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Abstract

This dissertation applies empirically- and physically-based methods for closure of uncertain param-

eters and processes to three model systems that lie on the simple end of climate model complexity.

Each model isolates one of three sources of closure uncertainty: uncertain observational data, large

dimension, and wide ranging length scales. They serve as efficient test systems toward extension

of the methods to more realistic climate models.

The empirical approach uses the Unscented Kalman Filter (UKF) to estimate the transient

climate sensitivity (TCS) parameter in a globally-averaged energy balance model. Uncertainty in

climate forcing and historical temperature make TCS difficult to determine. A range of probabilis-

tic estimates of TCS computed for various assumptions about past forcing and natural variability

corroborate ranges reported in the IPCC AR4 found by different means. Also computed are esti-

mates of how quickly uncertainty in TCS may be expected to diminish in the future as additional

observations become available.

For higher system dimensions the UKF approach may become prohibitively expensive. A mod-

ified UKF algorithm is developed in which the error covariance is represented by a reduced-rank

approximation, substantially reducing the number of model evaluations required to provide prob-

ability densities for unknown parameters. The method estimates the state and parameters of an

abstract atmospheric model, known as Lorenz 96, with accuracy close to that of a full-order UKF

for 30-60% rank reduction.

The physical approach to closure uses the Multiscale Modeling Framework (MMF) to demon-

strate closure of small-scale, nonlinear processes that would not be resolved directly in climate

models. A one-dimensional, abstract test model with a broad spatial spectrum is developed. The

test model couples the Kuramoto-Sivashinsky equation to a transport equation that includes cloud

formation and precipitation-like processes.

In the test model, three main sources of MMF error are evaluated independently. Loss of non-

linear multi-scale interactions and periodic boundary conditions in closure models were dominant

sources of error. Using a reduced order modeling approach to maximize energy content allowed re-

duction of the closure model dimension up to 75% without loss in accuracy. MMF and a comparable

alternative model peformed equally well compared to direct numerical simulation.
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Chapter 1

Introduction

Climate models are systems of equations describing the behavior of Earth’s land, ocean, and at-

mosphere and their interactions with each other as well as outer space, based on physical laws.

Although they are deeply rooted in physical first principles, climate models include unknown pa-

rameters and processes that need closure through parameterization or other means. They will

continue to need closure for the foreseeable future because of inherent sources of uncertainty and

complexity in the climate system.

Physical intricacies of climate processes are often left out of global models for at least two

main reasons. They are either on scales too small to be resolved by the model given available

computational resources, far example as in boundary layer turbulence and cumulus convection. Or

equations describing their behavior are poorly understood as is the case for aspects of ice dynamics,

vegetation, and ecosystems. In these cases closures are necessary and often empirical closure models

known as parameterizations fill the void.

Even for processes that are modeled explicitly, closure may be necessary because it may be

impossible to know the value of pertinent parameters. For example, the surface albedo is an

important parameter in determining the reflectivity of solar radiation however its precise value

through history and across the globe is continually in flux due to natural or human-made shifts in

geology and land use. In some climate models the strength of feedbacks are considered parameters

and are similarly unknown, such as the sensitivity of the climate’s temperature response to changes

in radiative forcing.

Climate model closure is not a straightforward calibration or modeling procedure. Calibration
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or estimation of parameters from observations is made difficult by uncertainty about the timing and

magnitude of climate forcings like solar radiation, volcanic eruptions, and emissions of greenhouse

gases. Additionally, past observations may be sparse and error-prone. For example, climate records

with high spatial coverage tend to be short and the longer records tend to include relatively few

spatial locations with little vertical resolution. Proxy records like paleo-climate data and satellite

observations do not measure climate variables directly so they are subject to calibration error of

their own. The size of the system and the wide range of scales involved limits our ability to use what

we know physically to provide closure models. In the case of cloud micro-physics, bulk equations

(e.g. Grabowski and Smolarkiewicz (1996)) are used in regional cloud resolving models to provide

physical insight into small-scale convective processes. However macroscopic parameterizations used

in global climate models are developed based on cloud resolving simulations at only a fraction of

possible atmospheric conditions.

Despite these difficulties, climate models have been closed with varying degrees of success using

approaches that may be lumped into two quite general categories. We call them the expert model

approach and the systematic model approach.

Expert models use heuristic techniques to tune model parameters during model development

to achieve output that is consistent with the observed world (e.g., Mauritsen et al. (2012)). The

structure of a parameterization is based on an expert’s physical intuition and empirical experience

with converting detailed physical equations into simpler macroscopic ones. Some concerns about

this approach include that the collection of expert models around the world give quite different

simulation results, especially with respect to climate change. (Randall et al. (2007); Kiehl (2007);

Meinshausen et al. (2008)) In general, there is no clear systematic way to assess the uncertainty

in the results. (Allen and Stainforth (2002); Lopez et al. (2006)) Furthermore, the models tend

to maximize the detailed physical processes included, making them computationally expensive and

limiting results to a few simulations of each model.

A more systematic approach involves applying empirical and physical closures in a mathe-

matically consistent framework. Observations are used to identify a collection of best performing

models out of a large ensemble of models with different parameter settings that adequately sample

a range of feasible parameter values (e.g. Stainforth et al. (2005); Annan et al. (2005b)). A major

benefit is that systematic evaluation of uncertainty may be conducted using the ensemble results.
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Physically-based closure models are developed systematically using scale separation in such a way

as to avoid introducing new parameters (e.g. Grabowski and Smolarkiewicz (1999); Majda (2007)).

An advantage of parameterizations designed in this manner is that they alleviate some of the need

for model tuning.

Systematic approaches to closure may help reduce biases and minimize the contribution closures

make to the overall error in climate model output. They can also help improve understanding of

the range of these errors. However, the use of systematic techniques has been limited mainly due

to their greater computational burden. When they are applied, compared to expert models, some

physical realism may need to be sacrificed to afford the many simulations needed for uncertainty

analysis.

The complexity of systematic techniques for climate modeling makes an assessment of their

benefits difficult or ambiguous, which further inhibits their widespread use. Therefore, to improve

our understanding of the benefits and limitations, this thesis investigates the effectiveness of sys-

tematic closure techniques by applying them to the simplest possible climate models for which the

success or failure of the technique is clear.

The main contribution of this thesis is the first application of three systematic closure tech-

niques: the unscented Kalman filter, the adapative-covariance-rank unscented Kalman filter, and

the multiscale modeling framework to three simple climate models: a mixed-layer energy balance,

the Lorenz 1996 abstract atmosphere, and a coupling of the Kuramoto-Sivashinsky equation to a

scalar moisture-like transport equation. The main benefit of these applications is learning about

the skill, appropriateness, and benefit of the methods for climate models in an experimental setting

where sources of uncertainty and complexity may be controlled and restricted. An additional out-

come is that through closure of the energy balance climate model, insight is achieved into predictions

of future climate including how certain those predictions may be.

1.1 Motivation and goals

This work is motivated by the fact that closure parameters and closure models (which may also

be known as parameterizations) are dominant sources of error in climate modeling that propagate

through the system equations leading to uncertainty in their output. Systematic closure techniques
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using concepts adapted from mathematical methods in engineering have not been widely applied

to climate models primarily due to computational expense.

The goal of this thesis is to apply closure techniques that use mathematical tools from system

identification and model reduction to systematically assess and reduce closure errors. The methods

we use address, one at a time, three distinct issues that arise in climate models making closure

difficult: unknown or limited observational data, high model dimensions, and extreme scope in

time and length scales. In addition to the applications, we also seek to improve the methods and

to develop and implement our revised approach.

1.2 Approach

There are several key aspects to our approach. First, the types of closures investigated occupy

extreme ends of the modeling spectrum, they are either entirely observationally-based or entirely

physically-based closures and we evaluate them independently. By observational or empirical clo-

sure we mean calibration or estimation of parameters based on past observations of the system. On

the other hand, physical closure involves the development of a closure model based on known physics

whose output supplies a system with its unknown terms. Although they are treated separately in

this thesis, they are actually complementary techniques, rather than competing approaches to be

compared, that could be used to treat different closure problems in the same model. We apply

them to separate models for clearer understanding of their benefits and appropriateness to specific

kinds of closure problems.

The mathematical methods employed in the techniques are drawn from the engineering fields of

system identification and model reduction. Namely, this includes the use of Kalman filtering in the

observationally-based closure methods and the use of modal decomposition, Galerkin projection,

and dimension reduction in the physically-based closure methods.

We restrict applications to simple models that contain just a few unknown parameters with

dimensions that easily fit within the computational constraints of an ordinary laptop meaning

that many of the physical features of the climate system are neglected and spatial resolution is

limited. The advantages of using simple models are multifold. For example, with fewer parameters

to constrain, simple models have fewer sources of error and simpler closure problems for which it is
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easier to implement closure methods. Simple climate models require less input data and produce

less output data making pre- and post- processing less time consuming. Also their discretization

for numerical integration is less complex and they require less computation time per simulation.

Finally, the approach of this thesis is interdisciplinary. The application of closure method

to climate model is revealing from both the engineering perspective and the climate modeling

perspective. The relevance of the simple models for climate is important, we are not interested in

applying the methods to arbitrary dynamical systems. The simple climate applications highlight

the strengths and weaknesses of the closure methods for addressing the key issues of uncertain

observations, high dimension and wide ranging scales that are pertinent to more comprehensive

climate models.

1.3 Overview and contributions

Figure 1.1: Diagram of thesis organization. Chapters in the left column describe theory behind
the two kinds of closure methods, introduce the simple climate model test beds and provide other
preliminaries. The chapters listed in the center column present the main results of applying the
methods to the models. The right column is the focus of the application.

This thesis is organized according to the diagram of figure 1.1. The first half of this work,

chapters 2–4, is dedicated to observationally-based or empirical closure methods. The second half,

chapters 5–6, is focused on a physically-based method. The general progression is to introduce a

model and method for its closure followed by simulation results demonstrating the performance.

Each model and method demonstrates one of three main issues in climate closure.

The specific contributions of this thesis are the first application of three distinct closure methods

to simple climate models, the development of a new method for efficient parameter estimation, and
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the development of a new model as a better test bed for a multiscale closure technique. We begin

by applying a filtering technique to determine the single unknown in a minimal climate system.

The main result of this is a probabilistic estimate of the sensitivity parameter governing climatic

change in the next few decades and a proof of concept that the filtering equations work well for

a simple climate problem in which there is great uncertainty in the constraining data. However,

the exact filter equations used in this case would be prohibitively expensive if paired with a more

complex model. So the next area of work provides a simplification of the nonlinear filter equations

for use with a higher-dimensional model. The approach is successful in our test model, however for

application to comprehensive climate systems it requires some heuristic modifications. Up against

the computational limit of systematic approaches leveraging observational data, the focus turns

to a physically-based closure technique that has been used in comprehensive climate models to

address the issue of resolving processes at extreme ends of the time and length spectrum, albeit

with ambiguous success. This method of closure is evaluated on a test model designed specifically

to alleviate much of this ambiguity.

Chapter 2 introduces an estimation technique based on the Kalman filter to close an energy

balance climate model (EBM) with an unknown parameter pertaining to the transient climate

sensitivity. The model itself is the subject of section 2.1. Key climate concepts are defined in

section 2.2 including the notion of a transient sensitivity, which is a fairly new idea in the climate

literature. The unscented Kalman filter (UKF) technique for parameter estimation is explained in

section 2.3.1. The method is validated using data from a comprehensive climate model in section

2.4. Section 2.4.3 outlines a unique feature of the method that allows forcing estimates to be revised

as observed data accumulates.

Chapter 3 provides detailed results of the parameter estimation. A key contribution of this

chapter is the first use of the UKF to estimate a range of probability densities for the transient

climate sensitivity (TCS). Section 3.1 outlines the observed climate records input to the UKF. The

main probabilistic estimate of the TCS and its evolution over time is made in section 3.2. The

results in this section also include the first computation of the potential to learn TCS given expected

future data. The remainder of the chapter is focused on probing the sensitivity of the estimates to

assumptions. In section 3.3, the filter is used to novelly compute a range of probabilistic estimates of

the TCS based on direct variations of the model’s natural variability and forcing uncertainty. Most
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of the work in chapters 2–3 has appeared in Padilla et al. (2011), a paper coauthored with Geoffrey

Vallis and Clarence Rowley. This work was also presented at the 11th International Meeting on

Statistical Climatology.

Chapter 4 presents a novel adaptation to the UKF that improves its efficiency for large systems

and then applies the new filter to state and parameter estimation in an abstract atmospheric model

(L96). Section 4.1 outlines the modified theory called adaptive-UKF (AUKF) which relies on the

techniques of singular value decomposition and dimension reduction. Section 4.2 describes the L96

test model. The performance of the AUKF is demonstrated for state estimation in section 4.3 and

for joint state-parameter estimation in section 4.4. Section 4.5 discusses some of the limitations

of the approach for extremely large systems. The theory and the state estimation example have

appeared in Padilla and Rowley (2010), coauthored with Clarence Rowley and with input from

Geoffrey Vallis. The paper was presented at the 49th IEEE Conference on Decision and Control.

Chapter 5 reviews a closure technique known as the multiscale modeling framework (MMF) and

introduces its application to a novel test system that couples the Kuramoto-Sivashinsky equation to

an evolution equation for moisture-like processes. The main contribution here is the development

of a simplified model for testing the MMF method in which sources of error may be controlled and

investigated one at a time. Also, a flexible code for numerical integration of the model has been

written that facilitates testing modified MMF implementations. An overview of MMF and criteria

for successfully testing it are given in section 5.1. The test model and how it meets the criteria are

described in section 5.2. The details of the closure problem in the large-scale test model are given

in section 5.2.3. The closure model, whose output is provided to the large-scale model, is derived

in section 5.2.4.

Chapter 6 provides detailed results of the MMF closure in the test model and evaluates the errors

introduced with each successive MMF approximation. Section 6.1 covers the error due to neglect

of certain non-linear interaction terms. Section 6.2 highlights the dominant source of error out of

the entire approach, the imposition of periodic boundary conditions on the closure model. And

section 6.3 shows how closure model performance degrades as its resolution decreases. Here the use

of reduced order models via Galerkin projection and dimension reduction to improve the efficiency

of the closure models is a novel contribution. Finally, the errors are coupled together in simulations

of the complete MMF test system in section 6.4. An important contribution here is the comparison
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of the performance of the model using MMF to a model of comparable computational expense.

MMF adds considerable cost to simulation, however previous studies have only compared MMF

results to those generated by models of lower cost. The test model and the results of its closure

using MMF have been presented at several quarterly meetings of the Joint University Program of

the Federal Aviation Administration.
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Chapter 2

Empirical closure for a

globally-averaged energy balance

model

Analysis of empirical closure techniques begins on one of the simplest climate models to study; a

linear representation of Earth’s global energy exchange with space buffered by energy storage in

its oceans. This coarse model of the global energy budget has several free parameters that need

closure which pertain to rates of radiative transfer. The main reason to use a simple climate model

in this case is to permit parameter closure using an entirely observationally-based method.

In this chapter, we introduce a canonical two-component energy balance model and explain

several simplifying modifications made. We proceed to define the parameters of the model that

need closure and explain their relevance to short-term prediction of climate warming under specific

future emissions scenarios. Next we provide an overview of the theory behind an observationally-

based closure technique based on the Kalman filter and give the specifics of implementation for

our climate application. Finally, we validate this method using data obtained by simulations of a

physically realistic general circulation model of the climate.

9



2.1 Energy balance models of the climate

Global energy balance models (EBMs) of the climate system first appeared in the literature in the

work of Budyko (1969) and Sellers (1969). Since then there have been many incarnations of varying

complexity. A zero-dimensional EBM suitable for our purpose of parameter estimation is similar to

that used, for example, by Raper et al. (2002) and Held et al. (2010). In contrast to these models,

however, we include stochastic forcing to represent the effects of natural variability. Our model,

which characterizes the energy balance of the ocean’s mixed layer, is derived from a two-box (deep

ocean, and mixed layer) model. We neglect the effects of heat storage in the deep ocean to reduce

the number of unknown parameters. A consequence of this simplification is that parameter values

and therefore future predictions of warming are valid only out to several decades.

2.1.1 Two-box model

Consider the following two-component model, equation (2.1), that may be the minimal system

appropriate for studying future climate warming on century-long timescales. It contains two inde-

pendent variables representing perturbation surface temperature (T ) and deep ocean perturbation

temperature (To), namely

C
dT

dt
= Fnet − γT − β(T − To)

Co
dTo
dt

= β(T − To) (2.1)

where γ and β are positive parameters, C and Co are heat capacities of the mixed layer and deep

ocean, respectively, with Co � C, and F is the net perturbation to the climate forcing (including

both natural and anthropogenic factors). In final equilibrium, T = To, and the temperature

response to a specified forcing, say F2CO2 , is given by TECS = F2CO2/γ.

