n t (x2) ;

% % ac tua l mass
I33 = I33 + I I ;
I22 = I22 + Adx2inv ’∗ I I ∗Adx2inv ;
I11 = I11 + Adx1inv ’∗ I I ∗Adx1inv ;

% locked moment o f i n e r t i a
I I l o c = I11 + I22 + I33 + 2∗ I12 + 2∗ I31 + 2∗ I32 ;

% momenta o f e l l i p s e s 1 and 2
zeta1 temp = Adx1∗ zeta1 ;
zeta2 temp = Adx2∗ zeta2 ;

h1p2 = (I11+I12+I31)∗ zeta1 temp + (I22+I32+I12)∗ zeta2 temp ;

174

% connect ion
A = inv (I I l o c)∗h1p2 ;

% swi tch components around to put in form (u , v , omega) ra ther than (omega , u , v)
Atemp = A;

A(1 , :) = Atemp (2 , :) ;
A(2 , :) = Atemp (3 , :) ;
A(3 , :) = Atemp (1 , :) ;

A.5 getadmass.m

function [m11 , m22 , m33 , m12 , m13 , m23] = getadmass (th1 , th2 , l , zcg1 , t1 , n1 , del1 ,N)
% de f ine geometry
[zc , zcg , t , n , de l] = threebody (th1 , th2 , l , zcg1 , t1 , n1 , del1 ,N) ;

% ca l c u l a t e the i n f l u enc e matr ices and v e l o c i t y p o t e n t i a l
[An, Bt , phi] = i n f l u e n c e (zc , t , n , del ’ , 3∗N) ;

% ca l c u l a t e the added masses
[m11 , m22 , m33 , m12 , m13 , m23] = admass (An, phi , zc , n , del , l ,N) ;

A.6 threebody.m

function [zc , zcg , t , n , de l] = threebody (th1 , th2 , l , zcg1 , t1 , n1 , del1 , npts)
% Computes l o c a t i on o f con t ro l po in t s wrt i n e r t i a l frame (zc) and wrt frame
% for 3 bod ie s .
% Also f i n d s the normal (n) and tangent (t) v e c t o r s at each con t ro l po in t

% −−−−−−−−−−−−−−−−−OUTPUT
%
% zc po s i t i on o f con t ro l p t s w. r . t i n e r t i a l frame
%
% t components o f v e c t o r s tangent to pane l s
%
% n components o f outward normal v e c t o r s
%
% de l panel l en g t h
%
% −−−−−−−−−−−−−−−−
N1 = npts ; N1p1 = N1 + 1 ;
N2 = 2∗ npts ; N2p1 = N2 + 1 ;
N = 3∗ npts ;

% or i en t a t i on o f f r on t and rear e l l i p s e s
cth1 = cos (th1) ; sth1 = sin (th1) ;
cth2 = cos (th2) ; sth2 = sin (th2) ;

% pos i t i on o f c . o .m of e l l i p s e s (l=a+c)
zg (1 , 1) = 0 ;
zg (1 , 2) = 0 ;

zg (2 , 1) = l ∗(1+ cth1) ;
zg (2 , 2) = l ∗ sth1 ;

zg (3 , 1) = − l ∗(1+ cth2) ;
zg (3 , 2) = − l ∗ sth2 ;

% i n i t i a l i z e
xg = zeros (N, 1) ; yg = zeros (N, 1) ;
zcg = zeros (N, 2) ; zc = zeros (N, 2) ;
t = zeros (N, 2) ; n = zeros (N, 2) ;
Del = zeros (N, 1) ;

% c . o .m

175

xg (1 : npts , 1) = ones (npts , 1)∗ zg (1 , 1) ;
xg (N1p1 : N2 , 1) = ones (npts , 1)∗ zg (2 , 1) ;
xg (N2p1 :N, 1) = ones (npts , 1)∗ zg (3 , 1) ;

yg (1 : npts , 1) = ones (npts , 1)∗ zg (1 , 2) ;
yg (N1p1 : N2 , 1) = ones (npts , 1)∗ zg (2 , 2) ;
yg (N2p1 :N, 1) = ones (npts , 1)∗ zg (3 , 2) ;

% or i en t a t i on o f f r on t o f rear e l l i p s e s
o r i e n t 2 (: , 1) = ones (npts , 1) . ∗ cth1 ;
o r i e n t 2 (: , 2) = ones (npts , 1) . ∗ sth1 ;

o r i e n t 3 (: , 1) = ones (npts , 1) . ∗ cth2 ;
o r i e n t 3 (: , 2) = ones (npts , 1) . ∗ sth2 ;

% e l l i p s e s
zcg (1 : npts , 1) = zcg1 (: , 1) ;
zcg (1 : npts , 2) = zcg1 (: , 2) ;

zcg (N1p1 : N2 , 1) = zcg1 (: , 1) . ∗ o r i e n t 2 (: , 1) − zcg1 (: , 2) . ∗ o r i e n t 2 (: , 2) ;
zcg (N1p1 : N2 , 2) = zcg1 (: , 1) . ∗ o r i e n t 2 (: , 2) + zcg1 (: , 2) . ∗ o r i e n t 2 (: , 1) ;

zcg (N2p1 :N, 1) = zcg1 (: , 1) . ∗ o r i e n t 3 (: , 1) − zcg1 (: , 2) . ∗ o r i e n t 3 (: , 2) ;
zcg (N2p1 :N, 2) = zcg1 (: , 1) . ∗ o r i e n t 3 (: , 2) + zcg1 (: , 2) . ∗ o r i e n t 3 (: , 1) ;

zc = [xg , yg] + zcg ;

% tangent v e c t o r s
t (1 : npts , 1) = t1 (: , 1) ;
t (1 : npts , 2) = t1 (: , 2) ;

t (N1p1 : N2 , 1) = t1 (: , 1) . ∗ o r i e n t 2 (: , 1) − t1 (: , 2) . ∗ o r i e n t 2 (: , 2) ;
t (N1p1 : N2 , 2) = t1 (: , 1) . ∗ o r i e n t 2 (: , 2) + t1 (: , 2) . ∗ o r i e n t 2 (: , 1) ;

t (N2p1 :N, 1) = t1 (: , 1) . ∗ o r i e n t 3 (: , 1) − t1 (: , 2) . ∗ o r i e n t 3 (: , 2) ;
t (N2p1 :N, 2) = t1 (: , 1) . ∗ o r i e n t 3 (: , 2) + t1 (: , 2) . ∗ o r i e n t 3 (: , 1) ;

% normal v e c t o r s
n (: , 1) = −t (: , 2) ;
n (: , 2) = t (: , 1) ;

% panel l eng t h
de l (1 : npts , :) = de l1 ;
de l (N1p1 : N2 , :) = de l1 ;
de l (N2p1 :N, :) = de l1 ;

A.7 influence.m

function [An, Bt , Phi] = i n f l u e n c e (zc , t , n , del ,N)
% −−−−−−−−−−−−−−−−−INPUT
%
% zc po s i t i on o f con t ro l p t s
% t components o f v e c t o r s tangent to pane l s
% n components o f outward normal v e c t o r s
% de l panel l en g t h
%
% zc , t and n are w. r . t i n e r t i a l frame
%
% −−−−−−−−−−−−−−−−

% −−−−−−−−−−−−−−−−−INTERNAL VARIABLES
%
% Xrel (i , j) & Yrel (i , j) coord ina te s o f con t ro l pt i (Ci) r e l a t i v e
% to con t ro l pt j (Cj) w. r . t i n e r t i a l frame
%
% Cn(i , j) & Ct (i , j) normal and t an g en t i a l coord ina te s o f Ci r e l a t i v e
% to Cj w. r . t . a frame at tached to the panel j
%
% Vn(i , j) & Vt(i , j) normal and t an g en t i a l v e l o c i t i e s induced

176

% at Ci due to a constant source d i s t r i b u t i o n
% at panel j , w. r . t . a frame at tached to panel j
%
% Vx(i , j) & Vy(i , j) v e l o c i t i e s Vn(i , j) and Vt(i , j)
% expressed w. r . t . i n e r t i a l frame
%
% −−−−−−−−−−−−−−−−

% −−−−−−−−−−−−−−−−−OUTPUT
%
% An(i , j) & Bt (i , j) normal and t an g en t i a l v e l o c i t i e s induced at Ci
% due to a constant source d i s t r i b u t i o n at panel j
% Expressed w. r . t a frame at tached to the panel i
%
% Phi p o t e n t i a l f unc t i on
%
% −−−−−−−−−−−−−−−−

% i n i t i a l i z e
Xc = zeros (N,N) ; Yc = zeros (N,N) ;
tx = zeros (N,N) ; ty = zeros (N,N) ;
nx = zeros (N,N) ; ny = zeros (N,N) ;
Ds = zeros (N,N) ;

% ass i gn
Xc = zc (: , 1) ∗ ones (1 ,N) ; Yc = zc (: , 2) ∗ ones (1 ,N) ;
tx = t (: , 1) ∗ ones (1 ,N) ; ty = t (: , 2) ∗ ones (1 ,N) ;
nx = n (: , 1) ∗ ones (1 ,N) ; ny = n (: , 2) ∗ ones (1 ,N) ;

de l=del ’ ;
Ds = 0 . 5 . ∗ ones (N, 1)∗ del ’ ;

% compute Xrel (i , j) and Yrel (i , j)
XREL = Xc−Xc ’ ;
YREL = Yc−Yc ’ ;

% compute Cn(i , j) and Ct (i , j)
Cn = XREL.∗ nx ’ + YREL.∗ ny ’ ;
Ct = XREL.∗ tx ’ + YREL.∗ ty ’ ;

% compute Vn(i , j) and Vt(i , j)
temp1 = Cn . ˆ 2 ;
temp2 = (Ct + Ds) . ˆ 2 ;
temp3 = (Ct − Ds) . ˆ 2 ;
Vt Num = temp2 + temp1 ;
Vt Den = temp3 + temp1 ;
Vt = log (Vt Num. / Vt Den) ;
Vn Num = 2.∗Cn.∗Ds ;
Vn Den = Ct .ˆ2 + temp1 − Ds . ˆ 2 ;
angle = 2.∗ atan (Vn Num. / Vn Den) ;
Vn = angle + 2∗pi∗eye (N,N) ;

% compute Vx(i , j) and Vy(i , j)
Vx = Vn.∗ nx ’ + Vt .∗ tx ’ ;
Vy = Vn.∗ ny ’ + Vt .∗ ty ’ ;

% compute An(i , j) and Bt (i , j)
An = Vx.∗ nx + Vy.∗ ny ;
Bt = Vx.∗ tx + Vy.∗ ty ;

% compute Phi
Phi = − Ct .∗Vt − Cn.∗Vn − Ds .∗ log ((temp2 + temp1) . ∗ (temp3 + temp1)) ;

A.8 admass.m

function [m11 , m22 , m33 , m12 , m13 , m23] = admass (An, Phi , zcg , n , Del , l , npts)
% −−−−−−−−−−−−−−−−−INPUT
%
% An(i , j) normal v e l o c i t y induced at Ci due

177

% to a constant source d i s t r i b u t i o n at panel j
% Expressed w. r . t a frame at tached to the panel i
%
% phi p o t e n t i a l f unc t i on
%
% n normal v e c t o r s to pane l s
%
% zcg po s i t i on o f the con t ro l po in t s r e l a t i v e to c . o .m
%
% de l l eng t h o f pane l s
%
% −−−−−−−−−−−−−−−−

% −−−−−−−−−−−−−−−−−INTERNAL VARIABLES
%
% vfn boundary condi t ions , i . e . , normal v e l o c i t y
% of the f l u i d at the con t ro l po in t s
%
% sigma source d i s t r i b u t i o n due to a g iven vfn
%
%−−−−−−−−−−−−−−−−−−

% −−−−−−−−−−−−−−−−−OUTPUT
%
% m11, m22, m33, added i n e r t i a s
% m12, m13, m23
%
% −−−−−−−−−−−−−−−−−

N1 = npts ; N1p1 = N1 + 1 ;
N2 = 2∗ npts ; N2p1 = N2 + 1 ;
N3 = 3∗ npts ;

dens i ty = 1/pi ;

% de f ine boundary cond i t i ons

% angular ro t a t i on at un i t speed
ave l = zcg (: , 1) . ∗ n (: , 2) − zcg (: , 2) . ∗ n (: , 1) ;

% t r an s l a t i o n s at un i t speed in the BODY1 f i x e d frame
xve l = n (: , 1) ;
yve l = n (: , 2) ;

% body 1
vfn 1x = zeros (N3 , 1) ; v fn 1y = zeros (N3 , 1) ; v fn 1a = zeros (N3 , 1) ;

v fn 1x (1 : N1 , 1) = xve l (1 : N1 , 1) ;
v fn 1y (1 : N1 , 1) = yve l (1 : N1 , 1) ;
v fn 1a (1 : N1 , 1) = ave l (1 : N1 , 1) ;

% body 2
vfn 2x = zeros (N3 , 1) ; v fn 2y = zeros (N3 , 1) ; v fn 2a = zeros (N3 , 1) ;

v fn 2x (N1p1 : N2 , 1) = xve l (N1p1 : N2 , 1) ;
v fn 2y (N1p1 : N2 , 1) = yve l (N1p1 : N2 , 1) ;
v fn 2a (N1p1 : N2 , 1) = ave l (N1p1 : N2 , 1) ;

% body 3
vfn 3x = zeros (N3 , 1) ; v fn 3y = zeros (N3 , 1) ; v fn 3a = zeros (N3 , 1) ;

v fn 3x (N2p1 : N3 , 1) = xve l (N2p1 : N3 , 1) ;
v fn 3y (N2p1 : N3 , 1) = yve l (N2p1 : N3 , 1) ;
v fn 3a (N2p1 : N3 , 1) = ave l (N2p1 : N3 , 1) ;

% Source dens i t y d i s t r i b u t i o n
inv An = inv (An) ;

% body 1
sigma 1x = inv An∗ vfn 1x ;
sigma 1y = inv An∗ vfn 1y ;
s igma 1a = inv An∗ vfn 1a ;

178

% body 2
sigma 2x = inv An∗ vfn 2x ;
sigma 2y = inv An∗ vfn 2y ;
s igma 2a = inv An∗ vfn 2a ;

% body 3
sigma 3x = inv An∗ vfn 3x ;
sigma 3y = inv An∗ vfn 3y ;
s igma 3a = inv An∗ vfn 3a ;

% compute p o t e n t i a l f unc t i ons

% body 1
phi 1x = Phi∗ sigma 1x ;
phi 1y = Phi∗ sigma 1y ;
ph i 1a = Phi∗ s igma 1a ;

% body 2
phi 2x = Phi∗ sigma 2x ;
phi 2y = Phi∗ sigma 2y ;
ph i 2a = Phi∗ s igma 2a ;

% body 3
phi 3x = Phi∗ sigma 3x ;
phi 3y = Phi∗ sigma 3y ;
ph i 3a = Phi∗ s igma 3a ;

% compute the added masses

% body 1
% BODY1 f i x e d frame
m11 xx = dens i ty ∗sum(phi 1x .∗ vfn 1x .∗Del) ;
m11 yy = dens i ty ∗sum(phi 1y .∗ vfn 1y .∗Del) ;
m11 aa = dens i ty ∗sum(ph i 1a .∗ vfn 1a .∗Del) ;

m11 xy = dens i ty ∗sum(phi 1x .∗ vfn 1y .∗Del) ;
m11 xa = dens i ty ∗sum(phi 1x .∗ vfn 1a .∗Del) ;
m11 ya = dens i ty ∗sum(phi 1y .∗ vfn 1a .∗Del) ;

% body 2
% BODY2 f i x e d frame
m22 xx = dens i ty ∗sum(phi 2x .∗ vfn 2x .∗Del) ;
m22 yy = dens i ty ∗sum(phi 2y .∗ vfn 2y .∗Del) ;
m22 aa = dens i ty ∗sum(ph i 2a .∗ vfn 2a .∗Del) ;

m22 xy = dens i ty ∗sum(phi 2x .∗ vfn 2y .∗Del) ;
m22 xa = dens i ty ∗sum(phi 2x .∗ vfn 2a .∗Del) ;
m22 ya = dens i ty ∗sum(phi 2y .∗ vfn 2a .∗Del) ;

% body 3
% BODY3 f i x e d frame
m33 xx = dens i ty ∗sum(phi 3x .∗ vfn 3x .∗Del) ;
m33 yy = dens i ty ∗sum(phi 3y .∗ vfn 3y .∗Del) ;
m33 aa = dens i ty ∗sum(ph i 3a .∗ vfn 3a .∗Del) ;

m33 xy = dens i ty ∗sum(phi 3x .∗ vfn 3y .∗Del) ;
m33 xa = dens i ty ∗sum(phi 3x .∗ vfn 3a .∗Del) ;
m33 ya = dens i ty ∗sum(phi 3y .∗ vfn 3a .∗Del) ;

% in f l u enc e o f body 1 on body 2
m12 xx = dens i ty ∗sum(phi 1x .∗ vfn 2x .∗Del) ;
m12 yy = dens i ty ∗sum(phi 1y .∗ vfn 2y .∗Del) ;
m12 aa = dens i ty ∗sum(ph i 1a .∗ vfn 2a .∗Del) ;

m12 xy = 0.5∗ dens i ty ∗(sum(phi 1x .∗ vfn 2y .∗Del) + sum(phi 2x .∗ vfn 1y .∗Del)) ;
m12 xa = 0.5∗ dens i ty ∗(sum(phi 1x .∗ vfn 2a .∗Del) + sum(phi 2x .∗ vfn 1a .∗Del)) ;
m12 ya = 0.5∗ dens i ty ∗(sum(phi 1y .∗ vfn 2a .∗Del) + sum(phi 2y .∗ vfn 1a .∗Del)) ;

% in f l u enc e o f body 2 on body 3
m23 xx = dens i ty ∗sum(phi 2x .∗ vfn 3x .∗Del) ;

179

m23 yy = dens i ty ∗sum(phi 2y .∗ vfn 3y .∗Del) ;
m23 aa = dens i ty ∗sum(ph i 2a .∗ vfn 3a .∗Del) ;

m23 xy = 0.5∗ dens i ty ∗(sum(phi 2x .∗ vfn 3y .∗Del) + sum(phi 3x .∗ vfn 2y .∗Del)) ;
m23 xa = 0.5∗ dens i ty ∗(sum(phi 2x .∗ vfn 3a .∗Del) + sum(phi 3x .∗ vfn 2a .∗Del)) ;
m23 ya = 0.5∗ dens i ty ∗(sum(phi 2y .∗ vfn 3a .∗Del) + sum(phi 3y .∗ vfn 2a .∗Del)) ;

% in f l u enc e o f body 1 on body 3
m13 xx = dens i ty ∗sum(phi 1x .∗ vfn 3x .∗Del) ;
m13 yy = dens i ty ∗sum(phi 1y .∗ vfn 3y .∗Del) ;
m13 aa = dens i ty ∗sum(ph i 1a .∗ vfn 3a .∗Del) ;

m13 xy = 0.5∗ dens i ty ∗(sum(phi 1x .∗ vfn 3y .∗Del) + sum(phi 3x .∗ vfn 1y .∗Del)) ;
m13 xa = 0.5∗ dens i ty ∗(sum(phi 1x .∗ vfn 3a .∗Del) + sum(phi 3x .∗ vfn 1a .∗Del)) ;
m13 ya = 0.5∗ dens i ty ∗(sum(phi 1y .∗ vfn 3a .∗Del) + sum(phi 3y .∗ vfn 1a .∗Del)) ;

% % non−d imens ion l i z e
m = l ˆ2 ; j = m∗ l ˆ2 ; d = m∗ l ; % m = dens i t y ∗ p i ∗ l ˆ2;

% body 1
m11 xx = m11 xx/m;
m11 yy = m11 yy/m;
m11 aa = m11 aa/ j ;

m11 xy = m11 xy/m;
m11 xa = m11 xa/d ;
m11 ya = m11 ya/d ;

