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Abstract

Accurate and efficient models of physical processes like fluid flows are crucial for applications ranging

from forecasting the weather to controlling autonomous aircraft and suppressing combustion insta-

bilities in liquid fueled rocket engines. These models allow us to predict what the system will do —

oftentimes in response to an input or design characteristics that we would like to choose intelligently

— as well as to detect what the real system is doing from limited and costly sensor measurements.

The main challenge is that the equations governing complex systems like fluid flows that we might

derive from first principles are routinely nonlinear and involve too many variables to be simulated

by a computer or sensed in real time. Therefore, we aim to construct and leverage simplified models

of these complex systems that capture the most important aspects of its behavior for the task at

hand, while relying on a much smaller number of variables that can be simulated or sensed in real

time. While highly effective and well-studied techniques exist when the system is linear, in many

important cases the system is operating too far away from an equilibrium state to employ lineariza-

tion or other linear approximation techniques. In this thesis, we make use of data collected from

the underlying complex system or simulations performed ahead of time in order to identify patterns

and construct simplified models based on them. In order to build simplified predictive models, we

present a variety of techniques based on projecting the governing equations onto manifolds identified

from data. Such manifolds must be nonlinear in order to find models involving the smallest number

of variables. We also find that in order to build models of systems with selective sensitivity, such

as shear-driven fluid flows, it is important to incorporate information from the linearized adjoint

of the governing equations. We also describe an alternative viewpoint for modeling based on con-

verting nonlinear dynamics into linear dynamics in a function space via data-driven approximation

of Koopman operators. Finally, we present a constellation of data-driven techniques enabling us to

find minimal sets of sensors or measurements to robustly infer what a highly nonlinear system is

doing.
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Chapter 1

Introduction

Accurate and computationally efficient models of physical systems enable a variety of important

engineering and scientific tasks to be carried out. Such tasks include

1. making forecasts of what a system will do given its current configuration or “state”,

2. tracking or “estimating” the current state in real time using streaming sensor measurements,

3. making decisions or controlling the system via an input to achieve some objective,

4. solving “inverse problems” to determine unknown parameters or initial conditions,

5. deciding what measurements from the system are needed to carry out the preceding tasks,

6. as well as design optimization of the system’s parameters to enhance a performance metric.

Several of the above tasks require simulating the model a large number of times, or performing other

complex calculations involving the system’s definition, sometimes in real time. These demands place

limits on the complexity and scale of the model depending on the available computational resources

and constraints on the computation time. In many physical systems such as fluid flows, the models

we obtain from first principles are too complex to be simulated efficiently enough to perform the

desired tasks. The complexity of the physics-based models comes from their nonlinearity and high-

dimensional state space.

Fortunately, the behaviors exhibited by many complex physical systems including fluid flows are

dominated by coherent spatiotemporal patterns. One of the first observations of coherent structures

in turbulence can be found in [32], where they are strikingly visible in experimental shadowgraphs.
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Low-dimensional modeling of these coherent structures as in [250, 114, 228] offers a promising ap-

proach to capture the dominant emergent behavior of the underlying system. Mathematically, a

collection of coherent structures defines a manifold or a subspace of the state space that the sys-

tem’s trajectories remain close to over time. By restricting the dynamics to evolve on this manifold

or subspace, one obtains a “reduced-order model” (ROM) with a lower state dimension than the orig-

inal system or “full-order model” (FOM). While powerful and well-studied techniques such as those

discussed in [10] and [20] are available for making low-dimensional approximations of linear systems,

the model reduction problem for nonlinear systems operating far from equilibria is more challenging

and remains largely unsolved. For reviews of some modern techniques for model reduction of linear

and nonlinear dynamical systems, one can consult [219, 14, 20, 228].

The success of linear model reduction approaches stems from the fact that the input-output

behavior of finite-dimensional linear systems admits an elegant and essentially complete description.

Consider a linear system

ẋ = Ax+Bu

y = Cx,

(1.1)

with state x ∈ Rn, input u ∈ Rp, and output y ∈ Rq. The output of this system is described in the

time domain by the “variation of constants” formula

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ) dτ (1.2)

and in the frequency domain by its Laplace transform

L{y}(s) = C(sI −A)−1x(0) + C(sI −A)−1BL{u}(s), s ∈ C. (1.3)

In contrast, the behavior of nonlinear systems can be much more complicated. As an illustration,

the Lorenz-63 system [161] given by

ẋ1 = σ(x2 − x1)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3

(1.4)

is a simplified model of a hydrodynamic flow and possesses only three state variables with quadratic
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Figure 1.1: A trajectory of the Lorenz system shown after a sufficiently long time so that it closely
approximates the Lorenz attractor.

nonlinearities. Over a range of parameter values this system yields chaotic and mixing dynamics

that evolve onto the so called “Lorenz attractor” shown in Figure 1.1 for σ = 10, β = 8/3, and

ρ = 28. Embedded in this attractor are an infinite number of unstable periodic orbits as well as

a dense orbit that passes infinitesimally close to every point on the attractor an infinite number of

times [104]. Such behavior is impossible for a finite-dimensional linear system (see Section 2.7 of

[103]).

The complexity arising from nonlinear interactions casts doubt on whether any computationally

tractable systematic analysis of a nonlinear system’s structure or governing equations can reveal the

coherent behaviors that are likely to emerge in simulation or in experiment, except in specialized

settings. This motivates the use of data collected from the system together with recent advances in

statistics and machine learning to extract the dominant patters and construct reduced-order models

governing their behavior. I shall present several advances in this direction, with the organizing

principle being the use of data to confront the inter-related challenges presented by nonlinearity and

high-dimensionality.

This thesis is organized into two parts. The first part summarizes the current contributions

by the author and provides detailed extensions of this work, while situating it within the context

of existing techniques and challenges. The methods and applications I shall discuss come in three

flavors, each getting its own chapter in part I:

1. Chapter 3: Projecting high-dimensional dynamics onto low-dimensional nonlinear manifolds
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describing coherent structures

2. Chapter 4: Turning nonlinear dynamics into linear dynamics of functions on the state space

(called observables) by approximating the infinite-dimensional linear operators governing their

evolution.

3. Chapter 5: Selecting optimal sensors or observables from among a discrete set to reconstruct

desired information about the system or to build reduced-order models.

The second part contains selected papers by the author in which the current contributions summa-

rized and contextualized in part I are explained in detail. All papers by the author will be denoted

with a star, e.g. [196]*, and papers appearing in Part II will be denoted with two stars, e.g., [194]**.
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Chapter 2

Analytical techniques

Before discussing data-driven approaches, it is important to ground our discussion in some special

cases where direct analyses of the governing equations are sufficient to shed light on emergent

spatio-temporal coherent structures. Such analytical methods have been the dominant approach for

studying dynamical systems since the field was pioneered by H. Poincaré [207, 208] since they often

produce concrete theoretical results and do not require performing costly experiments or simulations

of the system. One of the most popular and successful analytical techniques is the reduction of

a system onto a center manifold [104] defined in the neighborhood of an equilibrium point. By

expanding the center manifold in a Taylor series, it is possible to capture the structure of local

bifurcations. On the other hand, analytical techniques usually rely on perturbation theory, which

can only provide local information about a system near an equilibrium, bifurcation point, or orbit. In

addition, the cost of carrying out such analyses on large-scale systems such as discretized fluid flows

may be comparable to running one or more simulations. Analytical techniques are also intrusive,

meaning that they require direct algebraic manipulation of the governing equations. This can be

challenging when the equations are embedded in large-scale computer programs intended only to

simulate them.

2.1 Modeling dynamics locally

The simplest type of analytical methods stem from analyses of the linearized dynamics about an

equilibrium point. If the trajectory of a nonlinear system remains sufficiently close to an equilib-

rium point, then the dynamics are accurately described by the system’s linearization about the

equilibrium. For linear systems, a variety of well-studied model reduction techniques such as those
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reviewed in [10] and [20] can provide guarantees on the accuracy of the resulting reduced-order

model for capturing input-output behavior. Implementation of these techniques rely on numerical

linear algebra involving only the matrices defining the linear system. However, in some large-scale

applications such as model reduction of linearized fluid flows, the computational cost associated with

model reduction based directly on the system matrices can be greater than the cost of running a

collection of simulations. In fact, balanced proper orthogonal decomposition (BPOD) [225] reduces

the cost of the popular balanced truncation technique for model reduction [182] by computing an

efficient data-driven approximation using impulse-response trajectories of the forward and adjoint

systems. However, specialized algorithms for computing low-rank solutions of large-scale sparse

Lyapunov equations such as those in [205] and [151] may be competitive in terms of efficiency, but

more intensive in terms of requiring “intrusive” software implementation.

For model reduction of the original nonlinear governing equations, one approach taken by [13,

6, 118, 120] is to define a Petrov-Galerkin projection using subspaces chosen by model reduction

approaches for the linearized dynamics. In a similar spirit, [126, 174] suggest decomposing the

dynamics into a linear part and a nonlinear part about a chosen base state, usually the turbulent

mean or a fixed point, and viewing the nonlinear terms as broad-spectrum forcing acting on the

linear terms. By studying the transfer function associated with the linear terms, [174] found that

certain features of the nonlinear forcing are selectively amplified by linear interactions to produce

the coherent patterns observed in turbulent pipe flow. In particular, the transfer function for a

variety of turbulent flows linearized about their turbulent mean has a large singular value only at

select frequencies, and at those frequencies the transfer function is approximately low rank. This

observation has lead to successful modeling approaches for a variety of turbulent flows based on the

transfer function of the linearized dynamics [297].

However, as trajectories of the system move away from the chosen base state, the nonlinear

contributions can become significant. Projection operators defined based on the linearized dynamics

about a fixed point may completely ignore the contributions of small-scale features that strongly

influence the dynamics at later times due to nonlinear interactions. Similarly, energetic coherent

structures can cause large deviations from the turbulent mean, resulting in nonlinear interactions

that cannot be adequately modeled as broad-spectrum noise. As A. Padovan, C. W. Rowley, and I

show in [197]*, these coherent departures from the mean can cause analyses based on the transfer

function to fail due to energetic cross-frequency interactions that are ignored by linear analysis

about the mean. We can more accurately predict the structures that dominate perturbed responses

of a flow by studying the linearization about an energetic periodic orbit. In doing so, we again
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find selective amplification — except now many frequencies may be activated by forcing at a single

frequency due to triadic interactions with the frequencies present in the base flow.

Truncated Volterra series expansions provide another local approach for model reduction of

bilinear [14, 17, 88] and quadratically bilinear (QB) [18, 19] input-output systems operating near

a stable equilibrium point. The Volterra series allows for generalization of the H2 norm, usually

defined only for stable linear systems, to broader classes of nonlinear systems in the neighborhood

of an equilibrium point. These promising approaches can extend the region of validity for the

projection-based reduced-order model for arbitrary input signals. However, they are limited to a

neighborhood of a fixed point and by the number of terms that are retained in the truncated Volterra

series. To keep the computational cost manageable, the series is truncated at three terms, which

is sufficient to capture the second-order interactions between inputs at different times through the

second-order Volterra kernel.

2.2 Modeling dynamics globally

Analytical techniques yielding truly global information about the dynamics are rare and somewhat

more difficult to wield for complex high-dimensional systems. Melnikov’s method [104] is a perturba-

tive approach which can be used to predict the onset of chaos due to homoclinic bifurcations induced

by periodic excitation. However, one must already know that a homoclinic orbit exists and be able

to compute with it. Model reduction onto an inertial manifold [92, 90, 124] is another technique

that is capable of capturing global nonlinear dynamics such as chaotic attractors. However, the

existence of an inertial manifold can only be proved in certain highly specialized settings, such as

for dissipative dynamical systems. Furthermore, computing an inertial manifold and projecting the

dynamics onto it is extremely difficult in practice. Due to these difficulties, one usually works with

an approximate inertial manifold as in [263, 124, 234, 151, 170], which can be a useful for nonlinear

model reduction and control of systems for which the method applies. One approach to seek an

approximate inertial manifold is to decompose the dynamics into a linear and nonlinear part where

the linear part is self-adjoint. One then seeks an approximately invariant manifold expressed as a

graph over the subspace spanned by the least dissipative eigenvectors of the self-adjoint, linear part

of the dynamics. However, as pointed out in [102], this approach can fail when modes with small

spatial length scale become dynamically important. In particular, small scales can exhibit behaviors

that do not depend directly on the larger scales, and can even drive the large scale dynamics through

non-normal mechanisms [264]. Even when the states can be shown to reside in a small neighbor-
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hood of an approximate inertial manifold, the method of proof relies on the dissipative part of the

dynamics. When the dissipative length scale is small, as in the case of high Reynolds number fluid

flows, the resulting approximate inertial manifold is too high-dimensional to be useful [91].

While the specific approach whereby an approximate inertial manifold is expressed as a graph

over the least dissipative eigenspace of the linearized dynamics may not always be the best approach,

so called nonlinear Galerkin projection [168] of the dynamics onto a nonlinear manifold capturing

the relevant trajectories is very promising for systems exhibiting coherent patterns in general. A

main theme of this thesis is that data collected from the dynamical system can be used to identify

such a manifold as well as an associated projection operator for reduced-order modeling. These data

are the most reliable indicator of the coherent patterns in the dynamics that emerge over time, and

they do not rely on any kind of perturbative analysis or proximity to a fixed point or other type of

orbit. Moreover, data-driven techniques tend to be less intrusive than analytical techniques since

they rely only on simulation data, and perhaps also on linearized adjoint simulations that are already

commonly used for design optimization.
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Chapter 3

Data-driven reduced-order

modeling

Reduced-order modeling entails approximating the original system or full-order model (FOM) by

another system or “reduced-order model” (ROM) with a smaller state dimension. This is usually

accomplished by constraining the reduced-order model to evolve on a subset of the original state

space with fewer degrees of freedom, i.e., a low-dimensional submanifold of the state space. In

Chapter 2 we discussed several analytical techniques such as reduction onto center and approximate

inertial manifolds that may be found in the neighborhoods of equilibrium points and for certain

types of dissipative systems. However, as we pointed out at the end of Chapter 2, these techniques

have significant limitations, especially for systems operating far away from equilibria or exhibiting

sensitive dependence on low-energy features. In the data-driven approach we determine, or learn,

the underlying manifold for the reduced-order model based on data collected from the system. This

chapter presents background on existing data-driven techniques, analysis of fundamental challenges,

and techniques developed by the author to address these challenges.

As we shall review in Section 3.1, the majority of existing techniques for data-driven model

reduction follow a two-step recipe:

1. use data from the system to identify the manifold or subspace representing the most salient

coherent structures exhibited by the dynamics

2. identify governing equations for the system confined to this manifold either by

(a) data-driven learning
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(b) or by projecting the governing equations into the tangent space.

In many cases, each step is easy to perform on its own, leading to simplicity and efficiency of the

overall approach. Data-driven manifold learning techniques are capable of providing excellent low-

dimensional representations of the state with very little energy or variance unaccounted for. When

the most energetic features described by the learned manifold also have the largest influence on the

future states of the system, the model we obtain via the two-step approach will be highly accurate.

This resembles the situation described in Section 2.2 when models based on approximate inertial

manifolds are accurate.

On the other hand, systems where low-energy features exert a large influence on the way the

system evolves over time are extremely challenging to model using existing data-driven techniques.

Such systems are abundant in fluid dynamics, especially in shear flows where two layers of fluid move

past each other at different speeds [264, 242, 114]. Moreover, we find that the sensitivity mechanisms

by which low-energy features drive high-energy dynamics can be highly nonlinear. Capturing this

kind of sensitivity is the fundamental challenge motivating the new techniques we develop in this

chapter.

There are essentially two reasons for the aforementioned difficulty in modeling sensitivity to

low-energy features. First, step 1 in the two-step data-driven model reduction recipe ignores low-

energy features by definition. This is because the notion of salience used to find low-dimensional

representations is based on reconstruction accuracy and not on how accurately predictions are made

in the future. This limitation suggests using criteria that combine reconstruction and prediction

accuracy to identify the underlying manifold. In particular, steps 1 and 2 of the data-driven model

reduction recipe can be combined and performed simultaneously to accurately model sensitivity

to low-energy features. When the amount of data collected from the system exceeds the state

dimension, then this approach is essentially sufficient to identify the correct sensitivity mechanisms

and build an accurate model.

For high-dimensional systems where the state dimension greatly exceeds the amount of available

data, combining steps 1 and 2 of the data-driven model reduction recipe may still not work due to

a second fundamental difficulty, which is linear-algebraic in nature. This “curse of dimensionality”

poses a serious challenge for constructing reduced-order models of fluid flows where the state dimen-

sion routinely exceeds the amount of data collected from simulations by several orders of magnitude.

As we discuss later in Section 3.3.3, it is impossible to determine which features a system is sensitive

to from a number of input-output pairs smaller than the input dimension. This is in contrast to the
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ease with which we find subspaces or manifolds that accurately represent a system’s output when

it is low-dimensional. Additional constraints or different kinds of data are necessary to determine

sensitivity mechanisms, even when the system is sensitive to only a small number features. In par-

ticular, we find that data coming from linearized adjoint simulations of the full-order model provides

the key information we need to model sensitivity mechanisms. This idea is closely related to the

randomized SVD algorithm [108] and to balanced proper orthogonal decomposition (BPOD) [225].

Both techniques rely on data gathered from an operator and its adjoint to build approximations

that capture sensitivity. We present reduced-order modeling approaches which extend these ideas

to large-scale nonlinear systems.

3.1 Background on data-driven model reduction

3.1.1 Linear projection methods (POD-Galerkin)

One of the easiest and by far the most common approach for step 1 in the standard data-driven

model reduction recipe is to identify a subspace using Principal Component Analysis (PCA) [116]

or Proper Orthogonal Decomposition (POD) [23, 59], also known as Karhunen-Loève decomposition

[131, 160]. The use of POD for model reduction of fluid flows was pioneered by J. L. Lumley [163]

and is reviewed in [114], which should be consulted for more details. Both POD and PCA rely on

Singular Value Decomposition (SVD) to identify orthonormal bases for subspaces that capture the

most energetic state fluctuations with the difference being that POD identifies a genuine subspace

containing the origin, while PCA identifies an affine subspace centered about the mean. If the

data {xj}mj=1 live in a Hilbert space X , then POD and PCA identify an r-dimensional isometry

U : Cr → X so that its range captures the most energy about a center point c. In particular, U

solves the optimization problem

minimize
U :Cr→X
U∗U=Ir

1

m

m∑
j=1

‖(xj − c)− UU∗(xj − c)‖2, (3.1)

where the subspace contains c = 0 for POD or contains the average c = 1
m

∑m
j=1 xj for PCA. The

operator P = UU∗ is the orthogonal projection onto the r-dimensional subspace RangeU . Hence,

the above optimization problem is identifying the “best” rank r projection that minimizes the sum

of square errors between the original and projected data. Minimizing the average projection error as

in Eq. 3.1 is equivalent to maximizing the “energy” contained in the projection subspace RangeU
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according to

maximize
U :Cr→X
U∗U=Ir

1

m

m∑
j=1

‖U∗(xj − c)‖2 = Tr

U∗
 1

m

m∑
j=1

(xj − c)(xj − c)∗
U

 , (3.2)

where the matrix 1
m

∑m
j=1(xj − c)(xj − c)∗ is referred to as an empirical covariance matrix. Let the

centered data be arranged as an operator Xc : Cm → X defined by

Xc =

[
(x1 − c) · · · (xm − c)

]
: w 7→ w1(x1 − c) + · · ·+ wm(xm − c). (3.3)

Then the solution is given by U =

[
u1 · · · ur

]
, where {uj}mj=1 are the left singular vectors of

1√
m
Xc =

m∑
j=1

σjujv
T
j , (3.4)

arranged in decreasing order σ1 ≥ σ2 ≥ · · · ≥ σm. The singular value decomposition of a matrix

containing observations of the state is easy to compute and so one readily obtains an orthogonal

basis that is optimal in the energetic sense of POD or PCA.

Once the coherent structures in the form of an energetic state subspace have been identified

using POD or PCA, there are two main approaches for obtaining a reduced-order model. Suppose

the governing equations of the full-order model

d

d t
x = f(x, u), x(0) = x0

y = g(x)

(3.5)

with state x ∈ X , input u, and output y are known. A reduced-order model can be built by

constraining the state x̂ to lie in the identified subspace x̂ ∈ c+ RangeU using a technique referred

to as Galerkin projection. While x̂ lies in c+RangeU , the time derivative f(x̂, u) may not lie tangent

to c+ RangeU , i.e. in Tx̂(c+ RangeU) = RangeU , and so one may take the closest approximation

of f(x̂, u) in RangeU given by its orthogonal projection

d

d t
x̂ = argmin

v∈RangeU
‖f(x̂, u)− v‖ = UU∗f(x̂, u), (3.6)

by the projection theorem for the Hilbert space X . Similarly, the nearest point in c + RangeU to
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the initial condition x0 is given by the shifted orthogonal projection

x̂(0) = c+ UU∗(x0 − c). (3.7)

In the reduced coordinate system defined by x̂ = c+ Uz, the reduced-order model is given by

d

d t
z = U∗f(c+ Uz, u), z(0) = U∗(x0 − c)

ŷ = g(c+ Uz).

(3.8)

One can easily analyze the error incurred by a Galerkin-based reduced-order model of Lipschitz

governing equations, i.e., ‖f(x, u)− f(x′, u)‖ ≤ L‖x− x′‖ for every x, x′ ∈ X , by observing that

‖x(t)− x̂(t)‖ ≤ ‖x(0)− x̂(0)‖+

∫ t

0

‖f(x(τ), u(τ))− UU∗f(x̂(τ), u(τ))‖ d τ

≤ min
x̂0∈c+RangeU

‖x0 − x̂0‖+

∫ t

0

[
L‖x(τ)− x̂(τ)‖+ min

v∈RangeU
‖f(x̂(τ), u(τ))− v‖

]
d τ

(3.9)

and applying the Grönwall inequality given below by Lemma 3.1.1 to obtain

‖x(t)− x̂(t)‖ ≤ min
x̂0∈c+RangeU

‖x0 − x̂0‖eLt +

∫ t

0

eL(t−τ) min
v∈RangeU

‖f(x̂(τ), u(τ))− v‖ d τ. (3.10)

The minima appearing in Eq. 3.10 are a consequence of the orthogonal projection of the initial

condition and the time derivative into the appropriate subspaces. This local optimality indicates

that Galerkin projection onto a POD or PCA subspace is sensible for making an upper bound on

the modeling error small. While choosing the orthogonal projection minimizes the reduced-order

modeling error for short time horizons, the above bound does not exclude the possibility that the

error grows exponentially. This kind of exponential growth takes place when the projection subspace

RangeU does not capture low-energy fluctuations that are amplified by the dynamics at later times.

Lemma 3.1.1 (inhomogeneous Grönwall inequality). Suppose that w : [0, T ]→ R and b : [0, T ]→ R

are integrable functions satisfying

w(t) ≤ a+

∫ t

0

[Lw(τ) + b(τ)] d τ ∀t ∈ [0, T ] (3.11)
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for some constants a, L ∈ R. Then, w is bounded according to

w(t) ≤ aeLt +

∫ t

0

eL(t−τ)b(τ) d τ ∀t ∈ [0, T ]. (3.12)

Proof. The proof is given in Appendix 3.A.

3.1.2 Linear models of projected dynamics (POD-DMD)

On the other hand, the governing equation may not be known, in which case, a model of the dynamics

can be built in the subspace identified by PCA or POD using data-driven techniques. It is common

to have a data set consisting of snapshot pairs of the state {(xj , x]j}mj=1 where x]j = x(t + ∆t) is

obtained by evolving the dynamics ẋ = f(x) from the initial condition x(t) = xj over a time ∆t. In

such a case, there are many techniques that seek to approximate the discrete-time dynamics, i.e.,

the flow map

x(t+ ∆t) = F∆t(x(t)) (3.13)

from the snapshot pairs x]j = F∆t(xj), j = 1, . . . ,m. Perhaps the simplest technique is Dynamic

Mode Decomposition (DMD), introduced by P. J. Schmid [243, 240], in which a linear approximation

of F∆t is sought. Given the snapshot data arranged into matrices

X =

[
x1 · · · xm

]
, X] =

[
x]1 · · · x]m

]
, (3.14)

a least squares approximation of F∆t is given by

A = X]X+ (3.15)

where X+ denotes the Moore-Penrose pseudoinverse of X. However, it is generally impossible to

work with A directly since the state dimension, and hence the dimension of A, is enormous for

discretized fluid flows of interest. Moreover, the pseudoinverse cannot be stably computed when

the matrix X has small singular values as are often encountered in practice. In such cases when

the state dimension is large compared to the number of snapshots, m, the operator A is low rank

with its nullspace containing the orthogonal complement of the range of X. Consequently, if U is

an isometry with RangeU = RangeX, then the reduced operator

Â = U∗AU (3.16)
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has the same nonzero eigenvalues as A, but has dimension at most m. Moreover, it is shown in [266]

that if v̂ is an eigenvector of Â with nonzero eigenvalue λ, then the corresponding eigenvector of A

with eigenvalue λ is given by

v =
1

λ
X](U∗X)+v̂, (3.17)

as can be readily verified via the properties of the Moore-Penrose pseudoinverse:

Av =
1

λ
X]X+X](U∗X)+v̂ =

1

λ
X](U∗X)+U∗X]X+Uv̂

=
1

λ
X](U∗X)+Âv̂ = λv.

(3.18)

Obtaining the eigenvector v using Eq. 3.17 is easier than directly computing the eigenvectors of A

since U∗X is at most an m×m matrix. This is referred to as “exact DMD” [266].

The utility of working with the smaller matrix Â motivates computing a projection of A into

a POD subspace obtained from the data X. This subspace closely approximates the range of X

in the energetic sense described above. Letting UrΣrV
∗
r = σ1u1v

∗
1 + · · · + σrurv

∗
r denote the rank-

r truncation of a singular value decomposition X = UΣV ∗ = σ1u1v
∗
1 + · · · + σmumv

∗
m, then the

projection of A into the r-dimensional POD subspace is given in POD coordinates by the matrix

Âr = U∗rX
]VrΣ

−1
r = U∗rX

] (U∗rX)
+
. (3.19)

It is important to recognize that Âr is precisely the DMD matrix computed using the POD coeffi-

cients zj = U∗r xj , z
]
j = U∗r x

]
j of the data arranged into matrices Z = U∗rX and Z] = U∗rX

]. The

resulting reduced-order model of the original flow map is given by its least-squares approximation

with respect to the data in POD coordinates

z(t+ ∆t) = U∗r F
∆t(Urz(t)) ≈ Ârz(t), Âr = Z]Z+. (3.20)

Essentially the same least squares procedure can be used to build a linear model that incorporates

piece-wise constant actuation signals {uj}mj=1 applied during each time interval, except now it is

referred to as Dynamic Mode Decomposition with control or DMDc [211]. In DMDc, one uses the

same least-squares procedure to obtain a reduced-order model of the form

z(t+ ∆t) = U∗r F
∆t(Urz(t), u) ≈ Ârz(t) + B̂ru,

[
Âr B̂r

]
= Z]

z1 · · · zm

u1 · · · um


+

. (3.21)
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If instead of x]j , we have approximations of the time derivative ẋj = f(xj , uj), then a similar

procedure can be used to find a linear approximation of f in POD coordinates.

3.1.3 Nonlinear models of projected dynamics (POD-kitchen sink)

Of course in many cases, the dynamics are nonlinear, and so a linear approximation as in DMD

may be an inadequate description. To construct a data-driven model in the reduced coordinate

system, we can select a “dictionary” of real-valued nonlinear functions ψ1, . . . , ψN to be used in an

approximation of the dynamics of each POD coefficient

d

d t
[z]i = 〈ui, f(Urz, u)〉 ≈ ci,1ψ1(z, u) + · · ·+ ci,NψN (z, u) = cTi ψ(z, u), i = 1, . . . , r. (3.22)

Reasonable choices of dictionary elements may be determined by examining the governing equations.

For instance, if the dynamics have quadratic nonlinearities, as is true for the incompressible Navier-

Stokes equations, then the dynamics of POD coefficients are also described in terms of quadratic

nonlinearities. We may then solve a least-squares problem to fit the coefficients ci,j in Eq. 3.22 to a

data set made up of inputs uj , POD coefficients of states zj = U∗r xj , and approximations of their

time derivatives.

However, the number of terms N that must be considered in such an approximation can grow

very large, and can easily exceed the number of data points m. In this case, the least squares prob-

lem for the coefficients ci,j will be under-determined and so it will not have a unique solution. The

ambiguity in the coefficients may result in wildly different models that all fit the given data exactly,

but fail to produce useful predictions for new trajectories — as is the goal for any reduced-order

model. Several types of regularization and fitting strategies can be used to remove this ambiguity

and obtain models with superior predictive performance. If one assumes that only a few terms

from the dictionary contribute to the time derivative of each POD coefficient, then it is possible to

employ sparsity promoting techniques such as Sparse Identification of Nonlinear Dynamics (SINDy)

[36] to uncover these active coefficients. Sparse coefficients can also improve the physical inter-

pretability of the resulting model. In fact, the POD-SINDy technique has been used to identify

an accurate three-dimensional reduced-order model of the periodic shedding dynamics in the wake

of a cylinder [36]. A host of other sparse approximation techniques are also available, including `1

penalization methods [81] including the Least Absolute Shrinkage and Selection Operator (LASSO)

[262], iteratively reweighted optimization techniques such as those described in [58, 77, 51], and

greedy selection methods like Orthogonal Matching Pursuit (OMP) [198, 61]. The advantage of
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these sparsity-promoting techniques is that they all can guarantee exact or near-exact recovery of

the active coefficients using fewer data than are needed to uniquely solve the least squares problem.

Guidelines for dictionary selection and data sampling that lead to exact recovery of sparse governing

equations can be found in [239]. The drawback is that the dynamics of each coefficient must actu-

ally have a sparse, or approximately sparse representation in the chosen dictionary. An alternative

approach is to approximate the dynamics of POD coefficients using a recurrent neural network as

in [275, 272]. However, the resulting models are more difficult to interpret than models based on

pre-defined dictionaries.

3.2 The need for reduction onto nonlinear manifolds

In systems like advection-dominated fluid flows, the observed coherent structures may translate

through space, making them difficult or impossible to represent using a low-dimensional linear

superposition of fixed spatial modes as in POD or PCA [191, 150]. In fact, when the covariance

operator for POD is translationally homogeneous, as might be the case for a system with translational

symmetry, then the resulting POD modes are simply the Fourier modes along the direction of

translation [250, 114]. To see why such modes don’t tell us anything useful about the coherent

structures, we provide the following:

Example 3.2.1. Consider a system that generates spatial profiles on the circle xt : S1 → R that

are all phase-shifted copies of the same profile xt(e
iθ) = φ(ei(θ+h(t))). Assume that the phases

eih(tk) at sample times {tk}∞k=1 are distributed uniformly on S1 in the sense that for any continuous

f : S1 → R, we have

lim
K→∞

1

K

K∑
k=1

f(eih(tk)) =

∫ 2π

0

f(eiθ) d θ. (3.23)

Then the POD covariance operator R : L2(S1)→ L2(S1) is given by

(Rv)(eiθ) =

∫ 2π

0

(
lim
K→∞

1

K

K∑
k=1

xtk(eiθ)xtk(eiω)

)
v(eiω) dω

=

∫ 2π

0

(∫ 2π

0

φ(ei(θ−ω+α))φ(ei(α)) dα

)
︸ ︷︷ ︸

ρ(ei(θ−ω))

v(eiω) dω,
(3.24)

which has eigenfunctions uk(eiθ) = eikθ for every integer k since

(Ruk)(eiθ) =

∫ 2π

0

ρ(ei(θ−ω))eikω dω =

(∫ 2π

0

ρ(eiω)e−ikω dω

)
eikθ. (3.25)
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The POD modes uk are simply the Fourier modes on the circle and their variances or energies are

given by the Fourier coefficients of ρ. The Fourier coefficients can decay slowly if the profile φ has

few continuous derivatives, i.e., when φ is jagged. Most importantly, the POD modes uk give us no

information whatsoever about the coherent structure φ, which simply translates around the circle.

While there may be an infinite number of energetic POD modes, the states xt are distinguished by

their phases alone. Hence, these states lie on a one-dimensional loop in an infinite-dimensional state

space of functions on the circle.

The fact that an infinite number of energetic POD modes might be needed to represent states that

lie on or near low-dimensional underlying manifolds motivates the development of techniques for

model reduction that exploit this low-dimensional nonlinear structure.

When the governing equations have continuous symmetries, it is possible to construct reduced-

order models on the quotient space formed by the equivalence classes of states that are related

by symmetric transformations [229]. In doing so, the original governing equations are decomposed

into a “vertical” component aligned with the action of the symmetry group and a complementary

“horizontal” component that gives rise to dynamics on the quotient space. For instance, in a

system with translational symmetry, one can choose a template profile and model the dynamics

on a slice consisting of those states that differ from the template along directions orthogonal to

the action of the translation symmetry, effectively sliding solutions back into alignment with the

template as they evolve. By removing the translational component of the dynamics, it often becomes

possible to represent the reduced state using a low-dimensional superposition of POD modes [230].

However, many systems in engineering are not symmetric due to complicated geometry and boundary

conditions. Another approach taken in [80, 8, 200, 203] is to construct different reduced-order models

in different regions of state space by employing locallized POD bases.

In general, the coherent structures we wish to model are described by states lying near a low-

dimensional underlying manifold. In cases where the underlying manifold is closely approximated

by a low-dimensional subspace, as in diffusion-dominated problems, we may employ model reduc-

tion methods based on POD. On the other hand, for many advection-dominated phenomena of

interest, the low-dimensional underlying manifold is curved in such a way that it departs from any

low-dimensional subspace [191]. In such cases, any accurate reduced-order model based on linear

projection will require a large number of superfluous state variables when compared to the dimension

of the underlying manifold. Instead, we wish to construct a reduced-order model of the dynamics

confined to the underlying curved manifold without appealing to a subspace. Advances in machine
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learning over the last two decades have provided powerful tools for identifying low-dimensional non-

linear manifolds from data that have promising applications for reduced-order modeling. In turn,

model reduction applications for large scale nonlinear dynamical systems like fluid flows place new

demands on machine learning techniques, motivating the development of specialized learning meth-

ods and architectures.

3.2.1 Parametrizing manifolds using autoencoders

Autoencoders [112, 99] are a type of neural network architecture where mappings into and out of

a low-dimensional latent space are learned from data. In particular, an autoencoder consists of an

encoder function ψe : Rn → Rr that encodes states x into a low-dimensional representation ψe(x) in

the “latent space” Rr and a decoder function ψd : Rr → Rn that reconstructs the states as closely as

possible. In general, the encoder and decoder are parametrized nonlinear functions x 7→ ψe(x; θ) and

z 7→ ψd(z; θ) with defining parameters θ. The encoder and decoder are usually parametrized using

neural networks composed of layers as shown in Figure 3.1. Here, the lth layer is a parametrized

linear map determined by weight matrices W (l)(θ) and bias vectors b(l)(θ) together with a nonlinear

activation function σ that acts element-wise as in

ψd(z) = ψ
(L)
d ◦ · · · ◦ ψ(1)

d (z), where ψ
(l)
d (z(l−1)) = σ(W

(l)
d (θ)zl−1 + b

(l)
d (θ)). (3.26)

The parameters θ defining the encoder and decoder maps are usually optimized according to a

reconstruction objective such as mean square reconstruction error

minimize
θ

1

m

m∑
j=1

‖xj − ψd(ψe(xj ; θ); θ)‖2, (3.27)

where {xj}mj=1 is a data set.

We have already encountered a simple type of autoencoder where the encoder and decoder are

the linear maps found by POD, that is,

ψe(x) = U∗x ψd(z) = Uz. (3.28)

Here, the decoder provides a coordinate parametrization of the subspace M = RangeU near which

the states lie, while the encoder gives the coordinates of states orthogonally projected onto M.

This suggests how autoencoders might be used for reduced-order modeling, namely in the same
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· · ·x ψe(x; θ)

encoder

· · ·z x̂ = ψd(z; θ)

decoder

Figure 3.1: An autoencoder neural network is formed by a parametrized encoder function and a
parametrized decoder function. These functions are made up of layers where linear maps defined by
tunable weights are composed with element-wise nonlinearitities called activation functions. This
setup is shown graphically where nodes represent the elements of each layer’s output and arrows
indicate the tunable linear dependencies on the outputs of the previous layer before applying the
activation functions.

ways as POD, except using the possibly nonlinear encoder and decoder functions. The nonlinearity

of the decoder function ψd, allows it to parametrize a nonlinear state space manifold,Md, near which

the states of the system lie. Consequently, it is possible to project the dynamics onto this manifold

as suggested by K. Lee and K. T. Carlberg in [150]. In [150], a nonlinear Galerkin reduced-order

model is constructed by approximating the state x̂ ∈Md. The time derivative in the tangent space

of Md is

d

d t
x̂ = argmin

w∈Tx̂Md

‖f(x̂, u)− w‖ = PTx̂Md
f(x̂, u), (3.29)

where PTx̂Md
is the orthogonal projection onto the tangent space. Assuming that Dψd(z) is injective

and recalling that x̂ = ψd(z) for some low-dimensional latent state z ∈ Rr, the above model yields

dynamics for this latent state given by

d

d t
z = argmin

v∈Rr
‖f(ψd(z), u)−Dψd(z)v‖ = (Dψd(z)

∗Dψd(z))
−1

Dψd(z)
∗f(ψd(z), u), (3.30)

where the orthogonal projection onto the tangent space of M at x̂ = ψd(z) is given by

PTx̂Md
= Dψd(z) (Dψd(z)

∗Dψd(z))
−1

Dψd(z)
∗. (3.31)

The error of such a model may be crudely analyzed in the same way as the model based on linear

Galerkin projection by employing the Grönwall inequality stated in Lemma 3.1.1.
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3.2.2 Models based on low-dimensional embeddings

One may also construct reduced-order models based on the embedding provided by an autoencoder’s

encoder function or by the analogous function provided by a variety of other manifold learning

techniques. Other manifold learning techniques that provide embedding functions analogous to the

encoder ψe include spectral methods like kernel principal component analysis (KPCA) [244], Isomap

[260], Laplacian eigenmaps [15], and diffusion maps [68, 63], as well as locally linear embedding (LLE)

[224] and secant-avoidance projection methods [31, 111, 254]. If the states lie near a submanifold

M of the state space X , then ψe provides an embedding of M when the restriction of ψe to M is

injective, has injective derivative Dψe(x) on TxM for every x ∈ M, and is proper. The technical

condition that ψe|M is proper says that the preimage under ψe|M of any compact set is compact.

This essentially means that ψe|M does not map arbitrarily far away points to nearby latent states.

Put together, these conditions imply that the embedded set ψe(M) is a submanifold of the latent

space Rr. Moreover, there is a smooth function that reconstructs the original states inM from those

in ψe(M), of which the decoder ψd is an approximation. Hence, from an intuitive perspective, the

training process for an autoencoder seeks to make ψe an embedding of an underlying manifold near

which the data {xj} lie. When using other manifold learning techniques that do not automatically

provide a reconstruction function (e.g., spectral methods and secant-avoidance projection), one may

learn an approximate decoder ψd by employing a variety of regression techniques such as the one

described in [121].

To build a reduced-order model based on an encoder, there are two options: either employ a

nonlinear Galerkin method utilizing the reconstruction function, or learn the equations governing the

dynamics of the embedded states directly from data. In the nonlinear Galkerin approach described

by E. Chiavazzo et al. [63], one approximates the dynamics of the embedded states z = ψe(x),

x ∈M according to

d

d t
z = Dψe(x̂)f(x̂, u), (3.32)

where the reconstructed state is provided by the decoder x̂ = ψd(z). In [63], various extensions

of the diffusion maps embedding operator are used to construct an encoder that projects nearby

states onto the learned manifold. However, a drawback of this approach is that it may be very

computationally expensive to evolve Eq. 3.32 due to the need to reconstruct the full state x̂ = ψd(z)

and evaluate the full-order model dynamics f(x̂, u) at each time step.

The alternative approach suggested by D. S. Broomhead and M. J. Kirby in [31] is to construct

a data-driven approximation of the map f̃ defined by Dψe(x)f(x, u) = f̃(ψe(x), u) for every x ∈M
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and input u. Such a map f̃ is guaranteed to exist if ψe is an embedding of M. This map can be

approximated from data using regression techniques like SINDy [36], neural networks [220, 221], or

by radial basis functions as in [31] and [121]. In either case, one uses data consisting of pairs states

xj , inputs uj , and resulting time derivatives ẋj = f(xj , uj) and constructs the embedded states and

time derivatives in the latent space according to zj = ψe(xj) and żj = Dψe(xj)ẋj . A suitable map

f̃ is then found by regression so that each żj is approximated closely by f̃(zj , uj). Using the learned

map f̃ , we may approximate the dynamics of the latent variables governed by Eq. 3.32 using

d

d t
z = f̃(z, u). (3.33)

The dynamics of the embedded latent states can also be modeled using various types of recurrent

neural networks as in [155, 271]. In order to predict the dynamics of the original full-order model

we still must reconstruct states on M from latent variables z using a suitable decoder.

3.2.3 The surprising utility of linear embeddings

While a variety of methods provide nonlinear encoder functions ψe, if the goal is merely to embed

a compact state space manifold M, one often need not look beyond linear encoders. This is due to

Whitney’s first embedding theorem [277], which says that any compact k-dimensional submanifold

of Rn may be embedded in R2k+1 by a linear mapping. The proof of Whitney’s theorem involves

constructing a linear projection with a nullspace that does not contain any secant vector between

distinct points of M. If every secant has a nonzero projection then the projection map is one-to-

one on M. The degree to which the projection map preserves distances can be measured by the

ratios of secant lengths to their lengths after the projection is applied. This idea motivates the

Secant-Avoidance Projection (SAP) method introduced by D. S. Broomhead and M. J. Kirby in

[31], whereby an orthogonal projection subspace is optimized to avoid zeroing out secants between

data points sampled from M.

If one does not care about the quality of the embedding as measured by distance preservation

as in SAP, then the use of Sard’s theorem in the proof of Whitney’s theorem indicates that linear

mappings that provide embeddings can be chosen essentially at random [106]. Distance preservation

between data points can be achieved with high probability by random projections of sufficiently large

dimension thanks to the Johnson-Lindenstrauss lemma [123, 270]. For any collection of m points

the dimension of the Johnson-Lindenstrauss embedding with distance distortion factor bounded by

(1± ε) grows according to O(ε−2 logm) [270]. Moreover, the logarithmic growth in the embedding

31



dimension for random projections can be removed when the data actually live on a low-dimensional

manifold, in which case the dimension depends on the manifold’s curvature [12, 65]. The use of

random projections for producing cheap embeddings of enormous data sets has become a useful and

widespread tool in machine learning and data science [133, 25, 3]. While the Johnson-Lindenstrauss

embedding dimension is tight in the sense that random projections provide the minimum possible

embedding dimension up to a constant factor, the constant can be large in practice. With increasing

embedding dimension, it becomes harder to learn the reduced-order model dynamics f̃ from limited

data. Hence, for model reduction purposes with limited data, it is advantageous to employ an

optimization approach like SAP [31]. The following example demonstrates how a linear encoder can

provide an embedding of a highly nonlinear state space manifold.

Example 3.2.2. Consider a similar setup as in Example 3.2.1, where states xs ∈ L2([−2, 2]) are

given by shifted copies xs(ξ) = φ(ξ−s) of a nonzero, nonnegative, continuously differentiable “bump”

function φ with support in the interval [−1, 1] and s ∈ (−1, 1). Hence, these states live on a one-

dimensional manifold

M =
{
x ∈ L2([−2, 2]) : x(ξ) = φ(ξ − s), s ∈ (−1, 1)

}
(3.34)

in the infinite-dimensional state space L2([−2, 2]). Define the encoder to be any one-dimensional

linear map of the form

ψe(x) = 〈w, x〉L2([−2,2]) =

∫ 2

−2

x(ξ)w(ξ) d ξ, (3.35)

where w ∈ C1([−2, 2]) is a continuously differentiable weight function with positive first derivative.

The encoded coordinate for states xs ∈M are given by

z(s) = ψe(xs) =

∫ 2

−2

φ(ξ − s)w(ξ) d ξ =

∫ 1

−1

φ(ξ)w(ξ + s) d ξ, (3.36)

which is seen to be a continuously differentiable function with positive derivative, bounded above and

below by constants,

0 < min
η∈[−2,2]

w′(η)

∫ 1

−1

φ(ξ) d ξ ≤ z′(s) =

∫ 1

−1

φ(ξ)w′(ξ + s) d ξ ≤ max
η∈[−2,2]

w′(η)

∫ 1

−1

φ(ξ) d ξ, (3.37)

for s ∈ (−1, 1). Hence, ψe and its derivative are injective and the inverse of ψe on its range is also

differentiable. Therefore, the encoder provides a one-dimensional linear embedding of M into R1.

This is remarkable because M may not reside in any finite-dimensional subspace due to the sliding
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support of xs.

3.3 Capturing sensitivity via “dynamics-aware” learning

Unfortunately, reduced-order models of the dynamics on a manifold that closely approximates the

observed states of a system may still be inaccurate when the dynamics are sensitive to low-energy

features of the state. This problem was observed in [69], where it was found that POD does not always

provide an optimal basis for modeling the dynamics. Similarly, [102] finds that an approximate

inertial manifold based on the least dissipative modes fails to capture dynamically important small-

scale features in a Rayleigh-Bénard convection system.

The manifold learning-based techniques described above in Section 3.2 are capable of identifying

manifolds that represent the most energetic coherent structures of the observed states. For instance,

autoencoders are usually trained to achieve the highest possible reconstruction accuracy by mini-

mize the energy of the neglected features of the state according to Eq. 3.27. Projecting the states

onto these manifolds necessarily removes low-energy features of the state that do not significantly

contribute to reconstruction accuracy. The problem with this approach is that low-energy features

may still have significant effects on the dynamics observed at later times. Thus, removing all of

the low-energy features can result in poor predictive performance, even though states may be very

accurately represented on the learned manifold. This problem is not merely theoretical since low-

energy features of the state are known to play an important role in driving shear flow instabilities

[264, 242, 114]. Shear flows are extremely common, occurring whenever two layers of fluid slide

past each other at different speeds, causing shear between the layers. In such situations, a small

disturbance introduced at an upstream location can grow while being carried with the flow, resulting

in large amplitude structures appearing downstream. Modeling the dynamics on a manifold that

represents the most energetic coherent structures appearing downstream is likely to ignore the low-

energy features appearing upstream that cause the energetic structures to appear in the first place.

We therefore argue that model reduction techniques for these types of systems must be “aware” of

the dynamics in order to identify and capture the important low-energy features, while neglecting

the unimportant ones.

3.3.1 Non-normality and sensitivity of linear dynamics

In linear dynamics, low-energy states can drive energetic responses due to non-normality of the

governing linear operator. An operator A : X → X on a Hilbert space X is normal when A∗A = AA∗.
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When A is also compact — as is always true in finite dimensions — the spectral theorem says that

X admits an orthonormal basis {ej} of eigenvectors of A with eigenvalues {λj}. Consequently, the

operator norm of A, measuring how much A can amplify the length of a vector on which it acts, is

given by the eigenvalue with largest magnitude

‖A‖op = sup
x∈X :
‖x‖=1

‖Ax‖ = max
j
|λj |. (3.38)

Moreover, this amplification occurs along the constant direction of the corresponding eigenvector

emax since Aemax = ‖A‖opemax. In this case, the most energetic direction emax influences itself

through the action of A since the most amplified direction is an eigenvector.

On the other hand, when A is not a normal operator, it may be most sensitive along directions

that are not eigenvectors. An input along a sensitive direction can then result in a large output

along a different direction. As an illustration, an operator on R3 defined by a matrix of the form

A =


λ1 0 b

0 λ2 b

0 0 λ3

 (3.39)

is considered in [225, 114]. This matrix has eigenvalues λ1, λ2 and λ3, while its operator norm is at

least as large as its last column

‖A‖op ≥
√

2b2 + λ2
3 ≥
√

2|b|. (3.40)

Thus, we can make the eigenvalues of A whatever we want, while making the operator norm of

A large by choosing |b| large. In this case, A is sensitive along the direction v = (0, 0, 1) while

producing arbitrarily large output along a nearly orthogonal direction Av = (b, b, λ3).

When A describes the dynamics of a system, for instance

d

d t


x1

x2

x3

 =


−1 0 100

0 −2 100

0 0 −5



x1

x2

x3

+


1

1

1

u
y = x1 + x2 + x3

(3.41)

as in [114], the third state x3 remains small while x1 and x2 experience large transient growth with
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x(0) = v1 + v2v1

v2 x(t) = eλ1tv1 + eλ2tv2eλ1tv1

eλ2tv2

Figure 3.2: Two closely aligned eigenvectors v1 and v2 of a stable linear system can give rise to
transient growth when their corresponding eigenvalues λ1 and λ2 differ. Starting at the initial state
x(0) = v1 +v2, the magnitude of x(t) experiences transient growth because eλ2t decays more quickly
than eλ1t. Moreover, the growth occurs along a direction that is not aligned with the initial state
x(0). After a long time, x(t)→ 0 because its coefficients decay exponentially.

slow decay and account for most of the state’s energy. Hence, one might examine data drawn from

impulse responses of this system as in [114] and find that the two-dimensional projection subspace

obtained by POD captures most of the system’s energy by almost completely neglecting the third

state. However, the third state is important for the dynamics of this system because it drives the

transient growth of x1 and x2. Consequently, two-dimensional POD-based reduced-order models of

this system yield predictions that are extremely poor and do not exhibit any transient growth [114].

The geometric mechanism responsible for transient growth in non-normal systems is illustrated in

Figure 3.2.

The operators obtained by linearizing shear flows about steady solutions are often non-normal

and result in similar transient growth phenomena due to selective amplification of low-energy flow

features [264, 242]. In fact, the transient growth due to non-normality can be large enough to drive

the state away from the region of validity of the linearization even when the linearized dynamics are

stable. This is precisely the mechanism of instability in pipe flows, which always become turbulent

at sufficiently high Reynolds numbers, yet paradoxically have linearly stable steady-state velocity

profiles [264, 242]. Even in the turbulent regime, the coherent structures one observes are often due

to selective amplification of other low-energy features by the linearized operator about the turbulent

mean flow [174].

Non-normality does not pose a problem for model reduction of linear systems by more sophisti-
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PV x
PV,Wx

V

W

Figure 3.3: We illustrate the geometry of orthogonal and oblique projections of a point x ∈ R3 onto
a two-dimensional subspace V . The direction x−PV x of the orthogonal projection is orthogonal to
the subspace V , whereas the direction x− PV,Wx of the oblique projection is othogonal to another
two-dimensional subspace W . This figure is reproduced from C. W. Rowley and S. T.M. Dawson
[228] with permission from the authors.

cated techniques like balanced truncation and H2 optimal model reduction. When the underlying

system is non-normal, these techniques yield reduced-order models based on non-orthogonal, i.e.,

oblique projections of the governing equations. For reference, an orthogonal projection PV : X → X

onto an r-dimensional subspace V is defined by the orthogonality of the projection direction x−PV x

with the subspace V that is, by the relation

PV x ∈ V such that 〈v, x− PV x〉 = 0 ∀v ∈ V. (3.42)

On the other hand, an oblique projection PV,W : X → X onto an r-dimensional subspace V is defined

by letting its projection direction x − PV,Wx be orthogonal to another r-dimensional subspace W ,

that is, by

PV,Wx ∈ V such that 〈w, x− PV,Wx〉 = 0 ∀w ∈W. (3.43)

We illustrate the geometry of orthogonal and oblique projections in Figure 3.3. Furthermore, any

rank-r idempotent operator P : X → X , i.e., P 2 = P , is an oblique projection operator described as

above by the two r-dimensional subspaces V = Range(P ) and W = Range(P ∗) = Null(P )⊥. Oblique

projections enable the resulting reduced-order models to capture the most energetic components of

the system’s response in addition to any low-energy features that are important for the dynamics. For

instance, a highly accurate two-dimensional reduced-order model of Eq. 3.41 may be obtained by an

oblique projection computed using balanced truncation as in [114]. In contrast, a two-dimensional

36



model based on POD and orthogonal projection performs poorly. Accurate models of linearized

channel flow, which exhibits transient energy growth due to non-normality, have also been obtained

using oblique projection methods [119]. Here, the oblique projections were identified by Balanced

Proper Orthogonal Decomposition (BPOD) [225] — a computationally efficient approximation of

balanced truncation.

Constructing a reduced-order model by applying an oblique linear projection operator to a non-

linear system is called Petrov-Galerkin projection. In some cases, accurate models of nonlinear fluid

flows have been obtained by Petrov-Galerkin projection of the governing equations onto subspaces

identified by linear model reduction techniques applied at a nearby equilibrium [13, 6, 118, 120].

However, as we mentioned earlier, non-normality of the linearized dynamics can cause the state

to depart from the region of validity where reduced-order models based on linearization or projec-

tion subspaces obtained from linearization are valid. In other cases, the states we wish to model

may reside near a more complicated attractor that is too far away from any equilibrium to employ

projections obtained from linearized dynamics.

3.3.2 Nonlinear sensitivity to low-energy features and optimizing oblique

projections using trajectories

When the state is far from an equilibrium point, sensitivity to low-energy features may also be due

to nonlinear interactions, which are considerably more difficult to model. For instance, in [192]** we

consider a nonlinear system

ẋ1 = −x1 + 15x1x3 + u

ẋ2 = −2x2 + 15x2x3 + u

ẋ3 = −5x3 + u

y = x1 + x2 + x3,

(3.44)

that exhibits transient growth due to its quadratic interactions with the low-energy feature x3. Two

trajectories of this system generated from impulse responses with magnitudes u0 = 0.5 and 1.0 are

shown in Figure 3.4a along with the predicted trajectories of various two-dimensional projection-

based reduced-order models. The normalized prediction errors for 50 impulse response trajectories

with magnitudes drawn uniformly at random from the interval [0, 1] are shown in Figure 3.4b.

As in the case of the non-normal linear system in Eq. 3.41, the two-dimensional POD-Galerkin

reduced-order model of Eq. 3.44 performs poorly since it neglects the low-energy feature x3. More
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Figure 3.4: In panel (a), we show the outputs generated by the full-order model Eq. 3.44 and the
two-dimensional reduced-order models found by POD Galerkin projection, balanced truncation, and
our optimization approach in response to impulses with magnitudes u0 = 0.5 and u0 = 1 at t = 0.
The sample points used to construct the optimization objective objective for the projection operator
are shown as black dots. In panel (b), we show the normalized square errors of the reduced-order
model predictions in response to 50 impulses at t = 0 with magnitudes u0 were drawn uniformly at
random from the interval [0, 1].

interestingly, a two-dimensional reduced-order model obtained by Petrov-Galerkin projection of

Eq. 3.44 using subspaces identified by balanced truncation of the linearized dynamics about the

equilibrium at the origin also performs poorly. This is because the transient growth exhibited by

Eq. 3.44 is due to quadratic nonlinearities, rather than non-normality of the linearized dynamics,

which are stable and normal.

In [192]**, we also consider an axisymmetric jet flow governed by the incompressible Navier-

Stokes equations, possessing a similar kind of nonlinear sensitivity as our toy model Eq. 3.44. A

snapshot of a flowfield formed after an impulse was introduced in a small upstream region centered

at axial distance 1.0 and radius 0.5 is shown in Figure 3.5a. In this figure we see energetic vortex

structures appearing downstream, while the initial disturbance was tiny and located upstream.

These structures are the result of a nonlinear process where small disturbances grow while being

convected downstream by the flow, drawing energy from the radial velocity gradient as they travel.

Time histories of the disturbance energy along such trajectories with different impulse magnitudes

are shown in Figure 3.5b, revealing high amounts of energy growth and nonlinearity. If the system

were linear, the time histories of the energy would look like scaled copies increasing with u0 as

a result of linear superposition. As we would expect, the dynamics experience an initial period

of exponential growth consistent with linear dynamics. However, after the energy exceeds ∼ 50,

nonlinear mechanisms begin to have a significant affect.

38



z

r
r

r

ground truth

optimized

POD

(a) vorticity snapshot

t

E
n

er
g
y

=
y
T m
y
m

u0

(b) output energy

Figure 3.5: In panel (a) we show a snapshot of the vorticity in the jet flow at the final time t = 14.75
from an impulse response trajectory with input magnitude u0 = 0.9. We also show the prediction of
a 50 dimensional POD-Galerkin reduced-order model as well as a 50 dimensional Petrov-Galerkin
model where the projection subspaces were optimize to correctly predict trajectories in a separate
training data set. In panel (b) we show the output energies along trajectories with varying impulse
response magnitudes u0 = 0.15, 0.3, 0.5, 0.7, and 0.9.

As was the case with Eq. 3.44, POD-Galerkin and BPOD-Petrov-Galerkin reduced-order models

of this system perform very poorly. In fact, the BPOD-based Petrov-Galerkin models we examined

had solutions that blew up in finite time. The prediction of a 50-dimensional POD-based Galerkin

reduced-order model shown in Figure 3.5a is very poor despite the fact that the 50-dimensional

POD subspaces captures 99.6% of the system’s energy on both training and testing data sets.

Because the most energetic features are supported downstream, POD fails to capture the low-energy

upstream features that drive the response. When examining the BPOD-based model, we found that

the subspace V in which the solution was to be represented corresponded to structures supported

downstream, while the subspace W defining the projection direction corresponded to structures

supported far upstream. Consequently BPOD was correctly predicting the upstream sensitivity of

the flow, but ignoring the importance of convection.

Examples like Eq. 3.44 and the jet flow motivate the development of model reduction techniques

that are aware of the nonlinear contributions to the dynamics in addition to the linear contributions.

In the absence of closed-form expressions for the solutions of nonlinear systems, such an approach

can be carried out using data collected from the system. This leads us to develop an optimization

technique for the projection subspaces V and W that aims to minimize the error between reduced-

order model predictions and a collection of sampled trajectories of the full-order model. Using this

technique, we can construct accurate Petrov-Galerkin reduced-order models of Eq. 3.44 and of the

jet flow. The predictions of the optimized reduced-order models in Figure 3.4 and Figure 3.5a show
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Figure 3.6: We show the responses of Eq. 3.44 and the reduced-order models to input u(t) = sin(t).

that the approach significantly outperforms other projection-based reduced-order models of the same

dimension. The optimized projection-based model we trained on impulse-response trajectories of the

toy model Eq. 3.44 can also accurately predict the response to other inputs such as the sinusoidal

response shown in Figure 3.6. Again, the models based on projections found using POD and balanced

truncation do not correctly capture the response to the sinusoidal input.

To set up the optimization problem for the subspaces V,W determining the projection operator

PV,W , we assume that the initial condition x(t0) = x0 and input signal u are known. The resulting

Petrov-Galerkin reduced-order model

d

d t
x̂ = PV,W f(x̂, u) x̂(t0) = PV,Wx0

ŷ = g(x̂)

(3.45)

produces an output signal ŷ(t; (V,W )) that depends only on the choice of subspaces V and W

defining the oblique projection operator PV,W . In principle, if the initial condition were not known,

then the output would also depend on the initial condition, which could be optimized alongside V

and W . If we collect samples of the output yl = y(tl) at times t0 < t1 < · · · < tL−1 along one or

more trajectories from the full-order model, then we can compare the output of the reduced-order

model to these data. In [192]** we identify the subspaces V,W by minimizing a cost function

J(V,W ) =
1

L

L−1∑
l=0

‖ŷ(tl; (V,W ))− yl‖2 + γρ(V,W ), (3.46)

where the function ρ is included with a positive weight γ as a regularization to ensure that the

chosen subspaces V,W define a valid oblique projection. Specifically, if Φ,Ψ ∈ Rn×r are matrices

such that V = Range(Φ) and W = Range(Ψ) then ρ(V,W ) is defined by

ρ(V,W ) = − log

(
det(Ψ∗Φ)2

det(Ψ∗Ψ) det(Φ∗Φ)

)
. (3.47)
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This function has the property that ρ(Vk,Wk)→ +∞ when {Vk,Wk}∞k=1 is any sequence of subspaces

approaching the set subspaces where oblique projection operators cannot be defined. Furthermore,

the minimum value of ρ(V,W ) is zero and this value is attained if and only if V = W , which

corresponds to the case when PV,W is the orthogonal projection onto V . Using the regularization

function defined by Eq. 3.47, we show that, under certain mild assumptions (see [192]**) minimizers

of Eq. 3.46 always exist and correspond to valid oblique projection operators. The set of all r-

dimensional subspaces of the n-dimensional state space X = (Rn, 〈·, ·〉) can be endowed with the

structure of an nr − r2 dimensional Riemannian manifold called the Grassmann manifold, denoted

Gn,r. In [192]**, we optimize the subspaces (V,W ) over the product of Grassmann manifolds Gn,r ×

Gn,r using a geometric conjugate gradient algorithm [235, 1] with the gradient of Eq. 3.46 computed

by an adjoint sensitivity method.

A key feature of the approach we describe in [192]** is the incorporation of dynamics into the

optimization process for the projection subspaces. Namely, the projection subspaces are optimized

not only to accurately encode and decode individual states, but also to yield models that can forecast

trajectories of the system. To make accurate forecasts, the projection operator must learn to pick

out features that influence the dynamics at later times, even if the features have low energy. The

same principle may be applied to learning reduced-order models of dynamics on nonlinear manifolds

from snapshots of the state along trajectories. However, in this case, it becomes computationally

expensive to express the dynamics of the latent state since the nonlinear Galerkin projection will

still require evaluating the full-order model. Therefore, approaches that seek reduced-order models

on nonlinear manifolds tend to also learn the dynamics of the latent variables from data. They

do not rely on the governing equations at all once the data is collected. In [194]** we train an

autoencoder simultaneously with linearly recurrent dynamics of the latent state in order to make

forecasts of sampled system trajectories. Consequently, the encoder and decoder discover a manifold

that includes both the energetic features needed for accurate reconstruction, as well as any low-

energy features that are needed to make accurate forecasts. A similar approach may also incorporate

nonlinear latent state dynamics, as in [98], where a recurrent neural network is used. A variety of

other related approaches learn linear [257, 164, 167, 294] and nonlinear [57] latent state dynamics and

embedding simultaneously based on time derivative information, or based on delayed state snapshot

pairs. Sophisticated techniques based on variational inference can also be used to construct nonlinear

models of latent variables from nonlinear, possibly noisy observed quantities [95, 64, 142, 132].

However, as we will see in the next section, the purely data-driven approach requires an amount of

data comparable to the state dimension in order to correctly determine the features that the system
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is sensitive to.

3.3.3 Inadequacy of methods based solely on input-output data

Another key aspect of our approach in [192]** is that the original governing equations are leveraged to

build the model. This not only provides an interpretation for the model in terms of Petrov-Galerkin

projection, but also enables us to capture sensitive dependence on low-energy features. We optimize

the projection subspaces based on gradient information provided by an adjoint-sensitivity method

that incorporates the Jacobian of the governing equations at different points along trajectories. In

contrast with purely data-driven approaches, the Jacobian of the full-order model encodes sensi-

tivity information about dynamics, and may be responsible for the method’s success in extracting

dynamically significant low-energy features.

In particular, when the amount of data is low compared to the state dimension of the full-order

model, it becomes difficult to infer from the input-output data alone what low-energy features the

system is sensitive to. This is because, in a high-dimensional system where the amount of data is

much smaller than the state dimension, there may be an enormous number of low-energy features

that appear to be correlated with the energetic outputs. Yet if more data was collected, these

correlations would turn out to be spurious. For instance, Example 3.3.1 shows that input-output

data can be used to reliably estimate the range of a low-rank linear operator, but not the range of its

adjoint. The fact that the range can be reliably estimated from the output of the operator acting on

almost any collection of vectors follows from a rather useful technical result stated in Theorem 3.3.2

below. This result characterizes the typical transversal intersecting behavior one can expect for

the ranges and null-spaces of two matrices. Here, the range of the operator reflects the energetic

components of the output, while the range of the adjoint reflects the inputs that the map is most

sensitive to. The same idea also applies to operators that merely have quickly decaying singular

values, in which case it is possible to estimate the leading left singular vectors from the output of

the operator acting on a small collection of random vectors [270]. If one may also act with the adjoint

operator on a collection of random vectors, then it becomes possible to estimate the leading right

singular vectors as well; this is precisely what is done in the randomized SVD algorithm described

by N. Halko et al. [108]. It is also the basis for using data collected from the adjoint linear system to

capture the most observable states via Balanced Proper Orthogonal Decomposition (BPOD) [225].

Example 3.3.1 (Inadequacy of Forward Data for Sensitivity Analysis). Suppose that A : Rn → Rn

is a linear map with rank r < n. Let {x1, . . . , xm} ⊂ Rn be a collection of linearly independent
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vectors arranged as columns of the matrix X ∈ Rn×m. For almost every choice of these vectors with

m ≥ r, the range of A is given by the span of {Ax1, . . . , Axm}. To see this, let V ∈ Rn×r have

columns spanning the range of A∗. Then Theorem 3.3.2 shows that almost every matrix Xr ∈ Rn×r

with respect to Lebesgue measure has det(V ∗Xr) 6= 0. Consequently, AXr has linearly independent

columns. For if AXrv = 0, then Xrv is orthogonal to the range of A∗, and so V ∗Xrv = 0, implying

that v = 0. Therefore, for almost any collection of vectors {x1, . . . , xm} ⊂ Rn with m ≥ r, the first

r elements of {Ax1, . . . , Axm} span the range of A.

On the other hand, there are an infinite number of rank-r matrices Ã that have the same input-

output behavior as A for the inputs X when m < n, yet are sensitive to different features of the

input due to having different co-ranges Range(Ã∗). The range of any n × m matrix Y such that

det(Y ∗X) 6= 0 may be selected to contain the range of Ã∗, with Range(Y ) sometimes being referred

to as a “learning subspace”. With a choice for Y ∈ Rn×m, there is a unique Ã ∈ Rn×n given by

Ã = AX(Y ∗X)−1Y ∗ (3.48)

for which ÃX = AX and Range Ã∗ ⊂ RangeY . By Theorem 3.3.2, almost any matrix Y ∈ Rn×m

with respect to Lebesgue measure may be chosen to span the learning subspace. This leads to ambiguity

in those Ã which agree with A over the data X. In least-squares estimation, one takes Y = X, but

this choice is arbitrary. We conclude that the action of A on a relatively small collection of vectors

tells us a lot about the range of A, but we learn very little about the range of A∗ until the number of

vectors m is equal to the entire state dimension n.

Theorem 3.3.2 (Typical intersections of ranges and null-spaces). If T ∈ Rn×r has linearly inde-

pendent columns, then

S = {X ∈ Rn×r : det(T ∗X) 6= 0} (3.49)

is open, dense in Rn×r, and contains almost every X ∈ Rn×r with respect to Lebesgue measure.

Moreover, S has two open, connected components

S+ = {X ∈ Rn×r : det(T ∗X) > 0} and S− = {X ∈ Rn×r : det(T ∗X) < 0}. (3.50)

Proof. Openness follows from the fact that S is the pre-image of an open set under a continuous

map. We note that the density of S is implied by the fact that S contains almost every element

of Rn×r. However, we cannot help but provide a direct proof by constructing an arbitrarily small
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perturbation of any matrix in Rn×r \ S that ends up in S. We prove the fact that Rn×r \ S has

Lebesgue measure zero in two very different ways. The most direct way to prove this claim is to

observe that Rn×r \ S is the zero set of a non-constant polynomial on a real Euclidean space and

so it has measure zero [53]. We also provide an analytic proof based on Lebesgue’s density theorem

(see Section 7.2 of W. Rudin [233]), which doesn’t rely on special properties of polynomials. Finally,

we prove that S+ and S− are connected by constructing paths between arbitrary points of these

sets. We give the detailed proofs in Appendix 3.A

The problem described above also applies to more complicated mappings that one might learn

from data using a neural network. If the weights describing the first layer in the network are given

by the matrix A, then the inputs that the model is sensitive to are contained in the range of A∗.

Yet the range of A∗ cannot be reliably estimated from a data set that is smaller than the state

dimension, as demonstrated by Example 3.3.1. This casts doubt on whether data driven methods

relying only on forward time histories as in [194]** and [98, 257, 164, 167, 294, 95, 64, 142, 132]

can properly capture the dynamics of systems with selective sensitivity to low-energy features. This

poses a serious problem for making data-driven forecasts, because the learned model might fail to

predict how sensitive the system will be to inputs that don’t closely resemble the training data.

3.3.4 Building sensitivity into reduced-order models

One way to build the correct sensitivity mechanisms into the model is to incorporate the adjoint

Jacobian of the original governing equations into the learning process. The approach we take when

optimizing projection subspaces in [192]** presents one possible way to do this. In particular, when

the “encoder” and “decoder” are used to construct a projection of governing equations, the adjoint

Jacobian of the full-order model appears naturally in the expression for the gradient of the model

error with respect to the parameters defining the encoder and decoder. On the other hand, when the

encoder and decoder are nonlinear, a latent space model based on projecting the governing equations

can still be computationally expensive to evolve in time. As we have seen, these considerations

motivate techniques that also learn the latent space dynamics. Yet, by learning the latent space

dynamics from data, one removes the direct dependence of the reduced order model on the full order

model, and so the adjoint Jacobian of the full-order model disappears. If the model of the latent

space dynamics is also to be learned from data, then one approach might be to optimize the model

parameters using a cost function that compares both forward and linearized adjoint trajectories of

the reduced and full-order models. This approach is analogous to computing a randomized SVD
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from small amounts of data obtained by acting with the operator A as well as with its adjoint A∗

as described by N. Halko et al. [108].

To be specific, suppose we have a full-order model

d

d t
x = f(x, u)

y = g(x),

(3.51)

and a reduced-order model

d

d t
x̂ = f̂(x̂, u; θ)

ŷ = ĝ(x̂; θ),

(3.52)

with θ defining parameters we seek to optimize. We could begin by collecting forward trajectories

x(t), y(t) from the full-order model and x̂(t), ŷ(t) from the reduced-order in response to given input

signals u(t). Most available techniques seek to optimize the parameters θ defining the reduced-order

model by minimizing the error between the output of the reduced-order model ŷ(t) and the full-

order model y(t). However, as we have seen, doing so may yield a reduced-order model that does

not correctly capture the sensitivity of the output to the input.

To capture this sensitivity, we can choose a collection of signals ξj(t) in the output space and

define functionals of the output signals according to

Ξj(u) = 〈ξj , y〉 :=

∫ tf

t0

ξj(t)
T y(t) d t and Ξ̂j(u; θ) = 〈ξj , ŷ〉. (3.53)

The signals ξ might be chosen at random, or as the leading principal components of the observed

output as in the output projection method for balanced POD described in [225]. Now we can seek

parameters θ to match the sensitivity of the output to the input by matching the sensitivity of the

reduced-order model ∇u Ξ̂j(u; θ) to the sensitivity of the full-order model ∇u Ξj(u). The analogy

with randomized SVD is clear, for if we let Du y(u) and Du ŷ(u; θ) be the derivatives of the output

signals with respect to the input signals, then we have

(
Du y(u)

)∗
ξj = ∇u Ξj(u) and

(
Du ŷ(u; θ)

)∗
ξj = ∇u Ξ̂j(u; θ), (3.54)

because δΞj = 〈∇u Ξj(u), δu〉 = 〈ξj , Du y(u)δu〉 = 〈(Du y(u))∗ξj , δu〉 holds for every input per-

turbation δu. Therefore, the gradients can be viewed as samples allowing us to approximate the
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range of (Du y(u))∗, which describes the subspace of input signals that produce the most energetic

output responses. The parameters of the reduced order model could then be chosen to minimize a

cost function

J(θ) =

∫ tf

t0

∥∥ŷ(t; θ)− y(t)
∥∥2

d t+
∑
j

∫ tf

t0

∥∥∇u Ξ̂j(u; θ)(t)−∇u Ξj(u)(t)
∥∥2

d t (3.55)

that includes both the predictive accuracy of the model as well as its sensitivity.

An adjoint sensitivity method can be used to compute the desired gradients. In particular, if we

define adjoint variables for the models satisfying

− d

d t
λj = Dx f(x(t), u(t))∗λj + D g(x(t))∗ξj(t), λj(tf ) = 0,

− d

d t
λ̂j = Dx f̂(x̂(t), u(t); θ)∗λ̂j + D ĝ(x̂(t))∗ξj(t), λ̂j(tf ) = 0,

(3.56)

then the gradients of Ξ and Ξ̂ are given explicitly by

∇u Ξj(u)(t) = Du f(x(t), u(t))∗λj(t) and ∇u Ξ̂j(u; θ)(t) = Du f̂(x̂(t), u(t); θ)∗λ̂j(t). (3.57)

To my knowledge, optimizing the parameters of a reduced-order model based on a cost function that

includes sensitivity information in the manner of Eq. 3.55 is new, yet it seems like a natural and

promising direction for future work. One drawback will be the need to compute second derivatives

of the reduced-order model functions f̂ and ĝ with respect to the states and inputs. This is not

so difficult because it is only necessary to compute second derivatives of the reduced-order model,

whose dimension is much smaller than the full-order model.

Another, simpler approach closely resembles balanced truncation [182] and Balanced Proper

Orthogonal Decomposition (BPOD) [225]. We may describe the energetic states of the system using

the covariance matrix

Cx =
1

tf − t0

∫ tf

t0

x(t)x(t)∗ d t, (3.58)

which is only written for a single trajectory for the sake of simplicity, but could, in principle, be

averaged over many trajectories. On the other hand, we recall that the adjoint variable λj defined

in Eq. 3.56 provides the gradient Ξj with respect to an input v that enters the dynamics according

to

d

d t
x = f(x, u) + v. (3.59)
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Therefore, the sensitivity of the output to state perturbations can be quantified using the adjoint

covariance matrix

Cλ =
1

m

m∑
j=1

1

tf − t0

∫ tf

t0

λj(t)λj(t)
∗ d t. (3.60)

The covariance matrices Cx and Cλ are the analogues of the controlability and observability Grammi-

ans used for balanced truncation of linear systems. In particular, these covariance matrices transform

in the same way as the Grammians under linear transformations x = Tx′ of the state:

Cx′ = T−1CxT
−∗, Cλ′ = T ∗CλT. (3.61)

Consequently, it is possible to find a transformation T that simultaneously diagonalizes the covari-

ance matrices such that

Cx′ = Cλ′ = Σ2 = diag(σ2
1 , . . . , σ

2
n), σ1 ≥ · · · ≥ σn ≥ 0. (3.62)

In this new coordinate system, the leading state variables [x′]1, [x′]2, . . . are simultaneously the most

energetic and produce the most energetic output responses when perturbed. Consequently, retaining

these leading state variables in the transformed space and truncating the rest is likely to lead to an

accurate reduced-order model of the system. Letting Cx = XX∗ and Cλ = LL∗ and computing a

singular value decomposition

X∗L = UΣV ∗ (3.63)

yields the desired transformation

T = XUΣ−1/2, T−∗ = LV Σ−1/2. (3.64)

Similarly to BPOD [225], matrices X and L as needed above may be constructed from snapshots of

the state and adjoint variables with appropriate quadrature weights {wl} according to

X =

[
√
w1x(t0) · · · √wLx(tf )

]
,

L =
1√
m

[
√
w1λ1(t0) · · · √wLλ1(tf ) · · · √w1λm(t0) · · · √wLλm(tf )

]
.

(3.65)

To build a reduced-order model using the leading r coordinates, we may work with the rank-r
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truncation of the above singular value decomposition and let

Φ = XUrΣ
−1/2
r , Ψ = LVrΣ

−1/2
r . (3.66)

The rank-r oblique projection operator P = ΦΨ∗ applied to the state x corresponds to transforming

x into x′, truncating the less energetic and sensitive variables [x′]r+1, . . . , [x
′]n, and then transforming

back. Therefore, P might be a good candidate for building Petrov-Galerkin reduced-order models

of the original system. Moreover, the transformed and reduced set of variables

z = ([x′]1, . . . , [x
′]r) = Ψ∗x (3.67)

might be good candidates for building data-driven reduced-order models that capture the system’s

sensitivity to low-energy features. One may consider performing such a transformation as a pre-

processing step akin to POD to reduced the state dimension before applying a variety of machine

learning techniques to build models of the system. By reducing the dimension to include both the

most sensitive and energetic states of the system, purely data-driven techniques based on these

variables may be capable of robustly predicting the dynamics of the original system.

3.4 Learning nonlinear projections using autoencoders with

invertible nonlinearities and biorthogonal weights

It would be highly advantageous to build reduced-order models based on nonlinear projection op-

erators onto underlying curved state space manifolds. So far, in Section 3.2 we have seen why it is

important to construct reduced-order models of dynamics confined to nonlinear manifolds. However,

our solution to capture the sensitivity of the dynamics to certain low-energy features described in

Section 3.3.2 and in [192]** was based on a linear projection. Since the dynamics were represented

in a subspace, we needed to retain 50 state variables in the reduced-order model of the jet flow to

resolve advecting vortical structures. On the other hand, the states of this flow that we considered

actually live on a two-dimensional manifold with a global parametrization by time and the magni-

tude of the initial impulse. Consequently, it should be possible to find a reduced-order model with

a much smaller state dimension by projecting the dynamics onto a nonlinear manifold. In order to

find a suitable manifold and project onto it, we define a rich parametric class of nonlinear projection

operators using autoencoders. The question remains as to how a projection should be defined in
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order to capture the important low-energy features. Here, the encoder selects the features of the

reduced-order model and the decoder parametrizes the underlying state space manifold.

The problem with using standard autoencoder architecures to define reduced-order models based

on nonlinear projections is that in practice, these autoencoders do not actually yield projections.

The defining property of a nonlinear operator P : X → X that makes it a projection is idempotence

P ◦ P = P , that is, repeatedly acting with P does not change states in the image of P . However, if

one begins with a state x and uses an autoencoder to repeatedly encode and decode it, the process

does not remain constant after the first iteration.

Smooth nonlinear projections are especially useful for reduced-order modeling. Theorem 3.4.1

shows that the image set of a projection with a constant-rank derivative is a smooth submanifold of

the state space. Moreover, the preimage sets provides a foliation of the state space. The derivative

of a projection P with rank r is an oblique projection onto the tangent space, allowing us to define

reduced-order models with states evolving in the manifold M = Image(P ) according to

d

d t
x̂ = DP (x̂)f(x̂, u), x̂(0) = P (x0). (3.68)

Figure 3.7 illustrates the anatomy of nonlinear projections characterized by Theorem 3.4.1.

Theorem 3.4.1 (Constant rank projections define transversal submanifolds). Let N be a smooth,

n-dimensional manifold and let P : N → N be a smooth projection with constant rank, that is,

P ◦ P = P and rank(DP (x)) = r is constant for every x ∈ N . Then the image set

M = P (N ) = {P (x) : x ∈ N}

is a smooth r-dimensional submanifold of N . Furthermore, for every x0 ∈M, the preimage set

P−1(x0) = {x ∈ N : P (x) = x0}

is a codimension-r submanifold of N that transversally intersects M at x0, i.e., we have the direct-

sum decomposition Tx0
M⊕Tx0

P−1(x0) = Tx0
N . At any x0 ∈M, the derivative DP (x0) : Tx0

N →

Tx0N is the linear oblique projection with range and nullspace

Range(DP (x0)) = Tx0M and Null(DP (x0)) = Tx0P
−1(x0).

Proof. We prove thatM is a smooth submanifold of N by applying the rank theorem (Theorem 4.12
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M

x0

P−1(x0)

Range(DP (x0))

= Tx0M

Range(DP (x0)∗)

Null(DP (x0))

= Tx0
P−1(x0)

v

DP (x0)v

Figure 3.7: We show the anatomy of a constant rank nonlinear projection. The image set of such a
projection is a smooth manifoldM. The pre-image set of any x0 ∈M is a manifold of complementary
dimension transversal to M. At any point point x0 ∈ M the derivative of the nonlinear projection
is an oblique linear projection onto the tangent space of M with null space tangent to P−1(x0).

on p.81 in J. M. Lee [149]) to obtain a local parametrization of M in a neighborhood of any

x0 ∈ M. We use the preimage theorem (see Section 1.4 of V. Guillemin and A. Pollack [106])

and the fact that DP (x) is a surjective map onto Tx0
M for every x ∈ P−1(x0) to prove that

P−1(x0) is a codimension-r submanifold of N . The derivative DP (x0) is a projection for every

x0 ∈ M by the chain rule. Transversality follows from the fact that Tx0
M = Range

(
DP (x0)

)
Tx0

P−1(x0) = Null
(

DP (x0)
)
.

The rank of any smooth idempotent map on a connected manifold is automatically constant in a

sufficiently small neighborhood of the image set, as shown by Theorem 1.15 in P. W. Michor [179].

Consequently, the image set of such a nonlinear projection is still a smooth manifold even if the rank

of DP (x) is not constant away from M (in fact, it can only decrease or remain constant). In such

cases, Theorem 3.4.1 describes the behavior of P in a small neighborhood N of the image manifold.

The converse of Theorem 3.4.1 is also partially true in that any submanifold admits a nonlinear

projection of constant rank, as long as we are allowed to restrict our attention to a possibly small

neighborhood of the submanifold. Fortunately, this is precisely the case of interest for model reduc-

tion since we assume that the states lie near a submanifold that we hope to find. A result known as

the tubular neighborhood theorem [106] states that the normal bundle to any smooth submanifold

M in N can be identified diffeomorphically with a neighborhood ofM in N . It follows immediately

that there always exists a constant rank nonlinear projection defined in a neighborhood of M in N
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with image set M. Such projections can be oblique when different Riemannian metrics on N are

used to define the normal bundle to M.

3.4.1 Autoencoder architecture defining constant rank projections

It is possible to constrain the weights in an autoencoder in such a way that it always defines a

constant rank projection onto a smooth submanifold of the state space. An autoencoder consisting

of an encoder function ψe : X → Rr and a decoder function ψd : Rr → X defines a projection

P = ψd ◦ ψe when the encoder is a left inverse of the decoder, that is when encoding after decoding

yields the identity ψe◦ψd = Ir. We may construct the encoder and decoder by enforcing this property

layer-wise. When the activation functions used in the encoder and decoder are inverses of each other

then this leads to a biorthogonality constraint for the weights defining corresponding layers of the

encoder and decoder. The dynamics of the resulting nonlinear projection-based reduced-order model

can be described in the latent space of the autoencoder according to

d

d t
z = Dψe(ψd(z))f(ψd(z), u) z(0) = ψe(x0), (3.69)

where x̂ = ψd(z) evolves on the manifold M = Image(P ) according to Eq. 3.68.

The autoencoder’s weights defining such a model may be optimized in a similar way as a the

projection subspaces defining the model in Section 3.3.2 and in [192]**. That is, we can simulate

Eq. 3.69, generate predicted output time histories ŷ(t) = g(ψd(z(t))), and minimize the error between

these output signals and corresponding output signals of the full-order model. A variety of other cost

functions may also be used, one of which is successfully employed in Section 3.4.3, below, to find a

nonlinear projection onto the slow manifold in a simple three-dimensional system. As we discussed

in Section 3.2.2, an alternative approach is to learn a parametrized approximation of the latent

space dynamics (in place of Eq. 3.69) simultaneously with the weights defining the autoencoder

using a similar optimization objective. However, as we pointed out in Section 3.3.4, this approach

may fail to capture sensitivity mechanisms due to the lack of adjoint sensitivity information coming

from the full-order model. To avoid this problem, we suggest pre-projecting the dynamics into a

fixed lower-dimensional coordinate system obtained by truncating balanced empirical forward and

adjoint covariance matrices as described at the end of Section 3.3.4. As long as amount of available

training data exceeds the dimension of this pre-projected system, it should be possible reduce the

dimension further without neglecting import sensitivity mechanisms by training an autoencoder and

parametrized latent space dynamics.

51



σ+

σ−x̃ỹ

x

y

Figure 3.8: We show the smooth, invertible activation functions described by Eq. 3.71 with asymp-
totes at an angle α = π/8 from the diagonal. The rotated coordinate system used to define the
graphs of the activation functions as the hyperbola given by Eq. 3.70 is also shown.

Let us begin by defining activation functions σ+, σ− : R → R for the encoder and decoder that

are smooth and inverses of each other. Geometrically, this means that the graphs of σ+ and σ−

are related by reflection symmetry about the diagonal line y = x in R2. Rotating the diagonal to

horizontal by working in coordinates (x̃, ỹ) =
√

2
2 (x+ y, x− y), one good choice is to take the graphs

of σ+ and σ− to be the upper and lower parts of a hyperbola defined by

ỹ2

sin2 α
− x̃2

cos2 α
= 1, (3.70)

where 0 < α < π/4 gives the angle of the asymptotes with respect to horizontal in the (x̃, ỹ) plane.

A plot of this hyperbola with asymptotes at angle α = π/8 is show in Figure 3.8. Rotating back

to (x, y) coordinates, the resulting functions σ+ and σ− automatically have the desired reflection

symmetry. The condition 0 < α < π/4 ensures that σ+ and σ− are well-defined and monotone

increasing. These activation functions are given explicitly by

σ±(x) =
bx±

√
(b2 − a2)x2 + 2a

a
, where

a = csc2 α− sec2 α

b = csc2 α+ sec2 α
(3.71)

and are defined for all real numbers x since 0 < a < b. Examining the graphs of these activation

functions in Figure 3.8 shows that they resemble smoothed out versions of the commonly used

“leaky” rectified linear unit (ReLU).

The encoder and decoder shall have the same number of layers L. We find that the desired
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condition ψe ◦ ψd = I can be met when the weight matrix in each layer of the encoder is a left

inverse for the weight matrix in the corresponding layer of the decoder. With the convention that

the activation functions act element-wise on vectors, suppose that the decoder is defined by

ψd = ψ
(L)
d ◦ · · · ◦ ψ(1)

d , where ψ
(l)
d (z(l−1)) = Φlσ+(z(l−1)) + bl, (3.72)

and the weight matrices Φl are injective. If {Ψ1, . . . ,ΨL} are another collection of matrices such

that Ψ∗l Φl = I for each l = 1, . . . , L, then the encoder defined by

ψe = ψ(1)
e ◦ · · · ◦ ψ(L)

e , where ψ(l)
e (x(l+1)) = σ−

(
Ψ∗l (x

(l+1) − bl)
)
, (3.73)

is a left inverse of the decoder. In other words, since ψ
(l)
e ◦ ψ(l)

d = I by construction, it follows that

ψe ◦ ψd = ψ(1)
e ◦ · · · ◦ ψ(L)

e ◦ ψ(L)
d ◦ · · · ◦ ψ(1)

d = I, (3.74)

and so the autoencoder P = ψd ◦ ψe satisfies P ◦ P = P and is indeed a projection.