When F2CO2 = 3.71 W/m2, the change in radiative forcing under a doubling of CO2 concen-

tration over pre-industrial levels, then TECS is defined to be the Equilibrium Climate Sensitivity

(Randall et al., 2007).
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2.1.2 Mixed-layer model

On decadal timescales, the response of the deep ocean in the two-box model is small, so we approx-

imate To ≈ 0. The system then reduces to

C
dT

dt
= Fnet − λT, (2.2)

an evolution equation for the mixed-layer response to external forcing, where λ = γ + β. Since the

separate values of γ and β, and thus TECS, would be poorly constrained by observations, we limit

our focus to determination of λ and transient climate responses.

We emphasize that the parameter λ determines the transient climate sensitivity, not the equi-

librium climate sensitivity, because it includes the rate of heat uptake by the deep ocean as well

as the outgoing infra-red radiation. Our λ is the same as the quantity ρ, termed the climate re-

sistance by Gregory and Forster (2008), although our methods of finding it differ: we account for

the time delay due to mixed layer heat capacity and therefore may make use of volcanic effects in

constraining λ. The combination of γ and β is also similar to the sum of positive and negative

feedbacks discussed in Baker and Roe (2009).

The parameter C represents the heat capacity of the system on decadal timescales, and we take

its value to be that corresponding to a mixed layer of 60 m deep. Our results are fairly insensitive

to this, and indeed a value of C = 0 does not give significantly different results.

We make one further modification, adding a stochastic forcing S, so that the model equation is

C
dT

dt
= Fnet − λT + S. (2.3)

The term S parameterizes internally forced temperature variability. It satisfies the Ornstein–

Uhlenbeck process (Majda et al., 2001; Vallis et al., 2004),

dS

dt
= −S

τ
+
σS
√

2√
τ
wS (2.4)

where τ determines the temporal correlation of the variability, σS is the standard deviation of the

variability, and wS is a white noise process.
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Several realizations of the system (2.3)–(2.4) illustrate that it satisfactorily emulates the global-

average response of a comprehensive climate model when given corresponding forcing and a nominal

value of λ. These are plotted in figure 2.1. Each realization is initialized with a different random

seed for wS .
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Figure 2.1: Three realizations of the stochastic mixed-layer model response (equations (2.3)–
(2.4), thin color) compared to the mean of GFDL’s CM2.1 model 20th century temperature
response (solid). Also shown is the deterministic response of the simple model where the random
variable S is fixed at zero (dashed).

2.2 Equilibrium climate sensitivity, transient climate sensitivity,

and transient climate response

The model derived in the previous section is relevant to short term climate responses, on the order

of several decades. Whereas much of previous work has focused on the steady-state response, which,

given the heat capacity of the oceans, may take centuries to realize. This section provides definitions

of established measures of climate responses, like the equilibrium response, and introduces a novel

measure called the transient climate sensitivity (TCS). This section explains the relevance of TCS

for near-term decision-making and how the sensitivity parameter of the model (2.3)–(2.4) may used

to obtain a concise mathematical expression for the TCS.

The equilibrium response of global-mean, near-surface temperature to an increase in greenhouse

gas concentrations (e.g., a doubling of CO2 levels) is given, definitionally, by the equilibrium climate

sensitivity (ECS), which is considered an unambiguous and convenient measure of the sensitivity

of the climate system to external forcing. However, given the long timescales involved in bringing

the ocean to equilibrium the ECS may only be realized on a timescale of many centuries or more
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and so its relevance to policy makers, and indeed to present society, has been debated. Of more

relevance to the short and medium term — that is, timescales of a few years to about a century —

is the transient climate response (TCR, Hegerl et al., 2007), which is the global and annual mean

surface temperature response after about 70 years given a 1% CO2 doubling rate. (Sometimes an

average may be taken from 60 to 80 years or similar to ameliorate natural variability.)

Although the detailed response of the atmosphere to a doubling in CO2 will depend on the

rate at which CO2 is added to the atmosphere, recent work with comprehensive models suggests

that surface temperatures respond quite quickly to a change in radiative forcing, reaching a quasi-

equilibrium on the timescale of a few years (in part determined by the mixed-layer depth) prior to

a much slower evolution to the true equilibrium (e.g., Held et al., 2010). In the quasi-equilibrium

state, the rate of change of surface temperature is a small fraction of its initial increase, and the

response following a doubling of CO2 may be denoted the transient climate sensitivity (TCS). The

TCS may be expected to be very similar to the TCR, but it’s definition does not depend so strictly

on there being a particular rate of increase of greenhouse gases. As long as the CO2 doubles over a

time period short enough for deep ocean temperature to remain far from equilibrium (less than 100

years, for example), the response to that doubling will likely be nearly independent of the emissions

path.

Because the response is relatively rapid, we may use the transient sensitivity parameter in (2.2)

to define the transient climate sensitivity in the following way,

TTCS ≡
F2CO2

λ
. (2.5)

Here F2CO2 is the forcing corresponding to doubled CO2, and this is approximately equal to the

quasi-equilibrium response to a forcing change in the time dependent system (2.1).

Since the TCS is defined in terms of a single parameter, λ, it may be easier to determine from

observations than the ECS. By summing the atmospheric feedback strength and the rate of ocean

heat uptake [also an uncertain quantity (Hegerl et al., 2007; Forest et al., 2002)], these quantities

do not need to be constrained separately. The overall response uncertainty, however, may still be

dominated more by uncertainty in atmospheric feedbacks than the uptake of heat by the ocean

(Knutti and Tomassini, 2008; Baker and Roe, 2009).
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To illustrate the small differences between TCR and TCS, we simulate the response of the

two-time-constant model (equation (2.1)) for three different emissions pathways to double CO2

concentration: an instantaneous doubling, increases at a rate of 1% per year, and increases at a

rate of 0.7% per year which ensures doubling is achieved in 100 years. The surface and deep ocean

temperature responses to each of the forcing scenarios are plotted in figure 2.2. Key parameter

values of the model are as follows: ECS = 3.5 K, λ = 2 W m−2 K−1, deep ocean depth of 5000 m,

and mixed layer depth of 60 m.
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Figure 2.2: Surface (solid) and deep ocean (dashed) temperature responses to thee different
emissions pathways to double CO2: instantaneous (squares), 1% increases per year compounded
continuously (no marker, with TCR marked as open circle), and 0.7% increases per year such
that doubling is achieved in exactly 100 years (crosses). TCS as computed by equation (2.5) is
the horizontal line (dash-dot).

In the first 150 years of the responses shown, the deep ocean temperature changes remain quite

small, increasing to 10% of the ECS or less. The surface temperature reaches quasi-equilibrium,

after instantaneous double forcing, in just 20 years. At T = 1.86 K, which is the TCS computed

according to (2.5), the surface temperature, is about 50% of the way to ECS. It will not reach even

75% of equilibrium for another 800 years. For each of the three emissions pathways, the surface

temperature change at the end of the fast transient is almost identical due to the slow deep ocean

temperature response. This would be the case for any other emissions pathway, as long as CO2

doubling is achieved well before the ocean reaches equilibrium.

The TCR in this model is 1.77 K and is indicated by an open circle in figure 2.2 at the time of

CO2 doubling in the 1% per year scenario. The TCR is about 4% smaller than TCS because TCS

is evaluated at the end of the fast transient while there may be some committed yet unrealized

warming at the time TCR is measured. If, in reality, there is much less separation between the
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timescale of the mixed-layer response and that of the whole-ocean then the TCS and TCR will

differ more.

2.2.1 Probabilistic estimates of climate change

The previous example highlighted the mean TCS response given a mean value of λ, however, we

are in fact more interested in how the entire probability density of λ influences the distribution of

TCS. Similar to the transformation used by Roe and Baker (2007), when we take equation (2.5) as

the map between λ and TCS, the following relationship describes the probability distribution for

TCS,

Pr(TTCS) = Pr(λ) ·
∣∣∣∣ dλdT

∣∣∣∣ =
1√

2πσλ
exp

[
− 1

2σ2λ

(
F2CO2

TTCS
− λ̄

)2
]
· F2CO2

T 2
TCS

. (2.6)

The TCS distribution is computed assuming a normal probability density for λ with mean, λ̄ and

standard deviation, σλ. We illustrate the relationship in figure 2.3. Notice that the maximum

likelihood TCS is not equal to the mean TCS because the transformation of the Gaussian λ leads

to a skewed TCS distribution. The skew in this case is a mathematical artifact of the nonlinear

map (2.5). As long as the standard deviation of λ is fairly well constrained by observations, the

skew in TCS will remain small. Since the decision to make λ Gaussian was somewhat arbitrary, we

will also examine how the results differ if we replaced λ everywhere with 1/γ where γ is Gaussian

in the following chapter (3.6).
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Figure 2.3: The map between λ and TCS defined by equation (2.5) (solid) and representative
probability distributions for λ (dashed along horizontal axis) and TCS (dotted along vertical
axis). The shaded areas underneath the curves illustrate that the map is area preserving.
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2.3 Parameter estimation method

Various observationally-based estimates have been made of both ECS and TCS (or TCR) using a

variety of statistical techniques and a range of model complexity; Knutti et al. (2008) provide a

useful review.

Giorgi and Mearns (2002), Tebaldi et al. (2005) and Greene et al. (2006), for example, employ

ensembles of comprehensive climate models, such as are described in the IPCC reports (e.g., Randall

et al., 2007). These models try to represent the physical processes of the climate system, including

processes determining aerosol forcing, in as explicit a way as possible. Although the physical

parameterizations are tuned to simulate climate consistent with that observed, the ECS and TCS

are not directly tuned by fitting to past climates; rather, they are obtained by integration of the

model into the future under specific emissions scenarios. Still, model agreement with 20th century

climates seems to depend in part on the trade off between historical aerosol level and climate

sensitivity, and so some implicit tuning of climate sensitivity may occur (Kiehl, 2007; Knutti, 2008;

Huybers, 2010).

Results from a collection of models developed in this manner may be combined to give a dis-

tribution of model sensitivities, but the distributions are effectively distributions of opportunity,

rather than being properly controlled. The IPCC models only sparsely sample the space of all

model formulations and may be compromised by the repeated use of observations for model devel-

opment and verification (Sanderson and Knutti (2012)). To better fill out model-space, Ghil et al.

(2008) have proposed the use of stochastic parameterizations. The idea is that, for a given level of

noise, results from a diverse set of models will form a large diffuse cluster of probable output.

In other work, the uncertainty space of a single comprehensive model is explicitly explored.

For example, the parameters of atmospheric and coupled models are sampled extensively resulting

in the perturbed-physics ensembles of the climateprediction.net project. (Stainforth et al., 2005;

Rowlands et al., 2012) Relatedly, using the technique of optimal fingerprinting (Stott and Tett,

1998), realizations of a single comprehensive model under different forcing scenarios are given

probability weights based on the agreement of their spatial response patterns with past observations

(e.g., Hasselmann, 1997; Allen et al., 2000; Stott and Kettleborough, 2002; Stott et al., 2006, and

others).
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At the other end of the model-complexity spectrum are methods that compute sensitivities

based on linear regression of past forcing and observed climate such as Gregory and Forster (2008)

and Murphy (2010). Advantages of these methods are their more direct use of observed data and

independence of model biases and tuning.

The way that we shall proceed is to construct a simple but physically based model and then to

try to constrain the parameters that determine the model’s transient climate sensitivity by a direct

comparison with observations. In terms of model complexity, our methodology is closer to simple

regression calculations than to the use of GCMs, but differs notably in that we seek to obtain time-

dependent, probabilistic information. Specifically, we will constrain the output of a simple energy

balance model by observations of the 20th century surface temperature record, using a particular

nonlinear form of the Kalman filter as a way of estimating parameters over time. This sequential

approach allows us to explicitly examine the way in which probability distributions depend on the

underlying uncertainty assumptions and length of the observed record. Similar to the idea of Ghil

et al. (2008), we expand the range of our simple model’s results by stochastically parameterizing

natural variability and considering a broad range of uncertainty in historical forcing. Set against

this, compared to the general circulation models, is the less comprehensive nature and the lack of

detail of the predictions made.

2.3.1 Unscented Kalman filter approach

In order to estimate the parameter λ from past observations of temperature and forcing we use an

adaptation of the Kalman filter applicable to nonlinear systems called the unscented Kalman filter

based on Julier (2002) and van der Merwe (2004). (The term λT in (2.2) is formally nonlinear

because both λ and T are regarded as state variables. Physically λ is a constant parameter, but

the Kalman filter adjusts its value to find the best fit.) Although there are many methods by

which to find probability distributions for unknown parameters, we use the nonlinear filter because

it is a simple method to implement and provides well-founded probability estimates, though they

are restricted to remain Gaussian. The recursive method has the additional advantage that in

computing the posterior distribution given a time series of observations from t1 to tN , the posterior

at every intermediate time, ti, is automatically calculated. This feature thus enables one to study

the evolution of uncertainty over time with the addition of observed temperatures. The filter
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also accounts for model dynamics and time delays. A simple, static regression of the temperature

against the forcing would, given sufficient data, give similar values for the TCS but less probabilistic

information, with less ability to determine the effects of forcing uncertainty and natural variability

separately.

The unscented Kalman filter (UKF) resembles the classical Kalman filter for linear systems and

Gaussian random variables in that it is an approximate recursive Bayesian method. In general,

all recursive Bayesian methods make use of prior and observed distributions of a model’s state to

form an updated or posterior state based on the linear combination of the prior and observed states

that minimizes the posterior error covariance. Each iteration, the forecast of the posterior at ti

becomes the prior at ti+1. This process is outlined for a generic filter in appendix A which reviews

key concepts and terms in sequential filtering.

For nonlinear systems, the minimization of the posterior error covariance cannot be solved

exactly. Many different filters have been developed to address this problem. In the UKF, the

error covariance and mean state are approximately computed from the statistics of an ensemble of

state estimates. The UKF follows the general filter steps from appendix A but with the additional

step of computing this ensemble. Ensemble member states are selected as ± 1 standard deviation

perturbations about the mean, thus they are called sigma points. More details regarding sigma

points are provided in section 2.3.2, including their mathematical definition (equation (2.7)). The

complete filter process with update equations from appendix A written specifically in terms of the

UKF implementation is outlined in algorithm 1.

The UKF may be thought of as a particular type of ensemble Kalman filter (Evensen, 1994,

2007) frequently used in data assimilation and sometimes applied to parameter estimation (Annan

et al., 2005a, Annan et al., 2005b). For small systems, the UKF requires far fewer ensemble

members and has equal or better accuracy than the standard implementations of the ensemble

Kalman filter. Also, the sigma points are deterministically recomputed, enhancing accuracy and

aiding in avoiding collapse of the ensemble. Nonetheless, had a conventional ensemble Kalman

filter been used it would likely have given similar results.

Since λ is regarded as a variable with respect to the filter, the state to be estimated is the

3-dimensional vector [T λ S]T . The dynamic update for λ is the persistence model, λk+1 = λk.

Known as state-space augmentation (Gelb et al. (1974)), the approach is a common technique
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for including parameters in filter equations (e.g., Anderson (2001); Annan and Hargreaves (2004);

Ambadan and Tang (2009); Yang and Delsole (2009)).

In addition to the state variables, the filter samples two sources of uncertainty in the system,

input and output noise. The input uncertainties include Gaussian forcing uncertainty, wF , and noise

driving the natural variability of the system, wS , with error-covariance Rw. The output uncertainty

is additive white noise, v, representing measurement error in the historical temperature record, and

has error-covariance Rv. The mean state is initialized with a best guess and the initial mean noise

is zero as outlined in the first step of algorithm 1.

Each uncertainty source is perturbed, along with the state variables, to form the sigma-point

ensemble according to the scaled-unscented equations of Julier (2002) as in algorithm 1 step 2a. The

ensemble for our model consists of perturbations in 6 dimensions yielding a total of 13 sigma points,

12 symmetric perturbations plus 1 to include the mean. When considering alternative models for

forcing uncertainty in section 2.4.3, the state dimension increases by one with the introduction of

an aerosol forcing scale factor, α, and the noise dimension decreases by one with the elimination of

wF .

Each sigma point is forecast according to the nonlinear model (2.3) as in step 2(b)i of algorithm

1. The forecast mean state and error covariance are computed from the statistics of the forecast

points at step 2(b)ii. (This is in contrast to the extended Kalman filter which loses some accuracy

because it relies on linearized system equations and a single state to propagate the error covariance.)