% body 2
m22 xx = m22 xx/m;
m22 yy = m22 yy/m;
m22 aa = m22 aa/ j ;

m22 xy = m22 xy/m;
m22 xa = m22 xa/d ;
m22 ya = m22 ya/d ;

% body 3
m33 xx = m33 xx/m;
m33 yy = m33 yy/m;
m33 aa = m33 aa/ j ;

m33 xy = m33 xy/m;
m33 xa = m33 xa/d ;
m33 ya = m33 ya/d ;

% in f l u enc e o f body 1 on body 2
m12 xx = m12 xx/m;
m12 yy = m12 yy/m;
m12 aa = m12 aa/ j ;

m12 xy = m12 xy/m;
m12 xa = m12 xa/d ;
m12 ya = m12 ya/d ;

% in f l u enc e o f body 2 on body 3
m23 xx = m23 xx/m;
m23 yy = m23 yy/m;
m23 aa = m23 aa/ j ;

m23 xy = m23 xy/m;
m23 xa = m23 xa/d ;
m23 ya = m23 ya/d ;

% in f l u enc e o f body 1 on body 3
m13 xx = m13 xx/m;
m13 yy = m13 yy/m;
m13 aa = m13 aa/ j ;

m13 xy = m13 xy/m;
m13 xa = m13 xa/d ;
m13 ya = m13 ya/d ;

180

% ass i gn
m11 = [m11 aa , m11 xa , m11 ya ; . . .

m11 xa , m11 xx , m11 xy ; . . .
m11 ya , m11 xy , m11 yy] ;

m22 = [m22 aa , m22 xa , m22 ya ; . . .
m22 xa , m22 xx , m22 xy ; . . .
m22 ya , m22 xy , m22 yy] ;

m33 = [m33 aa , m33 xa , m33 ya ; . . .
m33 xa , m33 xx , m33 xy ; . . .
m33 ya , m33 xy , m33 yy] ;

m12 = [m12 aa , m12 xa , m12 ya ; . . .
m12 xa , m12 xx , m12 xy ; . . .
m12 ya , m12 xy , m12 yy] ;

m23 = [m23 aa , m23 xa , m23 ya ; . . .
m23 xa , m23 xx , m23 xy ; . . .
m23 ya , m23 xy , m23 yy] ;

m13 = [m13 aa , m13 xa , m13 ya ; . . .
m13 xa , m13 xx , m13 xy ; . . .
m13 ya , m13 xy , m13 yy] ;

A.9 adjointinv.m

function Adginv = a d j o i n t i n v (g)
theta = g (1) ;
x = g (2) ;
y = g (3) ;

c t = cos (theta) ;
s t = sin (theta) ;

Adginv = [1 , 0 , 0 ; . . .
−y∗ ct+x∗ st , ct , s t ; . . .

y∗ s t+x∗ ct , −st , c t] ;

A.10 adjoint.m

function Adg = a d j o i n t (g)
theta = g (1) ;
x = g (2) ;
y = g (3) ;

c t = cos (theta) ;
s t = sin (theta) ;

Adg = [1 , 0 , 0 ; . . .
y , ct , −s t ; . . .
−x , st , c t] ;

A.11 vel fun.m

function gdot = v e l f u n (A, g)
% g = (x , y , be ta)
% A = (u , v , omega)

% d i f f e r e n t i a l equa t ions

181

gdot = −[A(1)∗ cos (g (3)) − A(2)∗ sin (g (3)) , . . .
A(1)∗ sin (g (3)) + A(2)∗ cos (g (3)) , . . .
A(3)] ;

182

Appendix B

Stokes flow code

This MATLAB code is an implementation of the Stokes flow swimmer model described

in Chapter 4.

B.1 driverStokes.m

function [g , gdot ,A, s , sdot , time] = dr i v e r S to ke s (N,P, t s t eps , mode , a , b , eta)
%
% [g , gdot ,A, s , sdot , time] = dr i v e rS t o k e s (N,P,mode , a , b , e)
%
% INPUTS
% N : # of pane l s on body
% P : # of per iods to run s imu la t ion
% mode : 1 : Shapere & Wilzcek , (JFM 1989) v a l i d a t i o n case
% 2 : Becker , Koehler , Stone , (JFM 2003) v a l i d a t i o n case
% 3 : 3− l i n k swimmer forward g a i t from t h e s i s
% 4 : 3− l i n k swimmer turn ing g a i t from t h e s i s
%
% OPTIONAL INPUT VARIABLES (fo r mode=2, 3− l i n k body)
% a : semi−major ax i s l eng t h
% b : semi−minor ax i s l eng t h
% eta : r a t i o o f middle l i n k l eng t h to outer l i n k l eng t h (f o r mode 2)
%
% OUTPUTS
% g = [x (t)] − motion in body group where be ta i s de f ined p o s i t i v e CCW
% [y (t)] from ho r i z on t a l
% [be ta (t)]
%
% gdot : swimmer v e l o c i t y in i n e r t i a l frame (xdot , ydot , be tado t)
% A : swimmer v e l o c i t y in body frame (u , v , omega)
% s : shape v a r i a b l e va lue s
% sdot : shape v a r i a b l e d e r i v a t i v e s
% time : time vec tor
%

% t s t e p s : # of time s t e p s per per iod
global i

g = [0 ; 0 ; 0] ; % x , y , be ta

h = 2∗pi /(t s t eps −1);

183

time = 0 : h :2∗ pi∗P; nbt = length (time) ;

for i =1:nbt
[s , sdot] = shape var (time (i) , mode) ;
[f 0 g0 h0] = StokesConnect ion (N, s , mode , a , b , eta) ;
A(: , i) = [f 0 g0 h0]∗ sdot ’ ;
gdot = v e l f u n (A(: , i) , g (: , i)) ;
g (: , i +1)=g (: , i)+gdot ’∗h ;

end

B.2 shape var.m

function [s , sdot] = shape var (t , mode)
% Prescr i be shape changes o f ang l e s between bod ie s
% mode 1 : Shapere & Wilzcek , (JFM 1989) v a l i d a t i o n case
% mode 2 : Becker , Koehler , Stone , (JFM 2003) v a l i d a t i o n case
% mode 3 : 3− l i n k swimmer forward g a i t from t h e s i s
% mode 4 : 3− l i n k swimmer turn ing g a i t from t h e s i s

switch mode
case 1

% Shapere & Wilzcek , JFM, 1989
s0 = 0 ;
s2 = cos (t) ;
s3 = sin (t) ;

s0dot = 0 ;
s2dot = −sin (t) ;
s3dot = cos (t) ;

s = [s0 , s2 , s3] ;
sdot = [s0dot , s2dot , s3dot] ;

case 3
% Becker , Koehler , Stone (JFM 2003) v a l i d a t i o n case o f 3− l i n k
% swimmer − forward g a i t
gamma1 = pi /3 ;
i f t<2∗pi /4 ;

th2 = gamma1∗ ((4/ pi)∗ t−1);
th1 = gamma1 ;
th2dot = (4/ pi) ;
th1dot = 0 ;

else i f (t<2∗pi /2)
th2 = gamma1 ;
th1 = −gamma1∗(4/ pi)∗ t+3∗gamma1 ;
th2dot = 0 ;
th1dot = −gamma1∗(4/ pi) ;

else i f (t<2∗pi ∗ (3/4))
th2 = −gamma1∗(4/ pi)∗ t+5∗gamma1 ;
th1 = −gamma1 ;
th2dot = −gamma1∗(4/ pi) ;
th1dot = 0 ;

else i f (t<=2∗pi)
th2 = −gamma1 ;
th1 = gamma1∗(4/ pi)∗ t−7∗gamma1 ;
th2dot = 0 ;
th1dot = gamma1∗(4/ pi) ;

end

end
end

end
s = [th1 th2 0] ;
sdot = [th1dot th2dot 0] ;

case 3 % forward ga i t , example in Thesis
th1 = 1.5∗ cos (t−pi / 4) ;
th2 = 1.5∗ sin (t−pi / 4) ;
th1dot = −1.5∗ sin (t−pi / 4) ;
th2dot = 1.5∗ cos (t−pi / 4) ;

184

s = [th1 th2 0] ;
sdot = [th1dot th2dot 0] ;

case 4 % turning ga i t , example in Thesis
th1 = −0.8+0.8∗cos (t−pi / 4) ;
th2 = 0.8+0.8∗ sin (t−pi / 4) ;
th1dot = −0.8∗ sin (t−pi / 4) ;
th2dot = 0.8∗ cos (t−pi / 4) ;
s = [th1 th2 0] ;
sdot = [th1dot th2dot 0] ;

end

B.3 StokesConnection.m

function [f 0 g0 h0] = StokesConnect ion (N, s , mode , a , b , eta)
% compute con t ro l po in t s zc , t and n vec t o r s at each point , pane l l e n g t h s
% and mode v e l o c i t i e s at un i t speed shape change
i f mode==1

[zc , t , n , del , v e l s 0 , v e l s 2 , v e l s 3] = surfacemodes (N, s , mode) ;
else i f mode>1

[zc , t , n , del , v e l s 0 , v e l s 2 , v e l s 3] = . . .
sur facemodes (N, s , mode , a , b , eta) ;

end
end

N1 = s ize (zc , 1) ;
[M] = i n f l u en c e ma t r i x (zc , t , n , del , N1) ;

%t r an s l a t i o n i s t r i v i a l , r i g i d motion o f whole f l u i d
v e l x = [ones (N1 , 1) ; zeros (N1 , 1)] ;
v e l y = [zeros (N1 , 1) ; ones (N1 , 1)] ;

%angular ro t a t i on at un i t speed
vel w = [− zc (: , 2) ; zc (: , 1)] ;

inv M = inv (M) ;

%compute source d i s t r i b u t i o n s
phi x = inv M∗ v e l x ;
ph i y = inv M∗ v e l y ;
phi w = inv M∗ vel w ;

ph i s 1 = inv M∗ v e l s 0 ;
ph i s 2 = inv M∗ v e l s 2 ;
ph i s 3 = inv M∗ v e l s 3 ;

a1 = [− zc (: , 2) ; zc (: , 1)] ; % corresponds to un i t CW ro t a t i o n a l v e l o c i t y

Fg = [1 0 sum(phi w (1 : N1) . ∗ de l) ;
0 1 sum(phi w (N1+1:2∗N1) . ∗ de l) ;
0 0 (phi w . ∗ [d e l ; de l]) ’ ∗ a1 ;] ;

Fs = [sum(ph i s 1 (1 : N1) . ∗ de l) sum(ph i s 2 (1 : N1) . ∗ de l) . . .
sum(ph i s 3 (1 : N1) . ∗ de l) ;

sum(ph i s 1 (N1+1:2∗N1) . ∗ de l) sum(ph i s 2 (N1+1:2∗N1) . ∗ de l) . . .
sum(ph i s 3 (N1+1:2∗N1) . ∗ de l) ;

[ph i s 1 . ∗ [d e l ; de l]] ’ ∗ a1 [ph i s 2 . ∗ [d e l ; de l]] ’ ∗ a1 . . .
[ph i s 3 . ∗ [d e l ; de l]] ’ ∗ a1 ;] ;

% connect ion
A = −inv (Fg)∗Fs ;
f 0=A(: , 1) ; g0=A(: , 2) ; h0=A(: , 3) ;

B.4 surfacemodes.m

function [zc , t , n , del , d0P , d2P , d3P] = surfacemodes (N, s , mode , a , b , eta)

185

% Prescr i be shape changes
% func t ion [P, d1P , d2P , d3P] = STOKES surface (theta , s) ;
% −−−−−−−−−−−−−−−INPUT−−−−−−−−−−−
% s1 , s2 , s3 − shape v a r i a b l e s
% the ta − r a d i a l ang le
% −−−−−−−−−−−−−−OUTPUT−−−−−−−−−−−−
% P − coord ina te s in Body Frame
% d1P − d e r i v a t i v e with r e spec t to 1 s t mode v a r i a b l e
% d2P − d e r i v a t i v e with r e spec t to 2nd mode v a r i a b l e
% d3P − d e r i v a t i v e with r e spec t to 3rd mode v a r i a b l e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Optional v a r i a b l e s needed only f o r mode 2
% a − semi−major ax i s
% b − semi−minor ax i s
% e − r a t i o o f middle l i n k l eng t h to outer l i n k l eng t h
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s0=s (1) ; s2=s (2) ; s3=s (3) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f mode==1 % Shapere & Wilzcek , JFM 1989 (3 .56)
a = 3/10 ;
b = 3/200;

beta = linspace (0 ,2∗pi ,N+1);

theta = (beta (1 :N)+beta (2 :N+1))/2;

%MODES:
F0 = s0 ∗ [0∗ theta , 0∗ theta] ;
F1 = [cos (theta) , sin (theta)] ;
F2 = s2 ∗ [a∗cos (theta) + b∗ sin (2∗ theta) , . . .

−a∗ sin (theta) + b∗cos (2∗ theta)] ;
F3 = s3 ∗[−a∗cos (2∗ theta) + b∗ sin (theta) , . . .

a∗ sin (2∗ theta) + b∗cos (theta)] ;

%SHAPE
P = F0 + F1 + F2 + F3 ;

zc = [P(1 :N) ’ ,P(N+1:2∗N) ’] ;

%DERIVATIVES
d0P = F0 ’ ;
d2P = [a∗cos (theta) + b∗ sin (2∗ theta) , . . .

−a∗ sin (theta) + b∗cos (2∗ theta)] ’ ;
d3P = [−a∗cos (2∗ theta) + b∗ sin (theta) , . . .

a∗ sin (2∗ theta) + b∗cos (theta)] ’ ;

% body geometry to compute normal and tangent v e c t o r s and panel l e n g t h s
%MODES:
beta = beta ’ ;
G0 = s0 ∗ [0∗beta , 0∗beta] ;
G1 = [cos (beta) , sin (beta)] ;
G2 = s2 ∗ [a∗cos (beta)+ b∗ sin (2∗beta) ,−a∗ sin (beta) + b∗cos (2∗beta)] ;
G3 = s3 ∗[−a∗cos (2∗beta)+ b∗ sin (beta) , a∗ sin (2∗beta) + b∗cos (beta)] ;

Q = G0 + G1 + G2 + G3;

% Panel l eng t h
Xrel = d i f f (Q(: , 1)) ; Yrel = d i f f (Q(: , 2)) ;
de l = sqrt (Xrel .ˆ2+ Yrel . ˆ 2) ;

% Tangent and normal v e c t o r s to pane l s
tx = Xrel . / de l ; ty = Yrel . / de l ;
t = [tx , ty] ; n = [ty ,− tx] ;
t = −t ;

else i f mode>1
th1 = s0 ;
th2 = s2 ;

dt = 0 .000001 ;

[zc , t , n , de l] = three l inkbody (a , b , eta ,N, th1 , th2) ;

186

% 2 l i n e s below needed to compute numerical d e r i v a t i v e
[zc th1 , t , n , de l] = three l inkbody (a , b , eta ,N, th1+dt , th2) ;
[zc th2 , t , n , de l] = three l inkbody (a , b , eta ,N, th1 , th2+dt) ;

d0P = [zc th1 (: ,1)− zc (: , 1) ; z c th1 (: ,2)− zc (: , 2)] / dt ;
d2P = [zc th2 (: ,1)− zc (: , 1) ; z c th2 (: ,2)− zc (: , 2)] / dt ;
d3P = 0∗d0P ; % 0 (there i s no t h i r d mode)

end
end

B.5 threelinkbody.m

function [zc , t , n , de l] = three l inkbody (a , b , eta ,N, th1 , th2) ;
% a = semi−major ax i s l eng t h
% b = semi−minor ax i s l eng t h
% N = number o f po in t s in e l l i p s e (modi f ied wi th in func t i on)
% th1 , th2 = j o i n t ang l e s . th1 = −i v e CCW from 0+, th2 = +ive CCW from 0−
% eta = ra t i o o f middle l i n k l eng t h to outer l i n k l eng t h .

N = N−mod(N−2 ,4) ;
% needed to ensure a coord inate po in t at the center
% of the s i d e s o f the e l l i p s e ends

beta = linspace (0 ,2∗pi ,N+1);
alpha = beta ’ ;

% de f ine end e l l i p s e s
Px = (a/ eta)∗ cos (alpha) ; Py = b∗ sin (alpha) ;
Px = Px(N+1:−1:1); Py = Py(N+1:−1:1);

xcg1 = (Px (1 : 1 :N) + Px (2 : 1 :N+1))/2;
xcg1 (N+1) = xcg1 (1) ;
ycg1 = (Py (1 : 1 :N) + Py (2 : 1 :N+1))/2;
ycg1 (N+1) = ycg1 (1) ;
zcg1 = [xcg1 , ycg1] ;

% or i en t a t i on o f f r on t and rear e l l i p s e s
cth1 = cos (th1) ; sth1 = sin (th1) ;
cth2 = cos (th2) ; sth2 = sin (th2) ;

l = 2∗a ; % middle l i n k l eng t h un i t (middle un i t l eng t h i s 2a+2e1
l 2 = 2∗(a/ eta) ; % outer l i n k l eng t h un i t (a c tua l outer un i t l eng t h i s 2a+e

% po s i t i on o f c . o .m of e l l i p s e s

zg (1 , 1) = 0 ;
zg (1 , 2) = 0 ;

zg (2 , 1) = l /2+(l 2 /2)∗ cth1 ;
zg (2 , 2) = (l 2 /2)∗ sth1 ;

zg (3 , 1) = − l /2−(l 2 /2)∗ cth2 ;
zg (3 , 2) = −(l 2 /2)∗ sth2 ;

% c . o .m
xg1 = ones (N, 1)∗ zg (1 , 1) ;
xg2 = ones (N, 1)∗ zg (2 , 1) ;
xg3 = ones (N, 1)∗ zg (3 , 1) ;

yg1 = ones (N, 1)∗ zg (1 , 2) ;
yg2 = ones (N, 1)∗ zg (2 , 2) ;
yg3 = ones (N, 1)∗ zg (3 , 2) ;

% or i en t a t i on o f f r on t o f rear e l l i p s e s
o r i e n t 2 (: , 1) = ones (N, 1) . ∗ cth1 ;
o r i e n t 2 (: , 2) = ones (N, 1) . ∗ sth1 ;

o r i e n t 3 (: , 1) = ones (N, 1) . ∗ cth2 ;
o r i e n t 3 (: , 2) = ones (N, 1) . ∗ sth2 ;

187

% cord ina t e s used to compute tangent , normal , and panel l en g t h
zcg2 (: , 1) = zcg1 (: , 1) . ∗ [o r i e n t 2 (: , 1) ; o r i e n t 2 (1 , 1)] − . . .

zcg1 (: , 2) . ∗ [o r i e n t 2 (: , 2) ; o r i e n t 2 (1 , 2)] ;
zcg2 (: , 2) = zcg1 (: , 1) . ∗ [o r i e n t 2 (: , 2) ; o r i e n t 2 (1 , 2)] + . . .

zcg1 (: , 2) . ∗ [o r i e n t 2 (: , 1) ; o r i e n t 2 (1 , 1)] ;
zcg2 = [[xg2 ; xg2 (1)] , [yg2 ; yg2 (1)]] + zcg2 ;

zcg3 (: , 1) = zcg1 (: , 1) . ∗ [o r i e n t 3 (: , 1) ; o r i e n t 3 (1 , 1)] − . . .
zcg1 (: , 2) . ∗ [o r i e n t 3 (: , 2) ; o r i e n t 3 (1 , 2)] ;

zcg3 (: , 2) = zcg1 (: , 1) . ∗ [o r i e n t 3 (: , 2) ; o r i e n t 3 (1 , 2)] + . . .
zcg1 (: , 2) . ∗ [o r i e n t 3 (: , 1) ; o r i e n t 3 (1 , 1)] ;

zcg3 = [[xg3 ; xg3 (1)] , [yg3 ; yg3 (1)]] + zcg3 ;

dx1 = tan (th1 /2)∗b ;
dy1 = b ;

dx2 = tan (th2 /2)∗b ;
dy2 = b ;