Autoencoders defined according to Eq. 3.72 and Eq. 3.73 with the biorthogonality constraint

Ψ∗l Φl = I provide a rich parametric class of nonlinear projections onto smooth submanifolds of the

state space. The encoder and decoder may be applied to map between points on this manifold and

their coordinate representation in the latent space without the possibility of drifting after repeated

encodings and decodings. This projection P = ψd ◦ ψe is smooth because the activation functions

are infinitely continuously differentiable. Moreover, the projection has constant rank, and so is

characterized by Theorem 3.4.1. To see this, we observe that the derivatives of the activation

functions in each layer

D
(l)
d = Dσ+(z(l−1)) D(l)

e = Dσ−
(

Ψ∗l (x
(l+1) − bl)

)
(3.75)

are diagonal matrices with strictly positive entries on the diagonal because the activation functions

σ± always have positive slope. Consequently the derivative of the encoder

Dψe(x) = D(1)
e Ψ∗1 · · ·D(L)

e Ψ∗L (3.76)

is always surjective. This makes the rank of the projection DP (x) = Dψd(ψe(x)) Dψe(x) equal to

the rank of the decoder Dψd(ψe(x)). The rank of the decoder is always equal to the latent state
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dimension since the derivative of the decoder

Dψd(z) = ΦLD
(L)
d · · ·Φ1D

(1)
d (3.77)

is always injective. Finally, we observe that the encoder is a diffeomorphism when it is restricted

to the manifold M, and the decoder provides its inverse. When the manifold we wish to learn M′

is not diffeomorphic to Rr, then the approach described above can be used to find a manifold M

that contains M′ and is diffeomorphic to a real space. In this situation, the encoder provides an

embedding of the manifold M′ into Rr. This is not so bad because every smooth k-dimensional

manifold can be embedded in a real space with dimension r = 2k thanks to Whitney’s embedding

theorem [278].

3.4.2 Optimization on the manifold of biorthogonal matrices

The question arises as to how the nonlinear, non-convex constraint Ψ∗l Φl = I should be imposed

during the training process, which usually entails gradient descent. Fortunately, the set of matrices

having the desired biorthogonality property,

Bn,r =
{

(Φ,Ψ) ∈ Rn×r × Rn×r : Ψ∗Φ = Ir
}
, (3.78)

is a smooth 2nr − r2 dimensional submanifold of the Euclidean space E = Rn×r × Rn×r thanks to

the preimage theorem (see Section 1.4 of V. Guillemin and A. Pollack [106]). Optimization on this

biorthogonal manifold in the case when r = n is considered in [96]; however, we are much more

interested in the case of dimension reduction when r < n. In addition to being a smooth manifold,

the inner product 〈
(X1, Y1), (X2, Y2)

〉
E = Tr(X∗1X2) + Tr(Y ∗1 Y2) (3.79)

on E induces a Riemannian metric on Bn,r. The metric allows us to define the gradients of functions

on Bn,r such as the cost function used to optimize the autoencoder.

If we know how to compute the gradient of a function J : E → R defined for all matrices, then it is

easy to compute the gradient of its restriction J |Bn,r to biorthogonal matrices. If p = (Φ,Ψ) ∈ Bn,r
then ∇ J |Bn,r (p) is equal to the orthogonal projection of ∇ J(p) onto the tangent space TpBn,r. This

key fact means that we can compute the gradient on the biorthogonal manifold by first computing

the gradient with respect to the matrices (Φ,Ψ) ∈ E as we would in the case without any constraints.

Then we orthogonally project the unconstrained gradient onto the tangent space of the biorthogonal
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manifold. To see why this key property is true, we recall that the gradient is defined as the Riesz

representative of the derivative. In particular, ∇ J |Bn,r (p) ∈ TpBn,r satisfies

D J(p)ξ =
〈
∇ J(p), ξ

〉
=
〈
∇ J |Bn,r (p), ξ

〉
∀ξ ∈ TpBn,r, (3.80)

and so ∇ J(p)−∇ J |Bn,r (p) ⊥ TpBn,r. There is only one such element — the orthogonal projection

of ∇ J(p) onto TpBn,r. The following Theorem 3.4.2 provides a descrition of the tangent space to

the biorthogonal manifold as well as an explicit expression for the orthogonal projection onto it.

Theorem 3.4.2 (The biorthogonal manifold). The set of matrices Bn,r defined by Eq. 3.78 is a

smooth 2nr − r2 dimensional submanifold of E, with tangent and normal spaces at a point (Φ,Ψ) ∈

Bn,r given by

T(Φ,Ψ)Bn,r = {(X,Y ) ∈ E : Y ∗Φ + Ψ∗X = 0}(
T(Φ,Ψ)Bn,r

)⊥
=
{

(ΨA, ΦAT ) ∈ E : A ∈ Rr×r
}
.

(3.81)

The orthogonal projection of any (X,Y ) ∈ E onto T(Φ,Ψ)Bn,r is given by

P(Φ,Ψ)(X,Y ) =
(
X −ΨA, Y − ΦAT

)
, (3.82)

where A ∈ Rr×r is the unique solution of the Sylvester equation

A(Φ∗Φ) + (Ψ∗Ψ)A = Y ∗Φ + Ψ∗X. (3.83)

The Sylvester equation is equivalent to the symmetric, positive-definite linear system

[(Φ∗Φ)⊗ Ir + Ir ⊗ (Ψ∗Ψ)] vec(A) = vec (Y ∗Φ + Ψ∗X) , vec(A) =


col1(A)

...

colr(A)

 . (3.84)

Proof. We construct Bn,r as the preimage of the regular value 0 under the map F : X,Y 7→ Y ∗X−Ir
using the preimage theorem [106]. The tangent space to Bn,r at (Φ,Ψ) is given by the null-space

of DF (Φ,Ψ) according to the local submersion theorem [106]. We give the details of the proof in

Appendix 3.A.

Due to the curvature of the manifold Bn,r, taking finite-sized steps along tangent directions com-
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puted based on the gradient may produce new points that do not lie in Bn,r. To perform optimization

we must introduce a correction to bring the new point back into Bn,r without undoing any progress

we make by moving in the search direction. A correction mapping that remains asymptotically small

in comparison with the displacement in the tangent space is called a “retraction.” Retractions allow

us to parametrize a neighborhood of our current iterate p in the curved manifold Bn,r using tangent

vectors in the Euclidean space TpBn,r. Below, we give the formal definition of a retraction presented

by P. A. Absil in [1].

Definition 3.4.3 (Retraction [1]). A retraction on a manifold M is a smooth mapping R from the

tangent bundle TM onto M with the following properties. Let Rp denote the restriction of R to

TpM.

1. (Base point preservation) Rp(0) = p.

2. (Local rigidity) Rp satisfies

DRp(0)ξ = ξ ∀ξ ∈ TpM. (3.85)

The retraction converts small vectors in the tangent space into small displacements on the underlying

manifold while preserving the first derivative so that

D J(p)ξ = D (J ◦Rp) (0)ξ, ∀ξ ∈ TpM. (3.86)

A simple retraction on Bn,r is given below by Theorem 3.4.4.

Theorem 3.4.4 (a retraction on the biorthogonal manifold). Let (Φ,Ψ) ∈ Bn,r and (X,Y ) ∈

T(Φ,Ψ)Bn,r. Then the map defined by

R(Φ,Ψ)(X,Y ) =
(

(Φ +X) [(Ψ + Y )∗(Φ +X)]
−1
, Ψ + Y

)
(3.87)

is a retraction.

Proof. It is clear from the definition that our map preserves base points, that is,

R(Φ,Ψ)(0, 0) = (Φ,Ψ), ∀(Φ,Ψ) ∈ Bn,r. (3.88)

Differentiating the map at (Φ,Ψ) ∈ Bn,r yields

DR(Φ,Ψ)(0, 0)(V,W ) =
(
V [Ψ∗Φ]

−1 − Φ [Ψ∗Φ]
−1

[W ∗Φ + Ψ∗V ] [Ψ∗Φ]
−1
, W

)
, (3.89)
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for every tangent vector (V,W ) ∈ T(Φ,Ψ)Bn,r. Using the fact that Ψ∗Φ = Ir and that W ∗Φ+Ψ∗V = 0

(see Theorem 3.4.2), we conclude that our map R satisfies local rigidity, i.e.,

DR(Φ,Ψ)(0, 0)(V,W ) = (V,W ) , ∀((Φ,Ψ), (V,W )) ∈ TBn,r. (3.90)

Using this retraction, we could implement the Riemannian stochastic gradient descent method of S.

Bonnabel [28] to optimize the weights of our autoencoder constructed in Section 3.4.1 over a product

of L biorthogonal manifolds corresponding to matching layers of the encoder and decoder.

In general, a retraction agrees with the exponential map on a Riemannian manifold up to first

order. A retraction that agrees with the exponential map to second order is called a second-order

retraction [2]. When a second-order retraction is used, the second derivative information about a

smooth cost function J on the manifold is preserved when J is pulled back to the tangent space by

the retraction according to J ◦Rp. The following definition given in [2] is a necessary and sufficient

condition for a retraction to agree with the exponential map to second order.

Definition 3.4.5 (Second-Order Retraction [2]). A second-order retraction is a retraction R :

TM→M that satisfies the additional condition

d2

dt2
Rp(tξ)

∣∣∣∣
t=0

∈ (TpM)
⊥
, ∀ξ ∈ TpM. (3.91)

This condition says that the curve t 7→ Rp(tξ) cannot experience any acceleration tangent to M

at the base point p when t = 0. In general, the curves generated by the exponential map (called

geodesics) satisfy such a condition everywhere, and not just at a given point.

A second-order retraction on Bn,r is given below in Theorem 3.4.6 by introducing correction

terms to the retraction described earlier in Theorem 3.4.4.

Theorem 3.4.6 (A Second-Order Retraction). The following map defines a second-order retraction

on the biorthogonal manifold:

R(Φ,Ψ)(X,Y ) =
(
(Φ +X + ΨA)H, Ψ + Y + ΦAT

)
, ((Φ,Ψ), (X,Y )) ∈ TBn,r, (3.92)

where H =
[
(Ψ + Y + ΦAT )∗(Φ +X + ΨA)

]−1
and A ∈ Rr×r is the unique solution of the Sylvester

equation

A (Φ∗Φ) + (Ψ∗Ψ)A+ Y ∗X = 0. (3.93)
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The push-forward map of this retraction is given by

DR(Φ,Ψ)(X,Y )(V,W ) =
(
(V + ΨA′)H + (Φ +X + ΨA)H ′, W + Φ(A′)T

)
, (3.94)

where H ′ = −H
[
(W + Φ(A′)T )∗(Φ +X + ΨA) + (Ψ + Y + ΦAT )∗(V + ΨA′)

]
H and A′ ∈ Rr×r

solves the Sylvester equation

A′ (Φ∗Φ) + (Ψ∗Ψ)A′ +W ∗X + Y ∗V = 0. (3.95)

Proof. The proof is tedious, so we provide it in Appendix 3.A.

Many optimization techniques such as quasi-Newton methods [117, 222], conjugate gradient algo-

rithms [222, 235], and variance-reduced stochastic gradient descent [238], rely on linear combinations

of vectors from different tangent spaces to compute the next search direction. Consequently, a way

of carrying a tangent vector at one point to a tangent vector at another point is needed. The most

natural way to do this on a Riemannian manifold is parallel translation of vectors along geodesics.

Such calculations can be computationally expensive to carry out, so [1] provides a more general

notion of “vector transport”, stated below in Definition 3.4.7, which retains only the properties that

are needed in the context of optimization.

Definition 3.4.7 (Vector Transport [1]). Let the “Whitney sum”

TM⊕ TM = {(ηp, ξp) : ηp, ξp ∈ TpM, p ∈M} (3.96)

denote pairs of tangent vectors sharing the same root points. A vector transport on the manifold M

is a smooth mapping

TM⊕ TM→ TM : (ηp, ξp) 7→ Tηp(ξp) (3.97)

satisfying the following properties:

1. (Associated retraction) There exists a retraction R, called the retraction associated with T ,

such that Tηp(ξp) ∈ TRp(ηp)M for every (ηp, ξp) ∈ TM⊕ TM.

2. (Consistency) T0p(ξp) = ξp for all ξp ∈ TM

3. (Linearity) Tηp(aξp + bζp) = aTηp(ξp) + bTηp(ζp) for all a, b ∈ R, ηp, ξp, ζp ∈ TpM, and every

p ∈M.
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According to [1], vector transports can be obtained by differentiating retractions, that is,

Tηp(ξp) := DRp(ηp)ξp =
d

d t
Rp(ηp + tξp)

∣∣∣∣
t=0

. (3.98)

Consequently, the derivative map given by Eq. 3.94 for the second-order retraction defined in Theo-

rem 3.4.6 provides us with a vector transport on the biorthogonal manifold. Another vector transport

is provided by orthogonal projection onto the tangent space using Eq. 3.82 at the point provided by

a given retraction.

Given the retraction and transport defined in Theorem 3.4.6, or by orthogonal projection, we

now have all of the ingredients we need to implement a variety of optimization algorithms [1] on

the biorthogonal manifold. For an example of how retractions and vector transports can be used

for conjugate gradient-based optimization, see [192]**. Such algorithms can be applied to train the

weights in our autoencoder constructed in Section 3.4.1 by optimizing the weights of the encoder

and decoder on a product of L biorthogonal manifolds.

3.4.3 Results for a simple system with a slow manifold

In this section we apply the autoencoder developed above to construct a reduced-order model of a

system with a known slow manifold. We consider the system

ẋ1 = µx1 − ωx2 − x1x3

ẋ2 = ωx1 + µx2 − x2x3

εẋ3 = x2
1 + x2

2 − x3,

(3.99)

originally proposed by B. R. Noack et al. [188] as a mean-field model for the formation of vortices in

the wake of a cylinder through a supercritical Hopf bifurcation arising from the quadratic nonlinear-

ities of the incompressible Navier-Stokes equations. For small ε > 0, Eq. 3.99 is a slow-fast system

and standard Fenichel theory (see C. Kuehn [143]) can be used to show that the state is attracted

to a slow invariant manifold lying near the critical manifold x3 = x2
1 + x2

2. By Theorem 11.1.1 in

[143], we may express the slow manifold as an asymptotic series x3 = h(x1, x2) =
∑∞
k=0 hk(x1, x2)εk

with the invariance condition in polar coordinates x1 = r cos θ, x2 = r sin θ yielding

hk+1 = r

k∑
l=0

hl
∂hk−l
∂r

− µr∂hk
∂r

, h0 = r2. (3.100)
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The first three terms of the series provide an approximation,

x3 = r2 + 2r2(r2 − µ)ε+ 4r2(r2 − µ)(3r2 − µ)ε2 +O(ε3). (3.101)

We note that only even powers of r appear in each hk, reflecting the axisymmetry of the slow

manifold. When ω 6= 0, the system undergoes a supercritical Hopf bifurcation with a stable limit

cycle x3 = r2 = µ at frequency ω appearing as µ passes through 0 [104]. The center manifold for

this bifurcation (with µ̇ = 0 treated as an extra state equation) coincides with the slow manifold

computed above. We choose ε = 0.05, µ = 1, ω = 10, and we draw the initial conditions at random

from a Guassian distribution centered about the origin with covariance matrix 0.01I3.

We consider m = 10 such trajectories of Eq. 3.99 over the time interval t ∈ [0, 2π] and we

optimize a nonlinear projection operator using an autoencoder described in Section 3.4.1. Letting

x(i)(t) denote the ith trajectory, P = ψd◦ψe, and x̃(i)(t) = P
(
x(i)(t)

)
, we minimize the cost function

J =
1

m

m∑
i=1

{
1

Ei

∫ 2π

0

∥∥∥x(i)(t)− P
(
x(i)(t)

)∥∥∥2

2
d t

+
1

Fi

∫ 2π

0

∥∥∥DP
(
x(i)(t)

)
f
(
x(i)(t)

)
−DP

(
x̃(i)(t)

)
f
(
x̃(i)(t)

)∥∥∥2

2
d t

}
, (3.102)

where each term is normalized by an appropriate total energy

Ei =

∫ 2π

0

∥∥∥x(i)(t)
∥∥∥2

2
d t, Fi =

∫ 2π

0

∥∥∥DP
(
x(i)(t)

)
f
(
x(i)(t)

)∥∥∥2

2
d t. (3.103)

The first term of Eq. 3.102 penalizes the error between the points along the trajectories and their

projections onto the learned manifold. The second term of Eq. 3.102 penalizes the difference between

the true time derivative ẋ(i)(t) = f
(
x(i)(t)

)
projected onto the manifold and the time derivative of

the reduced-order model Eq. 3.68 evaluated at the projected point P
(
x(i)(t)

)
. Optimization was

carried out using the Riemannian Dai-Yuan conjugate gradient algorithm of H. Sato [235] using

the simple first-order retraction and vector transport on the biorthogonal manifold provided by

Theorem 3.4.4. Line search was performed using the bisection method described in [39] to satisfy

the weak Wolfe conditions.

To accurately approximate the underlying manifold in such a low-dimensional space, we needed

to use a deep neural network with L = 50 layers in the encoder and the same number of layers in

the decoder. The dimension of the latent space was r = 2 and the last 49 layers of the decoder (and

the first 49 layers of the encoder) had dimension 3, so the corresponding weight matrices Φl and Ψl
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Figure 3.9: In panel (a), we show a trajectory of the full-order model Eq. 3.99 together with the
predicted trajectory of the reduced-order model Eq. 3.68. The corresponding trajectories in the latent
space are shown in panel (b). The learned manifold together with several fibers of the optimized
projection are shown in panel (c).

were constrained to be inverses of one another for l = 2, 3, ..., 50. We used the hyperbolic activation

functions described by Eq. 3.71 with an asymptote angle α = π/8. We initialized Φ2 = · · · = Φ50 =

tan (π/4 + α)I3, Ψ2 = · · · = Ψ50 = cot (π/4 + α)I3, with zero biases b2 = · · · = b50 = 0. We used

POD on the data after being fed through ψ
(2)
e ◦· · ·ψ(50)

e to initialize the 3×2 weight matrices Φ1 and

Ψ1 with b1 = 0. The factor cot (π/4 + α) was used to prevent the scale of the latent space variables

from growing enormous as the layers were compounded.

The manifold associated with the learned nonlinear projection operator is shown in Figure 3.9a

along with a trajectory of the full-order model Eq. 3.99 and a predicted trajectory. The predic-

tion was obtained by projecting the initial condition onto the learned manifold and evolving the

reduced-order model Eq. 3.68. The trajectories in the latent space of the autoencoder are shown in

Figure 3.9b. The error between the trajectories of the two models on 50 such unseen initial condi-

tions drawn at random is plotted in Figure 3.10a with the specific trajectory shown in Figures 3.9a

and 3.9b highlighted in green. We observe that the learned manifold is extremely close to the true

parabolic slow manifold x3 = x2
1 + x2

2. The predictions made by the reduced-order model evolving

on the learned manifold also agree closely with the trajectories of the original system. In Figure 3.9c

we show the fibers associated with the learned projection (see Theorem 3.4.1 and Figure 3.7) and

we observe that the projection is very nearly vertical. This means that the optimized nonlinear pro-

jection has learned to project points vertically onto the parabolic slow manifold, which is essentially

what happens to the dynamics of the original system when ε → 0 in Eq. 3.99. The largest errors

along predicted trajectories occurred when the initial conditions were very close to the fiber passing

through the origin, resulting in phase errors as shown in Figure 3.10b. However, even the worst-case

phase error that we observed among the testing trajectories was very small.
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Figure 3.10: In panel (a) we show the error of the nonlinear-projection-based reduced-order model
Eq. 3.68 for the system Eq. 3.99 on 50 unseen testing trajectories selected at random. Here, the
normalization factor Ez is the mean square fluctuation of the latent space trajectories ψe(x(t)) about
their average. The error along the example trajectory shown in Figure 3.9a is highlighted in green.
In panel (b) we plot the trajectory corresponding to the highest error at the final time.

Appendix

3.A Chapter 3 Proofs

Proof of Lemma 3.1.1 (inhomogeneous Grönwall inequality). Let us define the function

v(t) = e−Lt
∫ t

0

[Lw(τ) + b(τ)] d τ (3.104)

and observe that

v′(t) = e−Lt
{
−L

∫ t

0

[Lw(τ) + b(τ)] d τ + Lw(t) + b(t)

}
≤ e−Lt {La+ b(t)} . (3.105)

Integrating, and noting that v(0) = 0 we find

v(t) ≤ a− ae−Lt +

∫ t

0

e−Lτ b(τ) d τ (3.106)

and so we obtain

w(t) ≤ a+ eLtv(t) ≤ aeLt +

∫ t

0

eL(t−τ)b(τ) d τ. (3.107)

Proof of Theorem 3.3.2 (Typical intersections of ranges and null-spaces). The set S is open because
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the function φ : Rn×r → R defined by φ(X) = det(T ∗X) is continuous, and S = φ−1(R \ {0}) is

the pre-image of an open set. The sets S+ = φ−1((0,∞)) and S− = φ−1((−∞, 0)) are open for the

same reason.

To show that S is dense in Rn×r, choose any X ∈ Rn×r for which det(T ∗X) = 0. Consider a

full-sized singular value decomposition T ∗X = UΣV ∗ and let

Xt = X + tT (T ∗T )−1UV ∗. (3.108)

Taking the determinant, we find

det(T ∗Xt) = det(UΣV ∗ + tUV ∗) = det(U) det(Σ + tI) det(V ∗) > 0 ∀t > 0, (3.109)

and so Xt ∈ S for every t > 0 even though X0 = X /∈ S. Since the map t 7→ Xt is continuous,

it follows that every open neighborhood of X contains an element of S, proving that S is dense in

Rn×r.

To show that Sc, the complement of S in Rn×r, has Lebesgue measure zero, we observe that

X 7→ det(T ∗X) is a non-constant polynomial function on Rn×r and Sc is the zero set of this

polynomial. Since the zero set of any non-constant polynomial has Lebesgue measure zero [53], it

follows that Sc has measure zero.

We can also provide an analytic proof that Sc has measure zero by relying on Lebesgue’s density

theorem (see Section 7.2 of W. Rudin [233]). If µ denotes the Lebesgue measure, then the metric

density of a set E at a point x is defined to be

ρE(x) = lim
ε→0+

µ (E ∩B(x, ε))

µ(B(x, ε))
, (3.110)

where B(x, ε) denotes the open ball of radius r centered at x. Lebesgue’s density theorem states that

the metric density is unity, ρE(x) = 1, for almost every point x of E. By showing that ρSc(X) < 1

for every X ∈ Sc where ρSc(X) is defined, it follows from this theorem that Sc has Lebesgue measure

zero. Choosing any X ∈ Sc and any ε > 0, we use Eq. 3.108 to construct a point

X0 = X +
ε

2‖T (T ∗T )−1UV ∗‖T (T ∗T )−1UV ∗ ∈ S, (3.111)

which lies in S at a distance ‖X0−X‖ = ε/2 from X. For convenience, we take ‖·‖ to be the operator

norm, but this choice is not important because all norms are equivalent on finite-dimensional vector
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spaces. We take δε = αε with the constant α given by

α = min

{
1

2
,

1

2‖T‖‖T (T ∗T )−1UV ∗‖

}
, (3.112)

and observe that B(X0, δε) ⊂ B(X, ε) and for any Y ∈ B(X0, δε), the smallest singular value, σr, of

T ∗Y is bounded below by

σr(T
∗Y ) = σr [T ∗X0 + T ∗(Y −X0)]

≥ σr(T ∗X0)− ‖T‖‖Y −X0‖

>
ε

2‖T (T ∗T )−1UV ∗‖ − ‖T‖δε ≥ 0.

(3.113)

Consequently, T ∗Y is invertible for every Y ∈ B(X0, δε) and so B(X0, δε) ⊂ S. Therefore the metric

density of Sc at X ∈ Sc is bounded above by

ρSc(X) ≤ lim
ε→0+

µ (B(X, ε) \B(X0, δε))

µ(B(X, ε))
= 1− lim

ε→0+

µ(B(X0, αε))

µ(B(X, ε))
= 1− αnr < 1, (3.114)

when it is defined. Therefore, the Lebesgue measure of Sc is equal to the measure of points in

Sc with metric density undefined or less than unity. By Lebesgue’s density theorem, the Lebesgue

measure of Sc is equal to zero.

To show that S+ is connected, we choose any X,Y ∈ S+. Recall that the general linear group

GLr of invertible r × r matrices has two connected component corresponding to matrices with

positive and negative determinants [109]. Since det((T ∗X)−1(T ∗Y )) > 0, it follows that there is

a continuous path t 7→ Gt ∈ GLr such that G0 = I and G1 = (T ∗X)−1(T ∗Y ). Consequently,

the path t 7→ Xt = XGt has X0 = X, T ∗X1 = T ∗XG1 = T ∗Y , and Xt remains in S+ because

det(T ∗Xt) = det(T ∗X) det(Gt) > 0 for every t ∈ [0, 1]. Now, we construct a path from X1 to Y by

letting Zt = tY + (1− t)X1 and observing that

det(T ∗Zt) = det(tT ∗Y + (1− t)T ∗X1) = det(T ∗Y ) > 0 ∀t ∈ [0, 1], (3.115)

and so Zt remains in S+. Connecting the two paths X = X0 ; X1 = Z0 ; Z1 = Y , we have

constructed a path from X to Y that remains in S+. The same proof may be repeated verbatim,

modulo sign flips, for X,Y ∈ S−.

Proof of Theorem 3.4.1 (Constant-Rank Projections). We begin by showing that the image setM =
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Image(P ) is a submanifold of N . To do this, it suffices to show that each x0 ∈ M is contained in

a local chart for M. Choose any x0 ∈ M and observe that P (x0) = x0. By the rank theorem

(Theorem 4.12 on p.81 in J. M. Lee [149]), there are two open neighborhoods U and V of x0 in

N and diffeomorphisms φ : Rn → U and ψ : Rn → V such that P (U) ⊂ V and the coordinate

representation P̂ = ψ−1 ◦ P ◦ φ : Rn → Rn is given by

P̂ (z1, . . . , zn) = (z1, . . . , zr, 0, . . . , 0). (3.116)

If H = {(z1, . . . , zn) ∈ Rn : zr+1 = · · · = zn = 0} then it is clear that P (U) = ψ(H). Moreover,

since P ◦ P = P , it is clear that M∩ U = P (U) ∩ U = P (U) ∩ (U ∩ V). Letting W = ψ−1(U ∩ V),

which is open in Rn, we obtain M ∩ U = ψ(H) ∩ ψ(W ) = ψ(H ∩ W ). Thus, the restriction

ψ|H : W ∩H →M∩U provides a local parametrization ofM∩U . Since x0 ∈M was arbitrary, we

conclude that M is a smooth r-dimensional manifold.

Because the derivative of P : N →M has constant rank equal to the dimension ofM, it follows

that DP (x) : TxN → Tx0
M is surjective for each x ∈ P−1(x0). Consequently each x0 ∈ M is a

regular value of P , and so P−1(x0) is a smooth codimension-r submanifold of N . The tangent space

of P−1(x0) at x is equal to the null space of DP (x) by the preimage theorem (see Section 1.4 of V.

Guillemin and A. Pollack [106]).

Finally, for any x0 ∈M the map DP (x0) : Tx0N → Tx0N is a projection due to the chain rule

DP (x0) = D(P ◦ P )(x0) = DP (x0) DP (x0). (3.117)

Choosing any element v ∈ (Tx0
M)∩(Tx0

P−1(x0)) = Range(DP (x0))∩Null(DP (x0)), it follows from

Eq. 3.117 that v = DP (x0)v = 0. Since Tx0
M and Tx0

P−1(x0) have complementary dimensions in

Tx0N and (Tx0M) ∩ (Tx0P
−1(x0)) = {0}, we have

Tx0
N = Tx0

M⊕ Tx0
P−1(x0), (3.118)

and so M and T−1(x0) intersect transversally at x0.

Proof of Theorem 3.4.2 (Biorthogonal Manifold). Consider the smooth map F : E → Rr×r defined

by

F (X,Y ) = Y ∗X − Ir. (3.119)

We observe that Bn,r = F−1(0) is the preimage of the zero matrix under the map F . If (Φ,Ψ) ∈ Bn,r,
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then the derivative of F at this point is given by the map

DF (Φ,Ψ) : (X,Y ) 7→ Y ∗Φ + Ψ∗X, (X,Y ) ∈ E . (3.120)

It is easy to see that the derivative is surjective at every (Φ,Ψ) ∈ Bn,r because

DF (Φ,Ψ)(ΦA, 0) = A, ∀A ∈ Rr×r. (3.121)

By the preimage theorem [106], it follows that Bn,r is a smooth sub-manifold of codimension r2 in

E . Since E is 2nr-dimensional, the dimension of Bn,r is 2nr − r2.

By the local submersion theorem [106], the tangent space at (Φ,Ψ) ∈ Bn,r is characterized by

the null space of the derivative, that is,

T(Φ,Ψ)Bn,r = ker DF (Φ,Ψ) = {(X,Y ) ∈ E : Y ∗Φ + Ψ∗X = 0} . (3.122)

Since DF (Φ,Ψ) is a finite-dimensional linear map between E and the Euclidean space Rr×r, we

know that (
T(Φ,Ψ)Bn,r

)⊥
= (ker DF (Φ,Ψ))

⊥
= Range (DF (Φ,Ψ)∗) , (3.123)

where DF (Φ,Ψ)∗ : Rr×r → E is the adjoint of DF (Φ,Ψ). We claim that the adjoint operator is

given by

DF (Φ,Ψ)∗ : A 7→
(
ΨA,ΦAT

)
. (3.124)

To verify this, choose any A ∈ Rr×r and (X,Y ) ∈ E . Then

〈
A, DF (Φ,Ψ)(X,Y )

〉
Rr×r = Tr

[
AT (Y ∗Φ + Ψ∗X)

]
(3.125)

= Tr
(
Φ∗Y A

)
+ Tr

(
ATΨ∗X

)
(3.126)

= Tr
(
AΦ∗Y

)
+ Tr

(
ATΨ∗X

)
, (3.127)

where we have used the invariance of the trace under transposition and cyclic permutation as well

as the symmetry of the state space’s inner product 〈·, ·〉 which implies (Y ∗Φ)T = Φ∗Y . It remains

to verify that AΦ∗ = (ΦAT )∗ and ATΨ∗ = (ΨA)∗, for if this is the case then we obtain

〈
A, DF (Φ,Ψ)(X,Y )

〉
Rr×r =

〈
DF (Φ,Ψ)∗A, (X,Y )

〉
E =

〈 (
ΨA,ΦAT

)
, (X,Y )

〉
E . (3.128)
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Choosing any u ∈ (Rn, 〈·, ·〉) and v ∈ Rr, we find

〈
u, ΨAv

〉
=
〈
Ψ∗u, Av

〉
Rr =

〈
ATΨ∗u, v

〉
Rr . (3.129)

Therefore, we have verified that ATΨ∗ = (ΨA)∗. The verification of AΦ∗ = (ΦAT )∗ proceeds in the

same way. Finally, we can conclude that

(
T(Φ,Ψ)Bn,r

)⊥
= Range (DF (Φ,Ψ)∗) =

{(
ΨA,ΦAT

)
∈ E : A ∈ Rr×r

}
. (3.130)

The orthogonal projection (X̂, Ŷ ) = P(Φ,Ψ)(X,Y ) is the unique element in T(Φ,Ψ)Bn,r such that

(X − X̂, Y − Ŷ ) ∈
(
T(Φ,Ψ)Bn,r

)⊥
. By the characterization of the orthogonal complement of the

tangent space shown above, we know that

(X − X̂, Y − Ŷ ) = (ΨA, ΦAT ) (3.131)

for some matrix A ∈ Rr×r. Using the characterization of the tangent space shown above, the

condition that (X̂, Ŷ ) = (X −ΨA, Y − ΦAT ) ∈ T(Φ,Ψ)Bn,r means that A must satisfy

0 =
(
Y − ΦAT

)∗
Φ + Ψ∗ (X −ΨA) . (3.132)

Rearranging, yields the Sylvester equation

A (Φ∗Φ) + (Ψ∗Ψ)A = Y ∗Φ + Ψ∗X. (3.133)

To vectorize the Sylvester equation, we recall some facts about vectorized matrix products (see

[146], [269]). If A and B are r × r matrices, then

vec(AB) =


A col1(B)

...

A colr(B)

 =


A

. . .

A




col1(B)

...

colr(B)

 = (Ir ⊗A) vec(B). (3.134)
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The same product can be written in terms of the vectorization of B. We also observe that

vec(AB) =





B1,1A1,1 + · · ·+Br,1A1,r

B1,1A2,1 + · · ·+Br,1A2,r

...

B1,1Ar,1 + · · ·+Br,1Ar,r


...

B1,rA1,1 + · · ·+Br,rA1,r

B1,rA2,1 + · · ·+Br,rA2,r

...

B1,rAr,1 + · · ·+Br,rAr,r





=


B1,1I · · · Br,1Ir

...
. . .

...

B1,rI · · · Br,rIr




col1(A)

...

colr(A)



=
(
BT ⊗ Ir

)
vec(A). (3.135)

Using these facts, we can vectorize the Sylvester equation, yielding the symmetric linear system

[(Φ∗Φ)⊗ Ir + Ir ⊗ (Ψ∗Ψ)] vec(A) = vec (Y ∗Φ + Ψ∗X) . (3.136)

By Theorem. 13.12 in [146], the eigenvalues of (Φ∗Φ) ⊗ Ir are given by the eigenvalues of Φ∗Φ

with multiplicities increased by a factor of r. Likewise, the eigenvalues of Ir ⊗ (Ψ∗Ψ) are given by

the eigenvalues of Ψ∗Ψ with multiplicities increased by a factor of r. One can see this for general

matrices A and B by taking an eigenvector u of A with eigenvalue λ and an eigenvector v of B with

eigenvalue µ and observing that u⊗ v is an eigenvector of A⊗B with eigenvalue λµ:

(A⊗B)(u⊗ v) = (Au)⊗ (Bv) = λµ(u⊗ v). (3.137)

If A and B are diagonalizable, then all eigenvectors of A ⊗ B are formed in this way. Therefore,

taking the products of eigenvalues of A with the eigenvalues of B produces all of the eigenvalues of

A⊗B.

Since Φ and Ψ each have r linearly independent columns, we know that Φ∗Φ and Ψ∗Ψ are

symmetric, positive-definite matrices. It then follows that (Φ∗Φ)⊗Ir and Ir⊗(Ψ∗Ψ) are symmetric,

positive-definite matrices, and so must be their sum. Therefore, the solution of the Sylvester equation

exists and gives the unique orthogonal projection of (X,Y ) onto T(Φ,Ψ)Bn,r.

Proof of Theorem 3.4.6 (Second-order retraction). We begin by observing that the base point is pre-
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served, i.e.,

R(Φ,Ψ)(0, 0) = (Φ, Ψ), ∀(Φ,Ψ) ∈ Bn,r. (3.138)

Let us define the map L : M 7→ A by the unique solution of the Sylvester equation

A (Φ∗Φ) + (Ψ∗Ψ)A+M = 0 (3.139)

and the map g : (X,Y ) 7→ Y ∗X. We observe that L is a linear map and D g(0, 0) = 0, so

D(L ◦ g)(0, 0)(V,W ) = LD g(0, 0)(V,W ) = 0, ∀(V,W ) ∈ E . (3.140)

It is also clear that L(0) = 0. Therefore, the derivative of the retraction is given by

DR(Φ,Ψ)(0, 0)(V,W ) = (V − Φ [W ∗Φ + Ψ∗V ] , W ) (3.141)

Since (V,W ) ∈ TBn,r, Theorem 3.4.2 tells us that W ∗Φ + Ψ∗V = 0 and so we find that R satisfies

local rigidity

DR(Φ,Ψ)(0, 0)(V,W ) = (V,W ) , ∀(V,W ) ∈ TBn,r. (3.142)

Hence, we have shown that R is a retraction and it remains to show that

d2

dt2
R(Φ,Ψ) (t(X,Y ))

∣∣∣∣
t=0

=
(
ΨB, ΦBT

)
(3.143)

for some matrix B ∈ Rr×r by Theorem 3.4.2. We observe that L ◦ g (t(X,Y )) = t2L(Y ∗X) and

define

H(t) =
[(

Ψ + tY + t2ΦL(Y ∗X)T
)∗ (

Φ + tX + t2ΨL(Y ∗X)
)]−1

. (3.144)

Differentiating, we obtain

d

dt
H(t) = −H(t)

[ (
Y + 2tΦL(Y ∗X)T

)∗ (
Φ + tX + t2ΨL(Y ∗X)

)
+
(
Ψ + tY + t2ΦL(Y ∗X)T

)∗
(X + 2tΨL(Y ∗X))

]
H(t) (3.145)

d

dt
H(t)

∣∣∣∣
t=0

= − [Y ∗Φ + Ψ∗X] = 0, ∀(X,Y ) ∈ T(Φ,Ψ)Bn,r (3.146)
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and

d2

dt2
H(t)

∣∣∣∣
t=0

= − [2L(Y ∗X)Φ∗Φ + Y ∗X + Y ∗X + 2Ψ∗ΨL(Y ∗X)] = 0, (3.147)

by definition of L for every (X,Y ) ∈ T(Φ,Ψ)Bn,r. Using the above expressions, the retraction may

be written as

R(Φ,Ψ) (t(X,Y )) =
(
(Φ + tX + t2ΨL(Y ∗X))H(t), Ψ + tY + t2ΦL(Y ∗X)T

)
(3.148)

and differentiated, giving

d

dt
R(Φ,Ψ) (t(X,Y )) =(

(X + 2tΨL(Y ∗X))H(t) +
(
Φ + tX + t2ΨL(Y ∗X)

) d
dt
H(t), Y + 2tΦL(Y ∗X)T

)
. (3.149)

Differentiating again and applying Theorem 3.4.2, we obtain

d2

dt2
R(Φ,Ψ) (t(X,Y ))

∣∣∣∣
t=0

=
(
2ΨL(Y ∗X), 2ΦL(Y ∗X)T

)
∈
(
T(Φ,Ψ)Bn,r

)⊥
. (3.150)

for every (Φ,Ψ) ∈ Bn,r and (X,Y ) ∈ T(Φ,Ψ)Bn,r. This proves that R is a second-order retraction

according to Definition 3.4.5.

Finally, the push-forward map is found by straightforward differentiation.
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Chapter 4

Models based on approximating

Koopman operators

The Koopman operator provides an alternative viewpoint for dynamical systems by studying the

evolution of functions on the state space. The most attractive feature of this theory is that the

evolution of these functions is governed by a linear operator — the Koopman operator — even when

the system has nonlinear state-space dynamics. This linearity provides us with a variety of tools,

such as spectral analysis, for studying the system’s behavior and building simplified models of the

dynamics. In general, one seeks a finite dimensional subspace of functions that are rich enough to

describe macroscopic quantities of interest about the system, while being invariant or nearly invariant

under the action of the Koopman operator. The eigenfunctions spanning such an invariant subspace

provide coherent observables of the system, which are in some sense dual to the coherent structures

we discussed in Chapter 3. By placing the focus on functions with coherent time-evolution, we

can study the aggregate behavior of trajectories that exhibit both chaotic and organized dynamics.

However, because the Koopman operator is infinite-dimensional and may not have any non-trivial

finite-dimensional invariant subspaces, a great deal of attention has been given to making meaningful

finite-dimensional approximations of the Koopman operator. For more details, one can consult our

review paper [196]* as well as [177] and [34]. This chapter describes some theoretical foundations

for the Koopman operator as well as practical approximation techniques developed by S. E. Otto et

al. that are applicable in a variety of engineering settings, including to actuated systems.
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4.1 Koopman operators, generators, and function spaces

The trajectories of an autonomous dynamical system on a forward-invariant set X are described by

the “flow map” F t : X → X according to

x(s+ t) = F t(x(s)) (4.1)

for any x(s) ∈ X and t ∈ R+ for continuous-time systems or t ∈ N for discrete-time systems. While

the flow map may be nonlinear, B. O. Koopman [136] noticed that if we look instead at what happens

to complex-valued functions of the state ψ : X → C called “observables” then composition with the

flow map produces a new observable ψ] = ψ ◦ F t : X → C and this composition operation is linear.

That is,

(α1ψ1 + α2ψ2) ◦ F t = α1ψ1 ◦ F t + α2ψ2 ◦ F t, (4.2)

for every α1, α2 ∈ C and pair of observables ψ1, ψ2. Therefore, if we have a linear space of functions

F that is closed under composition with the flow map ψ ◦F t ∈ F for every ψ ∈ F , then it is possible

to define the “Koopman operator” on F according to

U tψ := ψ ◦ F t, ∀ψ ∈ F . (4.3)

As we have just shown, the Koopman operator associated with a possibly nonlinear flow F t is a

linear operator on a space of functions F .

If the function space F contains observables ψ1, ψ2, . . . for which the state x can always be

recovered as a function x = h(ψ1(x), ψ2(x), . . .) for all x ∈ X then the Koopman operator contains

the same information as the original flow map because

F t = h
(
ψ1 ◦ F t, ψ2 ◦ F t, . . .

)
= h

(
U tψ1, U

tψ2, . . .
)
. (4.4)

In exchange for linearity in working with U t instead of the nonlinear flow F t, the function space F

might have to be infinite-dimensional in order to satisfy Koopman invariance UF ⊆ F and state

reconstructability.

When the underlying system is measure-preserving, then a natural choice for the function space

F are the square integrable functions with respect to the preserved measure. The flow map F t

preserves a measure µ on X if the pre-image of a measurable subset A ⊂ X has the same measure

as A, that is, µ
(
(F t)−1(A)

)
= µ(A). In such a case, the Koopman operator defined on the Hilbert
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space of square µ-integrable functions F = L2((X , µ);C) is an isometry because

‖U tf‖2 =

∫
X
|f ◦ F t|2 dµ =

∫
X
|f |2 d(µ ◦ (F t)−1) =

∫
X
|f |2 dµ = ‖f‖2. (4.5)

Moreover, when F t is invertible, then U t is unitary because f ◦ (F t)−1 ∈ L2((X , µ);C) for every f ∈

L2((X , µ);C). This follows from essentially the same argument above and the fact that µ (F tA) =

µ(A) for every measurable A ∈ X when F t is invertible. By the spectral resolution of unitary

operators (see Chapter 31 of P. D. Lax [147]), the Koopman operator may then be expressed as an

integral over the unit circle in the complex plane

U t =

∫ 2π

0

eiθ dE(θ) (4.6)

with respect to an orthogonal projection-valued measure E.

When the underlying system is not measure-preserving, then a natural choice for the function

space on which to define the Koopman operator is less clear. When the factor by which the flow

map F t shrinks measurable sets according to a measure µ is bounded, then U t may still be defined

as a bounded operator on F = L2((X , µ);C). In particular, if µ
(
(F t)−1(A)

)
≤ cµ(A) for every

measurable subset A ⊂ X then

‖U tf‖2 =

∫
X
|f ◦ F t|2 dµ =

∫
F t(X )

|f |2 d(µ ◦ (F t)−1) ≤ c
∫
X
|f |2 dµ = c‖f‖2. (4.7)

However, the choice of µ is ambiguous and we have lost the normality of U t, which enabled a spectral

resolution of the Koopman operator in the case of a measure preserving flow map.

When the flow map is continuous, another option is to define the Koopman operator over a

Banach space of continuous functions such as F = C(X ) or F = C0(X ), the closure of compactly

supported functions in C(X ). An advantage of this choice for F is that functions in this space

can be evaluated point-wise — which is generally an essential requirement for any data-driven

approximation method. When the set X is merely forward-invariant, then

‖U tf‖ = sup
x∈X

f(F t(x)) = sup
x∈F t(X )

f(x) ≤ sup
x∈X

f(x) = ‖f‖, (4.8)

where the inequality becomes equality if F t(X ) = X . Hence, the Koopman operator on C(X ) or on

C0(X ) is an isometry when F t is surjective; and if F t is invertible, then the Koopman operator is

also invertible.
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When U t is defined on the space of continuous functions C(X ), then the adjoint operator (U t)∗

is defined on the dual space of C(X ). The dual Banach space of C(X ) is the Banach space of Radon

measures, denoted M(X ), which contains the probability measures on Borel subsets of the state

space. If µ ∈M(X ) is a Radon measure, then for every f ∈ C(X ) we have

〈(U t)∗µ, f〉 = 〈µ,U tf〉 =

∫
X
f ◦ F t dµ =

∫
F t(X )

f d(µ ◦ (F t)−1) = 〈µ ◦ (F t)−1, f〉. (4.9)

Therefore, the adjoint operator (U t)∗ acts on a Radon measure µ to produce the measure of pre-

image sets defined by

(U t)∗µ(A) = µ
(
(F t)−1(A)

)
(4.10)

for every Borel measurable subset A ⊂ X . Probability measures are the set of positive Radon

measures with unit norm, and the adjoint operator (U t)∗ acts to transport probability measures

under the flow F t of the system. That is, if the measure µ describes the probability of finding the

initial state of the system in Borel subsets, then the measure (U t)∗µ describes the probability of

finding the state in Borel subsets after evolving the system according to F t. The operator (U t)∗,

which transports probability measures under the flow of the system, is called the Perron-Frobenius

operator. Finally, if F t is invertible, then (U t)∗ is an invertible isometry because U t is an invertible

isometry.

So far we have not considered systems with actuation or control. Preservation of a fixed measure

is often destroyed when control is applied to the system, and our understanding of the Koopman

operator outside of the measure-preserving setting is limited. Efforts over the last five years including

[211, 279, 255, 101, 138, 201] have sought to introduce actuation and control in the Koopman

framework. The Koopman generator, discussed next, has emerged as one of the primary tools for

doing this in a systematic way.

4.1.1 Koopman Generator

In this section, we consider a state space defined by a smooth manifold X and continuous time flow

maps F : X × [0,∞)→ X . We shall often refer to the flow map at time t as F t : x 7→ F (x, t). The

family of Koopman operators {U t}t≥0 inherits the properties of a semigroup from the flow map,
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namely

F 0(x) = x, ∀x ∈ X ⇒ U0ψ = ψ, ∀ψ ∈ F (4.11)

F t+s = F t ◦ F s, ∀s, t ≥ 0 ⇒ U t+s = U tUs, ∀s, t ≥ 0. (4.12)

If the flow map F t is inverible, then the Koopman operator U t is also invertible, making {Ut}t∈R
into a group. This is not always the case, for instance if the Koopman operator is being defined for

a flow map on Rn restricted to a trapping region X ⊂ Rn. Here, F t(X ) may be a proper subset of

X and so F t : X → X will fail to be surjective.

If the Koopman semigroup {U t}t≥0 is strongly continuous, i.e.,

U tf → f as t→ 0 ∀f ∈ F , (4.13)

then it is uniquely determined by its infinitesimal generator V : Dom(V )→ F defined by

V f =
d

d t
U tf

∣∣∣∣
t=0

= lim
t→0

U tf − f
t

. (4.14)

The domain of the generator DomV consists of those f ∈ F for which the above limit converges

strongly, and it is dense in F . Moreover, V is closed and commutes with every U t in the sense that

if f ∈ DomV then U tf ∈ Dom(V ) and V U tf = U tV f . Consequently, U t can be recovered from V

by solving

d

d t
U tf = V U tf f ∈ Dom(V ) (4.15)

and extending U t to all of F using the density of Dom(V ) in F and boundedness of U t. The solution

is given explicitly by Hille’s exponential formula (Theorem 8.3 in Section 1.8 of A. Pazy [199])

U t = exp (tV ) := lim
n→∞

(
I − t

n
V

)−n
t ≥ 0, (4.16)

which converges strongly and corresponds to an implicit time stepping scheme for solving Eq. 4.15.

For more details on strongly continuous semigroups of operators, see Chapter 34 in P. D. Lax [147]

and the books by A. Pazy [199] and K.-J. Engel and R. Nagel [86].

Strong continuity is not a strong requirement, as the following Theorem 4.1.1 shows that any

continuous, proper flow F produces a strongly continuous Koopman semigroup on the function space

F = C0(X ). Recall that C0(X ) is the closure of the compactly supported continuous functions Cc(X )
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in C(X ), that is, with respect to the sup-norm

‖f‖ = sup
x∈X
|f(x)|. (4.17)

The requirement that F̃ : (x, t) 7→ (F (x, t), t) is proper says that the pre-image under F̃ of any

compact subset of X × [0,∞) is compact. This is automatically true when X is compact. Anther

case when F̃ is proper is when each F t has a continuous inverse since this implies that F̃ has a

continuous inverse. The preimage of a compact set under F̃ is given by its image under F̃−1, which

is compact because F̃−1 is continuous.

Theorem 4.1.1. If F : X × [0,∞) → X is continuous and the map F̃ : (x, t) 7→ (F (x, t), t) is

proper, then the corresponding Koopman semigroup {U t}t≥0 is well-defined and strongly continuous

on C0(X ). If, in addition, the flow map F is continuously differentiable, then the infinitesimal

generator V : Dom(V )→ C0(X ) of the Koopman semigroup is given by the closure of

Ṽ : C1
c (X )→ C0(X )

f 7→ ∂F

∂t

∣∣∣∣
t=0

· ∇ f
(4.18)

in the graph norm ‖f‖Ṽ = ‖f‖+ ‖Ṽ f‖.

Proof. We provide the proof in Appendix 4.A.

Remark 4.1.2. Essentially the same argument used in the proof of Theorem 4.1.1 can be used to

prove the analogous result when U t are bounded operators on L2(X ), the key fact being that Cc(X )

is dense in L2(X ).

The following Theorem 4.1.3 characterizes the generators of contraction semigroups, that is,

semigroups that do not increase the norm on F . As we saw earlier, when the Koopman operator

is defined over a Banach space of continuous functions, it is automatically a contraction semigroup.

Therefore, Theorem 4.1.3 will provide useful information about the spectrum of the generator when

U t is strongly continuous.

Theorem 4.1.3 (Hille-Yosida, theorem 2.3.5 in [86]). Let V : Dom(V )→ F be a linear operator on

a Banach space F . Then the following properties are equivalent:

1. V generates a strongly continuous semigroup U t : F → F of contractions, i.e., ‖U t‖ ≤ 1 for

every t > 0
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2. V is closed, Dom(V ) is dense in F , and for every λ ∈ R with λ > 0, the operator (λI − V ) :

Dom(V )→ F is invertible and ∥∥λ(λI − V )−1
∥∥ ≤ 1 (4.19)

3. V is closed, Dom(V ) is dense in F , and for every λ ∈ C with Re(λ) > 0, the operator

(λI − V ) : Dom(V )→ F is invertible and

∥∥(λI − V )−1
∥∥ ≤ 1

Re(λ)
. (4.20)

Below, we state a corollary of Theorem 4.1.3 that characterizes the generators of groups of invertible

isometries. Recall that when the flow map F t is continuous and invertible, then U t defined on a

Banach space of continuous functions is a group of isometries. Consequently, if it can be shown

that U t is strongly continuous, then Corollary 4.1.4 says that the Koopman generator V has purely

imaginary spectrum.

Corollary 4.1.4 (Corollary 2.3.7 in [86]). Let V : Dom(V )→ F be a linear operator on a Banach

space F . Then the following properties are equivalent:

1. V generates a strongly continuous group U t : F → F of invertible isometries

2. V is closed, Dom(V ) is dense in F , and for every λ ∈ R \ {0}, the operator (λI − V ) :

Dom(V )→ F is invertible and ∥∥λ(λI − V )−1
∥∥ ≤ 1 (4.21)

3. V is closed, Dom(V ) is dense in F , and for every λ ∈ C \ iR, the operator (λI − V ) :

Dom(V )→ F is invertible and

∥∥(λI − V )−1
∥∥ ≤ 1

|Re(λ)| . (4.22)

Finally, Stone’s theorem, stated below, provides a complete description of unitary semigroups on

Hilbert spaces in terms of skew-adjoint generators. This result is especially important in the setting

where F t is invertible and measure-preserving — giving rise to a unitary Koopman group U t on the

Hilbert space L2((X , µ);C).

Theorem 4.1.5 (Stone, theorem 2.3.24 in [86]). Let V : Dom(V )→ F be a densely defined operator

on a Hilbert space F . Then V generates a strongly continuous group of unitary operators U t : F → F

if and only if V is skew-adjoint, i.e., V ∗ = −V .

77



The form of the Koopman generator expressed in Theorem 4.1.1 is especially useful for flows

generated by ordinary differential equations with control input. In particular, suppose that the

dynamics of the state x ∈ X are governed by

d

d t
x = f(x, u). (4.23)

Then, when the input is held constant, these dynamics generate a family of flow maps F tu and

Koopman semigroups {U tu}t≥0 on F = C0(X ) parametrized by the input level u. The Koopman

generators are given by the closures of

Ṽuψ = f(·, u) · ∇ψ, ψ ∈ C1
c (X ), (4.24)

which have similar input dependence to f . For instance, when the dynamics are input-affine

f(x, u) = f0(x) +

m∑
i=1

uifi(x), (4.25)

then the Koopman generator is also input affine

Vu = V0 +

m∑
i=1

uiVi (4.26)

over
⋂m
i=1 Dom(Vi) ⊂ Dom(Vu), where Vi is the Koopman generator associated with each component

vector field fi.

Remark 4.1.6. In general, the domain of Vu may be strictly larger than the intersection of the

component generators
⋂m
i=1 Dom(Vi). For instance, consider f1, f2 : R2 → R2 defined by f1(x) =

(1, 0) and f2(x) = (0, 1). The function ψ ∈ C0(R2) defined by

ψ(x1, x2) = |x2 − x1|e−x
2
1−x2

2 (4.27)

is not in Dom(V1), nor in Dom(V2), yet ψ is in the domain of the Koopman generator V(1,1) of the

vector field f = f1 + f2 = (1, 1) because

V(1,1)ψ(x1, x2) = lim
t→0

1

t

[
|(x2 + t)− (x1 + t)|e−(x1+t)2−(x2+t)2 − |x2 − x1|e−x

2
1−x2

2

]
= |x2 − x1|e−x

2
1−x2

2 (−2x1 − 2x2) ,

(4.28)
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where the limit converges uniformly over R2. In such cases, the graph of Vu is the closure of the

graph of V0 +
∑m
i=1 uiVi. As we will see next, this distinction does not matter from the perspective

of the exponential map.

On the other hand, the Koopman operators U tu depend on the input in a much more complicated

way than the Koopman generators. In particular, this dependence is captured by the exponenial

map

U tu = exp(tVu) = exp

[
t

(
V0 +

m∑
i=1

uiVi

)]
, (4.29)

where the term on the right is understood using extension by continuity. In particular, the exponen-

tial map defined by Eq. 4.16 still makes sense for the sum of generators defined over
⋂m
i=1 Dom(Vi)

because the resolvent operators appearing in Eq. 4.16 can be understood using the extension by

continuity provided by Lemma 4.1.7 below. Recall that a “core” of an operator is a subset of its

domain that is dense in the graph norm and that Theorem 4.1.1 provides us with a core, C1
c (X ),

that is shared by every Koopman generator associated with a smooth vector field on X .

Lemma 4.1.7 (Resolvents of sums with a common core). Let C ⊂ F be a core for V1, V2, and V .

If V f = V1f + V2f for every f ∈ C and λ is in the resolvent set of V , i.e., λI − V : Dom(V ) → F

is bijective, then

(λI − V )−1 = (λI − (V1 + V2))−1, (4.30)

where the term on the right is understood as the extension by continuity of (λI − (V1 + V2))−1 on

the dense subset (λI − (V1 + V2))(C) of F .

Proof. We have (λI − V )−1g = (λI − (V1 + V2))−1g for every g ∈ (λI − (V1 + V2))(C). By the

open mapping theorem, the resolvent operator (λI − V )−1 is bounded, and so it suffices to prove

that (λI − (V1 + V2))(C) is dense in F . Choose any f ∈ F and take x0 ∈ Dom(V ) such that

(λI − V )x0 = f . Since C is a core for V , there is a sequence {xn}∞n=1 ⊂ C such that xn → x0 and

V xn → V x0. Therefore, we have

(λI − (V1 + V2))xn = λxn − (V1 + V2)xn = λxn − V xn → λx0 − V x0 = f. (4.31)
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4.1.2 An augmented unitary Koopman group

Principled approximation techniques yielding powerful convergence guarantees for the spectra of

unitary groups have been developed recently by S. Das et al. [75]. However, these techniques

cannot be applied directly to Koopman operators in the non-measure preserving setting since the

resulting operators are not unitary or even normal. One way to skirt around this problem might be

to study an augmented Koopman operator that is unitary on F = L2((X , µ);C). Such an operator

would then admit convergent finite-dimensional approximations using the RKHS compactification

technique developed by S. Das et al. [75] even when the system is not measure-preserving, for

instance, when there is actuation. We construct such an augmented Koopman operator here.

Suppose that µ is a σ-finite measure, µ ◦ (F t)−1 is absolutely continuous with respect to µ. Let

wt = dµ◦(F t)−1

dµ be the Radon-Nikodym derivative of µ ◦ (F t)−1 with respect to µ, i.e.,

µ
(
(F t)−1(A)

)
=

∫
A

wt dµ (4.32)

for every measurable subset A. For instance, if µ has density ρ > 0 with respect to the Lebesgue

measure on an open subset X ⊂ Rn and F t is a diffeomorphism of X , then

wt(x) =
ρ
(
(F t)−1(x)

)
ρ(x)

∣∣det
(
D(F t)−1(x)

)∣∣ . (4.33)

If wt > 0 µ-almost everywhere, then we can define an augmented Koopman operator Ũ t on F =

L2((X , µ);C) according to

Ũ tf =

(
f√
wt

)
◦ F t =

f ◦ F t√
wt ◦ F t

. (4.34)

We observe that this augemented Koopman operator agrees with the original Koopman operator

whenever the flow map preserves µ.

The key property of Ũ t is that it is unitary when F t is invertible, even when F t is not measure-

preserving. To see this, we observe that Ũ t is an isometry when F t is invertible because

‖Ũ tf‖2 =

∫
X

|f ◦ F t|2
wt ◦ F t

dµ =

∫
X

|f |2
wt

dµ ◦ F−1 =

∫
X

|f |2
wt

wt dµ = ‖f‖2. (4.35)

Finally, the inverse operator (Ũ t)−1f =
√
wt(f ◦ (F t)−1) = (Ũ t)∗ is an isometry because

‖(U t)−1f‖ =

∫
X
|f ◦ (F t)−1|2wt dµ =

∫
X
|f ◦ (F t)−1|2 dµ ◦ (F t)−1 =

∫
X
|f |2 dµ = ‖f‖2 (4.36)
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for every f ∈ L2((X , µ);C).

When the flow F t is a diffeomorphism produced by integrating an ordinary differential equation

d

d t
x = f(x) (4.37)

on an open subset X ⊂ Rn, then the generator Ṽ : Dom(Ṽ ) → L2(X ) of the augmented Koopman

group {Ũ t}t∈R can be written explicitly over a core. Here, we assume that the measure µ on X has

continuously differentiable density ρ > 0 with respect to the Lebesgue measure. A simple calculation

shows that when f is continuously differentiable, then for each ψ ∈ C1
c (X ), we have

Ṽ ψ =
d

d t

(
Ũ tψ

)∣∣∣∣
t=0

=
1

2

[
ρ−1f · ∇ ρ+ Tr (D f)

]
ψ + f · ∇ψ, (4.38)

where the second term is the action of the usual Koopman generator V on ψ. The space C1
c (X ) is a

core for Ṽ because it is dense in F = L2(X ) and invariant under Ũ t (see Proposition 1.7 in Chapter 2

of [86]). Moreover, by Stone’s theorem (Theorem 4.1.5), we know that Ṽ = −Ṽ ∗ is skew-adjoint.

Proof of Eq. 4.38. Since F t is a flow map, it preserves orientation, and by Eq. 4.33 we have

1

wt(F t(x))
=
ρ (F t(x))

ρ(x)
det
(
DF t(x)

)
. (4.39)

Differentiating with respect to time and recalling that w0 ≡ 1, we find

d

d t

(
1√

wt(F t(x))

)∣∣∣∣∣
t=0

=
1

2

d

d t

(
1

wt(F t(x))

)∣∣∣∣
t=0

=
1

2

[
f(x) · ∇ ρ(x)

ρ(x)
+ Tr (D f(x))

]
. (4.40)

We now obtain Eq. 4.38 by differentiating Eq. 4.34 with respect to time and substituting the above

expression.

Studying the augmented Koopman semigroup may be useful when the system of interest depends

on a parameter or input signal. Even if the system is measure-preserving at each parameter value or

input level, the same measure might not be preserved across parameter values or input levels. When

the flow maps are diffeomorphisms, then the input paramterized augmented Koopman operators

form a family of unitary groups. Moreover, when the flow is generated by an input-affine vector field

d

d t
x = f(x) +

m∑
i=1

uifi(x) (4.41)
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then the skew-adjoint generators of the augmented Koopman groups {Ũ tu}t∈R are also input-affine

Ṽuψ = Ṽ0ψ +

m∑
i=1

uiṼiψ, ψ ∈
m⋂
i=0

Dom(Ṽi), (4.42)

where Ṽi is the augmented Koopman generator associated with each component vector field fi. It

may now be possible to apply the RKHS compactification technique developed by S. Das et al.

[75] to make convergent finite-dimensional approximations of the augmented Koopman groups for

actuated systems.

If the constant function 1 is an element of F = L2((X , µ);C), then it is possible recover the

original Koopman group and its generator from the augmented unitary Koopman group Ũ t and its

skew-adjoint generator Ṽ . In particular, we can recover the action of the original Koopman operator

on an observable f according to

U tf =

(
1

Ũ t1

)
Ũ tf. (4.43)

The action of the Koopman generator is recovered according to

V ψ = Ṽ ψ − (Ṽ 1)ψ. (4.44)

This makes it possible to approximate the Koopman operator and generator indirectly by first

approximating the augmented operators using principled techniques developed in the unitary setting,

such as the one described in [75].

4.2 Coherent observables and structures

In this section, we review some important connections between the Koopman operator and the

state space dynamics. Here, we are primarily concerned with invariant subspaces of the Koopman

operator and generator, as well as expansions of relevant observables in an eigenfunction basis.

Whether or not the Koopman operator has any eigenfunctions depends both on the dynamics and

on the choice of function space. In many cases, such as chaotic dynamics, there are no non-trivial

finite-dimensional Koopman-invariant subspaces. On the other hand, the Koopman operator may

have eigenfunctions when defined over one function space, but not over another. Our discussion

in this section does not require the Koopman operator to be defined on a normed space, so it will

be convenient to work with various spaces of functions that are defined point-wise and may not be

bounded. The Koopman generator can then be defined with respect to the topology of point-wise
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convergence in this function space. This flexibility in the definition of the Koopman operator enables

the global linearization of dissipative systems discussed below in Section 4.2.1.

4.2.1 Global Linearization

An important area of research concerns identifying the class of systems that are known to be de-

scribed by the evolution of observables in a finite-dimensional Koopman-invariant subspace. While

a complete description of this class of systems in terms of state space geometry is not yet known,

the work of Y. Lan and I. Mezić [145] makes progress in this direction by extending the Hartman-

Grobman theorem to the entire basins of attraction of linearly stable fixed points and limit cycles.

To sketch the main idea of Y. Lan and I. Mezić [145], consider a twice continuously differentiable

system ẋ = Ax + g(x) on Rn where g(0) = 0, D g(0) = 0, and all eigenvalues of A have strictly

negative real part. Then the Hartman-Grobman theorem says that there is a C1 diffeomorphism ψ̃

with D ψ̃(0) = I on a neighborhood of the origin so that the dynamics are conjugate to ż = Az

with z = ψ̃(x) in this neighborhood. Taking Σ to be a level surface of a strictly decreasing quadratic

Lyapunov function contained within the neighborhood, Y. Lan and I. Mezić [145] observe that for

every x in the basin of attraction, there are unique and smoothly varying tΣ(x) ∈ R and xΣ(x) ∈ Σ

so that x = F tΣ(x)(xΣ(x)). Therefore, they conclude that the dynamics are conjugate to

d

d t
ψ(x) = Aψ(x), ψ(x) := eAtΣ(x)ψ̃

(
F−tΣ(x)(x)

)
, (4.45)

over the entire basin of attraction, where ψ is a diffeomorphism that extends ψ̃.

The observables ψi := [ψ]i, i = 1, . . . , n provided by each component of ψ span a Koopman-

invariant subspace. This holds because any observable ψv := v1ψ1 + · · · + vnψn = vTh evolves

according to

V (v1ψ1 + · · ·+ vnψn) =
d

d t

(
vTψ

)
= vTAψ = [ATv]1ψ1 + · · ·+ [ATv]nψn, (4.46)

and so it stays in the subspace. Analogous results are also developed in [145] for discrete-time maps

and limit cycle dynamics, in which case the conjugate linear system is the one provided by the

Floquet transformation of the linearized dynamics around the limit cycle [145]. These results have

also been extended to globally linearize dynamics in the basins of attracting quasi-periodic tori [178].

We have just seen how finite-dimensional Koopman-invariant subspaces can always be found

to globally linearize dynamics in the basins of attractive, hyperbolic fixed points or limit cycles.
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Moreover, the eigenvalues of the resulting linear systems agree with the eigenvalues of the linearized

dynamics at the fixed point or with the Floquet exponents in the case of a limit cycle. The work

of A. Mauroy and co-authors [173, 171] shows that important information about the state space

geometry can be obtained by considering the level sets of the associated (generalized) Koopman

eigenfunctions to be discussed in the next section.

4.2.2 Koopman Eigenfunctions and Modes

Koopman Eigenfunctions: Coordinate Systems, Spectral Lattice, and Stability

An eigenfunction of the Koopman generator V : Dom(V ) → F with eigenvalue λ is a nonzero

observable ϕ ∈ Dom(V ) for which V ϕ = λϕ, that is an observable in the null space of (V − λI). If

ϕ is an eigenfunction of V with eigenvalue λ, then ϕ is an eigenfunction of the Koopman operator

U t for every t ≥ 0 with eigenvalue eλt. Following Section 34.5 of [147], this holds because

d

d t

(
e−λtU tϕ

)
= e−λtU t(V ϕ− λϕ) = 0, e0U0ϕ = ϕ, (4.47)

which implies that e−λtU tϕ = ϕ for all t ≥ 0. Conversely, if ϕ ∈ F is an eigenfunction of U t

with eigenvalue eλt for every t ≥ 0, then ϕ ∈ Dom(V ) is an eigenfunction V . Note that it is not

enough for ϕ to be an eigenfunction of U t for a single t > 0. For instance, consider the dynamics

F t(x) = x + t on R1 and the function ϕ(x) = eix + e2ix, which is an eigenfunction of U2π with

eigenvalue 1. However ϕ is not an eigenfunction of V because (V ϕ)(x) = ieix + 2ie2ix 6= λϕ(x) for

any constant λ. There may also be eigenfunctions of U t with eigenvalue zero. These eigenfunctions

cannot be eigenfunctions of the Koopman generator because eλt can never be zero.

When F is closed under point-wise products of functions, then the eigenvalues and eigenfunctions

of the Koopman operator and generator form a lattice in the complex plane. In particular, if ϕ1 and

ϕ2 are eigenfunctions of the Koopman operator U t with eigenvalues µ1 and µ2, then ϕ1ϕ2 is also

an eigenfunction of U t with eigenvalue µ1µ2. This is verified using the definition of the Koopman

operator

U t(ϕ1ϕ2) = (ϕ1 ◦ F t)(ϕ2 ◦ F t) = (U tϕ1)(U tϕ2) = µ1µ2(ϕ1ϕ2). (4.48)

A similar property also holds for eigenfunctions of the Koopman generator thanks to the following

“product rule” for Koopman generators:

Lemma 4.2.1 (Product rule for Koopman generators). Suppose that F is closed under point-wise

multiplication of functions and suppose that the Koopman generator is defined with respect to point-
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wise convergence. For any ψ1, ψ2 ∈ Dom(V ), we have ψ1ψ2 ∈ Dom(V ) and

V (ψ1ψ2) = ψ2V ψ1 + ψ1V ψ2. (4.49)

Proof. The proof is essentially the same as the proof of the product rule in calculus. For complete-

ness, we give the details in Appendix 4.A.

As a consequence of Lemma 4.2.1, if we have two eigenfunctions ϕ1, ϕ2 ∈ Dom(V ) of the Koopman

generator with eigenvalues λ1, λ2 respectively, then ϕ1ϕ2 ∈ Dom(V ) is an eigenfunction of the

Koopman generator with eigenvalue λ1 + λ2. To see this, we compute

V (ϕ1ϕ2) = ϕ1V ϕ2 + ϕ2V ϕ2 = λ2ϕ1ϕ2 + λ1ϕ1ϕ2 = (λ1 + λ2)ϕ1ϕ2. (4.50)

Suppose we have a collection of observables ψ = (ψ1, . . . , ψd) that span a Koopman-invariant

subspace with dynamics given by ψ̇ = Aψ, where A is diagonalizable. Then each eigenvector vi of

AT with eigenvalue λi gives rise to a Koopman eigenfunction ϕi = vTi ψ with the same eigenvalue λ.

In the particular case of a stable, hyperbolic fixed point or limit cycle with conjugate linear dynamics

described by Eq. 4.45 in Section 4.2.1, the Koopman eigenfunctions provide a global coordinate

system in the basin of attraction where the dynamics are decoupled. For example, Mauroy et al.

[173] notice that the magnitude and phase of any eigenfunction ϕ with eigenvalue λ = σ+ ıω having

nonzero imaginary part provides a pair of action-angle coordinates in the basin that evolve according

to

d

d t
|ϕλ,1| = σ|ϕλ,1|

d

d t
∠ϕλ,1 = ω. (4.51)

In the case of stable hyperbolic fixed points and limit cycles the eigenfunctions whose eigenvalues

have the largest real part describe the asymptotic behavior of the system [173, 171]. When there is

a limit cycle, the periodic coordinate gives rise to Koopman eigenfunctions with purely imaginary

eigenvalues ıkω0. The points lying on the same level set of ∠ϕıkω0,1 have asymptotically the same

phase around the limit cycle and are called “isochrons” [171]. Similarly, isochrons can be defined as

points having asymptotically the same phase in their plane of approach to the origin. Isochrons are

given by the level sets of ∠ϕλ,1, where λ is the (assumed to be unique) eigenvalue with largest real

part. The level sets of this eigenfunction’s magnitude provide complementary collections of points

called “isostables” [173] with the same asymptotic approach to the origin up to a difference in phase.

Finally, the work of Mauroy and Mezić [172] shows how Koopman eigenfunctions and their level
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sets can be used to study the stability of arbitrary sets in state space. They show that the zero level

sets of continuous eigenfunctions of the Koopman generator with negative real-part eigenvalues are

forward-invariant and globally asymptotically stable. Consequently this is true of any intersection

of zero level sets associated with multiple such eigenfunctions, allowing the geometric study of such

level sets to reveal asymptotically stable sets. A Lyapunov function for the globally stable set can be

constructed by summing the absolute squares of each of these eigenfunctions. Moreover, if there is a

globally stable set, then all continuous eigenfunctions supported on its complement have eigenvalues

with negative real part and those continuous eigenfunctions with support overlapping the globally

stable set have purely imaginary eigenvalues. These results are interesting because they indicate

that the Koopman operator and its eigenfunctions may be useful tools for studying the transient

dynamics off of attractors.

Koopman Mode Analysis

A consequence of the product rule for Koopman eigenfunctions allows us to express certain ob-

servables as linear combinations of eigenfunctions. Suppose that ψ : X → Cq is a vector-valued

observable that can be expressed by composing a continuous function g : Cm → Cd with a finite

collection of eigenfunctions ϕ1, . . . , ϕm of the Koopman generator, that is,

ψ(x) = g(ϕ1(x), . . . , ϕm(x)). (4.52)

If g is expressible as a convergent power series on the image of ϕ = (ϕ1, . . . , ϕm) : X → Cm, then

we may express ψ as a power series of eigenfunctions

ϕ =
∑
α∈Nm

ξαϕ
α, ϕα = ϕα1

1 · · ·ϕαmm , (4.53)

where α = (α1, . . . , αm) is a multi-index with sum |α| = α1 + · · · + αm. If each eigenfunction

ϕi of the Koopman generator has eigenvalue λi, then each function ϕα = ϕα1
1 · · ·ϕαmm is also an

eigenfunction of the Koopman generator with eigenvalue α1λ1 + · · ·+αmλm. Such eigenvalues form

a lattice in the complex plane. If the reconstruction function g is merely continuous, then by the

Stone-Weierstrass theorem, there is a sequence of polynomials

gn(z) =
∑
α∈Nm:
|α|≤dn

ξn,αz
α, (4.54)
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such that gn → g uniformly on every compact subset of Cm. Consequently, the observable ψ may

be expressed as a limit

ψ(x) = lim
n→∞

ψn(x), ψn(x) =
∑
α∈Nm:
|α|≤dn

ξn,αϕ
α(x), (4.55)

where the convergence is uniform on every compact subset of X if ϕ is continuous.

The coefficients on expansions of observables in terms of Koopman eigenfunctions evolve in a

very simple way under the dynamics. The coefficients are called “Koopman modes”, defined below.

Definition 4.2.2 (Koopman mode). The coefficients ξi used to express a (vector-valued) observable

ψ =
∑
i ξiϕi as a linear combination of Koopman eigenfunctions are called the “Koopman modes”

of the observable ψ.

If the observable ψ can be written as a linear combination of eigenfunctions ϕi of the Koopman

generator with eigenvalues λi and Koopman modes ξi, then the evolution of ψ is given by

U tψ =

∞∑
i=1

eλitξiϕi. (4.56)

Hence, we see that the Koopman modes of the observable U tψ evolve according to eλitξi, i.e., with

a fixed frequency ωi = Im(λi) and decay rate σi = −Re(λi) over time.

Near a stable hyperbolic fixed point with linearized dynamics δẋ = Aδx, the Koopman modes

of the state vector corresponding to the eigenfunctions with non-vanishing gradients at the fixed

point are the eigenvectors of A with the same eigenvalues. As discussed in [173], the Koopman

modes of the state vector corresponding to the eigenfunctions whose eigenvalues have maximum real

part determine the plane of asymptotic approach to the fixed point. The other Koopman modes

associated with eigenfunctions having vanishing gradients at the fixed point account for high-order

nonlinear effects far away from the fixed point. In the case of limit cycle dynamics, the Koopman

modes corresponding to eigenfunctions with purely imaginary eigenvalues are the Fourier modes

for the limit cycle dynamics. Here, the complex argument of the eigenfunction at the fundamental

frequency provides the appropriate phase on the limit cycle.

When the Koopman semigroup {U t}t≥0 is strongly continuous and uniformly bounded on a

reflexive Banach space F , then it is possible to recover the Koopman modal diads ξϕ associated

with complex eigenvalues of the Koopman generator by Fourier averaging. In particular, the mean
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ergodic theorem for semigroups [86] shows that the Fourier average

Piωψ = lim
T→∞

1

T

∫ T

0

e−iωtU tψ d t, ω ∈ R (4.57)

converges strongly. Moreover, the resulting bounded operator Piω : F → F is a projection that

commutes with each U t and decomposes F = Range(Piω)⊕Null(Piω), where

Range(Piω) = Null(V − iωI) and Null(Piω) = Range(V − iωI). (4.58)

Hence, if iω is an eigenvalue of V , then Piω yields a projection onto the corresponding eigenspace.

Consequently, if iω is an eigenvalue of the Koopman generator with multiplicity 1 and ϕ is the

eigenfunction, then the corresponding Koopman modal diad for the observable ψ is given by

ξϕ = lim
T→∞

1

T

∫ T

0

e−iωtψ ◦ F t d t. (4.59)

In the special case when {U t}t∈R is a unitary group on a Hilbert space, Stone’s theorem (Theo-

rem 4.1.5) yields a skew-adjoint generator V , which makes Piω an orthogonal projection. An idea

related to Fourier averaging is the generalized Laplace analysis (GLA) developed in [37], which can

be applied to find all of the Koopman modal diads for certain systems. However, GLA suffers from

poor numerical stability, and the need for all eigenvalues of the Koopman generator to be known

explicitly. In practice, accurate approximations of Koopman modes can be computed from a data set

generated by the underlying system using Dynamic Mode Decomposition (DMD) [231] or Extended

Dynamic Mode Decomposition (EDMD) [280].

4.3 Approximation techniques based on dictionaries

A variety of techniques are available for making finite-dimensional approximations of Koopman

operators and generators based on data collected from the system under investigation. For a review

of modern techniques, see S. E. Otto and C. W. Rowley [196]*. In this section, we briefly review

Extended Dynamics Mode Decomposition (EDMD) [280] and its generalization to systems with

actuation [279]. In particular, we shall focus on the application of these techniques by S. E. Otto in

S. Peitz et al. [202]* to approximate the Koopman generators of input-affine systems.

In general, the Koopman operator is not compact, and so it is impossible to make finite-

dimensional approximations that converge in the operator norm. This makes approximating the
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spectrum of Koopman operators difficult since (almost) any finite-dimensional approximation will

be diagonalizable, yet many or all of the eigenvalues and eigenfunctions may be spurious since the

Koopman operator may not have any eigenfunctions besides the constant function. Before making a

finite-dimensional approximation, it is necessary to compactify the Koopman operator or generator

in a way that preserves meaningful spectral information. In the case when {U t}t∈R is a unitary

group, the compactification technique developed by S. Das, D. Giannakis, and J. Slawinska [75]

may be applied to approximate the Koopman generator and its entire Borel functional calculus in-

cluding the exponential map used to construct each U t. However, this result relies heavily on the

skew-adjoint property of the generator, and it is unclear whether the method can be generalized

to cases when the Koopman operators do not form a unitary group. While it may not be possible

to approximate the spectrum and functional calculus of Koopman operators and generators using

existing methods, the relatively simple techniques we describe in this section converge point-wise

and yield accurate predictions of dynamics over finite time horizons. For a discussion of convergence

results for EDMD, see M. Korda and I. Mezić [139].

4.3.1 Extended Dynamic Mode Decomposition (EDMD) [280]

In EDMD [280], we seek to approximate the Koopman operator U t in the span of a pre-selected

dictionary of functions ψ = (ψ1, . . . , ψN ), ψi ∈ F , referred to as “observables”. In most cases, we do

not have a priori knowledge of any non-trivial Koopman-invariant subspaces, and so the subspace

V ⊂ F spanned our chosen ψ1, . . . , ψN cannot reasonably be expected to be Koopman-invariant. We

must therefore approximate each U tψj in the subspace V by defining a suitable projection operator

PV : F → F with range contained in V. A matrix representation U ∈ CN×N of the projected

Koopman operator PVU t on the subspace V may then be constructed, i.e., a matrix U satisfying

PVU
t(ψTa) = ψTUa, ψTa := a1ψ1 + · · ·+ aNψN ∈ V, (4.60)

for every a ∈ CN .

The question now is how to construct a suitable projection operator? Suppose that F is a Banach

space with strictly convex norm and V is a finite-dimensional subspace. It can be shown that there

is a projection operator PV : F → F with the property that PVf is the unique element in V that is

closest to f with respect to the norm. If the norm of F is uniformly convex, i.e., F is reflexive, then

this result is also true for any infinite-dimensional closed subspace V ⊂ F . In a Hilbert space PV

is simply the orthogonal projection onto V. However, over Banach spaces of continuous functions
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on manifolds, the norm is not strictly convex, and so minimizers with respect to the norm may not

be unique. Moreover, it is usually impractical to compute the norms of arbitrary functions defined

over high-dimensional state spaces such as those encountered in discretized fluid flows.

When the norm on F is defined by an integral with respect to a probability measure, then

the Monte-Carlo approximation method can be employed. In particular, we suppose that F =

L2((X , µ);C), and we draw M independent identically distributed samples x1, . . . , xM from the

distribution µ. By Kolmogorov’s strong law of large numbers [137], we have

〈f, g〉M :=
1

M

M∑
i=1

f(xi)g(xi)→
∫
X
fg dµ =: 〈f, g〉L2 as M →∞ (4.61)

almost surely for every f, g ∈ L2((X , µ);C). Approximating the inner product 〈f, g〉L2 by the

sample-based semi-inner product 〈f, g〉M yields a projection operator

PV,Mf = ψTG+
M


〈ψ1, f〉M

...

〈ψN , f〉M

 , [GM ]i,j = 〈ψi, ψj〉M , (4.62)

where G+
M denotes the Moore-Penrose pseudoinverse of the Gram matrix GM . The element PV,Mf

minimizes ‖f−ψ‖2M = 〈f − ψ, f − ψ〉M over ψ ∈ V = span{ψ1, . . . , ψN}, and is the unique minimizer

when M is large enough so that GM is positive-definite. As a consequence of the strong law of large

numbers, this projection converges point-wise almost surely to the orthogonal projection operator

PV onto V in L2((X , µ);C). The EDMD method uses this projection operator to construct the

matrix approximation

U = G+
MAM , [AM ]i,j =

〈
ψi, U

tψj
〉
M

=
1

M

M∑
k=1

ψi(xk)ψj(F
t(xk)), (4.63)

of the Koopman operator according to Eq. 4.60. The key feature of this method is that U may be

computed from data consisting of snapshot pairs ψ(xi),ψ(F t(xi)) obtained by evaluating the same

observables ψ at states xi and at F t(xi) after evolving the states under the flow map. These data

are easy to obtain from numerical simulations or experiments, contributing to the widespread use

of this technique.

Extended Dynamic Mode Decomposition (EDMD) [280] has a different interpretation when ap-

plied to Banach spaces of continuous functions. A more practical alternative to norm minimization
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in a general Banach space F is to define the projection operator with respect to a collection of

test functionals {θ1, . . . , θM} in the dual Banach space F∗. The dual spaces to Banach spaces of

continuous functions such as C(X ) and C0(X ) contain the Dirac measures δx defined by

δx(A) =

1 if x ∈ A

0 otherwise
(4.64)

for Borel measurable subsets A ⊂ X . In EDMD, the functionals are chosen to be Dirac measures

θi = δxi centered at a collection of sampled data points x1, . . . , xM ∈ X . One may then define the

projection PV,M to return a minimizer of the square approximation error

minimize
ψ∈V

1

M

M∑
i=1

|〈θi, f − ψ〉|2 (4.65)

of functions f ∈ F in the subspace V as viewed through the lens of the chosen functionals. The

resulting projection operator is given by

PVf = ψTT+


〈θ1, f〉

...

〈θM , f〉

 , [T ]i,j = 〈θi, ψj〉 , 1 ≤ i ≤M, 1 ≤ j ≤ N, (4.66)

which yields the EDMD matrix approximation

U = T+S, [SM ]i,j = 〈θi, U tψj〉, 1 ≤ i ≤M, 1 ≤ j ≤ N. (4.67)

It is interesting to note that the projection operator and matrix approximation given by Eq. 4.66

and Eq. 4.67 are identical to those given by Eq. 4.62 and Eq. 4.63, with a similar sample-based

semi-inner product

〈f, g〉M :=
1

M

M∑
i=1

〈θi, f〉〈θi, g〉. (4.68)

In this case, we have GM = T ∗T , where T ∗ denotes the complex conjugate transpose of the matrix

T . When θi = δxi and xi are drawn independently at random according to a distribution µ, then

the strong law of large numbers [137] implies that

〈f, g〉M =
1

M

M∑
i=1

f(xi)g(xi)→
∫
X
fg dµ as M →∞ (4.69)
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almost surely under the additional assumption that fg is absolutely integrable with respect to µ.

The range of the data-driven projection operator PV is a subspace U ⊂ V, which is referred

to as the “learning subspace”. This subspace is important because it is the subspace in which

EDMD is capable of accurately capturing the dynamics of Koopman eigenfunctions. In particular,

if ϕ ∈ U is an eigenfunction of the Koopman operator U t with eigenvalue λ, then the corresponding

vector v ∈ CN such that ϕ = ψTv is an eigenvector of the matrix approximation U with the same

eigenvalue! On the other hand, all bets are off if ϕ ∈ V but ϕ /∈ U . The learning subspace is equal

to V when the the sampling strategy has M ≥ N and yields a positive-definite Gram matrix GM ,

i.e., the matrix T has full column-rank. Otherwise, the learning subspace is a proper subspace of V

given by

U =
{
ψTa : a ∈ Range(GM ) = Range(T ∗)

}
. (4.70)

In practice, the Moore-Penrose pseudoinverses used to define the EDMD matrix U via Eq. 4.63

or Eq. 4.67 cannot be stably computed. Instead, we approximate the pseudoinverse by truncated

Hermitian eigenvalue decomposition of GM or equivalently by truncated singular value decompo-

sition of T . Truncating these decompositions yields smaller learning subspaces where the vector a

in Eq. 4.70 lives in the range of the truncated matrix GM , i.e, in the span of the truncated right

singular vectors of T . Letting Q ∈ Cm×r be the matrix of truncated right singular vectors of T , we

find the the matrix approximation of the Koopman operator restricted to the r-dimensional learning

subspace, PVUPV , is given by

(PVUPV)ψTQa = ψT Ûa, Û = Q∗UQ, (4.71)

where U is the matrix approximation of PVU given by Eq. 4.63 or Eq. 4.67. Here, Û is an r × r

matrix, compared to U , which is an N × N matrix. Working with Û rather than U enables a

generalization of EDMD to infinite-dimensional feature maps ψ taking values in a reproducing kernel

Hilbert space. This technique, called Kernel Dynamic Mode Decomposition (KDMD) is introduced

by M. O. Williams et al. [281]. As we alluded to earlier in Section 3.1.2, when the same learning

subspace is used to construct U and Û , then U and Û have the same nonzero eigenvalues and the

eigenvectors of U can be reconstructed from the eigenvectors of Û . However, we note that working

with an infinite-dimensional set of features is not necessarily helpful because the dimension of the

learning subspace never exceeds the number of samples M .

Finally, EDMD can be used to construct an approximate Koopman mode decomposition for
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a vector of observables f : X → Cd. If U = WΛW−1, W =

[
w1 · · · wN

]
is an eigen-

decomposition for the matrix approximation U of the Koopman operator, then ϕi = ψTwi is an

eigenvector of PVU with the corresponding eigenvalue λi of U . Therefore, ϕ = W Tψ is the vector

of approximate eigenfunctions computed using EDMD. Interpreting 〈θi,f〉 = (〈θi, f1〉, . . . , 〈θi, fd〉)

element-wise, a little bit of algebra yields a decomposition

(
PVU

t
)k
PVf =

[
〈θ1,f〉 · · · 〈θM ,f〉

]
T+TW−T︸ ︷︷ ︸[

ξ1 · · · ξN

]
Λkϕ =

N∑
i=1

ξiλ
k
i ϕi, k = 0, 1, 2, . . . (4.72)

of PVf in terms of Koopman modes ξi for the approximate Koopman operator PVU t.

4.3.2 EDMD-like method for bilinear Koopman generators

The EDMD approximation technique developed above for the Koopman operator U t can also be

applied directly to construct an analogous matrix approximation V of the Koopman generator V .