The forecast sigma points are mapped onto the space of observed variables by the measurement

equation for our system, which happens to be linear in this case although that is not a requirement of

the filter, hk(x
(i)f

k ) = T
(i)f

k +v(i) (step 2(c)i). The mean and covariance of the forecast sigma points

are updated (or corrected) with the weighted difference between a real observation of the global

average surface air temperature and the expected value (i.e. mean) of the modeled observations,

Tobs − E[T
(i)f

k ] (steps 2(c)ii–2(c)iii). Finally, the covariance and mean state are augmented with

the noise variables to prepare for the next iteration (step 2(c)iv).

2.3.2 Scaled-unscented sigma points

Following Julier (2002), we apply the scaled-unscented transformation when computing sigma

points. This has the advantage of preventing loss of positive-definiteness in the error-covariance
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over time while retaining up to fourth order accuracy. The scaled-unscented sigma points are

calculated according to the following equations.

χ
(0)
k = xaugk−1

χ
(i)
k = xaugk−1 +

√
(L+ λ)

√
P augk−1

(i)

, i = 1, . . . , L

χ
(i+L)
k = xaugk−1 −

√
(L+ λ)

√
P augk−1

(i)

, i = 1, . . . , L

(2.7)

where
√
P augk−1

(i)
is the i-th column of a square root or Cholesky factorization of the covariance

matrix after the analysis step of the previous iteration. Additionally, χ
(i)
k denotes the i-th column

of the L× (2L+ 1) sigma point matrix χk. L = Lx + Lw + Lv is the dimension of the augmented

state vector, the sum of the state, input, and output dimensions.

The corresponding covariance weights are

ω
(0)
c,k =

λ

L+ λ
+ 1− α2 + β

ω
(i)
c,k =

1

2(L+ λ)
i = 1, . . . , 2L,

(2.8)

where λ = α2(L + κ) − L. Here κ is the original parameter from the unscaled transformation

affecting the accuracy of the higher order moments of χk. Setting κ = 3− L leads to a mean and

covariance with up to fourth order accuracy. For systems of dimension greater than 3, a negative

κ may cause loss of positive-definiteness in the covariance so Julier (2002) introduced the scaled-

unscented transformation. As the scaling parameter α ∈ (0, 1] approaches zero, the original sigma

points are drawn into a ball of decreasing radius thus minimizing the effects of error in higher order

moments for large-dimensional systems. The parameter β > 0, in the zero-th covariance weight,

provides an additional degree of freedom by which 4th-order error may be minimized. For the most

concise notation, we write the weights as the (2L + 1) × (2L + 1) diagonal matrix Ωc,k with the

weights ω
(i)
c,k as the diagonal entries. Mean weights, ω

(i)
m,k, are identical to the covariance weights of

(2.8) except that the zero-weight is ω
(0)
m,k = λ/(L+ λ).
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Algorithm 1 Unscented Kalman filter

1. Initialize augmented state xaug0 = [xa0 0 0]T and covariance,

P aug0 =

P xa0 0 0
0 Rw0 0
0 0 Rv0

 . (2.9)

2. For k = 1 to ∞

(a) Calculate sigma points, χk, according to equations (2.7)–(2.8).

(b) Forecast or Dynamic Update

i. Forecast each sigma point by χfk = f(χk).

ii. Compute the statistical moments of the forecast sigma points: the mean state and
error-covariance,

xfk = E[χfk ] =
2L∑
i=0

ω
(i)
m,kχ

(i)f

k (2.10)

P x
f

k = AkΩc,kA
T
k (2.11)

where Ak = χfk − x
f
k is a matrix of perturbations about the mean forecast.

(c) Analysis or Measurement Update

i. Map the forecast sigma points to measurement space by hk(χ
f
k , χk) and form Yk =

hk(χ
f
k , χk)− E[hk(χ

f
k , χk)], the perturbations about the mean measurement.

ii. Compute the cross and measurement covariances and weighting matrix,

P xyk = AkΩc,kY
T
k (2.12)

P yyk = YkΩc,kY
T
k (2.13)

Kk = P xyk (P yyk )−1. (2.14)

iii. Compute the analysis mean and covariance,

xak = xfk +Kk(y
obs
k − E[hk(χ

f
k , χk)]) (2.15)

P x
a

k = P x
f

k −KkP
yy
k KT

k . (2.16)

iv. Form augmented state, xaugk , and block-diagonal covariance, P augk .



2.4 Validation of the method with data from comprehensive cli-

mate model

In this section we show that the use of the method (i.e., the energy-balance model in conjunction

with the Kalman filter) is able to emulate the evolution over the 20th century of a comprehensive

climate model (GFDL’s CM2.1, Delworth et al., 2006), and furthermore that the method can

predict the TCS of the GCM using only its forcing and temperature record of the 20th century.

Since only a single realization of the real temperature record exists, we examine the extent to which

single realizations of the GCM can be used to constrain transient climate sensitivity, rather than

the average over an ensemble of integrations.

2.4.1 Comprehensive climate model data

To do this we consider separately as constraining data the five CM2.1 AR4 20th century integrations

and their mean shown in figure 2.4. (The individual runs are smoothed with a 3 year moving average

to reduce some of the unforced variability in the time series since this will be accounted for in the

magnitude of σS .)

We model the perturbation forcing as the sum of a mean forcing record and white noise in

each year, F = F̄ + wF . The mean forcing, F̄ , for these experiments is the mean of ten forcing

runs computed in Held et al. (2010), shown in figure 2.5. The uncertainty in the forcing, wF , has

standard deviation σF = 1 W m−2 K−1.
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Figure 2.4: GFDL’s CM2.1 historical temperature realizations. Five individual realizations
(dashed color) and their mean (solid) with ± 0.14 K about the mean (shaded).
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Figure 2.5: GFDL’s CM2.1 historical forcing estimates. Data provided by Isaac Held. Ten
individual realizations (dashed color) and their mean (solid) with ± 1 W/ m2 about the mean
(shaded).

2.4.2 Parameter estimates

The estimate of the transient climate sensitivity parameter (λ) and its standard deviation, σλ, as

determined by the nonlinear Kalman filter, are shown in figure 2.6. By the year 2000, the mean

estimate of λ = 2.6 W m−2K−1 corresponds to a most likely value for TTCS = 1.4 K which agrees

well with the known TCS of CM2.1 of 1.5 K. The value of λ from the individual runs is less

constrained but the estimates remain within a standard deviation of the mean with the exception

of run 4 (cyan in figure 2.6) which remains within the 90% confidence interval. The uncertainty

range throughout the 100 year time period is a little greater for the individual runs than the mean

because they have greater natural variability. For run 4 the estimate deviates the farthest from

the true λ as variability on longer time-scales in the temperature obscures forced features that help

determine sensitivity. In the experiments run with the real temperature record, we partially offset

this difficulty by removing the ENSO signal.

With the value of λ fixed at the mean estimate found by the end of the observational record,

λ = 2.6 W m−2 K−1, the EBM reproduces the temperature response of the comprehensive climate

model, as shown in figure 2.7. Here the stochastic component of the EBM has been set to zero to

more easily compare forced features in the responses. The EBM without any natural variability

agrees well with the main features of the CM2.1 response such as to volcanic eruptions in the years

1902, 1963, 1982, and 1991 as well as the overall trend.
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Figure 2.6: (top) Estimates of the sensitivity parameter λ for constraining temperature data from
the individual CM2.1 realizations of figure 2.4 (thin color) and the 5-realization mean (solid)
with its 90% confidence interval (shaded). (bottom) The maximum likelihood transient climate
sensitivity corresponding to each of the distributions for λ in top panel with the 90% confidence
interval about the mean TCS (shaded).
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Figure 2.7: Comparison of temperature responses for the CM2.1 model (solid) and the mixed-
layer model of section 2.1.2 with zero-mean Gaussian forcing uncertainty (dashed) and scaled
forcing uncertainty (dotted) described in section 2.4.3. The CM2.1 data is the 5-realization
mean appended with the first 30 years of the 1%/year to CO2 doubling run. The stochastic
component of the mixed-layer model has been set to zero.
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2.4.3 Effect of assumptions on forcing uncertainty

In this section we further explore the effects of our assumptions regarding the uncertainty in the

radiative forcing, the uncertainty that is often regarded as the biggest single impediment to cal-

culating the equilibrium climate sensitivity from the past record. In the previous calculations

corresponding to figure 2.6, this was modeled as a white noise, which is a good assumption for the

forcing uncertainty in CM2.1, as may be observed in the forcing variations shown in figure 2.5.

However, this is not a good assumption for the uncertainty in actual historical forcing, so in this

section we introduce a more realistic model for forcing uncertainty and present results for CM2.1

data, as a precursor to doing the same for observed data.

The IPCC attributes the greatest source of forcing uncertainty to anthropogenic aerosols, re-

porting a 90% confidence range of -0.5 to -2.2 W m−2 in 2005 (Forster et al., 2007). Although other

sources of uncertainty are not insignificant, for simplicity we restrict uncertainty in our new forcing

model to anthropogenic aerosols, and from here forward, aerosols (without a qualifying adjective)

means those of anthropogenic origin. We separate the total historical forcing into aerosol and all

other components,

Fnet(t) = Fother(t) + αFaero(t). (2.17)

We suppose aerosols are known only within a multiplicative scale factor α, which is a unity-mean,

normally distributed random variable. Scaling the magnitude of aerosol forcing is an approach that

has been adopted previously by Harvey and Kaufmann (2002); Forest et al. (2006) and others. The

variance of α and the variance of Fnet are related by,

σ2Fnet
= F 2

aeroσ
2
α, (2.18)

which is consistent with the idea that the greater the magnitude of the aerosol forcing, the greater

is the uncertainty about it. According to this model, Fother(t) is known exactly, and is defined

for both the GCM and real world applications as the sum of greenhouse gas, solar, and volcanic

contributions estimated by Gregory and Forster (2008). (CM2.1 forcing data separated into indi-

vidual components was not available.)The nominal aerosol estimate, Faero, varies depending on the

application. In this application to a GCM, we are concerned with CM2.1 forcing and temperature,
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so we estimate CM2.1 aerosol forcing as the smoothed difference FCM2
aero = FCM2

net − Fother. The net

CM2.1 forcing along with components: aerosol and other are plotted in figure 2.8. Also shown in

the figure is the 90% confidence interval about the aerosols. Notice that since the variance of the

forcing scales with the magnitude of the aerosols, when FCM2
aero is near zero, uncertainty is quite

small. Here the prior variance of the scale factor, σ2α, is chosen such that the forcing variance σ2Fnet

in 2005 is consistent with the IPCC confidence interval. By fitting a Gaussian and rounding up,

we approximate the IPCC variance as σ2Fnet
(2005) = 0.36 W2 m−4. Then by equation (2.18), with

FCM2
aero (2005) = −0.5 W/m2, the variance of α at the start of assimilation is σ2α = 1.4.
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Figure 2.8: GFDL’s CM2.1 net historical forcing (solid, same as the mean forcing in figure 2.5)
and estimates of the individual forcing components: other (dotted) and aerosol (dashed) with
90% confidence interval (shaded).

We now allow the nonlinear Kalman filter to simultaneously constrain the parameters α and λ

with the CM2.1 temperature data. In figure 2.9, we compare the results of a calculation with the

new scaled forcing model to the results from the previous calculation with additive white forcing

uncertainty. The spread of the λ-density increases, as expected, since errors in the longer term

forcing trend are now taken into account. The mean estimate of λ remains very similar, with

most likely TCS 1.4 K closely matching the TCS of CM2.1, which is really 1.5 K. The mean scale

factor estimate remains between about 0.5 and 1 ending the assimilation at about 1. The poste-

rior uncertainty about α narrows slightly, indicating that temperature observations do marginally

constrain α. In allowing the filter to estimate part of the forcing trend, there are now two mecha-

nisms by which the model may be corrected to emulate the increasing observed temperature record:

decreased aersol forcing, achieved when α < 1, and decreased λ (more sensitive). This makes it

difficult to uniquely determine either parameter from the temperature time series alone, thus it
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Figure 2.9: (top) The estimate of sensitivity parameter λ assuming scaled forcing uncertainty
(solid) with the original estimate from white noise assumptions (dashed) shown again for com-
parison. The shaded band is ±1σ about the mean. (bottom) The estimate of aerosol scale
factor α with ±1σ (shaded)

is important to consider entire probability distributions rather than focusing solely on mean esti-

mates. Nevertheless, and as shown in figure 2.7, ignoring stochastic variability, the 20th century

GCM response closely resembles the mean evolution of the EBM with estimates of sensitivity pa-

rameter, λ = 2.55 W/m2, and forcing scale factor, α = 0.8, conditioned on observations through

the year 2000.

2.5 Concluding remarks

The main conclusion to be drawn from the above exercise is that the methodology of using the EBM

in conjunction with an unscented Kalman filter, when applied to the 20th century record of globally

averaged surface temperature and forcing taken from a comprehensive climate model, is able to

estimate, within reasonable error bounds, the transient climate sensitivity of the comprehensive

model of about 1.5 K for a doubling of CO2. Using this value of TCS along with estimates of

natural variability, the EBM is able to produce plausible trajectories of 20th century warming that

are visually indistinguishable from trajectories of the GCM. There is, however, some sensitivity to

the nature of the assumed uncertainty in the forcing. Nevertheless, these results give us confidence

to proceed with applying the method to real data.
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Chapter 3

Closure estimates from climate

observations

Given the success of the Kalman filter method using data from a comprehensive climate model in

the preceding chapter, in this chapter we apply the same method for closing the unknown climate

sensitivity parameter (λ) using real observations of the temperature and climate forcing recorded

over the 20th century. The use of historical data introduces additional challenges to estimation

of λ. The actual trajectory of globally-averaged temperatures over the past century has been

somewhat less linear than the temperature response of the GFDL CM2 general circulation model

(GCM). For example, the real temperature response to past volcanic eruptions was weaker than

predicted, periods of unforced variability were present with autocorrelation as long as decades, and

relatively little temperature change occurred in the 2000 decade. Due to greater uncertainty about

the fit of the linear model (2.3)–(2.4), rather than providing a single probability density for λ, the

contribution of this chapter is a range of distributions that sample the uncertainties associated

with real forcing and temperature data. Also presented is the sensitivity of results to other sources

of uncertainty such as prior distributions, length of the data record, and value of the mixed layer

depth.
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3.1 Observational data

The observed temperature, figure 3.1, is derived from Thompson et al. (2009), which itself is derived

from the HadCRUT data (Brohan et al., 2006). We have annually averaged the residual after

subtracting the ENSO signal which has the effect of making volcanic responses more pronounced. In

the figure we also show some temperatures after 2008; these have been extrapolated with synthetic

data generated by the mixed layer model (2.2) introduced in the previous chapter, where the climate

sensitivity parameter has been set to λ = 2.0 W m−2 K−1, which is approximately the mean estimate

we obtain in 2008, and a forcing corresponding to a 1% increase per year in CO2 with no change

in aerosol forcing. That is, we essentially create a climate realization after 2008 using the simple

model that we can then analyze with the Kalman filter. (The results are not especially sensitive

to the slope of the extrapolated data on the time scales considered and yearly variability in the

record is not a major factor in the results, as we show in section 3.3.2.) The standard deviation of

measurement errors in the observed temperature record is taken to be σv = 0.06 K, as estimated

by Brohan et al. (2006).
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Figure 3.1: Observed global temperature change after removal of ENSO signal. Measurement
error of ±0.06 K is shown shaded. Vertical dash line marks the end of real data and beginning
of use of synthetic data in the future. Data beyond 2008 was generated by linear extrapolation.

To account for natural variability we assume for our base case that the natural variability [S in

equation (2.4)] has a standard deviation of σS = 0.07 W m−2, which gives σT ≈ 0.13 K, this being

the standard deviation of the observed detrended 20th century temperature record. Since these

parameters are only approximate, we also calculate results for a range of values of σS and thus σT .

These are discussed in section 3.3.1.
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Figure 3.2: (top) Mean of three 20th century forcing estimates (solid black) from the following
sources, which are also plotted individually for comparison: GFDL (green dash-dot), GF08 (red
dotted), and GISS (blue dashed), plus 90% confidence interval (shaded). Data after 2006
assumes CO2 forcing increases 1% per year. (bottom) Estimate of anthropogenic aerosol forcing
with levels held constant after 2006 (black dashed) plus prior uncertainty at the 90% level
(shaded) and the corresponding IPCC interval (black vertical).