PT3 = [l /2−dx1 , dy1] ; PT6 = [l /2+dx1 ,−dy1] ;
PT7 = [− l /2+dx2 ,−dy2] ; PT2 = [− l /2−dx2 , dy2] ;

lower = ce i l (N/ 4) ; upper = ce i l (3∗N/ 4) ; max = s ize (zcg2 , 1) ;

PT4 = [zcg2 (upper , :)] ; PT5 = [zcg2 (lower , :)] ;
PT8 = [zcg3 (lower , :)] ; PT1 = [zcg3 (upper , :)] ;

P1a = [− l /2+ l 2 /4 PT7 (2)] ; % bottom
P1b = [− l /2+ l 2 /4 PT2 (2)] ; % top
P1x = [− l /2+ l 2 /4 1e8] ; % below
P1y = [− l /2+ l 2 /4 −1e8] ; % above
%order : x a b y

P2a = [− l /2−(l 2 /4)∗ cth2+b∗ sin (th2) −(l 2 /4)∗ sth2−b∗cos (th2)] ; % bottom
P2b = [− l /2−(l 2 /4)∗ cth2−b∗ sin (th2) −(l 2 /4)∗ sth2+b∗cos (th2)] ; % top
P2x = [− l /2−(l 2 /4)∗ cth2+1e8∗ sin (th2) −(l 2 /4)∗ sth2−1e8∗cos (th2)] ; % below
P2y = [− l /2−(l 2 /4)∗ cth2−1e8∗ sin (th2) −(l 2 /4)∗ sth2+1e8∗cos (th2)] ; % above

P3a = [l /2− l 2 /4 PT7 (2)] ; % bottom
P3b = [l /2− l 2 /4 PT2 (2)] ; % top
P3x = [l /2− l 2 /4 1e8] ; % below
P3y = [l /2− l 2 /4 −1e8] ; % above

P4a = [l /2+(l 2 /4)∗ cth1+b∗ sin (th1) (l 2 /4)∗ sth1−b∗cos (th1)] ; % bottom
P4b = [l /2+(l 2 /4)∗ cth1−b∗ sin (th1) (l 2 /4)∗ sth1+b∗cos (th1)] ; % top
P4x = [l /2+(l 2 /4)∗ cth1+1e8∗ sin (th1) (l 2 /4)∗ sth1−1e8∗cos (th1)] ; % below
P4y = [l /2+(l 2 /4)∗ cth1−1e8∗ sin (th1) (l 2 /4)∗ sth1+1e8∗cos (th1)] ; % above

x1=[P1x (1) P1a (1) P1y (1)] ;
y1=[P1x (2) P1a (2) P1y (2)] ;
x2=[P2x (1) P2a (1) P2y (1)] ;
y2=[P2x (2) P2a (2) P2y (2)] ;

x3=[P3x (1) P3a (1) P3y (1)] ;
y3=[P3x (2) P3a (2) P3y (2)] ;
x4=[P4x (1) P4a (1) P4y (1)] ;
y4=[P4x (2) P4a (2) P4y (2)] ;

i f abs (th2)>0
% center o f c i r c l e ;
[xo , yo]= c u r v e i n t e r s e c t (x1 , y1 , x2 , y2) ;
% shor t and long rad ius l eng t h o f c i r c l e s
ro1 = P1a(2)−yo ;
ro2 = P1b(2)−yo ;

% th = th2 −>0
tho1 = linspace (th2 , 0 ,N/ 4) ;
xro1 = [xo−ro1 ∗ sin (tho1)] ;
yro1 = [yo+ro1 ∗cos (tho1)] ;
xro2 = [xo−ro2 ∗ sin (tho1)] ;
yro2 = [yo+ro2 ∗cos (tho1)] ;

188

else
xro1 = linspace (P2a (1) , P1a (1) ,N/ 4) ;
yro1 = linspace (P2a (2) , P1a (2) ,N/ 4) ;
xro2 = linspace (P2b (1) , P1b (1) ,N/ 4) ;
yro2 = linspace (P2b (2) , P1b (2) ,N/ 4) ;

end

i f abs (th1)>0
[xo2 , yo2]= c u r v e i n t e r s e c t (x3 , y3 , x4 , y4) ;
ra1 = P3a(2)−yo2 ;
ra2 = P3b(2)−yo2 ;

tho2 = linspace (th1 , 0 ,N/ 4) ;
xro3 = [xo2−ra1 ∗ sin (tho2)] ;
yro3 = [yo2+ra1 ∗cos (tho2)] ;
xro4 = [xo2−ra2 ∗ sin (tho2)] ;
yro4 = [yo2+ra2 ∗cos (tho2)] ;
else

xro3 = linspace (P4a (1) , P3a (1) ,N/ 4) ;
yro3 = linspace (P4a (2) , P3a (2) ,N/ 4) ;
xro4 = linspace (P4b (1) , P3b (1) ,N/ 4) ;
yro4 = linspace (P4b (2) , P3b (2) ,N/ 4) ;

end

pts1 = [linspace (PT1(1) , P2b (1) ,N/8) ’ linspace (PT1(2) , P2b (2) ,N/ 8) ’] ;
pts2 = [linspace (P1b (1) , P3b (1) ,N/2) ’ linspace (P1b (2) , P3b (2) ,N/ 2) ’] ;
pts3 = [linspace (P4b (1) ,PT4(1) ,N/8) ’ linspace (P4b (2) ,PT4(2) ,N/ 8) ’] ;

pts4 = [linspace (PT5(1) , P4a (1) ,N/8) ’ linspace (PT5(2) , P4a (2) ,N/ 8) ’] ;
pts5 = [linspace (P3a (1) , P1a (1) ,N/2) ’ linspace (P3a (2) , P1a (2) ,N/ 2) ’] ;
pts6 = [linspace (P2a (1) ,PT8(1) ,N/8) ’ linspace (P2a (2) ,PT8(2) ,N/ 8) ’] ;

body = [zcg2 (upper :max, 1) , zcg2 (upper :max, 2) ;
zcg2 (2 : lower , 1) , zcg2 (2 : lower , 2) ;
pts4 (2 : length (pts4) , 1) , pts4 (2 : length (pts4) , 2) ;
xro3 (2 : length (xro3)) ’ yro3 (2 : length (xro3)) ’ ;
pts5 (2 : length (pts5) , 1) , pts5 (2 : length (pts5) , 2) ;
xro1 (length (xro1)−1:−1:1) ’ , yro1 (length (xro1)−1:−1:1) ’ ;
pts6 (2 : length (pts6) , 1) , pts6 (2 : length (pts6) , 2) ;
zcg3 (lower+1:upper , 1) , zcg3 (lower+1:upper , 2) ;
pts1 (2 : length (pts1) , 1) , pts1 (2 : length (pts1) , 2) ;
xro2 (2 : length (xro2)) ’ , yro2 (2 : length (xro2)) ’ ;
pts2 (2 : length (pts2) , 1) , pts2 (2 : length (pts2) , 2) ;
xro4 (end−1:−1:1) ’ yro4 (end−1:−1:1) ’ ;
pts3 (2 : length (pts3) , 1) , pts3 (2 : length (pts3) , 2)] ;

b s i z e = s ize (body , 1) ;

t = [d i f f (body (: , 1)) , d i f f (body (: , 2))] ;
n = [− t (: , 2) , t (: , 1)] ;
zc = [(body (1 : bs i ze −1,1)+body (2 : bs i ze , 1)) / 2 , . . .

(body (1 : bs i ze −1,2)+body (2 : bs i ze , 2)) / 2] ;
de l = sqrt (t (: , 1) . ˆ2+ t (: , 2) . ˆ 2) ;
t = [t (: , 1) . / del , t (: , 2) . / de l] ;
n = [n (: , 1) . / del , n (: , 2) . / de l] ;

B.6 influencematrix.m

function [M] = in f l u en c e ma t r i x (zc , t , n , del ,N)

for j =1:N
[Kxx (: , j) , Kxy (: , j) , Kyy (: , j)] = . . .

s t r e s s l e t i n f l u e n c e (zc (: , 1) , zc (: , 2) , zc (j , :) , t (j , :) , n (j , :) , de l (j)) ;
end

R2 = zc (: , 1) . ˆ 2 + zc (: , 2) . ˆ 2 ;
a1 = [− zc (: , 2) . / R2 ; zc (: , 1) . / R2] ;
a2 = [− zc (: , 2) . ∗ de l ; zc (: , 1) . ∗ de l] ;
r o t a t = kron (a1 , a2 ’) ;

189

D1 = ones (N, 1)∗ del ’ ;

M = [Kxx+D1 Kxy ; Kxy Kyy+D1] + ro ta t ;

B.7 stressletinfluence.m

function [Kxx , Kxy , Kyy] = s t r e s s l e t i n f l u e n c e A l t (X,Y, o , t , n , a)

%t r an s l a t e to panel frame
[N,M] = s ize (X) ;
X = X − ones (N,M)∗ o (1) ;
Y = Y − ones (N,M)∗ o (2) ;

%ro ta t e to a coord inate sytem of panel
x = t (1)∗X+t (2)∗Y;
y = n (1)∗X+n (2)∗Y;

% s h i f t y s l i g h t l y above panel to avoid d i v i s i o n by zero
% t h i s i s e qu i v a l en t to computing the p r i n c i p l e va lue o f the i n t e g r a l on
% the panel i t s e l f
y = y+1.e−16;

A1 = atan ((x+(a / 2)) . / y) ;
A2 = atan ((x−(a / 2)) . / y) ;

B1 = 1 . / ((a+2∗x).ˆ2+(2∗y) . ˆ 2) ;
B2 = 1 . / ((a−2∗x).ˆ2+(2∗y) . ˆ 2) ;

C1 = 2∗(2∗x+a) . ∗B1 ;
C2 = 2∗(2∗x−a) . ∗B2 ;

% in f l u enc e c o e f f i c i e n t s in l o c a l pane l frame
kxx = −(1/(2∗pi))∗ (−y . ∗ (C1−C2) + (A1−A2)) ;
kxy = −(1/(2∗pi))∗(−4∗y . ˆ 2 . ∗ (B1−B2)) ;
kyy = −(1/(2∗pi))∗ (y . ∗ (C1−C2) + (A1−A2)) ;

% transform back to observer (i n e r t i a l) frame
Kxx = kxx∗ t (1)ˆ2 + kyy∗n (1)ˆ2 + 2∗kxy∗n (1)∗ t (1) ;
Kxy = kxx∗ t (1)∗ t (2) + kyy∗n (1)∗n (2) + . . .

kxy ∗(t (1)∗n(2)+ n (1)∗ t (2)) ;
Kyy = kxx∗ t (2)ˆ2 + kyy∗n (2)ˆ2 + 2∗kxy∗n (2)∗ t (2) ;

B.8 vel ful.m

function gdot = v e l f u n (A, g)
% g = (x , y , be ta)
% A = (u , v , omega)

% d i f f e r e n t i a l equa t ions
gdot = [A(1)∗ cos (g (3)) − A(2)∗ sin (g (3)) , . . .

A(1)∗ sin (g (3)) + A(2)∗ cos (g (3)) , . . .
A(3)] ;

190

Appendix C

Potential flow + vortex shedding

code

This MATLAB code is an implementation of the swimmer model described in Chap-

ters 6 and 7.

C.1 driver.m

% dr i v e r .m
% Feb 22 , 2007 − For v o r t i c e s about to enter in to area too c l o s e to
% a i r f o i l , v e l o c i t y i s ad jus t ed to move them p a r a l l e l to a i r f o i l su r face
% Feb 22 , 2007 − Revert to po in t v o r t i c e s .
% Jun 18 , 2007 − Only advance motion in x d i r e c t i on (y and be ta f i x e d)

% Pi tch ing ang le o f f o i l s i s p o s i t i v e in CCW d i r e c t i on above ho r i z on t a l
% Pi tch ing v e l o c i t y i s p o s i t i v e in CCW d i r e c t i on
% Vor t i c i t y s t r eng t h i s po s i t i on in CW d i r e c t i on

clear a l l ;

warning o f f MATLAB: divideByZero

inputs ; % load user−s p e c i f i e d v a r i a b l e s in f i l e input .m

global N Vinf k l 1 l 2 xn yn a area Mass J gammatol t h e t a t o l NT upstream . . .
d e l t a t o l d e l t a t gammax gammay gammaw Cf TL rho Tota lCirc cons t ra ined ;

i n i t i a l i z e ;

for k=2: length (time)−1
text1 = sprintf (’Time = %g ’ , time (k)) ; disp (t ext1) ;

[xp , yp , betap , vxp , vyp , vbetap] = n e x t t i m e s t e p i n i t i a l g u e s s (x , y , beta , vx , . . .
vy , vbeta) ;

% Define body geometry at t (k−1) (known in advance)
[zc1 , t1 , n1 , del1 , I (k−1)] = swimmershape (y1 , y2 , beta1 , beta2 , beta , x , y , k−1);

191

Fxb = [0 0 0] ; Fyb = [0 0 0] ; Mb = [0 0 0] ; % i n i t i a l i z e f o r c e s to zero

%% I t e r a t e u n t i l body motion and boundary cond i t i on converge
[theta1 , theta2 , gamma1 , gamma2 , de l ta1 , de l t a2] = i n i t i a l g u e s s (theta1 , . . .

theta2 , gamma1 , gamma2 , de l ta1 , de l t a2) ;

i = 1 ; Fxsolved = 0 ; Fysolved = 0 ; Msolved = 0 ;
while (i <=2 | |(Fxsolved ==0||Fysolved ==0||Msolved==0))

x (k)=xp ; y (k)=yp ; beta (k)=betap ;

% Guess body geometry at t (k) (based on guess or es t imate f o r
% o v e r a l l p o s i t i on and o r i en t a t i on)
[zc2 , t2 , n2 , del2 , I (k) , xnode1k , ynode1k , xnode2k , ynode2k] = . . .

swimmershape (y1 , y2 , beta1 , beta2 , beta , x , y , k) ;

% Boundary cond i t i on − v e l o c i t y us ing d i f f from t (k−1) to t (k)
% (See Sec 6 . 4 . 3)
[Vdn (: , k) , Vdt (: , k) ,Vdx (: , k) ,Vdy (: , k)] =bodyve loc i ty (zc1 , zc2 , n1 , t1) ;

% i f any v o r t i c e s are wi th in gap around body , move them ou t s i d e
% See Sec 6 . 4 . 8
vo r t expo so r i g = vortexpos ;
i f s ize (vortexpos ,1)>0

[vortexpos] = ad jus tvor t expos (zc2 , t2 , n2 , del2 , d , Vdx (: , k) , . . .
Vdy (: , k) , vo r t expo so r i g) ;

end

[q , gamma1 , gamma2 , theta1 , theta2 , de l ta1 , de l ta2 , D1 , D2 ,E, F , zcwake1 , . . .
zcwake2 , converged] = f l o w s o l u t i o n (zc2 , t2 , n2 , del2 , xnode1k , . . .
xnode2k , ynode1k , ynode2k , theta1 , theta2 , de l ta1 , de l ta2 , gamma1 , . . .
gamma2 , Vdn (: , k) , vortexpos , vo r t ex s t r eng th) ;

% center o f mass o f swimmer , assuming both f o i l s have same mass
comx = (cx1k+cx2k) / 2 ; comy = (cy1k+cy2k) / 2 ;

[cp (: , k) , c l 1 (k) , c l 2 (k) , cd1 (k) , cd2 (k) , cm001 (k) , cm002 (k) , cm251 (k) , . . .
cm252 (k) , l i f t 1 (k) , drag1 (k) , l i f t 2 (k) , drag2 (k) ,Moment(k) , phi1 , . . .
phi2 , vort in1 , vort in2 , vo r t c ro s s edover , Vt (: , k)] = . . .
computeforces (zc2 , t2 , n2 , del2 , D1 , D2 ,E, F , gamma1 , gamma2 , de l ta1 , . . .
de l ta2 , theta1 , theta2 , vortexpos , vor texs t rength , vortexindex , q , . . .
beta1 , beta2 , beta , xnode1k , ynode1k , xnode2k , ynode2k , Vdx (: , k) , . . .
Vdy (: , k) , comx , comy , phi1 , phi2 , vortin1km1 , vortin2km1 , . . .
v o r t c r o s s edove r) ;

[Fxb(i +3) ,Fyb(i +3) ,Mb(i +3) ,xp , yp , betap , vxp , vyp , vbetap] = . . .
computemotion (i , drag1 , drag2 , l i f t 1 , l i f t 2 , Moment , vxp , vyp , . . .
vbetap , Fx , Fy ,M, vx , vy , vbeta , x , y , beta , I) ;

Fxsolved = (abs (Fxb(i +3)−Fxb(i +2))<Fxtol) ;
Fysolved = (abs (Fyb(i +3)−Fyb(i +2))<Fytol) ;
Msolved = (abs (Mb(i +3)−Mb(i +2))<Mtol) ;
i f cons t ra ined

Fysolved = 1 ; Msolved = 1 ; %
end

% i f s o l u t i on i s not converged , r e v e r t to o ld vor t ex po s i t i o n s
i f Fxsolved == 0 | Fysolved == 0 | Msolved == 0

vortexpos = vor t expo so r i g ;
end

i=i +1;
convergencecheck1

end
convergencecheck

[x (k) y (k) beta (k) vx (k) vy (k) vbeta (k) Fx(k) Fy(k) M(k)] = . . .
updatemotionvars (xp , yp , betap , vxp , vyp , vbetap , Fxb , Fyb ,Mb) ;

% i f body i s not permit ted to s e l f−prope l . . .
i f s t a t i o n a r y

x (k) = x (k−1); y (k) = y (k−1); beta (k) = beta (k−1);

192

vx (k) = 0 ; vy (k) = 0 ; vbeta (k)= 0 ;
end

[vortexpos , vor texs t rength , vortex index] = rep lacewakepane l (vortexpos , . . .
vor texs t rength , vortexindex , zcwake1 , zcwake2 , gamma1 , gamma2) ;

% i d e n t i f y s tagna t i on po in t po s i t i on on t r a i l i n g f o i l
x int (k) = s tagpo in t (del2 , Vt)− l 2 /2 ;

[a e f f] = a n g l e o f a t t a c k (y2 , beta2 , vx , c , a e f f) ;

i f c o n t r o l==1
[beta2 , y2 , beta290 , y290 , y2dot90 , beta2dot90 , ae f f 90 , u , u1 , u2] = . . .

c o n t r o l l e r (NF,Wn, cont ro l , beta2 , y2 , y290 , y2dot90 , beta290 , . . .
beta2dot90 , ae f f 90 , c , vx , xint , a2 , b2 , phi0 , omega1 ,K, Ki , K2 , Ki2 , . . .
kswitch , s w i t c h c o n t r o l l e r , u , u1 , u2 , time) ;

end

i f s ize (vortexpos ,1)>0
[vortexpos] = c o n v e c t v o r t i c e s (vortexpos , vor texs t rength , q , . . .

zc2 , t2 , n2 , del2 , gamma1 , gamma2 , d , r e d i r e c t , x , y , beta , vx , vy , . . .
vbeta , y1 , y2 , beta1 , beta2 , a , xn , yn) ;

end

% index o f v o r t i c e s at current time s t ep (k−1 during next time s t ep)
vortexindexkm1 = vortex index ;
vortin1km1 = vor t in1 ;
vortin2km1 = vor t in2 ;

savedata
plotandsave

end

C.2 inputs.m

% Spe c i f i e s i f body i s f i x e d (t rue) or a l l owed to s e l f−prope l (f a l s e)
s t a t i o n a r y = f a l s e ;

% Constrain to prevent l a t e r a l / r o t a t i o n a l motion? (can only t r a n s l a t e in x)
% Al l s e l f−p r o p e l l i n g r e s u l t s in t h e s i s cons t ra ined motion to only x−d i r
cons t ra ined = true ;

% Determines whether or not to con t ro l motion o f t r a i l i n g f o i l
c o n t r o l = 1 ;

%−−−−−−−−−−− TIME DISTRIBUTION
t i = 0 ; % INITIAL TIME
t f = 40 ; % END TIME
d e l t a t = 1/40 ; % 0.025 ; % TIME STEP SIZE

%−−−−−−−−−−− FLOW PARAMETERS
rho = 1 ; % f l u i d dens i t y
Vinf = [1 0] ; % frees t ream v e l o c i t y

%−−−−−−−−−−− SOLVER CONVERGENCE ACCURACY PARAMETERS
t h e t a t o l = 0 . 00001 ;
d e l t a t o l = norm(Vinf)∗ (d e l t a t (1)) /10000 ;
gammatol = 0 . 00001 ;

%−−−−−−−−−−− PRESCRIBED AIRFOIL MOTION & geometry
N = 100 ; % # pane l s per f o i l
nacanum = 12 ; % width r a t i o f o r NACA 00XX f o i l
a = 2 . 5 ; % hor i z on t a l spacing between f o i l s
s h i f t = 0 ; % v e r t i c a l d i s t ance between f o i l 1 and 2
c = 1 ; % chord l eng t h

mode = 4 ; % s p e c i f i e s type o f motion to p r e s c r i b e
omega1 = 7 ; % frequency o f heaving / p i t c h i n g o f f o i l 1
omega2 = 7 ; % frequency o f heaving / p i t c h i n g o f f o i l 2

193

a1 = 0.05∗ c ; % heaving ampl i tude o f f o i l 1
a2 = 0.05∗ c ; % heaving ampl i tude o f f o i l 2
b1 = 9∗pi /180 ; % pi t c h i n g ampl i tude o f f o i l 1 (radians)
b2 = 9∗pi /180 ; % pi t c h i n g ampl i tude o f f o i l 2 (radians)
phase1 = −pi /2 ; % phase btwn heaving and p i t c h i n g
phase2 = −pi ; % phase btwn l ead ing and t r a i l i n g f o i l

%−−−−−−−−−−− POINT FAR UPSTREAM USED TO COMPUTE POTENTIAL
upstream = [−30 7] ;

% dis tance about body from which po in t v o r t i c e s are d i verged
d = 0.03∗ c ;

%determines whether to r e d i r e c t v o r t i c e s around body
r e d i r e c t = true ; % true / f a l s e

% Viscous drag f o r ce parameters
Cf = 0 . 0 1 4 6 ; % dog f i s h in a flume , EJ Anderson , McGil l i s , Grosenbaugh , . . .