This approach is especially advantageous when the continuous-time dynamics have affine-dependence

on the input, or on known functions of the input. Consequently, in [202]*, S. E. Otto recognized

that EDMD-like techniques can be applied to construct the terms in a corresponding input-affine

approximation of the Koopman generator. The results obtained by S. Peitz using this technique

to construct surrogate models for model-predictive control (MPC) can be found in [202]*. Related

work by M. Korda and I Mezić [138] uses an EDMD-like technique to learn a linear, rather than

an input-affine model for the dynamics of observables. At the end of this section, we show that

such “lifted LTI” models are special cases of bilinear models, but lack the ability to accurately

approximate certain systems. On the other hand, bilinear models are capable of approximating very

large classes of nonlinear dynamical systems [256, 158].

So far, we have considered EDMD-based approximation techniques for Koopman operators asso-

ciated with autonomous systems. As we have seen, when a constant actuation is applied over a time

interval of length t, then the Koopman operator U tu depends on this input in a possibly complicated

way. In [279], M. O. Williams et al. introduces an EDMD-like technique to construct a matrix

approximation Uu of U tu, where the dependence on u is captured using a basis expansion

Uu =

L∑
i=1

gi(u)U i ∈ CN×N (4.73)
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with user-defined basis functions g1, . . . , gL. The terms U i in the expansion are determined by

solving a least-squares problem

minimize
U1,...,UL

1

M

M∑
i=1

∥∥∥(U tuiψ
T )(xi)−

L∑
k=1

gk(ui)ψ(xi)
TUk

∥∥∥2

. (4.74)

The difficulty with this approach is that the finite-time Koopman operator may have exceedingly

complicated dependence on the input via the exponential map, even when the original governing

equations depend on the input in a simple way. This requires a large number of terms U1, . . . ,UL

in the basis expansion. Consequently a large amount of data {(ψ(xi), ui,ψ(F tui(xi))}Mi=1 is needed

to accurately approximate the input-dependence.

On the other hand, we know that the Koopman generator for a control-affine system

d

d t
x = f0(x) +

m∑
i=1

[u]ifi(x) (4.75)

is also control-affine and so we may construct a control-affine matrix approximation of the Koopman

generator using essentially the same method as in [279]. The result is a bilinear model for the

dynamics of a lifted state vector z = ψ(x) given by

d

d t
z = V T

0 z +

m∑
i=1

[u]iV
T
i z, (4.76)

with observations reconstructed in the span of the components of ψ according to y = Cz. Here,

V i are matrix approximations of the Koopman generators corresponding to each component vector

field fi.

To construct the model, let us suppose that ψ = (ψ1, . . . , ψN ) : X → CN is a vector of observables

in the domain of each component Koopman generator ∩mi=1 Dom(Vi) associated with the vector fields

fi and that PV : F → F is a projection onto V = span{ψ1, . . . , ψN}. Then the matrix approximation

of the Koopman generator Vu at actuation level u is then given by an affine combination

PVVuψ
Ta =

(
PVV0 +

m∑
i=1

[u]iPVVi

)
ψTa = ψT

(
V 0 +

m∑
i=1

[u]iV i

)
a ∀a ∈ CN (4.77)

of matrix approximations V i for the Koopman generators Vi associated with each vector field fi.

This means that we can construct the EDMD matrix approximation of Vu from the corresponding

matrix approximations for each vector field. Recall that the EDMD projection operator PV is defined

by the data set {x1, . . . , xM}. Thus, this approach requires that we use the same sample points to
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approximate each component Koopman generator.

Alternatively, we can construct the matrix approximations V 0, . . . ,V m directly from a single

data set
{(
ψ(xi),ui,

d
d t ψ(F tui(xi))

∣∣
t=0

)}M
i=1

by solving a least squares problem

minimize
V 0,...,V m

1

M

M∑
i=1

∥∥∥(Vuiψ
T )(xi)−ψ(xi)

TV 0 −
m∑
k=1

[ui]kψ(xi)
TV k

∥∥∥2

. (4.78)

analogous to Eq. 4.74. Unfortunately, this does not result in a projection operator PV defined inde-

pendently from the input, but rather a projection operator P̃Vm+1 on Fm+1 into Vm+1. Here, Fm+1

and Vm+1 denote the spaces of input-affine functions of the form g(u, x) = g0(x) +
∑m
i=1[u]igi(x)

with each gi ∈ F and gi ∈ V, respectively. The space Vm+1 is spanned by the elements of the vector

ψ̃, where

ψ̃(u, x) = (1,u)⊗ψ(x) = (ψ, [u]1ψ, . . . , [u]mψ). (4.79)

In particular, the projection operator

P̃Vm+1f = ψ̃
T
T̃

+


f(u1, x1)

...

f(uM , xM )

 , T̃ =


ψ̃(u1, x1)T

...

ψ̃(uM , xM )T

 =


(1,u1)T ⊗ψ(x1)T

...

(1,uM )T ⊗ψ(xM )T

 (4.80)

yields the unique minimizer of

minimize
g∈Vm+1

1

M

M∑
i=1

|f(ui, xi)− g(ui, xi)|2 (4.81)

for every f ∈ Fm+1. Consequently, the matrices obtained by solving Eq. 4.78 yeild approximations

of the operator Ṽ :
⋂m
i=0 Dom(Vi)→ Fm+1 defined by

(Ṽ ψ)(u, x) = (Vuψ)(x) =

(
V0ψ +

m∑
i=1

[u]iViψ

)
(x) (4.82)

in the sense that

(
P̃Vm+1 Ṽ

)
ψTa = ψ̃

T



V 0

V 1

...

V m


a. (4.83)
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The solution is given by



V 0

V 1

...

V m


= T̃

+
S̃, S̃ =


(Vu1ψ

T )(x1)

...

(VuMψ
T )(xM )

 . (4.84)

In [202]*, we show that this approach can be used to accurately approximate the Koopman gener-

ators and predict the dynamics of several systems. Moreover, we describe how the low-dimensional

surrogate models in the form of Eq. 4.76 obtained using this approach can be used for model-

predictive control.

A special case of the lifted bilinear model Eq. 4.76 that has received a lot of attention in the

literature [211, 138, 11, 186, 128] is the lifted linear-time-invariant (LTI) model

ż = Az +Bu, z = ψ(x)

y = Cz.

(4.85)

To see that this is a special case of the bilinear model Eq. 4.76, consider the observables (1, ψ1, . . . , ψN )

that evolve according to

0

ż

 =

0 0

0 A


1

z

+

dimu∑
k=1

uk

 0 0

bk 0


1

z

 , B =

[
b1 · · · bdimu

]
. (4.86)

Lifted LTI models are appealing because standard machinery from linear systems and control theory

can be applied to them directly. While lifted LTI models are a strictly broader class than LTI systems

on the original state space, the dynamics of observed quantities y must still obey the principle of

linear superposition. This is a rather serious limitation as the following example demonstrates.

Example 4.3.1 (a system that doesn’t admit an accurate lifted LTI model). There are some very

simple systems, for instance

ẋ = ux, x(0) = 1

y = x,

(4.87)

that violate the superposition principle so badly that there cannot exist an accurate lifted LTI model

in the form of Eq. 4.85, regardless of how large the dimension, dim z, of such an approximation is

taken to be. To see why this system does not admit a lifted LTI approximation, consider the three
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trajectories

ua ≡ −1 ⇒ xa(t) = e−t (4.88)

ub ≡ −3 ⇒ xb(t) = e−3t (4.89)

uc ≡ 1 ⇒ xc(t) = et. (4.90)

and observe that for any dictionary of observables ψ, we have

ψ(xc(0)) = 2ψ(xa(0))−ψ(xb(0)) = ψ(1) (4.91)

uc = 2ua − ub. (4.92)

Therefore, if a lifted LTI model in the form of Eq. 4.85 agrees with the first two trajectories xa(t)

and xb(t), then it must predict the third trajectory to be

x(LTI)
c (t) = 2xa(t)− xb(t) = 2e−t − e−3t. (4.93)

This is a very poor prediction because it decays to zero exponentially fast, whereas, the real trajectory

xc(t) blows up exponentially fast.

4.4 Linearly recurrent autoencoder networks (LRAN)

The main difficulty with approximation techniques for the Koopman operator and generator based

on dictionaries is that their performance depends heavily on the choice of the dictionary ψ =

(ψ1, . . . , ψN ) : X → CN . If one has an unlimited amount of data, then the performance of dictionary-

based methods increases as the number of basis functions N increases. However, in practice, the

amount of data M one may collect from the system is limited. In this case, the performance

of EDMD may not improve, and can even become worse, as the number of dictionary functions

increases beyond the dimension of the learning subspace, which is at most M . When N ≥ M and

ψ(x1), . . . ,ψ(xM ) are linearly independent in CN , then the EDMD matrix approximation U of the

Koopman operator obtained using Eq. 4.63 or Eq. 4.67 fits the data perfectly in the sense that

(U tψT )(xi) = ψ(xi)
TU for every i = 1, . . . ,M. (4.94)
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However, S. E. Otto and C. W. Rowley [194]** show that the predictive performance on new data

can be extremely poor. This problem is called over-fitting, and it essentially means that for EDMD

to perform well using a fixed amount of data, we must choose a dictionary of functions with N < M

that span a subspace that is (nearly) Koopman-invariant. Yet, in most cases, a Koopman-invariant

subspace is precisely what we are trying to find, and so we cannot expect to know one ahead of time.

A solution to this dilemma proposed in [194]** is to allow a very small dictionary N � M to

be optimized with respect to two criteria: approximate invariance under the Koopman operator,

and informativeness in the sense that these functions can be used to closely reconstruct the state of

the system or other relevant observables. In particular, we parametrize the function x 7→ ψ(x) =

ψe(x; θ) using a neural network forming the encoder in the Linearly-Recurrent Autoencoder Network

(LRAN) architecture shown in Figure 4.4.1. Together with the weights defining the encoder, we

simultaneously train the parameters defining a decoder ψd and a matrix U defining the linear

dynamics of the observables. By penalizing the difference between the predicted linear evolution and

the actual evolution of the observables ψe over time, we favor observables that span a subspace that

is as close to Koopman-invariant as possible. However, to avoid trivialities like constant observables

appearing in ψe, we also penalize the reconstruction error of a collection of relevant observables

g : X → Cd from the latent space using the decoder ψd. In [194]**, the state of the system is

taken to be a real vector and the relevant observables g are taken to be the coordinate functions on

the state space. Penalizing the reconstruction error favors observables ψe that preserve information

about the state, as in a standard autoencoder (see Section 3.2).

In [194]**, we also develop a balanced truncation technique for reducing the dimension of EDMD

and KDMD-based models. Using EDMD or KDMD, we arrive at a large, but finite-dimensional

model of the form
d

d t
ϕ(x(t)) = Λϕ(x(t))

g(x(t)) = Ξϕ(x(t)),

(4.95)

where ϕ is a vector of eigenfunctions of the approximate Koopman generator PVV and Ξ =[
ξ1 · · · ξN

]
is the matrix of approximate Koopman modes for a collection of relevant observables

g. We view the sampled trajectories as impulse-responses of this model using an additional input

term of the form Bu where B is chosen to reproduce the second moments of the distribution of

initial conditions

E[ϕ(x(0))ϕ(x(0))∗] = BB∗. (4.96)

We then use balanced truncation [182] or BPOD [225] to find a low-dimensional linear system
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UT UT UT · · ·

ψe

z(t+ ∆t)

ẑ(t+ ∆t) ẑ(t+ 2∆t)

ψe

z(t+ 2∆t)

ψe

z(t)

x(t) x(t+ ∆t) x(t+ 2∆t)

ψd ψd ψd

ĝ(t+ ∆t) ĝ(t+ 2∆t)ĝ(t)

g(x(t)) g(x(t+ ∆t)) g(x(t+ 2∆t))

Figure 4.4.1: The architecture of a Linearly-Recurrent Autoencoder Network (LRAN) [194]** con-
sists of encoder and decoder neural networks, denoted ψe and ψd, together with linear dynamics in
the latent space described by a matrix U . The parameters of ψe, ψd, and U are optimized simul-
taneously during training to minimize a loss function measuring the prediction error of observables
g and the prediction error in the latent space over a data set containing sequential snapshots of a
system’s state x.

that closely approximates the dynamics of our original (E/K)DMD-based model. In reducing the

dimension, we introduce additional errors in the evolution and reconstruction of the observables g.

We recognize that with fewer observables in the reduced-order model, it may not be possible to

accurately construct the functions g as linear combinations. Therefore, we allow the reconstruction

function for the reduced-order model to be nonlinear, and we use a partially linear kernel regression

technique to find it. The resulting model resembles the LRAN architecture in Figure 4.4.1, where ψe

are the reduced-order model observables and ψd is the nonlinear reconstruction function. However,

in this case, the parameters defining the encoder and decoder are found sequentially rather than

simultaneously as in the training technique employed by the LRAN.

4.4.1 Summary of results

In [194]**, we demonstrate and compare these techniques on three examples: a Duffing equation

with two stable fixed points, a cylinder wake flow transitioning from a neighborhood of an unstable

steady state to limit cycle dynamics, and a chaotic Kuramoto-Sivashinsky equation. In each case,

the LRAN out-performs methods based on KDMD. However, the LRAN takes considerably more

time to train, and is somewhat sensitive to the choices of hyper-parameters such as number of nodes

and layers in each neural network, as well as the optimization algorithm and learning rate. We

summarize some of the results below, and we refer to [194]** for additional results and details about
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(a) (b)

Figure 4.4.2: Example cylinder wake flow snapshots at the unstable equilibrium and on the stable
limit cycle

these examples.

In our cylinder wake flow example, we consider an incompressible two-dimensional flow around an

infinite circular cylinder. The behavior of this system is determined by the non-dimensional Reynolds

number Re = U∞D
ν , where U∞ is the free-stream velocity of the fluid at the inflow boundary, D is

the diameter of the cylinder, and ν is the kinematic viscosity of the fluid. We consider the Re = 60

flow with an initial condition shown in Figure 4.4.2a near an unstable equilibrium state. From this

equilibrium, the state evolves along a slow manifold until it reaches a stable limit cycle where vortices

are shed in an alternating fashion from the top an bottom sides of the cylinder as in Figure 4.4.2b.

We trained an LRAN model with 5 latent state dimensions on 1000 snapshots along a trajectory

from the unstable equilibrium to the stable limit cycle, and tested the performance on a held-out

set of 500 snapshots. The accuracy of the LRAN-based models with linear and nonlinear decoders,

as well as models obtained using KDMD and balanced truncation are compared in Figure 4.4.3.

We see that nonlinear reconstruction improves performance in both cases, with the LRAN having

significantly lower prediction error than models based on KDMD.

We also compared out modeling approaches on the Kuramoto-Sivashinsky equation, a spatio-

temporal PDE, in a periodic spatial domain of length L = 8π. With a domain of this size, the system

exhibits chaotic dynamics near a low-dimensional underlying manifold [124, 135, 114]. Models with

16 latent states were trained using 10000 snapshots and produced the trajectory predictions shown

in Figure 4.4.4 on an unseen testing data set of the same size. The prediction errors on the testing

data in Figure 4.4.5 indicate that the LRAN and truncated KDMD models are capable of making

accurate short-horizon predictions. We observe that the LRAN is more accurate the the KDMD-

based model and is about twice as accurate for time horizons ranging in length from 2.5 to 7.5.

It is also possible to use the LRAN architecture to approximate Koopman eigenfunctions associ-

ated with known Koopman eigenvalues by constraining the matrix U governing how the latent state
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Figure 4.4.3: Cylinder wake testing data mean square relative prediction errors for each model
plotted against the prediction time

(a) (b)

Figure 4.4.4: LRAN and KDMD ROM model predictions on Kuramoto-Sivashinsky test data exam-
ples
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Figure 4.4.5: Kuramoto-Sivashinsky testing data mean square relative prediction errors for each
model plotted against the prediction time

evolves. We illustrate this in [194]** by considering a Duffing oscillator

ẋ1 = x2

ẋ2 = −δx2 − x1(β + αx2
1)

(4.97)

with the same parameters δ = 0.5, β = −1, and α = 1 as in [280]. This system has an unstable saddle

point at the origin and two stable spiral equilibria at x1 = ±1 and x2 = 0. As pointed out by M. O.

Williams et al. [280] and described in Sections 4.2.1 and 4.2.2, the Duffing equation may be globally

linearized in the basins of attraction corresponding to the two stable fixed points by Koopman

eigenfunctions sharing the same eigenvalues as the system’s linearization about the fixed points. In

particular, the magnitude and phase of the eigenfunctions associated with these eigenvalues λ1,2 =

1
4 (−1 ±

√
31i) provide action-angle coordinates in each basin. There is also an eigenfunction with

eigenvalue λ0 = 0 that takes different constant values in each basin. Together, these eigenfunctions

are sufficient to recover the state (x1, x2). We trained an LRAN with 5 latent states and constrained

the evolution matrix U so that 3 of its 5 eigenvalues were λ0, λ1, λ2. The corresponding approximate

Koopman eigenfunctions shown in Figure 4.4.6 reveal the basins of attraction, the locations of all

three fixed points, and qualitatively correct action-angle paramterizations of each basin.

4.4.2 Future work: introducing actuation and handling infinities

Originally, in [194]**, we considered only autonomous systems. However, it is very easy to incorpo-

rate actuation into an LRAN-like architecture by approximating an input-parametrized Koopman
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Figure 4.4.6: Duffing eigenfunction approximations learned using a constrained LRAN

generator. For an input-affine system, we may replace U with a matrix exponential of an input-affine

approximation of the Koopman generator

U = exp

(
∆tV 0 + ∆t

m∑
i=1

[u]iV i

)
. (4.98)

Here, the matrix exponential must be differentiated in order to compute the gradient of the loss

function with respect to each V i. Fortunately, the derivative is easily computed using the techniques

described in [185], [169], and [7].

Another problem that occurs for systems with stable and unstable attractors, such as the cylinder

wake flow and the Duffing equation is that the associated Koopman eigenfunctions take infinite

values. For instance, the Koopman eigenfunction describing how the cylinder wake flow settles onto

its stable limit cycle is equal to zero on the limit cycle, but must become infinite as the unstable

equilibrium is approached. This is because it takes more time to reach the limit cycle the closer

to the equilibrium the initial condition is chosen to be. One way to handle such infinities is to use

steriographic projection to map the latent space onto a unit sphere of the same dimension with one

point removed. In particular, the final layer of the encoder can be normalized to output points on the

unit sphere, which are then mapped via steriographic projection to points in the latent space. After

evolving the linear dynamics in the latent space, the steriorgraphic projection can be inverted to

produce points on the unit sphere prior to applying the decoder. This way, the output of the encoder

and the input of the decoder are always bounded (confined to the unit sphere), while allowing for

latent states that approach infinity.
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4.5 Learning bilinear approximations of Koopman genera-

tors using expectation-maximization

In principle, techniques like the LRAN can be used to learn accurate finite-dimensional approxima-

tions of the Koopman operator for actuated systems provided we have access to snapshot sequences

of the system’s state. When the system is not actuated, Takens’ theorem [258, 189] allows us to

replace the full state with an embedding obtained by time delayed observations of one or more

observables. Time-delay embedding is useful in experimental settings where we only have access to

a small number of sensor measurements or observations that do not capture the entire state. This

approach is used in [130] and [74] to construct approximations of the Koopman operator. However,

the time-delay embedding approach breaks down entirely when the data is obtained from trajecto-

ries with actuation. This is because the time-delayed observations now depend on the applied input

rather than solely depending on the initial state in the time-delayed sequence. In many practical

applications involving actuation of high-dimensional systems, such as controlling fluid flows, it would

be very useful to construct approximations of the Koopman operator or generator without having

to observe the entire state of the system.

In this section, we describe an approach for approximating actuated Koopman generators from

partially-observed trajectories subject to actuation. Here, we learn the parameters of a bilin-

ear Hidden Markov Model (HMM) approximating the action of the Koopman generator using an

Expectation-Maximization (EM) algorithm. Another benefit of this approach is that it does not

require an explicit choice of observables as in (E/K)DMD, and relies only on observed data along a

collection of trajectories.

We construct our HMM based on the structure of finite-dimensional models of the Koopman

generator for input-affine systems based on dictionaries. To simplify the presentation, we assume

that we have an input-linear system,

d

d t
x =

m∑
i=1

[u]ifi(x),

y = g(x)

(4.99)

because we can always let [u]1 ≡ 1 if there is a drift term. We do not assume that we have

a dictionary; but if we did, it would be a vector-valued function ψ = (1, ψ1 . . . , ψN ) = (1, ψ̃) :

X → CN+1, where the constant function is always to be included by design. A finite-dimensional
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approximation of the Koopman generator for Eq. 4.99 using such a dictionary has the form

d

d t
ψ(x(t)) =

m∑
i=1

[u]iV
T
i ψ(x(t)), V =

[
0 Ṽ

]
y = g(x(t)) = Cψ, C =

[
c0 Ṽ

]
.

(4.100)

If the rows of C̃ are linearly independent, then we may always find a linear transformation T̃ of the

unspecified observables ψ̃ such that

Cψ =

[
h C̃T̃

−1
] 1

T̃ ψ̃

 =

[
c0

[
I 0

]] 1

T̃ ψ̃

 . (4.101)

Since ψ are to be determined implicitly, we assume that C always takes the above form where only

c0 is to be determined.

The key feature of the model Eq. 4.100 is that the values taken by the observables ψ̃(x(t)) play

the same role as the hidden variables in a HMM. In particular, if we know the matrices V i and C,

then it is possible to estimate the values of ψ̃(x(t)) given observations y(t) along a trajectory. We

build our HMM from Eq. 4.100 by replacing ψ̃(x(t)) with a hidden variable z. The evolution of the

hidden variable is modeled in discrete time using an explicit Euler discretization of Eq. 4.100. In

particular, we construct the HMM

 1

zl+1

 =

(
I + ∆t

m∑
i=1

[ul]iV i

)T  1

zl

+

 0

vl


yl = c0 +

[
I 0

]
zl +wl,

(4.102)

where the process and measurement noise vl and wl are assumed to be independent identically

distributed zero mean and Gaussian with covariance matrices Σv and Σw. We also assume that the

initial conditions for z0 are Gaussian with mean µ0 and covariance Σ0.

In the next section, we shall describe an Expectation-Maximization (EM) algorithm that can

estimate the parameters,

P =
{
Ṽ 1, . . . , Ṽ m, c0,Σv,Σw,µ0,Σ0

}
, (4.103)

in the HMM Eq. 4.102 from a collection of time histories of observations {y0, . . . ,yL} with known
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inputs {u0, . . . ,uL−1}. The EM algorithm is an iterative approach that begins with an initial guess

for the parameters P and proceeding in two steps, an Expectation or E-step and a Maximization or

M-step. In the E-step, the parameters P are fixed and we use a standard Kalman filter and smoother

to construct optimal estimates of the hidden variables zl given the observations {y0, . . . ,yL}. With

the optimal hidden variable estimates in hand, we solve least squares problems to update the param-

eters P of the model during the M-step in a way that always increases the likelihood, or probability

density, of generating the outputs {y0, . . . ,yL} from Eq. 4.102. Remarkably, the least squares prob-

lem we solve during the M-step to update {V 1, . . . ,V m} closely resembles the EDMD method for

bilinear Koopman generator we developed in [202]* and described in Section 4.3.2.

4.5.1 EM Algorithm for Learning Koopman Generator Approximations

Maximum likelihood estimation entails maximizing the probability of the observed data over the

model parameters. In particular, let us combine all of our observations {y(m)
l }0≤l≤L along the mth

independent trajectory into a matrix Y (m) and denote the joint probability density of these obser-

vations under the model parameters by Ỹ 7→ PY (Ỹ ; P). We aim to maximize the log “likelihood”

of these observations given by

L(P) =

M∑
m=1

logPY (Y (m); P). (4.104)

The log likelihood is used instead of the raw likelihood because the probability PY (Y (m); P) factors

into a product of many terms due to the Markov property of the model Eq. 4.102.

The required density PY (Y ; P) can be expressed using the model Eq. 4.102 by recognizing that

it is a marginal distribution

PY (Y (m); P) =

∫
PZ,Y (Z,Y (m); P)dZ, (4.105)

where PZ,Y is the joint density of the observed trajectory Y and the hidden variables {zl}Ll=0 stacked

into a matrix Z. Yet this high-dimensional integral is rather difficult to evaluate and makes direct

optimization of Eq. 4.104 futile. By introducing a new probability density Z 7→ Q(m)(Z) that is to

be determined and a random variable Ẑ
(m)

with density Q(m), the above integral is converted into

an expectation

PY (Y (m); P) = E
Ẑ

(m)

[
PZ,Y (Ẑ

(m)
,Y (m); P)

Q(Ẑ
(m)

)

]
. (4.106)
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Recognizing that log is a concave function, we apply Jensen’s inequality to obtain a lower bound on

the log likelihood,

L(P) ≥ L̂Q(P) =

M∑
m=1

{
E
Ẑ

(m)

[
logPZ,Y (Ẑ

(m)
,Y (m); P)

]
− E

Ẑ
(m)

[
logQ(m)(Ẑ

(m)
)
]}

= L(P)−
M∑
m=1

DKL(Q(m)‖PZ|Y =Y (m)),

(4.107)

which is commonly referred to as the variational lower bound [26] or Evidence Lower Bound (ELBO)

[27]. The quantity

DKL(Q(m)‖PZ|Y =Y (m)) = E
Ẑ

(m)

log

 Q(m)(Ẑ
(m)

)

PZ|Y =Y (m)(Ẑ
(m)

; P)

 (4.108)

is called the Kullback-Leibler (KL)-divergence or the entropy of PZ|Y =Y (m) relative to Q(m).

A key observation is that the inequality in Eq. 4.107 becomes equality when the probability

density Q(m) is chosen to be the conditional density of Z given Y (m), that is

Q(m) = PZ|Y =Y (m) , m = 1, . . . ,M ⇒ L(P) = L̂Q(P). (4.109)

This is an immediate consequence of the definition of the KL-divergence in Eq. 4.108. For this

reason, Q is often referred to as the “inference” distribution since its optimal form allows one to

infer the values of the latent variables from the observations.

The ELBO Eq. 4.107 and the observation Eq. 4.109 suggest a kind of coordinate ascent opti-

mization procedure for maximizing the likelihood that iteratively updates the inference distributions

Q(m) with the parameters P fixed and then updates the parameters P with the inference distribu-

tions Q(m) fixed. This is called the Expectation-Maximization (EM) algorithm [78] because in the

first step one computes the inference distribution at the current model parameters P0 and uses it to

assemble the ELBO P 7→ L̂Q(P) as an expectation Eq. 4.107 that is maximized in the second step.

If P1 are the new model parameters found by the maximization step, then we have

L(P1) ≥ L̂Q(P1) ≥ L̂Q(P0) = L(P0), (4.110)

where the first inequality is Eq. 4.107, the second inequality is due to maximization, and the equality

on the right is by definition of the expectation step and Eq. 4.109. This means that the EM
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algorithm always produces a sequence of models with increasing log likelihoods until convergence

when the maximization step fails to produce an increase in L̂Q. The convergence properties of the

EM algorithm were studied by C. F. Jeff Wu in [285]. It is shown that if the superlevel set {P :

L(P) ≥ L(P0)} is compact, then the limit points of the sequence of EM iterates P0,P1,P2, ... are

stationary points of the likelihood function. However, unless certain, challenging to verify conditions

are met, the EM algorithm may converge to a local maximum or even a saddle point instead of a

desired global maximum of the likelihood. For more details about the EM algorithm, one can consult

[26] and [27].

Remark 4.5.1. The compactness assumption on {P : L(P) ≥ L(P0)} may be satisfied via reg-

ularization of the log likelihood function by introducing a prior probability density for the model’s

parameters. However, we have not found this to be necessary in practice when there is enough data

to constrain the model’s parameters.

A key feature of the evidence lower bound given by Eq. 4.107 for our model Eq. 4.102 is that

maximization over the parameters P has an explicit solution that we state in Theorem 4.5.2.

Theorem 4.5.2 (Maximization Step). Supposing that the log likelihood function P 7→ L(P) in

Eq. 4.104 is bounded from above, let us denote the mean and joint covariance of the fixed inference

distributions Q(m), m = 1, . . . ,M by

µ̂
(m)
k = E

Ẑ
(m)

[
ẑ

(m)
k

]
and Σ̂

(m)

k,l = E
Ẑ

(m)

[(
ẑ

(m)
k − µ̂(m)

k

)(
ẑ

(m)
l − µ̂(m)

l

)T]
. (4.111)

and define the matrices

G
(m)
l =

 1 (µ̂
(m)
l )T

µ̂
(m)
l Σ̂

(m)

l,l + µ̂
(m)
l (µ̂

(m)
l )T

 , (4.112)

H̃
(m)

l =

[(
µ̂

(m)
l+1−µ̂

(m)
l

∆t

) (
Σ̂

(m)
l+1,l−Σ̂

(m)
l+1,l

∆t +
µ̂

(m)
l+1−µ̂

(m)
l

∆t (µ̂
(m)
l )T

)]
. (4.113)

Then, with ⊗ denoting the Kronecker product, the parameters P that maximize the evidence lower

bound L̂Q(P) in Eq. 4.107 are given by

µ0 =
1

M

M∑
m=1

µ̂
(m)
0 , (4.114)

Σ0 =
1

M

M∑
m=1

[
Σ̂

(m)

0,0 +
(
µ̂

(m)
0 − µ0

)(
µ̂

(m)
0 − µ0

)T]
(4.115)
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c0 =
1

M(L+ 1)

M∑
m=1

L∑
l=0

(
y

(m)
l − C̃µ̂(m)

l

)
(4.116)

Σv =
1

M(L+ 1)

M∑
m=1

L∑
l=0

[
C̃Σ̂

(m)

l,l C̃
T

+
(
y

(m)
l − c0 − C̃µ̂(m)

l

)(
y

(m)
l − c0 − C̃µ̂(m)

l

)T]
(4.117)


Ṽ 0

...

Ṽ dimu

 =

(
M∑
m=1

L−1∑
l=0

u
(m)
l ⊗ (u

(m)
l )T ⊗G(m)

l

)−1( M∑
m=1

L−1∑
l=0

u
(m)
l ⊗ (H̃

(m)

l )T

)
(4.118)

Σw =
1

ML

M∑
m=1

L−1∑
l=0

[
Σ̂

(m)

l+1,l+1 −A(m)
l Σ̂

(m)

l,l+1 − Σ̂
(m)

l+1,l(A
(m)
l )T +A

(m)
l Σ̂

(m)

l,l (A
(m)
l )T

+
(
µ̂

(m)
l+1 −A

(m)
l µ̂

(m)
l − b(m)

l

)(
µ̂

(m)
l+1 −A

(m)
l µ̂

(m)
l − b(m)

l

)T ]
. (4.119)

Proof. The proof is involved, so we give it in Appendix 4.A.

Remark 4.5.3 (connection with input-affine EDMD for the generator). It is interesting to observe

that the solution for the generators during the maximization step of the EM algorithm provided by

Theorem 4.5.2 in Eq. 4.118 can be viewed as a limiting case of the control-affine extended dynamic

mode decomposition technique presented in [202]*. In particular, suppose we draw K independent

identically distributed trajectories {ẑ(mk)
l }Ll=0, k = 1, . . . ,K uniformly at random from the posterior

distributions {PZ|Y =Y (1) , . . . , PZ|Y =Y (M)}. If we construct the matrices

ΨK =

u(m1)
0 ⊗

 1

ẑ
(m1)
0

 · · · u
(mK)
L−1 ⊗

 1

ẑ
(mK)
L−1


 , (4.120)

Ψ̇K =

[(
ẑ

(m1)
1 −ẑ(m1)

0

∆t

)
· · ·

(
ẑ

(mK )

L −ẑ(mK )

L−1

∆t

)]
, (4.121)

then the same generator approximations given by Theorem 4.5.2 in Eq. 4.118 are found in the limit


Ṽ 0

...

Ṽ dimu

 = lim
K→∞

(
ΨKΨT

K

)
ΨKΨ̇

T

K . (4.122)

Each term in the sequence are the generators computed by [202]* from the data {ẑ(mk)
l }Ll=0, k =
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1, . . . ,K.

Another important observation is that the explicit solutions for the parameters during the max-

imization step of the EM algorithm given in Theorem 4.5.2 depend only on a few parameters of the

inference distribution. Therefore, during the expectation or E-step of the EM algorithm, we need

only compute the conditional or “posterior” mean and covariance

µ̂
(m)
l = E

[
zl | Y = Y (m)

]
, Σ̂

(m)

l,l = E
[(
zl − µ̂(m)

l

)(
zl − µ̂(m)

l

)T
| Y = Y (m)

]
(4.123)

at each time step given the observations Y (m) along each trajectory as well as the posterior covariance

between adjacent time steps

Σ̂
(m)

l,l+1 = E
[(
zl − µ̂(m)

l

)(
zl+1 − µ̂(m)

l+1

)T
| Y = Y (m)

]
. (4.124)

Fortunately, there is a very efficient algorithm due to R. H. Shumway and D. S. Stoffer [249] for

computing these conditional expectations that proceeds by passing over each trajectory twice. On

the first pass, we move forward along the trajectory using a Kalman filter [129] to assimilate the

observations made up to each given time step. On the second pass, we move backward along the

trajectory using a smoother [217] to assimilate the observations made after each given time step.

In particular, we recall that with the parameters P fixed, as the they are during the expectation

step of the EM algorithm, the dynamics of our discrete-time model Eq. 4.102 can be written as

zl+1 = Alzl + bl +wl

yl = c0 + C̃zl + vl,

(4.125)

where Al, bl, c0, and C̃ are all known. Furthermore, the initial condition, process noise, and

measurement noise have independent Gaussian distributions

z0 ∼ N (µ0,Σ0), wl ∼ N (0,Σw), vl ∼ N (0,Σv), (4.126)

with known means and covariances. Therefore, computing the posterior means and covariances

in Eqs. 4.123 and 4.124 of the states zl given the observations Y(m) along the mth independent

trajectory is a standard state estimation problem for the linear time-varying dynamical system

Eq. 4.125. The appropriate Kalman filtering and smoothing equations can be found by trivially

modifying those found in Byron et al. [42] and Ghahramani et al. [94] to allow for time-varying
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system matrices.

4.5.2 Preliminary results and future work

We consider a toy system from [196]*,

ẋ1 = −αx1 + u

ẋ2 = β
(
x3

1 − x2

)
y = x2 + w,

(4.127)

which was originally adapted based on a similar model in [33]. This system can be described explicitly

in a finite-dimensional Koopman-invariant subspace as

d

d t



1

x1

x2

x2
1

x3
1


=



0 0 0 0 0

0 −α 0 0 0

0 0 −β 0 β

0 0 0 −2α 0

0 0 0 0 −3α





1

x1

x2

x2
1

x3
1


+ u



0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 2 0 0 0

0 0 0 3 0





1

x1

x2

x2
1

x3
1


y = x2 + w.

(4.128)

We choose α = 1 and β = 5 with zero process noise and Gaussian measurement noise w with zero

mean and variance 0.01. The inputs are held constant over time intervals of length 0.5 and take

values drawn from a Gaussian distribution with zero mean and variance σ2
u = 5.

We collected 50 independent trajectories with 500 observations recorded at intervals ∆t = 0.01.

The initial conditions were drawn from an isotropic Gaussian distribution with zero mean and unit

variance. The first 250 points along each trajectory were used for training while the rest were saved

for testing the model.

After training the model, we used it to predict a trajectory and its uncertainty shown in Fig-

ure 4.5.1 on the left. This was done by using the training portion of the trajectory to obtain an

optimal estimate of the initial condition as well as its uncertainty. The mean and uncertainty were

then propagated forward by the model dynamics from the initial condition to produce the predicted

observations and 2σ confidence envelope shown in Figure 4.5.1. The eigenvalues of the matrix ap-

proximation of the drift Koopman generator learned by our model are compared to the ground truth

eigenvalues in Figure 4.5.1 on the right, showing excellent agreement.
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Figure 4.5.1: Left: Observations from the actuated toy model (black lines) together with our model’s
prediction (blue line) and 2σ confidence interval (dashed blue lines). The initial condition for the
model prediction was computed using optimal state estimation from the training interval (left of
vertical line). Right: Eigenvalues of the matrix approximation for the drift Koopman generator
learned by the EM algorithm for the toy model.

In the above example, it was possible to find an exact Koopman invariant subspace for the system

containing observables from which the observed state could be linearly reconstructed. However, for

more complicated systems, this may not be possible and the EM algorithm will have to find the

closest approximation in the form of our bilinear model Eq. 4.102, even though no such model

describes the system perfectly. On such problems we may incur significant error by demanding

that the observations are reconstructed linearly from a low-dimensional approximately Koopman-

invariant subspace.

As we found in [194]** and in Section 4.4, allowing for nonlinear reconstruction from an approx-

imate Koopman-invariant subspace can improve the accuracy of the model’s predictions. However,

incorporating a nonlinear decoder into our hidden Markov model will require a more complicated

training process than for Eq. 4.102. In particular, the nonlinear reconstruction function would re-

quire us to use techniques like particle or unscented filtering during the E-step. Depending on how

the nonlinear reconstruction map is parametrized, we may need to use gradient descent during the

M-step to optimize these parameters. With this added complexity and cost associated with the

nonlinear reconstruction map, it no longer simplifies the method to use discrete-time latent space

dynamics with the same time step as the sampling. Instead, we could learn the parameters of a bi-

linear stochastic differential equation governing the latent state dynamics. Developing such a model

would be an interesting direction for future work.
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Appendix

4.A Chapter 4 Proofs

Proof of Theorem 4.1.1. We begin by showing that each U t is well-defined on C0(X ), i.e., that

f ◦ F t ∈ C0(X ) for every f ∈ C0(X ). Throughout the proof, the norm ‖ · ‖ is understood to be the

norm on C(X ). Choose any f ∈ C0(X ) and observe that f ◦F t ∈ C(X ) because the composition of

continuous functions is continuous. Choose any ε > 0 and take fε ∈ Cc(X ) such that ‖f − fε‖ < ε.

Let π : X × [0,∞) → X be the canonical projection defined by π(x, t) = x. Since supp fε × {t} is

compact in X × [0,∞), our assumption that F̃ is proper implies that

supp
(
fε ◦ F t

)
= (F t)−1(supp fε) = π

(
F̃−1(supp fε × {t})

)
(4.129)

is compact for every t ≥ 0. Therefore, fε ◦ F t ∈ Cc(X ) and

‖f ◦ F t − fε ◦ F t‖ ≤ ‖f − fε‖ < ε, (4.130)

proving that f ◦ F t is in the closure of Cc(X ) in C(X ), i.e., f ◦ F t ∈ C0(X ).

Now we prove that {U t}t≥0 defined on C0(X ) is strongly continuous. Choose any ε > 0 and any

f ∈ C0(X ) and take fε ∈ Cc(X ) such that ‖f − fε‖ < ε. Since F̃ is proper and supp fε × [0, 1] ⊂

X × [0,∞) is compact, the set

K =
⋃

t∈[0,1]

supp
(
fε ◦ F t

)
= π

(
F̃−1(supp fε × [0, 1])

)
(4.131)

is compact. Since the function defined by (x, t) 7→ |fε(F (x, t))− fε(x)| is continuous on X × [0,∞),

the pre-image set

V = {(x, t) ∈ X × [0,∞) : |fε(F (x, t))− fε(x)| < ε} (4.132)

is open in X × [0,∞). Moreover, V contains X × {0} because F (x, 0) = x for every x ∈ X .

Consequently, V contains an open neighborhood of (x, 0) for each x ∈ X . In particular, for every

x ∈ K there is an open set Ux ⊂ X and δx > 0 such that x ∈ Ux and the cylinder Ux × [0, δx) is

contained in V. The sets {Ux}x∈K form an open cover of K, and so we may extract a finite sub-cover

{Ui = Uxi}Mi=1 of K and the corresponding values δi = δxi . Taking

0 ≤ t < δ = min{1, δ1, . . . , δM} (4.133)
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ensures that |fε(F (x, t))−fε(x)| < ε for every x ∈ K, This follows because every x ∈ K is contained

in some Ui and for 0 ≤ t < δ we have (x, t) ∈ Ui × [0, δi) ⊂ V. Since supp (fε ◦ F t) ⊂ K for all

t ∈ [0, δ), we have

‖fε ◦ F t − fε‖ = sup
x∈K
|fε(F (x, t))− fε(x)| < ε. (4.134)

Finally, for 0 ≤ t < δ we obtain

‖U tf − f‖ ≤ ‖U tf − U tfε‖+ ‖U tfε − fε‖+ ‖f − fε‖ < 3ε (4.135)

proving the strong continuity of the Koopman semigroup on C0(X ).

To prove that the generator V of the Koopman semigroup is the closure of Ṽ , we follow Exam-

ple 3.28 in [86]. In particular, it suffices to show that Dom(Ṽ ) = C1
c (X ) is a core of Dom(V ), that

is, a subset of Dom(V ) which is dense in the graph norm ‖x‖V = ‖x‖ + ‖V x‖. By Proposition 1.7

in Chapter 2 of [86], to show that a subspace D ⊂ Dom(V ) is a core, it suffices to show that D

is invariant under {U t}t≥0 and that D is dense in F . We observe that C1
c (X ) is dense in C0(X )

and invariant under {U t}t≥1 when F is continuously differentiable. Thus, it remains to show that

C1
c (X ) is a subset of Dom(V ) on which Ṽ agrees with V . By Theorem 1.10 in Chapter 2 of [86], the

resolvent operator (λI − V )−1 : F → Dom(V ) is given by the improper Riemann integral

(λI − V )−1 =

∫ ∞
0

e−λtU t d t, (4.136)

when λ is in the resolvent set ρ(V ), i.e., when λI − V : Dom(V ) → F is bijective. Moreover, since

‖U t‖ ≤ 1 for every t ≥ 0, every λ with Re(λ) > 0 is in the resolvent set. Choosing any f ∈ C1
c (X )

we therefore have

(I − V )−1(I − Ṽ )f =

∫ ∞
0

e−tf ◦ F t d t−
∫ ∞

0

e−t
d

d t

(
f ◦ F t

)
d t = f, (4.137)

from which we conclude that f ∈ Dom(V ) and Ṽ f = V f . This completes the proof that V is the

closure of Ṽ in the graph norm.

Proof of Lemma 4.2.1 (Product rule for Koopman generators). The proof is essentially the same as

the proof of the product rule in calculus. Since ψ2 ∈ Dom(V ), we must have U tψ2(x) → ψ2(x) for
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every x ∈ X . Consequently, for any x ∈ X we have

V (ψ1ψ2)(x) = lim
t→0

(U tψ1)(x)(U tψ2)(x)− ψ1(x)(U tψ2)(x) + ψ1(x)(U tψ2)(x)− ψ1(x)ψ2(x)

t

= lim
t→0

{
(U tψ2)(x)

(U tψ1)(x)− ψ1(x)

t
+ ψ1(x)

(U tψ2)(x)− ψ2(x)

t

}
= ψ2(x)(V ψ1)(x) + ψ1(x)(V ψ2)(x).

(4.138)

Since F is closed under point-wise multiplication and V ψ1, V ψ2 ∈ F , it follows that V (ψ1ψ2) ∈ F ,

and so ψ1ψ2 ∈ Dom(V ) and Eq. 4.49 holds.

Proof of Theorem 4.5.2 (Maximization step of EM algorithm). During maximization of the evidence

lower bound L̂Q(P) in Eq. 4.107 over the parameters P with fixed inference distributions {Q(m)}Mm=1,

we need only consider the first term

M∑
m=1

E
Ẑ

(m)

[
logPZ,Y (Ẑ

(m)
,Y (m); P)

]
,

since the second term
∑M
m=1 EẐ(m)

[
logQ(m)(Ẑ

(m)
)
]

does not depend on P. In Lemma 4.A.1 we

make use of the Markov property of Eq. 4.102 to decouple the maximization objective into three

parts that each depend on different parameters and can be maximized separately.

Lemma 4.A.1 (Decoupled Objectives for Maximization Step). Denoting the means and joint co-

variances of the inference distributions Q(m), m = 1, . . . ,M by

µ̂
(m)
k = E

Ẑ
(m)

[
ẑ

(m)
k

]
and Σ̂

(m)

k,l = E
Ẑ

(m)

[(
ẑ

(m)
k − µ̂(m)

k

)(
ẑ

(m)
l − µ̂(m)

l

)T]
, (4.139)

then the first term in the ELBO Eq. 4.107 decouples into

M∑
m=1

E
Ẑ

(m)

[
logPZ,Y (Ẑ

(m)
,Y (m); P)

]
= −1

2

[
L1(µ0,Σ0) + L2(c0,Σv) + L3(Ṽ 0, . . . , Ṽ dimu,Σw)

]
. (4.140)

The first term

L1(µ0,Σ0) = M log det (2πΣ0) + Tr

{
Σ−1

0

M∑
m=1

[
Σ̂

(m)

0,0 +
(
µ̂

(m)
0 − µ0

)(
µ̂

(m)
0 − µ0

)T ]}
, (4.141)
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is a loss function for the initial condition parameters. The second term

L2(C̃, c0,Σv) = M(L+ 1) log det (2πΣv)

+ Tr

{
Σ−1
v

M∑
m=1

L∑
l=0

[
C̃Σ̂

(m)

l,l C̃
T

+
(
y

(m)
l − c0 − C̃µ̂(m)

l

)(
y

(m)
l − c0 − C̃µ̂(m)

l

)T ]}
, (4.142)

is a loss function for the observation map parameters. And the third term

L3(Ṽ 0, . . . , Ṽ dimu,Σw) = ML log det (2πΣw)

+ Tr

{
Σ−1
w

M∑
m=1

L−1∑
l=0

[
Σ̂

(m)

l+1,l+1 −A(m)
l Σ̂

(m)

l,l+1 − Σ̂
(m)

l+1,l(A
(m)
l )T +A

(m)
l Σ̂l,l(A

(m)
l )T

+
(
µ̂

(m)
l+1 −A

(m)
l µ̂

(m)
l − b(m)

l

)(
µ̂

(m)
l+1 −A

(m)
l µ̂

(m)
l − b(m)

l

)T ]}
(4.143)

is a loss function for the dynamical parameters including the matrix approximations of the Koopman

generators.

Proof. We begin by considering a single trajectory with fixed m, removing it from the superscript,

and take the sum over m at the end. To avoid cluttered equations for the time being, we also drop

the explicit dependence of the probability distributions on the model parameters P and remove the

subscripts from probability densities where the appropriate random variables are clear from context.

If we let H l = (z0,y0, . . . ,zl,yl), then by the Markov property we have

P (Z,Y ) = P (HL)

= P (HL−1) · P (zL,yL | HL−1)

= P (HL−1) · P (zL,yL | zL−1)

...

= P (z0,y0) ·
L−1∏
l=0

P
(
zl+1,yl+1 | zl

)
.

(4.144)

Making use of the conditional independence of the observation yl+1 and previous state zl given

zl+1, we obtain

P (Z,Y ) = P (z0) ·
L∏
l=0

P (yl | zl) ·
L−1∏
l=0

P (zl+1 | zl) . (4.145)
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Recalling our dynamical model Eq. 4.102, the log joint probability is given by

logP (Z,Y ) = − 1

2
log det (2πΣ0)− 1

2
(z0 − µ0)

T
Σ−1

0 (z0 − µ0)

− 1

2
(L+ 1) log det (2πΣv)− 1

2

L∑
l=0

(
yl − c0 − C̃zl

)T
Σ−1
v

(
yl − c0 − C̃zl

)
− 1

2
L log det (2πΣw)− 1

2

L−1∑
l=0

(zl+1 −Alzl − bl)T Σ−1
w (zl+1 −Alzl − bl) .

(4.146)

Taking the expectation with respect to the inference distribution, we obtain

EẐ
[
logPZ,Y (Ẑ,Y ; P)

]
= −1

2

[
L̃1(µ0,Σ0) + L̃2(C̃, c0,Σv) + L̃3(Ṽ 0, . . . , Ṽ q,Σw)

]
, (4.147)

where

L̃1(µ0,Σ0) = log det (2πΣ0) + Tr
[
Σ−1

0

(
Σ̂0,0 + (µ̂0 − µ0) (µ̂0 − µ0)

T
)]

(4.148)

L̃2(C̃, c0,Σv) = (L+ 1) log det (2πΣv)

+ Tr

{
Σ−1
v

L∑
k=0

[
C̃Σ̂k,kC̃

T
+
(
yk − c0 − C̃µ̂k

)(
yk − c0 − C̃µ̂k

)T ]}
(4.149)

L̃3(Ṽ 0, . . . , Ṽ q,Σw) = L log det (2πΣw) + Tr

{
Σ−1
w

L−1∑
k=0

[
Σ̂k+1,k+1 −AkΣ̂k,k+1

− Σ̂k+1,kA
T
k +AkΣ̂k,kA

T
k +

(
µ̂k+1 −Akµ̂k − bk

) (
µ̂k+1 −Akµ̂k − bk

)T ]}
(4.150)

The final result is obtained by summing over m.

We observe that by Lemma 4.A.1, it suffices to minimize the three terms L1, L2, and L3 sepa-

rately. Each term has the same form,

Li(Σi,Pi) = αi log det (2πΣi) + Tr
[
Σ−1
i W i(Pi)

]
, (4.151)

where Σi is a covariance matrix to be determined, αi > 0 is a constant, and W i is a symmetric,

positive semi-definite matrix-valued function of the remaining parameters Pi ⊂ P \ {Σi} to be
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optimized. In fact, we know even more: our assumption that the log likelihood has an upper bound

implies that W i(Pi) is positive definite for all possible values of the parameters Pi. Suppose that

W i(Pi) is singular, having eigenvalues λ1 ≥ · · · ≥ λn = 0, and take Σi = W i(Pi) + εI with ε > 0.

Then we have

Li(Σi,Pi) = α

n∑
i=1

log [2π(λi + ε)] +

n∑
i=1

λi
λi + ε

, (4.152)

which approaches −∞ as ε → 0, meaning that the evidence lower bound L̂Q(P) in Eq. 4.107

approaches +∞, thereby contradicting our assumption that the true log likelihood L(P) is bounded

from above.

The proof is completed by employing the following Lemma on each loss function separately.

Lemma 4.A.2. Let α > 0 and suppose that P ′ 7→ W (P ′) is a positive-definite matrix-valued

function of some parameters P ′. Any minimizer of

L(Σ,P ′) = α log det (2πΣ) + Tr
[
Σ−1W (P ′)

]
(4.153)

satisfies Σ = 1
αW (P ′). The remaining variables P ′ minimize log detW (P ′).

Proof. If (Σ,P ′) is an extremum of L then the derivative of L with respect to Σ must vanish. That

is, for any variation δΣ we have

0 =
∂L

∂Σ
δΣ = αTr

(
Σ−1δΣ

)
− Tr

[
Σ−1(δΣ)Σ−1W (P ′)

]
= Tr

{[
αΣ−1 −Σ−1W (P ′)Σ−1

]
δΣ
} (4.154)

Since this holds for any variation, we must have

Σ−1 =
1

α
Σ−1W (P ′)Σ−1, (4.155)

for otherwise we could choose δΣ =
[
Σ−1 −Σ−1W (P ′)Σ−1

]T
and produce a contradiction. Multi-

plying both sides by Σ proves the first claim. Substituting Σ = 1
αW (P ′) into L shows that P ′ must

minimize

L

(
1

α
W (P ′),P ′

)
= α log detW (P ′) + α dim (Σ) log

(
2π

α

)
+ α dim (Σ). (4.156)

Since the last two terms and factor α on the first term are constants, this is equivalent to minimizing

log detW (P ′).
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Chapter 5

Measurement selection for states in

nonlinear sets

Measurement selection, sparse sensor placement, and feature selection are closely related problems

that have a wide range of applications in engineering, design of experiments, and modeling complex

systems. In this chapter, we explore these applications and develop a geometric viewpoint that leads

to new methods for problems with challenging nonlinearities. The problems we consider here involve

choosing from a pre-defined discrete set of available measurements, sensors, or features, the ones

that allow us to best predict or reconstruct some quantities of interest. Unlike may of the optimiza-

tion problems we have encountered in previous chapters, these problems are inherently discrete and

combinatorial in nature. Since the number of possible sensor combinations in problems of interest is

enormous, algorithms that explore all possibilities are impractical. Therefore, a key challenge is to

formulate measurement selection problems in ways that admit high quality approximate solutions

by efficient algorithms that explore only a tiny subset of all possible combinations. The predomi-

nant viewpoint for measuring the quality of the selected measurements is statistical. However, the

simplifying assumptions needed to arrive at practical algorithms often result in poor performance

on problems possessing a high degree of nonlinearity. In this chapter, we depart somewhat from the

statistical viewpoint and develop a complementary geometric viewpoint that allows us to grapple

with nonlinearity in its natural habitat. We hope to reunite these viewpoints in future work.

We focus on a general class of problems described in [195]** that we shall refer to broadly

as “measurement selection” problems. However, in principal, this class encompass many types

of problems pertaining to sensor placement, feature selection, design of experiments, etc.. This
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viewpoint can probably be generalized further, but we present a version that applies in most practical

settings. In [195]**, we suppose that there is an underlying state space X and a vector-valued

function g : X → Rq containing quantities of interest. We do not get to measure the state x ∈ X

or the quantities of interest g(x) directly. Instead, there is a set of costly measurements M =

{m1, . . . ,mM} where eachmj : X → Rdj is a vector-valued function. These allowable measurements

are usually determined by engineering constraints such as feasible locations for sensors and the

physical quantities that sensors can measure. In many cases it is impossible to directly measure the

quantities of interest using sensors. Our goal is to choose a subset S = {mj1 , . . . ,mjK} ⊂M so that

the values we measure

mS(x) = (mj1(x), . . . ,mjK (x)) ∈ RdS (5.1)

allow us to accurately infer the quantities of interest g(x). In particular, we want to ensure that

there is a function ΦS : RdS → Rq such that

g(x) = ΦS(mS(x)) for every x ∈ X . (5.2)

The quality of the sensors S is measured by whether such a function ΦS exists and how sensitive the

function is to measurement errors, noise, or disturbances. In other words, the value of ΦS(mS(x))

should not change drastically when the measurements mS(x) are perturbed.

In general, measurement selection problems of the kind described above are combinatorial in

nature, making it impractical to evaluate the performance of all
(
M
K

)
choices of K measurement

functions for many problems of interest. Therefore, efficient algorithms that approximate an op-

timal solution are employed. A main goal of this chapter is to formulate various objectives for

measurement selection that admit efficient approximate optimization algorithms. For instance, a

common approach (e.g., [125]) is to relax the original performance criterion described over discrete

collections of measurements into a convex objective defined on a continuous space. Inclusion in the

set S may be indicated using a binary vector s ∈ {0, 1}M that is subsequently relaxed to take contin-

uous values in the unit cube [0, 1]M . The resulting convex optimization problem can then be solved

using various standard methods [29]. To recover a discrete approximation, thresholds or randomized

rounding can be applied to the real-valued s. A drawback of convex optimization approaches is that

they can become computationally expensive as the number of sensors and optimization constraints

grows.

Another common approach we employ is to select the measurements sequentially using efficient
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greedy algorithms. One advantage is that these “greedy” selection methods tend to have better

scaling with problem size than convex optimization. In the simplest greedy algorithm, one starts

off with no measurements, and at each step of the greedy algorithm adds the measurement to

the collection S that produces the greatest increase in the performance objective. In general, this

myopic approach is incapable of identifying collections of sensors that achieve superior combined

performance compared to the sum of each sensor’s individual performance. Remarkably, however,

greedy algorithms have near-optimal performance when the objective function being maximized has

a diminishing returns property called “submodularity”, defined below:

Definition 5.0.1 (Submodular function). Let 2M denote all subsets of the finite set M. A function

f : 2M → R is called submodular if given any element j ∈ M and subsets S ⊂ S′ ⊂ M \ {j}, the

function f increases when j is added to the smaller subset S by at least as much as f increases when

j is added to the larger subset S′, i.e.,

S ⊂ S′ ⊂M \ {j} ⇒ f(S ∪ {j})− f(S) ≥ f(S′ ∪ {j})− f(S′). (5.3)

When the optimization objective is submodular, monotone non-decreasing, and normalized, a result

by G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher [187] (Theorem 5.0.2) says that the greedy

algorithm achieves a value of the objective function within a constant factor (1−1/e) of the optimal

value. The proof of this result is extremely elegant, and so we provide it here as well.

Theorem 5.0.2 (G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, 1978 [187]). Let f : 2M → R

be a submodular function that is monotone non-decreasing,

S ⊂ S′ ⊂M ⇒ f(S) ≤ f(S′), (5.4)

and normalized such that f(∅) = 0. Let S∗K ⊂M be a solution of the optimization problem

maximize
S⊂M

f(S) s.t. |S| ≤ K. (5.5)

If a collection of subsets ∅ = S0, . . . , SM = M with Sk = Sk−1∪{jk} satisfies the greedy maximization

property

f(Sk−1 ∪ {jk})− f(Sk−1) ≥ f(Sk−1 ∪ {j})− f(Sk−1) ∀j ∈M \ Sk−1 (5.6)
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for each k = 1, . . . ,M , then

f(Sk) ≥
(

1− e−k/K
)
f(S∗K) ∀k = 1, . . . ,M. (5.7)

Proof of Theorem 5.0.2 (G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, 1978 [187]). The result

follows almost immediately from the sequence of inequalities

f(S∗K)− f(Sk−1) ≤ f(S∗K ∪ Sk−1)− f(Sk−1)

≤
∑

j∈S∗K\Sk−1

(f(Sk−1 ∪ {j})− f(Sk−1)

≤ K (f(Sk)− f(Sk−1)) ,

(5.8)

where the first inequality follows from monotonicity, the second from submodularity, and the third

from the definition of the greedy algorithm. Rearranging this inequality, we find

f(S∗K)− f(Sk) ≤
(

1− 1

K

)
(f(S∗K)− f(Sk−1)) , (5.9)

which, when applied inductively, yields the desired result

f(S∗K)− f(Sk) ≤
(

1− 1

K

)k
(f(S∗K)− f(S0)) =

(
1− 1

K

)k
f(S∗K) ≤ e−k/Kf(S∗K), (5.10)

where second inequality follows from convexity of the exponential e−1/K ≥ 1− 1/K.

Classical results by L. A. Wolsey [283] show that greedy algorithms may also be used to achieve

near-optimal performance on an important class of problems for sensor placement called submodular

“set-covering” problems. In a submodular set-covering problem we seek to choose a subset S ⊂ M

of minimum size, or with the lowest cost, that achieves a certain level of performance described

by f(S) = f(M) for a normalized, non-decreasing, submodular function f . Here, the condition

f(S) = f(M) may be describing some minimal desired level of performance for the sensors, such as

the existence of a reconstruction function ΦS with desirable properties as in [195]**.

Recently, it has been shown by A. A. Bian et al. [24], that greedy algorithms may also be

applied to non-submodular objective functions with guaranteed performance depending on additional

parameters quantifying how much the objective departs from submodularity. This is important

because many sensor placement and measurement selection objectives of interest are not submodular;

the average square error of the optimal linear estimator is one such non-submodular objective [71].
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5.1 Applications of measurement selection problems

5.1.1 Sensor placement in dynamical systems

The measurement selection framework described above includes sensor selection problems for dy-

namical systems in which we measure finite time histories from each sensor. To illustrate this, we

first consider a discrete-time linear system xt+1 = Axt where our goal is to choose a subset of

available observation matrices {C1, . . . ,CM} in order to estimate the initial condition x0 from a

finite time-history of L measurements. The measurements made by the jth observation matrix from

the initial condition x are given by

mj(x) =
(
Cjx,CjAx, . . . ,CjA

L−1x
)

= Ojx, (5.11)

and the measurements made by a collection of observation matrices CT
S =

[
CT
j1 · · · CT

jK

]
are

given, up to row permutation, by mS(x) = OSx. When it exists, the reconstruction function for

the initial condition g(x) = x using a given collection of observations mS(x) is given by

x = ΦS(mS(x)) = W−1
S OT

SmS(x), (5.12)

where

W S = OT
SO

T
S =

L−1∑
t=0

(At)TCT
SCSA

t =
∑
j∈S

W j (5.13)

is the time-L observability Gramian. Sensor (and actuator) placement methods for linear systems

based on the observability (and controllability) Gramian have been discussed by T. H. Summers et

al. in [252] and [253].

On the other hand, our framework also allows us to describe observability for nonlinear systems

based on analogous time-delayed measurement sequences. As an illustration, we consider nonlinear

discrete-time dynamics xt+1 = F (xt) and choose from among a set of nonlinear state observation

functions M = {h1, . . . ,hM}. In this case, the time histories of measurements from an initial

condition x ∈ X are given by

mj(x) =
(
hj(x),hj(F (x)), . . . ,hj(F

L−1(x))
)

(5.14)

and we select a set of state observations S ⊂ M such that relevant information about the initial

condition g(x) can be reconstructed from mS(x). Finally, state estimation problems for nonlin-

124



ear systems xt+1 = F (xt,ut) with inputs ut ∈ U ⊂ Rm may be described in our framework by

constructing measurements on an augmented state space X × UL−1 given by

mS(x,u0, . . . ,uL−2) = (u0, . . . ,uL−2,hS(x),hS(F (x,u0)), . . . ,hS(F (. . . F (x,u0), . . .uL−2))) .

(5.15)

That is, we measure both the time histories of the input and the selected output observables.

5.1.2 Reduced-order modeling

Measurement selection techniques can be used to achieve computationally efficient dimensionality

reduction for discretized fluid flows and other spatio-temporal partial differential equations (PDEs)

exhibiting coherent structures. In this setting, these techniques select a small number of spatial

locations in the physical domain at which to measure the state variables or their time derivatives.

These measurements are then used to reconstruct the relevant quantities needed to evolve the system

in time.

Dimensionality reduction based on sampled state variables has advantages over other more gen-

eral nonlinear embeddings described in Section 3.2. First, the sampled state variables are easy to

interpret. In contrast, it may be difficult to determine exactly what a coordinate in the latent

space of an autoencoder (see Section 3.2) corresponds to physically; even linear combinations of

state variables can be difficult to interpret, especially if they include multiple physical quantities like

non-dimensional velocities, pressures, and/or reacting chemical species.

The second advantage comes from the local structure of discretized spatio-temporal PDEs. The

time derivatives of state variables at the sampled locations depend only on the values of state

variables in a small neighborhood of each sample point. This means that the time derivatives of

the sampled state variables can be efficiently computed by reconstructing the other states only

on these small patches. In contrast, if the embedding depends on state variables at every physical

location, e.g., by projecting onto POD modes or via a nonlinear encoder, then it becomes necessary to

evaluate the time derivative of the full-order model over the entire spatial domain. Even though such

a reduced-order model may have a small number of state variables, it will still be computationally

expensive to simulate because it requires evaluating the entire time derivative of the full-order model.

Recognizing these computational difficulties, S. Chaturantabut and D. C. Sorensen [60] propose

a Discrete-Empirical Interpolation Method (DEIM) in which the system’s time derivative is recon-

structed from its values at a small number of carefully chosen physical locations. In particular, they

consider a POD-Galerkin reduced-order model (see Section 3.1.1) where the POD coefficients z ∈ Rr
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evolve according to

d

d t
z = UTf(Uz). (5.16)

In general, it is impossible to evolve z using such a model without computing the time derivative of

the high-dimensional full-order model f(Uz) ∈ Rn at each time step. Instead, DEIM constructs a

second r̃-dimensional POD basis Ũ for f and a sparse sampling matrix S ∈ {0, 1}r̃×n such that SŨ

is invertible and well-conditioned. Consequently, an approximation for f(Uz) can be constructed

in the POD subspace Range(Ũ) from sparse samples of f(Uz) according to

f(Uz) ≈ Ũ(SŨ)−1Sf(Uz). (5.17)

The resulting reduced-order model becomes

d

d t
z = UT Ũ(SŨ)−1︸ ︷︷ ︸

T

Sf(Uz), (5.18)

where the matrix T can be pre-computed offline. The key observation is that Sf can be efficiently

evaluated if the support of each row of S contains state variables at a small number of spatial loca-

tions in the physical domain, requiring us to access only the elements of Uz in small neighborhoods

of these points to compute finite-differences.

Remark 5.1.1 (DEIM for autoencoder-based ROMs). It should also be possible to use DEIM for

model reduction using nonlinear embeddings provided by autoencoders of the form

ψe(x) = ψ̃e(Ψ
Tx) and ψd(z) = Φψ̃d(z), (5.19)

where Ψ ∈ Rn×re and Φ ∈ Rn×rd with re, rd � n. In this case, the latent state evolves according to

d

d t
z = D ψ̃e(Ψ

TΦψ̃d(z)) ΨT Ũ(SŨ)−1︸ ︷︷ ︸
T

Sf(Φψ̃d(z)), (5.20)

where the matrices T and ΨTΦ can be pre-computed during an offline stage. One could also optimize

the weights in the autoencoder with a sparsity-promoting penalty on the rows of Ψ, which would

eliminate the need for DEIM-based reconstruction of f .

Modern techniques for constructing the sampling matrix S use pivoted QR factorization [82] or

strong rank-revealing QR factorization [83] and provide guarantees on the accuracy of the DEIM
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approximation in Eq. 5.17. In particular, one computes a pivoted QR factorization

Ũ
T
P = QR (5.21)

and defines ST to be the first r̃ columns of the permutation matrix P . The corresponding columns

of R form a square upper-triangular matrix R1 whose diagonal entries are referred to as “pivots”.

DEIM can be viewed as a measurement selection problem. In the most straightforward point

of view, our states are the values of f and we are trying to reconstruct g(f) = f by selecting

from available measurements mj(f) = eTj f , where ej is the jth column of the n × n identity

matrix. However, even if we are only interested in the first r̃ POD coefficients g(f) = Ũ
T
f , exact

reconstruction will generally be impossible using a function ΦS of a proper subset of measurements

mS. Hence, we seek to select sensors to minimize the degree to which g(f) fails to be a function of

mS. Alternatively, the measurement-selection problem can be formulated using states states f̃ lying

in the r̃-dimensional POD subspace Range(Ũ). Here, we select measurement functionsmj(f̃) = ej f̃

in order to reconstruct g(f̃) = f̃ . The difference is that in this case, we may actually reconstruct

the desired variables

f̃ = Ũ(SŨ)+︸ ︷︷ ︸
ΦS

Sf̃︸︷︷︸
mS(f̃)

, ST =

[
ej1 · · · ejK

]
(5.22)

for any f̃ ∈ Range(Ũ) as long as SŨ is injective. In practice, the actual values of the full-order

model’s time derivatives f(Uz) do not lie perfectly in the POD subspace Range(Ũ). These differ-

ences may be treated as measurement noise within our framework. So, when f = f̃+(I−ŨŨT
)f is

the decomposition of f into its components in Range(Ũ) and Range(Ũ)⊥, then we actually measure

Sf = mS(f̃) + S(I − ŨŨT
)f︸ ︷︷ ︸

noise

. (5.23)

The degree to which this noise causes errors in the reconstruction ΦS(Sf) is determined by how

much ΦS amplifies the noise. In the setting of DEIM using pivoted QR factorization, we have

ΦS = ŨR−T1 QTS, (5.24)

where the maximum amplification of ΦS is determined by the smallest singular value ofR1 according

to σmin(R1)−1. Because Ũ is an isometry, it follows that det(R1) =
∏r̃
i=1[R1]i,i, which is greedily

maximized during QR pivoting, is a lower bound for σmin(R1) (for proof, see [193]*).
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Sparse measurement selection may also be used directly to provide an embedding of the state for

reduced-order modeling in a similar way to the autoencoders discussed in Section 3.2. In particular,

the selected measurements can serve as an encoder ψe(x) = mS(x) with the decoder provided by

the reconstruction function ΦS for the full-state observable g(x) = x lying on or near an underlying

low-dimensional manifold. It may also be possible to select measurements capturing dynamically sig-

nificant low-energy features of the dynamics xt+1 = F (xt) (see Section 3.3) by seeking to reconstruct

a sequence of future states,

g(x) = (x,F (x), . . . ,FL−1(x)). (5.25)

Here, we want to select measurement functions mS whose values at any two states x, x′ differ in

proportion to the difference between trajectories g(x) and g(x′). This is the same as minimizing

the amplification (Lipschitz constant) of the reconstruction map ΦS.

5.1.3 Selecting fundamental eigenfunctions

In Section 4.2 we discussed how to extract coherent observables for dynamical systems using eigen-

functions or approximate eigenfunctions of the Koopman operator. For instance, approximate eigen-

functions of the Koopman operator can be computed from data using Extended Dynamic Mode

Decomposition (EDMD) [280] (see Section 4.3.1). Similarly, the eigenfunctions of operators defined

on graphs and manifolds, often arising from a data set with known pair-wise similarity, may be

used to construct embeddings in Euclidean space that capture salient features of the geometry. For

instance, the diffusion maps algorithm [68] provides an embedding for a data set that captures its

multi-scale structure based on the eigenfunctions of a diffusion operator defined on a graph. Other

related techniques include Laplacian eigenmaps [15], Isomap [260], and kernel PCA [244].

The techniques mentioned above all produce a large collection of eigenfunctions, from which

we are usually only interested in a small subset. Fundamental eigenfunctions are a minimal set

from which all other eigenfunctions can be reconstructed. For spectral embedding techniques like

diffusion maps, a set of fundamental eigenfunctions provides an embedding of the underlying data

set in Euclidean space. Since the remaining eigenfunctions can be reconstructed as functions of the

fundamental ones, these extra eigenfunctions are not needed for the embedding. For instance, in

Figure 5.1.1 (appearing in [195]**) we show the leading seven Isomaps eigenfunctions computed from

data lying on a torus. Because of the torus’s rotational symmetry, several eigenfunctions ϕ3, . . . , ϕ6

are harmonics of the leading two and provide redundant information. The subset {ϕ1, ϕ2, ϕ7} is

fundamental and provides an embedding of the torus in R3. Likewise, Koopman eigenfunctions
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Figure 5.1.1: Isomap coordinates [260] computed using 2000 randomly sampled points on a torus,
appearing in [195]**. The leading six eigenfunctions resemble the real and imaginary components of
eikθ1 , k = 1, 2, 3, due to the rotational symmetry, providing redundant information about θ1 and no
information about θ2. The eigenfunctions ϕ1, ϕ2, and ϕ7 form a fundamental set. They provide an
embedding of the data that captures its toroidal structure.

form a spectral lattice where products of eigenfunctions are also eigenfunctions (see Section 4.2.2)

that carry no additional information about the dynamics. Consequently, we are interested in a

minimal set of fundamental Koopman eigenfunctions, or approximate eigenfunctions, that carry the

same information as the full set.

Selecting a set of fundamental eigenfunctions can be cast in the measurement selection frame-

work. In particular, the state space X is the underlying manifold or graph, each measurement is

an eigenfunction mj = ϕj and the relevant information to be reconstructed is the vector of all the

eigenfunctions g = (ϕ1, . . . , ϕN ). A fundamental set of eigenfunctions is a subset S = {ϕj1 , . . . , ϕjK}

of minimal size such that g can be reconstructed as a function of mS: g = ΦS ◦mS. In this frame-

work, we may also consider a relaxed notion of a fundamental set by choosing a small collection of

eigenfunctions that includes a fundamental set together with additional eigenfunctions that allow

reconstruction by a map ΦS with less sensitivity.

5.1.4 Feature selection in machine learning

In statistics and machine learning, feature selection refers to choosing a subset of random variables

that allow for construction of an accurate statistical model. We consider the case where the model

is used to predict another random variable of interest. For more details, one can consult the review
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articles [76, 107] or the book by T. Hastie, R. Tibshirani, and J. Friedman [110]. In the statistical

setting, the underlying state space X is a probability space with the available features mj and

relevant quantities g being random vectors, i.e., measurable functions on this probability space.

Feature selection techniques choose a subset of features mS that allows adequate predictions of the

value of the g using a function ΦS(mS). Most approaches to feature selection optimize ΦS over a

particular class of functions F and measure the performance of the selected features S according to

the best reconstruction performance over ΦS ∈ F . For instance, F may be the parametric space

of linear functions over which we minimize the average square error of the reconstruction. Usually,

one only has access to samples from the underlying probability space. In this, the performance of

the sensors is measured with respect to the best performing reconstruction function ΦS ∈ F on the

data.

5.1.5 Parameter estimation via design of experiments

Suppose that there is a physical process with an outcome depending on a set of parameters that

we would like to estimate. The outcome of the jth experiment is a collection of measurements that

can be viewed as a function mj(x) of an underlying state x = (p, z) of the system that includes the

parameters p = g(x) that we would like to determine as well as other variables z like noise that affect

the outcome. We may treat the experimental outcome mj(p, z) as a perturbation around a nominal

outcome mj(p, z0). We can then choose to perform a small collection S of experiments so that p can

be reconstructed from their nominal outcomes mj(p, z0) by a function ΦS with minimal sensitivity

to the perturbations about the nominal outcomes. The main difference between this setting and the

ordinary measurement selection problem, is that the same experiment can be performed multiple

times, i.e., S must be allowed to contain repeated elements.

5.2 Inadequacy of linear techniques

The majority of available techniques require the reconstruction map ΦS to be linear, and the sensors

are chosen to optimize various measures of performance associated with the linear reconstruction.

However, as we point out in [195]**, requiring linear reconstruction can lead to an excessive number

of measurements being selected, even when the desired information g(x) can be nonlinearly recon-

structed from a very small number of measurements. Consider the problem of reconstructing states

lying in a set that is not accurately represented in a low-dimensional subspace, e.g., a curved mani-

fold (see Section 3.2). Linear reconstruction will require a number of measurements at least as large
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as the dimension of an approximating subspace. In contrast, it is often be possible to reconstruct

the states using a nonlinear function of fewer measurements.

5.2.1 Overview of linear techniques

Sensor placement, measurement selection, inverse problems, and experimental design are extensive

fields with a variety of available techniques. A comprehensive review is beyond the scope of this work.

However, we can shed some light on the predominant approaches. The use either greedy selection

[247, 198, 265, 295, 166, 175] or convex relaxations [125, 262, 296, 79] to select measurements based

on a range of objectives including: the performance of Bayesian and maximum likelihood estimators

[56, 245], information theoretic criteria [154, 55, 248, 141], and measures of observability in linear

dynamical systems [157, 156, 267, 299, 252, 253]. In order to make techniques based on statistical

criteria tractable, it is common to make linear and Gaussian assumptions. Simplifying assumptions

like linearity are also made in order to yield algorithms that provide theoretical guarantees on

performance using greedy algorithms or convex relaxations.

Suppose we are interested in reconstructing a linear function g(x) = Tx of an underlying state

x drawn from a probability distribution with zero mean and covariance Cx. Suppose that our

measurements are also linear mj(x) = M jx and are corrupted by zero-mean state-independent

noise nj . Here, we may select a collection S of random vectors

yj = M jx+ nj , j = 1, . . . ,M. (5.26)

Let yS = (yj1 , . . . ,yjK ) be the random vector we observe, with corresponding measurement matrix

MT
S =

[
MT

j1 · · · MT
jK

]
and noise nS = (nj1 , . . . ,njK ) with covariance CnS

. Under these as-

sumptions, the optimal linear estimate of g(x) and its error covariance are given by Proposition 5.2.1.

Proposition 5.2.1 (Optimal Linear Estimator). Noting the assumed independence nS |= x, define

the covariance matrices

Cg =E[ggT ] = TCxT
T

CyS
=E[ySy

T
S ] = MSCxM

T
S +CnS

Cg,yS
=E[gyTS ] = TCxM

T
S ,

(5.27)

and let (·)+ denote the Moore-Penrose pseudoinverse. Then the Optimal Linear Estimate (OLE),

ĝ = ΦS(yS), that minimizes the average square errorE ‖ĝ− g‖22 among all linear functions of yS is
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given explicitly by

ĝ = ΦS(yS) = Cg,yS
C+
yS
yS. (5.28)

The optimal estimate ĝ is always unique, while the optimal estimator ΦS is unique if and only if

CyS
is invertible. The error covariance of the optimal linear estimate depends on the choice of

measurements S ⊂M and is given by

Ce(S) =E[(g − ĝ)(g − ĝ)T ] = Cg −Cg,yS
C+
yS
CyS,g = Cg −C ĝ(S), (5.29)

where C ĝ(S) is the covariance of the estimate. When Cx � 0 and CnS
� 0 are positive-definite,

then the error covariance can be re-written using the matrix inversion lemma as

Ce(S) = T P̄ (S)−1T T , P̄ (S) = C−1
x + P (S), P (S) = MT

SC
−1
nS
MS. (5.30)

Proof. We give the proof in Appendix 5.A.

When the random variables involved are Gaussian, then the optimal linear estimator described

by Proposition 5.2.1 is optimal among all (nonlinear) estimators since ĝ given by Eq. 5.28 is the

conditional expectation of g(x) given yS.

Various performance metrics for sensor placement use the error covariance matrix in Eq. 5.29.

Minimizing the average square error TrCe(S) is called Bayesian A-optimality [56]. Here, the

“Baysian” characterization refers to the fact that the variable x has a prior distribution. Related

“maximum likelihood” approaches can be applied when there is no prior distribution for x. When

the noise from different sensors are independent, ni |= nj , i 6= j, and the covariance matrices Cx

and each Cnj are positive-definite, the average square error objective for an optimal linear estima-

tor can be optimized using a convex relaxation approach described by S. Joshi and S. Boyd [125].

Under these assumptions, P (S) in the expression for the error covariance given by Eq. 5.30 becomes

a modular matrix-valued function, that is,

P (S) =
∑
j∈S

MT
j C
−1
njM j =

∑
j∈S

P ({j}) ∀S ⊂M. (5.31)

Thanks to the convexity of matrix inversion with respect to the positive-definite (Loewner) order-

ing (see Lemma 5.A.2 in Appendix 5.A for a proof), the Bayesian A-optimality objective has the
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following convex relaxation

f(s) = Tr
[
T
(
C−1
x +

M∑
j=1

sjP ({j})
)−1

T T
]
, s = (s1, . . . , sM ). (5.32)

In [125], it is shown that the relaxed square error objective given by Eq. 5.32 can be efficiently

optimized with respect to a convex relaxation of the cardinality constraint |S| ≤ K given by

M∑
j=1

sj = K, 0 ≤ sj ≤ 1 j = 1, . . . ,M. (5.33)

We note that in the design of experiments, the constraint 0 ≤ [s]j ≤ 1 may be removed when the

same experiment can be performed multiple times.

Unfortunately, the average square error of the optimal linear estimate does not lead to a sub-

modular optimization objective, except under the restrictive assumptions explored by A. Das and

D. Kempe in [71]. In particular, we may consider a candidate greedy optimization objective

f(S) = Tr
(
T P̄ (∅)−1T T

)
− Tr

(
T P̄ (S)−1T T

)
, (5.34)

which is normalized so that f(∅) = 0 and monotone non-decreasing thanks to Lemma 5.A.1 in

Appendix 5.A. However, Example 5.2.2 below demonstrates that this objective can fail to be sub-

modular, and the ratio describing this failure can be arbitrarily large. The composition of any

concave function like x 7→ −x−1 with a modular function S 7→ ∑
j∈S pj is submodular (we give a

proof in the appendix of [195]**). However, this does not hold for matrix-valued modular functions

like S 7→ P (S) even though P 7→ −Tr
[
T
(
C−1
x + P

)−1
T T
]

is concave with respect to positive

semi-definite matrices P .

Example 5.2.2 (the MSE objective function Eq. 5.34 is NOT submodular). Choose α 6= 0, T = I2

and let

P̄ (∅) =

1 0

0 α2

 , P ({1}) =

1 α

α α2

 , P ({2}) =

0 0

0 α2

 . (5.35)

A staight-forward calculation shows that

f({2})− f(∅) = Tr
[
P̄ (∅)−1

]
− Tr

[(
P̄ (∅) + P ({2})

)−1
]

=
1

2α2
(5.36)
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and

f({1, 2})− f({1}) = Tr
[(
P̄ (∅) + P ({1})

)−1
]
− Tr

[(
P̄ (∅) + P ({1}) + P ({2})

)−1
]

=
1

15

(
4

α2
+ 1

)
.

(5.37)

The ratio of the increase in the objective is then

f({1, 2})− f({1})
f({2})− f(∅) =

2

15

(
α2 + 4

)
, (5.38)

which can be made arbitrarily large by increasing the constant α. However, this contradicts the

definition of submodularity which says that this ratio cannot exceed 1.

Fortunately it is possible to formulate other objectives based on the error covariance of the

optimal linear estimate that are submodular and admit efficient greedy approximation algorithms

with the performance guarantees provided by Theorem 5.0.2. In particular, under the additional

assumption that T is invertible, M. Shamaiah et al. [247] show that the objective

f(S) = log det
(
T P̄ (∅)−1T T

)
− log det

(
T P̄ (S)−1T T

)
, (5.39)

is submodular, in addition to being normalized and monotone non-decreasing. Since Kalman filtering

a special case of optimal linear estimation, such an objective has been used by V. Tzoumas et al. in

[267] to greedily place sensors for optimal state estimation in linear systems. A related submodular

objective based on the log determinant of observability and controllability Gramians was considered

by T. H. Summers et al. in [252, 253]. Unfortunately, the objective in Eq. 5.39 may fail to be

submodular when T is not invertible. Even when T fails to be invertible, the log determinant

objective admits a straightforward convex relaxation analogous to Eq. 5.32, which is also explored

by S. Joshi and S. Boyd in [125]. Minimizing the determinant of the error covariance is referred

to a D-optimality in the design of experiments [56]. Under Gaussian assumptions it corresponds to

minimizing the entropy of the estimated variables given the measurements.

The group-LASSO technique proposed by M. Yuan and Y. Lin in [296] takes a data-driven

approach to feature selection in linear estimation and regression problems. In particular, they solve

a regularized least squares problem

minimize
A1,...,AM

M∑
i=1

∥∥∥g(xi)−
M∑
j=1

Ajmj(xi)
∥∥∥2

2
+ γ

M∑
j=1

‖Aj‖F (5.40)
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for matrices A1, . . . ,AM defining a linear reconstruction function based on a collection of sampled

data consisting of relevant quantities g(xi) and the measurements from every sensor mM(xi)) for

each sample i = 1, . . . ,m. As the coefficient γ ≥ 0 is increased, the regularization encourages many of

the matrices A1, . . . ,AM to be identically zero. The sensors or features chosen by the group LASSO

method correspond to the remaining nonzero matrices. The original LASSO method proposed by

R. Tibshirani [262] is a special case of Eq. 5.40 in which each matrix Aj consists of a single element.

5.2.2 The need for nonlinear reconstruction

In some problems the relationship between the relevant quantities g and any small collection of

measurements mS is not approximated well by any linear function. One of the situations where

this problem arises is in reconstructing states that live on low-dimensional manifolds that are not

captured in low-dimensional subspaces, as we discussed earlier in Section 3.2. This makes linear

reconstruction impossible because such a reconstruction

ΦS(mS(x)) = AmS(x) (5.41)

is confined to a subspace of dimension at most dS contained in the range of A. As we discuss in

[195]**, if σ2
1 ≥ · · · ≥ σ2

q ≥ 0 are the principal variances of g(x), then the greatest possible fraction

of the variance one can reconstruct using dS measurements is bounded by

R2 ≤
σ2

1 + · · ·+ σ2
dS

σ2
1 + · · ·+ σ2

q

. (5.42)

Of course achieving equality in this upper bound requires the measurements to be linearly isomorphic

to the leading dS principal components of g(x), which is rarely the case in practice. Alternatively,

we may have a very low-dimensional g whose entries are poorly represented in the span of every

small subset of the measurement functions mj .

To illustrate, suppose we wish to select fundamental eigenfunctions using spectral embedding

techniques as described in Section 5.1.3. Orthonormality of the eigenfunctions ϕ1, . . . , ϕN means

that the covariance matrix for ϕiϕj is isotropic,

E[ϕiϕj ] =

∫
X
ϕi(x)ϕj(x) dµ(x) = δi,j . (5.43)

Consequently, if we chose any dS eigenfunctions, then we can linearly reconstruct precisely R2 =
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(a) stream-wise u velocity component

(b) transverse v velocity component

(c) available sensor locations

Figure 5.2.1: A snapshot of the u and v velocity components in the shock mixing-layer flow is
shown in (a) and (b) along with the sensors selected using various methods from among the two
components at 1105 available locations shown in (c). These methods include LASSO with PCA
(black o), LASSO with Isomap (red x) greedy Bayes D-optimality (magenta x), convex Bayes D-
optimality (black >), convex D-optimality for modes 3 and 4 (black v), QR pivoting (green +), and
secant-based techniques using detectable differences (#1,#2: green star, #3: black star) and the
amplification threshold method (black square).

dS/N of the total variance of g(x) = (ϕ1(x), . . . , ϕN (x)). In particular, we can linearly reconstruct

the eigenfunctions we chose, and none of the variance of the others. On the other hand, if we choose

a fundamental set of eigenfunctions, then the rest can be nonlinearly reconstructed.

Problems with linear reconstruction also appear in fluid dynamics. We illustrate this in [195]**

by considering a fluid flow proposed by H. C. Yee et al. [292] in which an oblique shock wave

interacts with a spatially developing mixing layer as shown in Figure 5.2.1. The complicated physics

arising from this interaction leads to small-scale advecting flow structures and moving shock waves

which cannot be represented using a low-dimensional superposition of modes. This is indicated by

the slow decay of the variance not captured by principal subspaces plotted in Figure 5.2.2a. By the

argument above, we would need at least dS = 11 well-chosen sensor measurements to have a hope

of linearly reconstructing 90% of the variance in this flow’s velocity field.
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On the other hand, the flow structures appearing downstream in the shock-mixing layer flow are

essentially driven by the periodic fluctuations in the mixing layer that appear upstream. Conse-

quently, this flow is very nearly periodic and the states lie close to a one-dimensional loop in state

space. Embedding this loop as a circle in the plane shows that the state of this flow can be recon-

structed with high accuracy as a nonlinear function of two measurements providing a coordinate

system in the plane. Figure 5.2.2b shows the leading two nonlinear embedding coordinates provided

by the isomaps algorithm [260], which we use to define the flow’s phase on its orbit. As we will

see later, it is possible to reconstruct the state of this flow from the velocity measurements taken

at the two locations in the flow marked by green stars in Figure 5.2.1a. In fact, we used these two

measurements to reconstruct R2 = 0.986 of the velocity field’s variance on unseen snapshots by using

Gaussian process regression [216] to fit a nonlinear reconstruction map. On the other hand, with

only two sensor measurements, the highest fraction of the velocity field’s variance one can capture

using linear reconstruction is R2 < 0.5.

5.2.3 The need for nonlinear selection

Because of the need for nonlinear reconstruction when using small numbers of measurements, linear

reconstruction performance is a poor criterion for selecting small numbers of sensors. However, in the

case when lower energy components of the flow are functions of the higher energy components, linear

techniques (see Section 5.2.1) aiming to reconstruct the most energy possible may still find sensors

that yield acceptable nonlinear reconstruction performance. On the other hand, when higher-energy

components are functions of lower-energy ones, linear sensor placement techniques consistently fail

to identify small sets of sensors that enable nonlinear reconstruction. The shock-mixing layer flow

presents such a challenge because its two highest energy principal components oscillate at twice the

fundamental frequency of the flow as seen in Figure 5.2.2c. In [195]** we use several representative

linear techniques to choose sets of three sensors among the available locations shown in Figure 5.2.1c.