The forcing is derived from three sources which we denote as GISS (Hansen et al., 2007), GFDL

(Held et al., 2010) and GF08 (Gregory and Forster, 2008). These forcings, shown in the top plot

of figure 3.2, are obtained by slightly different techniques and represent slightly different levels of

atmospheric adjustment. For our base case we take Fnet to be the mean of the three, although due

to the differing lengths of the records after 2000 the mean forcing is the average of GISS and GF08,

and from 2005 to 2006 it is GF08 alone. After 2006 we extrapolate the forcing by assuming 1% per

year increases in CO2 with no change to other components. Differences in the time series become

apparent in the middle of the 20th century and continue to grow throughout the time period due

mainly to unknown aerosol forcing. Therefore, we model this growing uncertainty as an unknown

scale factor as we did for GCM data in section 2.4.3 by equation (2.17). Had we just used one of

the forcing records, instead of the mean, there would have been small quantitative differences that

are within the uncertainty bounds that we also calculate. Further discussion of the consistency of

results with respect to forcing assumptions is provided in section 3.3.3.

Consistent with the method developed in section 2.4.3, Fnet is separated into Fother, the sum
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of Gregory and Forster (2008) solar, volcanic and greenhouse gas contributions, and anthropogenic

aerosol forcing, Faero, the smoothed difference between Fnet and Fother. We plot Faero in the bottom

plot of figure 3.2 and infer the prior uncertainty about Faero, also shown, from the IPCC aerosol

uncertainty range in 2005, assuming that the uncertainty is proportional to the aerosol level itself.

Approximating the IPCC 90% confidence interval of -0.5 to -2.2 W m−2 as Gaussian as we did

previously for the GCM experiments, by equation (2.18) the prior variance of the scale factor at

initialization of the filter should be σ2α = 0.42. This yields the prior 90% confidence interval shown

as the shaded regions in figure 3.2 for Fnet (top) and Faero (bottom).

The IPCC interval estimated in the year 2005 is also shown for comparison in the bottom

plot. Although the IPCC range extends to slightly higher aerosol forcing than our Gaussian fit,

we are not concerned about this small level of disagreement. Both ranges likely overestimate the

aerosol uncertainty because they are prior guesses, unconstrained by data. The observational data

we assimilate will revise and constrain the forcing uncertainty. Recall from section 2.4.3 that the

variance of the forcing is proportional to both the variance of the scale factor and the magnitude

of the aerosol forcing. Since we let the Kalman filter determine the most likely trajectory of the

scale factor and its uncertainty, the posterior confidence interval of the forcing will narrow slightly

as uncertainty about the scale factor narrows.

3.2 Parameter estimates

With the forcing and temperature data described above, beginning in 1900, we employ the nonlinear

filter to sequentially update the probability density for λ and α as more observations are included

as constraints. The time-varying mean and standard deviation of the λ-density and α-density are

shown to steadily narrow over time in figure 3.3 in the top and bottom panels, respectively.

The uncertainty in the distribution declines throughout the period of observation as a result of

more data points unveiling the temperature trend. One may notice that the year 2000 estimates

of mean λ are slightly more sensitive compared to 2008. This is a result of the flat to decreasing

temperature trend in the last decade while forcing continued to increase. Beyond 2008, there is (as

expected) little change in the mean estimate because we have fixed the sensitivity of the synthetic

data close to the 2008 sensitivity.
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Figure 3.3: (top) Mean estimate of transient sensitivity parameter, λ, for three prior means:
λ(1900) = 2.0 (solid), 1.0 (dotted), and 3.0 W m−2 K−1 (dash-dot) and ±1σ (gray shaded).
(bottom) Mean estimate of scale factor, α, for the three prior mean λ values and ±1σ uncertainty
(gray shaded).

Also shown are the results of shifting the prior λ mean to high and low values of 1 and

3 W m−2 K−1. Despite the quite different starting points in 1900, the mean trajectories converge

steadily over time. More of the effects of varying initial uncertainty are discussed in sections 3.3.1

and 3.6.

Mapping the time evolution of the Gaussian λ-density of figure 3.3 to the transient climate

sensitivity via equation (2.5) yields the skewed TCS probability density whose 90% confidence

interval as a function of time is shown as the shaded region in figure 3.4. The peak in the distribution

is plotted as the dashed line. The prior distribution in year 1900 is noticeably skewed, with

the 95th percentile including temperatures in excess of 10 K. As more data becomes available,

the posterior TCS distribution continues to narrow until around 1940, when a large unforced

temperature perturbation causes the sensitivity estimate to decrease. Even though the overall

spread of the λ-density narrows, the spread in TCS actually increases. This is a feature of the

nonlinear relationship between λ and TCS in equation (2.5). For small λ, large improvements in

our understanding of λ translate into only modest improvements in the confidence bounds of the

TCS. Similarly, the decline in uncertainty after 2000 may be attributed to the increase in λ. For
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Figure 3.4: Evolution of TCS probability as more data from the past is used as a constraint.
Most likely TCS indicated by the dashed line. Shaded region is 90% confidence interval. Inset:
90% confidence intervals for the uncertainty scenarios outlined in table 3.1: most probable (a),
high past natural variability (b), forcing uncertainty is high (c), and forcing uncertainty is low
(d), all in 2008, and most probable in 2030 (e).

further discussion of the implications of (2.5) for skewing the TCS distribution see section 3.7.

In later years, the distribution of λ has narrowed sufficiently that the skewness of the TCS

distribution is no longer a prominent feature. In 2008, the 90% TCS confidence interval is 1.3–

2.6 K and that range is reduced by 45% by 2030. (To avoid the effects of high aerosol uncertainty,

in section 3.5 we describe the effects of only using data from 1970 on; in fact these lead to similar

estimates of λ and TCS.)

3.3 Sensitivity to temperature and forcing

To understand the robustness of the parameter estimates to assumptions about past temperature

change and forcing, we vary these assumptions and present the subsequent changes to the parameter

probability distributions. In the first set of experiments, described in section 3.3.1, while holding

the mean forcing and temperature trajectories constant, the magnitude of the uncertainty about

each trajectory is varied. In section 3.3.2, we present the results of changing the forcing and

temperature trajectories, for example by supposing there were no volcanic eruptions or that the

trends were linear. Finally, in section 3.3.3, the trajectory of the mean historical forcing is varied

among the estimates from three different studies.

33



3.3.1 Sensitivity to magnitude of uncertainty in forcing and temperature

For comparison with the parameter estimates obtained in section 3.2 using assumptions about un-

certainty detailed in section 3.1 that we consider most plausibly supported by observations, we also

consider three limiting cases for past uncertainty: forcing uncertainty 50% larger, forcing uncer-

tainty 50% smaller - both with our plausible estimate of unforced variability, and plausible forcing

uncertainty with larger natural variability in the temperature record. These uncertainty scenarios

are summarized in table 3.1 along with the resulting 90% confidence intervals after assimilation of

surface temperature data up to 2008 and 2030. These same confidence intervals are also shown in

the inset plot of figure 3.4 and the complete probability densities of TCS are plotted for selected

scenarios in figure 3.5.

Experiment σT (K) σα 90% C.I. 2008 (K) 90% C.I. 2030 (K)

Most plausible 0.13 0.65 1.3–2.6 1.3–2.0
Large F uncertainty 0.13 0.98 1.2–2.6 1.3–2.0
Small F uncertainty 0.13 0.33 1.4–2.6 1.4–2.1
Large natural variability 0.5 0.65 1.1–5.5 1.2–3.5

Table 3.1: Summary of natural variability and scale factor uncertainty for each of four different
experiments. The resulting TCS confidence intervals given each set of assumptions are also
included.
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Figure 3.5: The range of PDFs and 90% confidence intervals for the transient climate sensitivity
for the various sets of assumptions made. With data up to 2008: estimates based on most
plausible forcing uncertainty and natural variability, forcing uncertainty underestimated, forcing
uncertainty overestimated, and natural variability overestimated. With data up to 2030: most
plausible forcing uncertainty and natural variability.

The combined range of confidence intervals is an indication of the sensitivity of estimates to

assumptions about uncertainty magnitude. As expected, the larger the forcing uncertainty and
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natural variability, the broader becomes the spread in the estimated λ. Since the mean value of λ

stays about the same in all cases, the TCS distributions also broaden with the development of a fat

tail most easily seen in figure 3.5. All of the estimates by the year 2030 have narrowed substantially

from their 2008 ranges. The additional two decades of observations provide a strong constraint on

the tail of the distribution, curtailing the highest TCS values, while having very little effect at the

low end. The broadest ranges in both 2008 and 2030 were obtained for the large natural variability

scenario, in which we more than tripled the standard deviation of natural variations, σT = 0.5 K.

At this level of variability, the temperature observations do little to constrain the distribution due

to the very low signal-to-noise ratio.

Besides the above extreme cases, we also experimented with values of σT varying between 0

and 0.5 K and the initial uncertainty in the scale factor, σα, varying between 0.3 and 1.0. The

parameter estimates from a full factorial set of experiments are shown as contours plotted against

(σα, σT ) pairs in figures 3.6 and 3.7. In both figures, the top plot is the mean estimate of λ and the

bottom is the standard deviation, σλ. The values of (σα, σT ) = (0.65, 0.13) from the most plausible

scenario above are drawn for reference as dashed lines in figure 3.6.
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Figure 3.6: (top) Contours of mean transient sensitivity parameter, λ, where the interval between
contours is 0.03 W m−2 K−1. (bottom) Uncertainty, σλ, with contour interval 0.1 W m−2 K−1.
λ mean and uncertainty estimates at each value of forcing uncertainty and natural variability
are from 2008, after assimilation historical observations between 1900 and 2008. Dashed lines
indicate most plausible scenario for forcing uncertainty and natural variability.

We observe that the mean transient sensitivity parameter is not very sensitive to either natural

variability or scale factor uncertainty and that of the two, it is the least sensitive to scale factor
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Figure 3.7: (top) Same as for figure 3.6 with contour interval 0.01 W m−2 K−1 and (bottom)
same as for figure 3.6 with contour interval 0.07 W m−2 K−1 but where estimates are shown
from the year 2030 after assimilation of historical observations between 1970 and 2030.

uncertainty, as evidenced by the low sloping contours in top of figure 3.6. Regarding the broadness

of the λ-distribution, in the bottom of figure 3.6, we see that above σT = 0.13 K, increasing both

sources of uncertainty leads to broader distributions. However, the flatness of the contours below

about σT = 0.13 K indicates that in this region, even large changes in the scale factor uncertainty

have minor to no affect on the width of the λ-distribution. Here, uncertainty about λ is primarily

limited by the magnitude of the natural variability. The same observation can be made from the

similarity of the confidence intervals a, c, and d in the figure 3.4 inset.

Unlike, measurement uncertainty (for example) which may be reduced in the future with im-

proved technology, one cannot reduce the natural variability of the climate system. According to

our method, further uncertainty reduction in predictions of future climate change can only occur

when the signal emerges more clearly from the noise in longer observational time series, such as

shown in figure 3.7. This limitation, however, may be alleviated by recent work from Chekroun

et al. (2011) in which past natural variability is used to predict and constrain the path of future

variations. In future work, this approach could be used with our method to restrict the ensemble

of model forecasts made in the prediction step of the Kalman filter.
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3.3.2 Sensitivity to natural temperature fluctuations

Given that we have only one realization of the temperature record, and with forcing estimates that

are partly dependent on GCM results, we now show that our parameter estimates are not overly

sensitive to fluctuations in each trajectory. In figure 3.8, we repeat experiments, replacing the

actual temperature and forcing data with alternate time series shown in figure 3.8 (a) and (b).
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Figure 3.8: Alternative temperature (a) and forcing (b) time series for experiments in which:
the data has been linearly fit (green solid), the temperatures after 2008 (denoted with a vertical
dashed line) vary in slope according to prescribed sensitivities of 1.5 W m−2 K−1 (red dash-dot)
and 2.5 W m−2 K−1 (cyan dotted), and volcanic effects have been interpolated out (magenta
dashed). Also, the evolution of the mean (c) and standard deviation (d) of the probability density
for λ when constrained by the alternative data.

First we apply straight line fits to the data from 1900 to 2008, effectively removing all unforced

variability as well as some forced features such as due to volcanoes. For the linear data, the results

are not significantly different, with the most noticeable change being a slightly higher uncertainty.

The estimates vary smoothly over time due to the lack of any fluctuations in the trajectories.

In another experiment, we remove volcanic features through linear interpolation between the

data in years bounding an eruption. Estimates of λ without volcanoes are slightly lower, indicating

a higher TCS, or more sensitive climate than predicted with volcanoes included in the record —

see also figure 3.10. In general, the observed response to volcanoes is, arguably, somewhat weaker

than might be expected, presuming the forcing to be correct. It is possible that, because volcanoes

cool, the effective oceanic heat capacity is larger in the period after an eruption, but further study
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of this seems warranted. However, overall, estimates with and without volcanoes are similar.

Experiments so far have examined how uncertainty changes in the future as more observations

are collected using just one realization of future temperatures derived from the simple model (2.2)

with a nominal choice of λ = 2.0 W/m2, which was near the mean estimate in 2008. Here we also

look at the effects of varying the assumed future data modeled with λ = 1.5 and λ = 2.5 W m−2

K−1 which effectively modifies the slope of the temperature record after 2008. The λ estimates

diverge immediately from their 2008 value toward the prescribed values of 1.5 and 2.5 W m−2 K−1

but do not deviate more than the standard deviation of λ in the 20 year period to 2030. Also,

the reduction in uncertainty about λ is very similar for both records, so our estimate of how much

uncertainty may be reduced by 2030 is valid even though we may be assuming incorrect future

temperatures.

3.3.3 Sensitivity to forcing trajectories
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Figure 3.9: (top) The evolution of λ when the forcing is taken to be GISS alone (green dashed),
GF08 alone (red dash-dot), GFDL alone (magenta dotted), and the three forcing mean (blue
solid). The gray band is one standard deviation about the mean estimate. (bottom) As for top
panel but for α. Here the gray band is the 90% confidence range.

In this section we revisit the issue of the forcing time-series. As is evident from figure 3.6

(bottom), the uncertainty in forcing may play a major role in limiting the skill in our observational
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estimates of TCS. We have modeled the forcing uncertainty as an unknown scaling of the contri-

bution of anthropogenic aerosols because we note that the three forcings, GISS, GFDL, and GF08,

that we have used, diverge from each other with time (figure 3.2 (top)) rather than oscillating

round each other, as in the GCM forcing error of figure 2.5.

Given this, we may see if our estimates of the sensitivity parameter are particularly sensitive to

the specific forcing time series. Thus, for example, suppose that we only had available one of the

three forcings we have used — would the computed parameter, λ, differ noticeably? The results

of doing just this are shown in figure 3.9. The estimates of λ remain within about one standard

deviation of the mean estimate as indicated by the gray shaded region regardless of which forcing

trajectory is assumed: GISS and GF08 forcing yield λ well within the envelope and GFDL forcing

leads to λ slightly outside. A white noise uncertainty model would underestimate the uncertainty in

λ and cause the estimates using the three forcings individually to fall well outside the one standard

deviation envelope. The estimates of the scale factor, which vary more widely due to the quite

different forcing time series, exceed the standard deviation but remain within the 90% confidence

range about the mean.

3.4 Sensitivity to mixed layer depth

All calculations up to this point have been made assuming an effective heat capacity, C, in the

mixed layer energy balance (2.2) corresponding to a mixed layer 60 m deep. We now explore the

effects of varying the mixed layer depth, H, on estimates of TCS and the sensitivity parameter, λ.

We find that the mean λ, constrained by surface temperatures through 2008 that include vol-

canic effects, is largely unaffected by depths ranging from H = 40 m to H = 200 m, in figure 3.10.

However, for H < 40 m, the mean estimate of λ increases rather sharply (meaning the temperature

response becomes less sensitive to forcing). This occurs because low-heat-capacity models have a

large temperature response to volcanic forcing whereas the observed temperature, in fact, responded

very little, as is evident in figure 3.11 where the simulated temperatures with H = 1 m overshoot

observation in volcano years. To correct for this, Kalman filter nudges the model’s sensitivity so

that the response to volcanoes is not overly exaggerated, in better agreement with observations.

Thus a model with too low heat capacity would falsely predict a very insensitive climate.

39



0 50 100 150 200 250 300 350 400
1.5

2

2.5

3

3.5

4

4.5

λ
(2

0
0
8
) 

(W
 m

−
2
 K

−
1
)

Mixed layer depth (meters)

Figure 3.10: Estimates of mean transient climate sensitivity parameter by 2008 as a function of
mixed layer depth in the simple model (2.2), with (solid) and without (dashed) volcanic response
included in the constraining temperature data.
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Figure 3.11: Surface temperature response of the simple model, equation (2.2), with λ and α
fixed at 2008 means, for mixed layer depths of 1 m (blue dash-dot), 120 m (green dashed), and
400 m (red dotted) compared to historical temperatures (black solid).