% J Exp Biol , 2000
L = 9 ; % t o t a l l eng t h o f body − a l a r g e r body i s imagined to e x i s t . . .

% in f r on t o f the f o i l s
TL = 2∗(L) ; % t o t a l wet ted body area

% Tolerance va lue s f o r i t e r a t i v e loop to converge to f o r c e s ac t ing on
% swimmer
Fxtol = 1e−7;
Fytol = Fxtol ;
Mtol = Fxtol ∗100 ;

% re l a x a t i on parameters f o r e s t imat ing f o r c e s
gammax = 0 . 9 ; gammay = 0 . 2 ; gammaw = 0 . 2 ;

% Newton s o l v e r t o l e rance
t o l = 1e−9;

%−−− CONTROLLER PARAMETERS
Aaef f = 0 . 6 ; % est imated ampl i tude o f a e f f (found numer ica l l y in advance)
Axint = 0 . 0 3 ; % est imated ampl i tude o f x i n t (found numer ica l l y in advance)

ze ta = 1 ; % damping c o e f f i c i e n t
wn = . 2 ; % natura l f requency
K = (4∗ zeta ∗wn)/(Axint∗Aaef f) ; % PI c on t r o l l e r p ropor t i ona l gain
Ki = wn/(2∗ zeta) ; % PI c on t r o l l e r i n t e g r a l gain

% f l a g determines whether to swi tch c o n t r o l l e r at time t (kswi t ch)
% may be used to swi tch to more a g g r e s s i v e c o n t r o l l e r a f t e r ” lock−in ”
s w i t c h c o n t r o l l e r =1;
% time s t ep at which to swi tch to new c on t r o l l e r
kswitch = 300 ;
% new c on t r o l l e r c h a r a c t e r i s t i c s
zeta2 = 1 . 0 ; % damping c o e f f i c i e n t
wn2 = 1 . 0 ; % natura l f requency
K2 = (4∗ zeta2 ∗wn2)/(Axint∗Aaef f) ; % PI c on t r o l l e r p ropor t i ona l gain
Ki2 = wn/(2∗ zeta2) ; % PI c on t r o l l e r i n t e g r a l gain
phi0 = pi ; % i n i t i a l phase o f f s e t f o r c on t r o l l e d y2 , beta2

% Butterworth low−pass f i l t e r parameters
NF = 3 ; % f i l t e r order
Wn = 0 . 0 2 3 ; % cut−o f f f requency

% Flags t ha t s p e c i f y whether to d i s p l a y or save data at each time s t ep
d i s p l a y f l a g = 0 ; % p l o t f l ow snapshot ?
s a v e d i s p l a y f l a g = 0 ; % save image f i l e o f snapshot ?
s a v e f i l e f l a g = 0 ; % save f i l e with a l l data at end o f s imu la t ion ?
save f i l ename =’ ’ ; % f i l e name
dir = ’ frames1 ’ ; % di r e c t o r y in which to save data and snapshots
f i l ename = ’ frame ’ ; % name of snapshot f i l e s

C.3 initialize.m

194

% I n i t i a l i z e v a r i a b l e s

% vor t ex sh e e t s
vor t ex s t r eng th = [0] ;
vortexpos = [] ;
vor tex index = [] ;
vortin1km1 = [] ;
vortin2km1 = [] ;
vo r t c r o s s edove r = [] ;
vortcrossedoverkm1 = [] ;

time = [0 : d e l t a t : t f] ;
d e l t a t = d i f f (time) ;

[y1 , y2 , beta1 , beta2] = prescr ibedmot ion (mode , a1 , a2 , b1 , b2 , omega1 , omega2 , . . .
phase1 , phase2 , time , s h i f t) ;

% i n i t i a l i z e unknown v a r i a b l e s in f l ow computation
theta1 = [beta1 (1) beta1 (1)] ;
theta2 = [beta2 (1) beta2 (1)] ;
d e l t a1 = [norm(Vinf)∗ d e l t a t (1) norm(Vinf)∗ d e l t a t (1)] ;
d e l t a2 = [norm(Vinf)∗ d e l t a t (1) norm(Vinf)∗ d e l t a t (1)] ;
gamma1 = [0 0] ;
gamma2 = [0 0] ;

%% i n i t i a l i z e o r i en t a t i on and v e l o c i t y to zero .
x = [0 0] ; y = x ; beta = x ;
vx = [0 0] ; vy = vx ; vbeta = vx ;

phi1 = zeros (N, 1) ;
phi2 = zeros (N, 1) ;

Fx (1) = 0 ; Fy(1) = 0 ; M(1) = 0 ;

l t ime = length (time) ;
Vdn=zeros (2∗N, l t ime) ; Vdt=zeros (2∗N, l t ime) ;
Vdx=zeros (2∗N, l t ime) ; Vdy=zeros (2∗N, l t ime) ;
cp=zeros (2∗N, l t ime) ;
c l 1=zeros (l t ime , 1) ; c l 2=zeros (l t ime , 1) ;
cd1=zeros (l t ime , 1) ; cd2=zeros (l t ime , 1) ;
cm001=zeros (l t ime , 1) ; cm002=zeros (l t ime , 1) ;
cm251=zeros (l t ime , 1) ; cm252=zeros (l t ime , 1) ;
l i f t 1=zeros (l t ime , 1) ; drag1=zeros (l t ime , 1) ;
l i f t 2=zeros (l t ime , 1) ; drag2=zeros (l t ime , 1) ;
Moment=zeros (l t ime , 1) ;
Vt=zeros (2∗N, l t ime) ;
Fx=zeros (l t ime , 1) ; Fy=zeros (l t ime , 1) ; M=zeros (l t ime , 1) ;
x=zeros (l t ime , 1) ; y=zeros (l t ime , 1) ; beta=zeros (l t ime , 1) ;
vx=zeros (l t ime , 1) ; vy=zeros (l t ime , 1) ; vbeta=zeros (l t ime , 1) ;
vortexposx=zeros (2∗ l t ime , l t ime −1);
vortexposy=zeros (2∗ l t ime , l t ime −1);
vo r t exs t r engthk=zeros (2∗ l t ime) ;
zcx = zeros (2∗N, l t ime) ; zcy = zcx ;

% approx # of t imes t eps per per iod
NT = round ((2∗ pi)/ (omega1∗ d e l t a t (1))) ;

%% de f ine body shape
[xn , yn] = nacacoords (N, nacanum) ; % de f i n e s a i r f o i l geometry
[xa1k , ya1k , xa2k , ya2k] = shape (y1 (1) , y2 (1) , beta1 (1) , beta2 (1) , a , xn , yn) ;
[area] = f o i l a r e a (xn , yn) ;
Mass = 2∗ area ∗ rho ;

% de f i n e s a b so l u t e coord ina te s o f body in i n e r t i a l r e f e r ence frame
[zc1 , t1 , n1 , del1 , l1 , l2 , xnode1k , ynode1k , xnode2k , ynode2k] = geometry (xa1k , . . .

ya1k , xa2k , ya2k , beta (1) , x (1) , y (1)) ;
[cx1k , cy1k , cx2k , cy2k] = cen t r o id (xnode1k , ynode1k , xnode2k , ynode2k , area) ;
J = momentof inert ia (xnode1k , ynode1k , cx1k , cy1k) ;
I (1) = t o t a l i n e r t i a (cx1k , cx2k , cy1k , cy2k , Mass , J) ;

a e f f =0;

195

i f c o n t r o l==1
y2 = 0∗y2 ;
beta2 = 0∗ beta2 ;

end
y290 = [] ;
y2dot90 = [] ;
beta290 = [] ;
beta2dot90 = [] ;
a e f f 9 0 = [] ;
u = [] ;
u1 = [] ;
u2 = [] ;

C.4 prescribedmotion.m

function [y1 , y2 , beta1 , beta2] = prescr ibedmot ion (mode , a1 , a2 , b1 , b2 , omega1 , . . .
omega2 , phi1 , phi2 , time , s h i f t)

% pre s c r i b e a i r f o i l p i t c h i n g and heaving
% mode − s e l e c t s the type o f motion
%
% a = hor i z on t a l s h i f t from center o f body
% alpha1 = max ampl i tude o f p i t c h i n g f o r a i r f o i l 1
% alpha2 = max ampl i tude o f p i t c h i n g f o r a i r f o i l 2
% h = max ampl i tude o f heaving f o r a i r f o i l 2
% omega1b = frequency o f p i t c h i n g f o r a i r f o i l 1
% omega2b = frequency o f p i t c h i n g f o r a i r f o i l 1
% phiy = phase l a g between p i t ch ing1 and heaving2
% phib = phase l a g between p i t ch ing1 and p i t ch ing2
% time = time vec tor or s ca l a r
%
switch mode

case 1
y1 = 0.0+a1∗ sin (omega1∗ time) ;
y2 = a2∗ sin (omega1∗ time+phi1) ;
beta1 = b1∗ sin (omega2∗ time) ;
beta2 = b2∗ sin (omega2∗ time+phi2) ;

case 2 % pang v a l i d a t i o n heaving case
y1 = a1∗ sin (omega1∗ time) ;
y2 = −1 + a2∗ sin (omega1∗ time+phi1) ;
% y2 = −1+... .

beta1 = b1∗ sin (omega2∗ time) ;
beta2 = b2∗ sin (omega2∗ time+phi2) ;

case 3 % not s h i f t e d down in y d i r e c t i on (no −1)
y1 = a1∗ sin (omega1∗ time+phi1).∗(1−exp(−1∗ time)) ;
y2 = a2∗ sin (omega1∗ time+phi2+phi1).∗(1−exp(−1∗ time)) ;
beta1 = b1∗ sin (omega2∗ time).∗(1−exp(−1∗ time)) ;
beta2 = b2∗ sin (omega2∗ time+phi2).∗(1−exp(−1∗ time)) ;

case 4 % sh i f t e d in y d i r e c t i on
y1 = a1∗ sin (omega1∗ time+phi1).∗(1−exp(−1∗ time)) ;
y2 = s h i f t+a2∗ sin (omega1∗ time+phi2+phi1).∗(1−exp(−1∗ time)) ;
beta1 = b1∗ sin (omega2∗ time).∗(1−exp(−1∗ time)) ;
beta2 = b2∗ sin (omega2∗ time+phi2).∗(1−exp(−1∗ time)) ;

case 5 % sh i f t e d in y d i r ec t i on , no exponen t i a l bu i l dup in motion
y1 = a1∗ sin (omega1∗ time+phi1) ;
y2 = s h i f t+a2∗ sin (omega1∗ time+phi2+phi1) ;
beta1 = b1∗ sin (omega2∗ time) ;
beta2 = b2∗ sin (omega2∗ time+phi2) ;

case 6
% FIXED ANGLE OF ATTACK
y1 = 0 + time ∗0 ;
beta1 = b1 + time ∗0 ;
y2 = s h i f t + time ∗0 ;
beta2 = b2 + time ∗0 ;

end

196

C.5 nacacoords.m

function [xn , yn] = nacacoords (nodtot , nacanum)

% −−−−−OUTPUTS
% xm, ym: con t ro l po in t s
% x , y : node po in t s
% s in the , cos the : panel ang l e s
% ds : panel l en g t h

nlower = nodtot /2 ;
nupper = nodtot−nlower ;
np1 = nodtot +1;

tau=nacanum /100 ;

npoint = nlower ;
n s t a r t = 0 ;

% loop over lower sur face
for n=1: npoint

z = (1+cos (pi ∗(n−1)/ npoint)) / 2 ;
i= n s t a r t + n ;

% compute th i cknes s , camber and angular l o c a t i on o f an a i r f o i l po in t
th i ck (i) = tau ∗5∗ (.2969∗ z . ˆ . 5 − . 1260∗ z − . 3537∗ z . ˆ2 + . . .

.2843∗ z . ˆ3 − . 1015∗ z . ˆ 4) ;

camber (i) = 0 ;
dcamdx(i) = 0 ;

beta (i) = atan (dcamdx(i)) ;

xn (i) = z−(−1)∗ th i ck (i)∗ sin (beta (i)) ;
yn (i) = camber (i) + (−1)∗ th i ck (i)∗ cos (beta (i)) ;

end

% i n i t i a l i z e index ing f o r upper sur face
npoint = nupper ;
n s t a r t = nlower ;

% loop over upper sur face
for n=1: npoint

z = (1−cos (pi ∗(n−1)/ npoint)) / 2 ;
i= n s t a r t + n ;

% compute th i cknes s , camber and angular l o c a t i on o f an a i r f o i l po in t
th i ck (i) = tau ∗5∗ (.2969∗ z . ˆ . 5 − . 1260∗ z − . 3537∗ z . ˆ2 + . . .

.2843∗ z . ˆ3 − . 1015∗ z . ˆ 4) ;

camber (i) = 0 ;
dcamdx(i) = 0 ;

beta (i) = atan (dcamdx(i)) ;

xn (i) = z−(1)∗ th i ck (i)∗ sin (beta (i)) ;
yn (i) = camber (i) + (1)∗ th i ck (i)∗ cos (beta (i)) ;

end

xn (np1) = xn (1) ;

% s h i f t to make quar ter cord po in t at o r i g i n
xn = xn ’ − 0 . 2 5 ;

yn (np1) = yn (1) ;
yn = yn ’ ;

197

C.6 shape.m

function [xa1 , ya1 , xa2 , ya2] = shape (y1 , y2 , beta1 , beta2 , a , xn , yn)
% Returns the coord ina te s f o r the l ead ing (#1) and t r a i l i n g (#2) f o i l s o f
% the swimmer shape
%
% −−−−− INPUTS
% xn , yn : node coord ina te s o f a i r f o i l a t o r i g i n with zero ro t a t i on
% beta1 ,2 : o r i en t a t i on o f a i r f o i l wrt hor i zon ta l , p o s i t i v e i s CW
% below p o s i t i v e ho r i z on t a l a x i s
% y1 ,2 : v e r t i c a l p o s i t i on o f a i r f o i l
% a : d i s t ance between f r on t and rear f o i l

nodtot = length (xn)−1;
xnrot1 = zeros (nodtot +1 ,1) ;
xnrot2 = zeros (nodtot +1 ,1) ;
ynrot1 = zeros (nodtot +1 ,1) ;
ynrot2 = zeros (nodtot +1 ,1) ;

% ro ta t e node po in t s about quar ter chord po in t
for i =1: nodtot+1

xnrot1 (i) = xn (i)∗ cos (beta1) + yn (i)∗ sin (beta1) ;
ynrot1 (i) = −xn (i)∗ sin (beta1) + yn (i)∗ cos (beta1) ;
xnrot2 (i) = xn (i)∗ cos (beta2) + yn (i)∗ sin (beta2) ;
ynrot2 (i) = −xn (i)∗ sin (beta2) + yn (i)∗ cos (beta2) ;

end

% shape r e l a t i v e to body frame
xa1 = xnrot1 − a /2 ;
ya1 = ynrot1 + y1 ;

xa2 = xnrot2 + a /2 ;
ya2 = ynrot2 + y2 ;

C.7 foilarea.m

function [area] = f o i l a r e a (xn , yn)
% computes area (and hence , mass) o f a i r f o i l s

area = 0 ;
for i =1: length (xn)−1

area = area − 0 . 5∗ (xn (i)∗yn (i +1)−xn (i +1)∗yn (i)) ;
end

C.8 geometry.m

function [zc , t , n , del , l1 , l2 , xnode1 , ynode1 , xnode2 , ynode2] = . . .
geometry (xa1 , ya1 , xa2 , ya2 , beta , x , y)

% Computes the body geometry
nodtot = length (xa1)−1;

% i n i t i a l i z e , p r e a l l o c a t e memory
xr1 = zeros (nodtot +1 ,1) ;
yr1 = xr1 ;
xr2 = xr1 ;
yr2 = xr1 ;
xm1 = zeros (nodtot , 1) ;
ym1 = xm1 ;
xm2 = xm1 ;
ym2 = xm1 ;
s in the1 = xm1 ;
costhe1 = xm1 ;
s i n the2 = xm1 ;
costhe2 = xm1 ;

198

de l1 = xm1 ;
del2 = xm1 ;

% move node po in t s to a b so l u t e po s i t i on and o r i en t a t i on in space

% ro t a t e node po in t by ang le be ta
cb = cos (beta) ; sb = sin (beta) ;

for i =1: nodtot+1
xr1 (i) = xa1 (i)∗ cb + ya1 (i)∗ sb ;
yr1 (i) = −xa1 (i)∗ sb + ya1 (i)∗ cb ;
xr2 (i) = xa2 (i)∗ cb + ya2 (i)∗ sb ;
yr2 (i) = −xa2 (i)∗ sb + ya2 (i)∗ cb ;

end

% t r an s l a t e node po in t s
xa1 = xr1 + x ;
ya1 = yr1 + y ;
xa2 = xr2 + x ;
ya2 = yr2 + y ;

xnode1 = xa1 ;
ynode1 = ya1 ;
xnode2 = xa2 ;
ynode2 = ya2 ;

% compute s l ope o f panel and arc l eng t h o f a i r f o i l s k in
for i =1: nodtot

% AIRFOIL 1 %%%%%%%%%%%%%%%%%%
% con t ro l po in t s
xm1(i) = (xa1 (i +1)+xa1 (i)) / 2 ;
ym1(i) = (ya1 (i +1)+ya1 (i)) / 2 ;

% arc l eng t h
dx1 = xa1 (i +1)−xa1 (i) ;
dy1 = ya1 (i +1)−ya1 (i) ;
de l1 (i) = sqrt (dx1ˆ2+dy1 ˆ 2) ;

% s lope
s i n the1 (i) = dy1/ de l1 (i) ;
cos the1 (i) = dx1/ de l1 (i) ;

% AIRFOIL 2 %%%%%%%%%%%%%%%%%%
% con t ro l po in t s
xm2(i) = (xa2 (i +1)+xa2 (i)) / 2 ;
ym2(i) = (ya2 (i +1)+ya2 (i)) / 2 ;

% arc l eng t h
dx2 = xa2 (i +1)−xa2 (i) ;
dy2 = ya2 (i +1)−ya2 (i) ;
del2 (i) = sqrt (dx2ˆ2+dy2 ˆ 2) ;

% s lope
s i n the2 (i) = dy2/del2 (i) ;
cos the2 (i) = dx2/del2 (i) ;

end

de l1 = de l1 ;
xm1 = xm1 ;
ym1 = ym1 ;

del2 = del2 ;
xm2 = xm2 ;
ym2 = ym2 ;

% normal and tangent v e c t o r s at each panel
t1 = [costhe1 s in the1] ;
n1 = [− s i n the1 costhe1] ;

t2 = [costhe2 s in the2] ;
n2 = [− s i n the2 costhe2] ;

199

l 1 = sum(de l1) ; l 2 = sum(del2) ;

zc1 = [xm1 ym1] ;
zc2 = [xm2 ym2] ;
zc = [zc1 ; zc2] ;

t = [t1 ; t2] ;
n = [n1 ; n2] ;
de l =[de l1 ; del2] ;

C.9 centroid.m

function [cx1 , cy1 , cx2 , cy2] = cen t r o id (xnode1 , ynode1 , xnode2 , ynode2 , area)
% computes the cen t ro id o f both f o i l s in i n e r t i a l coord inate frame

% i n i t i a l i z e
cx1 = 0 ; cy1 = 0 ;
cx2 = 0 ; cy2 = 0 ;

for i =1: length (xnode1)−1
cx1 = cx1 − (1/(6∗ area)) ∗ ((xnode1 (i)+xnode1 (i + 1)) ∗ . . .