These sensor locations are indicated on Figures 5.2.1a and 5.2.1b using different markers. The cor-

responding measurements made by these sensors are plotted in Figure 5.2.3 and colored according

to the phase of the underlying state. We see that each set of sensors chosen by linear methods

produces nearly identical measurements at multiple distinct phases around the shock-mixing layer

flow’s orbit. Consequently, these states cannot be reconstructed (linearly or nonlinearly) from the

measurements. Interestingly, three of the linear methods: LASSO to reconstruct the leading 100

principal components in Eq. 5.40, greedy Bayesian D-optimality, and pivoted QR factorization (see
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Figure 5.2.2: The linear and nonlinear dimension reduction techniques PCA (a.k.a POD) and Isomap
are applied to the shock-mixing layer data. (a) shows the remaining fraction of the total variance
orthogonal to each leading principal subspace. (b) plots the data in the leading two Isomap embed-
ding coordinates, revealing that it lies very near a loop in state space. (c) shows how the leading
principal components (modal coefficients) vary with the phase angle around the loop. The black
vertical lines reveal distinct points where the leading three principal components are identical.
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Figure 5.2.3: these plots show the measurements made by sensors selected using various linear
methods on the shock-mixing layer flow problem. Each dot indicates the values measured by the
sensors and its color indicates the phase of the corresponding flowfield. Each set of sensors make
identical or nearly identical measurements on distinct flowfields, indicated by overlapping points
with different colors. These sensors cannot tell those flowfields apart since the measurements are
the same.

implementation details in [195]**) all produce self-intersecting measurements separated by approxi-

mately 180 degrees of phase. This is exactly what we would expect if we were measuring the leading

three most energetic principal components, as illustrated by the two phase angles marked by black

vertical lines 180 degrees apart in Figure 5.2.2c where the leading three principal components take

identical values.

5.3 Greedy selection based on secants

In this section, we summarize the nonlinear sensor placement techniques developed by S. E. Otto

and C. W. Rowley in [195]**. These methods are capable of selecting measurements that are one-

to-one with the quantities we wish to reconstruct. For instance, the measurements selected using

these techniques on the shock-mixing layer flow are shown in Figure 5.3.1. In each case it is possible

to reconstruct the underlying phase, and hence the full state of the system. The techniques we

propose are also capable of selecting fundamental sets of eigenfunctions for spectral embedding (and

possibly also for Koopman operators) as we discussed in Section 5.1.3. The main idea behind these
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Figure 5.3.1: We show the measurements made by sensors selected using secant-based greedy opti-
mization methods on the shock-mixing layer flow problem. Each dot indicates the values measured
by the sensors and its color indicates the phase of the corresponding flowfield. In each case, the
selected sensors make distinct measurements for distinct states, enabling reconstruction of the state
from the measurements.

techniques is to consider pairs of sampled states, referred to as “secants”, and to choose sensors that

produce different measurements for pairs of states that have different values of the quantities we

wish to reconstruct. This is essentially a sampled version of the vertical line test for the existence of

a reconstruction function ΦS. We quantify how far ΦS is from becoming multi-valued using three

different submodular objectives for greedy optimization. We refer to the sampled approximation of

the underlying set X as XN = {x1, . . . , xN} ⊂ X . In [195]** we provide a number of performance

guarantees with respect to the underlying set X depending on the fineness of this sampling and the

number of secants considered in the objectives. We shall not discuss these results in detail since

they can be found in our paper.

Remark 5.3.1. All of the optimization problems we discuss in this section may also be formulated

as linear programs with the usual convex relaxation of the cardinality of the selected sensors —

namely, by replacing |S| with s1 + · · ·+ sM and the constraint 0 ≤ sj ≤ 1. However, it is much more

computationally expensive to solve such linear programs for large numbers of sensors and secants

than it is to rely on greedy algorithms.

5.3.1 Maximizing detectable differences

If two states produce nearby measurements, then the values to be reconstructed should also be close.

Otherwise, a small disturbance of the measurements could result in a large reconstruction error. One

way to quantify the performance of a given set of sensors is to minimize the distance between values

to be reconstructed when the corresponding measurements are nearby. In particular, we may choose

a distance or “detection threshold” γ > 0 in the measurement space according to the magnitude
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Figure 5.3.2: we show the measurements made by two different sets of sensors along with balls
indicating a choice of detection threshold γ. We observe that the LASSO measurements have
large sums of square differences between states at points lying within the same balls, whereas such
fluctuations are small for the sensors chosen using the secant-based detectable differences method.

of noise or disturbances in the measurements that we want the reconstruction function to tolerate.

We consider the sum of square differences between target variables from states with measurements

closer together than the detection threshold. That is, we seek to minimize

Fγ(S) =
1

N2

∑
x,x′∈XN

1 {‖mS(x)−mS(x′)‖2 < γ} ‖g(x)− g(x′)‖22, (5.44)

where the function 1{A} = 1 if A is true and 0 if A is false. We illustrate this idea in Figure 5.3.2.

Balls indicate a choice of detection threshold γ in the measurement spaces for sensors chosen using

LASSO and the method we present here. The LASSO sensors have large differences among the phases

of states within the same balls, whereas the sensors we choose using our “detectable differences”

method have only small phase differences within each ball, resulting in a one-to-one mapping of the

state.

Minimizing the sum of square undetectable differences Eq. 5.44 is equivalent to maximizing the

sum of square differences between relevant quantities corresponding to states with measurements

separated by at least γ, i.e., the sum of detectable differences

f̃γ(S) =
1

N2

∑
x,x′∈XN

1 {‖mS(x)−mS(x′)‖2 ≥ γ} ‖g(x)− g(x′)‖22. (5.45)

While Eq. 5.45 is normalized such that f̃γ(∅) = 0 and monotone increasing, it is unfortunately not

submodular.
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The sum of detectable differences given by Eq. 5.45 may be relaxed into a submodular function by

relaxing the discontinuous detection threshold {‖mS(x)−mS(x′)‖2 ≥ γ} into a continuous weight

function

wγ,x,x′(S) = min

 1

γ2

∑
j∈S
‖mj(x)−mj(x

′)‖22, 1

 . (5.46)

For each secant x, x′ ∈ XN , Eq. 5.46 is a concave function composed with a modular function of S,

which implies that the weights and the resulting relaxed objective

fγ(S) =
1

N2

∑
x,x′∈XN

wγ,x,x′(S)‖g(x)− g(x′)‖22. (5.47)

are submodular (for a proof, see [195]**). By greedily maximizing this relaxed objective under a

fixed sensor budget |S| ≤ K, the classical performance guarantee described in Theorem 5.0.2 holds

for Eq. 5.47.

Even though Eq. 5.47 may be larger than the original detectable differences objective in Eq. 5.45,

we show in [195]** that the undetectable differences in Eq. 5.44 at a reduced threshold αγ for any

0 < α < 1 are bounded by

Fαγ(S) ≤ F∞ − fγ(S)

1− α2
, where F∞ =

∑
x,x′∈XN

‖g(x)− g(x′)‖22. (5.48)

Putting our bounds together and letting S̃∗K ⊂ M denote a minimizer of Eq. 5.44 under the sensor

budget |S| ≤ K, we find that the sequence of greedily chosen sets Sk satisfy a worst-case bound

Fαγ(Sk) ≤ min
K=1,...,M

1

1− α2

[(
1− e−k/K

)
Fγ(S̃∗K) + e−k/KF∞

]
, (5.49)

for every k = 1, . . . ,M . This bound tells us how well the greedy algorithm must perform in com-

parison with the optimal solutions using different sensor budgets and larger detection thresholds.

Perhaps a more useful lower bound on the optimal performance is given by

Fγ(S̃∗K)) ≥ max
k=1,...,M

[
F∞ −

ek/K

ek/K − 1
fγ(Sk)

]
, (5.50)

which can be computed from the greedily chosen sets Sk after running the algorithm. We give the

proofs of the bounds in Eq. 5.49 and Eq. 5.50 in Appendix 5.A.

Another useful property of the objective Eq. 5.47 (and Eq. 5.44) is that it can be accurately
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approximated with high probability by normalized sums over much smaller collections of randomly

chosen secants. This is essentially a result of the law of large numbers, which we discuss further in

[195]**.

5.3.2 Minimal sensing to achieve measurement separation

The greedy optimization problem described in Section 5.3.1 is aimed at maximizing a reconstruction

performance metric averaged over pairs of states. Therefore, it cannot produce guarantees about our

ability to accurately reconstruct individual states given the selected measurements. In this section,

we present a modification of the maximizing detectable differences approach, which is capable of

choosing nearly the minimum possible number of sensors so that the relevant quantities can be

recovered within a user-specified accuracy ε > 0. In particular, we choose sensors so that every pair

of states producing measurements closer together than γ > 0 have relevant quantities differing by

less than ε. Stated another way, if two states have relevant quantities differing by at least ε, the

measurements must separate them by at least γ.

Let us assume that the above measurement separation condition can be met by using all of

the available measurements taken together, i.e., by using S = M. Then, it is possible to encode

the measurement separation condition for smaller subsets S ⊂ M using the normalized, monotone

non-decreasing, submodular function

fγ,ε(S) =
1

N2

∑
x,x′∈XN :

‖g(x)−g(x′)‖2≥ε

wγ,x,x′(S)‖g(x)− g(x′)‖22. (5.51)

This function closely resembles the detectable differences objective Eq. 5.47, except that the sum is

taken only over secants with relevant quantities separated by at least ε. Our assumption that the

measurement separation condition is met using S = M translates into condition that wγ,x,x′(M) = 1

for every x, x′ ∈ XN such that ‖g(x)− g(x′)‖2 ≥ ε. We observe that if there is even a single secant

x, x′ ∈ XN such that ‖g(x)− g(x′)‖2 ≥ ε, but ‖mS(x)−mS(x′)‖2 < γ, then we have wγ,x,x′(S) < 1

and so fγ,ε(S) < fγ,ε(M). On the other hand, if the measurement separation condition is met using

a collection of sensors S, then we have fγ,ε(S) = fγ,ε(M). Therefore, the measurement separation

condition is equivalent to the condition that fγ,ε(S) = fγ,ε(M).

We may therefore seek to find the minimum possible number of sensors meeting the measurement
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separation condition by solving the submodular set-covering problem

minimize
S⊂M

|S| s.t. fγ,ε(S) = fγ,ε(M). (5.52)

This problem is always feasible, but a solution will only produce the desired measurement separation

if it is achieved with S = M. Thanks to the classical result by L. A. Wolsey [283], a greedy algorithm

that maximizes fγ,ε at each step and stops when fγ,ε(S) = fγ,ε(M) will find, within a constant factor,

the minimum possible number of sensors. In particular, let the “increment condition number” be

the ratio of the largest and smallest increments in the objective,

κ =
fγ,ε(S1)

fγ,ε(SK)− fγ,ε(SK−1)
, (5.53)

where fγ,ε(SK) = fγ,ε(M) and fγ,ε(SK−1) < fγ,ε(M). Then any optimal solution S∗ of the set

covering problem in Eq. 5.52 has at least as many elements as the greedy approximation SK up to

a constant factor given by

|S∗| ≥ |SK |
1 + lnκ

. (5.54)

For the shock-mixing layer problem, we find that this approach selects the same sensors as the

detectable differences method over a range of choices of ε and the same value of γ.

This optimization problem is more difficult to down-sample than the detectable differences prob-

lem we discussed in Section 5.3.1 since we are interested in a separation criterion that applies to

every secant rather than an average. In [195]**, we discuss a down-sampling method in which we

choose a collection of base points B at random from XN and then formulate the objective in Eq. 5.51

over the smaller set of secants B×XN . With high probability over the collection of base points, this

allows us to control the size of the “bad set” of points in XN for which there is another point in XN
with relevant quantities separated by at least ε, but measurements closer together than γ.

5.3.3 Minimal sensing to meet an amplification tolerance

We may want the separations between measurements to grow in proportion to the differences between

the quantities to be reconstructed, rather than saturating at the threshold γ as in the methods

described above. The techniques discussed in Sections 5.3.1 and 5.3.2 also neglect the structure

of measurements at scales smaller than γ, which may be important in reduced-order modeling

applications. For instance, the measurements selected by the greedy detectable differences method

for the shock-mixing layer problem display cusps (Figure 5.3.1a) where the time derivatives of the

144



measurements vanish. When building a reduced-order model for the system in the measurement

space, these cusps would result in spurious fixed points where the modeled dynamics would get

stuck.

To better capture the local and global structure of the data, we seek measurements that keep

the Lipschitz constant

‖ΦS‖lip,XN = max
x,x′∈XN :

mS(x)6=mS(x′)

‖g(x)− g(x′)‖2
‖mS(x)−mS(x′)‖2

(5.55)

of the reconstruction below a user-specified threshold L. The Lipschitz constant in Eq. 5.55 measures

the maximum amplification of measurement disturbances when reconstructing the desired quantities

g. We can formulate the problem of selecting the minimum number of sensors such that ‖ΦS‖lip,XN ≤

L as a submodular set-covering problem as in Eq. 5.52, except with an objective defined by

fL(S) =
1

N2

∑
x,x′∈XN :
g(x) 6=g(x′)

min

∑
j∈S

‖mj(x)−mj(x
′)‖22

‖g(x)− g(x′)‖22
,

1

L2

 . (5.56)

This function is: normalized so that fL(∅) = 0, monotone non-decreasing, and submodular. The last

condition holds since each term composes a concave function with a modular function. We assume

that when all of the sensors are used, we achieve the desired Lipschitz constant ‖ΦM‖lip,XN ≤

L. Under this assumption, the condition fL(S) = fL(M) is equivalent to the desired condition

‖ΦS‖lip,XN ≤ L for any subset S ⊂M.

The amplification tolerance optimization problem shares similar down-sampling properties to the

problem described in Section 5.3.2. In particular, it is possible to bound the size of an analogous

“bad set” with high probability over the same collection of randomly chosen base points. The

measurements from the sensors we chose using this approach are shown in Figure 5.3.1c. Additional

details can be found in [195]**.

5.4 Selection based on local linearization

In some applications, we may have prior information during the reconstruction process that reduces

our uncertainty about the underlying state. Specifically, we may know x ∈ Uα ⊆ X . For instance, we

may wish to estimate the state of a system when the initial condition is known with some uncertainty.

Another example is when we wish to choose sensors that can estimate the state of a system across
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different known operating conditions or regimes. Mathematically, we suppose that the state space

X is a smooth manifold covered by a collection of neighborhoods

X ⊂
⋃
α

Uα (5.57)

where we given the information that x ∈ Uα during the reconstruction or estimation process. It is no

longer necessary to reconstruct the relevant quantities based on measurements from any state, but

rather based on measurements from states lying in each Uα. We shall focus on the case when the

neighborhoods Uα are infinitesimally small, allowing us to study the reconstruction problem using

linearization. This approach has been used by S. Rao et al. in [215] to develop greedy algorithms

for sensor placement based on composite submodular objectives by summing many local versions

of the log determinant objective Eq. 5.39 obtained from the original problem’s linearization at a

collection of points. In this section we shall present some alternatives based on convex optimization

and techniques based on generalizations of pivoted QR factorization resembling those employed by

DEIM [60, 82].

Suppose that every linearized reconstruction problem can be solved, i.e., for every x ∈ X there

is a matrix Ax so that D g(x) = Ax DmS(x). Then, Theorem 5.4.1, below guarantees that in a

sufficiently small neighborhood Uα of any x ∈ X , there is a reconstruction function ΦS,α so that

g = ΦS,α ◦mS on Uα. In the notation of Theorem 5.4.1, the relevant information is represented by

the function g = g, the measurements are represented by f = mS, and the local reconstruction is

given by the resulting ΦS,α = h.

Theorem 5.4.1 (Existence of local reconstruction functions). Let f : X → M and g : X → N be

smooth maps of manifolds X ,M,N such that for every x ∈ X , we have

ker D f(x) ⊂ ker D g(x). (5.58)

Then for every x0 ∈ X there is an open neighborhood U ⊂ X containing x0 and a smooth function

h : f(U)→ N such that

g(x) = h ◦ f(x) ∀x ∈ U . (5.59)

Proof. We use the rank theorem (Theorem 4.12 on p.81 in J. M. Lee [149]) and the fundamental

theorem of calculus to show that g is constant on pre-image sets of f restricted to sufficiently small

neighborhoods. We give the detailed proof in Appendix 5.A.
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(a) tangent planes (b) neighborhoods

Figure 5.4.1: A spiral “parking garage” manifold where it is possible to reconstruct states locally in
each tangent plane by measuring only x1 and x2, but it is not possible to reconstruct the full state
from these measurements. It is possible to cover the manifold by neighborhoods on which the state
can be reconstructed from x1 and x2.

It is important to note that local conditions based on solvability of linearized reconstruction problems

cannot guarantee that the relevant quantities can be reconstructed globally. That is, a reconstruction

function may only exist when the states are restricted to sufficiently small neighborhoods. We

illustrate such a case in Figure 5.4.1 where the state space X is a spiral parking garage manifold in

R3. We are interested in reconstructing the full state on this manifold and select measurements from

among the coordinate functions m1(x) = x1,m1(x) = x2, and m1(x) = x3. The linearized problem

consists of reconstructing states in each tangent plane to the spiral manifold shown in Figure 5.4.1a.

This can be accomplished by measuring only mS(x) = (x1, x2). On the other hand, there are

multiple “levels” of the parking garage that correspond to the same coordinates x1, x2. Hence, these

coordinates are not sufficient to reconstruct the full state. This ambiguity is eliminated by restricting

our attention to any one of the neighborhoods U1, U2, or U3 covering X in Figure 5.4.1b. That is,

the state in any Ui can be reconstructed by measuring the coordinates x1, x2.

5.4.1 Convex optimization approaches

The convex optimization methods for linear measurement selection problems discussed by S. Joshi

and S. Boyd in [125] extend to collections of linearized measurement selection problems near a

collection of states. Let XN = {x1, . . . , xN} ⊂ X be a collection of sampled states and define the

linearized target variables Ti = D g(xi) and measurement functions Mi,S = DmS(xi) about the

sampled states. Our goal will be to choose a collection of sensors S so that the linearized target

variables can be reconstructed from the linearized measurements at each xi, i.e., there is a linear
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map Φi,S such that

Ti = Φi,SMi,S, for every i = 1, . . . , N. (5.60)

Without a prior distribution for tangent vectors in TxiX , we may consider the average square error

of a maximum likelihood linear estimator given by

Ji(s) = Tr
[
Ti

( M∑
j=1

sjM
∗
i,jC

−1
njMi,j

)−1

T ∗i
]
, s = (s1, . . . , sM ) (5.61)

or the log-determinant of the reconstruction error covariance matrix

Ji(s) = log det
[
U∗i Ti

( M∑
j=1

sjM
∗
i,jC

−1
njMi,j

)−1

T ∗i U i

]
, s = (s1, . . . , sM ), (5.62)

where the columns of U i provide an orthonormal basis for Range(Ti). We can find the sensors that

maximize the average performance over the operating conditions xi on a fixed sensor budget |S| ≤ K

by solving the relaxed convex optimization problem

minimize
s∈[0,1]M

1

N

N∑
i=1

Ji(s) s.t.

M∑
i=1

si ≤ K. (5.63)

Alternatively, we may have a specific level of desired performance Ji(s) ≤ Ei at each sensor location,

in which case we seek the minimum number of sensors needed to achieve this performance by solving

the relaxed convex optimization problem

minimize
s∈[0,1]M

M∑
i=1

si s.t. Ji(s) ≤ Ei, i = 1, . . . , N. (5.64)

5.4.2 Simultaneous QR pivoting

In the common special case in which we are seeking a collection of coordinate functions to reconstruct

the full state (restricted to neighborhoods), we may perform the selection using an efficient greedy

algorithm related to pivoted QR (PQR) factorization. This approach enables a generalization of

DEIM (see Section 5.1.2) for building reduced-order models on nonlinear manifolds by choosing

sample locations or state variables that can reconstruct the system’s time derivative at each point

on the underlying manifold. Rather than using pivoted QR factorization as in Eq. 5.21 to identify

sensors based on a single POD subspace, the simultaneously pivoted QR factorization (SimPQR)

method we present in [193]* identifies sensors based on a collection of subspaces simultaneously.
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These subspaces may be tangent to an underlying manifold at a collection of sample points, or

represent POD subspaces at a collection of operating conditions.

Let U1, . . . ,UN ∈ Rn×r be a collection of matrices whose columns are orthonormal bases for the

relevant subspaces at sample locations. Let P S denote the submatrix of the n × n identity matrix

formed by the columns with indices in the set S. In [193]* we seek a fixed set of sensors of the form

mS(x) = P T
Sx, (5.65)

that enable robust reconstruction in each subspace Range(U i). In particular, we select S in such a

way that every P T
SU1, . . . ,P

T
SUN has a left inverse with low amplification (operator norm). We

select P S as in Eq. 5.21 using the leading columns of the permutation matrix P =

[
P S P Sc

]
used

to construct the SimPQR factorization


UT

1

...

UT
N


[
P S P Sc

]
=


Q1

. . .

QN



R

(1)
1 R

(2)
1

...
...

R
(1)
N R

(2)
N

 , (5.66)

The pivoting procedure aims to maximize the determinants of r × r upper-triangular sub-matrices

R̃
(1)

i of each R
(1)
i , which, thanks to Proposition 2.1 in [193]*, corresponds to minimizing an upper

bound on the amplification

‖P T
SU i‖2 = σmax(P T

SU1) ≤ 1

|det(R̃
(1)

i )|
. (5.67)

During each step, the SimPQR pivoting procedure selects a sensor or pivot column j∗ ∈ M

along with the subset U∗ ⊂ {U1, . . . ,UN} on which the pivot j∗ will be used to update the QR

factorization. We do not require that the pivot j∗ be used to update the QR factorizations of every

UT
i because the pivot column j∗ may be a bad choice for some of these matrices. If Si ⊂ S denotes

the set of pivot columns used in the factorization of UT
i , then we obtain the local pivoted QR

factorizations

UT
i

[
P Si P S\Si P Sc

]
= Qi

[
R̃

(1)

i R̃
(2)

i R
(2)
i

]
, i = 1, . . . , N, (5.68)

where R̃
(1)

i are the upper-triangular submatrices mentioned above.

In choosing the pivot column and the subset U, there is a trade-off between reconstruction
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robustness and choosing a small total number of sensors. If, on the one hand, we apply the selected

pivot to the largest possible subset U, then the factorization of every UT
i will be completed using a

small total number of pivots, i.e., sensors. On the other hand, if we apply the selected pivot to small

collections U where it contributes the most to reconstruction robustness, then a large total number

of pivots will be used to factorize every UT
i , i.e., a large total number of sensors. We manage this

trade-off by solving an optimization problem for the pivot j∗ and subset U∗ selected during each step

of SimPQR pivoting with a user-specified weighting γ > 0 that determines the relative importance

of robustness and minimal sensing. The details of this optimization problem and how it can be

efficiently solved are somewhat involved and can be found in [193]*. We give a brief summary here.

In ordinary pivoted QR factorization as described in G. H. Golub and C. F. Van Loan [97], we

initialize a “redidual matrix” A with the matrix to be factored and keep track of the magnitudes

of each column cj = ‖ colj(A)‖2. During the kth step of PQR, we select a pivot column j∗ with

the largest column magnitude cj∗ , which becomes the kth diagonal entry of the upper-triangular

R matrix, i.e., [R]k,k = cj∗ . The remaining columns of A are orthogonalized with respect to the

pivot column colj∗(A) and the magnitudes c are updated. In SimPQR, we keep track of multiple

residual matrices Ai initialized with UT
i along with their column magnitudes ci,j = ‖ colj(Ai)‖2. To

inform our selection process for the pivot column j∗ and the matrices U to which pivot is applied, we

consider two extreme cases. On one hand, we could select a pivot column to maximize the number

of matrices that can be factorized

Umax = max
1≤j≤n

|{i ∈ {1, . . . , N} : ‖ colj(Ai)‖2 > ε}| , (5.69)

where ε > 0 is a small constant. On the order hand, we could select a single matrix Ai and a pivot

column j∗ with maximum magnitude

Ci = max
1≤j≤n

‖ colj(Ai)‖2. (5.70)

To manage the trade-off between these two extremes, we introduce a user-defined constant γ > 0 and

solve the following optimization problem in [193]* for the pivot column and the subset of matrices

to be factored during the kth step of SimPQR:

(j∗,U∗) = argmax
1≤j≤n,

U⊂{1,...,N}

( |U|
Umax

+ γmin
i∈U
‖ colj(Ai)‖2

Ci

)
s.t. ‖ colj(Ai)‖2 > ε ∀i ∈ U. (5.71)
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In [193]* we provide an efficient algorithm for solving Eq. 5.71 along with an efficient way to sweep

out the complete set SimPQR factorizations, i.e., the “solution path” obtained for every value of γ.

The following two propositions clarify the relationship between the user-defined parameter γ > 0

and the trade-off between robust and minimal pivoting.

Proposition 5.4.2 (SimPQR Robustness, Thm. 3.3 in [193]*). Let η ∈ [0, 1). If γ ≥ N−1
N(1−η) , then

the solution of Eq. 5.71 satisfies

‖ colj∗(Ai)‖2 ≥ ηCi ∀i ∈ U∗. (5.72)

Proof. See [193]*.

Proposition 5.4.3 (SimPQR Minimality, Thm. 3.4 in [193]*). Let ν ∈ [0, 1). If γ ≤ 1− ν, then the

solution of Eq. 5.71 satisfies

|U∗| ≥ νUmax. (5.73)

Moreover, if γ ≤ 1/N , then |U∗| = Umax.

Proof. See [193]*.

In the limit γ →∞, SimPQR becomes equivalent to combining ordinary PQR factorizations of each

UT
i . It should also be possible to extend SimPQR to vector measurements by working with SVDs

of submatrices of each UT
i , but we shall not pursue this here.

Among the examples in [193]*, we identify locations in the cylinder wake flow shown in Fig-

ure 5.4.2 at which to measure vorticity and reconstruct the system’s state. This flow evolves along

the two-dimensional unstable manifold at the unstable equilibrium up to a stable limit cycle. The

tangent planes to this underlying manifold at a collection of points along the trajectory are shown

in Figure 5.4.3a. We compare the SimPQR approach (with γ = 1/N selected for minimal sensing)

applied to a collection of local two-dimensional bases for each tangent plane against ordinary PQR

using a global POD basis constructed from the snapshot data. The measurements made by the

two sensors selected using each method are shown in Figure 5.4.3b and Figure 5.4.3c. Both sets

of sensors provide an embedding of the underlying manifold. However, according to the distribu-

tion of reconstruction amplifications over the tangent planes plotted in Figure 5.4.4, the embedding

provided by SimPQR is much more robust.

By expressing the tangent space bases Uk in the POD coordinate system, the SimPQR technique

can be used to select the POD modes that enable local reconstruction of the state. In Figure 5.4.5,
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PQR
SimPQR

(a) unstable equilibrium

PQR
SimPQR

(b) limit cycle

Figure 5.4.2: Cylinder wake flow snapshots at the unstable equilibrium and on the stable limit cycle.
The spatial sampling locations chosen by PQR on a global POD basis and SimPQR using a collection
of local bases are also shown.

(a) tangent planes (b) PQR measurements (c) SimPQR measurements

Figure 5.4.3: Cylinder wake states along a trajectory plotted in different coordinate systems. In
panel (a) we plot the states along with tangent planes to the underlying two-dimensional manifold
in the leading 3 POD coordinates. Panels (b) and (c) show the vorticity measurements along the
trajectory made by sensors chosen using PQR with a global POD basis and using SimPQR with
bases for each tangent plane.

PQR SimPQR
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Figure 5.4.4: Distribution of maximum amplifications for reconstructing states in each tangent plane
as measured by 1/σmin(P T

SU i). We see that the coordinates chosen by SimPQR amplify disturbances
less than those chosen by PQR on a global POD basis.
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(a) Leading POD coordinates (b) SimPQR selection

Figure 5.4.5: Cylinder wake system trajectories plotted in the leading two POD coordinates as well
as in the two POD coordinates selected using simultaneously pivoted QR (SimPQR) factorization.
The POD coordinates selected by SimPQR provide an embedding of the underlying slow manifold
on which the states lie, while the leading two POD coordinates do not.

we see that the leading two POD coefficients are insufficient to reconstruct the state of the cylinder

wake flow — even locally. On the other hand, SimPQR factorization selects the second and third

POD coefficients. Plotting the trajectory of the second and third POD coefficients in Figure 5.4.5b

shows that these coordinates provide an embedding of the underlying slow manifold.

The advantages of simultaneous QR pivoting are made especially clear by considering another

example, which is admittedly more contrived than the cylinder wake flow. In [193]*, we solve a

viscous Burgers equation (a one-dimensional spatio-temporal PDE) from initial triangularly shaped

profiles of varying widths. The evolution of the narrowest and widest profiles are shown in Fig-

ure 5.4.6. We observe that these states lie on a two-dimensional manifold parametrized by time and

the width of the initial triangle. We aim to find a minimal collection of spatial sampling locations

at which to measure the solution in order to recover the full state, i.e., to reconstruct the entire

profile. Most of the variance of these solutions appears “down-stream” towards the right side of the

spatial domain. Consequently the two sampling locations selected by DEIM with QR pivoting ap-

pear down-stream, yet are unable to reconstruct every profile, as one can see from the measurements

shown in Figure 5.4.7.

On the other hand, we can approximate tangent planes to the underlying solution manifold

by taking finite differences between profiles obtained at neighboring simulation times and from

neighboring initial widths. Selecting the spatial sampling locations using SimPQR factorization of

the resulting orthogonalized tangent space bases yields the “upstream” sampling locations shown in

Figure 5.4.6. Remarkably the measurements from these sampling locations can be used to reconstruct

every profile by inferring the corresponding simulation time and initial width as shown in Figure 5.4.8.
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PQR

SimPQR

(a)

PQR

SimPQR

(b)

Figure 5.4.6: Example simulations of the Burgers equation from the two extreme initial conditions.
A collection of snapshots is plotted for each initial condition and colored according to the simulation
time. The locations of the points selected by PQR on a global POD basis and SimPQR on local
bases are indicated by the dashed green and solid black vertical lines respectively.

Time t in PQR Coordinates

(a)

Initial Width in PQR Coordinates

(b)

Figure 5.4.7: Burgers equation snapshots plotted in the coordinates identified by PQR on a global
POD basis and colored according to the time and initial width. We see that the underlying manifold
folds back on itself when projected into these coordinates; hence the parametrizing coordinates are
not single-valued functions of the coordinates selected by PQR.
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Time t in SimPQR Coordinates

(a)

Initial Width in SimPQR Coordinates

(b)

Figure 5.4.8: Burgers equation snapshots plotted in the coordinates identified by SimPQR factoriza-
tion of local bases and colored according to the parametrizing coordinates time, t and initial width.
We see that the parametrizing coordinates and hence the entire state are single-valued functions of
the SimPQR coordinates.

5.4.3 Greedy performance for mean square error objectives

Two challenges arise when using greedy algorithms for sensor placement based on (local) least-

squares objectives like Eq. 5.34. The first challenge is that Theorem 5.0.2 no longer provides a

constant factor performance guarantee because the least-squares objective is not submodular (see

Example 5.2.2). The second challenge is that even if we could obtain a similar constant factor

performance guarantee, it would not translate into a particularly useful guarantee about the square

error itself. It is important to overcome these challenges because greedy algorithms tend to be

much more efficient and scalable to very large problems than the convex optimization approaches

we described in Section 5.4.1. The solution we propose in this section involves applying modern

non-submodular greedy performance guarantees to a logarithmic form of the square error objective.

Greedy optimization of non-submodular objectives including those arising from least-squares

based sensor placement has been the subject of much research, including notable work by A. Das

and D. Kempe in [72, 73] and A. A. Bian et al. in [24]. Here, the amount by which an optimization

objective fails to be submodular is quantified, for instance using a “submodularity ratio” [72, 73]

and/or “curvature” [24]. This yields generalized performance guarantees resembling the classical

results of G. L. Nemhauser and L. A. Wolsey et al. [187, 283]. Bounds for these quantities (submod-

ularity ratio and curvature) are usually obtained using arguments based on concavity properties of

the objective. Because the greedy algorithm is so efficient, we shall focus on making a posteriori

guarantees about the regret of greedy solutions — namely, how much worse is a greedy solution in
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comparison with the true optimum we would find through an exhaustive search. In doing so, we can

still recover a priori guarantees on the greedy performance that are similar to the ones involving the

submodularity ratio [72, 73].

Constant-factor approximation for the naive square error objective in Eq. 5.34 does not always

produce useful bounds on the square error of the optimal linear estimator. To see why, we denote

the square error using the sensors S to construct an optimal linear estimator by E(S) = TrCe(S)

(see Proposition 5.2.1). Recall that our greedy objective in Eq. 5.34 can be written as

f(S) = E(∅)− E(S), where E(S) = g
(
P̄ (S)

)
= Tr

(
T P̄ (S)−1T T

)
. (5.74)

If S∗K minimizes E under the sensor budget constraint |S| ≤ K and SK is a greedy solution, then a

constant factor approximation guarantee of the form

f(SK) ≥ Cf(S∗K) (5.75)

for some C ∈ (0, 1) implies the bound

E(SK) ≤ (1− C)E(∅) + CE(S∗K). (5.76)

In the submodular case C = 1−e−1 ≈ 0.63, and we cannot hope to do better in the non-submodular

case. At best Eq. 5.76 ensures that error can be reduced by a factor of (1 − C) compared to the

case with no sensors at all, and we would ideally hope to reduce the error to a value much less

than e−1 ≈ 0.37 of the error with no sensors. Said another way, if the greedily chosen sensors

reduce the square error to less than (1 − C) of the error with no sensors, then the best possible

sensors S∗K might reduce the error all the way to zero. Therefore, the constant factor approximation

guarantee is essentially useless as an a posteriori bound when the sensors we select greedily achieve

high performance.

It would be much better to obtain a constant factor approximation bound for an objective

function using the log square error

f(S) = logE(∅)− logE(S) = − log

(
E(S)

E(∅)

)
. (5.77)
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Now, a constant factor guarantee in the form of Eq. 5.75 would yield

E(SK) ≤ exp [(1− C) logE(∅) + C logE(S∗K)] , (5.78)

which, if the constant C remains unchanged, is strictly better than Eq. 5.76 thanks to the convexity

of the exponential function. Moreover, Eq. 5.78 ensures that the error using the greedily chosen

sensors E(SK) approaches zero if the error using the optimal sensors E(S∗K) approaches zero. Stated

another way, if we greedily identify a set of sensors SK achieving a very low error E(SK), then

Eq. 5.78 provides us with a non-trivial lower bound on the minimum possible error

E(S∗K) ≥ exp

[
1

C
logE(SK)− (

1

C
− 1) logE(∅)

]
, (5.79)

that is, a bound on how much we may regret using the greedily chosen sensors. In practice, greedy

approximation factors for the original and logarithmic square error objectives may be different, in

which case, both the original and logarithmic bounds may be superior in different regimes. Regardless

of the difference in greedy approximation factors, as long as the factor for the logarithmic objective

Eq. 5.77 is nonzero, the bound in Eq. 5.79 will be superior in the limit of small error E(SK)→ 0.

Maximizing the logarithmic objective in Eq. 5.77 is equivalent to maximizing the original square

error objective in Eq. 5.74 because Eq. 5.77 is a monotone increasing function of Eq. 5.74. Hence,

greedy algorithms for Eq. 5.74 and Eq. 5.77 select precisely the same sequence of sensors. Both

objectives are not submodular, and so we must resort to non-submodular constant factor approxi-

mation guarantees such as those proved by A. A. Bian et al. [24] for Eq. 5.77 in order to arrive at

the superior bound in Eq. 5.79. In particular, A. A. Bian et al. defines the Greedy submodularity

ratio and curvature as follows.

Definition 5.4.4 (greedy submodularity ratio [24]). The greedy submodularity ratio is the largest

scalar γG such that

∑
ω∈Ω\Sk

[f(Sk ∪ {ω})− f(Sk)] ≥ γG [f(Sk ∪ Ω)− f(Sk)] (5.80)

for every subset Ω ⊂M of size |Ω| = K and every k = 0, . . . ,K − 1.

Definition 5.4.5 (greedy curvature [24]). The greedy curvature is the smallest scalar αG ≥ 0 such

that

f(Sk ∪ Ω)− f(Sk−1 ∪ Ω) ≥ (1− αG) [f(Sk)− f(Sk−1)] (5.81)
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for every subset Ω ⊂M \ {jk} of size |Ω| = K and every k = 1, . . . ,K.

Using these definitions, Theorem 1 in [24] shows that the greedy algorithm maximizing f has the

following constant factor approximation guarantee

f(SK) ≥ 1

αG

(
1− e−αGγG

)
f(S∗K) ≥

(
1− e−γG

)
f(S∗K). (5.82)

Relying on Definition 5.4.4 and Definition 5.4.5 to compute the greedy submodularity ratio and

curvature of the logarithmic square error objective Eq. 5.77 requires us to perform exhaustive searches

over every subset Ω ⊂M of size |Ω| = K. Since doing such a search is as computationally costly as

simply computing the optimal set S∗K maximizing the objective, we must bound the submodularity

ratio and curvature by quantities that don’t involve Ω. To construct such bounds, we rely on a

useful result by T. Ando and F. Hiai (Proposition 1.1 in [9]). By this result, the function g : P 7→

Tr(TP−1T T ) defined for positive-definite matrices P in Eq. 5.74 is operator log-convex, i.e.,

log g((1− λ)P 0 + λP 1) ≤ (1− λ) log g(P 0) + λ log g(P 1) ∀λ ∈ [0, 1] ∀P 0,P 1 � 0. (5.83)

This follows by the operator monotonicity of matrix inversion (Lemma 5.A.1 in Appendix 5.A). For

multiple linearized objectives defined by gi : P i 7→ Tr(T iP
−1
i T

T
i ), i = 1, . . . N , the same argument

can be used to show that

g(P 1, . . . ,PN ) =
1

N

N∑
i=1

gi(P i) = Tr



T 1

. . .

TN



P 1

. . .

PN


−1 

T 1

. . .

TN


T


(5.84)

is operator log-convex. Here, we recall that

E(S) = g(P̄ 1(S), . . . , P̄N (S)) =
1

N

N∑
i=1

Tr(T iP̄ i(S)−1T Ti ), P̄ i(S) = P̄ i(∅) +
∑
j∈S

P i({j}) (5.85)

is the mean square error of optimal linear estimators across the operating conditions i = 1, . . . , N .

The log-convexity of Eq. 5.84 immediately yields upper and lower bounds, summarized in Lemma 5.4.6,

for the differences in the logarithmic objective between any two subsets of sensors. Lemma 5.4.6

includes the case N = 1 where the objective is based on the average square error for a single optimal

linear estimator.
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Lemma 5.4.6 (Modular sandwich for logarithmic square error). Consider the logarithmic objective

f(S) = logE(∅)− logE(S) with the composite mean square error given by Eq. 5.85 and let

Gi(S) = −∇ gi(P̄ i(S)) = P̄ i(S)−1T Ti T iP̄ i(S)−1, i = 1, . . . , N. (5.86)

Then, for any S, S′ ⊂M, we have the following two-sided bound

1

N

N∑
i=1

Tr

[
Gi(S

′)
E(S′)

(P i(S
′)− P i(S))

]
≤ f(S′)− f(S) ≤ 1

N

N∑
i=1

Tr

[
Gi(S)

E(S)
(P i(S

′)− P i(S))

]
, (5.87)

where we recall that P i(S
′)− P i(S) =

∑
j∈S′\SP i({j})−

∑
j∈S\S′ P i({j}) is modular.

Proof. We use the operator log-convexity result by T. Ando and F. Hiai (Proposition 1.1 in [9]) to

bound Eq. 5.84 from below using its derivative. Bounding E(S′) from below using the derivative

evaluated at S yields the upper bound, while the lower bound is obtained by bounding E(S) from

below using the derivative evaluated at S′.

The differences between the values of the objective function appearing in Definition 5.4.4 and Defi-

nition 5.4.5 of the greedy submodularity ratio and curvature can now be bounded from both sides

using Lemma 5.4.6. In particular, by reducing the differences involving the variable subset Ω into

sums over its elements, we can obtain non-trivial bounds for the greedy submodularity ratio and

curvature that do not require an exhaustive search over all subsets Ω ⊂M. For instance, the greedy

submodularity ratio is bounded in the following result.

Proposition 5.4.7 (bound on greedy submodularity ratio for logarithmic objective). Define the

quantities

λk = min
1≤i≤N

λmin

[
P̄ i(∅)

]
+ min

S⊂M
|S|=k

∑
a∈S

λmin [P i({a})]

 (5.88)

Λk = max
1≤i≤N

min

λmax

[
P̄ i(∅)

]
+ max

S⊂M
|S|=k

∑
a∈S

λmax [P i({a})] , λmax

[
P̄ i(M)

]
 , (5.89)

which may be computed a priori using a sorting procedure. Then the greedy submodularity ratio given

in Definition 5.4.4 for the logarithmic objective Eq. 5.77 using the composite square error Eq. 5.85

is bounded below by

γG ≥ min
0≤k≤K−1
a∈M

(
E(Sk)

E(Sk ∪ {a})

)(∑N
i=1 Tr [Gi(Sk ∪ {a})P i({a})]∑N

i=1 Tr [Gi(Sk)P i({a})]

)
≥ min

0≤k≤K−1

(
λk

Λk+1

)2

(5.90)
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Proof. We rely primarily on Lemma 5.4.6 to bound the numerator and denominator in the definition

of the greedy submodularity ratio. We provide the detailed proof in Appendix 5.A.

A similar approach can be used to show that the greedy curvature is bounded above by

αG ≤ 1− min
1≤k≤K

(
E(Sk−1)

E(Sk)

) ∑N
i=1 βi(Sk)−2 Tr

[
T iP i({jk})T Ti

]
∑N
i=1 λmin

[
P̄ i(Sk−1)

]−2
Tr
[
T iP i({jk})T Ti

]
≤ 1− min

0≤k≤K−1

(
λk

Λk+1

)2

, (5.91)

where

βi(S) = λmax

[
P̄ i(S)

]
+ max

A⊂M\S
|A|≤K

∑
a∈A

λmax [P i({a})] (5.92)

is easily computed by a sorting procedure. Using this method, we can obtain a posteriori or (pes-

simistic) a priori bounds for the greedy approximation factor appearing in Eq. 5.82. This approxi-

mation factor then yields non-trivial bounds on the mean square error using Eq. 5.79 or Eq. 5.78.

5.4.4 A modified greedy algorithm for non-submodular objectives

Another way to handle non-submodular objectives, such as the square error objective for an optimal

linear estimator, is to modify the greedy algorithm itself to improve the resulting bound on perfor-

mance. In this section, we describe a greedy algorithm that is based on maximizing a submodular

upper bound on a non-submodular objective and bounding the performance based on how much the

submodular approximation over-estimates the original objective. Because linearization automati-

cally provides a modular upper bound, this approach is especially well-suited to objectives that have

concave extensions on the cube [0, 1]M . The linearized objective can be also be modified, e.g., by

composing with a concave function to improve the approximation of the original objective, while

remaining submodular. For example, in set-covering problems (see Section 5.3.2), we often work

with composite objectives where each component is truncated at the desired level of performance.

If the components have concave extensions, then a submodular upper bound can be obtained by

truncating the linearization of each component. We show that maximizing a submodular upper

bound at each step instead of the original objective allows us to bound the performance directly in

terms of the gap between the objectives. This gap is often easy to compute in practice a posteriori

and to bound a priori. This may be advantageous compared to greedily maximizing the original

objective because existing performance guarantees for non-submodular objectives, such as those in
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A. A. Bian et al. [24], depend on quantities like the submodularity ratio and curvature that are

difficult to compute in practice and admit only highly pessimistic bounds.

We consider a general set function f : 2M → R (not necessarily the ones given by Eq. 5.34 or

Eq. 5.77) and we try to solve the optimization problem

maximize
S⊆M

f(S) s.t. c(S) :=
∑
a∈S

c({a}) ≤ C. (5.93)

Here, c(S) represents the cost of the sensors, which allows us to work with the case when some

sensors are more expensive than others. In most cases, however, c(S) = |S| simply counts the total

number of sensors. We always assume that the objective function f satisfies the following

Assumption 5.4.8. The objective function f : 2M → R is normalized so that f(∅) = 0 and

monotone increasing, i.e., that

S ⊆ S′ ⊆M ⇒ f(S) ≤ f(S′). (5.94)

We will also always assume that there are no free measurements, i.e., c(S) > 0 for all non-empty

S ⊆M.

The objective function in Eq. 5.34 based on the mean square error of the optimal linear estimator

as well as its logarithmic version Eq. 5.77 satisfy all conditions of assumption 5.4.8. In particular,

normalization is trivial and monotonicity follows from the Loewner order-reversing property of the

matrix inverse shown in Lemma 5.A.1 of Appendix 5.A.

Given the possibly non-submodular objective function f , we define

Definition 5.4.9 (Submodular Upper Bound). A submodular upper bound for a set function f :

2M → R at S ⊆M is a set function f̂S : 2M\S → R with the following properties:

1. f̂S(∅) = f(S) (normalization)

2. f̂S(A) ≥ f(S ∪A) ∀A ⊆M \ S (upper bound)

3. A ⊆ A′ ⊆ (M \ S) \ {a} ⇒ f̂S(A ∪ {a})− f̂S(A) ≥ f̂S(A′ ∪ {a})− f̂S(A′) (submodularity)

For ease of notation, we also define hS(A) = f̂S(A)− f(S).

To quantify the amount by which the submodular upper bound over-estimates the original objective

f , we define
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Definition 5.4.10 (Submodularity Gap Ratio). The submodularity gap ratio associated with a

nested sequence of sets S0 ⊂ S1 ⊂ · · · ⊂ SK ⊆ M and corresponding submodular upper bounds is

defined as

ΓK = min
0≤k<K

f(Sk+1)− f(Sk)

hSk(Sk+1 \ Sk)
. (5.95)

Rather than approximate the solution of Eq. 5.93 by greedy selection based on the objective f ,

we propose the Greedy Upper Selection (GUS) Algorithm 1, which performs greedy selection based

on the subodular upper bound.

Algorithm 1 Greedy Upper Selection (GUS)

S0 = ∅
for k = 1, 2, . . . ,K do
ak = argmax a∈M\Sk−1

hSk−1
({a})/c({a})

Sk = Sk−1 ∪ {ak}
end for
return S1, S2, . . . , SK

GUS has an approximation guarantee stated below in Theorem 5.4.11. This guarantee closely

resembles the guarantee by A. Das and D. Kempe [72, 73] based on the submodularity ratio. In

particular, the guarantees are identical when ΓK is replaced by the submodularity ratio.

Theorem 5.4.11 (Greedy upper selection performance). Let ∅ = S0 ⊂ S1 ⊂ · · · ⊂ SK ⊆ M be the

sequence of sets computed by Algorithm 1 and let ΓK be the corresponding submodularity gap ratio.

If S∗ is the optimal solution of (5.93) then we have

f(Sk) >
(

1− e−ΓKc(Sk)/C
)
f(S∗), k = 1, . . . ,K. (5.96)

Proof. We use a slight modification of the argument by G. L. Nemhauser et al. that we presented

in the proof of Theorem 5.0.2. The details can be found in Appendix 5.A.

Remark 5.4.12. The proof of Theorem 5.4.11 only requires f̂S(A) to be a submodular upper bound

for sets S = Sk selected by GUS and A ⊂M \ Sk with |A| ≤ K where K = |S∗|.

Among the options for submodular upper bounds, there is always one one that can be used to

reproduce the original greedy solution for the objective f as well as its performance guarantee based

on the greedy submodularity ratio. In particular if γG is the greedy submodularity ratio given by

Definition 5.4.9 and Sk are the greedily chosen sets, we may always define a modular upper bound
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f̂Sk(A) = f(Sk) + hSk(A) according to

hSk(A) =
1

γG

∑
a∈A

[f(Sk ∪ {a})− f(Sk)] . (5.97)

Using this objective, we observe that GUS will select precisely the same sets Sk as the original

greedy algorithm for the objective f . The function in Eq. 5.97 provides a submodular upper bound

for every A ⊂ M \ Sk with |A| ≤ K by definition of γG. Hence, thanks to Remark 5.4.12, Theo-

rem 5.4.11 holds for GUS using this objective. Moreover, we have ΓK = γG as a direct consequence

of Definition 5.4.10. Therefore, the performance bound given by Theorem 5.4.11 for GUS using

the submodular upper bound defined by Eq. 5.97 and cost c(S) = |S| is the same as the bound

f(Sk) ≥
(
1− e−γGk/K

)
f(S∗) using the greedy submodularity ratio in Eq. 5.82.

The main advantage of the submodularity gap ratio is that it can be computed exactly during

execution of Algorithm 1 without increasing the computational or memory complexity. On the other

hand, computing the (greedy) submodularity ratio (given by Definition 5.4.4) exactly would require

an auxiliary combinatorial optimization step. Since this is computationally infeasible, one is forced

into making highly pessimistic estimates, e.g. based on ratios of smallest and largest eigenvalues as

in [72] and [24].

When we are trying to maximize the logarithmic square error objective in Eq. 5.77, we can use

Lemma 5.4.6 to provide a submodular upper bound to be used by GUS. In particular, we define a

submodular (in fact, modular) upper bound f̂S(A) = f(S) + hS(A) using Lemma 5.4.6 according to

hS(A) =
1

NE(S)

N∑
i=1

∑
a∈A

Tr [Gi(S)P i({a})] . (5.98)

The resulting submodularity gap ratio ΓK can be computed directly during the execution of GUS

simply be comparing the increment in the objective f to the increment predicted by the submodular

upper bound for each of the selected elements. We also note that Lemma 5.4.6 yields a lower bound

for the submodularity gap ratio using the objective in Eq. 5.98,

ΓK ≥ min
0≤k<K

(
E(Sk)

E(Sk+1)

)(∑N
i=1 Tr [Gi(Sk+1)P i({jk+1})]∑N
i=1 Tr [Gi(Sk)P i({jk+1})]

)
≥ min

0≤k≤K−1

(
λk

Λk+1

)2

, (5.99)

where λk and Λk+1 are defined as in Proposition 5.4.7 and may be computed a priori. We observe

that the a posteriori lower bound given by the first inequality above has a superior form compared

to the a posteriori lower bound for the greedy submodularity ratio (see Definition 5.4.4) given by
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the first inequality of Eq. 5.90 in Proposition 5.4.7. However, the sets Sk above are the ones selected

using GUS, which may be different from the greedily selected Sk appearing in Eq. 5.90.

Remark 5.4.13 (Computational advantages of the linearized upper bound Eq. 5.98). We note

that optimizing Eq. 5.98 during each step of GUS is much less computationally costly than greedy

optimization based on the original objective when the state space dimension n is large. In particu-

lar, each matrix P i has dimension n × n and so computing each trace in Eq. 5.98 requires O(n2)

operations once Gi(Sk) has been found. This must be done once for each candidate sensor in the

collection M \ Sk. Computing Gi(Sk) requires one-time work of O(n3) during the kth step of GUS.

On the other hand, evaluating the performance of each candidate sensor in the collection M \ Sk
using the original objective f requires O(n3) operations because each P̄ i(Sk ∪ {a}) must be inverted.

Our approach may also be used to approximate the solutions of non-submodular set-covering

problems of the form

minimize
S⊆M

c(S) :=
∑
a∈S

c({a}) s.t. f(S) = f(M). (5.100)

These problems arise, for instance, when we want to find the minimum number of sensors (or

the cheapest collection of sensors) that achieve a specified level of performance at every operating

condition. Suppose that the average square error of optimal linear estimators (see Proposition 5.2.1)

using sensors S at a collection of operating conditions are given by

Ei(S) = gi(P̄ i(S)), gi : P 7→ Tr
(
T iP

−1T Ti

)
, (5.101)

and we want to find S ⊂ M of minimum cost c(S) such that Ei(S) ≤ εi for some thresholds εi > 0

at each 1 = 1, . . . , N . If it is possible to achieve Ei(M) ≤ εi for each 1 = 1, . . . , N using all of the

sensors, then we can cast this problem in the form of Eq. 5.100 using the non-submodular objective

f(S) =
1

N

N∑
i=1

min {Ei(∅)− Ei(S), Ei(∅)− εi} . (5.102)

To approximate the solution of Eq. 5.100, we construct a submodular upper bound (see Defini-

tion 5.4.9) for f that satisfies the following additional assumption:

Assumption 5.4.14. We assume that the submodular upper bound for the objective function f in

problem Eq. 5.100 shares the same maximum value, that is, it satisfies f̂S(A) ≤ f(M) for every

S ⊆M and A ⊆M \ S.
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We then use the GUS Algorithm 1 to choose sensors maximizing f and stopping when f(SK) = f(M)

is achieved. Here, K is not specified before the algorithm is run. Theorem 5.4.15 says that GUS is

guaranteed to achieve a certain minimum level of performance compared to the optimal solution of

the non-submodular set covering problem in Eq. 5.100.

Theorem 5.4.15 (Near-Minimum Cost Selection). Let ∅ = S0 ⊂ S1 ⊂ · · · ⊂ SK ⊆ M be the

sequence of sets computed by Algorithm 1 with f(SK−1) < f(M) and f(SK) = f(M). Let ΓK be the

corresponding submodularity gap ratio (see Definition 5.4.10) and let S∗ be the optimal solution of

Eq. 5.100 achieving cost C∗ = c(S∗). If K = 1 then the greedy solution is optimal with c(S1) = c(S∗).

Otherwise, when K > 1 the cost of the greedy solution satisfies

min
a∈SK

c(SK \ {a}) <
[
1 + ln

(
f(M)

ρmin
· Γ

C∗

)]
C∗

Γ
, (5.103)

where

ρmin = min
1≤k≤K

f(Sk)− f(Sk−1)

c(Sk)− c(Sk−1)
. (5.104)

Proof. We provide the proof in Appendix 5.A.

To provide some intuition for the result in Theorem 5.4.15, we restate the result below in the special

case when the sensors each have unit cost c(S) = |S|.

Corollary 5.4.16. When each measurement has unit cost c(S) = |S| ∀S ⊆ M then the conclusion

of Theorem 5.4.15 reduces to

|SK | ≤
⌈{

1 + ln

(
f(M)

ρmin
· Γ

|S∗|

)} |S∗|
Γ

⌉
, (5.105)

where a 7→ dae = min{b ∈ Z : a ≤ b} is the “ceiling” function that rounds a up to the smallest

integer greater than or equal to a.

In most cases, the results of Theorem 5.4.15 and Corollary 5.4.16 provide pessimistic a priori bounds

on the approximation ratio c(SK)/C∗. On the other hand, they provide much sharper a posteriori

lower bounds on the optimal cost C∗ once the greedy solution has been computed. One obtains the

lower bound by finding the smallest value of C∗ that satisfies the conclusion of Theorem 5.4.15.

Suppose we are using the objective function in Eq. 5.102 consisting of clipped square errors of

optimal linear estimators. The square error of each component estimator has the upper and lower

bounds stated in Lemma 5.4.17 thanks to the operator convexity of each function gi.
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Lemma 5.4.17 (Modular sandwich for mean square error). The change in the mean square error

Eq. 5.101 for every S, S′ ⊆M is bounded above and below by

Tr [Gi(S
′) (P i(S

′)− P i(S))] ≤ −Ei(S′) + Ei(S) ≤ Tr [Gi(S) (P i(S
′)− P (S))] , (5.106)

where

Gi(S) := −∇ gi(P̄ i(S)) = P̄ i(S)−1T Ti T iP̄ i(S)−1. (5.107)

Proof. This follows right away from the operator convexity of the matrix inverse shown in Lemma 5.A.2

in Appendix 5.A.

This result allows us to construct a submodular upper bound for the objective Eq. 5.102 stated

below in Proposition 5.4.18. In particular, we use Lemma 5.4.17 to provide a modular upper bound

for each component, which is then clipped at the maximum possible value of each component.

Lemma 5.4.18 (Submodular Bound for Clipped MSE). The objective function Eq. 5.102 admits a

submodular upper bound (see Definition 5.4.9) given by f̂S(A) = f(S) + hS(A), where

hS(A) =
1

N

N∑
i=1

min {Tr [Gi(S)P i(A)] , Ei(S)− εi} . (5.108)

Proof. The fact that f̂S(A) ≥ f(S ∪A) is an upper bound follows immediately from Lemma 5.4.17

and the fact that the ith component of f is bounded above by Ei(∅) − εi. Furthermore, the ith

component of f̂S(A) is a concave function x 7→ min {Ei(∅)− Ei(S) + x, Ei(∅)− εi} composed with

a modular, monotone increasing function

A 7→ Tr [Gi(S)P i(A)] =
∑
a∈A

Tr [Gi(S)P i({a})] , (5.109)

and is therefore submodular.

As before, Lemma 5.4.17 can be used to construct an a priori bound for the submodularity gap ratio

using the clipped square error objective and the submodular upper bound in Proposition 5.4.18.

To summarize, existing performance guarantees for greedy algorithms applied to non-submodular

objectives are pessimistic and challenging to compute in practice. In this section, we presented an

alternative greedy algorithm in which a local submodular upper bound on the original objective is

maximized during each step. Such an upper bound is easy to compute for objectives like the square

error of optimal linear estimators which involve operator convex components. The algorithm has
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a posteriori guarantees that are less pessimistic than the original greedy algorithm and are much

easier to compute.

5.5 Sensor placement guaranteeing `1-based recovery

An important type of nonlinear reconstruction function involves using `1 minimization to recover

underling states in a set X ⊂ Rn whose elements are sparse vectors. For instance, J. L. Callaham et

al. [43] have used this approach to reconstruct flow fields in fluid dynamics problems by first coding

them as sparse vectors in a dictionary and using `1 minimization to recover these vectors from small

numbers of sensor measurements. The question we ask here is how to select the locations of such

sensors in order to guarantee that underlying sparse states can always be recovered using the `1

minimization approach. In this section, we will develop an approach for minimal sensor placement

that allows `1 minimization to exactly recover state vectors with any of a given set of sparsity

patterns. These sparsity patterns can be determined via dictionary learning or sparse coding of

a data set collected from the system under consideration [148, 232, 5, 251]. Our approach could

be especially useful when there are a somewhat small number of known sparsity patterns that we

wish to detect using our sensors, for example corresponding to the most probable configurations of

a system or to anomalies.

Designing measurement matrices that enable recovery of sparse vectors is a central goal in the

field of compressed sensing [93, 50, 81], which offers a variety of approaches and design criteria.

For instance, many different kinds of randomly generated measurement matrices guarantee exact

recovery of sparse vectors by `1 minimization with high probability [48, 49, 44, 45]. However, in our

case, we are interested in selecting optimal measurements in a deterministic manner from among

a given collection that guarantee recovery of sparse vectors. A complicating factor is that many

conditions that guarantee exact recovery of sparse vectors such as the Restricted Isometry Property

(RIP) for the measurement matrix [48, 44] are difficult to verify, making their use as optimization

objectives impractical. Fortunately, the convex duality condition appearing, e.g., in [47, 48, 45]

provides us with a practical optimization criteria that guarantees exact recovery of given sparsity

patterns by `1 minimization. We propose a constellation of convex programming approaches for

sensor placement based on satisfying this duality condition in order to ensure exact recovery of state

vectors having particular sparsity patterns.

We consider the simplest version of the `1 minimization problem for recovering sparse states from

a small collection of measurements. The states x ∈ Rn of our system are assumed to live in a subset
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X ⊂ Rn consisting of “sparse” vectors having only a small number of nonzero entries. If y = MSx

is a collection of linear measurements of the state coming from a collection of sensors S ⊂M where

the dimension dS of y is smaller than the dimension of x, then the reconstruction problem for x is

under-determined. When the state x is known to be sparse, one way to approximately reconstruct

x is by solving the `1 minimization problem

x̂ = ΦS(y) = argmin
z∈Rn

‖z‖1 s.t. MSz = y. (5.110)

The is a widely studied convex program for which there are variety of highly efficient solution

methods. The main question is under what conditions on the measurement matrixMS can Eq. 5.110

be expected to exactly reconstruct the original sparse vector x ∈ X ? The result in Theorem 5.5.1

answers this question by providing a sufficient condition for `1 minimization to recover x based on

the existence of a vector vS in the measurement space referred to as a “dual certificate”.

Theorem 5.5.1 (dual certificate of recovery, Theorem 9.8 in [62], Lemma 3.1 in [45]). Assume the

columns of MS corresponding to the nonzero entries of x are linearly independent. If

∃vS ∈ RdS such that


[
MT

SvS
]
i

= sgn([x]i) if [x]i 6= 0

−1 <
[
MT

SvS
]
i
< 1 otherwise,

(5.111)

then x is the unique solution of `1 minimization (Eq. 5.110) with y = MSx.

Proof. For completeness, we reproduce the proof given in the notes by Y. Chen [62] in Appendix 5.A.

We observe that the condition provided by Theorem 5.5.1 only depends on the signed sparsity

pattern of the vector x, and not on the specific values of its entries. In other words, a dual certificate

provided by Theorem 5.5.1 certifies that all vectors with the same signed sparsity pattern as x can

be recovered by `1 minimization using the measurements provided by MS.

The second key observation is that the existence of a dual certificate described by Theorem 5.5.1

is a linear feasibility problem. We can use this problem as a criterion for selecting sensors S ⊂ M.

The main idea is to consider all of the available sensors forming the matrix M = MM and to

find maximally sparse dual certificates for the desired sparsity patterns. The nonzero entries of

the resulting sparse dual certificates indicate the subset of measurements S ⊂ M that we select to

guarantee recovery of the given sparsity patterns. To illustrate, we begin by considering a single
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signed sparsity pattern s ∈ {−1, 0, 1}n and we try to find a sparse vector v = (v1, . . . ,vM ) in the

convex set

V(s) =
{
v ∈ RdM : [MTv]i = [s]i if [s]i 6= 0, and − 1 < [MTv]i < 1 otherwise

}
. (5.112)

Selecting the subset S = {j1, . . . , jK} ⊂M containing the support (nonzero elements) of v automat-

ically provides a dual certificate

vS = (vj1 , . . . ,vjK ) (5.113)

guaranteeing that any x ∈ Rn with sgn(x) = s can be recovered by `1 minimization using the

sensors MS according to Theorem 5.5.1.

Now suppose there are multiple sparsity patterns s1, . . . , sN . In this case, we try to find multiple

vectors v1, . . . ,vN in the corresponding sets V(si) so that the support of every vi is contained in

the same small subset S ⊂M. Here, each viS provides a dual certificate that any vector x ∈ Rn with

signed sparsity pattern sgn(x) = si can be recovered by `1 minimization using the sensors MS.

We may employ a variety of optimization approaches for sensor selection based on convex re-

laxation of the desired structured sparsity of the dual certificate vectors. These approaches bear

resemblance to the convex optimization approaches we discussed in Section 5.4.1 as well as to the

group LASSO method [296] described briefly at the end of Section 5.2.1. Letting

V j =

[
v1
j · · · vNj

]
, j ∈M, (5.114)

any V j containing a nonzero entry corresponds to a sensor that we include in the set S. One way

to promote sparsity among these matrices is by minimizing

‖V M‖1,∞ =
∑
j∈M
‖V j‖∞ =

∑
j∈M

max
1≤i≤N

‖vij‖∞, (5.115)

subject to constraints vi ∈ V(si), i = 1, . . . , N . One wrinkle is that the constraints of the form

−1 < [Mv]i < 1 are open and cannot be imposed directly. The simplest approach is to introduce a

small constant ε > 0 and to impose constraints vi ∈ Vε(si) using the closed convex polyhedra

Vε(s) =
{
v ∈ RdM : [MTv]i = [s]i if [s]i 6= 0, and − 1 + ε ≤ [MTv]i ≤ 1− ε otherwise

}
.

(5.116)
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This yields a relaxed optimization problem for minimum sensor placement,

minimize
v1,...,vN∈RdM

‖V M‖1,∞ s.t. vi ∈ Vε(si), ∀i = 1, . . . , N, (5.117)

which can be solved (after introducing auxiliary variables) by linear programming! Another way to

promote sparsity among the matrices V i is to minimize the group LASSO penalty

‖V M‖1,F =
∑
j∈M
‖V j‖F (5.118)

in Eq. 5.117 instead of ‖V M‖1,∞. We can also use other convex, but nonlinear methods to impose

the constraints −1 < [Mv]i < 1. For instance, we could add a convex logarithmic penalization term

ρ(V M) = −
N∑
i=1

∑
1≤k≤dM:
[si]k=0

log
(

(1 + [MTvi]k)(1− [MTvi]k)
)
, (5.119)

with a small weight γ > 0 to the optimization objective. The result is a convex programming

problem

minimize
v1,...,vN∈RdM

‖V M‖1,F or ∞ + γρ(V M) s.t. [MTvi]k = [si]k, ∀i, k : [si]k 6= 0, (5.120)

which has only linear equality constraints.

Suppose that we have a set X ⊂ Rn of sparse state vectors and a probability measure µ on

X . Suppose we draw an independent, identically distributed sample x1, . . . ,m ∈ X under µ and

choose sensors S that guarantee `1 minimization-based recovery of any x ∈ Rn with signed sparsity

among the samples sgn(x) ∈ {sgn(x1), . . . , sgn(xm)}. Let XS denote the subset of states in X that

can be recovered by `1 minimization using the sensors S. How many samples m must we draw to

ensure that most states can be recovered in the sense that µ(XS) > 1 − δ with high probability?

Theorem 5.5.2, below, answers this question provided with an a priori estimate L on the size of the

selected set of sensors. The interesting aspect of Theorem 5.5.2 is that the required sample size m

is much smaller than the number of sparsity patterns among vectors in Rn, which has combinatorial

growth.

Theorem 5.5.2 (Sampling to probably recover most states). Let x1, . . . ,xm be independent random

vectors drawn from X according to the probability measure µ and let the set of sensors S be chosen so

that `1 minimization is guaranteed to recover x1, . . . ,xm. We assume that the selected set S always
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has at most L elements. If the number of sampled vectors is at least

m ≥ 1

2δ2

(
L log(|M|)− log(p)

)
, (5.121)

then µ(XS) > 1− δ with probability at least 1− p.

Proof. We use an argument based on the union bound and Hoeffding’s inequality to control the

probability that the fraction of {x1, . . . ,xm} recovered by `1 minimization differs from µ(XS′) by

more than δ for any set of sensors S′ with |S′| ≤ L. Since S is assumed to be among such sets and S

guarantees recovery of each x1, . . . ,xm, the stated result holds for S. We give the detailed proof in

Appendix 5.A.

In the worst case, we can set L = min{|M|, n} in Theorem 5.5.2 because we cannot select more

sensors than are available, and any set of n linearly independent measurements will recover the

state x ∈ Rn. More sophisticated arguments based on dimensionality considerations might also be

used to provide superior bounds for the number of selected sensors. We also note that the proof of

Theorem 5.5.2 fundamentally has nothing to do with the specific recovery procedure, in this case `1

minimization; the argument relies only on the fact that S is chosen so that the recovery procedure

works for the sample x1, . . . ,xm.

In conclusion, the dual certificate provides us with a convenient way to determine whether a

given sparsity pattern can be recovered from sensor measurements by `1 minimization. We use

this criterion as a basis for several proposed convex optimization approaches for minimal sensor

placement to guarantee that a desired collection of sparsity patterns can be recovered. Interestingly,

we have given a result that shows that we do not have to include an enormous number of sparsity

patterns in this set to guarantee that most sparsity patterns in the underlying set of states X can be

recovered by `1 minimization from the selected sensor measurements with high probability. Future

work will include studying the robustness of the sensors selected using the proposed methods to

noise and disturbances.
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Appendix

5.A Chapter 5 Proofs

Proof of Proposition 5.2.1 (optimal linear estimator). We shall find an optimal linear estimator of

the form

ĝ = AyS, (5.122)

where yS = MSx+ nS, that minimizes the mean square errorE ‖g − ĝ‖22. Recalling the definition

of CyS
, observe that yS has no variance outside RangeCyS

. Consider the eigen-decomposition the

symmetric positive semi-definite covariance matrix

CyS
=

[
W W 0

]Λ2

0


W T

W T
0

 = WΛ2W T , (5.123)

where Λ2 contains the strictly positive eigenvalues and let B = AW . The matrix B determines the

estimate because

ĝ = AyS = AWW TyS = BW TyS, (5.124)

and we shall show that there is a unique optimal B. The error to be minimized over all linear

estimates is given by

E(B) :=E ‖g −BW TyS‖22 = TrCg − 2 Tr
(
Cg,yS

WBT
)

+ Tr
(
BΛ2BT

)
. (5.125)

This is a strictly positive definite quadratic objective and is therefore uniquely minimized by

B∗ = Cg,yS
WΛ−2, (5.126)

yielding the optimal linear estimate

ĝ = B∗W
TyS = Cg,yS

WΛ−2W TyS = Cg,yS
C+
yS
yS. (5.127)

When the matrix CyS
is not invertible, then there are an infinite number of matrices A such

that AW = B∗, of which Cg,yS
C+
yS

is only one such choice. The optimal linear estimate is always

unique because all optimal linear estimators agree on the range of CyS
. On the other hand, when

CyS
is invertible, then W is also invertible and B∗ uniquely determines A. Hence, the optimal
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linear estimate is always unique, but the optimal linear estimator is unique if and only if CyS
is

invertible.

Notice that by a property of the Moore-Penrose pseudoinverse the covariance of the estimate is

given by

C ĝ = Cg,yS
C+
yS
CyS

C+
yS
CyS,g = Cg,yS

C+
yS
CyS,g. (5.128)

Expanding the error covariance and substituting the estimator (5.127) and its covariance (5.128)

yields the result

Ce = Cg −Cg,yS
C+
yS
CyS,g = Cg −C ĝ. (5.129)

Lemma 5.A.1 (Matrix Inversion Reverses Loewner Order). Let A � 0 and B � 0 be symmetric

positive definite matrices with A � B. Then the matrix inverses have the opposite Loewner order

relation A−1 � B−1.

Proof. By assumption, one readily checks that B−1/2AB−1/2 � I since for every x, we have

(
xTB−1/2

)
A
(
B−1/2x

)
≥
(
xTB−1/2

)
B
(
B−1/2x

)
= xTx. (5.130)

This means that all eigenvalues of B−1/2AB−1/2 are at least 1, so the eigenvalues of the inverse

B1/2A−1B1/2 lie in (0, 1]. Therefore B1/2A−1B1/2 � I and so for every x we have

xTA−1x =
(
xTB−1/2

)
B1/2A−1B1/2

(
B−1/2x

)
≤
(
xTB−1/2

)(
B−1/2x

)
= xTB−1x,

(5.131)

completing the proof.

Lemma 5.A.2 (Matrix Inversion is Convex in the Loewner Order). Let A � 0 and B � 0 be

symmetric positive definite matrices and α ∈ [0, 1]. Then, we have

(αA+ (1− α)B)
−1 � αA−1 + (1− α)B−1. (5.132)

Proof. Our proof is based on the one found in [52], in fact, it is a special case of the Loewner-Heinz

theorem. Let C = A−1/2BA−1/2 and factor out A−1/2 from the difference of the right and left
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hand sides of the desired inequality

(αA+ (1− α)B)
−1 − αA−1 − (1− α)B−1 =

A−1/2
[
(αI + (1− α)C)

−1 − αI − (1− α)C−1
]
A−1/2. (5.133)

Consider the eigen-decomposition C = V ΛV T and observe that

(αI + (1− α)C)
−1 − αI − (1− α)C−1 = V

[
(αI + (1− α)Λ)

−1 − αI − (1− α)Λ−1
]
V T . (5.134)

If λ > 0 is an eigenvalue of C then (α+ (1− α)λ)
−1 ≤ α− (1− α)λ−1 by convexity of the function

x 7→ x−1 on the positive real numbers. Therefore, we have

(αI + (1− α)Λ)
−1 − αI − (1− α)Λ−1 � 0 (5.135)

from which it immediately follows that

(αA+ (1− α)B)
−1 − αA−1 − (1− α)B−1 � 0, (5.136)

which proves convexity.

Proof. (Proof of Eq. 5.49) Letting S∗K denote a maximizer of the relaxed objective in Eq. 5.47 under

the sensor budget constraint |S| ≤ K, and combining Eq. 5.48 with Theorem 5.0.2 we obtain

Fαγ(Sk) ≤ F∞ − fγ(Sk)

1− α2
≤ 1

1− α2

[
F∞ −

(
1− e−k/K

)
fγ(S∗K)

]
. (5.137)

Since fγ(S∗K) ≥ fγ(S) for every S with |S| ≤ K and |S̃∗K | ≤ K, we have fγ(S∗K) ≥ fγ(S̃K
∗
). Finally,

because fγ ≥ f̃γ , we obtain

Fαγ(Sk) ≤ 1

1− α2

[
F∞ −

(
1− e−k/K

)
f̃γ(S̃∗K)

]
, (5.138)

which can be rearranged and minimized over K to give Eq. 5.49.
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Proof. (Proof of Eq. 5.50) Proceeding in the same way as in the proof of Eq. 5.49, we find

fγ(Sk) ≥
(

1− e−k/K
)
fγ(S∗K) (5.139)

≥
(

1− e−k/K
)
fγ(S̃∗K) (5.140)

≥
(

1− e−k/K
)
f̃γ(S̃∗K) =

(
1− e−k/K

)
(F∞ − Fγ(S̃∗K)). (5.141)

The above inequality can be rearranged to provide a lower bound on Fγ(S̃∗K), which is then maxi-

mized over k, yielding Eq. 5.50.

Proof of Theorem 5.4.1 (Existence of local reconstruction). Suppose that X ,M, andN have dimen-

sions dX , dM, and dN respectively. Choose any x0 ∈ X and let U ′ ⊂ X be an open neighborhood

of x0 over which D f has constant rank r. By the rank theorem (Theorem 4.12 on p.81 in J. M. Lee

[149]), there is an open neighborhood U ⊂ U ′ of x0 and a neighborhood Ṽ ⊂ M of f(x0) and local

parametrizations φ : RdX → U , ψ̃ : RdM → Ṽ such that f(U) ⊂ Ṽ and

ψ−1 ◦ f ◦ φ(z1, . . . , zr, zr+1, . . . , zX ) = (z1, . . . , zr, 0, . . . , 0). (5.142)

Taking any p ∈ f(U), we observe that p = ψ̃(z̄1, . . . , z̄r, 0, . . . , 0) for some z̄1, . . . , z̄r and so

f−1(p) ∩ U =
{
φ(z̄1, . . . , z̄r, zr+1, . . . zdM) : (zr+1, . . . , zdM) ∈ RdM−r

}
(5.143)

is a smooth, connected submanifold of U with codimension r.

For each x ∈ U , we define the linear map Ax : Tf(x)M→ Tg(x)N according to

Axξ = D g(x)η for any η ∈ TxX such that D f(x)η = ξ. (5.144)

The map Ax is well-defined thanks to the assumption stated in Eq 5.58, for if we choose another

η′ ∈ TxX with D f(x)η′ = ξ then η− η′ ∈ ker D f(x) ⊂ ker D g(x), then we have D g(x)η′ = D g(x)η.

We use this map to show that g(x) is constant for every x ∈ f−1(p) ∩ U , allowing us to define

h(p) = g(x) for any x ∈ f−1(p) ∩ U . If r = dX then f−1(p) ∩ U consists of a single point and the

statement is trivial. If r < dX , we choose any distinct x, x′ ∈ f−1(p)∩U and join them by a smooth

path γ : [0, 1]→ f−1(p) ∩ U with γ(0) = x and γ(1) = x′. By the fundamental theorem of calculus
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and the definition of Ax, we have

g(x′)− g(x) =

∫ 1

0

D g(γ(t))
d

d t
γ(t) d t

=

∫ 1

0

Aγ(t) D f(γ(t))
d

d t
γ(t) d t

=

∫ 1

0

Aγ(t)
d

d t
(f ◦ γ︸ ︷︷ ︸

p

)(t) d t = 0.

(5.145)

Therefore, the function h is well-defined on f(U) and we have g(x) = h(f(x)) for every x ∈ U .

Moreover, the derivative of h is given by

Dh(y) = Ax for any x ∈ X such that f(x) = y, (5.146)

because D g(x)η = Dh(y) D f(x)η = Axη for every η ∈ TxX . Repeated differentiation of g ◦ φ =

h ◦ f ◦φ by the chain rule shows that derivatives of h exist up to any order, and so h is smooth.

Proof of Proposition 5.4.7 (greedy submodularity ratio for logarithmic objective). Consider the greed-

ily chosen set Sk and any Ω ⊂M with |Ω| = K. Applying Lemma 5.4.6 yields a lower bound for the

ratio

R =

∑
ω∈Ω\Sk [f(Sk ∪ {ω})− f(Sk)]

f(Sk ∪ Ω)− f(Sk)
≥
∑
ω∈Ω\Sk

(
E(Sk)

E(Sk∪{ω})

)∑N
i=1 Tr [Gi(Sk ∪ {ω})P i({ω})]∑

ω∈Ω\Sk
∑N
i=1 Tr [Gi(Sk)P i({ω})]

.

(5.147)

This equation may be re-written as a weighted average

R ≥
∑

ω∈Ω\Sk
wΩ(ω)

(
E(Sk)

E(Sk ∪ {ω})

)(∑N
i=1 Tr [Gi(Sk ∪ {ω})P i({ω})]∑N

i=1 Tr [Gi(Sk)P i({ω})]

)
(5.148)

with weights

wΩ(ω) =

∑N
i=1 Tr [Gi(Sk)P i({ω})]∑

ω′∈Ω\Sk
∑N
i=1 Tr [Gi(Sk)P i({ω′})]

≥ 0 (5.149)

that sum to 1. All of the dependence on Ω for each term in the bound on R is captured by these

weights. We can remove this dependence by bounding the weighted average from below by its

smallest term

R ≥ min
ω∈Ω\Sk

(
E(Sk)

E(Sk ∪ {ω})

)(∑N
i=1 Tr [Gi(Sk ∪ {ω})P i({ω})]∑N

i=1 Tr [Gi(Sk)P i({ω})]

)
. (5.150)

Minimizing over all subsets Ω ⊂M with |Ω| = K and k = 0, . . . ,K−1, we obtain the first inequality
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in Eq. 5.90.

To obtain the a priori bound given by the second inequality in Eq. 5.90, we must remove the

dependence on the greedily chosen sets. To do this, we observe that if P̄ =
∑n
i=1 λiviv

T
i is a

symmetric positive semi-definite eigen-decomposition with {v1, . . . ,vn} taken to be orthonormal

and G = P̄
−1
T TT P̄

−1
, then

Tr (GH) =

n∑
i=1

n∑
j=1

λiλj Tr
(
viv

T
i T

TTvjv
T
j H

)
(5.151)

for any n× n matrix H. Assuming that H is symmetric and positive semi-definite, we exploit the

rearrangement property and invariance of the trace under similarity transformation to obtain the

upper and lower bounds,

λmax

(
P̄
)−2

Tr
(
THT T

)
≤ Tr (GH) ≤ λmin

(
P̄
)−2

Tr
(
THT T

)
. (5.152)

Letting γ denote the middle quantity in Eq. 5.90, we apply the above result to each term in the

numerator and denominator to obtain

γ ≥ min
0≤k≤K−1
a∈M

(
E(Sk)

E(Sk ∪ {a})

)∑N
i=1 λmax

[
P̄ i(Sk ∪ {a})

]−2
Tr
[
T iP i({a})T Ti

]
∑N
i=1 λmin

[
P̄ i(Sk)

]−2
Tr
[
T iP i({a})T Ti

]
 . (5.153)

Bounding the sums from above and below gives

γ ≥ min
0≤k≤K−1
a∈M

(
E(Sk)

E(Sk ∪ {a})

)(
min1≤i≤N λmin

[
P̄ i(Sk)

]
max1≤i≤N λmax

[
P̄ i(Sk ∪ {a})

])2

. (5.154)

By Weyl’s inequality, we observe that

min
1≤i≤N

λmin

[
P̄ i(Sk)

]
≥ λk, and (5.155)

max
1≤i≤N

λmax

[
P̄ i(Sk ∪ {a})

]
≤ Λk+1, (5.156)

which, together with the fact that E(Sk) ≥ E(Sk ∪ {a}) for every a ∈ M thanks to monotonicity,

completes the proof of the second inequality in Eq. 5.90.

Proof of Theorem. 5.4.11 (Greedy Upper Selection Performance). Consider the sets Sk selected by
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Algorithm 1. By monotonicity of f , we have

f(S∗)− f(Sk) ≤ f(S∗ ∪ Sk)− f(Sk). (5.157)

Since f̂Sk is a submodular upper bound, it follows that

f(S∗)− f(Sk) ≤ hSk(S∗ \ Sk) ≤
∑

a∈S∗\Sk
hSk({a}). (5.158)

By definition of Algorithm 1, we choose ak+1 ∈ M \ Sk and form Sk+1 = Sk ∪ {ak+1} so that

hSk({a})/c({a}) ≤ hSk({ak+1})/c({ak+1}) for all a ∈M \ Sk, therefore

f(S∗)− f(Sk) ≤
∑

a∈S∗\Sk

c({a})
c({ak+1})

hSk({ak+1}) ≤
C

c({ak+1})
hSk({ak+1}). (5.159)

Using the definition of the submodularity gap ratio for the sequence of greedily chosen sets, we relate

the increment of the submodular upper bound to the increment of the objective, yielding

f(S∗)− f(Sk) ≤ C

ΓKc({ak+1})
(f(Sk+1)− f(Sk)) . (5.160)

Re-arranging we obtain the recursive relationship

f(S∗)− f(Sk+1) ≤
(

1− ΓK
c({ak+1})

C

)
(f(S∗)− f(Sk))

< e−ΓKc({ak+1})/C (f(S∗)− f(Sk)) ,

(5.161)

where the second inequality follows from convexity of the exponential function and the fact that no

measurement is free, i.e., c({a}) > 0 ∀a ∈ M. Iterating this bound starting from f(S∗) − f(S0) =

f(S∗) and recalling
∑k
i=1 c({ai}) = c(Sk) we conclude that

f(S∗)− f(Sk) < e−ΓKc(Sk)/Cf(S∗), ∀k ≥ 1 (5.162)

which can be re-arranged to produce the stated result.

Proof of Theorem. 5.4.15 (Near-Minimum Cost Selection). The case when K = 1 is trivial. We

start by observing that scaling f by any positive constant does not change the optimization problem

Eq. 5.100 or the sequence of sets obtained by Algorithm 1. Therefore, let us work with the new
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function defined by f̃ := 1
ρmin

f which satisfies

f̃(Sk)− f̃(Sk−1)

c(Sk)− c(Sk−1)
≥ 1, ∀k ≥ 1. (5.163)

For any φ > 0 and 1 ≤ k ≤ K, the conclusion of Theorem 5.4.11 with C = C∗ can be used to show

that

c(Sk) ≥ C∗

Γ
ln

(
f̃(M)

φ

)
⇒ φ > f̃(M)− f̃(Sk) ⇒ φ > c(SK)− c(Sk), (5.164)

where the second implication holds because

f̃(M)− f̃(Sk) =

K∑
i=k+1

(
f̃(Si)− f̃(Si−1)

)
≥

K∑
i=k+1

(c(Si)− c(Si−1)) = c(SK)− c(Sk). (5.165)

If

c(SK) ≥ C∗

Γ
ln

(
f̃(M)

φ

)
(5.166)

then there is an index k with 1 ≤ k ≤ K such that

c(Sk) ≥ C∗

Γ
ln

(
f̃(M)

φ

)
> c(Sk−1), (5.167)

hence

c(Sk) <
C∗

Γ
ln

(
f̃(M)

φ

)
+ c(Sk)− c(Sk−1) ≤ C∗

Γ
ln

(
f̃(M)

φ

)
+ max
a∈SK

c({a}). (5.168)

By Eq. 5.164 we therefore obtain

c(SK) < φ+
C∗

Γ
ln

(
f̃(M)

φ

)
+ max
a∈SK

c({a}) (5.169)

for all φ > 0. Choosing the minimizing value φ = C∗/Γ completes the proof.

Proof of Theorem 5.5.1 (dual certificate of recovery). Here, we provide the proof exactly as it is

given in [62]. For simplicity of notation, we shall drop the subscript S since it will not change

throughout the proof. Suppose that x+h is an optimizer for the `1 minimization problem Eq. 5.110,

then it suffices to prove that h = 0. First, we suppose that h has a nonzero element hi 6= 0 with
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i /∈ supp(x). We observe that the vector w ∈ Rn defined element-wise by

wi = sgn(xi) if xi 6= 0

wi = sgn(hi) otherwise
(5.170)

is a member of the sub-gradient set

∂‖x‖1 = {g ∈ Rn : ‖x+ h‖1 ≥ ‖x‖1 + 〈g, h〉 ∀h ∈ Rn} . (5.171)

By definition of the sub-gradient and the fact that y = Mx = M(x+ h), i.e., Mh = 0, we obtain

‖x‖1 ≥ ‖x+ h‖1 ≥ ‖x‖1 + 〈w, h〉 = ‖x‖1 + 〈w −MTv, h〉, (5.172)

and so 〈w −MTv, h〉 ≤ 0. However, letting u = MTv, we find

〈w −MTv, h〉 =
∑

i/∈supp(x)

(sgn(hi)hi − uihi)

=
∑

i/∈supp(x)

(|hi| − uihi) ≥
∑

i/∈supp(x)

(1− |ui|) |hi| > 0,

(5.173)

which is a contradiction. Therefore, hi = 0 for every i /∈ supp(x). Let S = supp(x) and let hS denote

the restriction of h to the subset of its elements in S. We also let MS denote the sub-matrix of M

formed by retaining the columns in S. Moreover, since supp(h) ⊂ S, we have MShS = 0, which

implies that hS = 0 since MS is injective by assumption. Therefore, we conclude that h = 0.