On the other hand, increasing the heat capacity smooths and dampens the model’s temperature

response. For large depths, H > 200 m, the model is quite insensitive to forcing fluctuations, so

mean λ is estimated as a bit more sensitive in order to better simulate the historical record. For

example, see the simulation with H = 400 m in figure 3.11, the volcanic response is too smooth and

the fit becomes increasingly poor beyond 1970. A model with too high heat capacity would falsely

predict a very sensitive climate.

When we remove volcanic effects by interpolation, λ remains quite constant for all mixed layer

depths as small as 10 m. Therefore, simulating volcanoes helps to constrain the mixed layer depth.

Volcanoes indicate that our model’s mixed layer depth should be larger than 40 m and smaller than

200 m. Therefore, our choice of H = 60 m is appropriate, although at the lower end of this range,

sensitivity estimates would err toward the insensitive.
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Figure 3.12: Probability density distributions for the transient climate sensitivity in 2008 with
mixed layer depths of 60 m (solid), 120 m (dashed), and 400 m (dotted).

Also, as mixed layer depth increases, uncertainty surrounding estimates of the parameters λ

and α steadily increases. This is expected because the greater the thermal inertia of the model,

the longer the time series of temperature observations needed to increase the signal to noise ratio

and thus reduce uncertainty in the nonlinear Kalman filter. Overestimating the mixed layer depth,

therefore, may lead to slow-to-converge parameter estimates that ignore much of the observed signal.

On the other hand, underestimating the depth could result in overconfident probability densities.

Increasing uncertainty with depth is evident in the lengthening of the tails of the distributions of

figure 3.12, where TCS probability densities are compared for mixed layer depths of H = 60, 120,

and 400 m.

3.5 Sensitivity to historical time-period

The uncertainty in aerosol forcing is generally believed to be greatest in the middle part of the

last century and less in the last third of the century and in the early part of the 21st century.

Therefore, one may be interested in estimates of TCS using only the data from 1970 on, and this

route was taken by Gregory and Forster (2008). The disadvantage is that the shorter time period

means that the uncertainty due to natural variability can be expected to be larger. In figure 3.13

we show results using only data from 1970 and using otherwise the same uncertainty assumptions

as used previously. The change in the aerosols and thus the three forcing estimates (GISS, GFDL

and GF08) in this period are now very similar to each other, and so our estimate of the standard

deviation of the forcing scale factor is rather conservative (i.e., probably too large).
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Figure 3.13: As for figure 3.3 but using data only from 1970.

Rather encouragingly, estimates of λ and so of TCS calculated in this manner are similar to the

estimates constrained by data all the way back to 1900, although the relatively steady temperatures

after 2000 dominate the shorter time window and lead to slightly less sensitive estimates of TCS,

with a 90% confidence interval of 1.1–1.9 K by 2008. The spread of this interval is slightly narrower,

even with the smaller data set, than the estimates from the longer record, and this may appear

somewhat paradoxical. One reason for the reduced spread may be that the simple EBM better

simulates the more recent period and so the model learns faster. A second reason is that the

generally larger λ leads to a TCS distribution with less skew and a reduced likelihood of a very

large temperature response: given two lambda distributions with the same spread but centered

about different mean values, the distribution with the less sensitive mean will have a smaller TCS

uncertainty range. The results using the shorter record are also a little more sensitive to the priors

that are chosen, and so the results arising from the use of temperature record over the entire century

probably reflect better the true uncertainty, but as noted the differences are small.

Previously, in section 3.3.1, we also examined how uncertainty estimates change should only

data from 1970 projected to 2030 constrain the parameters for the many (σα, σT ) combinations.

Figure 3.7 (top) shows that λ is largely unaffected by variations in this shorter time period. The

bottom plot shows that the standard deviation of λ decreases as the natural variability and forcing
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uncertainty decrease, although λ uncertainty is much more sensitive to changes in natural variability

over this shorter time period.

3.6 Sensitivity to prior uncertainty

The prior in any Bayesian analysis is often difficult to assess and may require some subjective

analysis. Our aim is to show that any subjectivity in prior λ distribution does not compromise the

objectivity of the data and posterior. We vary the spread of the Gaussian prior to get a sense of

how strongly it influences the posterior results (the Kalman filter requires all distributions to be

Gaussian so a completely uninformative prior is not an option). Figures 3.14 and 3.15 show the

effect the prior uncertainty of λ has on the posterior distributions for the parameters λ and α by

the end of the 130 year data assimilation period.

As evidenced by figure 3.14, about 50 years of data contain enough information to effectively

forget the prior; the posteriors have converged to the same distribution. The narrowest prior used,

σλ(1900) = 0.6 W m−2 K−1, is probably too small since its posterior standard deviation remains

slightly smaller than the others until 2030 (figure 3.14 bottom) and the data hardly reduces its

value. Halving the prior λ uncertainty had a minimal effect on the mean and uncertainty after

2000. Increasing prior uncertainty caused greater variance in λ before 1940 with quick convergence

to the distributions shown in figure 3.3.

In figure 3.15, it is clear that the distribution of the parameter α is not affected by prior

assumptions in λ. Note that varying the prior mean value of λ is addressed in section 3.2. These

experiments give us confidence in our choice of prior uncertainty, σλ = 1.2 W m−2 K−1, and the

objectivity of the final posterior distributions.
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Figure 3.14: Estimates of the mean (top) and standard deviation (bottom) of the transient
climate sensitivity parameter, λ, for three different prior assumptions on uncertainty in λ:
σλ(1900) = 0.6 (dotted), 1.2 (solid), and 2.4 (dash-dot) W m−2 K−1.
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Figure 3.15: Estimates of the mean (top) and standard deviation (bottom) of the forcing scale
factor, α, for the same prior assumptions on uncertainty in λ as in figure 3.14.
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3.7 Sensitivity to skew

In addition to testing the sensitivity to the spread of the prior, one may also question whether it

is appropriate to restrict the nature of the prior distribution to Gaussian, which is a limitation of

the Kalman filter. Although Roe and Armour (2011) make compelling arguments justifying the

use of Gaussian feedback parameter distributions, we nevertheless explore the consequences for our

own approach. As a preliminary step in understanding the influence of Gaussianity, we apply our

method to the simple climate model where the sensitivity parameter is redefined in terms of an

inverse, λ = 1/γ. We let the inverse sensitivity parameter, γ, have a Gaussian prior uncertainty,

and estimate the evolution of this probability distribution keeping all other assumptions constant.

This results in the following relationships between probability distributions, similar to what was

derived in chapter 2 equation (2.6).

Pr(TTCS) =
1√

2πσγ
exp

[
− 1

2σ2γ

(
TTCS

F2CO2

− γ̄
)2
]
· 1

F2CO2

Pr(λ) =
1√

2πσγ
exp

[
− 1

2σ2γ

(
1

λ
− γ̄
)2
]
· 1

λ2
. (3.1)

With Gaussian γ-distributions, the corresponding λ-distributions will be skewed and the corre-

sponding TCS distributions will no longer have skew, which is evident in figure 3.16 where the left

panel shows λ and the right panel shows TCS. Notice that the TCS distributions do not have tails

when they are computed from Gaussian γ.

The prior distributions of both λ and TCS using Gaussian λ versus Gaussian γ are starkly

different. However, as observed data is assimilated, the distributions converge so that by 2008,

they are quite similar, as shown by the improved overlap in the solid curves in figure 3.16 compared

to the lack of overlap in the prior dashed curves. Also the overlap in TCS curves by 2008 is the

best near the peak and toward higher temperature change. This is encouraging because arguably

policy makers are most concerned about the upper bounds of climate change.

The evolution of TCS over time (figure 3.17) is computed from the revised sensitivity parameter

just as we did in section 3.2 from the Gaussian λ. The figures are plotted on the same axes for

easier comparison. The sharp peaks or spikes in the tail of the density in figure 3.4, especially
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Figure 3.16: (left) Probability density distributions of sensitivity parameter λ. Distributions
assuming Gaussian λ are black. Distributions assuming Gaussian inverse λ are blue. Prior
distributions as prescribed in 1900 are dashed. Posterior distributions computed in 2008 are
solid. (right) Same as left panel but for TCS.
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Figure 3.17: The same plot of TCS probability evolution over time as in figure 3.4 but where an
inverse sensitivity parameter γ is the Gaussian unknown estimated by the Kalman filter.

around 1935-1945, are not present in figure 3.17. This confirms that the spikes are in fact an

artifact of the earlier method for which λ was Gaussian. The maximum likelihood value (dashed

line) still shows a perturbation around 1935-1945 because of a fluctuation in the observations then

with comparatively small change in forcing, however, because the relationship between TCS and γ

is linear, this does not lead to a fattening (or spiking) of the tail.

Also of note, the amount of ‘learning’ or reduction in the 90% confidence range of TCS that

occurs between 2008 and 2030 is greater for the revised method, about 70% reduction compared to

45%, so the skew does impede uncertainty reduction. However, as the TCS distributions computed

by either method grow narrower with additional observations, capturing the skewness becomes

less important to characterizing the upper range of temperature change. With sufficient data, the

second-order Kalman filter approach seems justified, therefore we do not see an immediate need to

upgrade to higher order methods, such as particle filters.
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3.8 Concluding remarks

The use of the nonlinear Kalman filter in conjunction with a semi-empirical model allows us to

estimate the distribution of transient climate sensitivity, how the distribution explicitly depends

on forcing uncertainty and natural variability, and how the distribution may change in the future

as more data becomes available. The nature of the forcing uncertainty, whether scaled or not, as

well as its magnitude, also affects our resulting probability distributions.

Although our estimates are certainly sensitive to these uncertainties and to natural variability,

they may be sufficiently narrow as to still be useful. For uncertainties ranging from very large

forcing uncertainty to very small forcing uncertainty, our confidence intervals for TCS range from

1.2–2.6 K to 1.4–2.6 K. With a much larger portion of the observed temperature change attributed

to natural variability, our TCS interval increases to 1.1–5.5 K. Our probabilistic estimate of the

range of TCS that we believe to be best justified by data, namely 1.3–2.6 K with a most probable

estimate of 1.6 K, is broadly consistent with the TCR range of IPCC AR4 climate models whose

median and mean are 1.6 K and 1.8 K, with 90% confidence interval of 1.2–2.4 K (Randall et al.,

2007; Meehl et al., 2007).

To obtain much tighter estimates using methodology similar to ours would require both longer

time-series and significantly reduced uncertainties in the forcing. Without that, attributing the

observed temperature rise definitively to climate feedbacks or erroneous forcing is rather difficult.

It may be possible to by-pass this difficulty by looking at the temperature increase of the two

hemispheres separately or by looking at still more regional changes, as in Harvey and Kaufmann

(2002) or Tomassini et al. (2009). The idea would be to increase the amount of constraining data

while introducing as few new underdetermined parameters as possible.

The results we obtain are largely independent of those from comprehensive climate models,

although we verify that our methodology works in part by comparison with a model (as well as the

ability to reproduce the observed 20th century record), and the forcings shown in figure 3.2 do to

some degree involve model calculations.
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Chapter 4

Empirical closure for higher order

climate systems

To regain some of the physical details neglected by the globally-averaged climate model of the

previous chapters, we are interested in closing the parameters of more complex climate models.

However, the unscented Kalman filter approach of the previous chapter does not scale well. Com-

putational effort increases linearly with the size of the state, parameter, and observation spaces as

more sigma points will be needed to adequately sample high dimensional error spaces. Generally,

the more complex the model becomes, the more unknown parameters arise necessitating larger

constraining observational datasets. For comprehensive GCMs that may have upwards of O(105)

dimensional state-spaces, the number of sigma points required makes the UKF method unfeasible.

However, more efficient nonlinear filter methods do not include many of the features of the UKF

that make it attractive to estimation for climate systems. For example, the widely used Extended

Kalman Filter (EKF) (Gelb et al., 1974) approximates the dynamic and measurement equations

with a linearized system model so that the traditional Kalman Filter (Kalman, 1960) equations can

be applied. The EKF presents two main difficulties: the tangent linear models may be difficult to

derive and the first order approximation of the errors between the true and estimated states may

lead to poor filter performance and even divergence of the filter.

The UKF, on the other hand, is a member of the growing family of alternative filters for

nonlinear systems that we refer to as derivativeless, ensemble methods. The error covariances for
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these methods are approximated by an evolving ensemble of states propagated forward with full

nonlinear equations rather than a single state and linearized system equations. Derivativeless,

ensemble filters are generally easier to implement than the EKF, as one does not require a tangent

to the nonlinear map describing the dynamics and measurements. The UKF is particularly useful

for strongly nonlinear systems as it has provable second-order accuracy in approximating the error

covariances.

Several solutions to the derivativeless, ensemble filtering problem for large systems have been

proposed and these generally fall into two categories: reduced models, for example Farrell and

Ioannou (2001); Morelande and Ristic (2006); Lu et al. (2007), and reduced filters, such as Heemink

et al. (2001); Uzunoglu et al. (2007); Lermusiaux and Robinson (1999); Ambadan and Tang (2009).

The goal of reduced models is to approximate the true system equations with a lower dimensional

model that can be filtered by the usual techniques. On the other hand, the goal of reduced-filter

methods is to span almost all of the error space with fewer vectors in the most uncertain directions

while preserving the dynamics of the full dimensional model.

Of the reduced-filter approaches, none of the methods have been developed generally enough to

handle systems in which the dynamic and measurement equations are both nonlinear and process

and measurement noise are not purely linearly additive. Some of the methods have additional

shortcomings compared to the UKF. For example, the Ensemble Kalman Filter (EnKF) (Evensen,

2003) is a derivativeless ensemble method in which ensemble members are selected by Monte Carlo

sampling. For the basic EnKF, the ensemble is not recomputed every filter iteration as in the UKF,

so the rank of the error covariance is prone to collapse for undersized ensembles. In the UKF, it

is possible for the number of dimensions spanned by the sigma point ensemble to grow at every

iteration of the filter which aids in the prevention of diminishing error covariance rank.

EnKF methods using very small ensembles have had some success for state and parameter

estimation in atmosphere general-circulation models (Annan et al., 2005b) when used in conjunction

with the techniques of inflation and covariance localisation, designed to reduce the risk of filter

divergence due to sampling errors. Inflation rescales the ensemble of points by increasing their

distance from the mean (Evensen, 2007), though there is no clear method for determining the

optimal scale factor. Localisation increases the effective rank of the error covariance by discarding

unrealistic cross-covariances between distant grid points in the assimilation (Hamill, 2006). Both
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techniques increase the complexity of the filter. Additionally, EnKF methods are not as easily

implemented for systems in which both the state and measurement noise are nonlinearly related

though the measurement operator.

Thus it would be beneficial to develop a computationally tractable filter based on the original

UKF that preserves many of its desirable features. Luo and Moroz (2009) started in this direction

by incorporating the unscented transform into the EnKF and using a truncated singular value

decomposition to reduce the number of sigma points. However their approach still requires the

storage of large-dimensional covariance matrices. The error subspace statistical estimation (ESSE)

technique of Lermusiaux and Robinson (1999) avoids large matrix compuations by using covariance

update equations in factored form. Recent work by Ambadan and Tang (2009) applied ESSE to

the UKF for linear measurement operators. Our work presented here may be viewed as extending

the ESSE approach for UKF to include nonlinear measurements.

In this chapter, we introduce an efficient, easily implemented, deterministic filter technique

for large systems. We take advantage of strengths of the UKF: high accuracy, simple application

to nonlinear noise and nonlinear operators, derivative-free implementation, and we modify the

traditional equations to allow for adaptive rank in the error covariance. Through this reduction,

our goal is to make the computational expense of the UKF comparable to that of the EnKF without

losing the advantages of the UKF. The chapter is organized as follows. Section 4.1 outlines the

development of the modified filter. Sections 4.2-4.4 demonstrate the approach for both state and

parameter estimation on a one-dimensional atmospheric model known as the Lorenz 96 model.

4.1 Adaptive-Covariance-Rank Unscented Kalman Filter

The goal of modifying the full-rank UKF (presented in chapter 2 as algorithm 1) is to improve

the computational efficiency of the algorithm with minimal loss in accuracy. For high-dimensional

systems, the dominant costs come from the 2(Lx+Lw)+1 unique forward model integrations of step

2(b)i in the original algorithm and the storage in memory and computation of the Lx×Lx covariance

matrix of step 2(b)ii and 2(c)iii. Adapting the linear method of Lermusiaux and Robinson (1999)

to general nonlinear systems, our approach reduces the cost of computation in two ways. First,

we decrease the number of sigma points, and therefore the covariance rank, by keeping only those
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points that span the dominant eigenvectors of the error space. Second, we directly update a factored

form of P xk avoiding manipulations of the full sized matrix. We call the approach adaptive rather

than reduced because there is an opportunity for the covariance rank to grow again when the sigma

point ensemble is reformed by symmetrically perturbing the mean sigma point and forecasting all

points by the nonlinear dynamics. The rank grows and decays with the number of dominant error

directions found in the forecast sigma points. The mathematical details of the approach follow.