(xnode1 (i)∗ ynode1 (i +1)−xnode1 (i +1)∗ynode1 (i))) ;
cy1 = cy1 − (1/(6∗ area)) ∗ ((ynode1 (i)+ynode1 (i + 1)) ∗ . . .

(xnode1 (i)∗ ynode1 (i +1)−xnode1 (i +1)∗ynode1 (i))) ;
cx2 = cx2 − (1/(6∗ area)) ∗ ((xnode2 (i)+xnode2 (i + 1)) ∗ . . .

(xnode2 (i)∗ ynode2 (i +1)−xnode2 (i +1)∗ynode2 (i))) ;
cy2 = cy2 − (1/(6∗ area)) ∗ ((ynode2 (i)+ynode2 (i + 1)) ∗ . . .

(xnode2 (i)∗ ynode2 (i +1)−xnode2 (i +1)∗ynode2 (i))) ;
end

C.10 momentofinertia.m

function J = momentof inert ia (xnode1 , ynode1 , cx1 , cy1) ;
% compute moment o f i n e r t i a o f one polygon , g iven node coord ina te s and
% center o f mass coord ina te s

J=0;
for i =1: length (xnode1)−1

yip1 = ynode1 (i +1) − cy1 ;
y i = ynode1 (i) − cy1 ;
xip1 = xnode1 (i +1) − cx1 ;
x i = xnode1 (i) − cx1 ;
J = J + 0 . 5∗ (1 / 1 2)∗ ((yip1−y i)∗ (xip1+x i)∗ (xip1ˆ2+x i ˆ 2) . . .

− (xip1−x i)∗ (yip1+y i)∗ (yip1ˆ2+y i ˆ 2)) ;
end
% to make va lue p o s i t i v e (may be −ive , depending on o r i en t a t i on o f nodes)
J = abs (J) ;

C.11 totalinertia.m

function I = t o t a l i n e r t i a (cx1 , cx2 , cy1 , cy2 , Mass , J)
% Computes the moment o f i n e r t i a o f the swimmer

% center o f mass o f en t i r e swimmer , assuming both have same mass
comx = (cx1+cx2) / 2 ;
comy = (cy1+cy2) / 2 ;

r1 = [cx1−comx , cy1−comy] ;
r2 = [cx2−comx , cy2−comy] ;

I = J + 0.5∗Mass∗(norm(r1)ˆ2) + J + 0.5∗Mass∗(norm(r2) ˆ 2) ;

200

C.12 nexttimestepinitialguess.m

function [xp , yp , betap , vxp , vyp , vbetap] = . . .
n e x t t i m e s t e p i n i t i a l g u e s s (x , y , beta , vx , vy , vbeta)

% Use prev ious time s t ep va lue s to guess pos i t i on , o r i en t a t i on and
% v e l o c i t i e s o f the swimmer at the current time s t ep
global k d e l t a t

% i n i t i a l guess f o r next time s t ep
% xp shou ld converge to x (k)
xp = x (k−1) + vx (k−1)∗ d e l t a t (k) ;
yp = y (k−1) + vy (k−1)∗ d e l t a t (k) ;
betap = beta (k−1) + vbeta (k−1)∗ d e l t a t (k) ;
vxp = vx (k−1);
vyp = vy (k−1);
vbetap = vbeta (k−1);

C.13 swimmershape.m

function [zc1 , t1 , n1 , del1 , I , xnode1 , ynode1 , xnode2 , ynode2] = . . .
swimmershape (y1 , y2 , beta1 , beta2 , beta , x , y , t s t ep)

% Returns the con t ro l po in t s (zc1) , normal (n1) and tangent (t1) v e c t o r s at
% the con t ro l po in t s and panel l e n g t h s (de l1) f o r the swimmer g iven the
% in t e rna l shape v a r i a b l e s y1 , y2 , beta1 , beta2 , the po s i t i on (x , y) ,
% or i en t a t i on (be ta) , & the current time s t ep (t s t e p)

global a xn yn area Mass J

%% Define Body and geometry at t (t s t e p)
% body shape at t (t s t e p)
[xa1 , ya1 , xa2 , ya2] = . . .

shape (y1 (t s t ep) , y2 (t s t ep) , beta1 (t s t ep) , beta2 (t s t ep) , a , xn , yn) ;
% geometry at time t (t s t e p)
[zc1 , t1 , n1 , del1 , l1 , l2 , xnode1 , ynode1 , xnode2 , ynode2] = . . .

geometry (xa1 , ya1 , xa2 , ya2 , beta (t s t ep) , x (t s t ep) , y (t s t ep)) ;
[cx1 , cy1 , cx2 , cy2] = cen t r o id (xnode1 , ynode1 , xnode2 , ynode2 , area) ;
I = t o t a l i n e r t i a (cx1 , cx2 , cy1 , cy2 , Mass , J) ;

C.14 initialguess.m

function [theta1 , theta2 , gamma1 , gamma2 , de l ta1 , de l t a2] = . . .
i n i t i a l g u e s s (theta1 , theta2 , gamma1 , gamma2 , de l ta1 , de l t a2) ;

% i n i t i a l guess f o r new time s t ep i s va lue from prev ious time s t ep

global k

theta1 (k) = theta1 (k−1); de l t a1 (k) = de l ta1 (k−1);
theta2 (k) = theta2 (k−1); de l t a2 (k) = de l ta2 (k−1);
gamma1(k) = gamma1(k−1); gamma2(k) = gamma2(k−1);

C.15 bodyvelocity.m

function [Vdn , Vdt , Vdx , Vdy] = bodyve loc i ty (zc1 , zc2 , n , t) ;
global k d e l t a t
% Compute v e l o c i t y o f body boundary (See Sect ion 6 . 4 . 3)

% compute boundary cond i t i on
Vdx = (zc2 (: ,1)− zc1 (: , 1)) / d e l t a t (k) ; % See Eqn 6.14
Vdy = (zc2 (: ,2)− zc1 (: , 2)) / d e l t a t (k) ; % See Eqn 6.15

201

Vdn = Vdx .∗n (: ,1)+Vdy .∗n (: , 2) ;
Vdt = Vdx .∗ t (: , 1)+Vdy .∗ t (: , 2) ;

C.16 flowsolution.m

function [q , gamma1 , gamma2 , theta1 , theta2 , de l ta1 , de l ta2 , D1 , D2 ,E, F , zcwake1 , . . .
zcwake2 , converged] = f l o w s o l u t i o n (zc , t , n , del , xnode1 , xnode2 , ynode1 , . . .
ynode2 , theta1 , theta2 , de l ta1 , de l ta2 , gamma1 , gamma2 , Vdn , vortexpos , . . .
vo r t ex s t r eng th)

% Computes the source and v o r t i c i t y d i s t r i b u t i o n over two bod ie s & wake
% panel l e n g t h s and o r i en t a t i on s g iven a s p e c i f i e d body v e l o c i t y
global N Vinf k l 1 l 2 gammatol t h e t a t o l d e l t a t o l d e l t a t NT;

% INITIAL GUESS FOR FLOW VARIABLES TO BE SOLVED FOR
gamma1new = gamma1(k) ; gamma2new = gamma2(k) ;
theta1new = theta1 (k) ; theta2new = theta2 (k) ;
delta1new = de l ta1 (k) ; delta2new = de l ta2 (k) ;

% i n i t i a l i z e error va lue s to zero
errgamma1 = 0 ; errgamma2 = 0 ;
e r r t h e t a 1 = 0 ; e r r t h e t a 2 = 0 ;
e r r d e l t a 1 = 0 ; e r r d e l t a 2 = 0 ;

[Ans , Ats , Axs , Ays , Bnv , Btv , Bxv , Byv] = p a n e l i n f l u e n c e (zc , t , n , del , zc) ;

% in f l u enc e c o e f f i c i e n t s due to c i r c u l a t i o n on a i r f o i l 1
Bnv1 = Bnv (: , 1 :N)∗ ones (N, 1) ;
Btv1 = Btv (: , 1 :N)∗ ones (N, 1) ;

% in f l u enc e c o e f f i c i e n t s due to c i r c u l a t i o n on a i r f o i l 2
Bnv2 = Bnv (: ,N+1:2∗N)∗ ones (N, 1) ;
Btv2 = Btv (: ,N+1:2∗N)∗ ones (N, 1) ;

i f s ize (vortexpos ,1)>0
z c s i z e = s ize (zc , 1) ;

zcbody1 = zc (1 : z c s i z e / 2 , :) ; zcbody2 = zc (z c s i z e /2+1: z c s i z e , :) ;
tbody1 = t (1 : z c s i z e / 2 , :) ; tbody2 = t (z c s i z e /2+1: z c s i z e , :) ;
nbody1 = n (1 : z c s i z e / 2 , :) ; nbody2 = n(z c s i z e /2+1: z c s i z e , :) ;

% vo r t i c e s ac t ing on body 1 w i l l be cons idered po in t v o r t i c e s
[Cx1 , Cy1 , Cn1 , Ct1] = p t v o r t i n f l u e n c e (vortexpos , zcbody1 , tbody1 , nbody1 , 1) ;

% vo r t i c e s shed by body 1 act on body 2 as i f they are vor t ex b l o b s
% vo r t i c e s shed by body 2 act on body 2 as i f they are po in t v o r t i c e s
[Cx2a , Cy2a , Cn2a , Ct2a] = p t v o r t i n f l u e n c e (vortexpos , zcbody2 , tbody2 , . . .

nbody2 , 4) ;
[Cx2b , Cy2b , Cn2b , Ct2b] = p t v o r t i n f l u e n c e (vortexpos , zcbody2 , tbody2 , . . .

nbody2 , 1) ;

Multa = repmat ([ones (N, 1) zeros (N, 1)] , 1 , k−2);
Multb = repmat ([zeros (N, 1) ones (N, 1)] , 1 , k−2);

Cx2 = Cx2a .∗Multa+Cx2b .∗Multb ;
Cy2 = Cy2a .∗Multa+Cy2b .∗Multb ;
Cn2 = Cn2a .∗Multa+Cn2b .∗Multb ;
Ct2 = Ct2a .∗Multa+Ct2b .∗Multb ;

Cx = [Cx1 ; Cx2] ;
Cy = [Cy1 ; Cy2] ;
Cn = [Cn1 ; Cn2] ;
Ct = [Ct1 ; Ct2] ;

else
Cn = 0 ; Ct = 0 ;

end

invAns = inv (Ans) ;

f i r s t r u n = 1 ; % ensures t ha t loop w i l l run at l e a s t once

202

counter = 0 ;
while abs (errgamma1)>gammatol | | abs (errgamma2)>gammatol | | . . .

abs (e r r t h e t a 1)> t h e t a t o l | | abs (e r r t h e t a 2)> t h e t a t o l | | . . .
abs (e r r d e l t a 1)> d e l t a t o l | | abs (e r r d e l t a 2)> d e l t a t o l | | . . .
f i r s t r u n == 1

gamma1(k) = gamma1new ; gamma2(k) = gamma2new ;
theta1 (k) = theta1new ; theta2 (k) = theta2new ;
de l t a1 (k) = delta1new ; de l t a2 (k) = delta2new ;

counter = counter + 1 ;
% i f s o l u t i on i s unable to converge wi th in s p e c i f i e d number o f
% i t e r a t i on s , break out o f func t i on with f l a g converged = 0
i f counter >1000

converged = 2 ;
disp (’ wake panel parameters not converged ’) ;
return

end

f i r s t r u n = 0 ;

% Source d i s t r i b u t i o n as func t i on o f c i r c u l a t i o n va lue s
% Ans∗q = Q1∗g1 + Q2∗g2 + Q3
% q = B1∗g1 + B2∗g2 + C

% wake panel i n f l u enc e on body pane l s
[zcwake1 , tx1 , ty1 , nx1 , ny1] = wakepanel (xnode1 , ynode1 , theta1 , de l t a1) ;
[zcwake2 , tx2 , ty2 , nx2 , ny2] = wakepanel (xnode2 , ynode2 , theta2 , de l t a2) ;

[X,X,X,X,X,X, Bwxv1 , Bwyv1] = p a n e l i n f l u e n c e (zcwake1 , [tx1 ty1] , . . .
[nx1 ny1] , de l t a1 (k) , zc) ;

[X,X,X,X,X,X, Bwxv2 , Bwyv2] = p a n e l i n f l u e n c e (zcwake2 , [tx2 ty2] , . . .
[nx2 ny2] , de l t a2 (k) , zc) ;

Bwnv1 = Bwxv1 .∗n (: , 1) + Bwyv1 .∗n (: , 2) ;
Bwnv2 = Bwxv2 .∗n (: , 1) + Bwyv2 .∗n (: , 2) ;
Bwtv1 = Bwxv1 .∗ t (: , 1) + Bwyv1 .∗ t (: , 2) ;
Bwtv2 = Bwxv2 .∗ t (: , 1) + Bwyv2 .∗ t (: , 2) ;

B1 = invAns ∗ ((Bwnv1∗ l 1)/ de l t a1 (k) − Bnv1) ;
B2 = invAns ∗ ((Bwnv2∗ l 2)/ de l t a2 (k) − Bnv2) ;
C = invAns∗(−(Bwnv1∗gamma1(k−1)∗ l 1)/ de l t a1 (k) − . . .

(Bwnv2∗gamma2(k−1)∗ l 2)/ de l t a2 (k)−Cn∗ vortexs t rength ’−n∗Vinf ’+Vdn) ;

%%%
% TANGENT VELOCITY Vt = D1∗g1 + D2∗g2 + E (See Eqn 6.25/6 .26/6 .27)
D1 = Ats∗B1 + Btv1 − (Bwtv1∗ l 1)/ de l t a1 (k) ;
D2 = Ats∗B2 + Btv2 − (Bwtv2∗ l 2)/ de l t a2 (k) ;
E = Ats∗C + (Bwtv1∗gamma1(k−1)∗ l 1)/ de l t a1 (k) + . . .

(Bwtv2∗gamma2(k−1)∗ l 2)/ de l t a2 (k) + Ct∗ vortexs t rength ’ + t ∗Vinf ’ ;

% NORMAL VELOCITY F = Vdn
F = Vdn ;
%%%

%%%
% IMPOSE KUTTA CONDITION TO GET TWO NONLINEAR EQUATIONS IN GAMMA1,2
% a1∗g1ˆ2 + b1∗g2ˆ2 + c1∗g1∗g2 + d1∗g1 + e1∗g2 + f1 = 0 , where
% (See Sec 6 . 4 . 4 & Eqns 6 .33/6 .34/6 .35/6 .36)
a1 = D1(1)ˆ2 − D1(N) ˆ 2 ;
b1 = D2(1)ˆ2 − D2(N) ˆ 2 ;
c1 = 2∗(D1(1)∗D2(1)−D1(N)∗D2(N)) ;
d1 = 2∗(D1(1)∗E(1)−D1(N)∗E(N)− l 1 / d e l t a t (k)) ;
e1 = 2∗(D2(1)∗E(1)−D2(N)∗E(N)) ;
f 1 = E(1)ˆ2−E(N)ˆ2+(2∗gamma1(k−1)∗ l 1)/ d e l t a t (k) + F(1)ˆ2−F(N) ˆ 2 ;

a2 = D1(N+1)ˆ2 − D1(2∗N) ˆ 2 ;
b2 = D2(N+1)ˆ2 − D2(2∗N) ˆ 2 ;
c2 = 2∗(D1(N+1)∗D2(N+1)−D1(2∗N)∗D2(2∗N)) ;
d2 = 2∗(D1(N+1)∗E(N+1)−D1(2∗N)∗E(2∗N)) ;
e2 = 2∗(D2(N+1)∗E(N+1)−D2(2∗N)∗E(2∗N)− l 2 / d e l t a t (k)) ;
f 2 = E(N+1)ˆ2−E(2∗N)ˆ2+(2∗gamma2(k−1)∗ l 2)/ d e l t a t (k)+F(N+1)ˆ2−F(2∗N) ˆ 2 ;

203

gamma1o = gamma1(k) ;
gamma2o = gamma2(k) ;

gamma1onew = gamma1o ;
gamma2onew = gamma2o ;

f i r s t r u n 2 = 1 ; % to ensure t ha t wh i l e l oops runs at l e a s t once
i t e r 2 = 0 ;
while (abs (gamma1o−gamma1onew)>gammatol) | | . . .

(abs (gamma2o−gamma2onew)>gammatol) | | f i r s t r u n 2==1

gamma1o = gamma1onew ;
gamma2o = gamma2onew ;

% (See Eqns 6 .38/6 .39)
q1 = 2∗a1∗gamma1o + c1∗gamma2o + d1 ;
q2 = 2∗b1∗gamma2o + c1∗gamma1o + e1 ;
q3 = a1∗gamma1oˆ2 + b1∗gamma2oˆ2 + c1∗gamma1o∗gamma2o + . . .

d1∗gamma1o + e1∗gamma2o + f1 ;

q4 = 2∗a2∗gamma1o + c2∗gamma2o + d2 ;
q5 = 2∗b2∗gamma2o + c2∗gamma1o + e2 ;
q6 = a2∗gamma1oˆ2 + b2∗gamma2oˆ2 + c2∗gamma1o∗gamma2o + . . .

d2∗gamma1o + e2∗gamma2o + f2 ;

% so l v e s e t o f equa t ions f o r dg1 , dg2
% dg = −inv ([q1 q2 ; q4 q5]) ∗ [q3 ; q6] ; % the l i n e below i s equ i va l en t ,
% but f a s t e r
dg = −[q1 q2 ; q4 q5] \ [q3 ; q6] ;

% update c i r c u l a t i o n s t r eng t h va lue s − See Eqn 6.37
gamma1onew = gamma1o + dg (1) ;
gamma2onew = gamma2o + dg (2) ;
f i r s t r u n 2 = 0 ;
i t e r 2 = i t e r 2 + 1 ;
i f i t e r 2 > 100 % checks i f Newton s o l v e r not converg ing to s o l u t i on

converged = 4 ;
disp (’ Newton s o l v e r not converged ’)
return

end
end

gamma1new = gamma1onew ;
gamma2new = gamma2onew ;
%%%

%%%
% COMPUTE SOURCE DISTRIBUTION − See Eqn 6.10
q = B1∗gamma1new + B2∗gamma2new + C;

% source d i s t r i b u t i o n with Cnv (assuming no wake v o r t i c e s)
% qnv = B1∗gamma1new + B2∗gamma2new + Cnv ;
%%%

%%%
% NOW, RE−COMPUTE VELOCITY AT TRAILING EDGE WAKE PANELS
% in f l u enc e on wake panel due to source and vor t d i s t on two bod ie s
[X,X, Axsw1 , Aysw1 ,X,X, Bxvw1 , Byvw1] = p a n e l i n f l u e n c e (zc , t , n , del , zcwake1) ;
[X,X, Axsw2 , Aysw2 ,X,X, Bxvw2 , Byvw2] = p a n e l i n f l u e n c e (zc , t , n , del , zcwake2) ;
% in f l u enc e on wake panel 1 due to wake panel 2
[X,X,X,X,X,X, Bxvw12 , Byvw12] = p a n e l i n f l u e n c e (zcwake2 , [tx2 ty2] , . . .