Proof of Theorem 5.5.2 (sampling to probably recover most states). For any subset S′ ⊂ M of sen-

sors, we have

µ(X ′S) =E [1 {x ∈ XS′}] (5.174)

We observe that for our selected set of sensors S, we have xi ∈ XS for every i = 1, . . . ,m, and so

the empirical average

Am(S) =
1

m

m∑
i=1

1 {xi ∈ XS} = 1. (5.175)

If we can bound the amount by which Am(S′) over-estimates µ(X ′S) for every S′ ⊂ M of size at

most L with high probability, then we automatically obtain a lower bound for µ(XS) using the

optimal sensors S that holds with high probability. Fixing S′ ⊂ M, we recognize that 1 {xi ∈ XS}

are independent, identically distributed Bernoulli random variables, and so Hoeffding’s inequality
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yields

P {Am(S′)− µ(X ′S) ≥ δ} ≤ e−2mδ2

. (5.176)

Unfixing S′ among sets with at most L elements using the union bound, we obtain

P
⋃

S′⊂M:
|S′|≤L

{Am(S′)− µ(X ′S) ≥ δ} ≤
∑

S′⊂M:
|S′|≤L

e−2mδ2

. (5.177)

If |M| = M , then the number of subsets of M with at most L elements is bounded by

|{S ⊆M : |S| ≤ L}| =
L∑
k=1

(
M

k

)
≤

L∑
k=1

Mk

k!
≤ LM

L

L!
=

ML

(L− 1)!
≤ML. (5.178)

Substituting this estimate into the union bound, we obtain

P
⋃

S′⊂M:
|S′|≤L

{Am(S′)− µ(X ′S) ≥ δ} ≤ eL log(M)−2mδ2

< p. (5.179)

when

m ≥ 1

2δ2

(
L log(M)− log(p)

)
. (5.180)

Recalling that Am(S) = 1 proves the desired result, namely that µ(XS) ≤ 1− δ with probability less

than p.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

This thesis presents several advances in data-driven modeling and sensing techniques for high-

dimensional nonlinear systems such as those arising from discretized fluid flow simulations. There

are three key takeaways from this work. The first is that reduced-order models (ROMs) based on

nonlinear manifolds can provide significant dimensionality reduction and improved representational

power when compared to models based on linear subspaces. The reduction is especially significant

when modeling coherent structures that translate in space, such as advecting vortices in fluid dy-

namics. In Section 3.4 we developed an autoencoder for projecting dynamical systems onto such

nonlinear manifolds. In Chapter 5, we demonstrated how low-dimensional nonlinear structure can

be leveraged to identify minimal collections of sensors, and how linear techniques fail to do so.

The second key takeaway is that nonlinear coherent structures for dimensionality reduction can be

identified using simulation or experimental data. This is especially useful for systems operating in

regimes that are too far away from an equilibrium to apply perturbative techniques.

The final takeaway is that while simulation and experimental data is useful, it does not provide

the required sensitivity information about the system when the state dimension exceeds the number

of snapshots collected from the system. In Chapter 3.3 we describe how improperly modeling the

system’s sensitivity can result in poor predictions for systems in which low-energy features play

a dynamically significant role. We conclude that the linearized adjoint of the original system is

an indispensable tool for modeling the system’s sensitivity. We describe several ways in which

the adjoint can be leveraged for reduced-order modeling. The simplest approach is to construct a
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projection into a truncated coordinate system where a forward and an adjoint covariance matrix

are balanced. This generalization of balanced POD [225] may serve as a standard pre-processing

step for nearly any subsequent data-driven modeling technique such as (E/K)DMD, SINDy, RNNs,

nonlinear Galerkin projection, etc.. Using these key takeaways, a variety of data-driven reduced-

order modeling and sensing techniques beyond what we have presented may be conceived.

6.2 Outlook and future work

The most important next step will be to use the data-driven modeling techniques developed here

for feedback control. However, using a data-driven model for feedback control will likely present its

own challenges. This is because feedback control can significantly change the distribution of state

and input time histories away from the distribution on which the original model was trained. The

learned model may no longer be valid near the closed loop trajectories if they do not resemble the

training data. One solution is to use enough training data and a model of sufficiently high complexity

so that every relevant open or closed-loop trajectory can be modeled accurately. However, this is

unsatisfying and possibly very costly as systems with complex dynamics will have to be exhaustively

sampled. We anticipate that ROMs designed specifically for the closed-loop setting will achieve

higher performance in terms of accuracy and dimension reduction using less data. Some ways we

can begin to design these models are described below.

One approach to improve the accuracy of nonlinear ROMs in the actuated setting is to con-

strain them in the neighborhood of a fixed point or trajectory to be stabilized. For instance, we

can constrain the model to agree with the H2-optimal projection or with balanced truncation of the

linearized system about a fixed point. In the case of the nonlinear projection method described in

Section 3.4, this may entail imposing additional constraints on the autoencoder’s weights, or design-

ing a different architecture that provides only high-order corrections to a given linear projection. In

addition to constraining the model near a fixed point, it may also be helpful to constrain the model

so that it respects known symmetries and conservation laws of the original system.

Another class of approaches for data-driven closed-loop reduced-order modeling entails optimizing

the parameters of the ROM in the closed-loop setting. One approach is to obtain a sequence of

models, where the next model in the sequence is trained on data collected from the closed-loop

system with feedback provided based on the previous model. If one has access to the full-order

model (FOM) and its linearized adjoint, then another option is to directly optimize the parameters

defining the ROM based on its performance in the closed-loop setting. In particular, the optimal
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open loop input signal computed for the ROM can be differentiated with respect to the parameters

of the ROM by differentiating the Euler-Lagrange optimality condition and solving the resulting

linear system. Since the gradient of the cost function may be computed with respect to the input

of the FOM, the chain rule can be applied to find the gradient of the cost function with respect to

the parameters of the ROM when its optimal input signal is fed into the FOM.

Finally, in settings where the governing equations are inaccessible, it may be possible to leverage

tools from reinforcement learning to construct optimal ROMs and the resulting control policies.

In particular, optimal policies for simple ROMs may be a useful parametric class of policies for

reinforcement learning. Here, the parameters defining a given policy are the parameters of a ROM.

Alternatively, the optimal value function (or Q function) may be parametrized using the optimal

value function (or Q function) associated with a ROM. Here, one would optimize the parameters of

the model so that its optimal value function (or Q function) closely approximates that of the FOM.

Of course both approaches are made possible via differentiation of the optimal input signal for the

ROM with respect to the parameters that define the ROM.
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Part II

Selected Papers
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Chapter 7

Overview

In this part we reproduce selected papers by the author and collaborators that provide additional

details and results pertaining to the methods summarized in Part I. The papers are:

• Chapter 8: S. E. Otto, A. Padovan, C. W. Rowley, “Optimizing Oblique Projections for

Nonlinear Systems using Trajectories”, submitted to SISC, 2021 [192]

• Chapter 9: S. E. Otto and C. W. Rowley, “Linearly-Recurrent Autoencoder Networks for

Learning Dynamics”, published in SIADS, 2019 [194]

• Chapter 10: S. E. Otto and C. W. Rowley, “Inadequacy of Linear Methods for Minimal Sensor

Placement and Feature Selection in Nonlinear Systems; a New Approach Using Secants”,

submitted to JNLS, 2021 [195]

These papers have been selected because of their relevance to the discussion in Part I and because

their main contributions are primarily attributable to S. E. Otto. Other papers by the author that

are not reproduced here include

• S. E. Otto and C. W. Rowley, “A Discrete Empirical Interpolation Method for Interpretable

Immersion and Embedding of Nonlinear Manifolds”, arXiv pre-print, 2019 [193]

• S. Peitz, S. E. Otto, and C. W. Rowley, “Data-driven model predictive control using interpo-

lated Koopman generators”, published in SIADS, 2020 [202]

• A. Padovan, S. E. Otto, and C. W. Rowley, “Analysis of amplification mechanisms and cross-

frequency interactions in nonlinear flows via the harmonic resolvent”, published in JFM, 2020

[197]
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• S. E. Otto and C. W. Rowley, “Koopman operators for estimation and control of dynamical

systems”, published in Ann. Rev. Contr. Robot. Aut. Sys., 2021. [196]

7.1 Author contributions

Here, we summarize the specific contributions by S. E. Otto and co-authors to each of the papers

selected for reproduction in this part.

7.1.1 Optimizing Oblique Projections for Nonlinear Systems using Tra-

jectories

• S. E. Otto had the idea to optimize oblique projections for nonlinear systems based on data.

He initially developed the biorthogonal manifold machinery presented in Section 3.4.2 for this

purpose.

• C. W. Rowley suggested working with the Grassmann manifold rather than the biorthogonal

manifold, which provided a more elegant description of the projection operators and enabled

the use of existing machinery for this manifold.

• S. E. Otto conceptualized and proved all of the theoretical results, including convergence

theorems for the geometric conjugate gradient algorithm. He also wrote the sections of the

paper concerning the Grassmann manifold and optimization on it.

• C. W. Rowley proposed the toy model and S. E. Otto produced the results for this example.

• A. Padovan was responsible for all aspects concerning the jet flow, including producing the

results on this example, writing the corresponding section of the paper, and appendices about

the adjoint Navier stokes equations.

• C. W. Rowley provided useful feedback and revisions of the paper that greatly improved its

overall clarity.

7.1.2 Linearly-Recurrent Autoencoder Networks for Learning Dynamics

• S. E. Otto had the idea to use autoencoders to approximate the Koopman operator and came

up with the resulting LRAN architecture and training strategy.
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• S. E. Otto had the idea to use balanced truncation to reduce the dimension of over-specified

E/KDMD-based models, and to reconstruct the state nonlinearly.

• C. W. Rowley guided the selection of examples to be included in the paper and contributed

to the paper’s overall organization

• C. W. Rowley edited several drafts of the paper and helped enormously to improve the clarity.

• William Eggert (mentioned in the acknowledgements) worked with S. E. Otto to write an

initial version of the LRAN code for a class project. S. E. Otto later built upon this code and

prepared the final examples used in the paper.

• C. W. Rowley mentioned trying to make the encoder a left-inverse of the decoder, which was

initially attempted by S. E. Otto without success and not included in the paper. Later on

in 2021, S. E. Otto realized that this could be accomplished by optimizing on biorthogonal

manifolds, see Section 3.4.1 in Part I.

7.1.3 Inadequacy of Linear Methods for Minimal Sensor Placement and

Feature Selection in Nonlinear Systems; a New Approach Using

Secants

• S. E. Otto had the idea to base greedy sensor placement techniques on secants and developed

the three submodular objectives presented in the paper.

• S. E. Otto conceptualized and proved all of the theoretical results in the paper, including the

results pertaining to down-sampling.

• S. E. Otto selected the examples for the paper and produced the results.

• C. W. Rowley provided conversations and suggestions that helped to sharpen the examples and

organization of the paper. For instance, he pointed out the connection with period-doubling.

• C. W. Rowley read and revised several drafts of the paper and provided suggestions which

greatly improved the clarity of the presentation.
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Chapter 8

Optimizing Oblique Projections for

Nonlinear Systems using

Trajectories
Samuel E. Otto, Alberto Padovan, and Clarence W. Rowley

Reduced-order modeling techniques, including balanced truncation and H2-optimal model reduc-

tion, exploit the structure of linear dynamical systems to produce models that accurately capture

the dynamics. For nonlinear systems operating far away from equilibria, on the other hand, current

approaches seek low-dimensional representations of the state that often neglect low-energy features

that have high dynamical significance. For instance, low-energy features are known to play an im-

portant role in fluid dynamics where they can be a driving mechanism for shear-layer instabilities.

Neglecting these features leads to models with poor predictive accuracy despite being able to accu-

rately encode and decode states. In order to improve predictive accuracy, we propose to optimize

the reduced-order model to fit a collection of coarsely sampled trajectories from the original system.

In particular, we optimize over the product of two Grassmann manifolds defining Petrov-Galerkin

projections of the full-order governing equations. We compare our approach with existing methods

such as proper orthogonal decomposition and balanced truncation-based Petrov-Galerkin projection,

and our approach demonstrates significantly improved accuracy both on a nonlinear toy model and

on an incompressible (nonlinear) axisymmetric jet flow with 69, 000 states.
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8.1 Introduction

Accurate low-dimensional models of physical processes enable a variety of important scientific and

engineering tasks to be carried out. Such models can be used to make real-time forecasts as well as

to shed light on the underlying physics through detailed analysis of the resulting dynamical system.

The models can also serve as a building block for filters that estimate the state of the system from

incomplete measurements and to design control laws to achieve desired behaviors from the system.

However, many real-world systems like complex fluid flows in the atmosphere as well as around

and inside aircraft are governed by extremely high-dimensional nonlinear systems — properties that

make tasks like real-time forecasting, state estimation, and control computationally prohibitive using

the original governing equations. Fortunately, the behavior of these systems is frequently dominated

by coherent structures and patterns [32] that may be modeled with equations whose dimension is

much smaller [250, 114]. The goal of “reduced-order modeling” is to obtain simplified models that

are suitable for forecasting, estimation, and control from the vastly more complicated governing

equations provided by physics. For reviews of modern techniques, see [14], [20] and [228]. For a

striking display of coherent structures in turbulence, see the shadowgraphs in G. L. Brown and A.

Roshko [32].

When the system of interest is operating close to an equilibrium point, the governing equations

are accurately approximated by their linearization about the equilibrium. In this case, a variety of

sophisticated and effective reduced-order modeling techniques can be applied with guarantees on the

accuracy of the resulting low-dimensional model [10, 20]. Put simply, linearity provides an elegant

and complete characterization of the system’s trajectories in response to inputs, disturbances, and

initial conditions that can be exploited to build simplified models whose trajectories closely approx-

imate the ones from the original system. For instance, the balanced truncation method introduced

by B. Moore [182] yields a low-dimensional projection of the original system that simultaneously

retains the most observable and controllable states of the system and provides bounds on various

measures of reduced-order model error [10]. A computationally efficient approximation called Bal-

anced Proper Orthogonal Decomposition (BPOD) [225] is suitable for high-dimensional fluid flow

applications. Another approach is to find a stable reduced-order model (ROM) that is as close

as possible to a stable full-order model (FOM) with respect to the H2 norm. Algorithms like the

Iterative Rational Krylov Algorithm (IRKA) [105] are based on satisfying necessary conditions for

H2-optimality.

Various generalizations of linear model reduction techniques have also been developed for bilinear
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[14, 17, 88] and quadratic bilinear systems [18, 19] based on truncated Volterra series expansion of

the output. If enough terms are retained in the series expansions, these methods can yield reduced

systems that approximate the response to arbitrary input signals. However, the computational cost

increases with the number of terms retained, making them difficult to apply to fluid flows whose

state dimensions can easily exceed 105.

One commonality among the above model reduction approaches based on direct input-output

relationships is that they lead to reduced-order models that capture the most energetic features as

well as any low-energy features that nonetheless significantly influence the dynamics at future times

[20, 225]. These small, but dynamically significant features are known to play an important role in

driving the growth of instabilities in “shear flows” such as mixing layers and jets. Linearizations

of these shear flows often result in non-normal systems, which can exhibit large transient growth

in response to low-energy perturbations [264, 242]. Some successful approaches [13, 6, 118, 120]

have involved oblique projections of the nonlinear dynamics onto subspaces identified from the

dynamics linearized about an equilibrium. However, this approach is often not satisfactory since the

linearized dynamics become inaccurate as the state moves away from the equilibrium and nonlinear

effects become significant. In this paper we illustrate how such nonlinear effects can cause reduced-

order models obtained using the above approach to perform poorly, for instance on a simple three-

dimensional system as well as on a high-dimensional axisymmetric jet flow.

When dealing with nonlinear systems operating far away from equilibria, nonlinear model reduc-

tion approaches tend to follow a two-step process: first identify a set, typically a smooth manifold

or a subspace, near which the state of the system is known to lie, then model the dynamics in

this set either by a projection of the governing equations or by a black-box data-driven approach.

The most common approach to identify a candidate subspace is Proper Orthogonal Decomposition

(POD), whose application to the study of complex fluid flows was pioneered by J. L. Lumley [163].

The dynamics may also be projected onto nonlinear manifolds using “nonlinear Galerkin” meth-

ods [168, 219]. Recently, more sophisticated manifold learning techniques like deep convolutional

autoencoders have also been used [150].

The main obstacle encountered by the manifold-learning-based approaches described above is

the presence of dynamically-significant low-energy features. Since POD and even sophisticated

nonlinear manifold learning techniques like convolutional autoencoders aim to accurately reduce and

reconstruct states, they will neglect features whose contribution to the overall state has a sufficiently

small magnitude. But, as we mentioned earlier, we should not neglect all of the low-energy features

since some can have a large influence on the dynamics. In fact, in our jet flow example, we shall
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see that a model with 50 POD modes that together capture 99.6% of the energy still yields poor

predictions that rapidly diverge from the full-order model.

In order to capture significant low-energy features, while remaining tractable for very large-scale

systems like fluid flows, we shall optimize an oblique projection operator defining the reduced-order

model with the objective of reproducing a collection of trajectories sampled from the original system.

In particular, we seek to minimize the sum of squared errors between the trajectories predicted by

the model and those collected from the full system. In this framework, oblique projection operators

of a fixed dimension are identified with pairs of subspaces that meet a transversality condition.

Recalling that the collection of all subspaces of a given dimension can be endowed with the structure

of a Riemannian manifold called the Grassmann manifold [1, 16], we show that the pairs of subspaces

that define oblique projection operators are an open, dense, and connected subset of the product

of two such Grassmann manifolds and we provide conditions for the existence of a minimizer. The

optimization is performed using the Riemannian conjugate gradient algorithm introduced by H.

Sato [235] with retraction and vector transport defined in Absil et al. [1], and we provide general

conditions under which the algorithm is guaranteed to converge to a local optimum.

Related techniques based on optimizing projection subspaces have been used to produce H2-

optimal reduced-order models for linear and bilinear systems. Most approaches focus on optimizing

orthogonal projection operators over a single Grassmann manifold [288, 238, 122] or an orthogonal

Stiefel manifold [290, 238, 274, 291, 287]. On the other hand, an alternating minimization technique

over the two Grassmann manifolds defining an oblique projection is proposed by T. Zeng and C. Lu

[298] for H2-optimal reduction of linear systems. For systems with quadratic nonlinearities, Y.-L.

Jiang and K.-L. Xu [122] present an approach to optimize orthogonal projection operators based

on the same truncated generalization of the H2 norm used by P. Benner et al. [19]. Our approach

differs from the ones mentioned above in that it may be used to find optimal reduced-order models

based on oblique projections for general very high-dimensional nonlinear systems based on sampled

trajectories.

8.2 Projection-Based Reduced-Order Models

Consider a physical process, modeled by an input-output dynamical system

d

d t
x = f(x, u), x(t0) = x0

y = g(x)

(8.1)
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on a finite-dimensional real inner product space X = (Rn, 〈·, ·〉) with outputs y in Rm equipped with

the usual inner product. We shall often refer to Eq. 8.1 as the full-order model (FOM). Our goal is

to use one or more discrete-time histories of observations yl = y(tl) at sample times t0 < · · · < tL−1

in order to learn the key dynamical features of Eq. 8.1 and produce a reduced-order model (ROM)

that captures these effects. Throughout the paper we assume that

Assumption 8.2.1. The functions (x, t) 7→ f(x, u(t)) and x 7→ g(x) in Eq. 8.1, along with their

first-order partial derivatives with respect to x, are continuous.

We shall use our observation data to learn an r-dimensional subspace V of Rn in which to

represent the state of the system Eq. 8.1. Since f(x, u) might not lie in V when x ∈ V , we shall also

learn another r-dimensional subspace W of Rn that, together with V , uniquely defines an oblique

projection operator PV,W : Rn → V according to

〈w, PV,Wx〉 = 〈w, x〉 , ∀w ∈W, ∀x ∈ Rn (8.2)

when no nonzero element of W is orthogonal to V . We let P denote the set of such subspaces pairs

(V,W ) with the property that no nonzero element of W is orthogonal to V and give some equivalent

definitions of this set in Proposition 8.2.2.

Proposition 8.2.2 (Subspaces that Define Oblique Projections). Let V and W be subspaces of

Rn with dimV = dimW = r, and let Φ,Ψ ∈ Rn×r be matrices such that V = Range Φ and

W = Range Ψ. Let Ψ∗ denote the adjoint of Ψ, viewed as a linear operator from Rr with the

Euclidean inner product into the state space X with its own inner product. Then the following are

equivalent:

1. no nonzero element of W is orthogonal to V ;

2. no nonzero element of V is orthogonal to W ;

3. det (Ψ∗Φ) 6= 0;

4. for every x ∈ Rn there exists a unique x̂ ∈ V such that

〈w, x〉 = 〈w, x̂〉 ∀w ∈W. (8.3)

Proof. The proof is an exercise in linear algebra, so we give it in Appendix 8.F.
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Applying the projection defined by (V,W ) ∈ P to the full-order model Eq. 8.1, we obtain a

Petrov-Galerkin reduced-order model whose state x̂ ∈ V evolves according to

d

d t
x̂ = PV,W f(x̂, u), x̂(0) = PV,Wx0, (8.4)

with observations given by ŷ = g(x̂). The two subspaces V,W uniquely define the projection PV,W

and the reduced-order model Eq. 8.4.

Let Ly : Rm → [0,+∞) be a smooth penalty function for the difference between each observa-

tion yl and the model’s prediction ŷ(tl). Let us also introduce a smooth nonnegative-valued function

ρ(V,W ), to be defined precisely in Section 8.3, that will serve as regularization by preventing min-

imizing sequences of subspaces (V,W ) from approaching points outside the set P in which valid

Petrov-Galerkin projections can be defined. Using this regularization with a weight γ > 0 allows us

to seek a minimum of the cost defined by

J(V,W ) =
1

L

L−1∑
l=0

Ly (ŷ(tl)− yl) + γρ(V,W ) (8.5)

over all pairs of r-dimensional subspaces (V,W ), subject to the reduced-order dynamics Eq. 8.4. Here

we shall consider the case when there is a single trajectory generated from a known initial condition

since it will be easy to handle multiple trajectories from multiple known initial conditions once we

understand the single trajectory case. The cost function (8.5) defines an optimization problem, and

in the following section we define a suitable regularization function ρ and develop a technique for

iteratively solving this problem.

8.3 Optimization Domain, Representatives, and Regulariza-

tion

The set containing all r-dimensional subspaces of Rn can be endowed with the structure of a compact

Riemannian manifold called the Grassmann manifold, which has dimension nr − r2 and is denoted

Gn,r. Therefore, our optimization problem entails minimizing the cost given by Eq. 8.5 over the

subset P of the product manifoldM = Gn,r×Gn,r on which oblique projection operators are defined

according to Proposition 8.2.2. The goal of this section will be to characterize the topology of the

set P and to introduce an appropriate regularization function ρ so that we may instead consider

the unconstrained minimization of Eq. 8.5 over M. We also describe how to work with matrix
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representatives of the relevant subspaces that can be stored in a computer.

8.3.1 Grassmann Manifold and Representatives of Subspaces

First we describe some basic properties of the Grassmann manifold that can be found in Absil et al.

[1]. If Rn,r∗ denotes the smooth manifold of n× r matrices with linearly independent columns, then

Gn,r can be identified with the quotient manifold of Rn,r∗ defined by identifying matrices with the

same span. That is, two matrices X,Y ∈ Rn,r∗ are defined to be equivalent if RangeX = RangeY ,

i.e., there is an invertible matrix M ∈ GLr, the general linear group, such that X = YM . The

equivalence class of a matrix X ∈ Rn,r∗ is defined by

[X] = {Y ∈ Rn,r∗ : RangeX = RangeY } , (8.6)

and the set of these equivalence classes is the quotient space Rn,r∗ /GLr. Since the action of GLr

on Rn,r∗ defining a change of basis GLr × Rn,r∗ → Rn,r∗ : (M,X) 7→ XM is free and proper, it

follows from the quotient manifold theorem (Theorem 21.10 in [149]) that Rn,r∗ /GLr is a smooth

manifold and the quotient map X 7→ [X] is a smooth submersion. The Grassmann manifold can be

identified with Rn,r∗ /GLr since each subspace V ∈ Gn,r corresponds to the unique equivalence class

[X] ∈ Rn,r∗ /GLr whose elements all span V and vice-versa.

The identification of the Grassmann manifold with Rn,r∗ /GLr is very useful since we wish to

optimize the subspaces V and W using a computer that can’t store abstract subspaces in memory.

Instead, we have to work with representatives of these subspaces given by pairs of n × r matrices

Φ,Ψ ∈ Rn,r∗ such that V = Range Φ and W = Range Ψ. That is, we aim to optimize over the

product manifold M = Gn,r × Gn,r by relying on representatives in the so called “structure space”

M̄ = Rn,r∗ × Rn,r∗ . The “canonical projection” map π : M̄ →M is defined by

π : (Φ,Ψ) 7→ ([Φ], [Ψ]), (8.7)

and it is clear that any representatives (Φ,Ψ) ∈ M̄ of (V,W ) ∈ M must satisfy (V,W ) = π(Φ,Ψ).

For a pair of subspaces (V,W ) ∈ Gn,r × Gn,r, the set of all representatives (Φ,Ψ) ∈ Rn,r∗ × Rn,r∗

such that π(Φ,Ψ) = (V,W ) is given by the pre-image π−1(V,W ). The canonical projection map is

a surjective submersion since its component maps Φ 7→ [Φ] and Ψ 7→ [Ψ] are surjective submersions.

This key fact yields the following useful result:

Lemma 8.3.1 (Regularity via Representatives). Let N be another smooth manifold and let F :
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M→N be a function. Then F is continuous if and only if F ◦ π is continuous. Furthermore, F is

smooth if and only if F ◦ π is smooth.

Proof. The “only if” directions are obvious since the composition of continuous (resp. smooth)

functions is continuous (resp. smooth). The converse statements follow immediately from the

local submersion theorem [106] for π, which provides local charts on which F can be expressed by

restricting F ◦ π to a coordinate slice.

As before, we let P denote the set of subspace pairs that satisfy the conditions in Proposi-

tion 8.2.2, and suppose that (V,W ) ∈ P and (Φ,Ψ) ∈ π−1(V,W ) are a choice of representatives. We

recall that Ψ∗ denotes the adjoint of Ψ viewed as a linear operator from Rr into the state space X .

Then it is clear from Proposition 8.2.2 that the r × r matrix Ψ∗Φ is invertible and the oblique

projection operator corresponding to (V,W ) is given by

PV,W = Φ(Ψ∗Φ)−1Ψ∗. (8.8)

We also observe that Eq. 8.8 is independent of the choice of representatives (Φ,Ψ) ∈ π−1(V,W ) —

as it should be, given that PV,W was originally defined by Eq. 8.2 in terms of abstract subspaces

alone. Using the representatives and an r-dimensional state z defined by x̂ = Φz ∈ V , we obtain a

representative of the reduced-order model Eq. 8.4 given by

d

d t
z = (Ψ∗Φ)−1Ψ∗f(Φz, u) =: f̃ (z, u; (Φ,Ψ)) , z(0) = (Ψ∗Φ)−1Ψ∗x0

ŷ = g(Φz) =: g̃ (z; (Φ,Ψ)) ,

(8.9)

that can be simulated on a computer. Observe that the output ŷ(t) of Eq. 8.9 depends only on the

subspaces (V,W ), and not on the representatives (Φ,Ψ) we choose.

Consequently, any function of (Φ,Ψ) that depends only on the output ŷ(t) of Eq. 8.9 can be

viewed as a function on M composed with the canonical projection π. Hence, we can evaluate our

cost function Eq. 8.5 for a subspace pair (V,W ) by computing

J̄(Φ,Ψ) = J(π(Φ,Ψ)) (8.10)

for any choice of represenatives (Φ,Ψ) ∈ π−1(V,W ), that is, by evaluating the sum in Eq. 8.5 using

the output ŷ(t) generated by Eq. 8.9. Moreover, Lemma 8.3.1 tells us that J is smooth if and only

if J̄ is smooth.
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Remark 8.3.2 (Convenient Representatives). One choice of representatives that is especially con-

venient to work with are biorthonormal pairs, that is, (Φ,Ψ) ∈ π−1(V,W ) such that Φ∗Φ = Ir and

Ψ∗Φ = Ir. Of course such representatives may always be found by first choosing any representatives

Φ̃, Ψ̃ of the subspaces V,W and then letting Φ = qf(Φ̃), where qf denotes orthogonalization by QR

factorization, and letting Ψ = Ψ̃(Φ∗Ψ̃)−1.

8.3.2 Topology of the Optimization Problem Domain

The main result of this section is the following:

Theorem 8.3.3 (Topology of Subspaces that Define Oblique Projections). Let P denote the pairs of

subspaces (V,W ) ∈ Gn,r×Gn,r that define oblique projection operators according to Proposition 8.2.2.

Then P is open, dense, and connected in Gn,r × Gn,r. Moreover, P is diffeomorphic to the set of

rank-r projection operators

P =
{
P ∈ Rn×n : P 2 = P and rank(P ) = r

}
. (8.11)

Proof. See Appendix 8.A.

The openness of P in Gn,r × Gn,r means that it is a submanifold of Gn,r × Gn,r with the same

dimension dimP = 2nr− 2r2. The connectedness result is especially important since it means than

an optimization routine can access any point in the set P by a smooth path from any initial guess

without ever encountering the “bad set” Gn,r × Gn,r \ P. In other words the bad set doesn’t cut off

access to any region of P by an optimizer that progresses along a smooth path, e.g., a gradient flow.

The reduced-order model Eq. 8.4 may not have a solution over the desired time interval [t0, tL−1]

for every projection operator defined by (V,W ) ∈ P. The following result characterizes the appro-

priate domain D ⊂ P over which the ROM has a unique solution as well as the key properties of

solutions when they exist.

Proposition 8.3.4 (Properties of ROM Solutions). When the reduced-order model Eq. 8.4 has a

solution over the time interval [t0, tL−1], it is unique. Let D ⊂ P denote the set of subspace pairs

(V,W ) for which the resulting reduced-order model Eq. 8.4 has a unique solution over the time

interval [t0, tL−1]. Then

1. D is open in P, and hence D is also open in Gn,r × Gn,r.

2. When ∂
∂xf(x, u(t)) is bounded then D = P.
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3. If x̂(t; (V,W )) denotes the solution of Eq. 8.4 with (V,W ) ∈ D, then (V,W ) 7→ x̂(t; (V,W ))

is continuously differentiable on D for every t ∈ [t0, tL−1].

4. If {(Vk,Wk)}∞k=1 ⊂ D is a sequence approaching (Vk,Wk)→ (V0,W0) ∈ P\D and x̂(t; (Vk,Wk))

are the corresponding solutions of Eq. 8.4, then

max
t∈[t0,tL−1]

‖x̂(t; (Vk,Wk))‖ → ∞ as k →∞. (8.12)

Proof. The claims follow from standard results in the theory of ordinary differential equations that

can be found in W. G. Kelly A. C. Peterson [134]. We give the detailed proof in Appendix 8.B.

In particular, Proposition 8.3.4 shows that the solutions produced by the reduced-order model

are continuously differentiable over D and blow up as points outside of D are approached. In the

special case when the governing equations Eq. 8.1 have a bounded Jacobian, we may dispense with

D entirely since we find that the reduced-order model always has a unique, differentiable solution.

8.3.3 Regularization and Existence of a Minimizer

Without regularization, we cannot guarantee a priori that a sequence of subspace pairs with decreas-

ing cost doesn’t approach a point outside of the set P where projection operators are defined. That

is, a minimizer for the cost function Eq. 8.5 may not even exist in P, in which case our optimization

problem would have no solution. In order to address this issue, we introduce a regularization function

ρ(V,W ) into the cost Eq. 8.5 that “blows up” to +∞ as the subspaces (V,W ) approach any point

outside of P, and nowhere else. In order to do this, we use the fact that (V,W ) ∈ P if and only if all

representatives (Φ,Ψ) ∈ π−1(V,W ) have det (Ψ∗Φ) 6= 0, as shown in Proposition 8.2.2. While this

condition characterizes the set P, we cannot use det (Ψ∗Φ) directly since its nonzero value depends

on the choice of representatives. But this problem is easily solved by an appropriate normalization,

leading us to define the regularization of Eq. 8.5 in terms of representatives according to

ρ ◦ π(Φ,Ψ) = − log

(
det(Ψ∗Φ)2

det(Φ∗Φ) det(Ψ∗Ψ)

)
. (8.13)

We observe that the function ρ : P → R in Eq. 8.13 is well-defined because ρ ◦ π(Φ,Ψ) does not

depend on the representatives (Φ,Ψ) thanks to the product rule for determinants.

The following theorem shows that the regularization defined by Eq. 8.13 has the desirable prop-

erties that it vanishes when V = W and “blows up” as (V,W ) escapes the set P. When V = W ,
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the resulting projection operator PV,V is the orthogonal projection onto V .

Theorem 8.3.5 (Regularization). The minimum value of ρ defined by Eq. 8.13 over P is zero, and

this minimum value ρ(V,W ) = 0 is attained if and only if V = W . On the other hand, if (V0,W0) ∈

Gn,r × Gn,r \ P and {(Vn,Wn)}∞n=1 is a sequence of subspaces in P such that (Vn,Wn) → (V0,W0)

as n→∞, then limn→∞ ρ(Vn,Wn) =∞.

Proof. See Appendix 8.C.

We must also rule out the possibility that a sequence of subspace pairs with decreasing cost

approaches a point where the reduced-order model does not have a unique solution. By Proposi-

tion 8.3.4, we do not have this problem when the full-order model has a bounded Jacobian since the

reduced-order model always has a unique solution, i.e., D = P. On the other hand, when D 6= P

we may accomplish this by choosing a cost function that blows up if the states of the reduced-order

model blow up. In particular, we assume the following:

Assumption 8.3.6. Let D be as in Proposition 8.3.4 and P be the set defined by Proposition 8.2.2.

If D 6= P and {(Vk,Wk)}∞k=1 ⊂ D is any sequence producing solutions x̂(t; (Vk,Wk)) of the reduced-

order model Eq. 8.4 such that

max
t∈[t0,tL−1]

‖x̂(t; (Vk,Wk))‖ → ∞ as k →∞, (8.14)

then we assume that J(Vk,Wk) → ∞. Furthermore, we make the convention that J(V,W ) = ∞

whenever (V,W ) ∈ P \ D.

In practice, this is a reasonable assumption if g(x) → ∞ as ‖x‖ → ∞ and Ly(y) → ∞ as

‖y‖ → ∞. Alternatively, one could add a new regularization term to the cost function Eq. 8.5 that

penalizes reduced-order model states with large magnitudes. In Corollary 8.C.1 we show that a

minimizer of the cost function Eq. 8.5 exists in the valid set D ⊂ P when Assumption 8.3.6 holds

and we use the regularization described by Eq. 8.13 with any positive weight γ > 0.

8.4 Computing the Gradient

With the reduced-order model representative Eq. 8.9 in hand, the following results (Theorem 8.4.1

and Corollary 8.4.2) allow us to compute the derivative of the cost Eq. 8.10 with respect to the

matrices (Φ,Ψ) in the structure space M̄ = Rn×r∗ × Rn×r∗ . In particular, we treat the matrices

(Φ,Ψ) as general model parameters C whose values we wish to optimize. When the initial condition
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x0 for the full-order model is known, the initial condition for the reduced-order model representative

Eq. 8.9 is given by z0 = (Ψ∗Φ)−1Ψ∗x0 and Corollary 8.4.2 provides a correction for the gradient

provided by Theorem 8.4.1 due to the dependence of z0 on (Φ,Ψ).

Theorem 8.4.1 (Gradient with Respect to Model Parameters). Suppose we have observation data

{y1, . . . , yL} generated by a dynamical system at sample times t0 < · · · < tL−1 and a parametric

model for the system given by

d

d t
z = f̃(z, u; C) (8.15)

where u(t) is a known input signal, C are unknown parameters in a Riemannian manifold M̄, and

the initial condition z(t0) = z0 is unknown. Furthermore, suppose that we aim to fit the unknown

parameters by minimizing a cost function of the form

J̄0(C, z0) :=

L−1∑
i=0

Ly(g̃(z(ti); C)− yi). (8.16)

Let F (t) = ∂
∂z f̃(z(t), u(t); C), S(t) = ∂

∂C f̃(z(t), u(t); C), H(t) = ∂
∂z g̃(z(t); C), and T (t) =

∂
∂C g̃(z(t); C) denote the linearized dynamics and observation functions around a solution z(t) of

Eq. 8.15 and define an adjoint variable λ(t) that satisfies

− d

d t
λ(t) =F (t)∗λ(t), t ∈ (ti, ti+1], 0 ≤ i < L− 1, (8.17a)

λ(ti) = lim
t→t+i

λ(t) +H(ti)
∗∇Ly(g̃(z(ti); C)− yi), (8.17b)

λ(tL−1) =H(tL−1)∗∇Ly(g̃ (z(tL−1); C)− yL−1). (8.17c)

Here (·)∗ denotes the adjoint of a linear operator. Then the gradients of the cost function Eq. 8.16

with respect to the unknown variables C and z0 subject to the dynamics Eq. 8.15 are given by

∇z0 J̄0(C, z0) = λ(t0) (8.18)

∇C J̄0(C, z0) =

∫ tL−1

t0

S(t)∗λ(t) dt+

L−1∑
i=0

T (ti)
∗∇Ly(g̃(z(ti); C)− yi). (8.19)

Proof. See Appendix 8.D.

Corollary 8.4.2 (Gradient with Parameter-Dependent Initial Condition). When the initial con-

dition z0 = z0(C) in Theorem 8.4.1 is also a function of the parameters, then the gradient of
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J̄(C) = J̄0(C, z0(C)) with respect to the parameters C is given by

∇C J̄(C) = ∇C J̄0(C, z0) +

(
∂

∂C
z0(C)

)∗
∇z0 J̄0(C, z0). (8.20)

Proof. This is little more than the chain rule. For details, see Appendix 8.D.

In order to optimize on M = Gn,r × Gn,r, we must make sense of the gradient computed using

Theorem 8.4.1 and Corollary 8.4.2 with respect to (Φ,Ψ) in the structure space M̄ = Rn×r∗ ×Rn×r∗

in terms of gradients that are tangent to the quotient manifoldM. The key idea is to endow M̄ with

a special structure called a “horizontal distribution” that allows one to uniquely identify tangent

vectors to M̄ that represent tangent vectors to M. Together with the horizontal distribution, we

also must define a Riemannian metric on the structure space that is unaffected by the choice of

representative within an equivalence class [1]. In what follows, we summarize some useful results

from Absil et al. [1], Chapter 3, which should be consulted for more details.

Since we do not have direct access to T(V,W )M using a computer, it is necessary to work with

representatives of the gradient that are tangent to the structure space M̄. But for any ξ ∈ TpM

and representative p̄ ∈ M̄ such that p = π(p̄), there are an infinite number of possible ξ̄ ∈ Tp̄M̄

that could serve as representatives of ξ in the sense that ξ = Dπ(p̄)ξ̄. A unique representative of ξ

is identified by observing that the pre-image π−1(p) of any p ∈ M is a smooth submanifold of M̄

yielding a decomposition of the tangent space Tp̄M̄ into a direct sum of the “vertical space” defined

by Vp̄ = Tp̄π
−1(p) and the “horizontal space” defined as its orthogonal complement Hp̄ = V⊥p̄ .

Following Example 3.6.4 in [1], it can be shown that the orthogonal projection onto the horizontal

space is given by

Ph(Φ,Ψ)(X,Y ) =
(
X − Φ(Φ∗Φ)−1Φ∗X, Y −Ψ(Ψ∗Ψ)−1Ψ∗Y

)
. (8.21)

Using this horizontal distribution on the structure space, we have the following:

Definition 8.4.3 (horizontal lift [1]). Given ξ ∈ TpM and a representative p̄ ∈ π−1(p), there is

always a unique element ξ̄p̄ ∈ Hp̄ called the “horizontal lift” of ξ such that ξ = Dπ(p̄)ξ̄p̄.

An important consequence for optimization is that the horizontal lift of the gradient of a function

J :M→ R is given by the gradient of J̄ = J ◦ π [1], that is,

∇ J(π(p̄))p̄ = ∇ J̄(p̄), ∀p̄ ∈ M̄. (8.22)
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In particular, this means that the gradient computed using Theorem 8.4.1 and Corollary 8.4.2 is

the “correct” representative in the sense that it is the horizontal lift at (Φ,Ψ) of the (inaccessible)

gradient of the cost function tangent to M at (V,W ). Moreover, given (V,W ) ∈ M and invertible

matrices S, T ∈ GLr, then the unique horizontal lifts of a tangent vector (ξ, ζ) ∈ T(V,W )M at the

representatives (Φ,Ψ) and (ΦS,ΨT ) are related by

(ξ̄ΦS , ζ̄ΨT ) = (ξ̄ΦS, ζ̄ΨT ) ∈ Rn×r × Rn×r. (8.23)

This can also be shown via a trivial adaptation of Example 3.6.4 in [1].

In order for the Riemannian metric on the structure space M̄ to induce a compatible Riemannian

metric on the quotient manifold M, we must have

〈ξ, ζ〉p := 〈ξ̄p̄, ζ̄p̄〉p̄ = 〈ξ̄q̄, ζ̄q̄〉q̄, ∀ξ, ζ ∈ TpM, ∀p̄, q̄ ∈ π−1(p), (8.24)

so that the metric on M̄ is independent of the representative p̄. The Riemannian metric we adopt

for the structure space M̄ is given by

〈(X1, Y1), (X2, Y2)〉(Φ,Ψ) = Tr
[
(Φ∗Φ)−1X∗1X2

]
+ Tr

[
(Ψ∗Ψ)−1Y ∗1 Y2

]
, (8.25)

which clearly satisfies Eq. 8.24 thanks to Eq. 8.23.

Using the Riemannian metric Eq. 8.25 on the structure space, we next obtain an explicit form

of each term required to compute the horizontal lift of the gradient using Theorem 8.4.1 and Corol-

lary 8.4.2. Proposition 8.4.4 below also provides us with the gradient of the regularization function

Eq. 8.13. In order to simplify these expressions, we have assumed that the particular representatives

are chosen to satisfy Ψ∗Φ = Ir, which is always possible thanks to Remark 8.3.2. The horizontal lift

of the gradient computed at any equivalent point (ΦS,ΨT ) with S, T ∈ GLr can be readily obtained

from the horizontal lift of the gradient computed at (Φ,Ψ) via Eq. 8.23.

Proposition 8.4.4 (Required Terms for Gradient). We assume that the representatives Φ and Ψ

with V = Range Φ and W = Range Ψ have been chosen such that Ψ∗Φ = Ir. Then the terms

required to compute the gradient of the cost function using the model Eq. 8.9 with respect to the

representatives in the structure space via Theorem 8.4.1 and Corollary 8.4.2 are given by

F (t)∗ =

(
∂

∂z
f̃(z(t), u(t); (Φ,Ψ))

)T
(8.26)
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S(t)∗v =

([(
∂

∂x
f(Φz(t), u(t))

)∗
Ψvz(t)T −Ψvf̃(z(t), u(t); (Φ,Ψ))T

]
Φ∗Φ,[

f(Φz(t), u(t))− Φf̃(z(t), u(t); (Φ,Ψ))
]
vTΨ∗Ψ

)
∈ T(Φ,Ψ)M̄ ∀v ∈ Rr,

(8.27)

H(t)∗ =

(
∂

∂z
g̃(z(t); (Φ,Ψ)))

)T
, (8.28)

T (t)∗w =

((
∂

∂x
g(Φz(t))

)∗
wz(t)TΦ∗Φ, 0

)
∈ T(Φ,Ψ)M̄ ∀w ∈ Rdim y, (8.29)

(
∂

∂(Φ,Ψ)
z0(Φ,Ψ)

)∗
v

=
(
−Ψv(Ψ∗x0)TΦ∗Φ, (x0 − ΦΨ∗x0) vTΨ∗Ψ

)
∈ T(Φ,Ψ)M̄ ∀v ∈ Rr.

(8.30)

The gradient of the regularization function Eq. 8.13 in terms of representatives (Φ,Ψ) satisfying

Ψ∗Φ = Ir is given by

∇(ρ ◦ π)(Φ,Ψ) = 2
(

Φ−Ψ(Φ∗Φ), Ψ− Φ(Ψ∗Ψ)
)
∈ T(Φ,Ψ)M̄. (8.31)

Proof. See Appendix 8.D.

Below, we present Algorithm 2 to compute the gradient according to Theorem 8.4.1 and Corol-

lary 8.4.2, with the appropriate terms given in Proposition 8.4.4.

Algorithm 2 Compute the cost function gradient with respect to (Φ,Ψ)

1: input: biorthogonal representatives (Φ,Ψ) ∈ π−1(V,W ), initial condition x0, observations
{yl}L−1

l=0 at times {tl}L−1
l=0 , regularization weight γ.

2: Assemble and simulate the ROM representative Eq. 8.9 from initial condition z0 = Ψ∗x0, storing
the trajectory z(t) and predicted outputs {ŷl}L−1

l=0 .
3: Initialize the gradient: ∇ J̄ ← T (tL−1)∗∇Ly(ŷL−1 − yL−1).
4: Compute adjoint variable at final time: λ(tL−1) = H(tL−1)∗∇Ly(ŷL−1 − yL−1).
5: for l = L− 2, L− 3, . . . , 0 do
6: Solve the adjoint equation Eq. 8.17a backwards in time over the interval [tl, tl+1] using the

linearized ROM dynamics Eq. 8.26 and store λ(t) on this interval.
7: Compute the integral component of Eq. 8.19 over the interval [tl, tl+1]: ∇ J̄ ← ∇ J̄ +∫ tl+1

tl
S(t)∗λ(t)dt using Gauss-Legendre quadrature.

8: Add lth element of the sum in Eq. 8.19: ∇ J̄ ← ∇ J̄ + T (tl)
∗∇Ly(ŷl − yl).

9: Add “jump” Eq. 8.17b to the adjoint variable: λ(tl)← λ(tl) +H(tl)
∗∇Ly(ŷl − yl).

10: end for

11: Add gradient due to initial condition: ∇ J̄ ← ∇ J̄ +
(

∂
∂(Φ,Ψ)z0(Φ,Ψ)

)∗
λ(t0).

12: Normalize by trajectory length: ∇ J̄ ← ∇ J̄/L.
13: Add regularization: ∇ J̄ ← ∇ J̄ + γ∇(ρ ◦ π)(Φ,Ψ).
14: return ∇ J̄
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8.5 Optimization using a Conjugate Gradient Algorithm

In this section we provide the necessary tools to implement most gradient-based optimization al-

gorithms [1] including stochastic gradient descent [28, 237], quasi-Newton methods [222, 117], and

conjugate gradient methods [222, 235]. Here we use a conjugate gradient algorithm to illustrate the

key ingredients, such as the retraction and transport of tangent vectors on the Grassmann manifold.

We also provide convergence guarantees for the algorithm on broad classes of sufficiently smooth

full-order models, including all linear systems as a special case.

Line search optimization techniques in Euclidean space entail choosing a search direction ηk and

a step size αk in order to produce the next iterate of the optimization process according to

pk+1 = pk + αkηk. (8.32)

The step size αk is usually chosen using a backtracking or bisection approach in order to meet a

sufficient decrease condition like the one proposed by P. Wolfe [282]. In the steepest descent approach,

one searches along the direction of the gradient ηk = −∇ J(pk). Yet in poorly conditioned problems,

the steepest descent method may converge slowly, and it can be greatly improved by choosing

a search direction that incorporates second-order information about the cost function. However,

in high-dimensional applications like finding optimal projection subspaces for large-scale dynamical

systems, we cannot efficiently evaluate the second derivatives of the cost function. Conjugate gradient

algorithms provide efficient alternatives by computing a search direction that combines the gradient

at the current iterate with the previous search direction

ηk = −∇J(pk) + βkηk−1. (8.33)

There are many choices for the coefficient βk; for instance, the one due to Y.-H. Dai and Y. Yuan

[70] is given by

β
(DY )
k =

〈∇ J(pk), ∇ J(pk)〉
〈∇ J(pk), ηk−1〉 − 〈∇ J(pk−1), ηk−1〉

. (8.34)

This coefficient guarantees convergence of the Euclidean conjugate gradient algorithm in the sense

that the limiting infimum of the gradients at the iterates is zero when the line search satisfies the

Wolfe conditions and the gradient of J is Lipschitz continuous on sub-level sets [70].
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8.5.1 Retraction of Tangent Vectors onto the Manifold

In the setting of optimization on Riemanniann manifolds two problems with the Euclidean formu-

lation of conjugate gradient algorithms must be addressed. First, we must have a suitable general-

ization of what it means to search along a “line” on the manifold. A natural, but computationally

expensive choice, is the exponential map on the Riemanniann manifold. The idea of a “retraction”

was introduced by [4] as a computationally efficient alternative to the exponential map that retains

only the properties that are needed for the purpose of optimization. In particular, [1] gives the

following Definition 8.5.1 for a retraction.

Definition 8.5.1 (Retraction [1]). A retraction on a manifold M is a smooth mapping R from the

tangent bundle TM onto M with the following properties. Let Rp denote the restriction of R to

TpM.

1. (Base point preservation) Rp(0) = p.

2. (Local rigidity) Rp satisfies

DRp(0)ξ = ξ ∀ξ ∈ TpM (8.35)

(with the canonical identification T0TpM' TpM).

The retraction Rp parameterizes a neighborhood of p ∈ M using elemets of the tangent space,

allowing us to pull our optimization problem back to the Euclidean space TpM while the local

rigidity condition ensures that the search direction is preserved. Line search may be performed on

M using the retraction and a search direction ηk ∈ TpkM by defining the next iterate according to

pk+1 = Rpk(αkηk). (8.36)

In our case, M is a quotient manifold of a structure space M̄ whose elements we must use

as representatives. Proposition 4.1.3 in [1] says that a retraction R̄ on the structure space M̄

induces a retraction R on the quotient manifold M when π ◦ R̄ does not depend on the choice

of representatives. In particular, Example 4.1.5 in [1] shows that R[Φ](ξ) = [Φ + ξ̄Φ] defines a

retraction on the Grassmann manifold. Therefore, for our problem on a product of Grassmann

manifolds M = Gn,r × Gn,r we have a retraction defined by

R(V,W )(ξ, ζ) = π
(
Φ + ξ̄Φ, Ψ + ζ̄Ψ

)
, for any (Φ,Ψ) ∈ π−1(V,W ). (8.37)
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In particular,
(
Φ + ξ̄Φ,Ψ + ζ̄Ψ

)
is a representative of R(V,W )(ξ, ζ). In order to avoid ill-conditioning,

we work with biorthogonalized representatives obtained by applying the procedure described in

Remark 8.3.2.

8.5.2 Transporting Tangent Vectors to New Points

The second problem that must be solved in order to implement conjugate gradient algorithms on

Riemannian manifolds is how to make sense of the search direction defined by Eq. 8.33, which

combines elements from two different tangent spaces. In particular, the previous gradient ∇ J(pk−1)

and the previous search direction ηk−1 lie in the tangent space Tpk−1
M, which is different from the

tangent space TpkM in which the current search direction ηk and gradient ∇ J(pk) lie. To solve

this problem, vectors in Tpk−1
M must be “transported” to the new tangent space TpkM. The most

natural notion of vector transport on a Riemannian manifold is parallel translation along geodesics;

yet computing parallel translations can be expensive. The following Definition 8.5.2 of “vector

transport” given by Absil et al. [1] retains only the properties that are essential in the context of

optimization.

Definition 8.5.2 (Vector Transport [1]). Let the “Whitney sum”

TM⊕ TM = {(ηp, ξp) : ηp, ξp ∈ TpM, p ∈M} (8.38)

denote pairs of tangent vectors sharing the same root points. A vector transport on the manifold M

is a smooth mapping

TM⊕ TM→ TM : (ηp, ξp) 7→ Tηp(ξp) (8.39)

satisfying the following properties:

1. (Associated retraction) There exists a retraction R, called the retraction associated with T ,

such that Tηp(ξp) ∈ TRp(ηp)M for every (ηp, ξp) ∈ TM⊕ TM.

2. (Consistency) T0p(ξp) = ξp for all ξp ∈ TM

3. (Linearity) Tηp(aξp + bζp) = aTηp(ξp) + bTηp(ζp) for all a, b ∈ R, ηp, ξp, ζp ∈ TpM, and every

p ∈M.

As pointed out in [1], if one has a retraction, then a vector transport can be obtained by differ-
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entiating it and letting

Tηp(ξp) := DRp(ηp)ξp =
d

d t
Rp(ηp + tξp)

∣∣∣∣
t=0

. (8.40)

Following Example 8.1.10 in [1] and differentiating our retraction Eq. 8.37 on M = Gn,r × Gn,r, we

obtain the following vector transport defined in terms of its horizontal lift

T(ξ,η)(V,W )

(
(ω, ζ)(V,W )

)
(Φ+ξ̄Φ,Ψ+η̄Ψ)

= Ph(Φ+ξ̄Φ,Ψ+η̄Ψ)

(
ω̄Φ, ζ̄Ψ

)
, (8.41)

for any (Φ,Ψ) ∈ π−1(V,W ). We recall that Ph is the orthogonal projection onto the horizontal space

given by Eq. 8.21. The horizontal lifts of transported vectors at the biorthogonalized representatives

computed using the procedure in Remark 8.3.2 are found by applying the transformation Eq. 8.23.

8.5.3 Geometric Conjugate Gradient Algorithm

The search directions for Riemannian conjugate gradient algorithms are computed by transporting

the previous search direction according to

ηk = −∇ J(pk) + βkTαk−1ηk−1
(ηk−1). (8.42)

We use the scaled Riemannian Dai-Yuan coefficient proposed by H. Sato [235] since it guarantees

(under Lipschitz assumptions on D(J ◦R)) that the resulting conjugate gradient algorithm with line

search based on Wolfe-type conditions always converges, though not necessarily to a global minimum

of J . In particular, [235] defines the scaling factor

σk = min

{
1,

‖ηk−1‖pk−1

‖Tαk−1ηk−1
(ηk−1)‖pk

}
, (8.43)

and lets the coefficient βk be defined by a scaled generalization of Eq. 8.34 given by

β
(sRDY )
k =

σk 〈∇ J(pk), ∇ J(pk)〉pk
σk
〈
∇ J(pk), Tαk−1ηk−1

(ηk−1)
〉
pk
− 〈∇ J(pk−1), ηk−1〉pk−1

. (8.44)
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The Wolfe conditions to be satisfied during the line search are

J (Rpk(αkηk)) ≤ J(pk) + c1αk 〈∇ J(pk), ηk〉pk (8.45)

d

d t
J (Rpk(tηk))

∣∣∣∣
t=αk

≥ c2 〈∇ J(pk), ηk〉pk , (8.46)

with 0 < c1 < c2 < 1 and the bisection method described in [39] is used. We now have all of the

machinery needed to implement a geometric conjugate gradient method, detailed below in Algo-

rithm 3, to minimize the cost function Eq. 8.5 over pairs of subspaces P ⊂ M defining projection-

based reduced-order models. In Appendix 8.E we provide convergence guarantees for this algorithm

Algorithm 3 Geometric conjugate gradient algorithm for model reduction

1: Input: biorthogonal representatives (Φ0,Ψ0) of the initial subspaces, stopping threshold ε > 0,
and Wolfe condition coefficients 0 < c1 < c2 < 1

2: Compute cost J̄(Φ0,Ψ0) and gradient ∇ J̄0 using Algorithm 2
3: Initialize the search direction (X0, Y0) = ∇ J̄0 and set k = 0
4: while

〈
∇ J̄k,∇ J̄k

〉
(Φk,Ψk)

> ε, given by Eq. 8.25, do

5: Define line-search objective Jk(α) = J̄(Φk + αXk,Ψk + αYk) via retraction
6: Compute step size αk using the bisection method in [39], so that Jk(αk) satisfies the Wolfe

conditions, namely Jk(αk) ≤ Jk(0) + c1αkJ
′
k(0) and J ′k(αk) ≥ c2J ′k(0)

7: Compute next iterate (Φk+1,Ψk+1) = (Φk + αkXk,Ψk + αkYk) via retraction
8: Transport search direction (X̃k, Ỹk) = Ph(Φk+1,Ψk+1)(Xk, Yk) using Eq. 8.21

9: Compute slim QR factorization Φk+1 = QR and biorthogonalizing transformation matrices
S = R−1 and T = (Q∗Ψk+1)−1

10: Biorthogonalize representatives (Φk+1,Ψk+1) ← (Φk+1S,Ψk+1T ) and transform the search
direction (X̃k, Ỹk)← (X̃kS, ỸkT ) via Eq. 8.23

11: Compute cost J̄(Φk+1,Ψk+1) and gradient ∇ J̄k+1 using Algorithm 2
12: Using Eq. 8.25, compute Riemannian Dai-Yuan scaling factor and coefficient

σk+1 = min

{
1,

√
〈(Xk, Yk), (Xk, Yk)〉(Φk,Ψk)

〈(X̃k, Ỹk), (X̃k, Ỹk)〉(Φk+1,Ψk+1)

}
,

βk+1 =
σk+1〈∇ J̄k+1,∇ J̄k+1〉(Φk+1,Ψk+1)

σk+1〈∇ J̄k+1, (X̃k, Ỹk)〉(Φk+1,Ψk+1) + 〈∇ J̄k, (Xk, Yk)〉(Φk,Ψk)

13: Compute next search direction (Xk+1, Yk+1) = ∇ J̄k+1 + βk+1(X̃k, Ỹk).
14: Update k ← k + 1
15: end while
16: return biorthogonal representatives (ΦK ,ΨK) of the optimized projection subspaces and the

final cost J̄(ΦK ,ΨK)

applied to our optimal model reduction problem under modest conditions on the problem’s setup

(see Theorem 8.E.1, Corollary 8.E.7, and Corollary 8.E.8). In particular, these guarantees say that

for any threshold ε > 0 on the gradient, Algorithm 3 will eventually stop.
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8.6 Simple Nonlinear System with an Important Low-Energy

Feature

In this section, we illustrate our method on a simple example system for which existing approaches

to nonlinear model reduction perform poorly. In particular, we consider the system

ẋ1 = −x1 + 15x1x3 + u

ẋ2 = −2x2 + 15x2x3 + u

ẋ3 = −5x3 + u

y = x1 + x2 + x3,

(8.47)

and we compare our method with POD/Galerkin projection onto the most energetic modes, and

with Petrov-Galerkin projection onto subspaces determined by balanced truncation of the linearized

system. We confine our attention to nonlinear impulse-responses with magnitudes u0 ∈ [0, 1]. These

responses can be obtained by considering the output of Eq. 8.47 with u ≡ 0 and known initial con-

dition x(0) = u0(1, 1, 1). Two such responses with u0 = 0.5 and u0 = 1 are shown in Figure 8.6.1a.

The key feature of Eq. 8.47 is that that state x3 plays a very important role in the dynamics

of the states x1 and x2, while remaining small by comparison due to its fast decay rate. In fact,

for u0 > 8/30 we have ẏ(0) > 0 and the output experiences transient growth due to the nonlinear

interaction of x1 and x2 with x3. These nonlinear interactions become dominant for larger u0, but

are neglected completely by model reduction techniques like balanced truncation that consider only

the linear part of Eq. 8.47. Figure 8.6.1a shows the result of such an approach, in which we obtain

a nonlinear reduced-order model by Petrov-Galerkin projection of Eq. 8.47 onto a two-dimensional

subspace determined by balanced truncation of the linearized system. As shown in the figure, the

resulting model wildly over-predicts the transient growth when u0 = 1.

On the other hand, a two-dimensional POD-based model retains the most energetic states, which

align closely with x1 and x2, and essentially ignores the important low-energy state x3. Consequently,

the POD-based model of Eq. 8.47 does not predict any transient growth as shown in Figure 8.6.1a.

In order to find a two-dimensional reduced-order model of Eq. 8.47 using our new approach, we

collected the two impulse-response trajectories shown in Figure 8.6.1a and used the L = 21 equally
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Figure 8.6.1: In panel (a), we show the outputs generated by the full-order model Eq. 8.47 and
the two-dimensional reduced-order models found by POD Galerkin projection, balanced truncation,
and our optimization approach in response to impulses with magnitudes u0 = 0.5 and u0 = 1 at
t = 0. The sample points used to construct the objective function Eq. 8.48 used to optimize the
projection operator are shown as black dots. In panel (b), we show the normalized square errors of
the reduced-order model predictions in response to 50 impulses at t = 0 whose magnitudes u0 were
drawn uniformly at random from the interval [0, 1].

spaced samples shown for each trajectory to define the cost function

J(V,W ) =
∑

u0∈{0.5,1.0}

1∑L
l=0(y|u0(tl))2

L∑
l=0

(ŷ|u0
(tl)− y|u0

(tl))
2

+ γρ(V,W ), (8.48)

with γ = 10−3 (although we note that the results were not sensitive to the choice of γ). The

normalizing factor in the cost for each trajectory was used to penalize the error relative to the

average energy content of the trajectory, rather than in an absolute sense which would be dominated

by the trajectory with u0 = 1. Starting from an initial model formed by balanced truncation, the

conjugate gradient algorithm described above with Wolfe conditions defined by c1 = 0.4 and c2 = 0.8

achieved convergence with a gradient magnitude smaller than 10−4 after 88 steps.

In Figure 8.6.1a, we see that the resulting reduced-order model trajectories very closely match

the trajectories used to find the oblique projection. Moreover, we tested the predictions of the

three reduced-order models on 50 impulse-response trajectories with u0 drawn uniformly at random

from the interval [0, 1]. The square output prediction errors for each trajectory normalized by the

average output energy of the full-order model are shown in Figure 8.6.1b. We observe that the POD-

based model is poor regardless of the impulse magnitude u0, whereas the balanced reduced-order

model performs well when u0 is very close to 0, but poorly when u0 is closer to 1. On the other

hand, our optimized reduced-order model yields very accurate predictions for all impulse response
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Figure 8.6.2: We show the responses of Eq. 8.47 and the reduced-order models to input u(t) = sin(t).

magnitudes in the desired range. Furthermore, the reduced-order model we trained to minimize

error using two impulse responses has excellent predictive performance with different inputs. For

instance, Figure 8.6.2 shows the predictions of the reduced-order models in response to sinusoidal

input u(t) = sin(t) with zero initial condition.

8.7 Reduction of a High-Dimensional Nonlinear Fluid Flow

In this section we set out to develop a reduced-order model capable of predicting the response of an

incompressible jet flow to impulsive disturbances in the proximity of the nozzle. We consider the

evolution of an axisymmetric jet flow over the spatial domain Ω = {(r, z) | r ∈ [0, Lr] , z ∈ [0, Lz]}.

Velocities are nondimensionalized by the centerline velocity U0, lengths by the jet diameter D0, and

pressure by ρU2
0 , where ρ is the fluid density.

Letting q = (u, v) denote the (dimensionless) velocity vector with axial component u and ra-

dial component v, and letting p be the (dimensionless) pressure field, we may write the governing

equations in cylindrical coordinates as

∂u

∂t
= −u∂u

∂z
− v ∂u

∂r
− ∂p

∂z
+

1

Re

(
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2

)
(8.49)

∂v

∂t
= −u∂v

∂z
− v ∂v

∂r
− ∂p

∂r
+

1

Re

(
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2
+
∂2v

∂z2

)
(8.50)

∂u

∂z
+

1

r

∂

∂r
(rv) = 0, (8.51)

where Re = U0D0/ν is the Reynolds number (and ν denotes the kinematic viscosity of the fluid).

Formulas (8.49) and (8.50) are conservation of momentum statements in the axial and radial di-

rections, respectively, while formula (8.51) is a mass conservation statement. Conservation of mass

may be used to eliminate pressure from formulas (8.49) and (8.50), as discussed in Appendix 8.G.

We impose a zero-velocity boundary condition at r = Lr, a Neumann outflow boundary condition
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at z = Lz, and we let the inflow velocity be

u(r, 0) =
1

2

(
1− tanh

[
1

4θ0

(
r − 1

r

)])
, (8.52)

where θ0 is a dimensionless thickness, which we fix at θ0 = 0.0125.

The equations of motion are integrated in time using the fractional step method described in [206]

in conjunction with the second-order Adams-Bashforth multistep scheme. The spatial discretization

is performed on a fully-staggered grid of size Nz×Nr = 230×150 and with Lz = 8 and Lr = 3. If we

let the state be composed of the axial and radial velocities at the cell faces, then the state dimension

for this flow is 2(Nz×Nr) = 69, 000. All the spatial derivatives are treated with second-order central

differences, except for the advective term q · ∇q, which is treated with a third-order upwind scheme

in order to avoid numerical instabilities. The solver has been validated against some of the results

presented in [246], for which we observed very good qualitative agreement. While the inner product

on the state space is given by

〈f, g〉 =

∫
Ω

f(r, z)g(r, z) r dr dz, (8.53)

our observations, y, will be the full velocity field, with the standard Euclidean inner product (i.e.,

without weighting by r). A detailed derivation of the adjoint of the Navier-Stokes operator required

to compute the gradient is presented in Appendix 8.H.

8.7.1 Results

For the described flow configuration, there exists a convectively unstable steady-state solution, which

we will denote Q. In particular, any perturbation q′ about the steady-state solution will grow while

advecting downstream and it will eventually leave the computational domain through the outflow

located at z = Lz. During the growth process, nonlinear effects become dominant and lead to

the formation of complicated vortical structures. In this section we seek to develop a reduced-

order model of the initial growth of these disturbances in response to an impulse, and we consider

impulses that enter the radial momentum equation (8.50) through a velocity perturbation localized

near r = 1/2 and z = 1; in particular, the perturbation has the form B(r, z)w(t), where

B(r, z) = exp

{
− (r − 1/2)2 + (z − 1)2

θ0

}
. (8.54)
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Figure 8.7.1: In panel (a) we show the time history of the energy of the impulse responses in the
training data set, with α = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0. In panel (b) we show the analog of panel (a)
for the testing data set, with α = 0.15, 0.3, 0.5, 0.7, 0.9. In each trajectory there are a total of 60
equally-spaced data points.

We simulate the response of the flow to a given impulse w(t) = αδ(t), with α ∈ R, by integrating

the governing equations (8.49)–(8.51) with initial condition

q(0) = Q+ q′(0), where q′(0) = (0, Bα). (8.55)

Here we construct a 50-dimensional reduced-order model to capture the initial response of the flow

to impulses with 0.1 ≤ α ≤ 1.0 for times t ∈ [0, 15].

We proceed as follows. We generate a training set of M = 6 trajectories corresponding to values

α = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and from each trajectory we observe L = 60 equally-spaced snapshots

of velocity perturbations y = q′ about the base flow Q. The energy content of the training set is

shown in figure 8.7.1a. Observe the range of behavior for different values of α, reflecting the strong

nonlinearity of this flow. Let ym,l denote the lth velocity snapshot in the mth trajectory and let

ŷm,l denote the corresponding prediction obtained by integrating the reduced-order model from the

initial condition q̂′m,0 = PV,W q
′
m,0. Letting Em denote the average energy along the mth trajectory,

we seek to minimize the cost function

J(V,W ) =
1

ML

M−1∑
m=0

1

Em

L−1∑
l=0

(ŷm,l − ym,l)T (ŷm,l − ym,l) + γρ(V,W ), (8.56)

where γ = 10−3. Optimization was carried out using Algorithm 3 with a 50-dimensional model

obtained by POD as the initial guess. The initial Ψ modes were smoothly truncated near the

outflow to satisfy the adjoint boundary conditions described in Appendix 8.H.
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(ŷ
m
−
y
m

)/
E
m

(a) training error

t

(ŷ
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Figure 8.7.2: In panel (a) we show the square error across all training trajectories for the optimal
reduced-order model and for the POD-based reduced-order model. Panel (b) is the analog of panel
(a), except that the error is computed against the testing trajectories.

Remark 8.7.1. It was advantageous to begin training the model on shorter trajectories and work

our way up to the full time horizon.

After obtaining a minimizer, we test the performance of the optimal reduced-order model on a

set of M = 5 unseen impulse responses with α = 0.15, 0.3, 0.5, 0.7, 0.9. The energy content of the

testing set is shown in figure 8.7.1b. The performance of our reduced-order model is shown in figure

8.7.2 and it is compared against a 50-dimensional POD/Galerkin reduced-order model. We do not

show a comparison against a BPOD-based Petrov-Galerkin model because its predictions “blew up”

after a few time units. Before proceeding in the analysis of the results, it is worth mentioning that

the first 50 POD modes capture approximately 99.6% of the energy of the training data set, as well

as approximately 99.6% of the energy of the testing data set. On the other hand, the subspace V

we found by optimization captures 99.4% of the energy of both the training and testing sets. Figure

8.7.2a shows the error over time across all training trajectories for the optimal reduced-order model

and for the POD-based reduced-order model. Figure 8.7.2b is the analog of figure 8.7.2a, except

that the error is computed against the testing data. In both, we can observe that the average error

of the optimal reduced-order model is one to two orders of magnitude lower than that of the POD-

based model. Moreover, the error curves associated with the optimal model remain approximately

constant for times t ∈ [2, 15], which suggests that we capture the dynamically-relevant features of

the full-order model. This is no surprise, since our framework is designed specifically to develop

models that are dynamically accurate and that may therefore be used to predict the time-evolution

of the full-order system over some time horizon.

Figures 8.7.3a and 8.7.3b show the predicted vorticity fields, ∇ × (ŷ + Q), at times t = 10 and
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Figure 8.7.3: In panel (a) we show the predicted vorticity field from the testing trajectory with
α = 0.15 at time t = 10.0. From the top we have the ground truth from the full-order model, the
prediction given by the optimized model and the prediction given by POD. Panel (b) is the analog
of panel (a), at time t = 14.75. The colormap has been saturated to allow for better visualization
of the downstream structures.

t = 14.75 from the unseen testing trajectory with initial impulse amplitude α = 0.15. It can be seen

from both panels in figure 8.7.3 that the prediction from the optimal model closely resembles the

ground truth. While the POD-based prediction remains qualitatively close to the ground truth at

time t = 10, the prediction at time t = 14.75 is inaccurate. In fact, the POD-based model mistakenly

predicts the presence of two vortices at z ≈ 2 and z ≈ 3 and it also accumulates some phase error

on the vortex located near the outflow.

Figures 8.7.4a and 8.7.4b show the predicted vorticity fields, at times (t = 10 and 14.75) from the

unseen testing trajectory with initial impulse amplitude α = 0.9. Here, nonlinear effects dominate

the dynamics and this is the reason why the POD-based model struggles to even capture the quali-

tative behavior. The optimized model, on the other hand, captures all instances of vortex shedding

and vortex pairing, and it is capable of accurately predicting the locations of the resulting vortical

structures.

8.8 Conclusions

We have introduced a reduced-order modeling approach for large-scale nonlinear dynamical systems

based on optimizing oblique projections of the governing equations to minimize prediction error

over sampled trajectories. We implemented a provably convergent geometric conjugate gradient

algorithm in order to optimize a regularized trajectory prediction error over the product of Grass-

mann manifolds defining the projection operators. The computational cost to evaluate the gradient

215



z

r
r

r

ground truth

optimized

POD

(a) vorticity at time t = 10 and α = 0.9

z

r
r

r

ground truth

optimized

POD

(b) vorticity at time t = 14.75 and α = 0.9

Figure 8.7.4: Analog of Figure 8.7.3 for a higher amplitude α = 0.9.

is dominated by the cost to assemble the reduced-order model and to evaluate the time derivative

of the full-order model at quadrature points along each trajectory. While time-stepping schemes

for the full-order model require very fine temporal discretizations to resolve dynamics over a wide

range of scales and to remain numerically stable, we may compute the gradient using a much coarser

temporal sampling and high-order quadrature rules. Thus, computing the gradient may be orders of

magnitude less costly than running a direct simulation when the cost to assemble the reduced-order

model is small by comparison.

The method is compared with Proper Orhogonal Decomposition (POD)-based Galerkin projec-

tion as well as Petrov-Galerkin projection onto balancing and adjoint modes derived from linearized

dynamics about equilibria. We considered a simple three-dimensional system with an important

low-energy feature as well as a nonlinear axisymmetric jet flow with 69, 000 state variables. In both

cases, the optimized Petrov-Galerkin reduced-order model vastly out-performs the predictions made

using the projection-based models obtained by POD and balanced truncation on new trajectories.

We argue that this is because POD, while optimal for reconstructing states, ignores important low-

energy features that influence the dynamics in the future. On the other hand, model reduction

approaches like balanced truncation that rely only on the linearized dynamics can fail to capture

features that have important nonlinear interactions far away from equilibria. Our approach is capa-

ble of capturing the relevant features needed to predict the nonlinear dynamics on a representative

collection of trajectories.

The primary limitation of our approach is that a sufficiently large collection of trajectories must

be used to avoid over-fitting. Based on algebraic considerations, the total number of sample data

should exceed the dimension 2nr − 2r2 of the product of Grassmann manifolds over which we
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optimize, where n is the state dimension and r is the dimension of the reduced-order model. In

order to avoid over-fitting we suggest exceeding this minimum data requirement by a factor of at

least 3. For instance, in the case of our fluid flow example, r is small compared with n and we

use 360 snapshots of the state as training data to optimize over subspaces with 2r = 100. When

a large number of trajectories are used, it may be advantageous to employ a stochastic gradient

descent algorithm [28, 237] with randomized “minibatches” of trajectories. Finally, we performed

all computations on a personal computer and did not take advantage of the natural parallel structure

of the costly gradient computation step. By taking advantage of this step’s parallel structure across

trajectories, evaluations at quadrature points, and decomposed spatial domains of the full-order

model, we believe that the method can be applied to systems whose state dimensions are much

higher than in our jet flow example.

Appendix

8.A Proof of Theorem 8.3.3 (Topology of P)

By Lemma 8.3.1 a function F on Gn,r × Gn,r is continuous if and only if F ◦ π is continuous on

Rn×r∗ ×Rn×r∗ . This allows us to establish the results by working with representatives in Rn×r∗ ×Rn×r∗

rather than abstract subspaces in Gn,r × Gn,r.

To prove that P is open in Gn,r × Gn,r, consider the function

F ◦ π(Φ,Ψ) =
det(Ψ∗Φ)2

det(Φ∗Φ) det(Ψ∗Ψ)
, (Φ,Ψ) ∈ Rn×r∗ × Rn×r∗ . (8.57)

The function F is well-defined because the above expression does not depend on the representatives

Φ,Ψ due to the product rule for determinants. Furthermore, F ◦ π is continuous on Rn×r∗ × Rn×r∗

and so it follows that P is open because it is the pre-image P = F−1((0,∞)) of the open set (0,∞)

by Proposition 8.2.2.

To prove that P is dense in Gn,r×Gn,r, consider a pair of subspaces (V,W ) ∈ (Gn,r×Gn,r)\P and

representatives (Φ,Ψ) ∈ Rn×r∗ × Rn×r∗ such that π(Φ,Ψ) = (V,W ). Consider the full-sized singular

value decomposition

Φ∗Ψ = UΣQT (8.58)
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and define the continuously parameterized set of matrices

Ψt = Ψ + tΦ(Φ∗Φ)−1UQT , t ≥ 0, (8.59)

giving rise to a continuously parameterized set of subspaces (V,Wt) = π(Φ,Ψt) ∈ Gn,r × Gn,r. We

observe that for all t > 0, we have

det(Φ∗Ψt) = det
(
UΣQT + tUQT

)
= det(U) det(Q) det (Σ + tI) 6= 0. (8.60)

Therefore, (V,W0) = (V,W ) /∈ P, but (V,Wt) ∈ P for all t > 0, from which it follows that P is

dense in Gn,r × Gn,r.

Since we are working with manifolds, connectedness and path-connectedness are equivalent. In

order to prove the connectedness part of Theorem 8.3.3, we will need the following result:

Lemma 8.A.1. If 1 ≤ r ≤ n then Gn,r is connected. If 1 ≤ r < n then Rn×r∗ is connected.

Proof. Our proof relies on the well-known result that the general linear group GLn has two connected

components, corresponding to matrices with positive and negative determinants [109]. Choose any

two subspaces V0, V1 ∈ Gn,r and let T0, T1 ∈ GLn be chosen such that the first r columns of T0

span V0 and the first r columns of T1 span V1. Recalling that changing the sign of a column

changes the sign of the determinant, flip the sign on the first column of T0 if necessary to satisfy

sgn detT0 = sgn detT1. Now there exists a continuous path t 7→ At ∈ GLn connecting T0 at t = 0

to T1 at t = 1. Since each At ∈ GLn, its first r columns are linearly independent and span an

r-dimensional subspace Vt ∈ Gn,r The path t 7→ Vt is a continuous path connecting V0 at t = 0 to

V1 at t = 1.

Essentially the same approach is used to connect any two matrices Φ0,Φ1 ∈ Rn×r∗ by a continuous

path, with the caveat that we must have r < n. Let T0, T1 ∈ GLn be matrices whose first r columns

are given by Φ0 and Φ1 respectively. Since r < n we may choose the sign of the last column of T0 so

that sgn detT0 = sgn detT1. Now the first r columns of the matrices Tt ∈ GLn along a continuous

path connecting T0 and T1 form a continuous path connecting Φ0 and Φ1 in Rn×r∗ .

To prove that P is connected we need only consider the case when r < n since when r = n we obvi-

ously have P = Gn,r×Gn,r, which is connected by Lemma 8.A.1. Choose any (V0,W0), (V1,W1) ∈ P

and let (Φ0,Ψ0) and (Φ1,Ψ1) be representatives of (V0,W0) and (V1,W1) respectively such that

Ψ∗0Φ0 = Ir and Ψ∗1Φ1 = Ir. Such representatives may always be found by first choosing any repre-
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sentatives Φ̃0, Ψ̃0 of the subspaces V0,W0 and then letting Φ0 = Φ̃0 and Ψ0 = Ψ̃0(Φ∗0Ψ̃0)−1. We may

do the same for Φ1 and Ψ1. In order to construct our path in P, we first consider any continuously

parameterized matrices (Φ̃t, Ψ̃t) ∈ Rn×r∗ × Rn×r∗ , 0 ≤ t ≤ 1 furnished by Lemma 8.A.1 such that

(Φ̃0, Ψ̃0) = (Φ0,Ψ0) and (Φ̃1, Ψ̃1) = (Φ1,Ψ1). Our approach will be to modify these matrices to

avoid singularities.

Since t 7→ det (Ψ̃∗t Φ̃t) is a continuous function, there exists ε > 0 such that for every t ∈

[0, ε)∪ (1− ε, 1], the matrix Ψ̃∗t Φ̃t is invertible. Moreover, ε > 0 may be chosen small enough so that

Φ̂t = Φ̃t(Ψ̃
∗
t Φ̃t)

−1 ∀t ∈ [0, ε) ∪ (1− ε, 1], (8.61)

is sufficiently close to Φ̃t that any convex combination of Φ̂t and Φ̃t has linearly independent columns.

We observe that on [0, ε) ∪ (1− ε, 1], t 7→ Φ̂t is continuous and Ψ̃∗t Φ̂t = Ir. Furthermore, Φ̂t agrees

with the original Φ0 at t = 0 and with Φ1 at t = 1.

Let ϕ : R → [0, 1] be a smooth function such that ϕ(t) = 1 for every t ∈ (−∞, 8ε/10] ∪ [1 −

8ε/10,∞) and ϕ(t) = 0 for every t ∈ [9ε/10, 1− 9ε/10]. We define the continuous set of matrices

Φt =

 Φ̃t t ∈ [9ε/10, 1− 9ε/10]

ϕ(t)Φ̂t + (1− ϕ(t))Φ̃t otherwise
(8.62)

for 0 ≤ t ≤ 1 and we observe that Φt agrees with the original matrix Φ0 at t = 0 and with

Φ1 at t = 1. Now let ψ : R → [0, 1] be a smooth function such that ψ(t) = 1 for every t ∈

(−∞, 1ε/10] ∪ [1 − 1ε/10,∞) and ψ(t) = 0 for every t ∈ [2ε/10, 1 − 2ε/10]. We now define the

continuous set of matrices

Ψt =

 Φt t ∈ [2ε/10, 1− 2ε/10]

ψ(t)Ψ̃t + (1− ψ(t))Φt otherwise
(8.63)

for 0 ≤ t ≤ 1 and we observe that Ψt agree with the original matrix Ψ0 at t = 0 and with Ψ1 at

t = 1. Finally, we observe that

Φ∗tΨt =

 Φ∗tΦt t ∈ [2ε/10, 1− 2ε/10]

ψ(t)Ir + (1− ψ(t))Φ̂∗t Φ̂t otherwise
(8.64)

for if t ∈ [0, 2ε/10) ∪ (1 − 2ε/10, 1] then Φt = Φ̂t and Φ̂∗t Ψ̃t = Ir. Therefore, Φ∗tΨt is a positive-

definite matrix for every t ∈ [0, 1] and so (Vt,Wt) = π(Φt,Ψt) ∈ P is a continuous path between

219



(V0,W0) ∈ P and (V1,W1) ∈ P.

Finally, we conclude with

Lemma 8.A.2. The submanifold P ⊂ Gn,r × Gn,r is diffeomorphic to

P =
{
P ∈ Rn×n : P 2 = P and rank(P ) = r

}
. (8.65)

Proof. The map φ : P → P defined by

φ ◦ π(Φ,Ψ) = Φ(Ψ∗Φ)−1Ψ∗ (8.66)

is smooth by Lemma 8.3.1. Moreover, φ is injective for if (Vi,Wi) ∈ P, i ∈ {0, 1} are subspace pairs

with representatives (Φi,Ψi) ∈ π−1(Vi,Wi) satisfying

Φ0(Ψ∗0Φ0)−1Ψ∗0 = Φ1(Ψ∗1Φ1)−1Ψ∗1, (8.67)

then V0 = Range(Φ0) = Range(Φ1) = V1 and W0 = Range(Ψ0) = Range(Ψ1) = W1. To show that

φ is surjective, choose any P ∈ P and consider a slim singular value decomposition P = UΣQ∗. It

is clear that Σ is an invertible r × r diagonal matrix and the condition P 2 = P implies that

ΣQ∗UΣ = Σ ⇒ Q∗U = Σ−1. (8.68)

Therefore, P = U(Q∗U)−1Q∗ for some Q,U ∈ Rn,r∗ such that det(Q∗U) 6= 0. Taking (V,W ) =

π(U,Q) we obtain φ(V,W ) = P .

It now remains to show that φ−1 : P→ P is differentiable. Let {ei}ni=1 be an orthonormal basis

for the state space X . If I = {i1, . . . , ir} ⊂ {1, . . . , n} is a subset of r indices, let EI : Rr → X be

defined by

EIz = ei1z1 + · · ·+ eirzr. (8.69)

Choose P ∈ P and let I, J ⊂ {1, . . . , n} be sets of indices with |I| = |J | = r elements such that

Range(P ∗EI) = Range(P ∗) and Range(PEJ) = Range(P ). Here P ∗ refers to the adjoint of P as an

operator P : X → X on the state space X . Since φ is bijective, we have

P = φ(Range(P ), Range(P ∗)) = (PEJ) [(P ∗EI)
∗(PEJ)]

−1
(P ∗EI)

∗. (8.70)
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Most importantly, the same sets of indices I and J satisfy the above properties for every P̃ in a

sufficiently small neighborhood of P in P. The maps

P 7→ PEJ , P 7→ P ∗EI , (8.71)

are smooth and so

P 7→ π(PEJ , P
∗EI) (8.72)

is the smooth inverse of φ over a small neighborhood of P in P. Since such a smooth inverse exists

near every P ∈ P it follows that φ is a diffeomorphism.

8.B Proof of Proposition 8.3.4 (Properties of ROM Solu-

tions)

Any solution of Eq. 8.4 is unique since Eq. 8.4 is smooth. This is a trivial consequence of Grönwall’s

inequality (Corollary 8.62 in [134]). Suppose that x̂0 and x̂1 are two solutions of Eq. 8.4 over the

interval [t0, tL−1] at the same (V,W ) ∈ P. Since these solutions are are continuous in time, they

are contained in some closed ball B̄ ⊂ X . Since (x, t) 7→ f(x, u(t)) is continuously differentiable by

Assumption 8.2.1, it is L-Lipschitz in B̄ for some finite L and we have

‖x̂0(t)− x̂1(t)‖ ≤
∫ t

t0

‖PV,W (f(x̂0(s), u(s))− f(x̂1(s), u(s)))‖ ds

≤ L‖PV,W ‖op

∫ t

t0

‖x̂0(s)− x̂1(s)‖ds.
(8.73)

By Grönwall’s inequality, it follows that

‖x̂0(t)− x̂1(t)‖ ≤ 0, (8.74)

which implies that x̂0(t) = x̂1(t) for all t ∈ [t0, tL−1].

Suppose that a solution x̂0(t) = x̂(t; (V0,W0)) exists for a given (V0,W0) ∈ P. Since x̂0 is

continuous over the finite interval [t0, tL−1], it is bounded and contained in the open ball

B =

{
x ∈ X : ‖x‖ < sup

t∈[t0,tL−1]

‖x̂0(t)‖+ 1

}
. (8.75)

Moreover, by Assumption 8.2.1 it follows that every (t, x) 7→ PV,W f(x, u(t)) with (V,W ) ∈ P is
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bounded and Lipschitz on B̄. Therefore, for any (V,W ) ∈ P such that PV,Wx0 ∈ B, the Picard-

Lindelof theorem (Theorem 8.13 in W. G. Kelly A. C. Peterson [134]), ensures the reduced-order

model Eq. 8.4 has a unique solution x̂(t; (V,W )) in B over an interval [t0, α] for some α > t0. More-

over, the extension theorem for ODEs (Theorem 8.33 [134]) implies that the solution x̂(t; (V,W ))

of Eq. 8.4 exists in B for all time t ≥ t0, or there is a finite ω so that x̂(t; (V,W )) remains in B

for t ∈ [t0, ω) and x̂(t; (V,W )) → ∂B as t → ω−. To be precise, the latter means that x̂(t; (V,W ))

leaves any compact subset of B as t→ ω−.

For the sake of producing a contradiction, suppose that there is a sequence {(Vk,Wk)}∞k=1 such

that (Vk,Wk) → (V0,W0) and for which the reduced-order model does not have a solution on

[t0, tL−1]. Since the map φ : (V,W ) 7→ PV,W is smooth by Theorem 8.3.3, we may assume that

each (Vk,Wk) is already in a sufficiently small neighborhood of (V0,W0) such that PVk,Wk
x0 ∈ B.

Consequently, each reduced-order model solution x̂k(t) = x̂(t; (Vk,Wk)) exist and remains in B over

some maximal interval [t0, ωk) with t0 < ωk < tL−1 and x̂k(t)→ ∂B as t→ ω−k .