4.1.1 Adaptive covariance rank

In the original formulation of the UKF, the Lx×Lx error covariance matrix scales with the dimension

of the system, which in the case of the climate system may be greater than O(105), however, not

all of the error dimensions may be crucial for accurate state and parameter estimation. Recall from

algorithm 1 equation (2.11) that the UKF error covariance of the forecast state is defined,

P x
f

k = AkΩc,kA
T
k ,

where Ak is the matrix defining how the sigma points are distributed about the mean state estimate,

Ak = χfk − x
f
k ,

(see algorithm 1 step 2(b)i). A factorization of the error covariance into its eigenvalues and vectors,

P x
f

k = UkΣ
2
kU

T
k , reveals the error dimensions that have the greatest variability (those corresponding

to the largest eigenvalues) down to the least variable (smallest eigenvalues). For many systems,

the majority of the variance is contained in a fraction of the error dimensions. Those dimensions

without much variance may be ignored without substantially altering P x
f

k . The following is a

procedure for systematically eliminating extraneous error dimensions, thereby reducing the rank of

P x
f

k .

The singular value decomposition of the perturbation matrix is formed, Ak = UkΣkV
T
k . A

reduced-rank approximation of P x
f

k is obtained by retaining the first pk singular values, σj , such

that the ratio of singular values,

ρ =

∑pk
j=1 σj∑pk−1

j=1 σj
, (4.1)
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is less than one, representing a reduction in the total variance of P x
f

k . The choice of ρ should be

tailored to each application, however a recommended starting point is ρ = 0.99. The dimensions of

Uk, Σk, and Vk are truncated to form the reduced matrices Urk, Σrk, and Vrk which have dimension

Lx × pk, pk × pk, and 2(pk + Lw + Lv) + 1× pk, respectively.

The perturbation matrix is now approximated by

Ak ≈ UrkΣrkVr
T
k , (4.2)

so that with substitution into (2.11), the reduced-rank approximation of the state error covariance

is P x
f

k ≈ UrkΣrkVr
T
k Ωc,kVrkΣrkUr

T
k .

The rank of Rwk and Rvk are also reduced separately by similarly truncating their respective

singular values at pwk and pvk. If these matrices are constant this may be computed offline as part

of the initialization routine. We then use Ur
w
k , Σr

w
k , and Ur

v
k, Σr

v
k when forming the sigma point

sets.

The rank reduction described above is one piece of the adaptation of the error covariance. The

rank also has potential to increase at every iteration in nonlinear systems because the sigma points

(which number twice the rank) may be forecast into a distribution spanning more dimensions than

at the previous iteration.

4.1.2 Measurement update in factored form

To find Urk and Σrk after analysis, we begin by rewriting the covariance analysis update equa-

tion (2.16) in terms of the other known covariances,

P x
a

k = P x
f

k − P
xy
k (P yyk )−1(P xyk )T . (4.3)

Being symmetric, P x
a

k has an eigenvalue decomposition P x
a

k = Ur
a
k(Σr

a
k)

2(Ur
a
k)
T . Substituting the

UKF definition of P xyk and P yyk from algorithm 1 (equations (2.12)–(2.13)) and then inserting the
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approximation (4.2) gives

Ur
a
k(Σr

a
k)

2(Ur
a
k)
T = AkΩc,kA

T
k −AkΩc,kY

T
k (P yyk )−1YkΩc,kA

T
k

≈ UrfkΣr
f
k(Vr

f
k)T

· [Ωc,k − Ωc,kY
T
k (P yyk )−1YkΩc,k]

· VrfkΣr
f
k(Ur

f
k)T

= Ur
f
kΠk(Ur

f
k)T

= Ur
f
kHkΛkH

T
k (Ur

f
k)T ,

(4.4)

where in the final step we have replaced Πk with its eigenvalue decomposition since it is symmetric

as in Lermusiaux and Robinson (1999). Thus we arrive at the update equations

Ur
a
k = Ur

f
kHk (4.5)

Σr
a
k =

√
Λk, (4.6)

where according to equation 4.4, Hk and Λk are computed by eigenvalue decomposition of the

pk × pk matrix Π = Σr
f
k(Vr

f
k)T [Ωc,k − Ωc,kY

T
k (P yyk )−1YkΩc,k]Vr

f
kΣr

f
k .

On the next iteration of the algorithm, there will be 2Lrk + 1 sigma points, where Lrk =

pk + pwk + pvk, given by

χ
(0)
k = xaugk−1

χ
(i)
k = xaugk−1 +

√
(Lrk + λ)S

(i)
k , i = 1, . . . , Lrk

χ
(i+Lrk)
k = xaugk−1 −

√
(Lrk + λ)S

(i)
k , i = 1, . . . , Lrk

(4.7)

with corresponding weights defined

ω
(0)
c,k =

λ

Lrk + λ
+ 1− α2 + β

ω
(i)
c,k =

1

2(Lrk + λ)
i = 1, . . . , 2Lrk.

(4.8)

Mean weights, ω
(i)
m,k, are identical to the covariance weights except that the zero-weight is ω

(0)
m,k =

λ/(Lrk + λ). The weights are the same as those for the UKF defined in (2.8) but with L replaced
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by Lrk, see section 2.3.2 for more information. The S
(i)
k are the i columns of the block-diagonal

L× Lrk dimensional augmented covariance matrix square root

Sk =


Ur

a
kΣr

a
k 0 0

0 Ur
w
k Σr

w
k 0

0 0 Ur
v
kΣr

v
k

 (4.9)

Note that we need only keep track of the Urk and Σrk in creating the next set of sigma points, and

in practice we never need to reconstruct the full sized P xk . Algorithm 2 summarizes the steps for

the adaptive-rank UKF.
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Algorithm 2 Adaptive-covariance-rank unscented Kalman filter

1. Initialize P aug0 and xaug0 = [xa0 0 0]T

2. For k = 1 to ∞

(a) Calculate sigma points and weights as in (4.7)-(4.8).

(b) Forecast or Dynamic Update

i. Forecast each sigma point by χfk = f(χk). (Note that because it is assumed the

process noise does not have dynamics, χfk is Lx × 2Lrk + 1, whereas χk, which
includes perturbations to process and measurement noise, is L× 2Lrk + 1.)

ii. Compute mean forecast,

xfk = E[χfk ] =

2Lrk∑
i=0

ω
(i)
m,kχ

(i)f

k

as in (2.10) and form Ak = χfk − x
f
k .

iii. Compute the reduced-rank approximation of Ak, R
w
k , and Rvk as in (4.1)-(4.2) to

find Ur
f
k , Σr

f
k , Vr

f
k , and the reduced noise matrices.

(c) Analysis or Measurement Update

i. Map the forecast sigma points in measurement space by hk(χ
f
k , χk) and form Yk =

hk(χ
f
k , χk)− E[hk(χ

f
k , χk)].

ii. Compute the cross and measurement covariances and weighting matrix,

P xyk = AkΩc,kY
T
k (4.10)

P yyk = YkΩc,kY
T
k (4.11)

Kk = P xyk (P yyk )−1. (4.12)

iii. Compute the analysis xak = xfk +Kk(y
obs
k − E[hk(χ

f
k , χk)]) and factors Ur

a
k and Σr

a
k

according to (4.5), and (4.6).

iv. Form the block-diagonal augmented covariance root Sak by equation (4.9) and aug-
mented state xaugk = [xak 0 0]T for the next iteration.
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4.2 An abstract atmospheric test model

We illustrate the performance of the adaptive algorithm on a one-dimensional abstract model of the

atmosphere derived by Lorenz (2006), from here on referred to as the L96 system. We chose this

system of J coupled ODEs because the dimension is easily scaled to the higher dimensions for which

the benefit of using an adaptive filter becomes evident. Additionally, the system is loosely represen-

tative of the physical behavior found in realistic atmospheric models in that it evolves chaotically,

conserves total energy, and has dissipating effects, external forcing, and nonlinear interaction terms.

The evolution equations are below.

dxj
dt

= (xj+1 − xj−2)xj−1 − λxj + F

The system is periodic at the endpoints such that xj+J = xj−J = xj . The xj can be thought of as

a scalar atmospheric quantity, like temperature, at discrete longitudes, j, dispersed about a single

latitude ring with periodic boundary conditions. The L96 system is discretized in time with a time

step of 0.05 normalized time units using a fourth-order Runge-Kutta integration scheme. The same

discretization is used in the filter’s forecast simulations and in a truth run (shown in figure 4.1

(top)) used to generate the observed data. For both the filter simulations and the truth run, we set

the forcing to F = 8, a value for which the system behaves chaotically. The transfer coefficient has

been fixed at λ = 1. Process noise is introduced in the truth run by adding zero mean Gaussian

noise w with standard deviation 0.01 to all J state equations at each integration time step.

4.3 State estimates

We begin by evaluating the adaptive filter performance for state estimation. To demonstrate

the filter performance when the observations are a nonlinear function of both the state and the

measurement noise, we add Gaussian noise with 0.1 standard deviation to the truth run and then

square the noisy data. We then sample this field at M random grid points every 0.1 time units (twice

the integration time step) to simulate the sparse, time-varying availability of climate observations.

The measurement operation thin is

ym = (xm + vm)2,
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Figure 4.1: (top) True state of the L96 system at 40 discrete longitudes for a random initial
condition. (bottom) Observation of the L96 system. Contours are the square of the state shown
at top. Dots indicate the location of nonlinear observations made in space and time, drawn at
random each time step.

for m = 1...M where 1 ≤ M ≤ J . Moving sensors are a common feature of climate-observing

systems, which rely heavily on adaptive sensor networks. The filter algorithm easily accounts

for the variable measurement operator. Figure 4.1 (bottom) shows a segment of the true system

evolution as well as the observed noisy squared field. Here the locations of each point in space and

time at which a measurement is sampled are shown as dots.

In the simple example presented here, Lx = Lw = J = 40, but may be increased in future

experiments, and Lv = M = 20. Thus the overall dimension of the system is L = J+J+M = 100,

for a total of 201 sigma points. While the standard deviations of the true process and measurement

noises are 0.01 and 0.1, respectively, it is unlikely these values would be known precisely in reality

so the estimates provided to the filter in Rw and Rv are overestimated by double as 0.02 and 0.2.

The initial state covariance has a variance of 4.0e-4 along the diagonal.

We run the assimilation for 1000 iterations, or equivalently, 100 time units. For clarity in

the figures, output is shown for a smaller representative time window. Figure 4.2 shows the time

evolution of the full-rank UKF and adaptive-rank UKF state estimates in the top and bottom

panels respectively. The two estimates preserve all of the qualitative features of the true state and

deviate from it with similar errors as evidenced by comparison of percent errors in figure 4.3. The
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Figure 4.2: (top) The state estimated with a full-rank UKF. (bottom) The state estimated by an
adaptive-rank UKF. The vertical line corresponds to the latitude of the output shown in figure
4.5

greater average error for the adaptive algorithm is explained by the differences in the estimates

of the error covariance matrix. After an initial transient, the adaptive filter underestimates the

magnitude of the singular values of the error covariance by about 50%, as evidenced by the fraction

of total singular values captured using the adaptive covariance plotted in figure 4.4 (bottom). The

algorithm is designed to keep only the variance contribution of the leading singular values at every

iteration. If the forecast sigma points do not significantly expand the error dimensions in the future

iterations, the fraction of singular values captured could be driven to zero. For this reason, we set

a lower limit on the state-covariance rank at pmin = 16 to prevent rank collapse from which the

covariance would be unrecoverable. In this experiment, we set the truncation threshold in equation

4.1 at 99.9% for the state variance, 80% for the process variance, and 99.9% for the measurement

variance.

Figure 4.4 (top) shows the evolution of the rank of the augmented error covariance. Initialized

with full rank, L = 100, the rank quickly diminishes to values oscillating around Lr = 70. The

rank is seen to saturate at Lr = p+ pw + pv = 68 which is consistent with a lower limit pmin = 16

because for the constant process and measurement covariances truncated at the 80th and 99.9th

percentiles, their respective ranks will always be pw = 32 and pv = 20.

Evidently in this case, Lr is dominated by the ranks of the process and measurement noise
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Figure 4.3: Comparison of the percent error averaged over all longitudes for the full- (solid) and
adaptive-rank (dash) algorithms.

covariances, pw and pv. Most of the improvement in the overall rank is due to the decrease in

p. This low effective dimension of the error subspace corresponding to the state variables may

indicate potential to further reduce the rank of the error subspace corresponding to the process

noise variables. Designing alternative strategies to minimize the noise subspaces is an interesting

area for future work.
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Figure 4.4: (top) The augmented covariance rank in the full (solid) and adaptive-rank (dash)
UKF. (bottom) Comparison of the fraction of singular values from the UKF covariance that are
present in the covariance of the adaptive algorithm.

For an alternate representation of the estimate error, the cross section at the 20th latitude

index is shown in figure 4.5 for the true, full, and adaptive estimates along with the square root of
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Figure 4.5: Cross-section of the true state at latitude 20 as well as estimates by both the full
and adaptive filters (solid). True, full and adaptive curves lie on top of each other. (bottom)
Square-root of the observations made at this latitude (dot).

the sparse nonlinear observations indicated by dots. The curves lie nearly on top of one another.

Note that with the square measurement function, there are no negative observations, yet the state

estimate remains accurate for the 100 time unit duration. For the marginal sacrifice in accuracy,

the adaptive filter achieves runtime improvements of about 40% over the full UKF because it

consistently forecasts the system at about 40% fewer unique sigma points.

4.4 Parameter estimates

The adaptive filter is similarly successful at joint state-parameter estimation and thus may used

to estimate closure parameters, including their uncertainty bounds, as was done in chapters 2 and

3 using the more computationally intensive full-rank UKF. For consistency with the experiments

of these chapters, the closure parameter estimated for the L96 system is also a transfer coefficient

λ like the climate sensitivity parameter of the energy balance model in equations (2.3)–(2.4) via

state-space augmentation. The dynamic update for the parameter is likewise the persistence model.

The experiment is conducted using the same observations and noise statistics applied for the state

estimates. The simulations are initialized as the state at time 50 and a guess of λ = 3, with prior

uncertainty, σλ =
√

10.

Comparison of the full and adaptive filters in figure 4.6 shows that the two approaches are

almost identically successful at predicting the value of λ. The convergence of both algorithms

onto the correct λ with very high certainty after just two assimilation steps is due to the lack of
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Figure 4.6: (top) Estimate of the paramter λ as noisy, nonlinear observations are assimilated
over a 5 unit time period using the full-rank (solid) and the adaptive-rank (dash) UKF. (bottom)
Corresponding uncertainty bounds (standard deviation) of λ for full-rank (solid) and adaptive-
rank (dash) UKF.

other sources of uncertainty that were present in the climate model problem of chapters 2 and 3.

This example has comparatively smaller unforced variability and no uncertainty in the external

forcing F . Additionally, the L96 model has more states and the filter uses more observations

of these states than the single temperature observation of the globally-averaged climate model.

Although incorporating these additional uncertainties would be expected to slow the convergence

and increase uncertainty about the parameter estimate, the performance of both filters would be

degraded equally since they both capture the leading uncertainties equally well.

There is no evidence of the destabilization of the system from multiplicative parameter estima-

tion that Yang and Delsole (2009) encountered with the L96 system using an ensemble square root

filter (Whitaker and Hamill, 2002), although their application included more unknown parameters.

For more complex estimation problems, should members of the sigma-point ensemble become di-

vergent, the smoothed parameter update from Yang and Delsole (2009) could directly replace the

persistence model without any modification to our adaptive algorithm needed.
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4.5 Limitations

The computational savings using the adaptive method was about 40% in this general example of a

nonlinear system where the state and process noise and observations and measurement noise were

nonlinearly related. For special cases, for example with linearly additive process noise, additional

efficiency may be achieved because forecasts of the sigma points corresponding to process noise

perturbations may be neglected. In our example, this would have resulted in 2p+1 unique forecasts

compared to the 2(p+pw)+1 unique forecast simulations that were actually computed, for a savings

of about 60%.