[nx2 ny2] , de l t a2 (k) , zcwake1) ;
% in f l u enc e on wake panel 2 due to wake panel 1
[X,X,X,X,X,X, Bxvw21 , Byvw21] = p a n e l i n f l u e n c e (zcwake1 , [tx1 ty1] , . . .

[nx1 ny1] , de l t a1 (k) , zcwake2) ;
i f s ize (vortexpos ,1)>0

[Cxw1 , Cyw1] = p t v o r t i n f l u e n c e (vortexpos , zcwake1 , [tx1 ty1] , . . .
[nx1 ny1] , 1) ;

[Cxw2 , Cyw2] = p t v o r t i n f l u e n c e (vortexpos , zcwake2 , [tx2 ty2] , . . .
[nx2 ny2] , 5) ; % (Note mode=5, not 4)

else
Cxw1=0;Cyw1=0;

204

Cxw2=0;Cyw2=0;
end

% Wake panel c i r c u l a t i o n : (See Eqns 6 .3/6 .4)
gammaw1 = ((gamma1(k−1)−gamma1new)∗ l 1)/ de l t a1 (k) ;
gammaw2 = ((gamma2(k−1)−gamma2new)∗ l 2)/ de l t a2 (k) ;

% Ve loc i t y on wake panel 1
Vx1 = Axsw1∗q + (Bxvw1 (1 :N)∗ ones (N, 1)) ∗ gamma1new + . . .

(Bxvw1(N+1:2∗N)∗ ones (N, 1)) ∗ gamma2new + Bxvw12∗gammaw2 + . . .
Cxw1∗ vortexs t rength ’ + Vinf (1) ;

Vy1 = Aysw1∗q + (Byvw1 (1 :N)∗ ones (N, 1)) ∗ gamma1new + . . .
(Byvw1(N+1:2∗N)∗ ones (N, 1)) ∗ gamma2new + Byvw12∗gammaw2 + . . .
Cyw1∗ vortexs t rength ’ + Vinf (2) ;

Vx2 = Axsw2∗q + (Bxvw2 (1 :N)∗ ones (N, 1)) ∗ gamma1new + . . .
(Bxvw2(N+1:2∗N)∗ ones (N, 1)) ∗ gamma2new + Bxvw21∗gammaw1 + . . .
Cxw2∗ vortexs t rength ’ + Vinf (1) ;

Vy2 = Aysw2∗q + (Byvw2 (1 :N)∗ ones (N, 1)) ∗ gamma1new + . . .
(Byvw2(N+1:2∗N)∗ ones (N, 1)) ∗ gamma2new + Byvw21∗gammaw1 + . . .
Cyw2∗ vortexs t rength ’ + Vinf (2) ;

%%%
% COMPUTE NEW PANEL LENGTH AND ORIENTATION (p o s i t i v e i s below
% hor i zon ta l , CW, nega t i v e i s above hor i zon ta l , CCW)
theta1new = −atan2 (Vy1 , Vx1) ; % See Eqn 6.6
theta2new = −atan2 (Vy2 , Vx2) ; % See Eqn 6.6

delta1new = norm(Vx1 , Vy1)∗ d e l t a t (k) ; % See Eqn 6.5
delta2new = norm(Vx2 , Vy2)∗ d e l t a t (k) ; % See Eqn 6.5

% determine i f new wake panel l i e s i n s i d e body
[zcwake2t , tx2t , ty2t , nx2t , ny2t] = wakepanel (xnode2 , ynode2 , . . .

[theta2 (1 : k−1) theta2new] , [d e l t a2 (1 : k−1) delta2new]) ;

in = inpolygon (zcwake2t (1) , zcwake2t (2) , xnode2 , ynode2) ;

% se t lower l im i t on d e l t a so wake pane does not come too c l o s e to
% t r a i l i n g edge (to avoid numerical d i f f i c u l t i e s)
delta2newMin = mean(de l t a1 (max(1 , k−2∗NT) : k)) − . . .

(max(de l t a1 (max(1 , k−2∗NT) : k))−min(de l t a1 (max(1 , k−2∗NT) : k))) / 2 ;
delta1newMin = mean(de l t a2 (max(1 , k−2∗NT) : k)) − . . .

(max(de l t a2 (max(1 , k−2∗NT) : k))−min(de l t a2 (max(1 , k−2∗NT) : k))) / 2 ;

delta2newMin = d e l t a t (1) ;
i f delta2new<delta2newMin

delta2new=delta2newMin ;
end
i f delta1new<delta1newMin

delta1new=delta1newMin ;
end

errgamma1 = gamma1(k) − gamma1new ;
errgamma2 = gamma2(k) − gamma2new ;
e r r t h e t a 1 = theta1 (k) − theta1new ;
e r r t h e t a 2 = theta2 (k) − theta2new ;
e r r d e l t a 1 = de l ta1 (k) − delta1new ;
e r r d e l t a 2 = de l ta2 (k) − delta2new ;

end
converged = 1 ;

C.17 panelinfluence.m

function [Ans , Ats , Axs , Ays , Anv , Atv , Axv , Ayv] = p a n e l i n f l u e n c e (zc , t , n , del , pt)
% −−−−−−−−−−−−−−−−−
%
% Refer to Table 6.2
%
% −−−−−−−−−−−−−−−−−INPUT

205

%
% zc po s i t i on o f c o l l o c a t i o n p t s
% zcp t s po in t s at which to compute i n f l u enc e c o e f f i c i e n t s
% t components o f v e c t o r s tangent to pane l s
% n components o f outward normal v e c t o r s
% i f z c p t s are not zc , then t , n are with r e spec t to a ho r i z on t a l
% de l panel l en g t h
%
% zc , t and n are w. r . t i n e r t i a l frame
%
% −−−−−−−−−−−−−−−−

% −−−−−−−−−−−−−−−−−INTERNAL VARIABLES
%
% Xrel (i , j) & Yrel (i , j) coord ina te s o f con t ro l pt i (Ci) r e l a t i v e
% to con t ro l pt j (Cj) w. r . t i n e r t i a l frame
%
% Cn(i , j) & Ct (i , j) normal and t an g en t i a l coord ina te s o f Ci r e l a t i v e
% to Cj w. r . t . a frame at tached to the panel j
%
% Vn(i , j) & Vt(i , j) normal and t an g en t i a l v e l o c i t i e s induced
% at Ci due to a constant source d i s t r i b u t i o n
% at panel j , w. r . t . a frame at tached to panel j
% (See Eqn 6 .2)
%
% −−−−−−−−−−−−−−−−

% −−−−−−−−−−−−−−−−−OUTPUT
%
% An(i , j) & Bt (i , j) normal and t an g en t i a l v e l o c i t i e s induced at Ci
% due to a constant source d i s t r i b u t i o n at panel j
% Expressed w. r . t a frame at tached to the panel i
% (See Eqn 6 .1)
%
% Vx(i , j) & Vy(i , j) x and y v e l o c i t i e s induced at Ci
% due to a constant source d i s t r i b u t i o n at panel j
% Expressed w. r . t an i n e r t i a l frame
%
% −−−−−−−−−−−−−−−−

s i z e z c = s ize (zc) ;
s i z e p t = s ize (pt) ;

M = s ize (zc , 1) ;
N = s ize (pt , 1) ;

% i n i t i a l i z e (a l l have same dimensions)
Xrel = zeros (N,M) ; Yrel = zeros (N,M) ;
Nx = Xrel ; Ny = Xrel ;
Tx = Xrel ; Ty = Xrel ;
D = Xrel ; D2 = Xrel ;
Cn = Xrel ; Ct = Xrel ;
Vn = Xrel ; Vt = Xrel ;
Axs = Xrel ; Ays = Xrel ;
Ans = Xrel ; Ats = Xrel ;
Vtv = Xrel ; Vnv = Xrel ;
Axv = Xrel ; Ayv = Xrel ;
Anv = Xrel ; Atv = Xrel ;

zx = zc (: , 1) ;
zy = zc (: , 2) ;

nx = n (: , 1) ;
ny = n (: , 2) ;
tx = t (: , 1) ;
ty = t (: , 2) ;

px = pt (: , 1) ;
py = pt (: , 2) ;

206

Xrel = px (: , ones (1 ,M))−zx (: , ones (1 ,N)) ’ ;
Yrel = py (: , ones (1 ,M))−zy (: , ones (1 ,N)) ’ ;

NX = nx (: , ones (1 ,N)) ’ ;
NY = ny (: , ones (1 ,N)) ’ ;
TX = tx (: , ones (1 ,N)) ’ ;
TY = ty (: , ones (1 ,N)) ’ ;

D = de l (: , ones (1 ,N)) ’ ;
D2 = D/2 ;

% normal and tangent d i s t ance from panel to p t s as measured from panel
Cn = Xrel .∗NX + Yrel .∗NY;
Ct = Xrel .∗TX + Yrel .∗TY;

% Vt(i , j) , Vn(i , j) : tangent and normal v e l o c i t y components at po in t i due
% to panel at po in t j , r e l a t i v e to panel j
Vt = log (((Ct+D2).ˆ2+Cn . ˆ 2) . / ((Ct−D2).ˆ2+Cn. ˆ 2)) / (4∗ pi) ;
Vn = 2∗atan2 ((Cn.∗D) , (Ct.ˆ2+Cn.ˆ2−D2. ˆ 2)) / (4∗ pi) ;

i f s i z e z c==s i z e p t
i f zc==pt

Vn = Vn−diag (diag (Vn)) ;
end

end

% Vx(i , j) , Vy(i , j) : x and y v e l o c i t y components at po in t i due to panel j
Axs = Vt .∗TX + Vn.∗NX;
Ays = Vt .∗TY + Vn.∗NY;

%%%
% for un i t v o r t i c i t y d i s t r i b u t i o n , in s t ead o f source
Vtv = Vn;
Vnv = −Vt ;

Axv = Vtv .∗TX + Vnv .∗NX;
Ayv = Vtv .∗TY + Vnv .∗NY;

%%%

i f s i z e z c==s i z e p t
i f zc==pt

Ans = Axs .∗NX’ + Ays .∗NY’ ;
Ans = Ans−diag (diag (Ans))+diag (0 . 5∗ ones (N, 1)) ;
Ats = Axs .∗TX’ + Ays .∗TY’ ;
Anv = Axv .∗NX’ + Ayv .∗NY’ ;
Atv = Axv .∗TX’ + Ayv .∗TY’ ;
Atv = Atv−diag (diag (Atv))+diag (0 . 5∗ ones (N, 1)) ;

end
end

C.18 wakepanel.m

function [zcwake , tx , ty , nx , ny] = wakepanel (xnode , ynode , theta , d e l t a)
% Returns wake panel coord ina te s and tangent /normal v e c t o r s g iven panel
% l eng t h and o r i en t a t i on
global k

% midpoint o f wake panel expressed wrt i n e r t i a l frame ;
zcwake = [(xnode (1) + (d e l t a (k)/2)∗ cos (theta (k))) . . .

(ynode (1) − (d e l t a (k)/2)∗ sin (theta (k)))] ;

tx = cos (theta (k)) ;
ty = −sin (theta (k)) ;

nx = −ty ;

207

ny = tx ;

C.19 computeforces.m

function [cp , c l1 , c l2 , cd1 , cd2 , cm001 , cm002 , cm251 , cm252 , l i f t 1 , drag1 , l i f t 2 , . . .
drag2 , Moment , phi1 , phi2 , vort in1 , vort in2 , vo r t c ro s s edover , Vt] = . . .
computeforces (zc , t , n , del , D1 , D2 ,E, F , gamma1 , gamma2 , de l ta1 , de l ta2 , . . .
theta1 , theta2 , vortexpos , vor texs t rength , vortexindex , q , beta1 , beta2 , . . .
beta , xnode1 , ynode1 , xnode2 , ynode2 , Vdx , Vdy , comx , comy , phi1 , phi2 , . . .
vortin1km1 , vortin2km1 , vortcrossedoverkm1)

% Compute f o r c e s ac t ing on bod ie s

global k N d e l t a t Vinf

% tang en t i a l v e l o c i t y on body
Vt = D1∗gamma1(k) + D2∗gamma2(k) + E;

% normal v e l o c i t y o f body
Vn = F;

% Ve l o c i t i e s expressed with r e spec t to i n e r t i a l frame
VX = Vt .∗ t (: , 1) + Vn.∗n (: , 1) ;
VY = Vt .∗ t (: , 2) + Vn.∗n (: , 2) ;

% Ve l o c i t i e s expressed wrt frame f i x e d to moving body 1 & 2
vx1 = VX(1 :N)∗ cos (beta1 (k)+beta (k)) − VY(1 :N)∗ sin (beta1 (k)+beta (k)) ;
vx2 = VX(N+1:2∗N)∗ cos (beta2 (k)+beta (k))− VY(N+1:2∗N)∗ sin (beta2 (k)+beta (k)) ;
vy1 = VX(1 :N)∗ sin (beta1 (k)+beta (k)) + VY(1 :N)∗ cos (beta1 (k)+beta (k)) ;
vy2 = VX(N+1:2∗N)∗ sin (beta2 (k)+beta (k))+ VY(N+1:2∗N)∗ cos (beta2 (k)+beta (k)) ;

% Compute p o t e n t i a l a long both f o i l s (See Sec 6 . 4 . 7)
[phi1 (: , k) , phi2 (: , k) , vort in1 , vort in2 , vo r t c r o s s edove r] = . . .

p o t e n t i a l (xnode1 , ynode1 , xnode2 , ynode2 , zc , t , n , del , Vt , vortexpos , . . .
vor texs t rength , vortexindex , q , de l ta1 , de l ta2 , theta1 , theta2 , gamma1 , . . .
gamma2 , vortin1km1 , vortin2km1 , vortcrossedoverkm1) ;

dphidt1 = (phi1 (: , k)−phi1 (: , k−1))/ d e l t a t (k) ;
dphidt2 = (phi2 (: , k)−phi2 (: , k−1))/ d e l t a t (k) ;

i f k==2 % to avoid sp i k e due to zero i n i t i a l va lue o f p o t e n t i a l f unc t i on
dphidt1=dphidt1 ∗0 ;
dphidt2=dphidt2 ∗0 ;

end

dphidt = [dphidt1 ; dphidt2] ;

Vref = Vinf ;

% Compute pressure c o e f f i c i e n t d i s t r i b u t i o n (See Sec 6 . 4 . 6 , Eqn 6 . 4 . 9)
cp = 1 − ([vx1 ; vx2] . ˆ 2 + [vy1 ; vy2] . ˆ 2) / (norm(Vref)ˆ2) . . .

− (2/(norm(Vref)ˆ2))∗((−Vdx . ∗ [vx1 ; vx2])+(−Vdy . ∗ [vy1 ; vy2])) . . .
− (2/(norm(Vref) ˆ2))∗ dphidt ;

[c l1 , c l2 , cd1 , cd2 , cm001 , cm002 , cm251 , cm252 , l i f t 1 , drag1 , l i f t 2 , drag2 , Moment] . . .
= l i f tdragmoment (cp , xnode1 , ynode1 , xnode2 , ynode2 , zc , del , n , comx , comy) ;

C.20 potential.m

function [phi1 , phi2 , vort in1 , vort in2 , vo r t c r o s s edove r] = p o t e n t i a l (xnode1 , . . .
ynode1 , xnode2 , ynode2 , zc , t , n , del , Vt , vortexpos , vor texs t rength , . . .
vortexindex , q , de l ta1 , de l ta2 , theta1 , theta2 , gamma1 , gamma2 , vortin1km1 , . . .
vortin2km1 , vortcrossedoverkm1)

% computes the v e l o c i t y p o t e n t i a l a long the sur face o f the swimmer body
global k N upstream Tota lCirc

208

i f isempty (vo r t ex s t r eng th) % (i f t he re are no elements in vo r t e x s t r en g t h)
vor t ex s t r eng th =0;

end

% nodal po in t at panel l e ad ing edge
midpoint = ce i l (length (xnode1) / 2) ;

t inygap = 0 .00001 ;

l ead ingedge1 = [xnode1 (midpoint)+n(midpoint , 1)∗ t inygap . . .
ynode1 (midpoint)+n(midpoint , 2)∗ t inygap] ;

l ead ingedge2 = [xnode2 (midpoint)+n(midpoint+N, 1)∗ tinygap−t inygap . . .
ynode2 (midpoint)+n(midpoint+N, 2)∗ t inygap] ;

Vt1 = Vt (1 :N) ;
Vt2 = Vt(N+1:2∗N) ;
de l1 = de l (1 :N) ;
del2 = de l (N+1:2∗N) ;

gap = 0 . 1 ;

%%%%%%%%%% Path to l ead ing f o i l . F i r s t go down to l ead ing edge , then across
p h i 1 i n i t = 0 ;

% N1a and N1b = # of po in t s a long path going down and across
N1a = 40 ;
N1b = 100 ;

% down
x0 = upstream (1) ;
yrange = [upstream (2) l ead ingedge1 (2)] ;
ypts1 = linspace (yrange (1) , yrange (2) , N1a+1) ’ ;
xpts1 = x0+0∗ypts1 ;
de lp t s1 = d i f f (ypts1) ;
xpts1 = (xpts1 (1 :end−1)+xpts1 (2 :end)) / 2 ;
ypts1 = (ypts1 (1 :end−1)+ypts1 (2 :end)) / 2 ;

% across
y0 = yrange (2) ;
range = lead ingedge1 (1)−upstream (1) ;
xpts2 = −logspace (log10(1+range) , log10 (1) , N1b+1) ’ ;
xpts2 = xpts2 − (min(xpts2)−upstream (1)) ;

ypts2 = y0 + xpts2 ∗0 ;
de lp t s2 = d i f f (xpts2) ;
xpts2 = (xpts2 (1 :end−1)+xpts2 (2 :end)) / 2 ;
ypts2 = (ypts2 (1 :end−1)+ypts2 (2 :end)) / 2 ;

po in t s = [[xpts1 ypts1] ; [xpts2 ypts2]] ;
mode=1;
[Vx1 Vy1] = v e l a t p t s (zc , t , n , del , po ints , xnode1 , xnode2 , ynode1 , ynode2 , . . .

gamma1 , gamma2 , theta1 , theta2 , de l ta1 , de l ta2 , vortexpos , vor texs t rength , . . .
q , mode) ;

phi1b = p h i 1 i n i t + sum(Vy1 (1 : N1a) . ∗ de lp t s1) + . . .
sum(Vx1(N1a+1:N1a+N1b) . ∗ de lp t s2) ;

%%%%% FOR TRAILING FOIL

midpt = lead ingedge2 (1)−gap ;

i f s ize (midpt ,1)==0
midpt = lead ingedge2 (1)−gap ;

end
%%%%%%%%%% Path to t r a i l i n g f o i l . F i r s t go across , then down , then across
% in t e g r a t i on path f o r 2nd body de f ined by po in t s which separa te domain
pt1 = upstream ;
pt2 = [midpt upstream (2)] ;
pt3 = [pt2 (1) l ead ingedge2 (2)] ;
pt4 = lead ingedge2 ;
pt5 = [(xnode2 (1)+ xnode2 (N))/2 (ynode2 (1)+ ynode2 (N)) / 2] ;

209

% other po in t s to de f ine Area 1
pt01 = [pt1 (1) pt4 (2) −2] ;
pt02 = [pt5 (1) pt01 (2)] ;

% other po in t s to de f ine Area 2
pt03 = [pt5 (1) pt1 (2)+2] ;
pt04 = [pt1 (1) pt03 (2)] ;

p h i 2 i n i t = 0 ;

% N1a and N1b = # of po in t s a long path going down and across
N2a = 200 ;
N2btop = 80 ; % gr id po in t s ou t s i d e o f i n f l u enc e o f v o r t i c e s
N2bbot = 1400 ; % gr id po in t s i n s i d e o f i n f l u enc e o f v o r t i c e s
N2c = 500 ;

% across
xpts1b = linspace (pt1 (1) , pt2 (1) , N2a+1) ’ ;
ypts1b = pt1 (2) + xpts1b ∗0 ;

de lpt s1b = d i f f (xpts1b) ;
xpts1b = (xpts1b (1 :end−1)+xpts1b (2 :end)) / 2 ;
ypts1b = (ypts1b (1 :end−1)+ypts1b (2 :end)) / 2 ;

% pos i t i on o f h i g h e s t vor t ex wi th in d i s t ance ”d” o f i n t e g r a t i on path + d ;
d = 0 . 0 5 ;
i f s ize (vortexpos ,1)>0

i f sum((vortexpos (: ,1)< pt2 (1)+d)&(vortexpos (: ,1)> pt2 (1)−d))
maxy = d + max(vortexpos ((vortexpos (: ,1)< pt2 (1)+d) & . . .