To produce a contradiction, we show that x̂k(t) remains close to x̂0(t) over the interval [t0, ωk)

for sufficiently large k, which will be at odds with x̂k(t)→ ∂B as t→ ω−k . For t ∈ [t0, ωk) we have

the following bound on the difference between the trajectories

‖x̂k(t)− x̂0(t)‖ ≤ ‖(PVk,Wk
− PV0,W0)x0‖

+

∫ t

t0

‖(PVk,Wk
− PV0,W0

)f(x̂k(s), u(s))‖ ds

+

∫ t

t0

‖PV0,W0f(x̂k(s), u(s))− PV0,W0f(x̂0(s), u(s))‖ ds. (8.76)

Let ‖ · ‖op denote the induced norm (operator norm) and observe that since (t, x) 7→ f(x, u(t)) is

continuously differentiable with respect to x by Assumption 8.2.1, there are finite constants M and

L such that

‖f(x, u(t))‖ ≤M ∀x ∈ B̄, ∀t ∈ [t0, tL−1] (8.77)

‖f(x, u(t))− f(z, u(t))‖ ≤ L‖x− z‖ ∀x, z ∈ B̄, ∀t ∈ [t0, tL−1]. (8.78)
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Therefore, we have

‖x̂k(t)− x̂0(t)‖ ≤ ‖PVk,Wk
− PV0,W0

‖op (‖x0‖+M(tL−1 − t0))

+ L‖PV0,W0
‖op

∫ t

t0

‖x̂k(s)− x̂0(s)‖ ds. (8.79)

Applying Grönwall’s inequality (Corollary 8.62 in [134]), we see that

‖x̂k(t)− x̂0(t)‖ ≤ ‖PVk,Wk
− PV0,W0

‖op (‖x0‖+M(tL−1 − t0)) eL‖PV0,W0
‖opt. (8.80)

Since φ : (V,W ) 7→ PV,W is continuous,

(Vk,Wk)→ (V0,W0) ⇒ ‖PVk,Wk
− PV0,W0‖op → 0, (8.81)

and so Eq. 8.80 implies that ‖x̂k(t)− x̂0(t)‖ → 0 uniformly over t ∈ [t0, ωk) as k →∞. In particular,

we may take K sufficiently large so that for any k ≥ K then

‖x̂k(t)− x̂0(t)‖ ≤ 1

2
∀t ∈ [t0, ωk), (8.82)

contradicting the fact that x̂k(t) → ∂B as t → ω−k . Therefore, there is an open neighborhood of

(V0,W0) in P in which the reduced order model Eq. 8.4 has a unique solution over the time interval

[t0, tL−1], which establishes the openness of D in P.

Since D is open in P it follows that there is a set D′ ∈ Gn,r × Gn,r such that D = D′ ∩ P. Since

P is open in Gn,r ×Gn,r by Theorem 8.3.3, it follows that D is open in Gn,r ×Gn,r since it is a finite

intersection of open sets.

Now, let us turn our attention to proving that D = P when f has bounded x-derivatives. Since

the partial derivatives of f with respect to x are bounded, it follows that for any (V,W ) ∈ P there

is a constant L such that

‖PV,W f(x1, u(t))− PV,W f(x2, u(t))‖ ≤ L‖x1 − x2‖ ∀x1, x2 ∈ Rn, ∀t ∈ R (8.83)

and so (x, t) 7→ PV,W f(x, t) is Lipschitz in x uniformly over t. A trivial modification of Theorem 7.3

in H. Brezis [30] shows that a solution of the reduced-order model Eq. 8.4 exists on the interval

[t0,∞). As a consequence, D = P.

Now we shall establish the differentiability of x̂(t; (V,W )) at each fixed t ∈ [t0, tL−1] with respect
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to (V,W ) ∈ D. Recall that by Theorem 8.3.3, the set of rank-r projection matrices P is smoothly

diffeomorphic to the 2nr−2r2 dimensional submanifold P ⊂ Gn,r×Gn,r. Let ψ : R2nr−2r2 → U ⊂ D

be a local parameterization of a an open subset U ⊂ D. Letting φ : (V,W ) 7→ PV,W be the

diffeomorphism established by Theorem 8.3.3, the map P = φ ◦ ψ is a smooth parameterization

of the open subset φ(U) ⊂ P. It suffices to show that the solution x̂(t;ψ(p0)) is continuously

differentiable with respect to p0 ∈ R2nr−2r2

.

We define the augmented state variable w = (x, p) ∈ Rn×R2nr−2r2

whose dynamics are described

by

d

d t
w = F (w, t) :=

P (p)f(x, u(t))

02nr−r2

 w(0) = w0. (8.84)

Clearly, we have w(t;w0) = x̂(t;ψ(p0)) when w0 = (P (p0)x0, p0). It is also clear from Assump-

tion 8.2.1 that F is continuously differentiable with respect to w, and so by Theorem 8.43 in [134], it

follows that w(t;w0) is continuously differentiable with respect to w0. This proves that x̂(t; (V,W ))

is continuously differentiable with respect to (V,W ) since w0 = (P (p0)x0, p0) is continuously differ-

entiable with respect to p0.

Finally, suppose that {(Vk,Wk)}∞k=1 ⊂ D is a sequence approaching (Vk,Wk)→ (V0,W0) ∈ P\D.

Denote x̂k(t) = x̂(t; (Vk,Wk)) and x̂0(t) = x̂(t; (V0,W0)), and let [t0, ωR) be the maximum interval of

existence for x̂0 in an open ball BR ⊂ X of radius R > ‖PV0,W0
x0‖ centered about the origin. Here

we have again made use of the extension theorem for solutions of ordinary differential equations

(Theorem 8.33 [134]). It is clear that since (x, t) 7→ f(x, u(t)) is continuously differentiable with

respect to x by Assumption 8.2.1, it is L-Lipschitz and bounded by M on BR for some finite L

and M . Let us suppose that k is sufficiently large so that PVk,Wk
x0 ∈ BR and let [t0, ωk) denote

the maximum interval of existence for x̂k(t) in BR. There are two possibilities, either ωk < ωR

which implies that supt∈[t0,tL−1] ‖x̂k(t)‖ ≥ R, or ωk ≥ ωR which implies that x̂k(t) ∈ BR for every

t ∈ [t0, ωR). In the second case, the same Grönwall argument we used above shows that that

‖x̂k(t)− x̂0(t)‖ ≤ ‖PVk,Wk
− PV0,W0‖op (‖x0‖+M(tL−1 − t0)) eL‖PV0,W0

‖opt (8.85)

for every t ∈ [t0, ωR). Since, PVk,Wk
→ PV0,W0

, we may take k sufficiently large so that the above

inequality implies that ‖x̂k(t)− x̂0(t)‖ ≤ R/2 for every t ∈ [t0, ωR) when x̂k(t) ∈ BR for every

t ∈ [t0, ωR). Since x̂0(t) → ∂BR as t → ω−R , we must have supt∈[t0,tL−1] ‖x̂k(t)‖ ≥ R/2 in the case

when x̂k(t) ∈ BR for every t ∈ [t0, ωR). It follows that for sufficiently large k, we always have
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supt∈[t0,tL−1] ‖x̂k(t)‖ ≥ R/2. Since R was arbitrary, it follows that

sup
t∈[t0,tL−1]

‖x̂k(t)‖ → ∞ as k →∞. (8.86)

Furthermore, the sup is actually a max because the trajectories x̂k are continuous. This completes

the proof of Proposition 8.3.4.

8.C Regularization and Existence of a Minimizer

Proof of Theorem 8.3.5 (Regularization). We begin by showing that ρ(V,W ) → +∞ as (V,W ) →

(V0,W0) ∈ Gn,r×Gn,r. Let Φ0,Ψ0 ∈ π−1(V0,W0). By the local submersion theorem [106], there is an

open neighborhood V ⊂ Gn,r×Gn,r containing (V0,W0) and an open neighborhood U ⊂ Rn×r∗ ×Rn×r∗
containing (Φ0,Ψ0) together with local parameterizations φ : R2nr → U and ψ : R2nr−2r2 → V of

these neighborhoods such that (Φ0,Ψ0) = φ(0), (V0,W0) = ψ(0), and

(ψ−1 ◦ π ◦ φ)(x1, . . . , x2nr) = (x1, . . . , x2nr−2r2). (8.87)

Since (Vn,Wn) → (V0,W0) there exist N such that for every n ≥ N , we have (Vn,Wn) ∈ V. Let

z(n) = ψ−1(Vn,Wn) be the coordinates of these subspace pairs for n ≥ N and let us choose the

representatives of these subspaces whose coordinates are x(n) = (z(n), 0, . . . , 0) ∈ R2nr, i.e., let

(Φn,Ψn) = φ(z(n), 0, . . . , 0). It is clear that z(n) → 0 as n→∞ and so we have (Φn,Ψn)→ (Φ0,Ψ0)

as n → ∞ by continuity of the local parameterizaions. Since the determinant is a continuous

function, we have

lim
n→∞

det (Ψ∗nΦn) = det (Ψ∗0Φ0) = 0,

lim
n→∞

det (Φ∗nΦn) = det (Φ∗0Φ0) > 0,

lim
n→∞

det (Ψ∗nΨn) = det (Ψ∗0Ψ0) > 0

(8.88)

and so it follows that

ρ(Vn,Wn) = ρ ◦ π(Φn,Ψn)→∞ as n→∞. (8.89)

Now we seek a minimum of ρ by first considering the function F : Gn,r × Gn,r → R defined by

F ◦ π(Φ,Ψ) =
det(Ψ∗Φ)2

det(Φ∗Φ) det(Ψ∗Ψ)
(8.90)
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and observing that it is continuous on Gn,r ×Gn,r. Since Gn,r is compact, it follows that Gn,r ×Gn,r
is also compact, and so F attains its maximum. Moreover, if V = W then obviously (V,W ) ∈ P

and choosing the columns of Φ = Ψ to be an orthonormal basis for V , we find that

F (V, V ) =
det(Φ∗Φ)2

det(Φ∗Φ) det(Φ∗Φ)
= 1 ⇒ ρ(V, V ) = − logF (V, V ) = 0. (8.91)

Consequently, the maximum value of F is at least 1 and so any subspace pair (Vm,Wm) that

maximizes F must lie in P = F−1((0,∞)) and also minimize R = − logF . Since ρ is a smooth

function on the open set P (see Theorem 8.3.3), a necessary condition for (Vm,Wm) to be a minimizer

of ρ is D ρ(Vm,Wm)(ξ, η) = 0 for every (ξ, η) ∈ T(Vm,Wm)Gn,r×Gn,r. Or, in terms of representatives, if

(Φm,Φm) ∈ Rn×r∗ ×Rn×r∗ is a representative of subspaces (Vm,Wm) = π(Φm,Φm) ∈ P that minimize

ρ, then for every pair of matrices (X,Y ) ∈ Rn×r × Rn×r we have

0 = D(ρ ◦ π)(Φm,Ψm)(X,Y ) = Tr
{

(Φ∗mΦm)−1(Φ∗mX +X∗Φm)
}

+ Tr
{

(Ψ∗mΨm)−1(Ψ∗mY + Y ∗Ψm)
}
− 2 Tr

{
(Ψ∗mΦm)−1(Ψ∗mX + Y ∗Φm)

}
. (8.92)

Applying permutation identities for the trace and collecting terms we have

0 = Tr
{[

(Φ∗mΦm)−1Φ∗m − (Ψ∗mΦm)−1Ψ∗m
]
X
}
+ Tr

{
Y ∗
[
Ψm(Ψ∗mΨm)−1 − Φm(Ψ∗mΦm)−1

]}
(8.93)

for every (X,Y ) ∈ Rn×r × Rn×r, which implies that

(Φ∗mΦm)−1Φ∗m = (Ψ∗mΦm)−1Ψ∗m and Ψm(Ψ∗mΨm)−1 = Φm(Ψ∗mΦm)−1. (8.94)

The above is true only if Range Φm = Range Ψm; and so a necessary condition for (Vm,Wm) to

minimize ρ over P is that Vm = Wm. But we have already seen that ρ(V,W ) = 0 when V = W ,

proving that zero is the minimum value of ρ, and the minimum is attained if and only if the subspaces

(V,W ) satisfy V = W .

Corollary 8.C.1 (Existence of a Minimizer). Let D be as in Proposition 8.3.4, and take γ > 0. We

assume that D is nonempty. Then a minimizer of Eq. 8.5 exists in D; that is, there exists a pair of
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subspaces (Vop,Wop) ∈ D such that

J(Vop,Wop) ≤ J(V,W ), for all (V,W ) ∈ D. (8.95)

Let the set of subspaces defining orthogonal projection operators be denoted

P0 = {(V,W ) ∈ P : V = W} (8.96)

and assume that D ∩ P0 is nonempty. Then, as γ → ∞, any choice of minimizers, denoted

(Vop(γ),Wop(γ)), approaches D ∩ P0. Furthermore, the corresponding cost, temporarily denoted

J(V,W ; γ) to emphasize the dependence on γ, approaches the minimum over D ∩ P0, i.e.,

lim
γ→∞

J(Vop(γ),Wop(γ); γ) ≤ J(V, V ), for all V ∈ Gn,r. (8.97)

Note that J(V, V ) does not depend on γ, since ρ(V, V ) = 0.

Proof. Choose a sequence

{(Vn,Wn)}∞n=1 in D such that

lim
n→∞

J(Vn,Wn) = inf
(V,W )∈D

J(V,W ) <∞. (8.98)

Since the Grassmann manifold Gn,r is compact, it follows that Gn,r × Gn,r is compact, and so

there exists a convergent subsequence (Vnk ,Wnk) → (V0,W0) for some (V0,W0) ∈ Gn,r × Gn,r.

We must have (V0,W0) ∈ P; for if not, Theorem 8.3.5 tells us that ρ(Vnk ,Wnk) → +∞ and so

J(Vnk ,Wnk)→ +∞ as k →∞ because Ly ≥ 0, contradicting Eq. 8.98. Furthermore, (V0,W0) ∈ D,

for if not then Proposition 8.3.4 and Assumption 8.3.6 imply that J(Vnk ,Wnk) → +∞ as k → ∞,

contradicting Eq. 8.98. The cost function J defined by Eq. 8.5 is continuously differentiable on D

because the ROM solution at each sample time (V,W ) 7→ x̂(ti, (V,W )) is continuously differentiable

by Proposition 8.3.4 and the regularization function defined by Eq. 8.13 is smooth. Since J is

continuous on D, we have

inf
(V,W )∈D

J(V,W ) = lim
k→∞

J(Vnk ,Wnk) = J(V0,W0), (8.99)

proving that (V0,W0) achieves the minimum value of J over D.

To prove the second claim about the behavior as γ →∞, we begin by observing that minimizing
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J over P0 is equivalent to minimizing V 7→ J(V, V ) over Gn,r. By the convention in Assumption 8.3.6,

we have J(V,W ) =∞ for any (V,W ) ∈ P0 \ D. In addition, this minimization does not depend on

γ because ρ(V, V ) = 0 by Theorem 8.3.5. Let us begin by showing that a minimizer of V 7→ J(V, V )

over Gn,r exists. Let {(Vk, Vk)}∞k=1 ⊂ D ∩ P0 be a sequence such that

J(Vk, Vk)→ inf
V ∈Gn,r

J(V, V ) <∞ as k →∞. (8.100)

Since Gn,r is compact, we may pass to a convergent subsequence, still denoted by {(Vk, Vk)}∞k=1,

such that Vk → V0 ∈ Gn,r. Clearly, we have (V0, V0) ∈ P0. If (V0, V0) /∈ D then Proposition 8.3.4

and Assumption 8.3.6 imply that J(Vk, Vk) → ∞. But this contradicts the fact that the sequence

{J(Vk, Vk)}∞k=1 approaches the infemum of J over P0, which is finite if D ∩ P0 6= ∅. Therefore,

(V0, V0) ∈ D ∩ P0 and since J is continuous over D it follows that

inf
V ∈Gn,r

J(V, V ) = lim
k→∞

J(Vk, Vk) = J(V0, V0), (8.101)

i.e., (V0, V0) achieves the minimum value of J over P0.

Suppose, for the sake of producing a contradiction, that there is an open neighborhood U ⊂ D

containing D ∩ P0 such that for every Γ > 0, there exists γ ≥ Γ such that (Vop(γ),Wop(γ)) /∈ U .

Then Gn,r × Gn,r \ U is a closed subset of Gn,r × Gn,r and hence is compact. By the same argument

presented above, ρ attains its minimum over P \ U , and this value is strictly greater than zero by

Theorem 8.3.5. Consequently, we would have

J(V0, V0) ≥ J(Vop(γ),Wop(γ); γ) ≥ γ min
(V,W )∈P\U

ρ(V,W )→∞ as γ →∞, (8.102)

contradicting the fact that J(V0, V0) <∞. Therefore, for every open neighborhood U ⊂ D of D∩P0,

there exists Γ > 0 such that for every γ ≥ Γ, we have (Vop(γ),Wop(γ)) ∈ U .

Finally, suppose for the sake of producing a contradiction that there exists ε > 0 such that for

every Γ > 0 there exists γ ≥ Γ such that J(Vop(γ),Wop(γ); γ) ≤ J(V0, V0)− ε. By continuity of the

objective on D, we know that the non-empty set

U = {(V,W ) ∈ D : J(V,W ; 0) > J(V0, V0)− ε} (8.103)
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is open in D and contains D ∩ P0. And so for every Γ > 0 we have a γ ≥ Γ such that

J(Vop(γ),Wop(γ); 0) ≤ J(Vop(γ),Wop(γ); γ) ≤ J(V0, V0)− ε, (8.104)

which implies that (Vop(γ),Wop(γ)) /∈ U , contradicting the fact that

(Vop(γ),Wop(γ))→ D ∩ P0 as γ →∞. (8.105)

Therefore, we conclude that J(Vop(γ),Wop(γ); γ)→ J(V0, V0) as γ →∞.

8.D Adjoint-Based Gradient and Required Terms

Proof of Theorem 8.4.1 (Adjoint-Based Gradient). We shall compute the gradients of the compo-

nent functions

Ji(C, z0) := Ly(g̃(z(ti); C)− yi) (8.106)

and use linear superposition to construct the gradient of Eq. 8.16. Consider a small perturbation

δz(t) about the trajectory z(t) due to small perturbations of the independent variables δC ∈ TCM̄

and δz0 ∈ Rr governed by the linearized dynamics

d

d t
δz(t)− F (t)δz(t) = S(t)δC. (8.107)

with perturbations to the observables described by

δy(t) = H(t)δz(t) + T (t)δC. (8.108)

The resulting perturbation of each component of the objective is given by

δJi = 〈H(ti)
∗∇Ly(g̃ (z(ti); C)− yi), δz(ti)〉

+ 〈T (ti)
∗∇Ly(g̃ (z(ti); C)− yi), δC〉C , (8.109)

and we wish to express its dependence explicitly on the optimization variables. The second term’s

dependence on δC is trivial, so we will focus on revealing the implicit dependence of the first term

on the optimization variables. To this end, we denote the first term of Eq. 8.109 by ∆i and we
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construct a signal λi(t) so that

∆i = 〈λi(t0), δz(t0)〉+

∫ ti

t0

〈λi(t), S(t)δC〉 dt. (8.110)

This allows us to write the perturbation of the sub-objective in terms of inner products between the

gradients and perturbations in each optimization variable:

∆i = 〈λi(t0), δz(t0)〉+

〈∫ ti

t0

S(t)∗λi(t)dt, δC

〉
. (8.111)

To construct λi(t), we substitute the linearized dynamics Eq. 8.107 into Eq. 8.110 and integrate by

parts

∆i = 〈λi(t0), δz(t0)〉+

∫ ti

t0

〈
λi(t),

d

d t
δz(t)− F (t)δz(t)

〉
dt

= 〈λi(ti), δz(ti)〉+

∫ ti

t0

〈
− d

d t
λi(t)− F (t)∗λi(t), δz(t)

〉
dt.

(8.112)

Equating with the first term of Eq. 8.109 for all signals δz(t), we find that the adjoint variable λi(t)

must satisfy the sub-objective adjoint dynamics

− d

d t
λi(t) = F (t)∗λi(t), λi(ti) = H(ti)

∗∇Ly(g̃ (z(ti); C)− yi). (8.113)

Finally, by linear superposition we can write the variation of the entire objective in terms of the

perturbations to the optimization variables as

δJ̄0 = 〈λ(t0), δz(t0)〉

+

〈∫ tL−1

t0

S(t)∗λ(t)dt+

L−1∑
i=0

T (ti)
∗∇Ly(g̃ (z(ti); C)− yi), δC

〉
C

(8.114)

using an adjoint variable λ(t) =
∑L−1
i=0 χ[t0,ti](t)λi(t) satisfying

− d

d t
λ(t) = F (t)∗λ(t), λ(ti) = lim

t→t+i
λ(t) +H(ti)

∗∇Ly(g̃ (z(ti); C)− yi), (8.115)

for i = 0, . . . , L− 2, and λ(tL−1) = H(tL−1)∗∇Ly(g̃ (z(tL−1); C)− yL−1).
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Proof of Corollary 8.4.2 (Known Initial Condition). By the chain rule, we have

∂

∂C
J̄(C)δC =

∂

∂C
J̄0(C, z0)δC +

∂

∂z0
J̄0(C, z0)

∂

∂C
z0(C)δC (8.116)

=
〈
∇C J̄0(C, z0), δC

〉
C

+

〈
∇z0 J̄0(C, z0),

∂

∂C
z0(C)δC

〉
(8.117)

=

〈
∇C J̄0(C, z0) +

(
∂

∂C
z0(C)

)∗
∇z0 J̄0(C, z0), δC

〉
C

(8.118)

for every δC ∈ TCM̄.

Proof of Proposition 8.4.4 (Required Terms for Gradient). Our proof of each expression follows di-

rectly from the definition of the adjoint of a linear operator between finite-dimensional real inner

product spaces. Choosing a pair of vectors v, w ∈ Rr, we have

〈F (t)v, w〉 =

(
∂

∂z
f̃(z(t), u(t); (Φ,Ψ))v

)T
w

=

〈
v,

(
∂

∂z
f̃(z(t), u(t); (Φ,Ψ))

)T
w

〉
,

(8.119)

which implies Eq. 8.26. In precisely the same way we obtain Eq. 8.28.

For the next parts, we will need the following:

Lemma 8.D.1. Letting A : Rp → Rq and L : Rq → X be linear operators, we have

(LA)∗ = ATL∗. (8.120)

If M : X → Rp is another linear operator, then we have

(AM)∗ = M∗AT . (8.121)

Proof. Let v ∈ Rp and w ∈ X and observe that

〈LAv, w〉X = 〈Av, L∗w〉Rq

=
〈
v, ATL∗w

〉
Rp ,

(8.122)

from which we conclude (LA)∗ = ATL∗. Observing that M∗ : Rp → X , we use the above result to

show (
M∗AT

)∗
= AM, (8.123)
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from which we conclude M∗AT =
(
M∗AT

)∗∗
= (AM)∗.

Now we consider a vector (X,Y ) ∈ T(Φ,Ψ)M̄ and a vector w ∈ Rdim y, yielding

〈T (t)(X,Y ), w〉 =

〈
∂

∂x
g(Φz(t))Xz(t), w

〉
= Tr

(
z(t)wT

∂

∂x
g(Φz(t))X

) (8.124)

Applying Lemma 8.D.1, we obtain

〈T (t)(X,Y ), w〉 = Tr

{[(
∂

∂x
g(Φz(t))

)∗
wz(t)T

]∗
X

}

= Tr

{
(Φ∗Φ)−1

[(
∂

∂x
g(Φz(t))

)∗
wz(t)T (Φ∗Φ)

]∗
X

}

=

〈
(X, Y ),

((
∂

∂x
g(Φz(t))

)∗
wz(t)T (Φ∗Φ), 0

)〉
(Φ,Ψ)

,

(8.125)

from which we conclude that Eq. 8.29 holds for all w ∈ Rdim y.

Consider a vector (X,Y ) ∈ T(Φ,Ψ)M̄ and a vector v ∈ Rr, and observe that

〈S(t)(X,Y ), v〉

=

〈
(Y ∗ − Y ∗ΦΨ∗ −Ψ∗XΨ∗) f(Φz(t), u(t)) + Ψ∗

∂

∂x
f(Φz(t), u(t))Xz(t), v

〉
= 〈Y ∗ (I − ΦΨ∗) f(Φz(t), u(t)), v〉 − 〈Ψ∗f(Φz(t), u(t)), X∗Ψv〉

+

〈
z(t), X∗

(
∂

∂x
f(Φz(t), u(t))

)∗
Ψv

〉
. (8.126)

Each term in Eq. 8.126 is given by a trace, in particular,

〈Y ∗ (I − ΦΨ∗) f(Φz(t), u(t)), v〉 = Tr
[
Y ∗ (I − ΦΨ∗) f(Φz(t), u(t))vT

]
. (8.127)

〈Ψ∗f(Φz(t), u(t)), X∗Ψv〉 = Tr
[
X∗Ψv (Ψ∗f(Φz(t), u(t)))

T
]

(8.128)

〈
z(t), X∗

(
∂

∂x
f(Φz(t), u(t))

)∗
Ψv

〉
= Tr

[
X∗
(
∂

∂x
f(Φz(t), u(t))

)∗
Ψvz(t)T

]
. (8.129)
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Substituting back into Eq. 8.126 and combining terms on X∗ and Y ∗ we obtain

〈S(t)(X,Y ), v〉

= Tr

{
X∗
[(

∂

∂x
f(Φz(t), u(t))

)∗
Ψvz(t)T −Ψv (Ψ∗f(Φz(t), u(t)))

T

]}
+ Tr

{
Y ∗ (I − ΦΨ∗) f(Φz(t), u(t))vT

}
. (8.130)

Recalling that the time derivative of the reduced-order model is given by

f̃(z(t), u(t)) = Ψ∗f(Φz(t), u(t)) yields Eq. 8.27.

Now, consider a vector (X,Y ) ∈ T(Φ,Ψ)M̄ and a vector v ∈ Rr, and observe that

〈
∂

∂(Φ,Ψ)
z0(Φ,Ψ)(X,Y ), v

〉
= 〈Y ∗x0 − Y ∗ΦΨ∗x0 −Ψ∗XΨ∗x0, v〉

= Tr
[
Y ∗ (x0 − ΦΨ∗x0) vT

]
− Tr

[
Ψ∗XΨ∗x0v

T
]

= Tr
[
Y ∗ (x0 − ΦΨ∗x0) vT

]
− Tr

[
v(Ψ∗x0)TX∗Ψ

]
= Tr

[
Y ∗ (x0 − ΦΨ∗x0) vT

]
− Tr

[
X∗Ψv(Ψ∗x0)T

]
.

(8.131)

The above is written in terms of the Riemannian metric at (Φ,Ψ) as

〈
∂

∂(Φ,Ψ)
z0(Φ,Ψ)(X,Y ), v

〉
= Tr

[
(Ψ∗Ψ)−1Y ∗ (x0 − ΦΨ∗x0) vTΨ∗Ψ

]
− Tr

[
(Φ∗Φ)−1X∗Ψv(Ψ∗x0)TΦ∗Φ

]
=
〈
(X,Y ),

(
−Ψv(Ψ∗x0)TΦ∗Φ, (x0 − ΦΨ∗x0) vTΨ∗Ψ

)〉
(Φ,Ψ)

, (8.132)

which yields Eq. 8.30.

Finally, we compute the gradient of the regularization Eq. 8.13 by considering a perturbation

(X,Y ) ∈ T(Φ,Ψ)M̄ and writing the resulting perturbation of ρ ◦ π as

D(ρ ◦ π)(Φ,Ψ)(X,Y ) = Tr
{

(Φ∗Φ)−1(Φ∗X +X∗Φ)
}

+ Tr
{

(Ψ∗Ψ)−1(Ψ∗Y + Y ∗Ψ)
}

− 2 Tr
{

(Ψ∗Φ)−1(Ψ∗X + Y ∗Φ)
}
. (8.133)
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Applying permutation identities for the trace and collecting terms we have

D(ρ ◦ π)(Φ,Ψ)(X,Y ) = 2 Tr
{[

(Φ∗Φ)−1Φ∗ − (Ψ∗Φ)−1Ψ∗
]
X
}

+ 2 Tr
{
Y ∗
[
Ψ(Ψ∗Ψ)−1 − Φ(Ψ∗Φ)−1

]}
, (8.134)

yielding

D(ρ ◦ π)(Φ,Ψ)(X,Y ) = 2 Tr
{

(Φ∗Φ)−1
[
Φ−Ψ(Φ∗Ψ)−1(Φ∗Φ)

]∗
X
}

+ 2 Tr
{

(Ψ∗Ψ)−1
[
Ψ− Φ(Ψ∗Φ)−1(Ψ∗Ψ)

]∗
Y
}

=
〈(

2
[
Φ−Ψ(Φ∗Ψ)−1(Φ∗Φ)

]
, 2
[
Ψ− Φ(Ψ∗Φ)−1(Ψ∗Ψ)

])
, (X,Y )

〉
(Φ,Ψ)

. (8.135)

Under the additional assumption that Ψ∗Φ = Ir, we obtain Eq. 8.31. This completes the proof of

Proposition 8.4.4.

8.E Convergence Guarantees

Here we provide convergence guarantees for the algorithm presented in Section 8.5.3 applied to our

optimal model reduction problem under modest conditions on the problem’s setup. Leveraging the

results proved by H. Sato in [235], we obtain general conditions for convergence that we state in

Theorem 8.E.1 and specialize to useful classes of systems in Corollary 8.E.7, and Corollary 8.E.8.

The algorithm converges in the sense of Eq. 8.138, which says that the gradient will eventually

become arbitrarily small. Hence, an algorithm whose stopping condition is based on the gradient

being sufficiently small will not run forever.

Theorem 8.E.1 (Convergence of Conjugate Gradient Algorithm). Suppose that the functions

x 7→ g(x) and (x, t) 7→ f(x, u(t)) describing the full-order model dynamics Eq. 8.1 along with their

second-order partial derivatives with respect to x are continuous. Let the loss function Ly be twice

continuously differentiable, take γ > 0, and let D be as in Proposition 8.3.4. We assume that D con-

tains the initial point (V0,W0) and every (V,W ) ∈ P such that J(V,W ) ≤ J(V0,W0). Then, at each

pk = (Vk,Wk) starting from p0 = (V0,W0), there exists a step size αk ≥ 0 so that pk+1 = Rpk(αkηk)

satisfies the Wolfe conditions along the search direction ηk = (ξk, ωk) ∈ TpkP computed by the scaled

Riemannian Dai-Yuan conjugate gradient method. Consequently, the cost is non-increasing, i.e.,

J(Vk+1,Wk+1) ≤ J(Vk,Wk) ∀k ≥ 0. (8.136)
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Moreover, the step sizes αk may always be chosen small enough such that

J(Rpk(tηk)) ≤ J(V0,W0) ∀t ∈ [0, αk]. (8.137)

Let us now assume that there is a subset Dc ⊂ D such that Dc is closed in M and contains every

(V,W ) ∈ P for which J(V,W ) ≤ J(V0,W0). If the step sizes are chosen so that Rpk(tηk) ∈ Dc
for every t ∈ [0, αk], which is always possible by Eq. 8.137, then the conjugate gradient algorithm

converges in the sense that

lim inf
k→∞

‖∇ J(Vk,Wk)‖(Vk,Wk) = 0. (8.138)

Proof of Theorem 8.E.1. The openness of the set D in P on which the reduced-order model has a

unique solution over the desired time interval was established in Proposition 8.3.4. Now we show that

the cost function J given by Eq. 8.5 is twice continuously differentiable with respect to the subspaces

(V,W ) over the open subset D ⊂ P. The following Lemma 8.E.2 shows that the solution for the

state of the reduced-order model Eq. 8.4 is twice continuously differentiable over D. Combining this

with the fact that g and Ly are twice continuously differentiable and that the regularization function

ρ defined by Eq. 8.13 is infinitely many times continuously differentiable on P, it follows that the

cost function J is twice continuously differentiable over D.

Lemma 8.E.2. The solution x̂(t; (V,W )) of the reduced-order model at any t ∈ [t0, tL−1] is twice

continuously differentiable with respect to (V,W ) over the open subset D ⊂ P.

Proof. Recall that by Theorem 8.3.3, the set of rank-r projection matrices P is smoothly diffeomor-

phic to the 2nr−2r2 dimensional submanifold P ⊂ Gn,r×Gn,r. Let ψ : R2nr−2r2 → U ⊂ D be a local

parameterization of a an open subset U ⊂ D. Letting φ : (V,W ) 7→ PV,W be the diffeomorphism

established by Theorem 8.3.3, the map P = φ ◦ ψ is a smooth parameterization of the open subset

φ(U) ⊂ P.

Define the augmented state variable w = (x, p) ∈ Rn × R2nr−2r2

whose dynamics are described

by

d

d t
w = F (w, t) :=

P (p)f(x, u(t))

02nr−r2

 w(0) = w0. (8.139)

Clearly, we have w(t;w0) = x̂(t;ψ(p0)) when w0 = (P (p0)x0, p0). It is also clear that F is twice

continuously differentiable with respect to w, and so by Theorem 8.43 in [134], it follows that w(t;w0)
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is differentiable with respect to w0. Furthermore, the Jacobian matrix w(1) = ∂w(t;w0)
∂w0

satisfies

d

d t

 w

w(1)

 = F (1)(w,w(1), t) :=

 F (w, t)

∂
∂wF (w, t)w(1)

 , w(1)(0) = w
(1)
0 =

w0

I

 (8.140)

by the chain rule. Our smoothness assumptions on f now ensure that F (1) is continuously dif-

ferentiable with respect to w and w(1). Applying Theorem 8.43 in [134] once more we find that

w(1)(t;w
(1)
0 ) is continuously differentiable with respect to w

(1)
0 . Since w0 is an element of w

(1)
0 it

follows that ∂w(t;w0)
∂w0

is continuosly differentiable with respect to w0 and so w(t;w0) is twice contin-

uously differentiable with respect to w0.

Finally, since w0 = (P (p0)x0, p0) is infinitely many times continuously differentiable with respect

to p0, the chain rule shows that x̂(t;ψ(p0)) is twice continuously differentiable with respect to p0.

Since ψ was an arbitrary smooth parameterization of an open subset of D it follows that x̂(t; (V,W ))

is twice continuously differentiable with respect to (V,W ) over D.

Remark 8.E.3. The argument used to prove Lemma 8.E.2 can be iterated as in [40] to prove d-

times continuous differentiability of x̂(t; (V,W )) with respect to (V,W ) for any integer d ≥ 1 as long

as (x, t) 7→ f(x, u(t)) has continuous partial derivatives with respect to x up to order d.

We assumed that p0 = (V0,W0) ∈ D, so let us suppose that the current iterate pk = (Vk,Wk),

k ≥ 1, of the conjugate gradient algorithm also lies in D and satisfies J(pk) ≤ J(pk−1) ≤ ... ≤ J(p0).

When ∇ J(pk) = 0 then we are already at a local extremum of the cost function and αk = 0 clearly

satisfies the Wolfe conditions and yields pk+1 = Rpk(αkηk) = pk and J(pk+1) ≤ J(pk). On the

other hand, Proposition 4.1 in [235] shows that when the gradient ∇ J(pk) 6= 0 then the conjugate

gradient-based search direction is a descent direction, that is

d

d t
J (Rpk(tηk))

∣∣∣∣
t=0

= 〈∇ J(pk), ηk〉pk < 0. (8.141)

By Lemma 8.3.1, the retraction Rpk : TpkM → M defined by Eq. 8.37 is infinitely many times

continuously differentiable. It follows that the line search function

Jk(t) = J (Rpk(tηk)) (8.142)

is twice continuously differentiable over the open set Dk = {t ∈ R : Rpk(tηk) ∈ D}. By our

assumptions on Dc ⊂ D, it is clear that Dk contains the closed set {t ∈ R : Jk(t) ≤ J(V0,W0)} and
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so Dk contains {t ∈ R : Jk(t) ≤ J(Vk,Wk)}. To prove that there exists αk satisfying the Wolfe

conditions

Jk(αk) ≤ Jk(0) + c1αkJ
′
k(0) (8.143)

J ′k(αk) ≥ c2J ′k(0), (8.144)

with 0 < c1 < c2 < 1, we follow the same argument as Lemma 3.1 in J. Nocedal and S. J. Wright

[190]. First we observe that all t ≥ 0 such that Jk(t) ≤ Jk(0) + c1tJ
′
k(0) automatically has Jk(t) ≤

Jk(0) ≤ J(p0) and so t ∈ Dk. Since J , and hence Jk, is bounded below, but `(t) := Jk(0) + c1tJ
′
k(0)

is not, the graphs of Jk(t) and `(t) must intersect for some t > 0. Let α > 0 be the smallest value

such that Jk(α) = `(α). Since J ′k(0) < 0 it follows that Jk(t) < `(t) for every t ∈ (0, α) ⊂ Dk. By

the mean value theorem, there exists αk ∈ (0, α) such that

Jk(α)− Jk(0) = αJ ′k(αk). (8.145)

It follows that

J ′k(αk) =
Jk(α)− Jk(0)

α
=
`(α)− Jk(0)

α
= c1J

′
k(0) ≥ c2J ′k(0), (8.146)

and so αk satisfies the Wolfe conditions. Moreover, we have

J(Rpk(tηk) ≤ J(pk) ∀t ∈ [0, αk], (8.147)

and in particular J(pk+1) ≤ J(pk) where the next iterate is pk+1 = Rpk(αkηk). Therefore we

have proven that a Wolfe step satisfying Eq. 8.147, and hence Eq. 8.137 always exists and that the

conjugate gradient algorithm produces a non-increasing sequence of costs J(pk+1) ≤ J(pk) for every

k ≥ 0.

We now turn our attention to showing that the conjugate gradient algorithm converges in the

sense of Eq. 8.138. We shall do this by verifying the hypotheses of Theorem 4.2 in [235], which give

sufficient conditions for the algorithm to converge in the sense of Eq. 8.138. In particular, if there

is a Lipschitz constant L such that for every p ∈ P and ξ ∈ TpP with unit magnitude ‖ξ‖p = 1 we

have

|D(J ◦Rp)(tξ)ξ −D(J ◦Rp)(0)ξ| ≤ Lt, ∀t > 0, (8.148)

then Eq. 8.138 holds. In fact, following the argument in Appendix A of [236], the result of Theo-
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rem 4.2 in [235], i.e., Eq. 8.138, still holds under the weaker condition that

|D(J ◦Rpk)(αkηk)ηk −D(J ◦Rpk)(0)ηk| ≤ Lαk‖ηk‖2pk , (8.149)

for each of the iterates k ≥ 0.

Here, we shall prove that there is a constant L such that

∣∣∣∣ d2

d t2
(J ◦Rp)(tξ)

∣∣∣∣ ≤ L, ∀t ≥ 0 s.t. Rp(tξ) ∈ Dc (8.150)

for every p ∈ P and ξ ∈ TpP with ‖ξ‖p = 1. Taking p = pk and ξ = ηk/‖ηk‖pk , the assumption

Rpk(τηk) ∈ Dc for every τ ∈ [0, αk] ensures that Rp(tξ) ∈ Dc for all t in the interval 0 ≤ t ≤

αk‖ηk‖pk . Integrating Eq. 8.150 over this interval proves Eq. 8.149 and therefore Eq. 8.138. It now

remains to verify Eq. 8.150.

As a closed subset of the compact manifold M = Gn,r × Gn,r, the set Dc is compact. Moreover,

our assumptions guarantee that Dc contains the entire search path

∞⋃
k=0

{Rpk(tηk) : t ∈ [0, αk]} . (8.151)

Letting φ : P → P be the C∞ diffeomorphism established in Theorem 8.3.3, it is clear that φ(Dc)

is compact and contained in the relatively open set φ(D) ⊂ P. In order to prove Eq. 8.150, it will

be easier to lift the problem into Rn×n by working with the equivalent cost function J ◦ φ−1 on a

neighborhood of φ(D) in Rn×n.

Since φ(D) is open in P and P is a smooth submanifold of Rn×n by Theorem 8.3.3, it follows

that φ(D) is a smooth submanifold of Rn×n. The following Lemma 8.E.4 shows that the restriction

J ◦ φ−1
∣∣
φ(D)

of the lifted cost function to φ(D) may be extended to a twice continuously differentiable

function J̃ defined on an open neighborhood U of φ(D) in Rn×n.

Lemma 8.E.4. Let N be a smooth d-dimensional submanifold of Rk and let h : N → R be a Cr

function. Then h may be extended to a Cr function h̃ defined on an open neighborhood of N in Rk.

Proof. Let ı : N → Rk be the injection of N into Rk. By the local immersion theorem [106] there

is an open neighborhood Up ⊂ Rk of each point p ∈ N and a C∞ diffeomorphism ψp : Rk 7→ Up
such that (x1, . . . , xd) 7→ ψ(x1, . . . , xd, 0, . . . , 0) is a C∞ parameterization of N ∩ Up. Let Π :

Rk → Rk denote the projection onto the leading d-dimensional coordinate subspace Π(x1, . . . , xk) =
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(x1, . . . , xd, 0, . . . , 0) and let h̃p : Up → R be given by

h̃p = h ◦ ψp ◦Π ◦ ψ−1
p . (8.152)

Then h̃p is a Cr extension of h to the neighborhood Up since ψp ◦Π ◦ψ−1
p is the identity on N ∩Up.

CoveringN by a union U =
⋃
p∈N Up of such neighborhoods, we may construct a smooth partition

of unity {θi}∞i=1 with the following properties [106]:

1. 0 ≤ θi(p) ≤ 1 for each p ∈ U ,

2. each p ∈ U has a neighborhood on which all but finitely many θi are identically zero,

3. the support of each θi is contained in a closed subset of some Upi ,

4. and
∑∞
i=1 θi(p) = 1 for every p ∈ U .

The final Cr extension of h to the neighborhood U is constructed by letting

h̃ =

∞∑
i=1

θih̃pi . (8.153)

Since each θi is C∞, each h̃pi is Cr, and only finitely many θi are nonzero on a neighborhood of any

p ∈ U , it is easy to see that h̃ is Cr on U . Finally, h̃pi(p) = h(p) when p ∈ Upi implies that for any

p ∈ N we have

h̃(p) =

∞∑
i=1

θi(p)h̃pi(p) =
∑

i : p∈Upi

θi(p)h̃pi(p) =

( ∞∑
i=1

θi(p)

)
h(p) = h(p), (8.154)

and so h̃ agrees with h on N .

The function J ◦R may now be written in terms of J̃ according to

J ◦R(V,W )(ξ, ω) = J ◦ π ◦ R̄V,W (ξ̄Φ, ω̄Ψ)

= J ◦ φ−1 ◦ φ ◦ π(Φ + ξ̄Φ,Ψ + ω̄Ψ)

= J̃
(

(Φ + ξ̄Φ)
[
(Ψ + ω̄Ψ)∗(Φ + ξ̄Φ)

]−1
(Ψ + ω̄Ψ)∗

)
,

(8.155)

when (Φ,Ψ) ∈ π−1(V,W ) are representatives. Letting

P (t) := (Φ + tξ̄Φ)
[
(Ψ + tω̄Ψ)∗(Φ + tξ̄Φ)

]−1
(Ψ + tω̄Ψ)∗, (8.156)
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for any projection subspaces (V,W ) ∈ P, tangent vector (ξ, ω) ∈ T(V,W )P with unit magnitude, and

representatives (Φ,Ψ) ∈ π−1(V,W ), then Eq. 8.150 is equivalent to

∣∣∣∣ d2

d t2
J̃(P (t))

∣∣∣∣ ≤ L ∀t ≥ 0 s.t. P (t) ∈ φ(Dc). (8.157)

Without loss of generality, we shall assume that the chosen representatives are orthonormal, i.e.,

Φ∗Φ = Ψ∗Ψ = Ir. With this choice, the assumption that (ξ, ω) ∈ T(V,W )P has unit magnitude

‖(ξ, ω)‖(V,W ) = 1 implies that the Hilbert-Schmidt norms of the horizontal lifts satisfy ‖ξ̄Φ‖2HS +

‖ω̄Ψ‖2HS = 1.

Remark 8.E.5 (Hilbert-Schmidt Norm and Trace). Since we deal with operators between (finite-

dimensional) Hilbert spaces with possibly different inner products, it will be convenient to use Hilbert-

Schmidt norms. For instance ξ̄Φ is an operator from Rr into the state space X , which has its own

norm that may differ from the usual norm on Rn. Since all the operators we deal with here are

finite-dimensional, they are automatically Hilbert-Schmidt operators. If A : H1 → H2 is a Hilbert-

Schmidt operator between two Hilbert spaces H1 and H2, then the Hilbert-Schmidt norm is defined

using a generalized notion of trace. In particular, if {ei} is an orthonormal basis for H1 then

‖A‖2HS =
∑
i

‖Aei‖2H2
=
∑
i

〈ei, A∗Aei〉 =: Tr (A∗A), (8.158)

and this definition is independent of the choice of bases. If B : H2 → H3 is another Hilbert-Schmidt

operator then we have

‖AB‖HS ≤ ‖A‖HS‖B‖HS . (8.159)

For more details, see Problem 40 in H. Brezis [30] and Section 6.6 in M. Reed and B. Simon [218].

If H1 = H3 and H2 are finite-dimensional, then the trace satisfies the usual adjoint and permutation

identities, namely

Tr(BA) = Tr(AB) = Tr(B∗A∗) = Tr(A∗B∗). (8.160)

When H1 = Rp and H2 = Rq then the trace defined above is the usual trace and the Hilbert-Schmidt

norm is the Frobenius norm.

Differentiating J̃(P (t)), and denoting derivates of P (t) with respect to t by P ′(t), P ′′(t), etc., we
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shall bound each term of

d2

d t2
J̃(P (t)) = D2 J̃(P (t))[P ′(t), P ′(t)] + D J̃(P (t))P ′′(t), (8.161)

in order to prove Eq. 8.157. Since P (t) is assumed to remain in the compact set φ(Dc) and the

derivative D J̃(P (t)) and Hessian D2 J̃(P (t)) are continuous on U ⊃ φ(Dc), it follows immediately

that D J̃(P (t)) and D2 J̃(P (t)) are bounded. Obviously P (t) is also bounded since it lies in the

compact set φ(Dc).

It remains to show that P ′(t) and P ′′(t) are bounded by brute-force differentiation. To simplify

our notation, let us define

GΦ(t) = (Φ + tξ̄Φ)∗(Φ + tξ̄Φ),

GΨ(t) = (Ψ + tω̄Ψ)∗(Ψ + tω̄Ψ),

GΨ,Φ(t) = (Ψ + tω̄Ψ)∗(Φ + tξ̄Φ),

(8.162)

and observe that since we chose Φ and Ψ to be orthonormal representatives, we have GΦ(0) =

GΨ(0) = Ir. The following Lemma 8.E.6 shows that several of the terms that will appear in the

expressions for P ′(t) and P ′′(t) are uniformly bounded.

Lemma 8.E.6. The following bounds hold uniformly over all (V,W ) ∈ P, all orthonormal rep-

resentatives (Φ,Ψ) ∈ π−1(V,W ), all unit magnitude (ξ, ω) ∈ T(V,W )P, and all t ≥ 0 such that

P (t) ∈ φ(Dc):

‖GΦ(t)−1‖HS ≤
√
r and ‖GΨ(t)−1‖HS ≤

√
r (8.163)

‖(Φ + tξ̄Φ)GΦ(t)−1‖HS ≤
√
r and ‖(Ψ + tω̄Ψ)GΨ(t)−1‖HS ≤

√
r (8.164)

‖(Φ + tξ̄Φ)GΦ(t)−1(Φ + tξ̄Φ)∗‖HS = ‖(Ψ + tω̄Ψ)GΨ(t)−1(Ψ + tω̄Ψ)∗‖HS =
√
r (8.165)

‖GΨ,Φ(t)−1‖HS ≤ r‖P (t)‖HS (8.166)

‖(Φ + tξ̄Φ)GΨ,Φ(t)−1‖HS ≤
√
r‖P (t)‖HS and

‖GΨ,Φ(t)−1(Ψ + tω̄Ψ)∗‖HS ≤
√
r‖P (t)‖HS .

(8.167)

Proof. Since ξ̄Φ is in the horizontal subspace at Φ, we have Φ∗ξ̄Φ = 0 and so GΦ(t) = Φ∗Φ + t2ξ̄∗Φξ̄Φ

is positive-definite. The same holds for GΨ(t) = Ψ∗Ψ+ t2ω̄∗Ψω̄Ψ. Consequently, the eigenvalues λi(t)
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of GΦ(t) are positive and non-decreasing with t, so

‖GΨ(t)−1‖2HS =

r∑
i=1

1

λi(t)2
≤

r∑
i=1

1

λi(0)2
= ‖GΨ(0)−1‖2HS = r. (8.168)

Similarly, we have ‖GΨ(t)−1‖2HS ≤ r.

By direct calculation, we have

‖(Φ + tξ̄Φ)GΦ(t)−1‖2HS = Tr
[
GΦ(t)−1(Φ + tξ̄Φ)∗(Φ + tξ̄Φ)GΦ(t)−1

]
= Tr

[
GΦ(t)−1

]
=

r∑
i=1

1

λi(t)
≤

r∑
i=1

1

λi(0)
= r.

(8.169)

Similarly, we have ‖(Ψ + tω̄Ψ)GΨ(t)−1‖2HS ≤ r.

By the permutation identity for the trace, we have

‖(Φ + tξ̄Φ)GΦ(t)−1(Φ + tξ̄Φ)∗‖2HS = Tr
[
(Φ + tξ̄Φ)GΦ(t)−1(Φ + tξ̄Φ)∗

]
= Tr

[
GΦ(t)GΦ(t)−1

]
= Tr(Ir) = r.

(8.170)

Similarly, we have ‖(Ψ + tω̄Ψ)GΨ(t)−1(Ψ + tω̄Ψ)∗‖2HS = r.

To bound GΨ,Φ(t)−1, we observe that

GΨ,Φ(t)−1 = GΦ(t)−1GΦ(t)GΨ,Φ(t)−1GΨ(t)GΨ(t)−1

= GΦ(t)−1(Φ + tξ̄Φ)∗P (t)(Ψ + tω̄Ψ)GΨ(t)−1.

(8.171)

By the above arguments, we have

‖GΨ,Φ(t)−1‖HS ≤ ‖GΦ(t)−1(Φ + tξ̄Φ)∗‖HS‖P (t)‖HS‖(Ψ + tω̄Ψ)GΨ(t)−1‖HS

≤ r‖P (t)‖HS .
(8.172)

Since P (t) ∈ φ(Dc) and φ(Dc) is a compact subset of Rn×n, it follows that ‖P (t)‖HS is bounded

and so ‖GΨ,Φ(t)−1‖HS is bounded as a consequence.

Using a similar argument, we observe that

GΨ,Φ(t)−1(Ψ + tω̄Ψ)∗ = GΦ(t)−1(Φ + tξ̄Φ)∗P (t). (8.173)
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By the bound for GΦ(t)−1(Φ + tξ̄Φ)∗ proved previously, we conclude that

‖GΨ,Φ(t)−1(Ψ + tω̄Ψ)∗‖HS ≤ ‖GΦ(t)−1(Φ + tξ̄Φ)∗‖HS‖P (t)‖HS ≤
√
r‖P (t)‖HS (8.174)

is bounded. Similarly, we have ‖(Φ + tξ̄Φ)GΨ,Φ(t)−1‖HS ≤
√
r‖P (t)‖HS .

We take another swig of coffee and differentiate:

P ′(t) = ξ̄ΦGΨ,Φ(t)−1(Ψ + tω̄Ψ)∗ + (Φ + tξ̄Φ)GΨ,Φ(t)−1ω̄∗Ψ

− (Φ + tξ̄Φ)GΨ,Φ(t)−1ω̄∗Ψ (Φ + tξ̄Φ)GΨ,Φ(t)−1(Ψ + tω̄Ψ)∗︸ ︷︷ ︸
P (t)

− (Φ + tξ̄Φ)GΨ,Φ(t)−1(Ψ + tω̄Ψ)∗︸ ︷︷ ︸
P (t)

ξ̄ΦGΨ,Φ(t)−1(Ψ + tω̄Ψ)∗. (8.175)

By Lemma 8.E.6 and the fact that ‖ξ̄Φ‖2HS + ‖ω̄Ψ‖2HS = 1, every term in the above expression for

P ′(t) is uniformly bounded and so P ′(t) is uniformly bounded.

Let us now write P ′(t) as a sum of four terms

P ′(t) = ξ̄ΦGΨ,Φ(t)−1(Ψ + tω̄Ψ)∗︸ ︷︷ ︸
A(t)

+ (Φ + tξ̄Φ)GΨ,Φ(t)−1ω̄∗Ψ︸ ︷︷ ︸
B(t)

− (Φ + tξ̄Φ)GΨ,Φ(t)−1ω̄∗ΨP (t)︸ ︷︷ ︸
C(t)

−P (t)ξ̄ΦGΨ,Φ(t)−1(Ψ + tω̄Ψ)∗︸ ︷︷ ︸
D(t)

, (8.176)

and show that the derivative of each term is bounded. Fortunately, B(t) and D(t) are what we get

when we swap Φ and Ψ in A(t)∗ and C(t)∗ respectively. We shall only show that A′(t) and C ′(t)

are uniformly bounded since the corresponding arguments for B′(t) and D′(t) are simply obtained

by swapping Φ and Ψ line for line.

A′(t) = −ξ̄ΦGΨ,Φ(t)−1ω̄∗Ψ (Φ + tξ̄Φ)GΨ,Φ(t)−1(Ψ + tω̄Ψ)∗︸ ︷︷ ︸
P (t)

− ξ̄ΦGΨ,Φ(t)−1(Ψ + tω̄Ψ)∗ξ̄ΦGΨ,Φ(t)−1(Ψ + tω̄Ψ)∗ + ξ̄ΦGΨ,Φ(t)−1ω̄∗Ψ (8.177)

Again by Lemma 8.E.6 and the fact that ‖ξ̄Φ‖2HS +‖ω̄Ψ‖2HS = 1, every term in the above expression

for A′(t) is uniformly bounded and so A′(t) is uniformly bounded.
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We now differentiate C(t) and obtain

C ′(t) = ξ̄ΦGΨ,Φ(t)−1ω̄∗ΨP (t) + (Φ + tξ̄Φ)GΨ,Φ(t)−1ω̄∗ΨP
′(t)

− (Φ + tξ̄Φ)GΨ,Φ(t)−1ω̄∗Ψ(Φ + tξ̄Φ)GΨ,Φ(t)−1ω̄∗ΨP (t)

− (Φ + tξ̄Φ)GΨ,Φ(t)−1(Ψ + tω̄Ψ)∗︸ ︷︷ ︸
P (t)

ξ̄ΦGΨ,Φ(t)−1ω̄∗ΨP (t). (8.178)

Finally, by Lemma 8.E.6, the boundedness of P ′(t) proved above, and the fact that ‖ξ̄Φ‖2HS +

‖ω̄Ψ‖2HS = 1, every term in the above expression for C ′(t) is uniformly bounded and so C ′(t)

is uniformly bounded. Repeating the symmetric arguments for B′(t) and D′(t) we finally conclude

that P ′′(t) is uniformly bounded. We have now established that every term in Eq. 8.161 is uniformly

bounded and so Eq. 8.157 holds for some fixed L, completing the proof of Theorem 8.E.1.

While the conditions in Theorem 8.E.1 appear abstract, they actually encompass two very impor-

tant special cases. In Corollary 8.E.7, below, we show that when the full-order model has bounded

first derivatives with respect to the state variables, then the conjugate gradient algorithm always

converges. For instance, Corollary 8.E.7 implies that the algorithm always converges when the

governing equations are linear.

Corollary 8.E.7. Suppose that f , g, and Ly are as in Theorem 8.E.1 and γ > 0 and suppose that

∂
∂xf(x, u(t)) is bounded. If there is a finite constant C ≥ ρ(V0,W0)/γ so that the step sizes αk

satisfy the Wolfe conditions and ρ(Rpk(tηk)) ≤ C for every t ∈ [0, αk], then the conjugate gradient

algorithm converges in the sense of Eq. 8.138.

Proof. We need only verify the assumptions in Theorem 8.E.1: namely, that there is a subset

Dc ⊂ D that is closed in M and contains every (V,W ) ∈ P for which J(V,W ) ≤ J(V0,W0). By

Proposition 8.3.4, our assumption that the Jocobian of the full-order model is bounded implies that

D = P. It is also clear that Dc = {(V,W ) ∈ P : ρ(V,W ) ≤ C} is closed inM. To see this, suppose

that {pk}∞k=1 ⊂ Dc is a sequence such that pk → p ∈ M. Then Theorem 8.3.5 implies that p ∈ P,

for if not then ρ(pk)→∞, which contradicts ρ(pk) ≤ C. Since ρ is continuous on P, it follows that

ρ(p) = limk→∞ ρ(pk) ≤ C and so p ∈ Dc.

Finally, if C ≥ ρ(V0,W0)/γ, then any (V,W ) ∈ P with J(V,W ) ≤ J(V0,W0) must have

ρ(V,W ) ≤ 1

γ
J(V,W ) ≤ 1

γ
J(V0,W0) ≤ C (8.179)

and so (V,W ) ∈ Dc.
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Furthermore, the property that Rpk(tηk) ∈ Dc for every t ∈ [0, αk] is satisfied automatically by

our assumption, so Theorem 8.E.1 implies that (8.138) holds, and the algorithm converges.

On the other hand, many important systems, such as the discretized Navier-Stokes equations have

quadratic nonlinearities resulting in unbounded first derivatives with respect to the state variables.

In such cases, a poorly chosen projection-based reduced-order model Eq. 8.4 may have states that

blow up in finite time. As long as Assumption 8.3.6 holds (i.e., any finite-time blow-up also results

in an unbounded cost J), then the following Corollary 8.E.8 shows that the conjugate gradient

algorithm will converge.

Corollary 8.E.8. Suppose that f , g, and Ly are as in Theorem 8.E.1 and γ > 0. If there is a finite

constant C ≥ J(V0,W0) so that the step sizes satisfy the Wolfe conditions and J(Rpk(tηk)) ≤ C for

every t ∈ [0, αk], then the conjugate gradient algorithm converges in the sense of Eq. 8.138.

Proof. As we have seen in the proof of Proposition 8.3.4, the smoothness of f ensures that if a

solution of the reduced-order model Eq. 8.4 exists, it must be unique. Moreover, if a solution of the

reduced-order model does not exist over [t0, tL−1], then the solution x̂(t; (V,W )) can be defined over

some maximal interval [t0, ω) with t0 < ω < tL−1 and ‖x̂(t; (V,W ))‖ → ∞ as t→ ω−. Consequently,

if the reduced-order model does not have a solution for (V,W ) ∈ P over [t0, tL−1] then J(V,W ) =∞.

Therefore, the set D can be identified with the set over which the cost function is finite, i.e.,

D = {(V,W ) ∈ P : J(V,W ) <∞}. (8.180)

We shall show that the set

Dc = {(V,W ) ∈ P : J(V,W ) ≤ C} (8.181)

is closed inM, which will complete the proof since Eq. 8.180 implies thatDc ⊂ D and C > J(V0,W0).

Suppose that {(Ṽk, W̃k)}∞k=1 ⊂ Dc is a sequence such that (Ṽk, W̃k) → (Ṽ , W̃ ) ∈ M. Then it is

clear that (Ṽ , W̃ ) ∈ P, for if it were not then Theorem 8.3.5 would give ρ(Ṽ , W̃ ) → ∞ and so

J(Ṽ , W̃ )→∞. Moreover, if (Ṽ , W̃ ) ∈ P \ D then by Proposition 8.3.4 we would have

max
t∈[t0,tL−1]

‖x̂(t; (Ṽk, W̃k))‖ → ∞ as k →∞, (8.182)

which implies that J(Ṽk, W̃k) → ∞ by Assumption 8.3.6. This contradicts the assumption that

J(Ṽk, W̃k) ≤ C for every k. Therefore, the limit point (Ṽ , W̃ ) ∈ D. In Proposition 8.3.4 we showed
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that J is differentiable, and hence continuous on D and so

J(Ṽ , W̃ ) = lim
k→∞

J(Ṽk, W̃k) ≤ C. (8.183)

Therefore, (Ṽ , W̃ ) ∈ Dc and we conclude that Dc is closed inM. Applying Theorem 8.E.1 completes

the proof.

8.F Auxiliary Proofs and Results

Proof of Proposition 8.2.2 (Subspaces Defining Oblique Projections). Suppose that w ∈W is nonzero

and w ⊥ V . Since Range Ψ = W and Range Φ = V , there exists z ∈ Rr such that w = Ψz and

0 = 〈Ψz, Φx〉 = zTΨ∗Φx ∀x ∈ Rr. (8.184)

It follows that z ⊥ Range (Ψ∗Φ) and so det (Ψ∗Φ) = 0. Similarly, suppose that v ∈ V and v ⊥ W .

Then there exists z ∈ Rr such that v = Φz and xTΨ∗Φz = 0 for every x ∈ Rr. Hence z ∈ Null (Ψ∗Φ)

and so det (Ψ∗Φ) = 0.

On the other hand, if det (Ψ∗Φ) = 0 then there exists nonzero n ∈ Null (Ψ∗Φ) and nonzero

z ∈ Range (Ψ∗Φ)
⊥

. It follows that Φn ∈ V and Ψz ∈W are nonzero vectors satisfying Φn ⊥W and

Ψz ⊥ V because for every x ∈ Rr we have 0 = xTΨ∗Φn = 〈Ψx, Φn〉 and 0 = zTΨ∗Φx = 〈Ψz, Φx〉.

This proves that the first three statements are equivalent.

Suppose that the first three statement hold, then x̂ = Φ(Ψ∗Φ)−1Ψ∗x satisfies

〈w, x̂〉 =
〈
Ψ(Φ∗Ψ)−1Φ∗w, x

〉
= 〈w, x〉 ∀w ∈W (8.185)

because any w ∈W can be written as w = Ψz for some z ∈ Rr and Ψ(Φ∗Ψ)−1Φ∗w = Ψ(Φ∗Ψ)−1Φ∗Ψz =

Ψz = w. Moreover, if there is another x̂′ satisfying the desired condition then x̂−x̂′ ∈ V is orthogonal

to W ; hence x̂ = x̂′ by the first statement.

Finally suppose that there exists a nonzero element w ∈ W that is orthogonal to V . For this

w, we have 〈w, w〉 6= 0 and 〈w, x̂〉 = 0 for every x̂ ∈ V , contradicting the fourth statement when

x = w. Even if we have an x ∈ Rn for which there exists x̂ ∈ V satisfying 〈w, x〉 = 〈w, x̂〉 for every

w ∈W , there is a nonzero v ∈ V that is orthogonal to W , any multiple of which can be added to x̂,

contradicting uniqueness of x̂.
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Proposition 8.F.1 (Bound on Projection Operators). The operator norm of PV,W for (V,W ) ∈ P

is bounded by the regularization function ρ(V,W ) according to

‖PV,W ‖op = sup
v∈X : ‖v‖X≤1

‖PV,W v‖X ≤ eρ(V,W )/2. (8.186)

Proof. Let (Φ,Ψ) ∈ π−1(V,W ) be orthonormal representatives of (V,W ) ∈ P, i.e., Φ∗Φ = Ψ∗Ψ = Ir.

By the interlacing properties of singular values [214, 261], it follows that the lth singular values of

Ψ∗Φ and Φ satisfy σl(Ψ
∗Φ) ≤ σl(Φ) = 1, for each 1 ≤ l ≤ r. Therefore, by Eq. 8.8 and Eq. 8.13 we

have

‖PV,W ‖op ≤ ‖Φ‖op‖(Ψ∗Φ)−1‖op‖Ψ∗‖op = ‖(Ψ∗Φ)−1‖op =
1

σr(Ψ∗Φ)

≤ 1∏r
i=1 σi(Ψ

∗Φ)
=

1

|det(Ψ∗Φ)| = eρ(V,W )/2. (8.187)

8.G The role of pressure in incompressible flows

As mentioned in the body of the paper in section 8.7, the pressure may be removed entirely from

the Navier-Stokes formulation (8.49)–(8.51).

Let us write equations (8.49)–(8.51) in compact form as

I 0

0 0

 ∂

∂t

q
p

 =

F −G

D 0


q
p

+

g(q)

0

 , (8.188)

where q = (u, v), D is the divergence operator, G is the gradient operator, F contains the vector

Laplacian and g(q) contains the nonlinear terms in the momentum equations (8.49) and (8.50).

Taking the divergence of the first row of (8.188), and using Dq = 0 (by the second row of (8.188))

along with DFq = FDq = 0, we obtain a Poisson equation

DG︸︷︷︸
L̃

p = Dg(q), (8.189)

where L̃ is the scalar Laplacian operator. Often, instead of prescribing pressure boundary conditions

at the physical boundaries of the spatial domain, a unique solution to (8.189) is instead computed

by fixing the pressure and the pressure gradient at some location (r0, z0) in physical space [206].
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That is, in cylindrical coordinates

p =
∂p

∂z
=
∂p

∂r
= 0 at (r0, z0) ∈ Ω, (8.190)

where (r0, z0) may be chosen arbitrarily. This approach is particularly convenient in numerical

methods based on the finite volume or finite difference discretization of the spatial dimensions. The

pressure may thus be written as

p = L̃−1Dg(q), (8.191)

and consequently (8.188) may be reduced to

∂

∂t
q = Fq + g(q)−GL̃−1Dg(q) = f(q), (8.192)

which is in the form of (8.1). In practice, in order to compute the action of f on some vector field

q, we proceed as follows:

1. compute ϕ(q) = Fq + g(q),

2. compute the pressure by solving L̃p = Dϕ(q), and finally

3. compute f(q) = ϕ(q)−Gp.

8.H Derivation of the adjoint of the Navier-Stokes equation

In this appendix we derive the adjoint of the Navier-Stokes equation linearized about a steady

solution Q = (U, V ), which satisfies the boundary conditions described in section 8.7. We will work

in cylindrical coordinates, and the adjoint equation will be derived with respect to the inner product

〈f, g〉 =

∫
Ω

f(r, z)g(r, z) r dr dz, (8.193)

where Ω = {(r, z)| r ∈ [0, Lr], z ∈ [0, Lz]} is the spatial domain.

We let q = (u, v) be the two-dimensional velocity with axial component u and radial component

v, and we let p be the pressure, as in section 8.7. For a given Reynolds number Re, the linearized
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Navier-Stokes equation and the continuity equation then read,

∂u

∂t
= −u∂U

∂z
− v ∂U

∂r
− U ∂u

∂z
− V ∂u

∂r
− ∂p

∂z
+

1

Re

(
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2

)
(8.194)

∂v

∂t
= −u∂V

∂z
− v ∂V

∂r
− U ∂v

∂z
− V ∂v

∂r
− ∂p

∂r
+

1

Re

(
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2
+
∂2v

∂z2

)
(8.195)

∂u

∂z
+

1

r

∂

∂r
(rv) = 0, (8.196)

with velocity boundary conditions

∂u

∂r
= v = 0 at r = 0 (8.197)

u = v = 0 at r = Lr, z = 0 (8.198)

∂u

∂z
=
∂v

∂z
= 0 at z = Lz. (8.199)

As discussed in appendix Appendix 8.G, in order to uniquely determine the pressure field, it suffices

to fix the pressure and the pressure gradients at some location (r0, z0) in physical space, rather than

specifying pressure boundary conditions at the boundaries of the physical domain. We therefore let

p =
∂p

∂z
=
∂p

∂r
= 0 at (r0, z0) ∈ Ω. (8.200)

Compactly, the equations of motion (8.194)-(8.196) may be written as

I 0

0 0

 ∂

∂t

q
p

 =

L −G

D 0


︸ ︷︷ ︸

N

q
p

 . (8.201)

Letting q† = (u†, v†) and p† denote the adjoint velocity field and adjoint pressure field, we seek an

operator N∗ such that

〈(q†, p†), N(q, p)〉 = 〈N∗(q†, p†), (q, p)〉. (8.202)
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Using the inner product defined in (8.193), we have

〈(q†, p†), N(q, p)〉 =∫
Ω

{
u†
(
−u∂U

∂z
− v ∂U

∂r
− U ∂u

∂z
− V ∂u

∂r
− ∂p

∂z
+

1

Re

(
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂z2

))
+

v†
(
−u∂V

∂z
− v ∂V

∂r
− U ∂v

∂z
− V ∂v

∂r
− ∂p

∂r
+

1

Re

(
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2
+
∂2v

∂z2

))
+

p†
(
∂u

∂z
+

1

r

∂

∂r
(rv)

)}
r dr dz.

Integrating by parts twice with respect to r and with respect to z, and using the fact that the

steady-state solution Q = (U, V ) satisfies the continuity equation (8.196), we obtain

∫
Ω

{
u

(
−u† ∂U

∂z
− v† ∂V

∂z
+ U

∂u†

∂z
+ V

∂u†

∂r
− ∂p†

∂z
+

1

Re

(
1

r

∂

∂r

(
r
∂u†

∂r

)
+
∂2u†

∂z2

))
+

v

(
−u† ∂U

∂r
− v† ∂V

∂r
+ U

∂v†

∂z
+ V

∂v†

∂r
− ∂p†

∂r
+

1

Re

(
1

r

∂

∂r

(
r
∂v†

∂r

)
− v†

r2
+
∂2v†

∂z2

))
+

p

(
∂u†

∂z
+

1

r

∂

∂r
(rv†)

)}
r dr dz + I1 + I2 = 〈N∗(q†, p†), (q, p)〉,

where I1 and I2 are boundary integrals arising from the integration by parts and they are given by

I1 =

∫ {
− ru†V u+

1

Re

(
u†r

∂u

∂r
− ur∂u

†

∂r

)
− rv†V v − rv†p+

1

Re

(
v†r

∂v

∂r
− vr∂v

†

∂r

)
+ rp†v

}∣∣∣∣r=Lr
r=0

dz,

and

I2 =

∫ {
− u†Uu− u†p+

1

Re

(
u†
∂u

∂z
− u∂u

†

∂z

)
− v†Uv+

1

Re

(
v†
∂v

∂z
− v ∂v

†

∂z

)
+ p†u

}∣∣∣∣z=Lz
z=0

r dr.

Using the fact that V (r = 0) = V (r = Lr) = 0, the boundary integrals I1 and I2 vanish if the

adjoint fields satisfy the following boundary conditions:

∂u†

∂r
= v† = 0 at r = 0 (8.203)

u† = v† = 0 at r = Lr, z = 0 (8.204)

u† = v†U +
1

Re

∂v†

∂z
= p† − 1

Re

∂u†

∂z
= 0 at z = Lz. (8.205)

A noteworthy difference between the forward and adjoint formulations, is the fact that a pressure

boundary condition at the outflow z = Lz now arises in the adjoint formulation, while in the
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forward formulation we had prescribed the constraints (8.200) at (r0, z0) ∈ Ω. As a concluding

remark, the pressure may be removed from both the forward and adjoint formulations in a similar

fashion as described in appendix Appendix 8.G. The pressure Poisson equation arising in the forward

formulation may be solved with the constraints in (8.200), while the Poisson equation arising in the

adjoint formulation may be solved using the pressure boundary condition in (8.205).
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Chapter 9

Linearly-Recurrent Autoencoder

Networks for Learning Dynamics
Samuel E. Otto and Clarence W. Rowley

This paper describes a method for learning low-dimensional approximations of nonlinear dynamical

systems, based on neural-network approximations of the underlying Koopman operator. Extended

Dynamic Mode Decomposition (EDMD) provides a useful data-driven approximation of the Koop-

man operator for analyzing dynamical systems. This paper addresses a fundamental problem asso-

ciated with EDMD: a trade-off between representational capacity of the dictionary and over-fitting

due to insufficient data. A new neural network architecture combining an autoencoder with linear

recurrent dynamics in the encoded state is used to learn a low-dimensional and highly informative

Koopman-invariant subspace of observables. A method is also presented for balanced model reduc-

tion of over-specified EDMD systems in feature space. Nonlinear reconstruction using partially lin-

ear multi-kernel regression aims to improve reconstruction accuracy from the low-dimensional state

when the data has complex but intrinsically low-dimensional structure. The techniques demonstrate

the ability to identify Koopman eigenfunctions of the unforced Duffing equation, create accurate

low-dimensional models of an unstable cylinder wake flow, and make short-time predictions of the

chaotic Kuramoto-Sivashinsky equation.
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9.1 Introduction

The Koopman operator first introduced in [136] describes how Hilbert space functions on the state

of a dynamical system evolve in time. These functions, referred to as observables, may correspond

to measurements taken during an experiment or the output of a simulation. This makes the Koop-

man operator a natural object to consider for data-driven analysis of dynamical systems. Such an

approach is also appealing because the Koopman operator is linear, though infinite dimensional, en-

abling the concepts of modal analysis for linear systems to be extended to dynamics of observables

in nonlinear systems. Hence, the invariant subspaces and eigenfunctions of the Koopman operator

are of particular interest and provide useful features for describing the system if they can be found.

For example, level sets of Koopman eigenfunctions may be used to form partitions of the phase space

into ergodic sets along with periodic and wandering chains of sets [38]. They allow us to parameter-

ize limit cycles and tori as well as their basins of attraction. The eigenvalues allow us to determine

the stability of these structures and the frequencies of periodic and quasiperiodic attractors [178].

Furthermore, by projecting the full state as an observable onto the eigenfunctions of the Koopman

operator, it is decomposed into a linear superposition of components called Koopman modes which

each have a fixed frequency and rate of decay. Koopman modes therefore provide useful coherent

structures for studying the system’s evolution and dominant pattern-forming behaviors. This has

made the Koopman operator a particularly useful object of study for high-dimensional spatiotempo-

ral systems like unsteady fluid dynamics beginning with the work of Mezić on spectral properties of

dynamical systems [177] then Rowley [231] and Schmid [241] on the Dynamic Mode Decomposition

(DMD) algorithm. Rowley, recognizing that DMD furnishes an approximation of the Koopman op-

erator and its modes, applied the technique to data collected by simulating a jet in a crossflow. The

Koopman modes identified salient patterns of spatially coherent structure in the flow which evolved

at fixed frequencies.

The Extended Dynamic Mode Decomposition (EDMD) [280] is an algorithm for approximating

the Koopman operator on a dictionary of observable functions using data. If a Koopman-invariant

subspace is contained in the span of the observables included in the dictionary, then as long as

enough data is used, the representation on this subspace will be exact. EDMD is a Galerkin method

with a particular data-driven inner product as long as enough data is used. Specifically, this will be

true as long as the rank of the data matrix is the same as the dimension of the subspace spanned

by the (nonlinear) observables [226]. However, the choice of dictionary is ad hoc, and it is often

not clear how to choose a dictionary that is sufficiently rich to span a useful Koopman-invariant
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subspace. One might then be tempted to consider a very large dictionary, with enough capacity to

represent any complex-valued function on the state space to within an ε tolerance. However, such a

dictionary has combinatorial growth with the dimension of the state space and would be enormous

for even modestly high-dimensional problems.

One approach to mitigate the cost of large or even infinite dictionaries is to formulate EDMD

as a kernel method referred to as KDMD [281]. However, we are still essentially left with the same

problem of deciding which kernel function to use. Furthermore, if the kernel or EDMD feature space

is endowed with too much representational capacity (a large dictionary), the algorithm will over-

fit the data (as we shall demonstrate with a toy problem in Example 9.2.1). EDMD and KDMD

also identify a number of eigenvalues, eigenfunctions, and modes which grows with the size of the

dictionary. If we want to build reduced order models of the dynamics, a small collection of salient

modes or a low-dimensional Koopman invariant subspace must be identified. It is worth mentioning

two related algorithms for identifying low-rank approximations of the Koopman operator. Optimal

Mode Decomposition (OMD) [286] finds the optimal orthogonal projection subspace of user-specified

rank for approximating the Koopman operator. Sparsity-promoting DMD [127] is a post-processing

method which identifies the optimal amplitudes of Koopman modes for reconstructing the snapshot

sequence with an `1 penalty. The sparsity-promoting penalty picks only the most salient Koopman

modes to have nonzero amplitudes. Another related scheme is Sparse Identification of Nonlinear

Dynamics (SINDy) [36] which employs a sparse regression penalty on the number of observables

used to approximate nonlinear evolution equations. By forcing the dictionary to be sparse, the

over-fitting problem is reduced.

In this paper, we present a new technique for learning a very small collection of informative

observable functions spanning a Koopman invariant subspace from data. Two neural networks in

an architecture similar to an under-complete autoencoder [99] represent the collection of observables

together with a nonlinear reconstruction of the full state from these features. A learned linear

transformation evolves the function values in time as in a recurrent neural network, furnishing our

approximation of the Koopman operator on the subspace of observables. This approach differs

from recent efforts that use neural networks to learn dictionaries for EDMD [293, 152] in that we

employ a second neural network to reconstruct the full state. Ours and concurrent approaches

utilizing nonlinear decoder neural networks [257, 164] enable learning of very small sets of features

that carry rich information about the state and evolve linearly in time. Previous methods for data-

driven analysis based on the Koopman operator utilize linear state reconstruction via the Koopman

modes. Therefore they rely on an assumption that the full state observable is in the learned Koopman
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invariant subspace. Nonlinear reconstruction is advantageous since it relaxes this strong assumption,

allowing recent techniques to recover more information about the state from fewer observables. By

minimizing the state reconstruction error over several time steps into the future, our architecture

aims to detect highly observable features even if they have small amplitudes. This is the case in

non-normal linear systems, for instance as arise in many fluid flows (in particular, shear flows [242]),

in which small disturbances can siphon energy from mean flow gradients and excite larger-amplitude

modes. The underlying philosophy of our approach is similar to Visual Interaction Networks (VINs)

[276] that learn physics-based dynamics models for encoded latent variables.

Deep neural networks have gained attention over the last decade due to their ability to efficiently

represent complicated functions learned from data. Since each layer of the network performs simple

operations on the output of the previous layer, a deep network can learn and represent functions

corresponding to high-level or abstract features. For example, your visual cortex assembles progres-

sively more complex information sequentially from retinal intensity values to edges, to shapes, all

the way up to the facial features that let you recognize your friend. By contrast, shallow networks —

though still universal approximators — require exponentially more parameters to represent classes

of natural functions like polynomials [223, 153] or the presence of eyes in a photograph. Function

approximation using linear combinations of preselected dictionary elements is somewhat analogous

to a shallow neural network where capacity is built by adding more functions. We therefore expect

deep neural networks to represent certain complex nonlinear observables more efficiently than a

large, shallow dictionary. Even with the high representational capacity of our deep neural networks,

the proposed technique is regularized by the small number of observables we learn and is therefore

unlikely to over-fit the data.

We also present a technique for constructing reduced order models in nonlinear feature space from

over-specified KDMD models. Recognizing that the systems identified from data by EDMD/KDMD

can be viewed as state-space systems where the output is a reconstruction of the full state using

Koopman modes, we use Balanced Proper Orthogonal Decomposition (BPOD) [225] to construct a

balanced reduced-order model. The resulting model consists of only those nonlinear features that

are most excited and observable over a finite time horizon. Nonlinear reconstruction of the full state

is introduced in order to account for complicated, but intrinsically low-dimensional data. In this

way, the method is analogous to an autoencoder where the nonlinear decoder is learned separately

from the encoder and dynamics.

Finally, the two techniques we introduce are tested on a range of example problems. We first

investigate the eigenfunctions learned by the autoencoder and the KDMD reduced-order model by
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identifying and parameterizing basins of attraction for the unforced Duffing equation. The prediction

accuracy of the models is then tested on a high-dimensional cylinder wake flow problem. Finally,

we see if the methods can be used to construct reduced order models for the short-time dynamics of

the chaotic Kuramoto-Sivashinsky equation. Several avenues for future work and extensions of our

proposed methods are discussed in the conclusion.

9.2 Extended Dynamic Mode Decomposition

Before discussing the new method for approximating the Koopman operator, it will be beneficial

to review the formulation of Extended Dynamic Mode Decomposition (EDMD) [280] and its kernel

variant KDMD [281]. Besides providing the context for developing the new technique, it will be

useful to compare our results to those obtained using reduced order KDMD models.

9.2.1 The Koopman operator and its modes

Consider a discrete-time autonomous dynamical system on the state space M ⊂ Rn given by the

function xt+1 = f(xt). Let F be a Hilbert space of complex-valued functions on M. We refer to

elements of F as observables. The Koopman operator acts on an observable ψ ∈ F by composition

with the dynamics:

Kψ = ψ ◦ f . (9.1)

It is easy to see that the Koopman operator is linear; however, the Hilbert space F on which

it acts is often infinite dimensional.1 Since the operator K is linear, it may have eigenvalues and

eigenfunctions. If a given observable lies within the span of these eigenfunctions, then we can predict

the time evolution of the observable’s values, as the state evolves according to the dynamics. Let

g : M → CN0 be a vector-valued observable whose components are in the span of the Koopman

eigenfunctions. The vector-valued coefficients needed to reconstruct g in a Koopman eigenfunction

basis are called the Koopman modes associated with g.

In particular, the dynamics of the original system can be recovered by taking the observable g to

be the full-state observable defined by g(x) = x. Assume K has eigenfunctions {ϕ1, . . . , ϕK} with

corresponding eigenvalues {µ1, . . . , µK}, and suppose the components of the vector-valued function g

1One must also be careful about the choice of the space F , since ψ ◦ f must also lie in F for any ψ ∈ F . It is
common, especially in the ergodic theory literature, to assume thatM is a measure space and f is measure preserving.
In this case, this difficulty goes away: one lets F = L2(M), and since f is measure preserving, it follows that K is an
isometry.

256



lie within the span of {ϕk}. The Koopman modes ξk are then defined by

x =

K∑
k=1

ξkϕk(x), (9.2)

from which we can recover the evolution of the state, according to

f t(x) =

K∑
k=1

ξkµ
t
kϕk(x). (9.3)

The entire orbit of an initial point x0 may thus be determined by evaluating the eigenfunctions at

x0 and evolving the coefficients ξk in time by multiplying by the eigenvalues. The eigenfunctions

ϕk are intrinsic features of the dynamical system which decompose the state dynamics into a linear

superposition of autonomous first-order systems. The Koopman modes ξk depend on the coordinates

we use to represent the dynamics, and allow us to reconstruct the dynamics in those coordinates.

9.2.2 Approximating Koopman on an explicit dictionary with EDMD

The aim of EDMD is to approximate the Koopman operator using data snapshot pairs taken from

the system {(xj ,yj)}Mj=1 where yj = f(xj). For convenience, we organize these data into matrices

X =

[
x1 x2 · · · xM

]
, Y =

[
y1 y2 · · · yM

]
. (9.4)

Consider a finite dictionary of observable functions D = {ψi :M→ C}Ni=1 that span a subspace

FD ⊂ F . EDMD approximates the Koopman operator on FD by minimizing an empirical error

when the Koopman operator acts on elements ψ ∈ FD. Introducing the feature map

Ψ(x) =

[
ψ1(x) ψ2(x) · · · ψN (x)

]∗
, (9.5)

where (·)∗ is the complex conjugate transpose, we may succinctly express elements in the dictionary’s

span as a linear combination with coefficients a:

ψa = Ψ∗a. (9.6)

EDMD represents an approximation of the Koopman operator as a matrix K : CN → CN that

updates the coefficients in the linear combination Eq. 9.6 to approximate the new observable Kψa in

the span of the dictionary. Of course we cannot expect the span of our dictionary to be an invariant
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subspace, so the approximation satisfies

Kψa = Ψ∗Ka + r, (9.7)

where r ∈ F is a residual that we wish to minimize in some sense, by appropriate choice of the

matrix K. The values of the Koopman-updated observables are known at each of the data points

Kψa(xj) = ψa ◦ f(xj) = ψa(yj), allowing us to define an empirical error of the approximation in

terms of the residuals at these data points. Minimizing this error yields the EDMD matrix K. The

empirical error on a single observable in FD is given by

J(ψa) =

M∑
i=1

|ψa(yi)−Ψ(xi)
∗Ka|2

=

M∑
i=1

|(Ψ(yi)
∗ −Ψ(xi)

∗K) a|2
(9.8)

and the total empirical error on a set of observables
{
ψaj

}N ′
j=1

, N ′ ≥ N spanning FD is given by

J =

N ′∑
j=1

M∑
i=1

|(Ψ(yi)
∗ −Ψ(xi)

∗K) aj |2 . (9.9)

Regardless of how the above observables are chosen, the matrix K that minimizes Eq. 9.9 is given

by

K = G+A, G =
1

M

M∑
i=1

Ψ(xi)Ψ(xi)
∗, A =

1

M

M∑
i=1

Ψ(xi)Ψ(yi)
∗, (9.10)

where (·)+ denotes the Moore-Penrose pseudoinverse of a matrix.

The EDMD solution Eq. 9.10 requires us to evaluate the entries of G and A and compute the

pseudoinverse of G. Both matrices have size N × N where N is the number of observables in our

dictionary. In problems where the state dimension is large, as it is in many fluids datasets coming

from experimental or simulated flow fields, a very large number of observables is needed to achieve

even modest resolution on the phase space. The problem of evaluating and storing the matrices

needed for EDMD becomes intractable as N grows large. However, the rank of these matrices

does not exceed min {M,N}. The kernel DMD method provides a way to compute an EDMD-like

approximation of the Koopman operator using kernel matrices whose size scales with the number of

snapshot pairs M2 instead of the number of features N2. This makes it advantageous for problems

where the state dimension is greater than the number of snapshots or where very high resolution of
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the Koopman operator on a large dictionary is needed.

9.2.3 Approximating Koopman on an implicit dictionary with KDMD

KDMD can be derived by considering the data matrices

ΨX =

[
Ψ(x1) Ψ(x2) · · · Ψ(xM )

]
, ΨY =

[
Ψ(y1) Ψ(y2) · · · Ψ(yM )

]
, (9.11)

in feature space i.e., after applying the now only hypothetical feature map Ψ to the snapshots. We

will see that the final results of this approach make reference only to inner products Ψ(x)∗Ψ(z)

which will be defined using a suitable non-negative definite kernel function k(x, z). Choice of such a

kernel function implicitly defines the corresponding dictionary via Mercer’s theorem. By employing

simply-defined kernel functions, the inner products are evaluated at a lower computational cost than

would be required to evaluate a high or infinite dimensional feature map and compute inner products

in the feature space explicitly.

The total empirical error for EDMD Eq. 9.9 can be written as the Frobenius norm

J = ‖(Ψ∗Y −Ψ∗XK) A‖2F , where A =

[
a1 a2 · · · aN ′

]
. (9.12)

Let us consider an economy sized SVD ΨX = UΣV∗, the existence of which is guaranteed by the

finite rank r of our feature data matrix. In Eq. 9.12 we see that any components of the range R(K)

orthogonal to R(ΨX) are annihilated by Ψ∗X and cannot be inferred from the data. We therefore

restrict the dictionary to those features which can be represented in the range of the feature space

data FD = {ψa = Ψ∗a : a ∈ R(U)} and represent K = UK̂U∗ for some matrix K̂ ∈ Cr×r. After

some manipulation, it can be shown that minimizing the empirical error Eq. 9.12 with respect to K̂

is equivalent to minimizing

J ′ =
∥∥∥(V∗Ψ∗Y −ΣK̂U∗

)
A
∥∥∥2

F
. (9.13)

Regardless of how the columns of A are chosen, as long as R(A) = R(U) the minimum norm

solution for the KDMD matrix is

K̂ = Σ+V∗Ψ∗YU = Σ+V∗Ψ∗YΨXVΣ+. (9.14)

Each component in the above KDMD approximation can be found entirely in terms of inner products

in the feature space, enabling the use of a kernel function to implicitly define the feature space. The
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two matrices whose entries are [KXX]ij = Ψ(xi)
∗Ψ(xj) = k(xi,xj) and [KYX]ij = [Ψ∗YΨX]ij =

Ψ(yi)
∗Ψ(xj) = k(yi,xj) are computed using the kernel. The Hermitian eigenvalue decomposition

KXX = VΣ2V∗ provides the matrices V and Σ.

It is worth pointing out that the EDMD and KDMD solutions Eq. 9.10 and Eq. 9.14 can be

regularized by truncating the rank r of the SVD ΨX = UΣV∗. In EDMD, we recognize that

G = 1
MΨXΨ∗X = 1

MUΣ2U∗ is a Hermitian eigendecomposition. Before finding the pseudoinverse,

the rank is truncated to remove the dyadic components having small singular values.