Although these savings are substantial, they do not achieve the order of magnitude reductions

needed to filter O(105) comprehensive global climate models. For these complex systems, even a

90% reduction in the number of sigma point forecasts may not be enough. Even a 99.9% reduction

would still require 100 simulations of a GCM, a formidable task for climate-relevant time periods.

This extreme loss of covariance information would lead to rank collapse in the adaptive UKF. To

stabilize the filter, additional approximations may be applied, namely the techniques of inflation

and covariance localization, originally developed for the EnKF. However given the heuristic nature

of these techniques and the severe reduction in the sigma point ensemble size, there is no reason to

expect the adaptive UKF under these conditions to have any advantages over the random sampling

of the ensemble Kalman filter.

4.6 Concluding remarks

We have presented an efficient algorithm for nonlinear state estimation of high dimensional systems

using a adaptive-rank unscented Kalman filter. The cost savings of the algorithm are two-fold, in

that the number of sigma points is adapted to capture only the dominant state and noise variances,

and the covariance information is propagated in a factored form.

We demonstrated the concept of the algorithm with successful performance on the L96 system,

an abstract, chaotic model of the atmosphere. The computational savings of the adaptive method

were significant and the method represents a reasonable approach to parameter estimation in cli-

mate models that incorporate more realistic physical processes and greater spatial resolution than

the globally-averaged climate system introduced previously in chapter 2.
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However, it may be that the advantages are specific to the system in question. For example, in

a system where the errors do not collapse onto a significantly smaller subspace, to achieve signif-

icant improvement in computational cost, more than an acceptable amount of accuracy would be

sacrificed. Also, for very large systems requiring severe rank reduction, the use of the adaptive filter

becomes less obviously advantageous over previously developed methods like the EnKF. Another

difficulty arises in obtaining enough observations of the climate system to constrain very large state

and parameter spaces.

Limitations of observationally-based filter techniques for very large systems motivate us to

explore the opposite end of the spectrum of closure techniques. Leaving observational methods for

now, the remainder of this thesis evaluates the complementary (rather than competing) physically-

based closure technique known as multiscale modeling.
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Chapter 5

Dynamical closure of a

momentum-moisture-like model

Purely empirical methods for closure of parameterized climate models are limited by the computa-

tional expense of the large number of simulations required for systematic uncertainty evaluation.

They are also limited by the quality and availability of constraining data, especially as the num-

ber of unknowns increases with the complexity of the physical detail in the model. In contrast

to the empirical approaches examined thus far, in this chapter, we analyze an emerging approach

to parameterization that leverages physical understanding of the climate system. This approach,

initially known as Cloud-Resolving Convection Parameterization (Grabowski and Smolarkiewicz,

1999) and Superparameterization (Khairoutdinov and Randall, 2001), as well as more recently

the Multiscale Modeling Framework (MMF) (Jung and Arakawa, 2005), has been applied to the

parameterization of cloud processes in global climate models. MMF provides closure to climate

models by simulating closure models that couple to a filtered or large-scale system. The closure

model consists of physically-based evolution equations for sub-filter or small-scale processes that

otherwise would be neglected in the filtered system.

Previous studies using global climate models are ambiguous as to the benefit of MMF, show-

ing improved simulation of certain convective processes while actually making others worse. The

ambiguity arises out of the complexity of applying the approach to high-dimensional, physically

intricate climate systems (results are highly sensitive to the many design options (Blossey et al.,
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2009; Marchand and Ackerman, 2010; DeMott et al., 2011)) and out of the difficulty of validating

against a modeled or observed truth. It is important to clarify what can be gained from MMF

because it comes at the high price of increased computation time by several orders of magnitude.

Our work applies MMF to a simple system that we have developed expressly for the purpose of

evaluating the costs and benefits of MMF unencumbered by computational expense while preserving

dynamical relevance to the climate system. We have developed a chaotic, deterministic abstract

model of the coupling of momentum and moisture in the atmosphere that uses the Kuramoto-

Sivashinsky equation as a source of turbulent-like momentum coupled to a moisture-like equation

that includes cloud water formation and precipitation-like processes. Our system allows us to

evaluate three of the main MMF approximations: (1) elimination of nonlinear interactions between

filter- and sub-filter- scale variables in advection processes, (2) imposition of periodic boundary

conditions on the closure model, and (3) reduction in the state-dimension of the closure model.

Most importantly, the system can be used to evaluate these sources of MMF error independently.

We also use the system to illustrate how error sources interact through feedback in the full coupling

of filtered and closure-scale equations.

We begin by providing background information on MMF and an overview of equations and

approximations. This is followed by detailed criteria that a simple model must meet to rigorously

test the MMF approach, all in section 5.1. Next we describe the equations and key features of

the test system that has been developed and how MMF has been applied to it, in section 5.2.

Evaluation of the MMF error sources follows in the next chapter.

5.1 Multiscale modeling framework overview

The multiscale modeling framework (MMF) can be thought of succinctly as a reduced-dimension

solution to closure problems that arise in nonlinear systems when they are filtered in space and/or

time. Filtered systems are common in climate modeling where some of the small-scale processes

may be too computationally burdensome to simulate directly. Low-pass filtering reduces the order

of the equations, retaining the large-scale fields of interest. Filtered equations may then be solved

numerically on a coarse grid to save cost. However, due to nonlinearities, sub-filter-scale processes

may have an important effect on the evolution of the filter-scale fields. Leaving these effects un-
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closed would lead to errors in the scales of interest.

In conventional parameterizations, sub-filter-scale effects have typically been modeled by em-

pirical relationships to the filter-scale variables. For convection parameterizations, this process

may involve distilling observations to a few idealized scenarios for boundary conditions and forc-

ing. These scenarios are then modeled in detail over a small geographic extent using large eddy

simulations, also called cloud resolving models (CRMs) (often employing the moist, anelastic, non-

hydrostatic equations). Based on the CRM results, parametric relationships between filter-scale

variables and sub-filter-scale effects are formed. However these relationships may not be good ap-

proximations outside the idealized scenarios small regions (Neggers et al. (2012)). Additionally,

sub-filter-scale effects diagnosed from filtered fields have no memory or transient development in-

dependent of the filtered solution. Such closures only capture the homogeneous statistical effects of

sub-filter-scale processes. When imposing scale separation at a filter level for which sub-filter-scale

processes are not truly homogeneous, conventional parameterization may lead to biased filter-scale

solutions.

In climate models, sub-filter-scale convective processes may have significant heterogeneous de-

velopment and important interactions with other sub-filter-scale processes. One approach to im-

proving simulation of convection in climate has been to resolve clouds more directly. The need

for coarse cloud parameterization may be eliminated by uniformly increasing model resolution to a

horizontal spacing of less than 10km, effectively extending the domain of a CRM to cover the entire

globe. Brief simulations (on the order of weeks) resolving clouds throughout a global domain have

been achieved at this resolution (Satoh et al., 2008), but remain too expensive to compute for the

longer time periods relevant to climate change. In addition, even global cloud resolving models may

have additional unresolved processes that need parameterization, therefore they do not preclude

the need for improved closure techniques.

In contrast to conventional methods, MMF solves reduced-dimension versions of the physical

equations that describe sub-filter-scale effects. The sub-filter equations of motion used in MMF effi-

ciently permit development of heterogeneous, transient and local dynamics. In climate applications

of MMF, instead of conventional parameterizations, CRMs are employed directly; one is nested

in every grid-column of a coarse (order 100km horizontal spacing) climate model. Computational

savings over a global CRM are accomplished by reducing the size of the nested model domains so
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that they occupy only a fraction of the horizontal extent of the outer grid-column.

Despite difficulties evaluating MMF in complex systems, the trend in MMF experiments has

been to apply the framework to increasingly computationally intensive and physically realistic

systems. In the framework initially conceived by Grabowski et al. (1996), one CRM was driven

by a vertical profile of large-scale conditions observed a priori in the GARP Atlantic Tropical

Experiment (GATE). The coupling was designed using relaxation of momenta to ensure the small-

scale dynamics would develop yet would not deviate severely from the known GATE observations.

This technique was more like dynamical downscaling approaches since it lacked feedback to the

large-scale system. Later, large-scale feedback was completed using an outer model covering a

400km square area coupled to 100 CRMs. (Grabowski and Smolarkiewicz, 1999; Grabowski, 2001).

The first application of MMF to an atmospheric model with global coverage, the atmospheric

component of the NCAR Community Climate System Model (CCSM), used over 8000 CRMs.

(Khairoutdinov and Randall, 2001) Simulation of one model year cost two weeks of computer time

using 64 374MHz processors. Tao et al. (2009) applied MMF to the NASA Goddard finite-volume

atmospheric general circulation model - its over 12,000 cloud-resolving models require 365 hours

on 384 processors per year of model simulation. Most recently, Stan et al. (2010) applied MMF to

the fully coupled atmosphere-ocean CCSM.

In sharp contrast, our work explores the framework at the opposite end of the model-complexity

spectrum. There has been progress in the development of simple systems for understanding MMF

using stochastic closure models by Kerstein (1988) and Majda and Grote (2009). The contribution

of this thesis is the first application of MMF to a simple, deterministic test model.

5.1.1 MMF equations and approximations

We now outline general equations for the framework and highlight three of its important approx-

imations. We conclude by defining criteria for a model that would be successful in testing the

significance of the errors in these approximations. The following derivation illustrates how MMF

may be used to solve a closure problem in general nonlinear equations. It is based on the re-

vised formulation of Grabowski (2004), the asypmtotic derivation of Majda (2007) and the most

recent clarification from Randall and Khairoutdinov (2010), all of which have sought to clarify the

method and give it more sound mathematical footing over the original framework in Grabowski
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and Smolarkiewicz (1999).

Consider the system of partial-differential equations (5.1) whose state is v(x, t) and is comprised

of advection terms, B, and other linear and nonlinear sources/sinks, S,

vt = B(v) + S(v). (5.1)

The subscript t denotes the partial derivative with respect to time.

We define a filter operator (·), which throughout this work is usually a box filter, although

other filters like the sharp spectral filter could be applied – the main requirement is that the filter

commutes with differentiation, such that

v(x, t) = v̄(X, t) + v′(x, t) (5.2)

v′(x, t) = 0.

Then applying the filter to equation (5.1), and substituting (5.2), we arrive at the filtered system

(5.3) that depends on both v̄ and v′,

v̄t = B(v̄ + v′) + S(v̄ + v′). (5.3)

The system must be closed with an expression for v′. Conventional closure parameterizations

would ignore any small-scale effects in B, letting B(v) ≈ B(v̄), and would define an approximate

function for sources and sinks, S(v) ≈ S̃(v̄). The approximate system, v̄t = B(v̄) + S̃(v̄), now a

function of only the filtered state, is solved for the large-scale behavior.

In contrast, MMF evaluates sub-filter-scale or closure equations – partial-differential equations

with resolution fine enough to resolve many of the length scales in v′. The results of the closure

equations are supplied as input to the filtered system. The sub-filter-scale or closure equation,

without approximation, is,

v′t = B(v̄ + v′) + S(v̄ + v′)− v̄t. (5.4)

For computational tractability, key approximations are made to both the filtered equations and

the closure equations. In both equations, it is common to neglect the advection terms related to
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interactions between large and small scales as in, B(v) ≈ B(v̄)+B(v′). Interacting termsB(v̄, v′) are

considered small by an argument for scale separation, though whether an actual separation exists

for the climate system has been debated. Omission of interacting terms simplifies the coupling

between the filter and closure equations although it is not strictly necessary and as we will see in

section 6.1 of the next chapter, it leads to substantial error in simulations of the test system.

For the closure equation, the main simplification is to model the sub-filter-scale behavior on pe-

riodic subdomains, one for each grid point in the discretized domain of the filtered system. Periodic

boundary conditions are advantageous because they are computationally simple to implement, they

allow for greatly parallelized processing, existing cloud-resolving models already use them, and the

actual boundary conditions may not be known. The constraint of periodic boundary conditions

means that all inputs to the subdomain models must also be periodic, thus the filter-scale variables

are commonly approximated as constants across each subdomain.

The periodic boundary approximation, as will be shown in section 6.2, is a major source of error

in MMF simulations. Periodic boundaries create a barrier between neighboring subdomains such

that communication is only possible through interaction with filter-scale variables. Consequently,

simulations will not converge to direct numerical simulation (DNS) with increasing resolution.

Figure 5.1: A segment of a one-dimensional MMF computational domain illustrating the cou-
pling of filter- and closure-scale grids. Closed circles are closure-scale grid points and open circles
denote filter-scale grid points. One closure-scale subdomain with periodic lateral boundary con-
ditions communicates with each filter-scale grid point. Arrows point in direction of information
flow, dashed indicates average, solid indicates actual values passed.

The coupling between the filter-scale domain and the closure-scale subdomains is illustrated

in one spatial dimension in the schematic of figure 5.1. The filter-scale variables are discretized

at the open-circle points on the large-scale domain, X, whereas the closure-scale variables are

discretized at the closed-circle points on x. Each filter-scale grid point, Xi, is in communication
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with the corresponding set of closure-scale grid points, xi, that make up its subdomain. Within

a subdomain information is shared between all points, however, outside the subdomain, only box-

filtered (subdomain-average) values are passed to the filter-scale model and no information is passed

to neighboring subdomains. Thus the closure-scale solution, v′(x, t), is a piece-wise discontinuous

function. In the example domain shown discretized with two filter-scale grid points, the filter-scale

sources/sinks and advection would be given respectively by,

S(Xi, t) = S(v̄(Xi, t) + v′(xi, t)) (5.5)

B(Xi, t) = B(v̄(Xi, t)) +B(v′(xi, t)), for i = 1, 2.

Note that because net horizontal advective transport on a horizontally periodic domain will be

zero, there will be no horizontal component of the closure-scale advection effects, B(v′(xi, t)). In

climate modeling MMF applications, B(v′(xi, t)) would have a non-trivial vertical component. For

our one-dimensional test system with a purely horizontal domain, B(v′(xi, t)) = 0. In other words,

for our system, MMF will not lead to any improvement in modeling advection; all of the benefit

of MMF will be attributed to modeling sources and sinks, S. For further discussion related to this

see section 6.2.1.

The key approximation to achieving computational savings with MMF is the reduction in the

dimension of the closure equation. This is typically done by reducing the dimension of the sub-

domains to something less than the dimension required to span an entire filter-scale grid-box. In

comprehensive climate models, the subdomain dimensions have been reduced in a variety of ways,

most commonly by eliminating one horizontal dimension to achieve planar (horizonatal-vertical)

subdomains (Grabowski, 2004). Others have experimented with three-dimensional subdomains that

occupy just a fraction of the horizontal extent of a filter-scale grid column (Khairoutdinov et al.,

2005; Xing et al., 2009). Another configuration used two planar subdomains at right angles per

grid column (Randall et al., 2003). Our simple test model will allow us to investigate alternative

approaches to dimension reduction besides shortening the spatial domain.

In summary, the three main approximations applied to MMF systems are as follows,

1. Terms involving filter-closure scale interactions are neglected in expressions for advective

transport.
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2. The boundaries of the closure models are periodic, therefore the filtered variables are constant

in time and space over the closure model domain and information is not advected from

subdomain to subdomain.

3. The dimension of the closure model is reduced in order to reduce computation time. Note

that this is the most important step. The MMF system is not more efficient than solving

the system at high resolution unless the closure model is made efficient by eliminating some

dimensions.

The effects of these approximations may conveniently be studied in the test system that we have

developed and that we introduce in section 5.2. The test system was designed specifically to address

several of the difficulties in evaluating MMF effectiveness for more complex systems.

5.1.2 Criteria for successful test model

Perhaps the greatest difficulty in evaluating MMF is the lack of a comparable observational truth.

Observational data is sparse; available data relevant to clouds and convection spans fairly short

periods of time with respect to climate change. Additionally, observations may not map directly

to climate variables. For example, most satellite retrievals assume that clouds occur in a single

layer, whereas climate models have vertical resolution capable of simulating multiple cloud layers.

To cope with this, MMF model output has been translated into comparable satellite retrievals by

instrument simulators (Marchand and Ackerman, 2010). In lieu of satellite measurements, other

studies have made use of reanalysis products or output from high resolution weather models that

use data assimilation (DeMott et al., 2011; Pritchard et al., 2011). However these observations are

not completely independent of model results.

Likewise, there does not exist a comparable simulated truth. Direct numerical simulation of

cloud processes would require grid resolution down to micro-scales. Global CRMs are emerging,

however they are too expensive to simulate for climate time scales. Most studies have compared

their MMF results to climate simulations using conventional convection closure which are much less

expensive simulations. Increasing the resolution of conventional models so the computation time

is comparable to MMF is not easily done because the parameterizations do not take the grid size

as an input. Existing parameterizations would need to be re-tuned or overhauled to accommodate
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the change.