(vortexpos (: ,1)> pt2 (1)−d) , 2)) ;
i f maxy<pt4 (2)

maxy=pt4 (2)+d ;
end

else
maxy = pt4 (2)+d ;

end
else

maxy = pt4 (2)+d ;
end

ypts2b1 = linspace (pt2 (2) , maxy , round ((pt2 (2)−maxy)∗N2btop)) ;
ypts2b2 = linspace (maxy , pt3 (2) , round ((maxy−pt3 (2))∗N2bbot)) ;
ypts2b = [ypts2b1 (1 :end−1) , ypts2b2] ’ ;
i f min(ypts2b)<pt4 (2)
figure (2) ; c l f ; plot (ypts2b2 , ’ . ’) ; pause (0 . 0 1) ;
disp (maxy)
disp (round ((maxy−pt3 (2))∗N2bbot))
disp (ypts2b2)

end

xpts2b = pt2 (1) + ypts2b ∗0 ;

de lpt s2b = d i f f (ypts2b) ;
xpts2b = (xpts2b (1 :end−1)+xpts2b (2 :end)) / 2 ;
ypts2b = (ypts2b (1 :end−1)+ypts2b (2 :end)) / 2 ;

N2b = length (xpts2b) ;

% across
xpts3b = linspace (pt3 (1) , pt4 (1) , N2c+1) ’ ;
ypts3b = pt3 (2) + xpts3b ∗0 ;

de lpt s3b = d i f f (xpts3b) ;
xpts3b = (xpts3b (1 :end−1)+xpts3b (2 :end)) / 2 ;
ypts3b = (ypts3b (1 :end−1)+ypts3b (2 :end)) / 2 ;

po int s2 = [[xpts1b ypts1b] ; [xpts2b ypts2b] ; [xpts3b ypts3b]] ;

[Vx2 Vy2] = v e l a t p t s (zc , t , n , del , po ints2 , xnode1 , xnode2 , ynode1 , ynode2 , . . .
gamma1 , gamma2 , theta1 , theta2 , de l ta1 , de l ta2 , vortexpos , vor texs t rength , . . .
q , mode) ;

210

phi2c = p h i 2 i n i t + sum(Vx2 (1 : N2a) . ∗ de lpt s1b) + . . .
sum(Vy2(N2a+1:N2a+N2b) . ∗ de lpt s2b) + . . .
sum(Vx2(N2a+N2b+1:N2a+N2b+N2c) . ∗ de lpt s3b) ;

phin1 = zeros (length (xnode1) , 1) ;
phin2 = zeros (length (xnode1) , 1) ;

phin1 (midpoint) = phi1b ;
phin2 (midpoint) = phi2c ;

% ad ju s t f o r po in t v o r t i c e s in the f l ow whose branch cu t s cross i n t e g r a t i on
% path (See Sec 6 . 4 . 7)
i f s ize (vortexpos ,2)>0

% Id en t i f y index #s of v o r t i c e s in Area 1 and Area 2 at current time
% vortindex1km1 & vortindex2km1 correspond to i nd i c e s at prev ious time
% s tep
[vo r t in1 vor t in2] = vor t i n (vortexpos , vortexindex , pt1 , pt2 , pt3 , pt4 , . . .

pt5 , pt01 , pt02 , pt03 , pt04) ;

% check which v o r t i c e s crossed from Area 1 to Area 2 (c i r c u l a t i o n o f
% the se v o r t i c e s i s sub t rac t ed from phi2)
Area1to2 = i n t e r s e c t (vortin1km1 , vo r t in2) ;
% add index number to l i s t o f v o r t i c e s across i n t e g r a t i on path
vo r t c r o s s edove r = [vortcrossedoverkm1 Area1to2] ;

Area2to1 = i n t e r s e c t (vortin2km1 , vo r t in1) ;

% remove those v o r t i c e s t ha t have crossed back over
vo r t c r o s s edove r = s e t d i f f (vo r t c ro s s edover , Area2to1) ;

Tota lCirc1to2 = sum(vo r t ex s t r eng th (ismember (vortexindex , . . .
v o r t c r o s s edove r))) ;

phin2 (midpoint) = phin2 (midpoint) + Tota lCirc1to2 ;

Tota lCirc (k) = Tota lCirc1to2 ;
else

vor t in1 = [] ;
vo r t in2 = [] ;
vo r t c r o s s edove r = [] ;

end

for count = midpoint −1:−1:1
phin1 (count) = phin1 (count+1) − Vt1 (count)∗ de l1 (count) ;
phin2 (count) = phin2 (count+1) − Vt2 (count)∗del2 (count) ;

end

for count = midpoint +1: length (xnode1)
phin1 (count) = phin1 (count−1) + Vt1 (count−1)∗ de l1 (count −1);
phin2 (count) = phin2 (count−1) + Vt2 (count−1)∗del2 (count −1);

end

phi1 = (phin1 (1 : length (xnode1)−1)+phin1 (2 : length (xnode1))) / 2 ;
phi2 = (phin2 (1 : length (xnode2)−1)+phin2 (2 : length (xnode2))) / 2 ;

C.21 velatpts.m

function [Vx Vy] = v e l a t p t s (zc , t , n , del , po ints , xnode1 , xnode2 , ynode1 , . . .
ynode2 , gamma1 , gamma2 , theta1 , theta2 , de l ta1 , de l ta2 , vortexpos , . . .
vor texs t rength , q , mode)

global Vinf k N

[zcwake1 , tx1 , ty1 , nx1 , ny1] = wakepanel (xnode1 , ynode1 , theta1 , de l t a1) ;
[zcwake2 , tx2 , ty2 , nx2 , ny2] = wakepanel (xnode2 , ynode2 , theta2 , de l t a2) ;

[Ans , Ats , Axstemp , Aystemp , Bnv , Btv , Bxvtemp , Byvtemp] = . . .
p a n e l i n f l u e n c e ([zc ; [zcwake1 ; zcwake2]] , [t ; [tx1 ty1] ; [tx2 ty2]] , . . .
[n ; [nx1 ny1] ; [nx2 ny2]] , [d e l ; d e l t a1 (k) ; de l t a2 (k)] , po in t s) ;

211

Axs = Axstemp (: , 1 : 2 ∗N) ;
Ays = Aystemp (: , 1 : 2 ∗N) ;
Axsw = Axstemp (: , 2 ∗N+1:2∗N+2);
Aysw = Aystemp (: , 2 ∗N+1:2∗N+2);
Bxv = Bxvtemp (: , 1 : 2 ∗N) ;
Byv = Byvtemp (: , 1 : 2 ∗N) ;

i f mode==[]
mode=1;

end

i f s ize (vortexpos ,1)>0
[Cx , Cy , Cn, Ct] = p t v o r t i n f l u e n c e (vortexpos , po ints , 0∗ points , 0∗ points , mode) ;

else
Cx=0; Cy=0;

end

Vx = Axs∗q + Axsw (1)∗ (gamma1(k−1)−gamma1(k)) + . . .
Axsw (2)∗ (gamma2(k−1)−gamma2(k)) + . . .
Bxv ∗ [gamma1(k)∗ ones (N, 1) ; gamma2(k)∗ ones (N, 1)] + . . .
Cx∗ vortexs t rength ’ + Vinf (1) ;

Vy = Ays∗q + Aysw (1)∗ (gamma1(k−1)−gamma1(k)) + . . .
Aysw (2)∗ (gamma2(k−1)−gamma2(k)) + . . .
Byv ∗ [gamma1(k)∗ ones (N, 1) ; gamma2(k)∗ ones (N, 1)] + . . .
Cy∗ vortexs t rength ’ + Vinf (2) ;

C.22 liftdragmoment.m

function [c l1 , c l2 , cd1 , cd2 , cm001 , cm002 , cm251 , cm252 , l i f t 1 , drag1 , l i f t 2 , . . .
drag2 , Moment] = l i f tdragmoment (cp , xnode1 , ynode1 , xnode2 , ynode2 , zc , . . .
del , n , comx , comy)

global Vinf rho N

midpoint = ce i l (length (xnode1) / 2) ;
l ead ingedge1 = [xnode1 (midpoint) ynode1 (midpoint)] ;
l ead ingedge2 = [xnode2 (midpoint) ynode2 (midpoint)] ;

xspan1 = xnode1(1)−xnode1 (midpoint) ;
yspan1 = ynode1(1)−ynode1 (midpoint) ;

xspan2 = xnode2(1)−xnode2 (midpoint) ;
yspan2 = ynode2(1)−ynode2 (midpoint) ;

quarterchord1 = [l ead ingedge1 (1)+ xspan1 ∗ . 25 l ead ingedge1 (2)+ yspan1 ∗ . 2 5] ;
quarterchord2 = [l ead ingedge2 (1)+ xspan2 ∗ . 25 l ead ingedge2 (2)+ yspan2 ∗ . 2 5] ;

c l 1 = sum(−cp (1 :N) . ∗ de l (1 :N) . ∗ n (1 :N, 2)) ;
cd1 = sum(−cp (1 :N) . ∗ de l (1 :N) . ∗ n (1 :N, 1)) ;

c l 2 = sum(−cp (N+1:2∗N) . ∗ de l (N+1:2∗N) . ∗ n(N+1:2∗N, 2)) ;
cd2 = sum(−cp (N+1:2∗N) . ∗ de l (N+1:2∗N) . ∗ n(N+1:2∗N, 1)) ;

rx001 = zc (1 :N,1)− l ead ingedge1 (1) ;
ry001 = zc (1 :N,2)− l ead ingedge1 (2) ;

rx002 = zc (N+1:2∗N,1)− l ead ingedge2 (1) ;
ry002 = zc (N+1:2∗N,2)− l ead ingedge2 (2) ;

rx251 = zc (1 :N,1)− quarterchord1 (1) ;
ry251 = zc (1 :N,2)− quarterchord1 (2) ;

rx252 = zc (N+1:2∗N,1)− quarterchord2 (1) ;
ry252 = zc (N+1:2∗N,2)− quarterchord2 (2) ;

cm001 = sum((rx001 .∗n (1 :N, 2) − ry001 .∗n (1 :N, 1)) . ∗ cp (1 :N) . ∗ de l (1 :N)) ;
cm251 = sum((rx251 .∗n (1 :N, 2) − ry251 .∗n (1 :N, 1)) . ∗ cp (1 :N) . ∗ de l (1 :N)) ;

cm002 = sum((rx002 .∗n(N+1:2∗N, 2) − . . .

212

ry002 .∗n(N+1:2∗N, 1)) . ∗ cp (N+1:2∗N) . ∗ de l (N+1:2∗N)) ;
cm252 = sum((rx252 .∗n(N+1:2∗N, 2) − . . .

ry252 .∗n(N+1:2∗N, 1)) . ∗ cp (N+1:2∗N) . ∗ de l (N+1:2∗N)) ;

% a i r f o i l chord l eng t h
% chord = (xspanˆ2+yspan ˆ2)ˆ .5 ;

% dynamic pressure at i n f i n i t y
q1 = 0.5∗ rho∗norm(Vinf) ˆ 2 ;

% compute moment about CENTER OF MASS (comx , comy)
rx = zc (: ,1)−comx ;
ry = zc (: ,2)−comy ;

p = cp∗q1 ;

Moment = sum((rx .∗n (: , 2) − ry .∗n (: , 1)) . ∗ p .∗ de l) ;

l i f t 1 = c l 1 ∗q1 ;
drag1 = cd1∗q1 ;
l i f t 2 = c l 2 ∗q1 ;
drag2 = cd2∗q1 ;
moment001 = cm001∗q1 ;
moment251 = cm251∗q1 ;
moment002 = cm002∗q1 ;
moment252 = cm252∗q1 ;

C.23 computemotion.m

function [Fxb , Fyb ,Mb, xp , yp , betap , vxp , vyp , vbetap]=computemotion (i , drag1 , . . .
drag2 , l i f t 1 , l i f t 2 , Moment , vxp , vyp , vbetap , Fx , Fy ,M, vx , vy , vbeta , x , y , beta , I)

% determine forces , v e l o c i t y and po s i t i on & or i en t a t i on o f swimmer

global k Cf TL Vinf gammax gammay gammaw Mass d e l t a t cons t ra ined

% t o t a l f o r ce
Fxp = drag1 (k)+drag2 (k) ;
Fyp = l i f t 1 (k)+ l i f t 2 (k) ;
Mp = Moment(k) ;

% drag fo r ce (due to sk in f r i c t i o n) − See Sect ion 7.4
Drag = −sign(−Vinf (1)+vxp)∗0 .5∗Cf∗TL∗(−Vinf (1)+vxp) ˆ 2 ; % (See Eqn 7.18)

Fxp = Fxp+Drag ;

% weighted average o f f o r ce
w = . 7 5 ;

% See Eqns 6.57 & 6.58
Fxb = w∗Fxp + (1−w)∗Fx(k−1);
Fyb = w∗Fyp + (1−w)∗Fy(k−1);
Mb = w∗Mp + (1−w)∗M(k−1);

t ext1=sprintf (’ ==>%d Fx = %g , Fy = %g , M = %g ’ , i , Fxb , Fyb ,Mb) ; disp (t ext1) ;

% ve l o c i t y − See Eqns 6.59 & 6.60
vxb = vx (k−1) + Fxb∗ d e l t a t (k)/ Mass ;
vyb = vy (k−1) + Fyb∗ d e l t a t (k)/ Mass ;
vbetab = (vbeta (k−1)∗ I (k) + Mb∗ d e l t a t (k))/ (2∗ I (k)− I (k−1)) ;

% update v e l o c i t y − See Eqns 6.61 & 6.62
vxp = gammax∗vxb + (1−gammax)∗vxp ;
vyp = gammay∗vyb + (1−gammay)∗vyp ;
vbetap = gammaw∗vbetab + (1−gammaw)∗ vbetap ;

i f cons t ra ined
vyp = 0 ; vbetap = 0 ;

end

213

% compute new po s i t i on with updated v e l o c i t y (See Eqns 6.11 , 6 .12 , 6 .13)
xp = x (k−1) + vxp∗ d e l t a t (k) ;
yp = y (k−1) + vyp∗ d e l t a t (k) ;
betap = beta (k−1) + vbetap∗ d e l t a t (k) ;

C.24 convergencecheck.m

% i f code can ’ t converge to a s o l u t i on fo r var ious reasons ,
% end the loop and d i s p l a y error message

i f converged==2|converged==3|converged==4
switch converged

case 2
disp (’ Fa i l ed to converge in func t i on f l o w s o l u t i o n .m’) ;

case 3
disp (’ Forces f a i l to converge in main program ’) ;

case 4
d i s p l ay (’ Newton s o l v e r not converg ing in f l o w s o l u t i o n .m’)

end
break

end

C.25 convergencecheck1.m

% breaks out o f loop i f computation does not r e qu i r e converg ing to
% s e l f−propu l s ion s o l u t i on or i f code does not converge
i f s t a t i o n a r y | i >250| converged==2|converged==4

i f i >250
converged = 3 ;

end
break

end

C.26 updatemotionvars.m

function [x y beta vx vy vbeta Fx Fy M] = . . .
updatemotionvars (xp , yp , betap , vxp , vyp , vbetap , Fxb , Fyb ,Mb)

global i
x = xp ;
y = yp ;
beta = betap ;
vx = vxp ;
vy = vyp ;
vbeta = vbetap ;
Fx = Fxb(end) ;
Fy = Fyb(end) ;
M = Mb(end) ;

C.27 replacewakepanel.m

function [vortexpos , vor texs t rength , vortex index] = . . .
rep lacewakepane l (vortexpos , vor texs t rength , vortexindex , zcwake1 , . . .
zcwake2 , gamma1 , gamma2)

% REPLACE WAKE PANEL WITH POINT VORTEX OF EQUAL CIRCULATION AT MIDPOINT OF
% WAKE PANEL

214

% J Me l l i 1/3/07
% added index numbers f o r t r ac k ing each vor t ex generated

global l 1 l 2 k

Gammaw1 = l 1 ∗(gamma1(k−1) − gamma1(k)) ;
Gammaw2 = l 2 ∗(gamma2(k−1) − gamma2(k)) ;

Nptvorts = length (vo r t ex s t r eng th) ;

i f k == 2 % should be ==2
Nptvorts = 0 ;

end

vor t ex s t r eng th (Nptvorts+1) = Gammaw1;
vo r t ex s t r eng th (Nptvorts+2) = Gammaw2;

vortexpos (Nptvorts +1 , :) = zcwake1 ;
vortexpos (Nptvorts +2 , :) = zcwake2 ;

vortex index (Nptvorts+1) = 2∗k−1;
vortex index (Nptvorts+2) = 2∗k ;

C.28 stagpoint.m

function x int=s tagpo in t (del2 , Vt)

global k N

L1(1)=del2 (1) / 2 ;
for q=2: length (del2) / 2 ;

L1(q)=L1(q−1)+del2 (q−1)/2+del2 (q) / 2 ;
end

Vtk=Vt(N+1:2∗N, k) ;
s i gnch=sign (Vtk (1 :end−1).∗Vtk (2 :end)) ;
% sign change index #
SCI = find (s ignch==−1); % assume only one s i gn change occurs
i f length (SCI)>1

% choose va lue neares t l e ad ing edge
SCI=SCI (find (min(abs (SCI−N/2))==(abs (SCI−N/ 2)))) ;

end
x1 = L1(SCI) ; x2 = L1(SCI+1);
z1 = Vtk (SCI) ; z2 = Vtk (SCI+1);

% f ind x−i n t e r c e p t
x int = x1 − z1 /((z2−z1)/ (x2−x1)) ;

C.29 angleofattack.m

function [a e f f] = a n g l e o f a t t a c k (y2 , beta2 , vx , c , a e f f)
% computes the e f f e c t i v e ang le o f a t t a c k − See Eqn 7.3

global k d e l t a t Vinf

y2dot (k) = (y2 (k)−y2 (k−1))/ d e l t a t (1) ;
beta2dot (k) = (beta2 (k)−beta2 (k−1))/ d e l t a t (1) ;