9.2.4 Computing Koopman eigenvalues, eigenfunctions, and modes

Suppose that ϕ = Ψ∗w is an eigenvector of the Koopman operator in the span of the dictionary with

eigenvalue µ. Suppose also that w = Uŵ is in the span of the data in feature space. From Kϕ = µϕ

it follows that Ψ∗Yw = µΨ∗Xw by substituting all of the snapshot pairs. Left-multiplying by 1
MΨX

and taking the pseudoinverse, we obtain (G+A)w = µ(G+G)w = µw where the second equality

holds because w ∈ R(ΨX). Therefore, w is an eigenvector with eigenvalue µ of the EDMD matrix

Eq. 9.10. In terms of the coefficients ŵ, we have Ψ∗YUŵ = µΨ∗XUŵ, which upon substituting the

definition ΨX = UΣV gives Ψ∗YΨXVΣ+ŵ = µVΣŵ. From the previous statement we it is evident

that Σ+V∗Ψ∗YΨXVΣ+ŵ = K̂ŵ = µŵ. Hence, ŵ is an eigenvector of the KDMD matrix Eq. 9.14

with eigenvalue µ. Unfortunately, the converses of these statements do not hold. Nonetheless,

approximations of Koopman eigenfunctions,

ϕ(x) = Ψ(x)∗w = Ψ(x)∗ΨXVΣ+ŵ, (9.15)

are formed using the right eigenvectors w and ŵ of K and K̂ respectively. In Eq. 9.15 the inner

products Ψ(x)∗ΨX can be found by evaluating the kernel function between x and each point in the

training data {xj}Mj=1 yielding a row-vector.

The Koopman modes {ξk}rk=1 associated with the full state observable reconstruct the state as a

linear combination of Koopman eigenfunctions. They can be found from the provided training data

using a linear regression process. Let us define the matrices

Ξ =

[
ξ1 ξ2 · · · ξr

]
, ΦX =


ϕ1(x1) · · · ϕ1(xM )

...
. . .

...

ϕr(x1) · · · ϕr(xM )

 = WT
RΨX = ŴT

RΣVT , (9.16)
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containing the Koopman modes and eigenfunction values at the training points. In the above, WR

and ŴR are the matrices whose columns are the right eigenvectors of K and K̂ respectively. Seeking

to linearly reconstruct the state from the eigenfunction values at each training point, the regression

problem,

minimize
Ξ∈Cn×r

‖X−ΞΦX‖2F , (9.17)

is formulated. The solution to this standard least squares problem is

Ξ = XΨ+
XWL = XVΣ+ŴL, (9.18)

where WL and ŴL are the left eigenvector matrices of K and K̂ respectively. These matrices must

be suitably normalized so that the left and right eigenvectors form bi-orthonormal sets W∗
LWR = Ir

and Ŵ∗
LŴR = Ir.

9.2.5 Drawbacks of EDMD

One of the drawbacks of EDMD and KDMD is that the accuracy depends on the chosen dictio-

nary. For high-dimensional data sets, constructing and evaluating an explicit dictionary becomes

prohibitively expensive. Though the kernel method allows us to use high-dimensional dictionaries

implicitly, the choice of kernel function significantly impacts the results. In both techniques, higher

resolution is achieved directly by adding more dictionary elements. Therefore, enormous dictionaries

are needed in order to represent complex features. The shallow representation of features in terms

of linear combinations of dictionary elements means that the effective size of the dictionary must

be limited by the rank of the training data in feature space. As one increases the resolution of the

dictionary, the rank r of the feature space data ΨX grows and eventually reaches the number of

points M assuming the points are distinct. The number of data points therefore is an upper bound

on the effective number of features we can retain for EDMD or KDMD. This effective dictionary

selection is implicit when we truncate the SVD of G or ΨX. It is when r = M that we have retained

enough features to memorize the data set up to projection of ΨY onto R(ΨX). Consequently, over-

fitting becomes problematic as we seek dictionaries with high enough resolution to capture complex

features. We illustrate this problem with the following simple example.

261



Example 9.2.1. Let us consider the linear dynamical system

xt+1 = f(xt+1) =

1 0

0 0.5

xt+1 (9.19)

with x = [x1, x2]
T ∈ R2. We construct this example to reflect the behavior of EDMD with rich

dictionaries containing more elements than snapshots. Suppose that we have only two snapshot

pairs,

X =

1 1

1 0.5

 , Y =

 1 1

0.5 0.25

 , (9.20)

taken by evolving the trajectory two steps from the initial condition x0 = [1, 1]
T

. Let us define the

following dictionary. Its first two elements are Koopman eigenfunctions whose values are sufficient

to describe the full state. In fact, EDMD recovers the original dynamics perfectly from the given

snapshots when we take only these first two observables. In this example, we show that by including

an extra, unnecessary observable we get a much worse approximation of the dynamics. A third

dictionary element which is not an eigenfunction is included in order to demonstrate the effects of

an overcomplete dictionary. With these dictionary elements, the data matrices are

Ψ(x) =


x1

x2

(x1)2 + (x2)2

 =⇒ ΨX =


1 1

1 0.5

2 1.25

 , ΨY =


1 1

0.5 0.25

1.25 1.0625

 . (9.21)

Applying Eq. 9.10 we compute the EDMD matrix and its eigendecomposition,

K =


0.9286 −0.1071 0.7321

−0.2143 0.1786 −0.0536

0.1429 0.2143 0.2857

 =⇒


µ1 = 1.0413

µ2 = 0

µ3 = 0.3515

, (9.22)

as well as the eigenfunction approximations,


ϕ1(x)

ϕ2(x)

ϕ3(x)

 = WT
RΨ(x) =


−0.9627 0.2461 −0.1122

0.5735 0.4915 0.5722

−0.6013 0.5722 0.5577




x1

x2

(x1)2 + (x2)2

 . (9.23)

It is easy to see that none of the eigenfunctions or eigenvalues are correct for the given system even
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though the learned matrix satisfies ‖Ψ∗Y −Ψ∗XK‖F < 6 ∗ 10−15 with 16 digit precision computed

with standard Matlab tools. This shows that even with a single additional function in the dictionary,

we have severely over-fit the data. This is surprising since our original dictionary included two

eigenfunctions by definition. The nuance comes since EDMD is only guaranteed to capture eigen-

functions ϕ(x) = wTΨ(x) where w is in the span of the feature space data R(ΨX). In this example,

the true eigenfunctions do not satisfy this condition; one can check that neither w = [1, 0, 0]T nor

w = [0, 1, 0]T is in R(ΨX).

9.3 Recent approach for dictionary learning

Example 9.2.1 makes clear the importance of choosing an appropriate dictionary prior to performing

EDMD. In two recent papers [293, 152], the universal function approximation property of neural

networks was used to learn dictionaries for approximating the Koopman operator. A fixed number

of observables making up the dictionary are given by a neural network Ψ(x;θ) ∈ Rd parameterized

by θ. The linear operator KT ∈ Rd×d evolving the dictionary function values one time step into the

future is learned simultaneously through minimization of

J(K,θ) =

M∑
i=1

∥∥Ψ(yi;θ)−KTΨ(xi;θ)
∥∥2

+ Ω(K,θ). (9.24)

A schematic of this architecture is depicted in Figure 9.3.1 where z = Ψ(x;θ) and z# = Ψ(y;θ)

are the dictionary function values before and after the time increment. The term Ω is used for

regularization and the Tikhonov regularizer Ω(K,θ) = λ ‖K‖2F was used. One notices that as the

problem is formulated, the trivial solution Ψ(x;θ) ≡ 0d and K = 0d×d is a global minimizer. [152]

solves this problem by fixing some of the dictionary elements to not be trainable. Since the full state

observable is to be linearly reconstructed in the span of the dictionary elements via the Koopman

modes, it is natural to fix the first N dictionary elements to be x while learning the remaining d−N

elements through parameterization as a neural network. The learned dictionary then approximately

spans a Koopman invariant subspace containing the full state observable. Training proceeds by

iterating two steps: (1) Fix θ and optimize K by explicit solution of the least squares problem; Then

(2) fix K and optimize θ by gradient descent. The algorithm implemented in [152] is summarized

in Algorithm 4.

When learning an adaptive dictionary of a fixed size using a neural network (or other function ap-

proximation method), let us consider two objects: the dictionary space S = {ψj(•;θ) : Rn → R : ∀θ ∈ Θ, j = 1, . . . , d}
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Algorithm 4 EDMD with dictionary learning [152]

Initialize K, θ
while J(K,θ) > ε do

Tikhonov regularized EDMD: K← (G(θ) + λId)
−1

A(θ)
Gradient descent: θ ← θ − δ∇θJ(K,θ)

end while

Figure 9.3.1: EDMD with dictionary learning architecture

is the set of all functions which can be parameterized by the neural network and the dictionary

D(θ) = {ψj(•;θ) : Rn → R : j = 1, . . . , d} is the d elements of S fixed by choosing θ. In EDMD

and the dictionary learning approach just described, the Koopman operator is always approximated

on a subspace FX = {Ψ∗w : w ∈ R(ΨX)} ⊂ FD = spanD. As discussed earlier, the EDMD

method always uses S = D and the only way to increase resolution and feature complexity is to

grow the dictionary — leading to the over-fitting problems illustrated in Example 9.2.1. By con-

trast, the dictionary learning approach enables us to keep the size of the dictionary relatively small

while exploring a much larger space S. In particular, the dictionary size is presumed to be much

smaller than the total number of training data points and probably small enough so that FX = FD.

Otherwise, the number of functions d learned by the network could be reduced so that this becomes

true. The small dictionary size therefore prevents the method from memorizing the snapshot pairs

without learning true invariant subspaces. This is not done at the expense of resolution since the

allowable complexity of functions in S is extremely high.

Deep neural networks are advantageous since they enable highly efficient representations of cer-

tain natural classes of complex features [223, 153]. In particular, deep neural networks are capable

of learning functions whose values are built by applying many simple operations in succession. It is

shown empirically that this is indeed an important and natural class of functions since deep neural

networks have recently enabled near human level performance on tasks like image and handwritten

digit recognition [99]. This proved to be a useful property for dictionary learning for EDMD since

[293, 152] achieve state of the art results on examples including the Duffing equation, Kuramoto-
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Sivashinsky PDE, a system representing the glycolysis pathway, and power systems.

9.4 New approach: deep feature learning using the LRAN

By removing the constraint that the full state observable is in the learned Koopman invariant

subspace, one can do even better. This is especially important for high-dimensional systems where it

would be prohibitive to train such a large neural network-based dictionary with limited training data.

Furthermore, it may simply not be the case that the full state observable lies in a finite-dimensional

Koopman invariant subspace. The method described here is capable of learning extremely low-

dimensional invariant subspaces limited only by the intrinsic dimensionality of linearly-evolving

patterns in the data. A schematic of our general architecture is presented in Figure 9.4.1. The

dictionary function values are given by the output of an encoder neural network z = Ψ(x;θenc)

parameterized by θenc. We avoid the trivial solution by nonlinearly reconstructing an approximation

of the full state using a decoder neural network x̂ = Ψ̃(z;θdec) parameterized by θdec. The decoder

network takes the place of Koopman modes for reconstructing the full state from eigenfunction

values. However, if Koopman modes are desired it is still possible to compute them using two

methods. The first is to employ the same regression procedure whose solution is given by Eq. 9.18 to

compute the Koopman modes from the EDMD dictionary provided by the encoder. Reconstruction

using the Koopman modes will certainly achieve lower accuracy than the nonlinear decoder, but may

still provide a useful tool for feature extraction and visualization. The other option is to employ a

linear decoder network Ψ̃(z;θdec) = B(θdec)z where B(θdec) ∈ Rn×d is a matrix whose entries are

parameterized by θdec. The advantage of using a nonlinear decoder network is that the full state

observable need not be in the span of the learned encoder dictionary functions. A nonlinear decoder

can reconstruct more information about the full state from fewer features provided by the encoder.

This enables the dictionary size d to be extremely small — yet informative enough to enable nonlinear

reconstruction. This is exactly the principle underlying the success of undercomplete autoencoders

for feature extraction, manifold learning, and dimensionality reduction. Simultaneous training of

the encoder and decoder networks extract rich dictionary elements which the decoder can use for

reconstruction.

The technique includes a linear time evolution process given by the matrix K(θK) parameter-

ized by θK. This matrix furnishes our approximation of the Koopman operator on the learned

dictionary. Taking the eigendecomposition K = WRΛW∗
L allows us to compute the Koopman

eigenvalues, eigenfunctions, and modes exactly as we would for EDMD using Eq. 9.15 and Eq. 9.18.
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Figure 9.4.1: Linearly-Recurrent Autoencoder Network (LRAN) architecture

By training the operator K simultaneously with the encoder and decoder networks, the dictionary of

observables learned by the encoder is forced to span a low-dimensional Koopman invariant subspace

which is sufficiently informative to approximately reconstruct the full state. In many real-world

applications, the scientist has access to data sets consisting of several sequential snapshots. The

LRAN architecture shown in Figure 9.4.1 takes advantage of longer sequences of snapshots during

training. This is especially important when the system dynamics are highly non-normal. In such

systems, low-amplitude features which could otherwise be ignored for reconstruction purposes are

highly observable and influence the larger amplitude dynamics several time-steps into the future.

One may be able to achieve reasonable accuracy on snapshot pairs by neglecting some of these

low-energy modes, but accuracy will suffer as more time steps are predicted. Inclusion of multiple

time steps where possible forces the LRAN to incorporate these dynamically important non-normal

features in the dictionary. As we will discuss later, it is possible to generalize the LRAN architecture

to continuous time systems with irregular sampling intervals and sequence lengths. It is also possible

to restrict the LRAN to the case when only snapshot pairs are available. Here we consider the case

when our data contains equally-spaced snapshot sequences {xt,xt+1, . . . ,xt+T −1} of length T . The

loss function

J(θenc,θdec,θK) = E
xt,...,xt+T−1∼Pdata

1

1 + β

[T −1∑
τ=0

δτ

N1(δ)

‖x̂t+τ − xt+τ‖2

‖xt+τ‖2 + ε1

+ β

T −1∑
τ=1

δτ−1

N2(δ)

‖ẑt+τ − zt+τ‖2

‖zt+τ‖2 + ε2

]
+ Ω(θenc,θdec,θK) (9.25)

is minimized during training, where E denotes the expectation over the data distribution. The
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encoding, latent state dynamics, and decoding processes are given by

zt+τ = Ψ(xt+τ ;θenc), ẑt+τ = [K(θK)τ ]
T

zt, x̂t+τ = Ψ̃(ẑt+τ ;θdec),

respectively. The regularization term Ω has been included for generality, though our numerical ex-

periments show that it was not necessary. Choosing a small dictionary size d provides sufficient

regularization for the network. The loss function Eq. 9.25 consists of a weighted average of the

reconstruction error and the hidden state time evolution error. The parameter β determines the

relative importance of these two terms. The errors themselves are relative square errors between the

predictions and the ground truth summed over time with a decaying weight 0 < δ ≤ 1. This decay-

ing weight is used to facilitate training by prioritizing short term predictions. The corresponding

normalizing constants,

N1(δ) =

T −1∑
τ=0

δτ , N2(δ) =

T −1∑
τ=1

δτ−1

ensure that the decay-weighted average is being taken over time. The small constants ε1 and ε2 are

used to avoid division by 0 in the case that the ground truth values vanish. The expectation value

was estimated empirically using minibatches consisting of sequences of length T drawn randomly

from the training data. Stochastic gradient descent with the Adaptive Moment Estimation (ADAM)

method and slowly decaying learning rate was used to simultaneously optimize the parameters θenc,

θdec, and θK in the open-source software package TensorFlow.

9.4.1 Neural network architecture and initialization

The encoder and decoder consist of deep neural networks whose schematic is sketched in Figure 9.4.2.

The figure is only a sketch since many more hidden layers were actually used in the architectures

applied to example problems in this paper. In order to achieve sufficient depth in the encoder and

decoder networks, hidden layers employed exponential linear units or “elu’s” as the nonlinearity

[67]. These units mitigate the problem of vanishing and exploding gradients in deep networks by

employing the identity function for all non-negative arguments. A shifted exponential function for

negative arguments is smoothly matched to the linear section at the origin, giving the activation

function

elu(x) =


x x ≥ 0

exp(x)− 1 x < 0

. (9.26)
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This prevents the units from “dying” as standard rectified linear units or “ReLU’s” do when the

arguments are always negative on the data. Furthermore, “elu’s” have the advantage of being

continuously differentiable. This will be a nice property if we want to approximate a C1 data

manifold whose chart map and its inverse are given by the encoder and decoder. If the maps

are differentiable, then the tangent spaces can be defined as well as push-forward, pull-back, and

connection forms. Hidden layers map the activations x(l) at layer l to activations at the next layer

l + 1 given by a linear transformation and subsequent element-wise application of the activation

function,

x(l+1) = elu
[
W(l)(θ)x(l) + b(l)(θ)

]
, W(l)(θ) ∈ Rnl+1×nl , b(l)(θ) ∈ Rnl+1 . (9.27)

The weight matrices W and vector biases b parameterized by θ are learned by the network during

training. The output layers L for both the encoder and decoder networks utilize linear transforma-

tions without a nonlinear activation function:

x(L) = W(L−1)(θ)x(L−1) + b(L−1)(θ), W(L−1)(θ) ∈ RnL×nL−1 , b(L−1)(θ) ∈ RnL , (9.28)

where L = Lenc or L = Ldec is the last layer of the encoder or decoder with nLenc = d or nLdec = n

respectively. This allows for smooth and consistent treatment of positive and negative output values

without limiting the flow of gradients back through the network.

The weight matrices were initialized using the Xavier initializer in Tensorflow. This initialization

distributes the entries in W(l) uniformly over the interval [−α, α] where α =
√

6/(nl + nl+1) in

order to keep the scale of gradients approximately the same in all layers. This initialization method

together with the use of exponential linear units allowed deep networks to be used for the encoder

and decoder. The bias vectors b(l) were initialized to be zero. The transition matrix K was initialized

to have diagonal blocks of the form

 σ ω

−ω σ

 with eigenvalues λ = σ ± ωı equally spaced around

the circle of radius r =
√
σ2 + ω2 = 0.8. This was done heuristically to give the initial eigenvalues

good coverage of the unit disc. One could also initialize this matrix using a low-rank DMD matrix.

9.4.2 Simple modifications of LRANs

Several extensions and modifications of the LRAN architecture are possible. Some simple modifi-

cations are discussed here, with several more involved extensions suggested in the conclusion. In
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Figure 9.4.2: Architecture of the encoder and decoder networks

the first extension, we observe that it is easy learn Koopman eigenfunctions associated with known

eigenvalues simply by fixing the appropriate entries in the matrix K. In particular, if we know that

our system has Koopman eigenvalue µ = σ + ωı then we may formulate the state transition matrix

K(θ) =


 σ ω

−ω σ

 02×(d−2)

0(d−2)×2 K̃(θ)

 . (9.29)

In the above, the known eigenvalue is fixed and only the entries of K̃ are allowed to be trained. If

more eigenvalues are known, we simply fix the additional entries of K in the same way. The case

where some eigenvalues are known is particularly interesting because in certain cases, eigenvalues of

the linearized system are Koopman eigenvalues whose eigenfunctions have useful properties. Suppos-

ing the autonomous system under consideration has a fixed point with all eigenvalues µi, i = 1, . . . , n

inside the unit circle, the Hartman-Grobman theorem establishes a topological conjugacy to a linear

system with the same eigenvalues in a small neighborhood U of the fixed point. One easily checks that

the coordinate transformations hi :M∩U → R, i = 1, . . . , n establishing this conjugacy are Koop-

man eigenfunctions restricted to the neighborhood. Composing them with the flow map allows us to

extend the eigenfunctions to the entire basin of attraction by defining ϕi(x) = µ
−τ(x)
i hi

(
fτ(x)(x)

)
where τ(x) is the smallest integer τ such that fτ (x) ∈ U . These eigenfunctions extend the topologi-

cal conjugacy by parameterizing the basin. Similar results hold for stable limit cycles and tori [178].

This is nice because we can often find eigenvalues at fixed points explicitly by linearization. Choos-

ing to fix these eigenvalues in the K matrix forces the LRAN to learn corresponding eigenfunctions
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parameterizing the basin of attraction. It is also easy to include a set of observables explicitly by

appending them to the encoder function Ψ(x;θenc) =
[
Ψfixed(x)T , Ψ̃(x;θenc)

T
]T

so that only the

functions Ψ̃ are learned by the network. This may be useful if we want to accurately reconstruct

some observables Ψfixed linearly using Koopman modes.

The LRAN architecture and loss function Eq. 9.25 may be further generalized to non-uniform

sampling of continuous-time systems. In this case, we consider T sequential snapshots

{x(t0),x(t1), . . . ,x(tT−1)} where the times t0, t1, . . . , tT−1 are not necessarily evenly spaced. In the

continuous time case, we have a Koopman operator semigroup Kt+s = KtKs defined as Ktψ(x) =

ψ(Φt(x)) and generated by the operator Kψ(x) = ψ̇(x) = f(x) · ∇xψ(x) where the dynamics are

given by ẋ = f(x) and Φt is the time t flow map. The generator K is clearly a linear operator

which we can approximate on our dictionary of observables with a matrix K. By integrating, we can

approximate elements from the semigroup Kt using the matrices Kt = exp (Kt) on the dictionary.

Finally, in order to formulate the analogous loss function, we might utilize continuously decaying

weights

ρ1(t) =
δt∑T −1

k=0 δ
tk
, ρ2(t) =

δt∑T −1
k=1 δ

tk
, (9.30)

normalized so that they sum to 1 for the given sampling times. Neural networks can be used for the

encoder and decoder together with the loss function

J(θenc,θdec,θK) = E
x(t0),...,x(tT−1)∼Pdata

1

1 + β

[T −1∑
k=0

ρ1(tk)
‖x̂(tk)− x(tk)‖2

‖x(tk)‖2 + ε1

+ β

T −1∑
k=1

ρ2(tk)
‖ẑ(tk)− z(tk)‖2

‖z(tk)‖2 + ε2

]
+ Ω(θenc,θdec,θK) (9.31)

to be minimized during training. In this case, the dynamics evolve the observables linearly in

continuous time, so we let

z(tk) = Ψ(x(tk);θenc), ẑ(tk) = exp [K(θK)(tk − t0)]
T

z(t0), x̂(tk) = Ψ̃(ẑ(tk);θdec).

This loss function can be evaluated on the training data and minimized in essentially the same way

as Eq. 9.25. The only difference is that we are discovering a matrix approximation to the generator

of the Koopman semigroup. We will not explore irregularly sampled continuous time systems further

in this paper, leaving it as a subject for future work.

We briefly remark that the general LRAN architecture can be restricted to the case of snapshot

pairs as shown in Figure 9.4.3. In this special case, training might be accelerated using a technique
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similar to Algorithm 4. During the initial stage of training, it may be beneficial to periodically

re-initialize the K matrix with its EDMD approximation using the current dictionary functions and

a subset of the training data. This might provide a more suitable initial condition for the matrix

as well as accelerate the training process. However, this update for K is not consistent with all the

terms in the loss function J since it does not account for reconstruction errors. Therefore, the final

stages of training must always proceed by gradient descent on the complete loss function.

Figure 9.4.3: LRAN architecture restricted to snapshot pairs

Finally, we remark that the LRAN architecture sacrifices linear reconstruction using Koopman

modes for nonlinear reconstruction using a decoder neural network in order to learn ultra-low di-

mensional Koopman invariant subspaces. Interestingly, this formulation allows the LRAN to param-

eterize the Nonlinear Normal Modes (NNMs) frequently encountered in structural dynamics. These

modes are two-dimensional, periodic invariant manifolds containing a fixed point of a Hamiltonian

system lacking internal resonances. Therefore, if µ = ωı and µ = −ωı are a complex conjugate pair

of pure imaginary eigenvalues of K with corresponding left eigenvectors wL and wL then a NNM is

parameterized as follows:

x(α) = Ψ̃(αwL + αwL;θdec) = Ψ̃ (2<(α)<(wL)− 2=(α)=(wL);θdec) . (9.32)

The global coordinates on the manifold are (<(α),=(α2)). Coordinate projection of the full state

onto the NNM, <(α)

=(α)

 =

<(wR)T

=(wR)T

Ψ(x;θenc), (9.33)

is accomplished by employing the encoder network and the right eigenvector wR corresponding

271



to eigenvalue µ. These coordinates are the real and imaginary parts of the associated Koopman

eigenfunction α = ϕ(x). The NNM has angular frequency ∠(ωı)/∆t where ∆t is the sampling

interval between the snapshots in the case of the discrete time LRAN.

We may further generalize the notion of NNMs by considering the Koopman mode expansion of

the real-valued observable vector Ψ making up our dictionary. In this particular case, the associated

Koopman modes are the complex conjugate left eigenvectors of K. They allow exact reconstruction

and prediction using the decomposition

zt =

r∑
j=1

wL,jµ
t
j

(
wT
R,jz0

)
=

r∑
j=1

wL,jµ
t
jϕj(x0), (9.34)

assuming a Koopman invariant subspace has been learned that contains the full state observable.

Reconstructing and predicting with the decoder instead, we have

xt = Ψ̃

 r∑
j=1

wL,jµ
t
jϕj(x0); θdec

 . (9.35)

Therefore, each invariant subspace of K given by its left eigenvectors corresponds to an invariant

manifold in the n-dimensional phase space. These manifolds have global charts whose coordinate

projections are given by the Koopman eigenfunctions ϕj(x) = wT
R,jΨ(x;θenc). The dynamics on

these manifolds is incredibly simple and entails repeated multiplication of the coordinates by the

eigenvalues. Generalized eigenspaces may also be considered in the natural way by using the Jordan

normal form of K instead of its eigendecomposition in the above arguments. The only necessary

change is in the evolution equations, where instead of taking powers of Λ = diag {µ1, . . . , µr}, we

take powers of J, the matrix consisting of Jordan blocks [178]. Future work might use a variational

autoencoder (VAE) formulation [99, 176, 165, 142] where a given distribution is imposed on the

latent state in order to facilitate sampling.

9.5 EDMD-based model reduction as a shallow autoencoder

In this section we examine how the EDMD method might be used to construct low-dimensional

Koopman invariant subspaces while still allowing for accurate reconstructions and predictions of

the full state. The idea is to find a reduced order model of the large linear system identified by

EDMD in the space of observables. This method is sometimes called overspecification [228] and

essentially determines an encoder function into an appropriate small set of features. From this
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reduced set of features, we then employ nonlinear reconstruction of the full state through a learned

decoder function. Introduction of the nonlinear decoder should allow for lower-dimensional models

to be identified which are still able to make accurate predictions. The proposed framework therefore

constructs a kind of autoencoder where encoded features evolve with linear time invariant dynamics.

The encoder functions are found explicitly as linear combinations of EDMD observables and are

therefore analogous to a shallow neural network with a single hidden layer. The nonlinear decoder

function is also found explicitly through a regression process involving linear combinations of basis

functions.

We remark that this approach differs from training an LRAN by minimization of Eq. 9.25 in

two important ways. First, the EDMD-based model reduction and reconstruction processes are

performed sequentially; thus, the parts are not simultaneously optimized as in the LRAN. The

LRAN is advantageous since we only learn to encode observables which the decoder can successfully

use for reconstruction. There are no such guarantees here. Second, the EDMD dictionary remains

fixed albeit overspecified whereas the LRAN explicitly learns an appropriate dictionary. Therefore,

the EDMD shallow autoencoder framework will still suffer from the overfitting problem illustrated

in Example 9.2.1. If the EDMD-identified matrix K does not correctly represent the dynamics on

a Koopman invariant subspace, then any reduced order models derived from it cannot be expected

to be accurately relect the dynamics either. Nonetheless, in many cases, this method could provide

a less computationally expensive alternative to training a LRAN which retains some of the benefits

owing to nonlinear reconstruction.

Dimensionality reduction is achieved by first performing EDMD with a large dictionary, then

projecting the linear dynamics onto a low-dimensional subspace. A naive approach would be to

simply project the large feature space system onto the most energetic POD modes — equivalent

to low-rank truncation of the SVD ΨX = UΣV∗. While effective for normal systems with a

few dominant modes, this approach yields very poor predictions in non-normal systems since low

amplitude modes with large impact on the dynamics would be excluded from the model. One method

which resolves this issue is balanced truncation of the identified feature space system. Such an idea

is suggested in [228] for reducing the system identified by linear DMD. Drawing from the model

reduction procedure for snapshot-based realizations developed in [162], we will construct a balanced

reduced order model for the system identified using EDMD or KDMD. In the formulation of EDMD

that led to the kernel method, an approximation of the Koopman operator,

KΨ(x)∗a = Ψ(x)∗UK̂U∗a + r(x), ∀a ∈ R(U), (9.36)
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was obtained. The approximation allows us to model the dynamics of a vector of observables,

ΨU(x) = U∗Ψ(x) = Σ+V∗Ψ∗XΨ(x), (9.37)

with the linear input-output system

ΨU(xt+1) = K̂∗ΨU(xt) +
1√
M

Σut

xt = CΨU(xt)

, (9.38)

where K̂ is the matrix Eq. 9.14 identified by EDMD or KDMD. The input ut is provided in order

to equate varying initial conditions ΨU(x0) with impulse responses of Eq. 9.38. Since the input is

used to set the initial condition, we choose to scale each component by its singular value to reflect

the covariance

E
x∼Pdata

[ΨU(x)ΨU(x)∗] ≈ 1

M
U∗ΨXΨ∗XU =

1

M
Σ2 = E

u∼N (0,Ir)

[
1

M
Σuu∗Σ∗

]
, (9.39)

in the observed data. Therefore, initializing the system using impulse responses u0 = ej , j = 1, . . . , r

from the σ-points of the distribution u ∼ N (0, Ir) ensures that the correct empirical covariances are

obtained. The output matrix,

C = XVΣ+, (9.40)

is used to linearly reconstruct the full state observable from the complete set of features. It is

found using linear regression similar to the Koopman modes Eq. 9.18. The low-dimensional set of

observables making up the encoder will be found using a balanced reduced order model of Eq. 9.38.

9.5.1 Balanced Model Reduction

Balanced truncation [182] is a projection-based model reduction techniqe that attempts to retain

a subspace in which Eq. 9.38 is both maximally observable and controllable. While these notions

generally do not coincide in the original space, remarkably it is possible to find a left-invertible

linear transformation ΨU(x) = Tz under which these properties are balanced. This so called

balancing transformation of the learning subspace simultaneously diagonalizes the observability and

controllability Gramians. Therefore, the most observable states are also the most controllable and

vice versa. The reduced order model is formed by truncating the least observable/controllable

states of the transformed system. If the discrete time observability Gramian Wo and controllability
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Gramian Wc are given by

Wo =

∞∑
t=0

(K̂)tC∗C(K̂∗)t, Wc =
1

M

∞∑
t=0

(K̂∗)tΣ2(K̂)t, (9.41)

then the Gramians transform according to

Wo 7→ T∗WoT, Wc 7→ T+
LWc(T

+
L)∗ (9.42)

under the change of coordinates. In the above, S∗ = T+
L is the left pseudoinverse satisfying S∗T = Id

where d is the rank of T and TS∗ = PT is a (not necessarily orthogonal) projection operator onto

R(T).

Since the Gramians are Hermitian positive semidefinite, they can be written as Wo = AA∗,

Wc = BB∗ for some not necessarily unique matrices A,B ∈ Rr×r. Forming an economy sized

singular value decomposition H = A∗B = UHΣHVH allows us to construct the transformations

T = BVH(Σ+
H)1/2, S = AUH(Σ+

H)1/2. (9.43)

Using this construction, it is easy to check that the resulting transformation simultaneously diago-

nalizes the Gramians:

T∗WoT = S∗WcS = ΣH . (9.44)

Entries of the diagonal matrix ΣH are called the Hankel singular values. The columns of T and

S are called the “balancing modes” and “adjoint modes” respectively. The balancing modes span

the subspace where Eq. 9.38 is both observable and controllable while the adjoint modes furnish the

projected coefficients of the state S∗ΨU(x) = z onto the space where these properties are balanced.

The corresponding Hankel singular values quantify the observability/controllability of the states

making up z. Therefore, a reduced order model which is provably close to optimal truncation in

the H∞ norm is formed by rank-d truncation of the SVD, retaining only the first d balancing and

adjoint modes Td and Sd [84]. The reduced state space system modeling the dynamics of Eq. 9.38

is given by

zt+1 = S∗dK̂
∗Tdzt +

1√
M

S∗dΣut

xt ≈ CTdzt

, where z , S∗dΨU(x). (9.45)

Therefore, the reduced dictionary of observables is given by the components of S∗dΨU : Rn → Rd

and the corresponding EDMD approximation of the Koopman operator on its span is given by
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T∗dK̂Sd. This set of features is highly observable in that their dynamics strongly influences the

full state reconstruction over time through C. And highly controllable in that the features are

excited by typical state configurations through Σ. The notion of feature excitation corresponding

to controllability will be made clear in the next section.

9.5.2 Finite-horizon Gramians and Balanced POD

Typically one would find the infinite horizon Gramians for an overspecified Hurwitz EDMD system

Eq. 9.38 by solving the Lyapunov equations

K̂WoK̂
∗ −Wo + C∗C = 0, K̂∗WcK̂−Wc + Σ2 = 0. (9.46)

In the case of neutrally stable or unstable systems, unique positive definite solutions do not exist

and one must use generalized Gramians [300]. When used to form balanced reduced order models,

this will always result in the unstable and neutrally stable modes being chosen before the stable

modes. This could be problematic for our intended framework since EDMD can identify many

spurious and sometimes unstable eigenvalues corresponding to noisy low-amplitude fluctuations.

While these noisy modes remain insignificant over finite times of interest, they will dominate EDMD-

based predictions over long times. Therefore it makes sense to consider the dominant modes identified

by EDMD over a finite time interval of interest. Using finite horizon Gramians reduces the effect

of spurious modes on the reduced order model, making it more consistent with the data. The

time horizon can be chosen to reflect a desired future prediction time or the number of sequential

snapshots in the training data.

The method of Balanced Proper Orthogonal Decomposition or BPOD [225] allows us to find

balancing and adjoint modes of the finite horizon system. In BPOD, we observe that the finite-

horizon Gramians are empirical covariance matrices formed by evolving the dynamics from impulsive

initial conditions for time T . This gives the specific form for matrices

A =

[
C∗ K̂C∗ · · · (K̂)TC∗

]
, B =

1√
M

[
Σ K̂∗Σ · · · (K̂∗)TΣ

]
, (9.47)

allowing for computation of the balancing and adjoint modes without ever forming the Gramians.

This is known as the method of snapshots. Since the output dimension is large, we consider its

projection onto the most energetic modes. These are identified by forming the economy sized SVD

of the impulse responses CB = UOPΣOPV∗OP . Projecting the output allows us to form the elements
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of

AOP =

[
C∗UOP K̂C∗UOP · · · (K̂)TC∗UOP

]
, (9.48)

from fewer initial conditions than A. In particular, the initial conditions are the first few columns

of UOP with the largest singular values [225].

Observe that the unit impulses place the initial conditions precisely at the σ-points of the data-

distribution in features space. If this distribution is Gaussian, then the empirical expectations

obtained by evolving the linear system agree with the true expectations taken over the entire data

distribution. Therefore, the finite horizon controllability Gramian corresponds to the covariance

matrix taken over all time T trajectories starting at initial data points coming from a Gaussian

distribution in feature space. Consequently, controllability in this case corresponds exactly with

feature variance or expected square amplitude over time.

We remark that in the infinite-horizon limit T → ∞, BPOD converges on a transformation which

balances the generalized Gramians introduced in [300]. Application of BPOD to unstable systems

is discussed in [89] which provides justification for the approach.

Another option to avoid spurious modes from corrupting the long-time dynamics is to consider

pre-selection of EDMD modes which are nearly Koopman invariant. The development of such an

accuracy criterion for selecting modes is the subject of a forthcoming paper by H. Zhang and C. W.

Rowley. One may then apply balanced model reduction to the feature space system containing only

the most accurate modes.

9.5.3 Nonlinear reconstruction

In truncating the system, we determined a small subspace of observables whose values evolve linearly

in time and are both highly observable and controllable. However, most of the less observable low-

amplitude modes are removed. The linear reconstruction only allows us to represent data on a

low-dimensional subspace of Rn. While projection onto this subspace aims to explain most of the

data variance and dynamics, it may be the case that the data lies near a curved manifold not fully

contained in the subspace. The neglected modes contribute to this additional complexity in the

shape of the data in Rn. Nonlinear reconstruction of the full state can help account for the complex

shape of the data and for neglected modes enslaved to the ones retained.

We consider the regression problem involved in reconstructing the full state x from a small

set of EDMD observables z. Because the previously obtained solution to the EDMD balanced

model reduction problem Eq. 9.45 employs linear reconstruction through matrix CTd, we expect
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nonlinearities in the reconstruction to be small with most of the variance being accounted for by

linear terms. Therefore, the regression model,

x = C1z + C2Ψ(z) + e, (9.49)

is formulated based on [87, 289] to include linear and nonlinear components. In the above, Ψ :

Cd → H is a nonlinear feature map into reproducing kernel Hilbert space H and C1 : Cd → Cn

and C2 : H → Cn are linear operators. These operators are found by solving the l2 regularized

optimization problem,

minimize
C1,C2

J = ‖X∗ − Z∗C∗1 −Ψ∗ZC∗2‖2F + γ Tr(C2C
∗
2), γ ≥ 0, (9.50)

involving the empirical square error on the training data {(zj ,xj)}Mj=1 arranged into columns of the

matrices Z =

[
z1 · · · zM

]
and X =

[
x1 · · · xM

]
. The regularization penalty is placed only

on the coefficients of nonlinear terms to control over-fitting while the linear term, which we expect

to dominate, is not penalized. The operator ΨZ : CM → H forms linear combinations of the data

in feature space v 7→ v1Ψ(z1) + · · ·+ vMΨ(zM ). Since Z and ΨZ are operators with finite ranks r1

and r2 ≤M , we may consider their economy sized singular value decompositions: Z = U1Σ1V
∗
1 and

ΨZ = U2Σ2V
∗
2. Observe that it is impossible to infer any components of R(C∗1) orthogonal to R(Z)

since they are annihilated by Z∗. Therefore, we apply Occam’s razor and assume that C∗1 = U1Ĉ
∗
1

for some Ĉ∗1 ∈ Cr1×n. By the same argument, R(C∗2) cannot have any components orthogonal

to R(ΨZ) since they are annihilated by Ψ∗Z and have a positive contribution to the regularization

penalty term Tr(C2C
∗
2). Hence, we must also have C∗2 = U2Ĉ

∗
2 for some Ĉ∗2 ∈ Cr2×n. Substituting

these relationships into Eq. 9.50 allows it to be formulated as the standard least squares problem

J =
∥∥∥X∗ −V1Σ1Ĉ

∗
1 −V2Σ2Ĉ

∗
2

∥∥∥2

F
+ γ

∥∥∥Ĉ2

∥∥∥2

F

=

∥∥∥∥∥∥∥
 X∗

0r2×n

−
V1Σ1 V2Σ2

0r2×r1
√
γIr2


Ĉ∗1

Ĉ∗2


∥∥∥∥∥∥∥

2

F

. (9.51)

The block-wise matrix clearly has full column rank r1 + r2 for γ > 0 and the normal equation for

this least squares problem are found by projecting onto its range. The solution,

Ĉ∗1

Ĉ∗2

 =

 Σ1 0r1×r2

0r2×r1 Σ2


−1  Ir1 V∗1V2

V∗2V1 Ir2 + γΣ−2
2


−1 V∗1X∗

V∗2X∗

 , (9.52)

278



corresponds to taking the left pseudoinverse and simplifying the resulting expression. The matrices

V1,2 and Σ1,2 are found by solving Hermitian eigenvalue problems using the (kernel) matrices of

inner products Z∗Z = V1Σ
2
1V
∗
1 and Ψ∗ZΨZ = V2Σ

2
2V
∗
2. At a new point z, the approximate

reconstruction using the partially linear kernel regression model is

x ≈
(
Ĉ1Σ

−1
1 V∗1Z∗

)
z + Ĉ2Σ

−1
2 V∗2 (Ψ∗ZΨ(z)) . (9.53)

Recall that the kernel matrices are

Ψ∗ZΨZ =


k(z1, z1) · · · k(z1, zM )

...
. . .

...

k(zM , z1) · · · k(zM , zM )

 , Ψ∗ZΨ(z) =


k(z1, z)

...

k(zM , z)

 (9.54)

for a chosen continuous nonnegative definite mercer kernel function k : Cd × Cd → C inducing the

feature map Ψ.

The main drawback associated with the kernel method used for encoding eigenfunctions or recon-

structing the state is the number of kernel evaluations. Even if the dimension d of the reduced order

model is small, the kernel-based inner product of each new example must still be computed with

all of the training data in order to encode it and then again to decode it. When the training data

sets grow large, this leads to a high cost in making predictions on new data points. An important

avenue of future research is to prune the training examples to only a small number of maximally

informative “support vectors” for taking inner products. Some possible approaches are discussed in

[259, 204].

9.6 Numerical examples

9.6.1 Duffing equation

In our first numerical example, we will consider the unforced Duffing equation in a parameter

regime exhibiting two stable spirals. We take this example directly from [280] where the Koopman

eigenfunctions are used to separate and parameterize the basins of attraction for the fixed points.

The unforced Duffing equation is given by

ẍ = −δẋ− x(β + αx2), (9.55)
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where the parameters δ = 0.5, β = −1, and α = 1 are chosen. The equation exhibits stable equilibria

at x = ±1 with eigenvalues λ1,2 =
1

4

(
−1±

√
31ı
)

associated with the linearizations at these points.

One can show that these (continuous-time) eigenvalues also correspond to Koopman eigenfunctions

whose magnitude and complex argument act like action-angle variables parameterizing the entire

basins. A non-trivial Koopman eigenfunction with eigenvalue λ0 = 0 takes different constant values

in each basin, acting like an indicator function to distinguish them.

We will see whether the LRAN and the reduced KDMD model can learn these eigenfunctions from

data and use them to predict the dynamics of the unforced Duffing equation as well as to determine

which basin of attraction a given point belongs. The training data are generated by simulating the

unforced Duffing equation from uniform random initial conditions (x(0), ẋ(0)) ∈ [−2, 2] × [−2, 2].

From each trajectory 11 samples are recorded ∆t = 0.25 apart. The training data for LRAN models

consists of M = 104 such trajectories. Since the KDMD method requires us to evaluate the kernel

function between a given example and each training point, we limit the number of training data

points to 103 randomly selected snapshot pairs from the original set. It is worth mentioning that

the LRAN model handles large data sets more efficiently than KDMD since the significant cost goes

into training the model which is then inexpensive and fast to evaluate on new examples.

Since three of the Koopman eigenvalues are known ahead of time we train an LRAN model where

the transition matrix K is fixed to have discrete time eigenvalues µk = exp(λk∆t). We refer to this as

the “constrained LRAN” and compare its performance to a “free LRAN” model where K is learned

and a 5th order balanced truncation using KDMD called “KDMD ROM”. The hyperparameters of

each model are reported in Appendix 9.A.

The learned eigenfunctions for each model are plotted in Figures 9.6.1, 9.6.2, 9.6.3. The corre-

sponding eigenvalues learned or fixed in the model are also reported. The complex eigenfunctions

are plotted in terms of their magnitude and phase. In each case, the eigenfunction associated with

the continuous-time eigenvalue λ0 closest to zero appears to partition the phase space into basins

of attraction for each fixed point as one would expect. In order to test this hypothesis, we use the

median eigenfunction value for each model as a threshold to classify test data points between the

basins. The eigenfunction learned by the constrained LRAN was used to correctly classify 0.9274 of

the testing data points. The free LRAN eigenfunction and the KDMD balanced reduced order model

eigenfunction correctly classified 0.9488 and 0.9650 of the testing data respectively. Mtest = 11∗104

test data points were used to evaluate the LRAN models, though this number was reduced to a ran-

domly selected Mtest = 1000 to test the KDMD model due to the exceedingly high computational

cost of the kernel evaluations.
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Figure 9.6.1: Unforced Duffing eigenfunctions learned using constrained LRAN

Figure 9.6.2: Unforced Duffing eigenfunctions learned using free LRAN

Figure 9.6.3: Unforced Duffing eigenfunctions found using KDMD balanced ROM
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The other eigenfunction learned in each case parameterizes the basins of attraction and therefore

is used to account for the dynamics in each basin. Each model appears to have learned a similar

action-angle parameterization regardless of whether the eigenvalues were specified ahead of time.

However, the constrained LRAN shows the best agreement with the true fixed point locations at

x = ±1 where |ϕ1| → 0. The mean square relative prediction error was evaluated for each model

by making predictions on the testing data set at various times in the future. The results plotted in

Figure 9.6.4 show that the free LRAN has by far the lowest prediction error likely due to the lack of

constraints on the functions it could learn. It is surprising however, that nonlinear reconstruction

hurt the performance of the KDMD reduced order model. This illustrates a potential difficulty with

this method since the nonlinear part of the reconstruction is prone to over-fit without sufficient

regularization.

Figure 9.6.4: Unforced Duffing testing data mean square relative prediction errors for each model
plotted against the prediction time

9.6.2 Cylinder wake

The next example we consider is the formation of a Kármán vortex sheet downstream of a cylinder

in a fluid flow. This problem was chosen since the data has low intrinsic dimensionality due to the

simple flow structure but is embedded in high-dimensional snapshots. We are interested in whether

the proposed techniques can be used to discover very low dimensional models that accurately predict

the dynamics over many time steps. We consider the growth of instabilities near an unstable base

flow shown in Figure 9.6.5a at Reynold number Re = 60 all the way until a stable limit cycle shown

in Figure 9.6.5b is reached. The models will have to learn to make predictions over a range of

unsteady flow conditions from the unstable equilibrium to the stable limit cycle.
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(a) (b)

Figure 9.6.5: Example cylinder wake flow snapshots at the unstable equilibrium and on the stable
limit cycle

The raw data consisted of 2000 simulated snapshots of the velocity field taken at time intervals

0.2D/U∞, where D is the cylinder diameter and U∞ is the free-stream velocity. These data were

split into Mtrain = 1000 training, Meval = 500 evaluation, and Mtest = 500 testing data points.

Odd numbered points ∆t = 0.4D/U∞ apart were used for training. The remaining 1000 points

were divided again into even and odd numbered points 2∆t = 0.8D/U∞ apart for evaluation and

testing. This enabled training, evaluation, and testing on long data sequences while retaining cover-

age over the complete trajectory. The continuous-time eigenvalues are found from the discrete-time

eigenvalues according to λ = log(µ)/∆t = log(µ)U∞/(0.4D).

The raw data was projected onto its 200 most energetic POD modes which captured essen-

tially all of the energy in order to reduce the cost of storage and training. 400-dimensional time

delay embedded snapshots were formed from the state at time t and t + ∆t. A 5th-order LRAN

model and the 5th-order KDMD reduced order model were trained using the hyperparameters in Ta-

bles 9.A.3, 9.A.4. In Figure 9.6.6a, many of the discrete-time eigenvalues given by the over-specified

KDMD model have approximately neutral stability with some being slightly unstable. However, the

finite horizon formulation for balanced truncation allows us to learn the most dynamically salient

eigenfunctions over a given length of time, in this case T = 20 steps or 8.0D/U∞. We see in Fig-

ure 9.6.6b that three of the eigenvalues learned by the two models are in close agreement and all are

approximately neutrally stable.

A side-by-side comparison of the Koopman modes gives some insight into the flow structures

whose dynamics the Koopman eigenvalues describe. We notice right away that the Koopman modes

in Figure 9.6.8 corresponding to continuous-time eigenvalue λ1 are very similar for both models

and indicate the pattern of vortex shedding downstream. This makes sense since a single frequency

and mode will account for most of the amplitude as the limit cycle is approached. Evidently both

models discover these limiting periodic dynamics. For the KDMD ROM, λ2 is almost exactly the

higher harmonic 2 ∗ λ1. The corresponding Koopman mode in Figure 9.6.9 also reflects smaller flow
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(a) (b)

Figure 9.6.6: Discrete-time Koopman eigenvalues approximated by the KDMD ROM and the LRAN

structures which oscillate at twice the frequency of λ1. Interestingly, the LRAN does not learn the

same second eigenvalue as the KDMD ROM. The LRAN continuous-time eigenvalue λ2 is very close

to λ1 which suggest that these frequencies might team up to produce the low-frequency λ1 − λ2.

The second LRAN Koopman mode in Figure 9.6.9 also bears qualitative resemblance to the first

Koopman mode in Figure 9.6.8, but with a slightly narrower pattern in the y-direction. The LRAN

may be using the information at these frequencies to capture some of the slower transition process

from the unstable fixed point to the limit cycle. The Koopman modes corresponding to λ0 = 0

are also qualitatively different indicating that the LRAN and KDMD ROM are extracting different

constant features from the data. We must be careful in our interpretation, however, since the

LRAN’s koopman modes are only a least squares approximations to the nonlinear reconstruction

process performed by the decoder.

Figure 9.6.7: LRAN and KDMD ROM Koopman modes associated with λ0 ≈ 0

Plotting the model prediction error Figure 9.6.10 shows that the linear reconstructions using both

models have comparable performance with errors growing slowly over time. Therefore, the choice of

the second Koopman mode does not seem to play a large role in the reconstruction process. However,
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Figure 9.6.8: LRAN and KDMD ROM Koopman modes associated with λ1 ≈ 0.002 + 0.845ı

Figure 9.6.9: LRAN and KDMD ROM Koopman modes associated with λ2 which differs greatly
between the models

when the nonlinear decoder is used to reconstruct the LRAN predictions, the mean relative error

is roughly an order of magnitude smaller than the nonlinearly reconstructed KDMD ROM over

many time steps. The LRAN has evidently learned an advantageous nonlinear transformation for

reconstructing the data using the features evolving according to λ2. The second Koopman mode

reflects a linear approximation of this nonlinear transformation in the least squares sense.

Another remark is that nonlinear reconstruction using the KDMD ROM did significantly improve

the accuracy in this example. This indicates that many of the complex variations in the data are

really enslaved to a small number of modes. This makes sense since the dynamics are periodic on the

limit cycle. Finally, it is worth mentioning that the prediction accuracy was achieved on average over

all portions of the trajectory from the unstable equilibrium to the limit cycle. Both models therefore

have demonstrated predictive accuracy and validity over a wide range of qualitatively different flow

conditions. The nonlinearly reconstructed LRAN achieves a constant low prediction error over the

entire time interval used for training T ∆t = 8.0D/U∞. The error only begins to grow outside the

interval used for training. The high prediction accuracy could likely be extended by training on

longer data sequences.

9.6.3 Kuramoto-Sivashinsky equation

We now move on to test our new techniques on a very challenging problem — the Kuramoto-

Sivashinsky equation in a parameter regime just beyond the onset of chaos. Since any chaotic
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Figure 9.6.10: Cylinder wake testing data mean square relative prediction errors for each model
plotted against the prediction time

dynamical system is mixing, it only has trivial Koopman eigenfunctions on its attractor(s). We

therefore cannot expect our model to accurately reflect the dynamics of the real system. Rather, we

aim to make predictions using very low-dimensional models that are accurate over short times and

plausible over longer times.

The data was generated by performing direct numerical simulations of the Kuramoto-Sivashinsky

equation,

ut + uxx + uxxxx + uux = 0, x ∈ [0, L], (9.56)

using a semi-implicit Fourier pseudo-spectral method. The length L = 8π was chosen where the

equation first begins to exhibit chaotic dynamics [114]. 128 Fourier modes were used to resolve all

of the dissipative scales. Each data set: training, evaluation, and test, consisted of 20 simulations

from different initial conditions each with 500 recorded states spaced by ∆t = 1.0. Snapshots

consisted of time delay embedded states at t and t + ∆t. The initial conditions were formed by

suppling Gaussian random perturbations to the coefficients on the 3 linearly unstable Fourier modes

0 < 2πk/L < 1 =⇒ k = 1, 2, 3.

An LRAN as well as a KDMD balanced ROM were trained to make predictions over a time

horizon T = 5 steps using only d = 16 dimensional models. Model parameters are given in Ta-

bles 9.A.5, 9.A.6. The learned approximate Koopman eigenvalues are plotted in Figure 9.6.11. We

notice that there are some slightly unstable eigenvalues, which makes sense since there are certainly

unstable modes including the three linearly unstable Fourier modes. Additionally, Figure 9.6.11b

shows that some of the eigenvalues with large magnitude learned by the LRAN and the KDMD
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ROM are in near agreement.

(a) (b)

Figure 9.6.11: Discrete-time Koopman eigenvalues for the Kuramoto-Sivashinksy equation approxi-
mated by the KDMD ROM and the LRAN

The plot of mean square relative prediction error on the testing data set Figure 9.6.12 indicates

that our addition of nonlinear reconstruction from the low dimensional KDMD ROM state does

not change the accuracy of the reconstruction. The performance of the KDMD ROM and the

LRAN are comparable with the LRAN showing a modest reduction in error over all prediction

times. It is interesting to note that the LRAN does not produce accurate reconstructions using

the regression-based Koopman modes. In this example, the LRAN’s nonlinear decoder is essential

for the reconstruction process. Evidently, the dictionary functions learned by the encoder require

nonlinearity to reconstruct the state. Again, both models are most accurate over the specified time

horizon T = 5 used for training.

Plotting some examples in Figure 9.6.13 of ground truth and predicted test data sequences

illustrates the behavior of the models. These examples show that both the LRAN and the KDMD

ROM make quantitatively accurate short term predictions. While the predictions after t ≈ 5 lose

their accuracy as one would expect when trying to make linear approximations of chaotic dynamics,

they remain qualitatively plausible. The LRAN model in particular is able to model and predict

grouping and merging events between traveling waves in the solution. For example in Figure 9.6.13a

the LRAN successfully predicts the merging of two wave crests (in red) taking place between t = 2

and t = 5. The LRAN also predicts the meeting of a peak and trough in Figure 9.6.13b at t =

5. These results are encouraging considering the substantial reduction in dimensionality from a

time delay embedded state of dimension 256 to a 16-dimensional encoded state having linear time
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evolution.

Figure 9.6.12: Kuramoto-Sivashinsky testing data mean square relative prediction errors for each
model plotted against the prediction time

9.7 Conclusions

We have illustrated some fundamental challenges with EDMD, in particular highlighting the trade-off

between rich dictionaries and over-fitting. The use of adaptive, low-dimensional dictionaries avoids

the over-fitting problem while retaining enough capacity to represent Koopman eigenfunctions of

complicated systems. This motivates the use of neural networks to learn sets of dictionary observables

that are well-adapted to the given problems. By relaxing the constraint that the models must produce

linear reconstructions of the state via the Koopman modes, we introduce a decoder neural network

enabling the formation of very low-order models utilizing richer observables. Finally, by combining

the neural network architecture that is essentially an autoencoder with linear recurrence, the LRAN

learns features that are dynamically important rather than just energetic (i.e., large in norm).

Discovering a small set of dynamically important features or states is also the idea behind bal-

anced model reduction. This led us to investigate the identification of low-dimensional models by

balanced truncation of over-specified EDMD models, and in particular, KDMD models. Nonlinear

reconstruction using a partially linear multi-kernel method was investigated for improving the recon-

struction accuracy of the KDMD ROMs from very low-dimensional spaces. Our examples show that

in some cases like the cylinder wake example, it can greatly improve the accuracy. We think this

is because the data is intrinsically low-dimensional, but curves in such a way as to extend in many

dimensions of the embedding space. The limiting case of the cylinder flow is an extreme example
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(a) (b)

Figure 9.6.13: LRAN and KDMD ROM model predictions on Kuramoto-Sivashinsky test data
examples

where the data becomes one-dimensional on the limit cycle. In some other cases, however, nonlinear

reconstruction does not help, is sensitive to parameter choices, or decreases the accuracy due to

over-fitting.

Our numerical examples indicate that unfolding the linear recurrence for many steps can improve

the accuracy of LRAN predictions especially within the time horizon used during training. This is ob-

served in the error versus prediction time plots in our examples: the error remains low and relatively

flat for predictions made inside the training time horizon T . The error then grows for predictions

exceeding this length of time. However, for more complicated systems like the Kuramoto-Sivashinsky

equation, one cannot unfold the network for too many steps before additional dimensions must be

added to retain accuracy of the linear model approximation over time. These observations are also

approximately true of the finite-horizon BPOD formulation used to create approximate balanced

truncations of KDMD models. One additional consideration in forming balanced reduced-order

models from finite-horizon impulse responses of over-specified systems is the problem of spurious

eigenvalues whose associated modes only become significant for approximations as t → ∞. The

use of carefully chosen finite time horizons allows us to pick features which are the most relevant

(observable and excitable) over any time span of interest.
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The main drawback of the balanced reduced-order KDMD models becomes evident when making

predictions on new evaluation and testing examples. While the LRAN has a high “up-front” cost

to train — typically requiring hundreds of thousands of iterations — the cost of evaluating a new

example is almost negligible and so very many predictions can be made quickly. On the other

hand, every new example whose dynamics we want to predict using the KDMD reduced order model

must still have its inner product evaluated with every training data point. Pruning methods like

those developed for multi-output least squares support vector machines (LS-SVMs) will be needed

to reduce the number of kernel evaluations before KDMD reduced order models can be considered

practical for the purpose of predicting dynamics. The same will need to be done for kernel-based

nonlinear reconstruction methods.

We conclude by discussing some exciting directions for future work on LRANs. The story cer-

tainly does not end with using them to learn linear encoded state dynamics and approximations of

the Koopman eigenfunctions. The idea of establishing a possibly complicated transformation into

and out of a space where the dynamics are simple is an underlying theme of this work. Human

understanding seems to at least partly reside in finding isomorphism. If we can establish that a

seemingly complicated system is topologically conjugate to a simple system, it doesn’t really matter

what the transformation is as long as we can compute it. In this vein, the LRAN architecture is

perfectly suited to learning the complicated transformations into and out of a space where the dy-

namics equations have a simple normal form. For example, this could be accomplished by learning

coefficients on homogeneous polynomials of varying degree in addition to a matrix for updating the

encoded state. One could also include learned parameter dependencies in order to study bifurcation

behavior. Furthermore, any kind of symmetry could be imposed through either the normal form

itself or through the neural network’s topology. For example, convolutional neural networks can be

used in cases where the system is statistically stationary in a spatial coordinate.

Introduction of control terms to the dynamics of the encoded state is another interesting direction

for inquiry. In some cases it might be possible to introduce a second autoencoder to perform a state-

dependent encoding and decoding of the control inputs at each time step. Depending on the form

that the inputs take in the evolution of the encoded state, it may be possible to apply a range

of techniques from modern state-space control to nonlinear optimal control or even reinforcement

learning-based control with policy and value functions parameterized by neural networks.

Another natural question is how the LRAN framework can be adapted to handle stochastic

dynamics and uncertainty. Recent work in the development of structured inference networks for

nonlinear stochastic models [142] may offer a promising approach. The low-dimensional dynamics
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and reconstruction process could be generalized to nonlinear stochastic processes for generating

full state trajectories. Since the inference problem for such nonlinear systems is intractable, the

encoder becomes a (bi-directional) recurrent neural network for performing approximate inference

on the latent state given our data in analogy with Kalman smoothing. In this manner, many

plausible outputs can be generated to estimate the distribution over state trajectories in addition to

an inference distribution for quantifying uncertainty about the low-dimensional latent state.

Furthermore, with the above formulation of generative autoencoder networks for dynamics, it

might be possible to employ adversarial training [100] in a similar manner to the adversarial au-

toencoder [165]. Training the generative network used for reconstruction against a discriminator

network will encourage the generator to produce more plausible details like turbulent eddies in fluid

flows which are not easily distinguished from the real thing.
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Appendix

9.A Hyperparameters used to train models

The same hyperparameters in Table 9.A.1 were used to train the constrained and free LRANs in

the unforced Duffing equation example.

Table 9.A.1: Constrained LRAN hyperparameters for unforced Duffing example

Parameter Value(s)
Time-delays embedded in a snapshot 1
Encoder layer widths (left to right) 2, 32, 32, 16, 16, 8, 3
Decoder layer widths (left to right) 3, 8, 16, 16, 32, 32, 2

Snapshot sequence length, T 10
Weight decay rate, δ 0.8

Relative weight on encoded state, β 1.0
Minibatch size 50 examples

Initial learning rate 10−3

Geometric learning rate decay factor 0.01 per 4 ∗ 105 steps
Number of training steps 4 ∗ 105
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Table 9.A.2 summarizes the hyperparameters used to train the KDMD Reduced Order Model

for the unforced Duffing example.

Table 9.A.2: KDMD ROM hyperparameters for unforced Duffing example

Parameter Value(s)
Time-delays embedded in a snapshot 1

EDMD Dictionary kernel function Gaussian RBF, σ = 10.0
KDMD SVD rank, r 27

BPOD time horizon, T 10
BPOD output projection rank 2 (no projection)

Balanced model order, d 3
Nonlinear reconstruction kernel function Gaussian RBF, σ = 10.0

Multi-kernel linear part truncation rank, r1 3
Multi-kernel nonlinear part truncation rank, r2 8

Multi-kernel regularization constant, γ 10−4

The hyperparameters used to train the LRAN model on the cylinder wake data are given in

Table 9.A.3.

Table 9.A.3: LRAN hyperparameters for cylinder wake example

Parameter Value(s)
Time-delays embedded in a snapshot 2
Encoder layer widths (left to right) 400, 100, 50, 20, 10, 5
Decoder layer widths (left to right) 5, 10, 20, 50, 100, 400

Snapshot sequence length, T 20
Weight decay rate, δ 0.95

Relative weight on encoded state, β 1.0
Minibatch size 50 examples

Initial learning rate 10−3

Geometric learning rate decay factor 0.01 per 2 ∗ 105 steps
Number of training steps 2 ∗ 105

Table 9.A.4 summarizes the hyperparameters used to train the KDMD Reduced Order Model

on the cylinder wake data.

Table 9.A.5 lists the hyperparameters used to train the LRAN model on the Kuramoto-Sivashinsky

equation example.

Table 9.A.6 summarizes the hyperparameters used to train the KDMD Reduced Order Model

on the Kuramoto-Sivashinsky equation example data.
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Table 9.A.4: KDMD ROM hyperparameters for cylinder wake example

Parameter Value(s)
Time-delays embedded in a snapshot 2

EDMD Dictionary kernel function Gaussian RBF, σ = 10.0
KDMD SVD rank, r 100

BPOD time horizon, T 20
BPOD output projection rank 100

Balanced model order, d 5
Nonlinear reconstruction kernel function Gaussian RBF, σ = 10.0

Multi-kernel linear part truncation rank, r1 5
Multi-kernel nonlinear part truncation rank, r2 15

Multi-kernel regularization constant, γ 10−8

Table 9.A.5: LRAN hyperparameters for Kuramoto-Sivashinsky example

Parameter Value(s)
Time-delays embedded in a snapshot 2
Encoder layer widths (left to right) 256, 32, 32, 16, 16
Decoder layer widths (left to right) 16, 16, 32, 32, 256

Snapshot sequence length, T 5
Weight decay rate, δ 0.9

Relative weight on encoded state, β 1.0
Minibatch size 50 examples

Initial learning rate 10−3

Geometric learning rate decay factor 0.1 per 2 ∗ 105 steps
Number of training steps 4 ∗ 105

Table 9.A.6: KDMD ROM hyperparameters for Kuramoto-Sivashinsky example

Parameter Value(s)
Time-delays embedded in a snapshot 2

EDMD Dictionary kernel function Gaussian RBF, σ = 10.0
KDMD SVD rank, r 60

BPOD time horizon, T 5
BPOD output projection rank 60

Balanced model order, d 16
Nonlinear reconstruction kernel function Gaussian RBF, σ = 100.0

Multi-kernel linear part truncation rank, r1 16
Multi-kernel nonlinear part truncation rank, r2 60

Multi-kernel regularization constant, γ 10−7
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Chapter 10

Inadequacy of Linear Methods for

Minimal Sensor Placement and

Feature Selection in Nonlinear

Systems; a New Approach Using

Secants
Samuel E. Otto and Clarence W. Rowley

Sensor placement and feature selection are critical steps in engineering, modeling, and data science

that share a common mathematical theme: the selected measurements should enable solution of an

inverse problem. Most real-world systems of interest are nonlinear, yet the majority of available

techniques for feature selection and sensor placement rely on assumptions of linearity or simple sta-

tistical models. We show that when these assumptions are violated, standard techniques can lead

to costly over-sensing without guaranteeing that the desired information can be recovered from the

measurements. In order to remedy these problems, we introduce a novel data-driven approach for

sensor placement and feature selection for a general type of nonlinear inverse problem based on the

information contained in secant vectors between data points. Using the secant-based approach, we

develop three efficient greedy algorithms that each provide different types of robust, near-minimal
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reconstruction guarantees. We demonstrate them on two problems where linear techniques consis-

tently fail: sensor placement to reconstruct a fluid flow formed by a complicated shock-mixing layer

interaction and selecting fundamental manifold learning coordinates on a torus.

10.1 Introduction

Reconstructing the state of complex systems like fluid flows, chemical processes, and biological

networks from measurements taken by a few carefully chosen sensors is a crucial task for controlling,

forecasting, and building simplified models of these systems. In this setting it is important to be

able to reconstruct the relevant information about the system using the smallest total number of

measurements which includes minimizing the number of sensors to reduce cost, and using the shortest

possible measurement histories to shorten response time. Feature selection in statistics and machine

learning is a related task where one tries to find a small subset of measured variables (features) in

the available data that allow one to reliably predict a quantity of interest.

Nonlinear reconstruction can yield large improvements over linear reconstruction when the sen-

sors or features are carefully selected [107]. Successful nonlinear reconstruction techniques include

neural networks [183],[184], deep nonlinear state estimators [115], [142], and convex `1 minimization

to reveal sparse coefficients in learned libraries [284], [43]. The need for nonlinear representation

and reconstruction is also recognized in the reduced-order-modeling community where it is called

“nonlinear Galerkin” approximation [150], [219], [168]. These methods are necessary because in

many systems of interest, the state is found to lie near a low-dimensional underlying manifold that

is curved in such a way that it is not contained in any low-dimensional subspace [191]. We will

show that the best possible linear reconstruction accuracy is fundamentally limited by the number

of measurements (features) and the fraction of the variance that is captured in the principal sub-

space [116] of that dimension. In essence, any linear representation in a subspace is “too loose” and

demands an excessive number of measurements to even have a hope of accurately reconstructing

the state using linear functions. Nonlinear reconstruction is much more powerful, as Whitney’s

celebrated embedding theorem (Theorem. 5, [278]) shows that states on any r-dimensional smooth

manifold can be reconstructed using 2r carefully chosen measurements. If the measurements must

be linear functions of the state on a compact sub-manifold of Rn then almost any 2r+1 dimensional

projection will provide an embedding [277] — although some embeddings may be better than others

in terms of their robustness to disturbances.

295



With many measurements available from our sensors (though not necessarily ones that achieve

Whitney’s results), the problem that remains is to properly choose them so that nonlinear recon-

struction is possible and robust to noise. While nonlinear reconstruction has proved to be extremely

advantageous, the overwhelming majority of sensor placement and feature selection methods rely

on measures of linear or Gaussian reconstruction accuracy as an optimization criterion. Such meth-

ods include techniques based on sampling modal bases [295], [166], [60], [82], [41], linear dynamical

system models [181], [79], [252], [253], [267], [299] Bayesian and maximum likelihood optimality

in linear inverse problems [56], [125], [247], information-theoretic criteria under Gaussian or other

simple statistical models [141], [55], [54], [248], [245], and sparse linear approximation in dictionaries

using LASSO [262], [296] or orthogonal matching pursuit [198], [265]. We provide an overview of a

representative collection of these methods that we shall use as a basis for comparison in Section 10.2.

We show that relying on these linear, Gaussian techniques to identify sensors that will be used

for nonlinear reconstruction can lead to costly over-sensing when the underlying manifold is low-

dimensional, but the data do not lie in an equally low-dimensional subspace. This effect is most

pronounced when the most energetic (highest variance) components of the data are actually func-

tions of less-energetic components, but not vice versa. In such cases, the linear techniques are

consistently “tricked” into sensing the most energetic components while failing to capture the im-

portant less energetic ones that can actually be used for minimal reconstruction. These situations are

not merely academic, and they actually abound in physics and in data science. As we shall discuss

in Section 10.3, the problem appears in mixing layer fluid flows and in the presence of shock waves,

which are both ubiquitous in aerodynamics. The presence of important low-energy sub-harmonic

frequencies is also generic behavior after a period-doubling bifurcation, which is a common route to

chaos, for instance in ecosystem collapse [268] and cardiac arrhythmia [213]. In data science, the

problem is most pronounced when we try to select fundamental nonlinear embedding coordinates

for a data set using manifold learning techniques like kernel PCA [244], Laplacian eigenmaps [15],

diffusion maps [68], and Isomap [260] as we shall discuss in Section 10.3.3.

In order to address the limitations of linear, Gaussian methods for sensor placement and fea-

ture selection demonstrated in the first half of the paper, we develop a novel data-driven approach

based on consideration of secant vectors between states in Section 10.4. Related secant-based ap-

proaches have been pioneered by [31], [121], [111], [254] for the purpose of finding optimal embedding

subspaces. While their considerations of secants lead to continuous optimization problems over sub-

spaces, our considerations of secants lead to combinatorial optimization problems over sets of sensors.

We develop three different secant-based objectives together with greedy algorithms that each provide

296



different types of robust, near-minimal reconstruction guarantees for very general types of nonlinear

inverse problems. The guarantees stem from the underlying geometric information that is captured

by secants and encoded in our optimization objectives. Moreover, the objectives we consider each

have the celebrated diminishing returns property called submodularity, allowing us to leverage the

classical results of G. L. Nemhauser and L. A. Wolsey et al. [187], [283] to guarantee the performance

of efficient greedy algorithms for sensor placement. We also leverage concentration of measure results

in order to prove performance guarantees when the secants are randomly down-sampled, enabling

computational scalability to very large data sets. Each of these techniques demonstrates greatly im-

proved performance compared to a large collection of linear techniques on a canonical shock-mixing

layer flow problem [292] as well as for selecting fundamental manifold learning coordinates.

10.2 Background on Linear, Gaussian, Techniques

The predominant sensor placement, feature selection, and experimental design techniques available

today rely on linear and/or Gaussian assumptions about the underlying data: that is, that the data

live in a low-dimensional subspace and/or have a Gaussian distribution. Under these assumptions,

it becomes easy to quantify the performance of sensors, features, or experiments, using a variety of

information theoretic, Bayesian, maximum likelihood, or other optimization criteria. A comprehen-

sive review is beyond the scope of this paper, and of course we do not claim that linear methods

always fail. Rather, we argue that because the underlying linear, Gaussian assumptions are violated

in many real-world problems, we cannot expect them to find small collections of sensors that enable

nonlinear reconstruction of the desired quantities. We shall briefly review the collection of linear

techniques that we shall compare to throughout this work and that we think are representative of

the current literature.

10.2.1 (Group) LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) method introduced by R. Tibshi-

rani [262] is a highly successful technique for feature selection in machine learning that has found

additional applications in compressive sampling recovery [46] and system identification [36]. A

generalization by M. Yuan and Y. Lin [296] called group LASSO is especially relevant for sensor

placement since it allows measurements to be selected in groups that might come from the same

sensor at different instants of time. Suppose we are given a collection of data consisting of available

measurementsmj(xi), j = 1, . . . ,M along with relevant quantities g(xi) that we wish to reconstruct
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over a collection of states xi, i = 1, . . . , N . The group LASSO convex optimization problem takes

the form

minimize
A1,...,AM

N∑
i=1

∥∥∥g(xi)−
M∑
j=1

Ajmj(xi)
∥∥∥2

2
+ γ

M∑
j=1

‖Aj‖F (10.1)

and tries to reconstruct the targets as accurately as possible using a linear combination of the

measurements subject to a sparsity-promoting penalty. The strength of the penalty depends on the

user-specified parameter γ ≥ 0 and forces the coefficient matrices Aj on many of the measurement

groups to be identically zero. Those coefficient matrices with nonzero entries indicate the sensors

that should be used to linearly reconstruct the target variables with high accuracy.

10.2.2 Determinantal “D”-Optimal Selection

Suppose the state x has a prior probability distribution with covariance Cx and the target variables

g(x) and measurements mj(x), j = 1, . . . ,M are linear functions of the state

g(x) = Tx, mj(x) = M jx+ nj (10.2)

where nj is the mean-zero, state independent, noise from the jth sensor with covariance Cnj . Then,

if MS is a matrix with rows given by M j and CnS
is a block diagonal matrix formed from Cnj , for

j in a given set of sensors S, then the optimum (least-squares) linear estimate of g(x) given mS(x)

has error covariance

Ce(S) = T
(
C−1
x +MT

SC
−1
nS
MS

)−1

T T . (10.3)

If x and the noise are independent Gaussian random variables then Eq. 10.3 is the covariance of

the posterior distribution for g(x) given mS(x). A low-dimensional representation of the state and

its covariance are usually found from data via principal component analysis (PCA) [116] or proper

orthogonal decomposition (POD) [23] when an analytical model is not available.

A common technique, referred to as the Bayesian approach in the optimal design of experiments

[212] is to quantify performance using functions of Ce(S) [56]. In particular, Bayesian determinantal

or “D”-optimality entails minimizing log detCe(S), which, under Gaussian assumptions, is equiva-

lent to minimizing the conditional entropy [248], [245] or the volumes of confidenece ellipsoids about

the maximum a posteriori (MAP) estimate of g(x) given mS(x) [125]. This approach is widely used

for sensor placement since it readily admits efficient approximations based on convex relaxation [125]

and greedy algorithms [247], [267] with guaranteed performance. Similar objectives have been used

to quantify observability and controllability for sensor and actuator placement in linear dynamical
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systems [252], [253].

When there is no prior probability distribution for x and we want to estimate the full state

g(x) = x from measurements corrupted by Gaussian noise, we can construct the maximum likelihood

estimate whose error covariance is

Ce(S) =
(
MT

SC
−1
nS
MS

)−1

. (10.4)

Minimizing the volumes of confidence ellipsoids in this setting as is done in [125] is referred to

as maximum likelihood “D”-optimality since it entails maximizing log det
(
MT

SC
−1
nS
MS

)
. In the

absence of the regularizing effect the prior distribution has on the estimate, we must have at least

as many sensor measurements as state variables in the maximum likelihood setting.

10.2.3 Pivoted QR Factorization

Pivoted matrix factorization techniques, and QR pivoting in particular, have become a popular choice

for sensor placement [166], [35] and feature selection in reduced-order modeling [60], [82], where the

method is often referred to as the Discrete Empirical Interpolation Method (DEIM). This approach

dates back to P. Businger and G. H. Golub’s seminal work [41], which introduced Householder-

pivoted QR factorization for the purpose of feature selection in least squares fitting problems. The

approach is also closely related to orthogonal matching pursuit [198] and simultaneous orthogonal

matching pursuit [265], which are widely used sparse approximation algorithms.

In its simplest form, one supposes that the underlying state to be estimated g(x) = x is low

dimensional (e.g., using its PCA or POD coordinate representation) and selects the linear mea-

surements from among the rows of a matrix M by forming a pivoted QR decomposition of the

form

MT

[
P 1 P 2

]
= Q

[
R1 R2

]
, (10.5)

where

[
P 1 P 2

]
is a permutation matrix. The firstK = dimx pivot columns forming the submatrix

P 1 determine a set of sensor measurements mS(x) = MSx = P T
1Mx from which x can be robustly

recovered as

x =
(
P T

1M
)−1

mS(x) = Q
(
RT

1

)−1

mS(x). (10.6)

This approach is successful because at each step of the QR pivoting process, the measurement that

maximizes the corresponding diagonal entry of the upper triangular matrix R1 is selected. The
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resulting large diagonal entries of R1 mean that measurement errors are not strongly amplified by

the linear reconstruction map Q
(
RT

1

)−1

.

10.3 Problems with Linear Techniques

In this section, we illustrate the problems with employing linear state reconstruction and sensor

placement techniques for nonlinear systems and data sets by means of an example. We consider the

shock-mixing layer interaction proposed by Yee et al. [292], which has become a canonical problem

for studying jet noise production as well as high-order numerical methods. This problem captures

many key elements of shock wave-turbulent boundary layer interactions that, according to S. Priebe

and M. P. Mart́ın [209] “occur in many external and internal compressible flow applications such as

transonic aerofoils, high-speed engine inlets, internal flowpaths of scramjets, over-expanded rocket

engine nozzles and deflected control surfaces or any other discontinuities in the surface geometry

of high-speed vehicles.” The resulting pressure and heat transfer fluctuations can be large, so it is

important to monitor the state of these flows to ensure the safety of a vehicle.

Our goal will be to choose a small number of sensor locations in this flow at which to measure

either the horizontal, u, or vertical, v, velocity component in order to reconstruct the entire ve-

locity field. A snapshot of these velocity fields from the fully-developed flow computed using the

high-fidelity local WENO-type characteristic filtering method of S.-C. Lo et al. [159] is shown in

Fig. 10.3.1. While the flow is very nearly periodic, and hence lives near a one-dimensional loop

in state space, the complicated physics arising from the interaction of the oblique shock with vor-

tices in the spatially-evolving mixing layer results in data that do not lie near any low-dimensional

subspace. In addition to being high dimensional, this flow exhibits the low-frequency unsteadiness

characteristic of shock wave–turbulent boundary layer interactions [209], [66], [210] and of spatial

mixing layer flows in general [113].

10.3.1 The Need for Nonlinear Reconstruction

Linear reconstruction is fundamentally confined to a subspace whose dimension is at most equal

to the total number of sensor measurements. Hence the fraction of the variance that linear recon-

struction can capture using d measurements is at most the fraction of the variance along the first d

principal components: in particular, the coefficient of determination is bounded by

R2 ≤ σ2
1 + · · ·+ σ2

d

σ2
1 + · · ·+ σ2

n

. (10.7)
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(a) stream-wise u velocity component

(b) transverse v velocity component

(c) available sensor locations

Figure 10.3.1: A snapshot of the u and v velocity components in the shock mixing-layer flow is
shown in (a) and (b) along with the sensors selected using various methods from among the two
components at 1105 available locations shown in (c). These methods include LASSO with PCA
(black o), LASSO with Isomap (red x) greedy Bayes D-optimality (magenta x), convex Bayes D-
optimality (black >), convex D-optimality for modes 3 and 4 (black v), QR pivoting (green +), and
secant-based techniques using detectable differences (#1,#2: green star, #3: black star) and the
amplification threshold method (black square).
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Examining the fraction of the variance captured by the leading principal subspaces in Figure 10.3.2a

leads us to the rather disappointing conclusion that in order to capture 90% of the variance in the

shock-mixing layer flow via linear reconstruction, we need at least 11 independent measurements,

and to capture 98% we need at least 33.

The best possible linear reconstruction performance can be arbitrarily poor even though the

underlying manifold is low-dimensional. We illustrate this fact with the following toy model that

resembles the phase dependence of principal components in the shock-mixing layer problem shown

in Figures 10.3.2b and 10.3.2c. Let θ be uniformly distributed over the interval [0, 2π] and let the

components of the state vector have sinusoidal dependence on the phase given by

x2k−1 =
√

2 cos(kθ), x2k =
√

2 sin(kθ), k = 1, . . . , n/2. (10.8)

Since these components are orthonormal functions of θ with respect to the uniform probability

measure on [0, 2π], the state vector has isotropic covariance, ExxT = In, and the fraction of the

variance captured by the leading d principal components is d/n. As the dimension increases, the

highest possible coefficient of determination for linear reconstruction approaches zero since R2 ≤

d/n→ 0 as n→∞. Meanwhile, it’s obvious that the state vector can be perfectly reconstructed as

a nonlinear function of x1 and x2 alone.

Indeed, it is possible to reconstruct the entire shock-mixing layer flow-field as a nonlinear function

of the velocity measurements at two carefully chosen locations. In particular, the measurements made

at the locations marked by the two green stars in Figure 10.3.1 are one-to-one with the phase and

hence the state of the flow. This is seen in Figure 10.3.4a, where the phase angle (color) — hence

the full state — can be determined uniquely from the values of the measurements. Meanwhile, the

best possible linear reconstruction performance using two measurements is R2 < 0.5.

In practice, many nonlinear reconstruction techniques are available including neural networks

[183], Gaussian process regression [216], and recurrent neural networks for time-delayed measure-

ments [142]. Using Gaussian process regression and the two sensor locations marked by green stars

in Figure 10.3.1, we obtain near-perfect, robust reconstruction of the leading 100 principal compo-

nents. The resulting reconstruction accuracy for the flow-fields on a held-out set of 250 snapshots

is R2 = 0.986. While embedding the state in a subspace of moderately high dimension, as we have

done here using 100 principal components, is an essentially unavoidable computational step, the

dimension of this subspace need not determine the number of sensor measurements used by the

reconstruction as it would for a linear reconstruction technique. In particular, we have nonlinearly

302



0 10 20 30 40 50
10−2

10−1

100

v
a
ri

a
n
c
e

fr
a
c
ti

o
n

re
m

a
in

in
g

principal subspace dimension

(a) variance orthogonal to principal subspaces

−100 0 100

−100

0

100

θ

φ1

φ
2

(b) Isomap coordinates

0 π 2π

−10

−5

0

5

10

mode 1

mode 2

mode 3

mode 4

phase angle, θ

m
o
d
a
l

c
o
e
ffi

c
ie

n
t,
z
k

(c) PCA coefficients

Figure 10.3.2: The linear and nonlinear dimension reduction techniques PCA (a.k.a POD) and
Isomap are applied to the shock-mixing layer data. (a) shows the remaining fraction of the total
variance orthogonal to each leading principal subspace. (b) plots the data in the leading two Isomap
embedding coordinates, revealing that it lies very near a loop in state space. (c) shows how the
leading principal components (modal coefficients) vary with the phase angle around the loop. The
black vertical lines reveal distinct points where the leading three principal components are identical.
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reconstructed the 100 principal components from only two measurements.

10.3.2 The Need for Nonlinear Sensor Placement

With such poor reconstruction afforded by linear techniques, we cannot expect sensor placement

methods based on them to perform any better. This is not to say that a practitioner won’t ever find

lucky sensor locations for nonlinear reconstruction by employing a sensor placement technique that

maximizes linear reconstruction accuracy. However, this kind of luck is not guaranteed as illustrated

when we apply state of the art linear sensor placement techniques to the shock mixing-layer problem.

Indeed Figures 10.3.3a, 10.3.3b, 10.3.3c, 10.3.3d, and 10.3.3e provide visual proof that three sensors

chosen using LASSO to reconstruct the leading 100 principal components, LASSO to reconstruct

the leading two Isomap coordinates, the greedy Bayes D-optimality approach, the convex Bayes D-

optimality approach, and pivoted QR factorization do not produce measurements that are one-to-one

with the state. Implementation details can be found in Appendix 10.A. In each case, there are at

least two distinct states with different phases on the orbit (color) for which the sensors measure the

same values and hence cannot be used to tell them apart.

Even measuring the leading three principal components directly, which are optimal for linear

reconstruction, cannot always reveal the state of the shock-mixing layer flow. The black vertical

lines in Figure 10.3.2c indicate the phases of two distinct states for which the leading three principal

components agree, yet the fourth differs. One may wonder whether the fact that the third and

fourth principal components are one-to-one with the state can be leveraged for sensor placement.

Even our attempt to place three maximum likelihood D-optimal sensors using the convex optimiza-

tion approach of [125] to reconstruct the third and fourth principal components fails to produce

measurement that can recover the phase of the flow as seen in Figure 10.3.3f.

Despite the failure of linear techniques to find three adequate sensor locations, we have already

seen that it is possible to nonlinearly reconstruct the state of the shock-mixing layer flow using the

two sensors marked by green stars in Figure 10.3.1. The measurements from these sensors are shown

in Figure 10.3.4a, where it is clear that they are one-to-one with the state. It is important to note,

however, that the derivative of these measurements (as a linear map of tangent vectors) is not one-

to-one. In particular, we have circled two cusps in Figure 10.3.4a where the time derivatives of the

measurements vanish on the curve near which the data lie, but the time derivatives of system’s states

do not vanish. This makes it impossible to reconstruct the time derivatives of the states from the

time derivatives of the measurements at the cusps. These cusps pose a problem if we are interested
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Figure 10.3.3: these plots show the measurements made by sensors selected using various linear
methods on the shock-mixing layer flow problem. Each dot indicates the values measured by the
sensors and its color indicates the phase of the corresponding flowfield. Each set of sensors make
identical or nearly identical measurements on distinct flowfields, indicated by overlapping points
with different colors. These sensors cannot tell those flowfields apart since the measurements are
the same.

in constructing a reduced-order model of the system in the measurement space because any such

model will have a spurious fixed point at each cusp, causing the modeled dynamics to get stuck.

Fortunately, the time derivative can be captured using the three sensors marked by black squares

in Figure 10.3.1 and whose measurements are plotted in Figure 10.3.4c. One caveat is that these

locations are far apart in space, and so the measurements will be more sensitive to perturbations of

the shear-layer thickness which affects the horizontal spacing of vortices.

The linear techniques we have considered fail to reveal the minimum number of sensors needed

to reconstruct the state because there is important information about the flow contained in less-

energetic principal components. In particular, Figure 10.3.2c shows that the most energetic two

principal components oscillate with twice the frequency of the third and fourth most energetic

components as one moves around the orbit. In trying to maximize the variance captured by a linear

estimator, the linear sensor placement techniques are doomed to choose sensors whose measurements

return to the same values twice in one period as in Figures 10.3.3a, 10.3.3c, and 10.3.3e. In addition,

the convex Bayesian D-optimal approach finds sensors that achieve a superior value of the objective
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Figure 10.3.4: these plots show the measurements made by sensors selected using secant-based
greedy optimization methods on the shock-mixing layer flow problem. Each dot indicates the values
measured by the sensors and its color indicates the phase of the corresponding flowfield. In each
case, the selected sensors make distinct measurements for distinct states, enabling reconstruction of
the state from the measurements.

log detCe(S) than the greedy Bayesian D-optimal approach, yet the resulting measurements in

Figure 10.3.3d have many more self-intersections than the greedy method in Figure 10.3.3c.

We are forced to conclude that sensor placement based on linear reconstruction is totally un-

connected with nonlinear reconstructability when the underlying manifold and principal dimensions

do not agree. This can be seen most clearly from the fact that by simply re-scaling each coordi-

nate in the toy model Eq. 10.8 by positive constants α1, . . . , αn, we can trick linear techniques into

selecting any given collection of coordinates. Under this scaling, the covariance matrix becomes

diag(α2
1, . . . , α

2
n) and if we sort the constants in decreasing order αk1

≥ αk2
≥ · · · then the variance

captured by a linear reconstruction from d measurements cannot exceed

R2 ≤
α2
k1

+ · · ·+ α2
kd

α2
1 + · · ·+ α2

n

, (10.9)

according to the bound in Eq. 10.7. Equality is achieved by the optimal linear estimator based on

measured coordinates xk1
, . . . , xkd . Meanwhile, the only pair of coordinates needed for nonlinear

reconstruction are x1 and x2.