% Eqn 7.3
a e f f (k) = −beta2 (k) ’−(((− beta2dot (k) ’∗ c/2)+y2dot (k)) / (Vinf (1)−vx (k))) ;

C.30 controller.m

215

function [beta2 , y2 , beta290 , y290 , y2dot90 , beta2dot90 , ae f f 90 , u , u1 , u2] = . . .
c o n t r o l l e r (NF,Wn, cont ro l , beta2 , y2 , y290 , y2dot90 , beta290 , beta2dot90 , . . .
a e f f 90 , c , vx , xint , a2 , b2 , phi0 , omega1 ,K, Ki , K2 , Ki2 , kswitch , . . .
s w i t c h c o n t r o l l e r , u , u1 , u2 , time)

% Cont ro l l e r to modify the motion o f the t r a i l i n g f o i l − See Sect ion 7.3
global d e l t a t Vinf k

% low−pass f i l t e r
[B,A] = butte r (NF,Wn, ’ low ’) ;

i f (k>7)&(c o n t r o l==1)
y2dot90 (k) = (y290 (k)−y290 (k−1))/ d e l t a t (1) ;
beta2dot90 (k) = (beta290 (k)−beta290 (k−1))/ d e l t a t (1) ;
a e f f 9 0 (k) = −beta290 (k) ’−(((− beta2dot90 (k) ’∗ c / 2) + . . .

y2dot90 (k)) / (Vinf (1)−vx (k))) ;

E = f i l t e r (B,A,− a e f f 9 0 (2 :end) . ∗ x int (2 :end)) ;
else

E = zeros (1 , k) ;
end

u1 (k) = omega1+ K∗(E(end)+Ki∗sum(E(1 : k−2))∗ d e l t a t (1)) ;

i f (s w i t c h c o n t r o l l e r ==1)&(k>kswitch)
u2 (k) = omega1+ K2∗(E(end)+Ki2∗sum(E(1 : k−2))∗ d e l t a t (1)) ;

else
u2 (k) = u1 (k) ;

end

i f k<=kswitch
u(k)=u1 (k) ;

end

i f k>kswitch & k<kswitch+101
u(k) = u2 (k)∗ ((k−kswitch)/100)+u1 (k)∗(1−(k−kswitch) / 1 0 0) ;

end

i f k>kswitch+100
u(k)=u2 (k) ;

end

i f c o n t r o l==1
beta2 (k+1) = b2∗cos (sum(u)∗ d e l t a t (1)+ phi0)∗(1−exp(−1∗ time (k))) ;
y2 (k+1) = a2∗ sin (sum(u)∗ d e l t a t (1)+ phi0)∗(1−exp(−1∗ time (k))) ;
beta290 (k+1) = b2∗cos (sum(u)∗ d e l t a t (1)+pi/2+phi0)∗(1−exp(−1∗ time (k))) ;
y290 (k+1) = a2∗ sin (sum(u)∗ d e l t a t (1)+pi/2+phi0)∗(1−exp(−1∗ time (k))) ;

end

C.31 convectvortices.m

function [vortexposnew] = c o n v e c t v o r t i c e s (vortexpos , vor texs t rength , q , . . .
zc , t , n , del , gamma1 , gamma2 , d , r e d i r e c t , x , y , beta , vx , vy , vbeta , y1 , y2 , . . .
beta1 , beta2 , a , xn , yn)

% Convects wake v o r t i c e s forward in time by computing v e l o c i t y induced at
% each po in t
global k N Vinf d e l t a t

[Xns , Xts , Axs , Ays , Xnv , Xtv , Bxv , Byv] = p a n e l i n f l u e n c e (zc , t , n , del , vortexpos) ;
[Cx , Cy ,Xn, Xt] = p t v o r t i n f l u e n c e (vortexpos , vortexpos , vortexpos , vortexpos , 1) ;

Vx = Axs∗q + Bxv∗ [ones (N, 1)∗gamma1(k) ; ones (N, 1)∗gamma2(k)] + . . .
Cx∗ vortexs t rength ’ + Vinf (1) ;

Vy = Ays∗q + Byv∗ [ones (N, 1)∗gamma1(k) ; ones (N, 1)∗gamma2(k)] + . . .
Cy∗ vortexs t rength ’ + Vinf (2) ;

% (Eqns 6.40 & 6.41)
vortexposnew = vortexpos + [Vx Vy]∗ d e l t a t (k) ;

i f r e d i r e c t % See Sect ion 6 . 4 . 8)

216

% pos i t i on and o r i en t a t i on o f body (guess) at next time s t ep
xg = x (k)+vx (k)∗ d e l t a t (k) ;
yg = y (k)+vy (k)∗ d e l t a t (k) ;
betag = beta (k)+vbeta (k)∗ d e l t a t (k) ;

% body geometry at next time s t ep (guess)
[xa1kp1 , ya1kp1 , xa2kp1 , ya2kp1] = shape (y1 (k) , y2 (k) , beta1 (k) , beta2 (k) , . . .

a , xn , yn) ;
[zcp1 , tp1 , np1 , delp1 , l1p1 , l2p1 , xnode1kp1 , ynode1kp1 , xnode2kp1 , . . .

ynode2kv] = geometry (xa1kp1 , ya1kp1 , xa2kp1 , ya2kp1 , betag , xg , yg) ;

% Check i f new vor t ex p o s i t i o n s are i n s i d e una l l owab l e area

% de f ine per imeter with space o f ’d ’ about bod i e s
zcb ig = expandbody (zcp1 (N+1:2∗N, :) , np1 (N+1:2∗N, :) , d) ;

p1a=zcb ig (1 , :) ;
p1b=zcb ig (2 , :) ;
m1 = (p1a(2)−p1b (2)) / (p1a(1)−p1b (1)) ;
b1 = (p1b (1)∗ p1a(2)−p1a (1)∗ p1b (2)) / (p1b(1)−p1a (1)) ;

% new poin t f a r downstream
xc = 100 ;
p1c=[xc m1∗xc+b1] ;

p2b=zcb ig (end−1 , :) ;
p2a=zcb ig (end , :) ;
m2 = (p2a(2)−p2b (2)) / (p2a(1)−p2b (1)) ;
b2 = (p2b (1)∗ p2a(2)−p2a (1)∗ p2b (2)) / (p2b(1)−p2a (1)) ;

p2c=[xc m2∗xc+b2] ;

[zx i , z y i]= c u r v e i n t e r s e c t ([p1a (1) p1c (1)] , [p1a (2) p1c (2)] , . . .
[p2a (1) p2c (1)] , [p2a (2) p2c (2)]) ;

% extended z c b i g f o r purposes o f f i nd in g i n t e r s e c t i o n po in t s
z c b i g I n t = [[zx i zy i] ; z cb ig ; [z x i zy i]] ;

% i d e n t i f y v o r t i c e s wi th in s p e c i f i e d area de f ined by z c b i g
[in1 on1] = inpolygon (vortexposnew (: , 1) , vortexposnew (: , 2) , . . .

z cb ig (: , 1) , z cb ig (: , 2)) ;

in = in1+on1 ;
i n v a l s = find (in ==1);

i f sum(in)>0

for q=1: length (i n v a l s)
index = i n v a l s (q) ;
% or i g i n a l vor t ex po s i t i on
a1 = [vortexpos (index , :)] ;
% ’new ’ vor t ex po s i t i on
b1 = [vortexposnew (index , :)] ;
% radius o f c i r c l e based at a1
r = norm(b1−a1) ;

Xi = [] ;
while length (Xi)<1

% c i r c l e de f ined by center a1 and rad ius r
Cx = a1(1)+ r ∗cos (linspace (0 ,2∗ pi)) ;
Cy = a1(2)+ r ∗ sin (linspace (0 ,2∗ pi)) ;

[Xi , Yi]= c u r v e i n t e r s e c t (Cx , Cy , z c b i g I n t (: , 1) , z c b i g I n t (: , 2)) ;

% s low l y increase r u n t i l c i r c l e i n t e r s e c t s z c b i g
r=r ∗1 . 0 0 1 ;

end

% dis tance from new vor t ex po s i t i on to a l l i n t e r s e c t i o n po in t s
d i s t = (sum(((ones (length (Xi) , 1)∗ b1−[Xi Yi]) . ˆ 2) ’)) . ˆ . 5 ;

% index o f i n t e r s e c t i o n po in t neares t assumed vor t ex po s i t i on

217

dsindex = find (d i s t==min(d i s t)) ;

% update vor t ex po s i t i on to f u r t h e s t downstream in t e r s e c t i o n
% poin t
vortexposnew (index , :) = [Xi (ds index) Yi (ds index)] ;

end
end

end

C.32 ptvortinfluence.m

function [Cx , Cy , Cn, Ct] = p t v o r t i n f l u e n c e (vortexpos , po ints , t , n , mode)
% The in f l u enc e on ” po in t s ” due to un i t vor t ex b l o b s at p o s i t i o n s s p e c i f i e d
% by ” vor texpos ” i s re turned .

m = s ize (vortexpos , 1) ;
N = s ize (po ints , 1) ;

% compute v e l o c i t i e s induced at zc due to wake v o r t i c e s

% m = number o f pt v o r t i c e s in wake
% N = number o f p t s at which induced v e l o c i t y i s computed

% compute ang le between panel i and vor t ex m, r e l a t i v e to ho r i z on t a l and
% from a ray o r i g i n a t i n g at vor t ex m through panel i

% px (: , ones (1 ,M))− zx (: , ones (1 ,N)) ’ ;

px=po in t s (: , 1) ;
py=po in t s (: , 2) ;
vposx = vortexpos (: , 1) ;
vposy = vortexpos (: , 2) ;

de lx = px (: , ones (1 ,m))−vposx (: , ones (1 ,N)) ’ ;
de ly = py (: , ones (1 ,m))−vposy (: , ones (1 ,N)) ’ ;

d = (de lx .ˆ2+ de ly . ˆ 2) . ˆ . 5 ;

%alpha = atan2 (de ly , d e l x) ;

% OLD COMPUTATION METHOD
% x and y components o f induced v e l o c i t y wrt i n e r t i a l frame
%Cx = ones (1 ,N) ’∗ ones (1 ,m) ./ (2∗ p i ∗d) .∗ s in (a lpha) ;
%Cy = −ones (1 ,N) ’∗ ones (1 ,m) ./ (2∗ p i ∗d) .∗ cos (a lpha) ;

% f a s t e r computation (avo ids computing ang l e s) (POINT VORTICES)
%Cx = de l y ./(2∗ p i ∗d . ˆ 2) ;
%Cy = −de l x ./(2∗ p i ∗d . ˆ 2) ;

% f a s t e r computation ; (VORTEX BLOBS)
% e x p l i c i t 4 th order v e l o c i t y k e rne l f o r vor t ex b l o b
% Beale and Majda , High Order Vortex Methods , J . Comp Phys (58) , 1985 p .192
% using aˆ2 = 2
% de l t a = core rad ius
%

i f mode==4
d e l t a = 0 . 1 ; % core rad ius f o r b l o b vor t ex d i s t r i b u t i o n

end
i f mode==5

d e l t a = 1 . 0 ;
end

switch mode % t r e a t s vor t ex as po in t vor t ex or b l o b vor t ex
case 1 % point vor t ex

K = 1 ;
case 4 ; % b lob vor t ex d i s t r i b u t i o n

218

K = (1−2∗exp(−(d . ˆ 2) / (d e l t a ˆ2))+exp((−d .ˆ2)/ (2∗ d e l t a ˆ 2))) ;
case 5 ; % b lob vor t ex d i s t r i b u t i o n

K = (1−2∗exp(−(d . ˆ 2) / (d e l t a ˆ2))+exp((−d . ˆ2)/ (2∗ d e l t a ˆ 2))) ;
o the rw i se

K =1;
end

Cx = (de ly . / (2∗ pi∗d . ˆ 2)) . ∗K;
Cy = (−de lx . / (2∗ pi∗d . ˆ 2)) . ∗K;

Cx(d==0)=0;
Cy(d==0)=0;

% i t h row of the mth column of Vn i s the normal component o f v e l o c i t y induced
% at the i t h con t ro l po in t o f the f o i l due to po in t vor t ex m

% normal and t an g en t i a l induced v e l o c i t y r e l a t i v e to l o c a l coord inate frame

i f N==s ize (n , 1)
nx=n (: , 1) ; ny=n (: , 2) ;
tx=t (: , 1) ; ty=t (: , 2) ;
Cn = Cx.∗ nx (: , ones (1 ,m))+Cy.∗ ny (: , ones (1 ,m)) ;
Ct = Cx.∗ tx (: , ones (1 ,m))+Cy.∗ ty (: , ones (1 ,m)) ;

else
Cn=0;
Ct=0;

end

C.33 expandbody.m

function zcb ig = expandbody (zc , n , d) ;
% de f i n e s con t ro l po in t s o f l a r g e r body to be a d i s t ance d away from
% o r i g i n a l body . This i s used as a b u f f e r zone . Point v o r t i c e s en te r ing
% t h i s zone w i l l be anniha la ted .

zcb ig (: , 1) = zc (: , 1)+ n (: , 1) ∗ d ;
zcb ig (: , 2) = zc (: , 2)+ n (: , 2) ∗ d ;

C.34 savedata.m

% Saves body geometry informat ion and vor t ex po s i t i on and s t r en g t h s at each
% time s t ep in l a r g e matr ices . Use fu l f o r pos t proces s ing .
vortexposx (1 : s ize (vortexpos , 1) , k) = vortexpos (: , 1) ;
vortexposy (1 : s ize (vortexpos , 1) , k) = vortexpos (: , 2) ;
vo r t exs t r engthk (1 : s ize (vortexpos , 1) , k) = vortexs t rength ’ ;

zcx (: , k) = zc2 (: , 1) ;
zcy (: , k) = zc2 (: , 2) ;

C.35 plotandsave.m

i f d i s p l a y f l a g == 1
figure (1) ; c l f ; hold on ;
load mycmap ; colormap (mycmap) ;

patch (zcx (1 :N, k) , zcy (1 :N, k) , ’ k ’) ;
patch (zcx (N+1:2∗N, k) , zcy (N+1:2∗N, k) , ’ k ’) ;

s c a t t e r (vortexposx (: , k) , vortexposy (: , k) , . . .
700∗abs (vor t exs t r engthk (: , k))+eps , vo r t exs t r engthk (: , k) , ’ f i l l e d ’) ;

i f length (s ignchange1)>1

219

s c a t t e r (c1cente r (: , 1) , c1cente r (: , 2) , . . .
500∗abs (c1st rength ’)+eps , 0 . 3 5∗ c1strength ’ , ’ f i l l e d ’) ;

end
i f length (s ignchange2)>1

s c a t t e r (c2cente r (: , 1) , c2cente r (: , 2) , . . .
500∗abs (c2st rength ’)+eps , 0 . 3 5∗ c2strength ’ , ’ f i l l e d ’) ;

end

axis equal ; axis ([min(min(zcx)) max(max(zcx)) −1 1]) ;
set (gcf , ’ PaperPos i t ion ’ , [0 0 1 1]) ;
set (gca , ’ Xtick ’ , []) ;
set (gca , ’ Ytick ’ , []) ;
box on ;
pause (0 . 0 1) ;
i f s a v e d i s p l a y f l a g == 1

f i l ename = [dirname , ’ / ’ , f i l ename] ;
p sp r in t (f i l ename , k) ;

end
end

i f s a v e f i l e f l a g == 1 & k==length (time)−1
s a v e f i l e = [’ save ’ , dirname , ’ / ’ , s ave f i l ename] ;
eval (s a v e f i l e)

end

C.36 adjustvortexpos.m

function [vortexposnew] = ad jus tvor t expos (zc , t , n , del , d , Vdx , Vdy , vortexpos) ;
% prevent s v o r t i c e s from ente r ing wi th in reg ion near t r a i l i n g f o i l

global N

vortexposnew = vortexpos ;

% de f ine per imeter with space o f ’d ’ about bod i e s
zcb ig = expandbody (zc (N+1:2∗N, :) , n (N+1:2∗N, :) , d) ;

% i d e n t i f y v o r t i c e s wi th in s p e c i f i e d area de f ined by z c b i g
[in1 on1] = inpolygon (vortexpos (: , 1) , vortexpos (: , 2) , z cb ig (: , 1) , z cb ig (: , 2)) ;

in = in1+on1 ;

i n v a l s = find (in ==1);

i f sum(in)>0

for q=1: length (i n v a l s)

index = i n v a l s (q) ;
% or i g i n a l vor t ex po s i t i on
a1 = [vortexpos (index , :)] ;

d2=sum (([a1 (1)∗ ones (N, 1) a1 (2)∗ ones (N,1)]− zcb ig) . ˆ 2 ’) ;
% con t ro l po in t number o f po in t neares t to a1
cpnum = find (d2==min(d2)) ;

% dis tance from vor t ex to z c b i g
Velnorm = norm ([Vdx(N+cpnum) Vdy(N+cpnum)]) ;

% point ou t s i d e z c b i g in d i r e c t i on o f normal vec to r
b1 = a1+d ∗ [n (N+cpnum , 1) n(N+cpnum , 2)] ;

% point o f i n t e r s e c t i o n .
[Xi , Yi]= c u r v e i n t e r s e c t ([a1 (1) ; b1 (1)] , [a1 (2) ; b1 (2)] , z cb ig (: , 1) , z cb ig (: , 2)) ;

i f length (Xi)>0
% vec tor from a1 to [Xi Yi]
v = [Xi Yi]−a1 ;

220

% ’new ’ vor t ex po s i t i on − j u s t ou t s i d e (0 .1 d) o f z c b i g
a2 = [Xi Yi]+ 0 .1∗d∗(v/norm(v)) ;

vortexposnew (index , :) = a2 ;
end

end
end

C.37 vortin.m

function [vo r t in1 vor t in2] = vo r t i n (vortexpos , vortexindex , pt1 , pt2 , . . .
pt3 , pt4 , pt5 , pt01 , pt02 , pt03 , pt04)

% J Mel l i , 1/6/07
%
% Finds v o r t i c e s in the reg ions Area 1 and Area 2 , which are separated by
% the i n t e g r a t i on path to the t r a i l i n g a i r f o i l .
%
% The purpose i s to keep t rack o f the v o r t i c e s moving from one s i d e o f the
% in t e g r a t i on path to the o ther in order to ad ju s t the va lue o f the
% po t e n t i a l .
%
% Area 1 i s de f ined by (in CW order) : pt1 , pt2 , pt3 , pt4 , pt5 , pt02 , pt01
% Area 2 i s de f ined by (in CCW order) : pt1 , pt2 , pt3 , pt4 , pt5 , pt03 , pt04

xv1 =[pt1 (1) ; pt2 (1) ; pt3 (1) ; pt4 (1) ; pt5 (1) ; pt02 (1) ; pt01 (1) ; pt1 (1)] ;
yv1 =[pt1 (2) ; pt2 (2) ; pt3 (2) ; pt4 (2) ; pt5 (2) ; pt02 (2) ; pt01 (2) ; pt1 (2)] ;

xv2 =[pt1 (1) ; pt2 (1) ; pt3 (1) ; pt4 (1) ; pt5 (1) ; pt03 (1) ; pt04 (1) ; pt1 (1)] ;
yv2 =[pt1 (2) ; pt2 (2) ; pt3 (2) ; pt4 (2) ; pt5 (2) ; pt03 (2) ; pt04 (2) ; pt1 (2)] ;

[vo r t i na r ea1 vortonarea1] = inpolygon (vortexpos (: , 1) , vortexpos (: , 2) , xv1 , yv1) ;
[vo r t i na r ea2] = inpolygon (vortexpos (: , 1) , vortexpos (: , 2) , xv2 , yv2) ;

vo r t in1 = vortex index (l o g i c a l (vo r t i na r ea1+vortonarea1)) ;
vo r t in2 = vortex index (vo r t i na r ea2) ;

221