The key point is that sensor placement approaches based on linear reconstruction tend to pick

sensor locations that have high variance over other choices that can be more informative. The

linear approach works well when a small number of principal components contain essentially all

of the variance or when all higher modal components are very nearly determined by the lower

ones. But as we have shown, linear approaches to sensor placement can fail catastrophically when

genuinely informative fluctuations, e.g. sub-harmonics, produce significant variance orthogonal to

the leading principal subspace. In order to reveal minimal sensor locations that can be used for
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nonlinear reconstruction in such situations, we cannot rely on linear reconstruction performance

as an optimization criteria, and an entirely new approach is needed. In Section 10.4 we discuss

an approach that can recover the correct coordinates from which all others can be nonlinearly

reconstructed.

10.3.3 Selecting Manifold Learning Coordinates

The examples presented in the previous Section 10.3.2 involved data lying near a one-dimensional

underlying manifold. Essentially the same problems can occur for data lying near higher-dimensional

manifolds, and an especially illustrative and practically useful application where this situation is

routinely encountered is manifold learning. In general, manifold learning seeks to find a small

collection of nonlinear coordinates that fully describe the structure of a dataset, i.e., that embed it

in a lower-dimensional space. Many techniques including kernel PCA [244], Laplacian eigenmaps [15],

diffusion maps [68], and Isomap [260] accomplish this via eigen-decomposition of various symmetric

matrices

G = ΦΛ2ΦT , Φ =

[
φ1 · · · φr

]
(10.10)

derived from pair-wise similarity among data points. The kth eigen-coordinate of each point in

the data set is given by the elements of φk, which can be viewed as a discrete approximation

of an eigenfunction of some kernel integral operator on the underlying manifold. These methods

suffer from a well-known issue when the dataset has multiple length scales: namely, there may

be several redundant harmonically related eigen-coordinates with higher salience (determined by

the eigenvalues) before one encounters a new fundamental eigen-coordinate describing a new set of

features. This makes the search for a fundamental set of eigen-coordinates that embed the underlying

manifold a potentially large combinatorial search problem.

As a concrete example, consider the Isomap eigen-coordinates shown in Figure 10.3.5 computed

from 2000 points lying on the torus in R3,

x = ((5 + cos θ2) cos θ1, (5 + cos θ2) sin θ1, sin θ2) , (10.11)

with (θ1, θ2) drawn uniformly at random from the square [0, 2π] × [0, 2π]. Toroidal dynamics are

known to occur in combustion instabilities where multiple incommensurate frequencies are observed

[85], [144], producing data that winds around a torus in high-dimensional state space. One may

want to build simplified reduced-order models of these dynamics by finding a small set of nonlinear
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Figure 10.3.5: Isomap coordiantes computed from 2000 randomly sampled points on the torus
defined by Eq. 10.11. The leading six coordinates resemble the real and imaginary components of
eikθ1 , k = 1, 2, 3, due to the rotational symmetry, providing redundant information about θ1 and no
information about θ2. The fundamental coordinates φ1, φ2, and φ7 provide an embedding of the
data that captures its toroidal structure.

coordinates that described the state on the torus using manifold learning.

Considering the torus in Eq. 10.11, the underlying kernel integral operators associated with

each manifold learning technique mentioned above are equivariant with respect to rotations about

θ1, meaning that among their eigenfunctions are always those of the symmetry’s generator, namely

φk(x) = eikθ1(x). Unsurprisingly, the leading six Isomap eigen-coordinates, ranked by their asso-

ciated eigenvalues, are all harmonically related modes resembling the real and imaginary parts of

eikθ1 , which provide redundant information about θ1 and no information about θ2. The coordinate

θ1 corresponds to larger spatial variations among points and it is not until we encounter the seventh

eigen-coordinate that we learn about the smaller variations associated with θ2. A näıve user of

Isomap might plot the data in the leading three coordinates and falsely conclude that the data lies

on a two-dimensional gasket. We’d like to provide an efficient method for selecting the fundamental

eigen-coordinates φ1, φ2 and φ7, from which all others can be (nonlinearly) reconstructed; yet again,

linear methods fundamentally cannot be used to select them.

Linear methods cannot be used to select manifold learning eigen-coordinates for essentially the

same reason why they failed on the toy models in Section 10.3.2: the coordinates are all mutually

orthogonal as functions supported on the data! In particular, the covariance among the eigen-

coordinates over the data is isotropic, E[φi(x)φj(x)] = 1
mφ

T
i φj = 1

mδi,j , and so all sub-collections

of a given size capture the same fraction of the total eigen-coordinate variance. The methods

presented in the following Section 10.4 remedy this issue and are capable of selecting the correct set

of fundamental eigen-coordinates on the torus example in Eq. 10.11.
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Method § Property
Detectable
diffs.

10.4.1 With a fixed sensor budget, this method greedily maximizes the sum of
squared differences between relevant quantities over pairs of states whose
measurements are separated by a used-defined detection threshold. As
more measurements are chosen, more pairs become detectable and the
total detectable difference increases.

Error tol. 10.4.2 This method greedily selects nearly the minimum possible number of
sensors so that states whose measurements are closer together than a
user-specified detection threshold never have associated relevant quan-
tities differing by more than a user-specified error tolerance.

Amplif. tol. 10.4.3 This method greedily selects nearly the minimum possible number of
sensors so that the largest ratio of differences between relevant quantities
to differences between measurements is below a user-specified level of
amplification, i.e., a reconstruction Lipschitz constant.

Table 10.4.1: We provide a summary of the three greedy measurement selection techniques we
consider in this paper and their key properties.

10.4 Greedy Algorithms using Secants

With the failure of techniques based on linear reconstruction to select minimal collections of sensors

for nonlinear reconstruction, we propose an alternative approach that relies on a collection of “secant”

vectors between distinct data points. In this section, we develop this approach, yielding three

related greedy selection techniques with classical theoretical guarantees on their performance. These

techniques and their key properties are summarized in Table 10.4.1. We also discuss some theoretical

results that provide deterministic performance guarantees for the sensors selected by our algorithms

on unseen data drawn from an underlying set.

We consider a very general type of sensor placement problem that can be stated as follows. Let

the set X ⊂ Rn represent the possible states of the system and suppose that we are interested in

some relevant information about the state described by a function g : X → Rq. The sensors are

also described as functions of the state mj : X → Rdj , j = 1, . . . ,M where, with a slight abuse of

notation, we will denote the set of all sensors and the set of all sensor indices by M interchangeably.

Our goal is to choose a small subset of sensors S = {j1, . . . , jK} ⊆M so that the relevant information

g(x) about any state x ∈ X can be recovered from the combined measurements we have selected

mS(x) = (mj1(x), . . . ,mjK (x)) ∈ RdS , (10.12)

where the measurement dimension is dS =
∑
j∈S dj . That is, we want to choose S in such a way
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that there exists a reconstruction function ΦS : RdS → Rq so that

g(x) = ΦS (mS(x)) (10.13)

for every x ∈ X . This condition is automatically satisfied when the measurement functions mS are

injective. On the other hand, it may be possible to reconstruct a function g containing incomplete

information about the state using fewer measurements than are needed to make mS injective. If g

is injective, then a reconstruction function ΦS exists if and only if mS is injective

Remark 10.4.1 (Observability in dynamical systems). This framework is flexible enough to describe

observability properties for dynamical systems through the use of time-delayed measurements. For

instance, consider the observability problem for a discrete-time linear system xt+1 = Axt, in which

we seek to choose from among a collection of observation matrices {C1, . . . ,CK}, a set CT
S =[

CT
j1 · · · CT

jK

]
that allows the initial state x0 to be recovered from a length τ time-history of

observations CSx0,CSx1, . . . ,CSxτ−1. In this case, we would let

mj(x) =
(
Cjx,CjAx, . . . ,CjA

τ−1x
)

= Ojx (10.14)

and reconstruct the desired state g(x) = x according to

g(x) = ΦS (mS(x)) = W−1
S OT

SmS(x), (10.15)

where W S = OT
SOS =

∑τ−1
t=0 (At)TCT

SCSA
t =

∑
j∈SW j is the usual time-τ observability Gramian

for (A,CS). Sensor placement techniques for linear systems based on the observability Gramian

have been developed by T. H. Summers, F. L. Cortesi and J. Lygeros in [252] and [253].

In the general case, for a reconstruction function ΦS to exist, we must meet the modest condition

that any two states x,x′ ∈ X with different target values g(x) 6= g(x′) produce different measured

values mS(x) 6= mS(x′). This is nothing but the vertical line test for ΦS, ensuring that it is a true

function that does not take multiple values. However, this condition may be met for a variety of

different choices of measurements S and we shall introduce three different ways to quantify their

performance and choose among them. In these methods, the notion that ΦS should not be sensitive

to perturbations of the measurements is key in quantifying the performance of the sensors. The

techniques we propose each rely on secants, defined below, to measure the sensitivity of ΦS.

Definition 10.4.2 (Secant). A secant is a pair of states (x,x′), where x,x′ ∈ X and x 6= x′.
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By carefully choosing the objective functions f : 2M → R, we can rely on classical results by G.

L. Nemhauser and L. A. Wolsey et al. [187], [283] to prove that greedy algorithms can be used to

place the sensors with near-optimal performance. In particular, each objective that we propose is

normalized so that f(∅) = 0, monotone non-decreasing so that S ⊆ S′ implies f(S) ≤ f(S′), and has

a diminishing returns property called submodularity.

Definition 10.4.3 (Submodular Function). Let M be a finite set and denote the set of all subsets

of M by 2M. A real-valued function of the subsets f : 2M → R is called “submodular” when it has

the following diminishing returns property: for any element j ∈M and subsets S, S′ ⊆M,

S ⊆ S′ ⊆M \ {j} ⇒ f(S ∪ {j})− f(S) ≥ f(S′ ∪ {j})− f(S′). (10.16)

That is, adding any new element j to the smaller set S increases f at least as much as adding the

same element to the larger set S′ ⊇ S.

Note that in applications we often do not have direct access to the full set X , which may be

continuous. Rather, we have a discrete collection of data XN = {x1, . . . ,xN} ⊂ X , which we assume

is large enough to achieve suitable approximations of the underlying set.

10.4.1 Maximizing Detectable Differences

As we have seen in the first half of this paper, a set of sensors can be considered good if nearby

measurements come only from states whose target variables are also close together. Otherwise a

small perturbation to the measurements results in a large change in the quantities of interest. One

way to quantify this intuition is to select measurements that minimize the sum of squared differences

in the target variables associated with states whose measurements are closer together than a fixed

detection threshold γ > 0, i.e.,

Fγ(S) :=
∑

x,x′∈XN :
‖mS(x)−mS(x′)‖2<γ

‖g(x)− g(x′)‖22 . (10.17)

The choice of γ reflects the amount of noise or disturbances the sensor measurements should be able

to tolerate without producing large reconstruction errors. For instance, γ might be selected so that

the noise coming from a desired number #(S) = K of sensors rarely perturbs the measurements by

more than γ. If the noise n has dS independent, identically distributed Gaussian entries, each with
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variance σ2, then the probability that the disturbance ‖n‖2 exceeds γ = σ
√
dS + δ is bounded by

P {‖n‖2 ≥ γ} ≤ exp

(
−dSδ

2

2σ2

)
(10.18)

according to Example 2.28 in M. J. Wainwright [273]. Such bounds on the noise or other measure-

ment disturbances might serve as guidelines for selecting γ, although trying a range of choices may

be necessary in order to obtain the best results in practice. Let the sum of squared differences in

the target variables along each secant be denoted by

F∞ :=
∑

x,x′∈XN
‖g(x)− g(x′)‖22 . (10.19)

Then it is clear that minimizing the sum of squared “undetectable” differences given by Eq. 10.17

is equivalent to maximizing an objective function

f̃γ(S) = F∞ − Fγ(S) =
∑

x,x′∈XN
w̃γ,x,x′(S)‖g(x)− g(x′)‖22, (10.20)

where w̃γ,x,x′(S) is one if ‖mS(x) −mS(x′)‖2 ≥ γ and is zero otherwise. This weight function

indicates whether our measurements mS can distinguish the states x and x′ using the detection

threshold γ, and may be written

w̃γ,x,x′(S) = 1 {‖mS(x)−mS(x′)‖2 ≥ γ} , (10.21)

where 1{A} = 1 if A is true and 0 if A is false. Therefore, we can view the objective in Eq. 10.20

as the sum of squared differences that are “detectable.”

Maximizing the objective in Eq. 10.20 over a fixed number of sensors #(S) ≤ K is a combina-

torial optimization problem and to our knowledge does not admit an efficient direct approximation

algorithm. However, if we reformulate the objective using a relaxed weight function

wγ,x,x′(S) = min

{
1

γ2
‖mS(x)−mS(x′)‖22, 1

}
, (10.22)

then

fγ(S) =
∑

x,x′∈XN
wγ,x,x′(S) ‖g(x)− g(x′)‖22 , (10.23)

obtained by replacing w̃ with w in Eq. 10.20, becomes a normalized, monotone, submodular function
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on subsets S ⊆ M (Lemma 10.B.3 in the Appendix) and a simple greedy approximation algorithm

guarantees near-optimal performance on this problem! The greedy algorithm produces a sequence of

sets S1, S2, . . ., by starting with S0 = ∅ and adding the sensor jk to Sk−1 that maximizes the objective

fγ(Sk−1 ∪ {j}) over all j ∈M \ Sk−1. If S∗K maximizes fγ(S) over all subsets of size #(S) = K then

the classical result of G. L. Nemhauser et al. [187] states that the objective values attained by the

greedily chosen sets satisfy

fγ(Sk) ≥
(

1− e−k/K
)
fγ(S∗K), k = 1, . . . ,#(M). (10.24)

The objective function fγ given by Eq. 10.23 can be viewed as a “submodular relaxation” of the

original sum of squared differences f̃γ given by Eq. 10.20. While fγ(S) ≥ f̃γ(S) for every S ⊆ M,

Theorem 10.4.4, below, shows that fγ also provides a lower bound on f̃γ′ at reduced values of the

detection threshold γ′ < γ. Hence, maximization of fγ is justified as a proxy for maximizing f̃γ′ .

Moreover, the relaxed objective bounds the total square differences among target variables that are

not detectable due to corresponding measurement differences smaller than reduced threshold via

Eq. 10.26 of Theorem 10.4.4.

Theorem 10.4.4 (Relaxation Bound on Undetectable Differences). Consider the rigid and relaxed

objectives given by Eq. 10.20 and Eq. 10.23. Then for every S ⊆ M and constant 0 < α < 1, we

have

f̃αγ(S) ≥ 1

1− α2

[
fγ(S)− α2F∞

]
. (10.25)

Furthermore, the total fluctuation between target variables associated with states whose measurements

are closer together than the reduced detection threshold αγ, given by Eq. 10.17, is bounded above by

Fαγ(S) ≤ 1

1− α2
[F∞ − fγ(S)] . (10.26)

Proof. We observe that

‖mS(x)−mS(x′)‖2 ≥ αγ ⇔ wγ,x,x′(S) ≥ α2 (10.27)

and so we have

w̃αγ,x,x′(S) = 1 {‖mS(x)−mS(x′)‖2 ≥ αγ} (10.28)

= 1
{
wγ,x,x′(S) ≥ α2

}
. (10.29)
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Since 0 ≤ wγ,x,x′(S) ≤ 1, we obtain the following linear lower bound

w̃αγ,x,x′(S) ≥ 1

1− α2

[
wγ,x,x′(S)− α2

]
. (10.30)

Summing this lower bound over all secants gives

f̃αγ(S) ≥ 1

1− α2

[
fγ(S)− α2F∞

]
(10.31)

and subtracting each side from F∞ yields the final result.

When applied to the shock-mixing layer problem with the leading Isomap coordinates taken as

the target variables g(x) = (φ1(x), φ2(x)), the greedy algorithm maximizing fγ first reveals the two

sensor locations marked by green stars and then the black star in Figure 10.3.1 over the range of

0.02 ≤ γ ≤ 0.06. These choices produce the measurements shown in Figs. 10.3.4a and 10.3.4b, which

can be used to reveal the exact phase of the system. Choosing smaller values of γ yields different

sensors that can also be used to reveal the phase, but with reduced robustness to measurement

perturbations. This method of maximizing detectable differences also reveals the correct K = 3

fundamental Isomap eigen-coordinates from among the leading 100 on the torus example in Eq. 10.11

over a wide range 0.05 ≤ γ ≤ 3.0. For implementation details, see the Appendix.

10.4.2 Minimal Sensing to Meet an Error Tolerance

The approach presented above relies on an average and so does not guarantee that the target value

g(x) can be recovered from the selected measurements mS(x) for every x ∈ X . In this section, we

modify the technique developed above in order to provide such a guarantee by trying to find the

minimum number of sensors so that every pair of states in the sampled set XN with target values

separated by at least ε correspond to measurements separated by at least γ. If our sampled points XN
come sufficiently close to every point of X in the sense of Definition 10.4.5, then Proposition 10.4.6,

given below, allows us to draw a similar conclusion about the measurements from all points in the

underlying set X .

Definition 10.4.5 (ε0-net). An ε0-net of X is a finite subset XN ⊂ X satisfying

∀x ∈ X , ∃xi ∈ XN such that ‖x− xi‖2 < ε0. (10.32)

We use the subscript N to denote the number of points in XN .
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In particular, if XN forms a fine enough ε0-net of X , then Proposition 10.4.6 guarantees that

small measurement differences never correspond to large target value differences.

Proposition 10.4.6 (Separation Guarantee on Underlying Set). Let XN be an ε0-net of X (see

Definition 10.4.5) and let S be a subset of M satisfying

∀xi,xj ∈ XN ‖g(xi)− g(xj)‖2 ≥ ε ⇒ ‖mS(xi)−mS(xj)‖2 ≥ γ. (10.33)

If mS and g are Lipschitz functions with Lipschitz constants ‖mS‖lip and ‖g‖lip respectively, then

∀x,x′ ∈ X ‖g(x)− g(x′)‖2 ≥ ε+ 2ε0‖g‖lip

⇒ ‖mS(x)−mS(x′)‖2 > γ − 2ε0‖mS‖lip. (10.34)

Proof. The proof follows immediately from successive applications of the triangle inequality and so

we relegate it to Appendix 10.C

Consequently, the approach described in this section allows one to reconstruct g(x) from a

perturbed measurement mS(x) + n by taking the value g(x′) from its nearest neighbor mS(x′)

with x′ ∈ X and achieve small error ‖g(x) − g(x′)‖2 as long as the perturbation ‖n‖2 is below a

threshold.

Supposing that the desired separation can be obtained using all of the sensors, i.e., S = M, then

we can take the sum in the objective fγ given by Eq. 10.23 only over those pairs x,x′ ∈ XN with

targets separated by at least ‖g(x)− g(x′)‖2 ≥ ε, i.e.,

fγ,ε(S) =
∑

x,x′∈XN :
‖g(x)−g(x′)‖2≥ε

wγ,x,x′(S)‖g(x)− g(x′)‖22, (10.35)

and state the problem formally as

minimize
S⊆M

#(S) subject to fγ,ε(S) = fγ,ε(M). (10.36)

We observe that if all points x,x′ ∈ XN with ‖g(x) − g(x′)‖2 ≥ ε can be separated by at least γ

using S = M then wγ,x,x′(M) = 1 for each term in Eq. 10.35. On the other hand if there is such a

pair x,x′ with ‖mS(x) −mS(x′)‖2 < γ then that term has wγ,x,x′(S) < 1 and fγ,ε(S) < fγ,ε(M)

as a consequence.
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One can show, by using the same argument as in Lemma 10.B.3 of the Appendix, that the

objective Eq. 10.35 is submodular in addition to being normalized and monotone non-decreasing.

It follows that Eq. 10.36 is a classical submodular set cover problem for which a greedy algorithm

maximizing fγ,ε and stopping when fγ,ε(SK) = fγ,ε(M) will always find, up to a logarithmic factor,

the minimum possible number of sensors [283]. In particular, suppose that S∗ is a subset of minimum

size with fγ,ε(S
∗) = f(M) and that the greedy algorithm chooses a sequence of subsets S1, . . . , SK

with fγ,ε(SK) = fγ,ε(M). If we define the “increment condition number” to be the ratio of the

largest and smallest increments in the objective during greedy optimization

κ =
fγ,ε(S1)

fγ,ε(SK)− fγ,ε(SK−1)
, (10.37)

then the classical result of L. A. Wolsey [283] proves that the greedily chosen set is no larger than

#(SK) ≤ (1 + lnκ)#(S∗). (10.38)

10.4.3 Minimal Sensing to Meet an Amplification Tolerance

The approaches discussed above are capable of choosing measurements that separate states with

distant target values by at least a fixed distance γ. However, we may want the separation between

the measurements to grow with the corresponding separation in target values, rather than potentially

saturating at the γ threshold. In addition, the nearby measurements separated by less than γ may

not adequately capture the local behavior of the target variables as illustrated by the cusps in the

measurements made by these sensors in the shock-mixing layer flow shown in Figure 10.3.4a. As

we pointed out in Section 10.3.2, this would be a major problem if we wish to build a reduced-

order model of this system in the measurement space because such a model would get stuck at

spurious fixed points around each cusp. Overcoming this problem is important because it would

allow us to build computationally efficient reduced-order models of fluid flows in measurement spaces

consisting of easily interpretable fluid velocities at a small number of spatial locations. In particular,

models of this kind could be build directly from the governing partial differential equations simply

by reconstructing the flow variables in a spatial grid stencil around each selected location, allowing a

finite-difference scheme to compute the time derivatives of the fluid velocities at the selected locations

and evolve their dynamics forward in time.

Attempting to select sensors S whose measurements capture both the local and global structure

of the target variables leads us to consider disturbance amplification as a performance metric. In
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this section, we try to find the minimum number of sensors so that the Lipschitz constant of the

reconstruction function does not exceed a user-specified threshold L.

Remark 10.4.7. In the case of a linear system described in Remark 10.4.1, the reconstruction

Lipschitz constant can be described in terms of the smallest eigenvalue of the time-τ observability

Gramian λmin(W S) as

‖ΦS‖lip = max
m∈RdS :
m6=0

‖W−1
S OT

Sm‖2
‖m‖2

=
1√

λmin(W S)
. (10.39)

In practice, we do not have access to the true Lipschitz constant, so instead we bound a proxy

defined below:

‖ΦS‖lip ≈ ‖ΦS‖XN ,lip = max
x,x′∈XN

‖g(x)− g(x′)‖2
‖mS(x)−mS(x′)‖2

≤ L. (10.40)

Proposition 10.4.8, below, shows that it suffices to enforce this condition over an ε0-net, XN , of X

(see Definition 10.4.5) in order to bound the amplification over all of X up to a slight relaxation for

measurement differences on the same scale ε0 as the sampling.

Proposition 10.4.8 (Amplification Guarantee on Underlying Set). Let XN be an ε0-net of X and

let S be a subset of M satisfying

xi,xj ∈ XN ‖g(xi)− g(xj)‖2 ≤ L‖mS(xi)−mS(xj)‖2. (10.41)

If mS and g are Lipschitz functions, with Lipschitz constants ‖mS‖lip and ‖g‖lip respectively, then

∀x,x′ ∈ X ‖g(x)− g(x′)‖2 < L‖mS(x) +mS(x′)‖2 + 2 (‖g‖lip + L‖mS‖lip) ε0. (10.42)

Proof. The proof is a direct application of the triangle inequality and so it is relegated Appendix 10.C.

If the Lipschitz condition in Eq. 10.40 over XN can be met using all of the sensors S = M then

the problem we hope to solve can be stated formally as in Eq. 10.36, where the condition Eq. 10.40

is imposed using a different normalized, monotone, submodular function

fL(S) =
∑

x,x′∈XN
g(x)6=g(x′)

min

{‖mS(x)−mS(x′)‖22
‖g(x)− g(x′)‖22

,
1

L2

}
. (10.43)

See Lemma 10.B.4 in the Appendix for proof of these properties.
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Remark 10.4.9. For a linear system described in Remark 10.4.1, the objective Eq. 10.43 can be

written in terms of Rayleigh quotients involving the time-τ observability Gramian as

fL(S) =
∑

ξ∈XN+(−XN ):
ξ 6=0

min

{
ξTW Sξ

ξT ξ
,

1

L2

}
. (10.44)

We observe that if there is any secant (x,x′) ∈ XN × XN for which Eq. 10.40 is not satisfied

for a given S ⊂M, then the corresponding term of Eq. 10.43 is less than 1/L2 and fL(S) < fL(M).

Otherwise, each term of Eq. 10.43 is 1/L2 and we have fL(S) = fL(M). Again, the classical result

in [283] shows that a greedy approximation algorithm maximizing Eq. 10.43 and stopping when

fL(SK) = fL(M) finds the minimum possible number of sensors up to a logarithmic factor so that

the Lipschitz condition Eq. 10.40 is satisfied. In particular, the same guarantee stated in Eq. 10.38

holds for the Lipschitz objective too.

In some applications, we may instead want to find the measurements that minimize the recon-

struction Lipschitz constant ‖ΦS‖XN ,lip using a fixed sensor budget #(S) ≤ C. By running the

greedy algorithm repeatedly using different thresholds L it is possible to obtain upper and some-

times lower bounds on this budget-constrained minimum Lipschitz constant L∗. This idea is closely

related to the approach of [140]. If the greedy algorithm using Lipschitz constant L chooses sensors

S that meet the budget #(S) ≤ C then L is obviously an upper bound on L∗. In practice, we can use

a bisection search over L to find nearly the smallest L to any given tolerance for which #(S) ≤ C.

To get the lower bound, the greedy algorithm is run with a small enough L so that the bound on

the minimum possible cost from Eq. 10.38 exceeds the budget

C < #(S)/(1 + lnκ). (10.45)

If this is the case, there is no collection of measurements with amplification at most L that meets

the cost constraint. Thus, such an L is a lower bound on the minimum possible amplification using

measurement budget C. Again, bisection search can be used to find nearly the largest L so that

C < #(S)/(1 + lnκ).

With the leading Isomap coordinates taken as the target variables g(x) = (φ1(x), φ2(x)), a

bisection search over L identifies the three sensor locations marked by black squares in Figure 10.3.1

on the shock-mixing layer problem and the correct fundamental Isomap eigenfunctions φ1, φ2, φ7 on

the torus example in Eq. 10.11. The measurements made by these sensors on the shock-mixing

layer problem are shown in Figure 10.3.4c and indicate, by the lack of self-intersections, that they
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can be used to recover the phase.

The minimum number of sensors selected by the greedy algorithm that allow one to reconstruct

both the relevant information g(x) and its time derivative is usually persistent over a wide range of

Lipschitz constants with fewer sensors not being chosen until L is made extremely large. In the shock-

mixing layer problem, three sensors that successfully reveal the underlying phase are found for values

of L ranging from 1868 to 47624, above which only two sensors that cannot reveal the underlying

phase are selected. The fact that a smaller set of inadequate sensors are selected for extremely

large L reflects our use of a discrete approximation XN of the continuous set X . Measurements from

XN will almost never truly overlap to give ‖ΦS‖lip =∞ as they would for measurements from X .

We also find that with L = 129, the minimum possible number of sensors exceeds #(SK)/(1 +

lnκ) = 3.18 > 3 on the shock-mixing layer problem. Therefore, the minimum possible reconstruction

Lipschitz constant using three sensors that one might find by an exhaustive search over the
(

2210
3

)
≈

1.8 × 109 possible combinations must be greater than 129. For implementation details, see the

Appendix.

10.5 Computational Considerations and Down-Sampling

So far, the three secant-based methods we presented involve objectives that sum over O(N2) pairs

of points from the sampled set XN . In this section, we discuss how this large collection of secants

can be sub-sampled to produce high-probability performance guarantees using a number of secants

that scales more favorably with the size of the data set. By sub-sampling we do pay a price in the

sense that some “bad” secants may escape our sampling scheme and so we cannot draw the same

conclusions about every point in the underlying set as we did in Propositions 10.4.6 and 10.4.8 for

the sensors chosen using the methods in Sections 10.4.2 and 10.4.3. Instead, we can bound the size

of the set of these “bad” secants with high probability by using a sampled collection of secants that

scales linearly with N . In the case of the total detectable difference-based objective discussed in

Section 10.4.1, we can prove high-probability bounds for the sum of squared undetectable differences

in the target variables using a constant number of secants that doesn’t depend on N at all. The

down-sampling properties of the various methods we propose are summarized in Table 10.5.1.

Remark 10.5.1 (The curse of dimensionality). It is important to note that even in the down-

sampled setting, the error tolerance and the amplification tolerance methods suffer from the curse

of dimensionality when we wish to draw conclusions about an underlying manifold X . In such a

case, we must take XN to be an ε0-net of X (see Definition. 10.4.5), where the number of elements
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Method # of secants Property

Detectable
diffs.

O
(
K ln #M−ln p

ε2

)
The sampled objective differs from the full objective by
less than ε for every collection of K or fewer sensors with
probability at least 1 − p by Lem. 10.5.2. Consequently,
sampling does not reduce the worst-case performance of
the greedy algorithm by more than 2ε with respect to the
full objective by Thm. 10.5.3.

Error tol. O
(

#M−ln p
ε2

)
When the error tol. method is used to ensure that every
down-sampled pair with target variables differing by at
least

√
ε produces measurements separated by at least

γ, then the full normalized sum of squared undetectable
differences is less than 2ε with probability at least 1 − p
by Thm. 10.5.5.

Error tol. O
(
N(#M−ln p)

δ2

)
The probability measure of the “bad set” of states that
have secants not satisfying the desired error tolerance
condition is less than δ with probability 1 − p (see
Thm. 10.5.6).

Amplif. tol. O
(
N(#M−ln p)

δ2

)
The probability measure of the “bad set” of states that
have secants with higher than desired amplification is less
than δ with probability 1− p (see Thm. 10.5.7).

Table 10.5.1: We summarize the down-sampling properties of the three greedy measurement selection
techniques discussed in Section 10.4 using given number of secants to evaluate the objectives. For
the sake of simplicity, the properties described in the last two rows pertain to any discrete set XN
of size N , whereas Theorems 10.5.6 and 10.5.7 provide results with respect to the underlying set X
of which XN is assumed to be an ε0-net (see Def. 10.4.5). Since XN is an ε0-net of itself for every
ε0 > 0, the results above are easy corollaries of Theorems 10.5.6 and 10.5.7. The properties in the
first two rows apply to the true underlying set X .
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in such a net scales with N = O(ε−d0 ) and d is the dimension of X . Consequently it will become

computationally impractical to use enough points N to draw conclusions about the underlying set

using these methods when the dimension of X becomes large (roughly d > 5). On the other hand, the

detectable differences method is totally independent of the dimension of X , but has weaker theoretical

properties. Therefore, what we exchange for the generality of our approach in handling nonlinear

sets is that these sets must be low-dimensional in order to guarantee reconstruction performance.

Before getting started with our discussion of down-sampling, let us first mention that the cal-

culation of each of the objectives formulated in Section 10.4 is easily parallelizable, whether or

not they are down-sampled. Even though the computation of each objective function given by

Eq. 10.23, 10.35, or 10.43 requires O(N2) operations, the terms being summed can be distributed

among many processors without the need for any communication except at the end when each pro-

cessor reports the sum over the secants allocated to it. Furthermore, because each secant-based

objective we consider in this paper is submodular, it is not actually necessary to evaluate the ob-

jectives over all of the remaining sensors during each step of the greedy algorithm. By employing

the “accelerated greedy” algorithm of M. Minoux [180], the same set of sensors can be found using

a minimal number of evaluations of the objective. We provide a summary of the accelerated greedy

algorithm in Section 10.D of the Appendix.

The wall-clock computation times for our secant-based methods using the accelerated greedy al-

gorithm implemented in Python without the aforementioned parallelization and running on a laptop

computer were in the 10s of seconds per set of sensors, with bisection searches to minimize amplifi-

cation on a fixed sensor budget (see Section 10.4.3) taking minutes. These times were comparable to

the LASSO method, with the secant-based approach being slower by a factor of about 2, and slower

than the convex approaches for D-optimal selection by a factor of about 3. On the other hand, the

pivoted QR method and greedy D-optimal selection methods were extremely fast, producing sensors

in fractions of a second. For implementation details, see Appendix 10.A

The computational cost of evaluating the objectives in Sections 10.4.2 and 10.4.3 during each

step of the greedy algorithm may also be reduced by exploiting the fact that each term in the sum

is truncated once the measurements achieve a certain level of separation. This means that only the

nearest neighbors within a known distance of each mS(x), x ∈ XN need to be computed and rest

of the terms all achieve the threshold and need not be computed explicitly. To compute the sum

efficiently, fixed-radius near neighbors algorithms [21], [22] could be employed.
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10.5.1 Maximizing Detectable Differences

The main results of this section are Theorems 10.5.3 and 10.5.5, which show that with high proba-

bility we can obtain guaranteed performance in terms of mean undetectable differences by sampling

a constant number of secants (i.e., independent of N) selected at random. In particular, Theo-

rem 10.5.3 bounds the worst-case performance of the greedy algorithm with high probability using

the sampled objective. Theorem 10.5.5, on the other hand, shows that if one only considers ran-

domly sampled secants with target variables separated by at least ε (see Section 10.4.2), then the

mean square undetectable difference between target values is less than 2ε2 with high probability.

While the original mean square fluctuation objective in Eq. 10.23 was formulated over the

discrete set XN , we can actually prove more versatile approximation results about an objective

defined as an average over the entire, possibly continuous, set X with respect to a probability

measure µ. In particular, we assume the target variables g and measurements mj , j ∈ M are

measurable functions on X and consider an average detectable difference objective

fγ(S) =

∫
X×X

wγ,x,x′(S) ‖g(x)− g(x′)‖22 dµ(x)dµ(x′) (10.46)

with wγ,x,x′(S) defined by Eq. 10.22. We also denote the average fluctuations between target

variables associated with states whose measurements are closer together than the detection threshold

γ by

Fγ(S) :=

∫
(x,x′)∈X×X :

‖mS(x)−mS(x′)‖2<γ
‖g(x)− g(x′)‖22 dµ(x)dµ(x′) (10.47)

and the total fluctuation among target variables by

F∞ :=

∫
X×X

‖g(x)− g(x′)‖22 dµ(x)dµ(x′). (10.48)

Note that the original objective formulated in Section 10.4.1 as well as Eq. 10.17 are special cases

of Eq. 10.46 and Eq. 10.47, up to an irrelevant constant factor, when µ = 1
N

∑
x∈XN δx and

δx(A) = 1{x ∈ A} is the Dirac measure on Borel sets A ⊆ X . By Lemma 10.B.3, Eq. 10.46 is

submodular in addition to being normalized and monotone non-decreasing. Furthermore, by an

identical argument to Theorem 10.4.4, we know that the mean square fluctuation between target

variables associated with states whose measurements are closer together than a reduced detection
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thereshold αγ with 0 < α < 1 is bounded above by

Fαγ(S) ≤ 1

1− α2
[F∞ − fγ(S)] . (10.49)

We begin with Lemma 10.5.2, which shows that by sampling a large enough collection of points

x1,x
′
1, . . . ,xm,x

′
m ∈ X independently according to µ, the objective fγ can be uniformly approxi-

mated by a sample-based average

fγ,m(S) =
1

m

m∑
i=1

wγ,xi,x′i(S) ‖g(xi)− g(x′i)‖
2
2 (10.50)

over all S ⊆M of size #(S) ≤ L with high probability over the sample points. Most importantly, the

number of sample points needed for this approximation guarantee is independent of the distribution

µ. Consequently if we have access to N points making up XN that have been sampled independently

according to µ, we need only keep the first 2m of them to accurately approximate the objective. The

number m of such sub-sampled points depends only on the quality of the probabilistic guarantee

and not on the size of the data set N .

Lemma 10.5.2 (Accuracy of the Down-Sampled Objective). Consider the objectives fγ and fγ,m

defined according to Eq. 10.46 and Eq. 10.50. Assume that the target function is bounded over X

so that

D = diam g(X ) = sup
x,x′∈X

‖g(x)− g(x′)‖2 <∞. (10.51)

and that x1,x
′
1, . . . ,xm,x

′
m ∈ X are sampled independently according to a probability measure µ on

X . If the number of sampled pairs is at least

m ≥ D4

2ε2

[
L ln #(M)− ln ((L− 1)!)− ln

(p
2

)]
, (10.52)

then |fγ,m(S)− fγ(S)| < ε for every S ⊆M of size #(S) ≤ L with probability at least 1− p.

Proof. For simplicity, we will drop γ from the subscripts on our objectives since γ remains fixed

throughout the proof. Let us begin by fixing a set S ⊆M of size #(S) ≤ L and denoting M = #(M)

for short. Under the assumption that the points xi,x
′
i are sampled independently and identically

under µ, the random variables

Zi(S) = wxi,x′i(S)‖g(xi)− g(x′i)‖22, i = 1, . . . ,m, (10.53)
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are independent and bounded by 0 ≤ Zi(S) ≤ D2. The value of the optimization objective is the

expectation f(S) = E[Zi(S)] and the value of our sub-sampled objective is the empirical average

fm(S) =
1

m

m∑
i=1

Zi(S). (10.54)

Hoeffding’s inequality allows us to bound the probability that fm(S) differs from f(S) by more than

ε according to

P {|fm(S)− f(S)| ≥ ε} ≤ 2 exp

(
−2mε2

D4

)
. (10.55)

We want the objective to be accurately approximated with tolerance ε uniformly over all collections

of sensors of size #(S) ≤ L. We unfix S by taking the union bound

P
⋃

S⊆M:
#(S)≤L

{|fm(S)− f(S)| ≥ ε} ≤
∑
S⊆M:

#(S)≤L

2 exp

(
−2mε2

D4

)
. (10.56)

The combinatorial inequality

# ({S ⊆M : #(S) ≤ L}) =

L∑
k=1

(
M

k

)
≤

L∑
k=1

Mk

k!
≤ LM

L

L!
=

ML

(L− 1)!
(10.57)

yields the bound

P
⋃

S⊆M:
#(S)≤L

{|fm(S)− f(S)| ≥ ε} ≤ 2 exp

(
L lnM − ln ((L− 1)!)− 2mε2

D4

)
≤ p (10.58)

when the number of sampled pairs xi,x
′
i satisfies Eq. 10.52.

The uniform accuracy of the sampled objective fγ,m over the feasible subsets S in our optimization

problem

maximize
S⊆M : #(S)≤K

fγ(S) (10.59)

established in Lemma 10.5.2 leads to performance guarantees for the greedy approximation algorithm

when the sampled objective fγ.m is used in place of fγ . In particular, Theorem 10.5.3 shows that the

greedy algorithm can be applied to the sampled objective Eq. 10.50 and still achieve near-optimal

performance with respect to the original objective Eq. 10.46 on the underlying set X with high

probability. This sampling-based approach therefore completely eliminates the O(N2) dependence

of the computational complexity involved in evaluating the objective at a penalty on the worst case
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performance that can be made arbitrarily small by sampling more points.

Theorem 10.5.3 (Greedy Performance using Sampled Objective). Assume the same hypotheses as

Lemma 10.5.2 and let S∗ denote an optimal solution of

maximize
S⊆M : #(S)≤K

fγ(S), (10.60)

with fγ given by Eq. 10.46 and K ≤ L. If S1, . . . , SL are the sequence of subsets selected by the

greedy algorithm using the sampled objective fγ,m given by Eq. 10.50, then

fγ(Sk) ≥
(

1− e−k/K
)
fγ(S∗)−

(
2− e−k/K

)
ε, k = 1, . . . , L, (10.61)

with probability at least 1− p over the sample points.

Proof. For simplicity, we will drop γ from the subscripts on our objectives since γ remains fixed

throughout the proof. Let S∗m denote the optimal solution of

maximize
S⊆M : #(S)≤K

fm(S), (10.62)

using the sampled objective and assume that |f(S) − fm(S)| < ε for every subset S of M with

#(S) ≤ L. According to Lemma 10.5.2, this happens with probability at least 1− p over the sample

points. Using this uniform approximation and the guarantee on the performance of the greedy

algorithm for fm, we have

f(Sk) ≥ fm(Sk)− ε ≥
(

1− e−k/K
)
fm(S∗m)− ε. (10.63)

Since S∗m is the optimal solution using the sampled objective, we must have fm(S∗m) ≥ fm(S∗). Using

this fact and the uniform approximation gives

f(Sk) ≥
(

1− e−k/K
)
fm(S∗)− ε (10.64)

≥
(

1− e−k/K
)

(f(S∗)− ε)− ε. (10.65)

Combining the terms on ε completes the proof.

Remark 10.5.4. While Theorem 10.5.3 tells us that down-sampling has a small effect on the worst-

case performance of the greedy algorithm, unfortunately, we cannot say much beyond that. It may be
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the case that the greedy solution using the sampled objective fγ,m produces a very different value of

fγ than the greedy solution using fγ directly, even though these functions are both submodular and

differ by no more than an arbitrarily small ε > 0. Consider the following example in Table 10.5.2

where we have two submodular objectives, f and f̃ , that differ by no more than ε � 1, yet the

greedy algorithm applied to f and f̃ yield results that differ by O(1). One can easily verify that both

S f(S) f̃(S)
∅ 0 0
{a} 2 + ε 2
{b} 2 2 + ε
{c} 1 1
{a, b} 2 + ε 2 + 2ε
{a, c} 3 + ε 3
{b, c} 2 2 + ε
{a, b, c} 3 3

Table 10.5.2: Two submodular functions are given that differ by no more than ε � 1, yet produce
very different greedy solutions and objective values.

functions in Table 10.5.2 are normalized, monotone, and submodular. When selecting subsets of

size 2, the greedy algorithm for f picks ∅ → {a} → {a, c} and the greedy algorithm for for f̃ picks

∅ → {b} → {a, b}. The values of f on the chosen sets, f({a, c}) = 3+ε and f({a, b}) = 2+2ε, differ

by 1− ε� ε, and similarly for f̃({a, c}) = 3 and f̃({a, b}) = 2 + ε, which also differ by 1− ε� ε.

Thus the performance of the greedy algorithm can be sensitive to small perturbations of the objective

even though the lower bound on performance is not sensitive.

It turns out that by solving the error tolerance problem in Section 10.4.2 greedily using a down-

sampled objective, we can provide high probability bounds directly on the mean square undetectable

differences in Eq. 10.47. We will use the down-sampled objective

fγ,ε,m(S) =
1

m

∑
i∈{1,...,m}:

‖g(xi)−g(x′i)‖2≥ε

wγ,xi,x′i(S)‖g(xi)− g(x′i)‖22, (10.66)

with the relaxed weight function in Eq.10.22 in a greedy approximation algorithm for the submod-

ular set-cover problem

minimize
S⊆M

#(S) subject to fγ,ε,m(S) = fγ,ε,m(M). (10.67)

Using the resulting greedy solution SK that satisfies fγ,ε,m(SK) = fγ,ε,m(M) = f̃γ,ε,m(M), The-

orem 10.5.5 provides a high-probability bound on the mean square undetectable difference in the
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target variables, Eq. 10.47, over the entire set X × X rather than merely XN ×XN .

Theorem 10.5.5 (Sample Separation Bound on Undetectable Differences). Consider the func-

tions fγ,ε,m and Fγ defined by Eqs. 10.67 and 10.47 and assume that the condition ‖mM(x) −

mM(x′)‖2 ≥ γ holds for µ-almost every x,x′ ∈ X such that ‖g(x)− g(x′)‖2 ≥ ε. Suppose that the

target function is bounded over X so that

D = diam g(X ) = sup
x,x′∈X

‖g(x)− g(x′)‖2 <∞. (10.68)

and that x1,x
′
1, . . . ,xm,x

′
m ∈ X are sampled independently according to the probability measure µ

on X . If the number of sampled pairs is at least

m ≥ D4

2ε4
(#(M) ln 2− ln p) , (10.69)

and the greedy approximation of Eq. 10.67 produces a set SK , then

Fγ(SK) < 2ε2 (10.70)

with probability at least 1− p.

Proof. For simplicity, we will drop γ, ε from the subscripts on our objectives since γ and ε remain

fixed throughout the proof. Let

D = {(x,x′) ∈ X × X : ‖g(x)− g(x′)‖2 ≥ ε} (10.71)

and

f̃(S) = E
[
f̃m(S)

]
=

∫
X×X

χD(x,x′)w̃γ,x,x′(S)‖g(x)− g(x′)‖22 dµ(x)dµ(x′), (10.72)

where χD is the characteristic function of the set D. From our assumption that ‖mM(x) −

mM(x)‖2 ≥ γ for µ-almost every x,x′ ∈ X with ‖g(x)− g(x′)‖2 ≥ ε, it follows

f̃(M) =

∫
X×X

χD(x,x′)‖g(x)− g(x′)‖22 dµ(x)dµ(x′). (10.73)
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Expanding our definition of Fγ in Eq.10.47, we find

Fγ(S) = f̃(M)− f̃(S) +

∫
X×X

χDc(x,x
′) [1− w̃γ,x,x′(S)] ‖g(x)− g(x′)‖22 dµ(x)dµ(x′) (10.74)

and therefore

Fγ(S) ≤ f̃(M)− f̃(S) + ε2. (10.75)

We shall now use a similar Hoeffding and union bound argument as in Thm. 10.5.2 to relate f̃(M)−

f̃(S) to f̃m(M) − f̃m(S) uniformly over every subset S ⊆ M. Fixing such S ⊂ M, the one-sided

Hoeffding inequality tells us that

P
{[
f̃(M)− f̃(S)

]
−
[
f̃m(M)− f̃m(S)

]
≥ ε2

}
≤ exp

(
−2mε4

D4

)
. (10.76)

Unfixing S using the union bound tells us that

f̃(M)− f̃(S) < f̃m(M)− f̃m(S) + ε2 (10.77)

uniformly over all S ⊂ M with probability at least 1 − p. Since the greedy algorithm terminates

when f̃m(SK) = f̃m(M), it follows by substitution into Eq. 10.75 that

Fγ(S) < 2ε2 (10.78)

with probability at least 1− p over the sample points.

10.5.2 Minimal Sensing to Meet Separation or Amplification Tolerances

If we want to draw stronger conclusions about the underlying set X than are captured by the

mean square (un)detectable differences, then we must increase the number of sample points. The

following Theorems 10.5.6 and 10.5.7 show that similar conclusions about the separation of points

as in Propositions 10.4.6 and 10.4.8 can be achieved over large subsets of X with high probability

by considering secants between a randomly chosen set of “base points” and the full data set. More

precisely, we will consider secants between an ε0-net XN of X and a collection of base point Bm ⊂ X

with size m independent of N . This leads to linear O(N) scaling of the cost to evaluate the down-

sampled versions of the objectives given by Eqs. 10.35 and 10.43 in Sections 10.4.2 and 10.4.3 to

achieve these relaxed guarantees.
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The strong guarantee of Proposition 10.4.6 requires that we use an objective like Eq. 10.35 in

the submodular set-cover problem Eq. 10.36 where the sum in Eq. 10.35 is taken over XN × XN
and XN is an ε0-net of the underlying set X . The problem is that the ε0-net XN may be quite large

and the number of operations needed to evaluate the sum in the objective scales with the square

of the size of XN . Here we will prove that a similar guarantee as in Proposition 10.4.6 holds with

high probability over a large subset of X when the sum in Eq. 10.35 is taken over secants between

a randomly chosen collection of base points Bm = {b1, . . . , bm} ⊆ X and the ε0-net XN . Most

importantly, the number of base points depends on the quality of the guarantee and not on size of

the ε0-net, so that the computational cost can be reduced to linear dependence on the size of XN .

Specifically, in place of Eq. 10.35, we can consider the sampled objective

fγ,ε,m(S) =
1

mN

∑
1≤i≤m, 1≤j≤N :
‖g(bi)−g(xj)‖2≥ε

wγ,bi,xj (S)‖g(bi)− g(xj)‖22 (10.79)

with wγ,bi,xj (S) defined by Eq. 10.22 in the optimization problem Eq. 10.36. The greedy approxi-

mation algorithm produces a set of sensors SK such that

‖g(bi)− g(xj)‖2 ≥ ε ⇒ ‖mSK (bi)−mSK (xj)‖2 ≥ γ (10.80)

for every bi ∈ Bm and xj ∈ XN . Theorem 10.5.6 guarantees that with high probability, only a small

subset of points in X have target values that cannot be distinguished from the rest by measurements

separated by a relaxed detection threshold. This size of this “bad set” is determined by its µ-measure,

which can be made arbitrarily small with high probability by taking more sample base points m.

Theorem 10.5.6 (Sampled Separation Guarantee). Let XN be an ε0-net of X and let the base

points Bm be sampled independently according to a probability measure µ on X with

m ≥ 1

2δ2
(#(M) ln 2− ln p) , (10.81)

where p, δ ∈ (0, 1). Consider the objective fγ,ε,m given by Eq. 10.79 for a certain choice of γ > 0

and ε > 0 for which every bi ∈ Bm and xj ∈ XN satisfies

‖g(bi)− g(xj)‖2 ≥ ε ⇒ ‖mM(bi)−mM(xj)‖2 ≥ γ. (10.82)

Suppose also that g and the measurement functions mk, k ∈ M are all Lipschitz over X . If

329



fγ,ε,m(S) = fγ,ε,m(M), then the µ measure of points x ∈ X such that

‖g(x)− g(x′)‖2 ≥ ε+ ε0‖g‖lip ⇒ ‖mS(x)−mS(x′)‖2 > γ − ε0‖mS‖lip (10.83)

for every x′ ∈ X is at least 1− δ with probability at least 1− p.

Proof. For simplicity, we will drop γ, ε from the subscript on our objective since γ and ε remain

fixed throughout the proof. Let us begin by fixing a set S ⊆M and define the random variables

ZS(bi) = max
x∈XN

1
{
‖mS(bi)−mS(x)‖2 < γ and ‖g(bi)− g(x)‖2 ≥ ε

}
. (10.84)

If ZS(bi) = 0 then every x ∈ XN with ‖g(bi) − g(x)‖2 ≥ ε also satisfies ‖mS(bi) −mS(x)‖2 ≥ γ,

otherwise ZS(bi) = 1. We observe that ZS(bi), i = 1, . . . ,m are independent, identically distributed

Bernoulli random variables whose expectation

E [ZS(bi)] = µ
({
x ∈ X : ∃x′ ∈ XN s.t.‖mS(x)−mS(x′)‖2 < γ, ‖g(x)−g(x′)‖2 ≥ ε

})
(10.85)

is the µ-measure of points in X for which target values differing by at least ε with points of XN are

separated by measurements differing by less than γ. Suppose that for a fixed x ∈ X we have

‖g(x)− g(xj)‖2 ≥ ε ⇒ ‖mS(x)−mS(xj)‖2 ≥ γ (10.86)

for every xj ∈ XN . For any x′ ∈ X , there is an xj ∈ XN with ‖x′ − xj‖2 < ε0 and so we have

ε+ ε0‖g‖lip ≤ ‖g(x)− g(x′)‖2

≤ ‖g(x)− g(xj)‖2 + ‖g(xj)− g(x′)‖2

< ‖g(x)− g(xj)‖2 + ε0‖g‖lip.

(10.87)

Hence, ε ≤ ‖g(x)−g(xj)‖2, which implies that γ ≤ ‖mS(x)−mS(xj)‖2 by assumption. From this

we obtain

γ ≤ ‖mS(x)−mS(x′)‖2 + ‖mS(x′)−mS(xj)‖2

< ‖mS(x)−mS(x′)‖2 + ε0‖mS‖lip.
(10.88)
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Therefore, for such an x ∈ X we have

∀x′ ∈ X ‖g(x)− g(x′)‖2 ≥ ε+ ε0‖g‖lip ⇒ ‖mS(x)−mS(x′)‖2 > γ − ε0‖mS‖lip. (10.89)

It follows that E [ZS(bi)] is an upper bound on the µ-measure of points in X for which there is

another point in X with a close measurement and distant target value, that is

E [ZS(bi)] ≥ µ
({
x ∈ X : ∃x′ ∈ X s.t.‖mS(x)−mS(x′)‖2 ≤ γ − ε0‖mS‖lip,

‖g(x)− g(x′)‖2 ≥ ε+ ε0‖g‖lip
})
. (10.90)

By assumption, we have a set S ⊂M so that ZS(bi) = 0 for each i = 1, . . . ,m. And so it remains

to bound the difference between the empirical and true expectation of ZS(bi) uniformly over every

subset S ⊂M. For fixed S, the one-sided Hoeffding inequality gives

P
{ 1

m

m∑
i=1

(E[ZS(bi)]− ZS(bi)) ≥ δ
}
≤ e−2mδ2

. (10.91)

Unfixing S via the union bound over all S ⊂ M and applying our assumption about the number of

base points m yields

P
⋃

S⊆M

{ 1

m

m∑
i=1

(E[ZS(bi)]− ZS(bi)) ≥ δ
}
≤ exp

[
#(M) ln 2− 2mδ2

]
≤ p. (10.92)

Since our assumed choice of S has fm(S) = fm(M) it follows that all ZS(bi) = 0, i = 1, . . . ,m, hence

we have

E[ZS(bi)] < δ (10.93)

with probability at least 1− p. Combining this with Eq. 10.90 completes the proof.

It is also possible to use a down-sampled objective to greedily choose sensors that satisfy a simi-

larly relaxed version of the amplification guarantee given by Proposition 10.4.8 with high probability

over a large subset of X . In order to do this, we take the sum in Eq. 10.43 over secants between a

randomly chosen collection of base points Bm = {b1, . . . , bm} ⊆ X and the ε0-net XN . Again, the

number of base points depends on the quality of the guarantee and not on size of the ε0-net, so that

the computational cost can be reduced to linear dependence on the size of XN .
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Specifically, in place of Eq. 10.43, we consider

fL,m(S) =
∑

1≤i≤m, 1≤j≤N,
g(bi) 6=g(xj)

min

{‖mS(bi)−mS(xj)‖22
‖g(bi)− g(xj)‖22

,
1

L2

}
. (10.94)

In Theorem 10.5.7 we show that when a sufficiently small set of sensors S is found, e.g., using the

greedy algorithm with the sampled objective fL,m, that satisfies the amplification tolerance over

Bm × XN , we can conclude that a slightly relaxed amplification bound holds with high probability

over a large subset of X . In particular, the subset of “bad points” in x ∈ X for which there is

another point x′ ∈ X with a different target value, but not a sufficiently different measured value,

has small µ-measure with high probability.

Theorem 10.5.7 (Sampled Amplification Guarantee). Let XN be an ε0-net of X and let the base

points Bm be sampled independently according to a probability measure µ on X with

m ≥ 1

2δ2
(#(M) ln 2− ln p) . (10.95)

Consider the objective fm given by Eq. 10.94 for a certain choice of L > 0 for which

‖g(bi)− g(xj)‖2 ≤ L‖mM(bi)−mM(xj)‖2 (10.96)

is achieved for all bi ∈ Bm, xj ∈ XN . Suppose also that g and the measurement functions mk,

k ∈ M are all Lipschitz functions over X . If fL,m(S) = fL,m(M), then the µ-measure of points

x ∈ X such that

‖g(x)− g(x′)‖2 < L‖mS(x) +mS(x′)‖2 + (‖g‖lip + L‖mS‖lip) ε0 (10.97)

for every x′ ∈ X is at least 1− δ with probability at least 1− p.

Proof. The proof is analogous to Theorem 10.5.6 and so we relegate it to Appendix 10.C.

10.6 Working with Noisy Data

So far, we have considered maximizing different measures of robust reconstructability given a col-

lection of noiseless data. That is, the resulting sensors are selected in order to be noise robust, but

we have assumed that the measurements mj(xi), j ∈ M and target variables g(xi) used during
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the sensor selection process are noiseless over the sampled states xi ∈ XN . In many applications,

however, our data may contain noisy measurements, target variables, or both. In this section,

we study the effect of noisy data on the performance of our proposed secant-based greedy algo-

rithms. By “noise” we mean specifically that we are given a collection of available measurements

{m̃i,M = mM(xi) + ui,M}Ni=1 that are corrupted by unknown noise ui,M together with the corre-

sponding target values {g̃i = g(xi) + vi}Ni=1 that are also corrupted by unknown noise vi. That is,

we do not have access to the measurement functions mM or the target function g and must rely

solely on noisy data generated by them.

First, we mention that the minimal sensing method to meet an error tolerance discussed in

Section 10.4.2 is robust to bounded noise in the measurements and target variables. In particular,

since the selected sensors S using the approach described in Section 10.4.2 automatically satisfy

Eq. 10.99, Proposition 10.6.1, below, shows that the true measurements coming from states with

sufficiently distant true target values must also be separated by the measurements.

Proposition 10.6.1 (Noisy Separation Guarantee). Let XN be an ε0-net of X (see Definition 10.4.5)

and let vi ∈ Rdim g, ui,S ∈ RdS , i = 1, . . . , N be bounded vectors with

∀i = 1, . . . , N ‖ui,S‖2 ≤ δu, ‖vi‖2 ≤ δv. (10.98)

Suppose that there exists ε > 0 and γ > 0 such that

∀xi,xj ∈ XN ‖ (g(xi) + vi)− (g(xj) + vj) ‖2 ≥ ε

⇒ ‖ (mS(xi) + ui,S)− (mS(xj) + uj,S) ‖2 ≥ γ. (10.99)

If mS and g are Lipschitz functions with Lipschitz constants ‖mS‖lip and ‖g‖lip respectively, then

∀x,x′ ∈ X ‖g(x)− g(x′)‖2 ≥ ε+ 2δv + 2ε0‖g‖lip

⇒ ‖mS(x)−mS(x′)‖2 > γ − 2δu − 2ε0‖mS‖lip. (10.100)

Proof. The proof is analogous to Proposition 10.4.6 and has been relegated to Appendix 10.C.

As a consequence of Proposition 10.6.1, the reconstruction error for the desired quantities using

these sensors can still be bounded if the thresholds ε and γ exceed twice the noise level of the target

variable and measurements respectively (with a little extra padding based on the sampling fineness).
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On the other hand, the minimal sensing method to meet an amplification tolerance discussed

in Section 10.4.3 is very sensitive to noisy data. This is because measurement noise can bring two

nearby measurements mS(x) and mS(x′) arbitrarily close together while the corresponding target

variables g(x) and g(x′) remain separated. Such terms can result in arbitrarily large data-driven

estimates of the reconstruction Lipschitz constant. Consequently it may not be possible to find a

small set of sensors S such that

max
1≤i<j≤N

∥∥g̃i − g̃j∥∥2

‖m̃i,S − m̃j,S‖2
≤ L (10.101)

for acceptable values of L.

One way to deal with this problem is to smooth out the target variables. For instance, given

the available noisy measurement and target pairs {(m̃i,M, g̃i)}Ni=1, one can find an approximation

of the reconstruction function ΦM via regression. Using the predicted target variables

ĝi := ΦM (m̃i,M) (10.102)

in place of the noisy data g̃i fixes the problem of infinite Lipschitz constants. This is because the

amplification-based approach using these data seeks to find the minimal set of sensors S such that

max
1≤i<j≤N

∥∥ĝi − ĝj∥∥2

‖m̃i,S − m̃j,S‖2
≤ L (10.103)

rather than satisfying Eq. 10.101.

We use a similar type of smoothing approach for the shock-mixing layer problem by choosing the

leading two Isomap coordinates g(x) = (φ1(x), φ2(x)) rather than simply taking g(x) = x. This

is because the full state x contains some small noise, meaning that it does not lie exactly on the

one-dimensional loop in state space, but rather on a very thin manifold with full dimensionality. If

we were to use the Lipschitz-based approach to reconstruct x directly, we would need enough sensors

to reconstruct this noise. By seeking to reconstruct the leading Isomap coordinates instead, we have

regularized our selection algorithm to choose only those sensors that are needed to reconstruct the

dominant periodic behavior.

Reconstructing smoothed target variables turns out to be a robust method for sensor placement,

as we show by introducing increasing levels of noise in the shock-mixing layer problem. We added

independent Gaussian noise with standard deviations σnoise = 0.01, 0.02, 0.03, 0.04, and 0.05 to

each velocity component at every location on the computational grid, yielding noisy snapshots like
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Figure 10.6.1: We show the stream-wise (first column) and transverse (second column) components
of velocity for a single snapshot of the shock-mixing layer flow with increasing levels of noise added in
each successive row. Independent Gaussian noise with standard deviations σnoise = 0.01, 0.02, 0.03,
0.04, and 0.05 are added to each velocity component at each location on the computational grid.
The first two sensors chosen by detectable difference method of Section 10.4.1 are indicated by green
stars and the third is indicated by a black star. The three sensors selected using the amplification
tolerance method of Section 10.4.3 with bisection search over L are indicated by black squares.

the one shown in Figure 10.6.1. This reflects the typical situation when the underlying data given

to us are noisy. At each noise level we selected three sensors using the detectable difference-based

method of Section 10.4.1 as well as the amplification tolerance-based method of Section 10.4.3, with

a bisection search over the threshold Lipschitz constant L, to reconstruct the leading two Isomap

coordinates of the noisy data. Despite the noise, the leading two Isomap coordinates continued to

accurately capture the dominant periodic behavior of the underlying system, making them good

reconstruction target variables. The thresholds for the detectable difference method were fixed at

γ = 0.04 except in the σnoise = 0.02 case, where better performance was achieved using γ = 0.02.

We found that the amplification tolerance-based method identified the same sensors across each

of the first four noise levels σnoise = 0.01, 0.02, 0.03, and 0.04. While these sensor locations differed

slightly from the ones selected without noise (shown in Figure 10.3.1), they too were capable of

robustly recovering the underlying phase of the system as illustrated by their corresponding mea-

surements in the third column of Figure 10.6.2. At the largest noise level σnoise = 0.5, the sensors

selected using this method changed, but were still capable of revealing the phase as shown in the
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bottom right plot of Figure 10.6.2. The detectable difference-based method selected the same three

sensors as in the zero noise case when σnoise = 0.01 with the first two remaining the same up to

σnoise = 0.02. At these noise levels the first two sensors are sufficient to reveal the underlying phase

of the system as shown in the first two plots in the first column of Figure 10.6.2. Beyond this

level of noise, the first two sensors were no longer able to reveal the phase as illustrated by the

self-intersections in the last three plots in the first column of Figure 10.6.2. While it is admittedly

difficult to see from the last three plots in the middle column of Figure 10.6.2, the third sensor

eliminated these self-intersections by raising one of the two intersecting branches and allowing the

phase to be determined.

10.7 Conclusion

In this paper we have identified a common type of nonlinear structure that causes techniques for

sensor placement relying on linear reconstruction accuracy as an optimization criterion to consis-

tently fail to identify minimal sets of sensors. Specifically, these techniques break down and lead

to costly over-sensing when the data is intrinsically low dimensional, but is curved in such a way

that energetic components are functions of less energetic ones, but not vice versa. This problem

occurs commonly in fluid flows, period-doubling bifurcations in ecology and cardiology, as well as

in spectral methods for manifold learning. We demonstrated that a representative collection of

linear techniques fail to identify sensors from which the state of a shock-mixing layer flow can be

reconstructed, and we provide a simple example that illustrates that the performance of the linear

techniques can be arbitrarily bad. In addition, we demonstrated that it is impossible to use linear

feature selection methods to choose fundamental nonlinear eigen-coordinates in manifold learning

problems.

To remedy these issues, we proposed a new approach for sensor placement that relies on the

information contained in secant vectors between data points to quantify nonlinear reconstructability

of desired quantities from measurements. The resulting secant-based optimization problems turn out

to have useful diminishing returns properties that enable efficient greedy approximation algorithms to

achieve guaranteed high levels of performance. We also describe how down-sampling can be used to

improve the computational scaling of these algorithms while still providing guarantees regarding the

reconstructability of states in the underlying set from which the available data is sampled. Finally,

these methods prove to be capable of selecting minimal collections of sensors in the shock-mixing

layer problem as well as selecting the minimal set of fundamental manifold learning coordinates on
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Figure 10.6.2: These plots show the measurements made by sensors selected using the detectable
difference method of Section 10.4.1 with two (first column) and three (second column) sensors along
with the amplification tolerance method of Section 10.4.3 with three sensors (third column) on the
shock-mixing layer flow problem with various levels of added noise. Each row shows the result of
adding independent Gaussian noise with standard deviations σnoise = 0.01, 0.02, 0.03, 0.04, and 0.05
to each velocity component at each location on the computational grid.
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a torus — both of which are problems where the linear techniques fail.
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Appendix

10.A Implementation Details

10.A.1 Principal Component Analysis (PCA) and Isomap

In this paper, we used principal component analysis (PCA) [116] in order to find a modal basis

for pivoted QR factorization and to identify a low-dimensional representation of the state and its

covariance for determinantal D-optimal selection techniques on the shock-mixing layer flow. In order

to perform PCA, one needs an appropriate inner product on the space in which the data lives. In

the case of the shock-mixing layer problem, we use the energy-based inner product for compressible

flows developed in [227] together with trapezoidal quadrature weights to approximate the integrals

of the spatial fields over a stretched computational grid. In this problem, the data consists of vectors

z whose elements are the streamwise velocity u, transverse velocity v, and the local speed of sound

a over a 321× 81 computational grid. The inner product between two snapshots z and z′ is defined

by

〈z, z′〉 = zTWz′ =

321∑
i=1

81∑
j=1

wi,j
(
u2
i,j + v2

i,j + a2
i,j

)
≈
∫

Ω

[
u(ξ1, ξ2)2 + v(ξ1, ξ2)2 + a(ξ1, ξ2)2

]
dξ1dξ2, (10.104)

where the weights {wi,j} are selected to perform trapezoidal quadrature. Principal component

analysis is performed by computing an economy-sized singular value decomposition of the mean-
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subtracted data matrix

ŨΣV T = W 1/2

[
(z1 − z̄) · · · (zN − z̄)

]
, z̄ =

1

N

N∑
i=1

zi (10.105)

and forming the matrix of principal vectors U = W−1/2Ũ . These vectors, making up the columns

of U , are orthonormal with respect to the W -weighted inner product. If we represent the states in

this basis so that zi = z̄ +Uxi then x has empirical covariance Cx = 1
NΣ2.

The same weighted inner product was used to compute the distances between each data point

zi and its 10 nearest neighbors in order to compute the leading 50 Isomap coordinates using

scikit learn’s implementation found at https://scikit-learn.org/stable/modules/generated/

sklearn.manifold.Isomap.html.

10.A.2 (Group) LASSO

We use the Python implementation of group LASSO [296] by Yngve Mardal Moe at the University

of Oslo that can be found at https://group-LASSO.readthedocs.io/en/latest/index.html. We

select among 2210 sensor measurements of u and v velocity components over a grid of 1105 spatial

locations taken directly from the shock-mixing layer snapshot data. We tried two different kinds of

target variables to be reconstructed via group LASSO. For the method we call “LASSO+PCA”, the

target variables were the data’s leading 100 principal components which capture over 99% of the

data’s variance. For the method we call “LASSO+Isomap”, the target variables were the leading two

Isomap coordinates g(x) = (φ1(x), φ2(x)), which reveal the phase angle θ. The sparsity-promoting

regularization parameter was found using a bisection search in each case and was the smallest value,

to within a tolerance of 10−5, for which group LASSO selected 3 sensors.

10.A.3 Bayesian D-Optimal Selection

We use two different approaches for Bayesian D-optimal sensor placement: the greedy technique of

[247] and the convex relaxation approach by [125]. In the greedy approach, we leverage the sub-

modularity of the objective in the case when T = I in order to use the accelerated greedy algorithm

of M. Minoux [180]. For the convex approach, we wrote a direct Python translation of a MATLAB

code written by S. Joshi and S. Boyd that implements a Newton method with line search, and may

be found at https://web.stanford.edu/~boyd/papers/matlab/sensor_selection/. We use the

gradient and Hessian matrices for the Bayesian D-optimal objective from their paper [125].
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In both the greedy and convex approach for the shock-mixing layer problem, we take the state

to be its representation using 100 principal components with covariance given by Cx = 1
NΣ2 as

computed by PCA. These principal components were also used as the relevant information to be

reconstructed, i.e., T = I. The sensor noise was assumed to be isotropic with covariance CnS
=

σ2IdS with σ = 0.02. We tried many other values of σ, yielding different sensor locations, none of

which could be used for nonlinear reconstruction. The ones we show at σ = 0.02 are representative.

10.A.4 Maximum Likelihood D-Optimal Selection

We used the maximum likelihood D-optimal selection technique based on convex relaxation found in

[125] in order to choose sensors to try to reconstruct only the 3rd and 4th principal components of the

shock-mixing layer snapshots. That is, if U =

[
u1 u2 · · ·

]
is the matrix of principal components,

we model the state as a linear combination of u3 and u4 together with isotropic Gaussian noise.

We try to find the sensors so that the correct coefficients on u3 and u4 can be recovered with high

confidence from the measurements. The rationale for doing so is the fact that these two components

are sufficient to nonlinearly reconstruct the state of the system if they can be measured. As in

Section 10.A.3 above, we use a direct Python translation of a MATLAB code written by S. Joshi

and S. Boyd, which may be found at https://web.stanford.edu/~boyd/papers/matlab/sensor_

selection/.

10.A.5 Pivoted QR Factorization

For the pivoted QR factorization method [82, 41] applied to the shock-mixing layer flow, we rep-

resent the state approximately as a linear combination of the leading three principal components.

Scipy’s implementation of pivoted QR factorization found at https://docs.scipy.org/doc/scipy/

reference/generated/scipy.linalg.qr.html was used to select among the 2210 allowable sen-

sors those that allow robust reconstruction of these first three principal components. We also tried

representing the state using more principal components and taking the first three sensor locations

chosen via pivoted QR factorization. As with the case when only three principal components are

used, these sensors do not enable nonlinear reconstruction of the state.

10.A.6 Secant-Based Detectable Differences

The secant-based detectable difference method was implemented using the accelerated greedy al-

gorithm of M. Minoux [180] to optimize the objective computed over all secants between points
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in the training data set consisting of N = 750 snapshots of the shock-mixing layer velocity field.

We select among the 2210 sensor measurements of u and v velocity components on a grid of 1105

spatial locations taken directly from the shock-mixing layer snapshot data. The target variables

were chosen to be the leading two Isomap coordinates g(x) = (φ1(x), φ2(x)), which reveal the

phase angle θ. The greedy algorithm first reveals the two sensor locations marked by green stars

and then the black star in Figure 10.3.1 over the range of 0.02 ≤ γ ≤ 0.06, which can be used to

reveal the exact phase of the system. Choosing smaller values of γ produce different sensors that

can also be used to reveal the phase, but with reduced robustness to measurement perturbations.

Gaussian process regression [216] was used to reconstruct the leading 100 principal components of

the flowfields from the sensor measurements. We used scikit learn’s implementation which can be

found at https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.

GaussianProcessRegressor.html together with a Matérn and white noise kernel whose parameters

were optimized during the fit.

For the torus example, the relevant information we wish to reconstruct are the leading 100

Isomap eigen-coordinates g(x) = (φ1(x), . . . , φ100(x)) computed from 2000 points sampled from

the torus according to Eq. 10.11. The objective function was evaluated using secants between

#(B) = 100 randomly sampled base points and the original set of N = 2000 points. The correct

three coordinates φ1, φ2, φ7 are selected from among the first 100 consistently across a wide range

of measurement separation values 0.05 ≤ γ ≤ 3.0. We note that these values vary slightly with the

selected base points and these particular values hold only for one instance.

10.A.7 Secant-Based Amplification Tolerance

Like the secant-based detectable difference method described above, the secant-based amplification

tolerance method was implemented using the same data, secant vectors, and target variables with

the accelerated greedy algorithm. A bisection search was used to find the smallest Lipschitz constant

L = 1868 to within a tolerance of 1 for which the algorithm selects three sensors on the shock-mixing

layer flow. Three (different) sensors that correctly reveal the state of the flow are selected by this

algorithm over a range 1868 ≤ L ≤ 47624, above which only two sensors that cannot reveal the

state are selected. We also find that with L = 129, the minimum possible number of sensors exceeds

#(SK)/(1 + lnκ) = 3.18 > 3. Therefore, the minimum possible reconstruction Lipschitz constant

using three sensors that one might find by an exhaustive combinatorial search must be greater than

129. We admit that this is likely a rather pessimistic bound, but we cannot check it as there are
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(
2210

3

)
≈ 1.8× 109 possible choices for three sensors in this problem.

When applied to select from among the leading 100 Isomap eigen-coordinates on the torus ex-

ample with the same setup as the secant-based detectable differences method, the amplification

tolerance method selects the appropriate collection φ1, φ2, φ7 over the range 7.1 ≤ L ≤ 25. We note

that these value vary slightly with the selected base points and these particular values hold only for

one instance.

10.B Submodularity of Objectives

We will need the definition of a modular function given below.

Definition 10.B.1 (Modular Function). Denote the set of all subsets of M by 2M. A real-valued

function of the subsets f : 2M → R is called “modular” when it can be written as a sum

f(S) =
∑
j∈S

aj (10.106)

of constants aj, j ∈M.

The key ingredient needed to prove submodularity for the objectives described in Section 10.4 is

the following lemma.

Lemma 10.B.2 (Concave Composed with Modular is Submodular). Let h : R → R be a concave

function and let a : 2M → R defined by

a(S) =
∑
j∈S

aj (10.107)

be a modular function (Def. 10.B.1) of subsets S ⊆M with aj ≥ 0 for all j ∈M. Then the function

f : 2M → R defined by

f(S) = h(a(S)) (10.108)

is submodular.

Proof. Suppose that S ⊆ S′ ⊆M \ {j}. By concavity of h we have

hα = h((1− α)a(S) + α(a(S′) + aj)) ≥ (1− α)h0 + αh1 (10.109)

for every α ∈ [0, 1], where we note that h0 = f(S) and h1 = f(S′ ∪ {j}).
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Since {al} are non-negative we have a(S) ≤ a(S) + aj ≤ a(S′) + aj and a(S) ≤ a(S′) ≤ a(S′) + aj .

We can therefore find

α1 =
aj

a(S′) + aj − a(S)
, α2 =

a(S′)− a(S)

a(S′) + aj − a(S)
(10.110)

so that hα1
= f(S ∪ {j}) and hα2

= f(S′). Note that α1 + α2 = 1.

We now use Eq. 10.109 at α1 and α2 to bound the increments of f :

f(S ∪ {j})− f(S) = hα1 − h0 ≥ α1(h1 − h0), (10.111)

f(S′ ∪ {j})− f(S′) = h1 − hα2 ≤ (1− α2)(h1 − h0) (10.112)

Combining the bounds Eq. 10.111 and Eq. 10.112 on the increments using 1−α2 = α1 we conclude

that f is submodular

f(S ∪ {j})− f(S) ≥ f(S′ ∪ {j})− f(S′). (10.113)

Using Lemma 10.B.2 it suffices to observe that each of the objectives described in Section 10.4

can be written as the composition of a concave function and a modular function. We carry this out

below in addition to proving normalization and monotonicity for these objectives.

Lemma 10.B.3 (Detectable Difference Objective is Submodular). Suppose that the target variables

g and measurements mj, j ∈M are measurable functions. If µ and ν are measures on X , then the

function defined by

f(S) =

∫
(x,x′)∈X×X :
‖g(x)−g(x′)‖2≥ε

wγ,x,x′(S)‖g(x)− g(x′)‖22 dµ(x)ν(dx′), (10.114)

for any ε ≥ 0 with

wγ,x,x′(S) = min

{
1

γ2
‖mS(x)−mS(x′)‖22, 1

}
, (10.115)

is normalized so that f(∅) = 0, monotone non-decreasing so that S ⊆ S′ ⇒ f(S) ≤ f(S′), and

submodular (Def. 10.4.3).

Proof. Normalization is obvious. It suffices to prove that the function wx,x′(S) is monotone and
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submodular for any fixed x,x′ ∈ X . For if we suppose that

S ⊆ S′ ⊆M \ {j} ⇒ wγ,x,x′(S ∪ {j})− wγ,x,x′(S) ≥ wγ,x,x′(S′ ∪ {j})− wγ,x,x′(S′), (10.116)

then multiplying both sides of the inequality by ‖g(x) − g(x′)‖22 and integrating proves that f is

submodular. The same argument also proves monotonicity.

Let x,x′ ∈ X be fixed. The squared separation between the measurements is given by a modular

(Def. 10.B.1) sum

S 7→ ‖mS(x)−mS(x′)‖22 =
∑
j∈S
‖mj(x)−mj(x

′)‖22 (10.117)

of non-negative constants ‖mj(x) − mj(x
′)‖22 over each j ∈ S. Since x 7→ min{x/γ2, 1} is a

non-decreasing function, it follows that S ⊆ S′ ⇒ wx,x′(S) ≤ wx,x′(S′), proving monotonicity.

Submodularity of wx,x′(S) follows from Lemma 10.B.2 since wx,x′(S) is the composition of a

concave function x 7→ min{x/γ2, 1} with the modular function in Eq. 10.117.

Lemma 10.B.4 (Lipschitz Objective is Submodular). Suppose that the target variables g and mea-

surements mj, j ∈ M are measurable functions. If µ and ν are measures on X , then the function

defined by

f(S) =

∫
(x,x′)∈X×X :
g(x)6=g(x′)

gx,x′(S) dµ(x)ν(dx′), (10.118)

with

gx,x′(S) = min

{‖mS(x)−mS(x′)‖22
‖g(x)− g(x′)‖22

,
1

L2

}
, (10.119)

is normalized so that f(∅) = 0, monotone non-decreasing so that S ⊆ S′ ⇒ f(S) ≤ f(S′), and

submodular (Def. 10.4.3).

Proof. Normalization is obvious. It suffices to prove that the function gx,x′(S) is monotone and

submodular for any fixed x,x′ ∈ X . For if we suppose that

S ⊆ S′ ⊆M \ {j} ⇒ gx,x′(S ∪ {j})− gx,x′(S) ≥ gx,x′(S′ ∪ {j})− gx,x′(S′), (10.120)

then integrating both sides of the inequality proves that f is submodular. The same argument also

proves monotonicity.

Let x,x′ ∈ X be fixed. The squared separation between the measurements is given by a modular
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(Def. 10.B.1) sum

S 7→ ‖mS(x)−mS(x′)‖22 =
∑
j∈S
‖mj(x)−mj(x

′)‖22 (10.121)

of non-negative constants ‖mj(x)−mj(x
′)‖22 over each j ∈ S. Since

x 7→ min

{
x

‖g(x)− g(x′)‖22
,

1

L2

}
(10.122)

is a non-decreasing function, it follows that S ⊆ S′ ⇒ gx,x′(S) ≤ gx,x′(S′), proving monotonicity.

Submodularity of gx,x′(S) follows from Lemma 10.B.2 since gx,x′(S) is the composition of the

concave function in Eq. 10.122 with the modular function in Eq. 10.121.

10.C Proofs

Proposition 10.4.6: Separation Guarantee on Underlying Set. The result follows immediately from

the triangle inequality. Let x,x′ ∈ X and xi,xj ∈ XN so that ‖x− xi‖2 < ε0 and ‖x′ − xj‖2 < ε0.

Then ε+ 2ε0‖g‖lip ≤ ‖g(x)− g(x′)‖2 implies that

ε+ 2ε0‖g‖lip ≤ ‖g(x)− g(x′)‖2

≤ ‖g(x)− g(xi)‖2 + ‖g(x′)− g(xj)‖2 + ‖g(xi)− g(xj)‖2

< ‖g(xi)− g(xj)‖2 + 2ε0‖g‖lip,

(10.123)

hence, ‖g(xi)− g(xj)‖2 ≥ ε. By assumption, this implies that ‖mS(xi)−mS(xj)‖2 ≥ γ and

γ ≤ ‖mS(xi)−mS(xj)‖2

≤ ‖mS(xi)−mS(x)‖2 + ‖mS(x′)−mS(xj)‖2 + ‖mS(x)−mS(x′)‖2

< 2ε0‖mS‖lip + ‖mS(x)−mS(x′)‖2,

(10.124)

hence, ‖mS(x)−mS(x′)‖2 > γ − 2ε0‖mS‖lip as claimed.

Proposition 10.4.8: Amplification Guarantee on Underlying Set. The result follows immediately from

the triangle inequality. Let x,x′ ∈ X and xi,xj ∈ XN so that ‖x− xi‖2 < ε0 and ‖x′ − xj‖2 < ε0,
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then

‖g(x)− g(x′)‖2 ≤ ‖g(x)− g(xi)‖2 + ‖g(x′)− g(xj)‖2 + ‖g(xi)− g(xj)‖2

< 2ε0‖g‖lip + L‖mS(xi)−mS(xj)‖2

≤ 2ε0‖g‖lip + L‖mS(x)−mS(xi)‖2 + L‖mS(x′)−mS(xj)‖2

+ L‖mS(x)−mS(x′)‖2

< 2ε0‖g‖lip + 2Lε0‖mS‖lip + L‖mS(x)−mS(x′)‖2.

(10.125)

Gathering terms on ε0 completes the proof.

Proposition 10.6.1: Noisy Separation Guarantee. Choose xi,xj ∈ XN and suppose that

‖g(xi)− g(xj)‖2 ≥ ε+ 2δv. (10.126)

Then we have

‖ (g(xi) + vi)− (g(xj) + vj) ‖2 ≥ ‖g(xi)− g(xj)‖2 − ‖vi‖ − ‖vj‖

≥ ‖g(xi)− g(xj)‖2 − 2δv

≥ ε

(10.127)

By our assumption, this implies

‖ (mS(xi) + ui,S)− (mS(xj) + uj,S) ‖2 ≥ γ, (10.128)

and so we have

‖mS(xi)−mS(xj) + uj,S‖2 ≥ ‖ (mS(xi) + ui,S)− (mS(xj) + uj,S) ‖2 − ‖ui,S‖ − ‖uj,S‖

≥ γ − 2δu.

(10.129)

Therefore, we have established that

∀xi,xj ∈ XN ‖g(xi)−g(xj)‖2 ≥ ε+ 2δv ⇒ ‖mS(xi)−mS(xj) +uj,S‖2 ≥ γ− 2δu. (10.130)

The conclusion follows immediately by Proposition 10.4.6.
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Theorem 10.5.7: Down-Sampled Amplification Guarantee. For simplicity, we will drop L from the

subscript on our objective since the threshold L for the Lipschitz constant remains fixed throughout

the proof. Let us begin by fixing a set S ⊆M and define the random variables

ZS(bi) = max
x∈XN

1
{
‖g(bi)− g(x)‖2 > L‖mS(bi)−mS(x)‖2

}
, (10.131)

for i = 1, . . . ,m. If ZS(bi) = 0 then every secant between bi and points of XN satisfies the desired

bound on the amplification. Otherwise, there is some point x ∈ X for which

‖g(bi)− g(x)‖2 > L‖mS(bi)−mS(x)‖2 (10.132)

and so ZS(bi) = 1. We observe that ZS(b1), . . . , ZS(bm) are independent, identically distributed

Bernoulli random variables whose expectation

E[ZS(bi)] = µ
({
x ∈ X : ∃xj ∈ XN s.t.‖g(x)− g(xj)‖2 > L‖mS(x)−mS(xj)‖2

})
(10.133)

is the µ-measure of points in X that are not adequately separated from points in the ε0-net XN by

the measurements mS. Suppose that for a fixed x ∈ X we have

‖g(x)− g(xj)‖2 ≤ L‖mS(x)−mS(xj)‖2 (10.134)

for every xj ∈ XN . By definition of XN , for any x′ ∈ X , there is an xj ∈ XN with ‖x′ − xj‖2 < ε0

and so we have

‖g(x)− g(x′)‖2 ≤ ‖g(x)− g(xj)‖2 + ‖g(xj)− g(x′)‖2

< L‖mS(x)−mS(xj)‖2 + ε0‖g‖lip

≤ L‖mS(x)−mS(x′)‖2 + L‖mS(x′)−mS(xj)‖2 + ε0‖g‖lip

< L‖mS(x)−mS(x′)‖2 + (‖g‖lip + L‖mS‖lip) ε0.

(10.135)

It follows that E[ZS(bi)] is an upper bound on the µ-measure of points in X for which the relaxed

amplification threshold is exceeded, that is,

E[ZS(bi)] ≥ µ
({
x ∈ X : ∃x′ ∈ X s.t. ‖g(x)− g(x′)‖2

≥ L‖mS(x)−mS(x′)‖2 + (‖g‖lip + L‖mS‖lip) ε0

})
. (10.136)
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By assumption, we have a set S ⊆M so that ZS(bi) = 0 for each i = 1, . . . ,m. And so it remains

to bound the difference between the empirical and true expectation of ZS(bi) uniformly over every

subset S ⊆M. For fixed S, the one-sided Hoeffding inequality gives

P
{ 1

m

m∑
i=1

(E[ZS(bi)]− ZS(bi)) ≥ δ
}
≤ e−2mδ2

. (10.137)

Unfixing S via the union bound over all S ⊆ M and applying our assumption about the number of

base points m yields

P
⋃

S⊆M

{ 1

m

m∑
i=1

(E[ZS(bi)]− ZS(bi)) ≥ δ
}
≤ e#(M) ln 2−2mδ2 ≤ p. (10.138)

Since our assumed choice of S has fm(S) = fm(M) it follows that all ZS(bi) = 0, i = 1, . . . ,m, hence

we have

E[ZS(bi)] < δ (10.139)

with probability at least 1− p. Combining this with Eq. 10.136 completes the proof.

10.D Description of the Accelerated Greedy Algorithm

Since each objective function f presented in Section 10.4 is submodular, it is possible to use an

“accelerated greedy” (AG) algorithm to obtain the same solution as the naive greedy algorithm

with a provably minimal number of objective function evaluations compared to a broad class of

algorithms [180]. Let the increase in the objective function obtained by adding the sensor j to the

set S be called ∆j(S) = f(S∪{j})− f(S). Instead of evaluating ∆j(Sk−1) for every measurement in

M\Sk−1, AG keeps track of an upper bound ∆̂j ≥ ∆j(Sk−1) on the increments for each sensor. Since

submodularity of f means that the increments ∆j(S) can only decrease as the size of S increases, it

is sufficient to have the maximum upper bound ∆̂j∗ ≥ ∆̂j , ∀j ∈M \ Sk−1 be tight ∆̂j∗ = ∆j∗(Sk−1)

in order to conclude that ∆j∗(Sk−1) is the largest increment. The rest of the upper bounds on the

increments can remain loose since they are smaller than the tight maximum upper bound. The AG

algorithm finds largest upper bound ∆̂j∗ and updates it so that it is tight. If ∆̂j∗ is still the greatest

upper bound, then j∗ = jk achieves the largest increment and is added to Sk−1. Otherwise if ∆̂j∗

is no longer the largest upper bound, the new largest upper bound is selected and process repeated

until a tight maximum upper bound is obtained.
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