Additional features of global climate models make them difficult to use for unambiguous evalua-

tion of MMF. Besides convection, many other processes are parameterized, also contributing to the

overall error in climate models. Since parameterizations may be tuned to compensate each other,

an improvement in convection parameterization due to MMF may lead to poorer performance in

the system overall, making the overall benefit of MMF ambiguous. In physically detailed systems,

MMF simulations are expensive, so the length and number of validation runs is limited, prohibit-

ing complete assessment of the many MMF configurations. Also, results have been shown to be

sensitive to the physics included in the CRMs, which may vary greatly (Tao et al., 2009).

In light of these difficulties, the simplified system most useful to studying MMF will have several

key dynamical, physical, mathematical, and computational characteristics. First and foremost,

with respect to dynamics, filtering the system equations should result in a closure problem that

can be addressed by MMF that is similar to the closure problems found in climate models that are

addressed by parameterizations. In other words, filtering should yield filter-scale equations that

can be solved on a coarse grid to achieve computational savings over DNS. Since these filter-scale

equations will have unclosed terms dependent on sub-filter-scale behavior, we should be able to

derive physically consistent evolution equations to simulate sub-filter-scale realizations that will

close the filtered system.

Physically, the system will behave similarly to just a single process found in climate models,

for example the transport of moisture. This will allow us to attribute errors directly to one closure

term instead of the many found in climate models.

Mathematically, the system should be easy to understand and manipulate analytically. Toward

this end, the domain should occupy just one spatial dimension with a minimal number of component

equations. It should be possible to compute eigenvalues analytically, at least for a linearized version

of the system. Analysis of the energetics should be straightforward using Fourier transforms.

Finally, the computational burden of numerical integrations of the system should be minimized,

permitting ensembles of MMF simulations for a range of run times. High-resolution direct numerical

simulations should be quickly computed to provide the unequivocal truth simulations critically need

for validation.
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5.2 MMF test models

The first test model we considered that could meet the above criteria is known as the Kuramoto-

Sivashinsky (KS) equation. However, for reasons explained below, the KS model alone turns out

not to be a suitable test bed and motivates the development of our eventual model, the KS-moisture

system, which includes the KS equation as a source of turbulent motion.

5.2.1 Kuramoto-Sivashinsky equation

The KS equation was an appealing first model because it shares several key properties with turbulent

momentum in the atmosphere yet covers a simple one-dimensional geometry. Its solutions span a

broad energy spectrum with energy continuously transferred between high and low wavenumbers so

that accurate simulation of the system with small spatial scales filtered out would strongly depend

on the evolution of sub-filter scales, requiring a closure model. Also, its dynamics can be easily

understood in spectral space where critical wavenumbers and eigenvalues of the linear system are

written algebraically. However, we found that although the K-S equation is physically relevant and

computationally tractable for the study of MMF, it is not a system for which MMF can be applied

independently from other closures necessary to prevent solutions to the equation from growing

unbounded. This section describes the KS system and explains how its dynamical features make

MMF insufficient at modeling the effect of small-scale behavior on the filtered equation.

The KS system was originally derived to model the propagation of waves in reaction-diffusion

chemical systems (Kuramoto and Tsuzuki (1976)). It has also been used to describe instabilities of

flame fronts in combustible mixtures (Sivashinsky (1977)) and thickness variations of a liquid film

flowing down a vertical plane (Sivashinsky and Michelson (1980)). For our purposes, we think of

(5.9) as a fluid dynamic equation and its solutions, u(x, t), as zonal velocity or height perturbations

of a thin fluid on a ring of latitude, x.

The system,

ut + uux + uxx + νuxxxx = 0 (5.6)

is solved on the periodic domain, 0 ≤ x < 2π. Subscripts denote partial differentiation.

The single parameter, ν, is a damping coefficient like viscosity or inverse Reynolds number

(Re). The key processes of advection, energy production, and dissipation are expressed by the uux,
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uxx, and νuxxxx terms, respectively. The mixing provided by advection transfers energy from large

length scales to small scales where it is dissipated. The length scale of dissipation is determined by

the Reynolds number. In the absence of mixing, all solutions to the KS equation for Re > 1 would

diverge to infinity.

The critical length scale separating energy production and dissipation may best be understood

by examining the eigenvalues of just the linear part of the system in Fourier space,

û(k, t)t = (k2 − νk4)û(k, t). (5.7)

Here û is the Fourier transform of u and a function of wavenumber, k, and time, t. From (5.7) it is

evident we now have a diagonal system in which the Fourier modes are completely uncoupled and

each mode’s eigenvalue, ek = k2 − νk4, indicates whether that mode makes an energy producing

or dissipating contribution to the system as a whole. The all real eigenvalues of the linear system

are plotted in figure 5.2 at different Reynolds numbers. We see that at low wavenumbers, the k2

term dominates the νk4 term leading to positive, unstable, energy-producing eigenvalues. As the

wavenumber increases, the dissipative term, νk4 becomes stronger, eventually overwhelming k2,

making clear the reason for fourth order diffusion. At the critical wavenumber, kcrit = 1/
√
ν, the

production and dissipation are in perfect balance corresponding to a zero eigenvalue. Dissipation

dominates for wavenumbers beyond kcrit with all of the eigenvalues being negative and hence stable.

As Re increases, kcrit shifts toward the higher end of the spectrum, increasing the number of waves

that produce energy.

The Fourier transformed system also helps us understand the shape of the energy spectrum.

The eigenvalues are maximized at a peak wavenumber, kpeak = 1/
√

2ν which corresponds to the

peak in the energy spectrum. The rapid decay of the eigenvalues beyond the critical wavenumber

creates steep attenuation of energy in the spectrum. We illustrate the spectrum features for our

particular choice of Re = 100 in figure 5.3. This value was selected to achieve the desired complexity

of spatial structures.

Applying a spatial filter to the KS equation results in the filtered equation below with a clear

closure problem,

ūt + uux + ūxx + νūxxxx = 0. (5.8)
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Figure 5.2: Eigenvalues of the linear system (5.7) for decreasing Reynolds numbers as indicated
by the legend. The vertical lines indicate the critical wavenumber, kcrit =

√
Re, at which the

eigenvalues cross over from unstable to stable.

Here the nonlinear term requiring closure provides the critical energy transfer needed to keep

solutions bounded. Model this closure term incorrectly and energy production grows unbounded

as it would in the unstable linearized system (5.7) causing solutions to diverge to infinity. Even

though MMF can approximate the closure term with good statistical accuracy, the filtered system

is extremely sensitive to its accuracy and subtle errors lead to unbounded solutions. In simulations

where the closure term was computed ahead of time from DNS, the solution of the filtered equation

grew to infinity after a short integration time due to rounding errors in the pre-computed term.

MMF does not come close to approximating the closure term to within rounding error for several

reasons. First, sub-filter-scale advection is grossly limited by the use of periodic subdomains for the

closure simulations. Nothing is advected between subdomains because the subdomains do not share

boundaries. Next, were modifications made to MMF to alleviate the periodic subdomain limitation,

closure errors would arise due to the omission of cross terms in the quadratic advection. Finally,

were cross terms included, the simulations of sub-filter-scales would still remain approximate due

to the reduced spatial extent of the subdomains to achieve cost savings.

In summary, the closure terms that MMF is capable of generating are too approximate to

provide the energy transfer necessary to keep solutions of the filtered KS equation from diverging

to infinity. The need for a more forgiving model motivates the slightly more complex but better
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Figure 5.3: Time-average cumulative energy and energy distribution as a function of wavenumber
for Re = 100. Vertical lines are kpeak (dot) and kcrit (dash).

test model that we now describe. The key requirement of the improved model is that the term(s)

needing closure not be the determining factor in whether solutions remain bounded.

5.2.2 KS-moisture system

Given what we learned about MMF and the KS system, we designed the system described in

this section to improve on the shortfalls of KS and meet the criteria for a successful test model

outlined in section 5.1.2. Although the system is slightly more complex, the guiding design principle

remains to seek a model of minimal complexity while retaining dynamics relevant for studying

the consequences of MMF approximations. Our system now has two components, representing

momentum and moisture, discretized in just one spatial-dimension to keep simulation costs to a

minimum,

ut + uux + uxx + νuxxxx = −γq (5.9)

qt + (uq)x + µqxxxx = K(q)(βu), (5.10)

on the periodic domain, 0 ≤ x < 2π. Subscripts denote partial differentiation.

We can think of q, as a cloud water mixing ratio and u as a horizontal velocity. The mois-
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ture dynamics (5.10) include internal dissipation and two non-linearities that will lead to closure

problems: advective transport and a moisture source with a variable time-scale.

The turbulent momentum equation (5.9), the KS equation with some feedback from the mois-

ture, drives the moisture equation providing a source of high-wavenumber energy. Solutions to the

KS equation are chaotic and have energy at a broad range of length scales with this energy peaking

at a critical length and then attenuating as scales become finer as discussed in 5.2.1. The broader

the energy spectra of solutions to KS, the broader will be the moisture spectra and the greater the

need for closure of sub-filter-scale moisture dynamics.

Coupling KS to the moisture equation (5.10) ensures that a wide range of wavenumbers in q

will be excited. As stated earlier in section 5.1.2, critical to the success of the test model is that

accurate characterization of its low-wavenumber dynamics depends strongly on modeling the high-

wavenumber behavior. A moisture response without any high-wavenumber energy would mean that

the system could be accurately approximated at very coarse resolution, making small-scale closure

unnecessary. We refer to the coupled test system (5.9)-(5.10) as KS-q from this point forward.

Also important to achieving the desired energy spectrum for the moisture dynamics is the

strength of the diffusion coefficient µ. The stronger the diffusion, the greater the damping of higher

order waves. We must choose a diffusion strength that will maximize the wavenumbers containing

significant energy yet minimize the development of discontinuities due to wavebreaking. We want

to maximize the width of the distribution so the need for closure is obvious.

The main closure problem to be addressed by MMF arises from the nonlinear moisture source

term, the details of which are now explained. Depending on the relative strength of moisture and

momentum in a given location, the term acts as either a source of moisture when βu > 0, which

we liken to the formation of clouds, or as a moisture sink when βu < 0, which we give the physical

significance of cloud depletion via moisture precipitating out of the atmosphere. Cloud formation

may occur given any present amount of cloud moisture when momentum is positive, which we

can think of as correlated to the strength of updrafts due to surface heating or to the strength of

vertical wind shear. The opposite sign momentum results in cloud loss or rain. Conditions leading

to the strongest cloud loss are high levels of existing clouds (positive q) combined with negative or

downdrafting or shear free momentum.

To introduce nonlinearity, the rates of cloud formation and depletion are made asymmetric
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Figure 5.4: The scale factor, K = arctan(αq)× (Kp −Ke)/π + (Kp +Ke)/2, is a function of
the relative strengths of cloud moisture and momentum.

through the scale factor K(q) which varies smoothly between two bounds, Ke = 0.5 and Kp = 1.0,

depending on the magnitude and sign of q as shown in figure 5.4. This has the effect of attenuating

the magnitude of the source or sink wherever q is negative. The parameter α is a scale factor

that determines the sharpness of the transition between the two limits of K. We chose a rather

high value, α = 100 to increase the relative importance of q′ compared to q̄ when q is close to the

transition point at 0. With this value of α, very subtle fluctuations in q′ become important to the

accuracy of the solution; this creates a scenario where any benefit from MMF will be more obvious.

The moisture dynamics feed back to influence momentum through the −γq term in (5.9). This is

consistent with the idea that cloud formation is associated with a vertical mixing of the atmosphere

that will have a tendency to act as a drag force on horizontal momentum and dissipate vertical

wind shear. The moisture source and the drag force terms of (5.9)-(5.10) lead to solutions in which

u and q oscillate with respect to one another aperiodically in time.

Assuming for the moment that q and u don’t vary in space, the KS-q system reduces to the

classical coupled harmonic oscillator with complex-conjugate eigenvalues,

λ = ±
√
Kγβi,

that vary in time with K. The nonlinear scaling of K causes the eigenvalue pair to oscillate

between two limits on the imaginary axis, a high-frequency pair resonating at undamped natural

frequency, ωp0 =
√
Kpγβ, when clouds are abundant and a low frequency pair corresponding to a

smaller resonant frequency, ωe0 =
√
Keγβ =

√
2/2ωp0 , in the absence of clouds. A possible physical
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interpretation of these dynamics is that a lack of clouds indicates a more stable atmosphere in

which the time scale of oscillations is slower. The coupling parameters, β = 10 and γ = 5, are

chosen so that q and u are roughly the same order of magnitude and to achieve a desired ωp0 =≈ 2π.

The oscillator dynamics are important for balancing time the moisture source spends with its

mean above and below zero to prevent a steady drift of mean moisture. As strong precipitation

causes q to grow negative, u increases, shifting the mean of K(q)βu above zero and tipping the

balance back toward cloud formation. Perhaps a more physically relevant model would replace

u with ux in the moisture source term where ux makes a better proxy for the surface divergence

that causes the updrafts and downdrafts leading to cloud formation and precipitation. However, it

would destroy the coupling between u and q and additional terms in both momentum and moisture

equations would be needed to maintain a balanced system in which q does not diverge to infinity.

For simplicity, we opt to keep the original formulation.

Now we consider the effects of the nonlinearity for different degrees of spatial variation in q and

u. The source term is designed so that its average value depends strongly on the spatial resolu-

tion of q (which will be modeled according to MMF). Spatial perturbations in βu are attenuated

asymmetrically by the scale factor K(q) and this has a significant effect on the magnitude of the

domain-averaged moisture source, (K(q)p)∗, as is illustrated by figure 5.5. Here we have supposed

that p(x) = βu(x) is a linear combination of simple sine and cosine waves. In the left-hand plot,

q = cos(x) has comparatively little spatial variance. It includes just one cosine mode at wavenum-

ber one that could be modeled with coarse resolution as it would in a large-scale simulation without

closure using MMF. On the other hand, in the right plot, q = cos(x) + cos(3x) includes a higher

order mode effect from cos(3x) that could be captured through MMF closure simulations. The

average contribution of the moisture source term in the right plot is about half that of the left plot.

This shows that the resolution of small-scale spatial fluctuations in q is necessary to accurately

capture the amplitude of the moisture source. In general, we would expect the variance in q̄ to be

too large without the attenuating effects of small-scale q.

A final feature of the KS-q system is the option to resolve the moisture and momentum processes

at arbitrary length-scales independently, giving us the option to filter the moisture equation, which

has been the main process targeted for MMF in climate, while retaining all scales in the KS

equation which we showed in the previous section cannot be closed using MMF. Thus we have a
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Figure 5.5: (left) The moisture source, K(q)p (dash) and the mean moisture source, (K(q)p)∗

(bold) given that p = β(.5 sinx− .5 cosx) (solid), and q = cosx (dot). (right) Same as for left
but with q = cosx+ cos 3x.

system where we can apply MMF to one process and not another to eliminate confounding sources

of error. Such a feature would be complicated to implement in a full physics climate model. This

process is outlined below.

5.2.3 Filtered moisture equation

We obtain the large-scale moisture equation (5.12) by applying the same assumptions and box filter

from section 5.1.1 to equation (5.10), beginning by separating momentum and moisture into filtered

and closure scales,

u(x, t) = ū(X, t) + u′(x, t) (5.11)

q(x, t) = q̄(X, t) + q′(x, t).

Without approximation, the filtered moisture equation corresponding to equation (5.3) from section

5.1.1 is,

q̄t + (ūq̄)X + µq̄XXXX = K(q)βu− (ūq′)X − (u′q̄)X − (u′q′)X , (5.12)

on the domain 0 ≤ X < 2π. All terms on the right hand side are functions of sub-filter-scale

variables and therefore need closure. After neglecting filter-closure interaction terms in advec-

tion, (ūq′)X and (u′q̄)X would be omitted from (5.12). This would leave (ūq̄)X + (u′q′)X which

corresponds to the approximation, B(v̄) +B(v′), made in section 5.1.1.
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The specific expressions needed to close the remaining terms on the right-hand side of (5.12)

that correspond to the general equations (5.5) are,

Kβu(Xi, t) = K(q̄(Xi, t) + q′(xi, t))β(ū(Xi, t) + u′(xi, t)), (5.13)

(u′q′)X(Xi, t) = (u′(xi, t)q′(xi, t))x, for i = 1, · · · , NF ,

however, as explained earlier and discussed again in 6.2.1, (u′q′)X(Xi, t) = 0 due to the periodicity

of the closure-scale subdomains, xi. In the above equation, NF is the number of large-scale grid

points.

Recall that solutions to the filtered equation may be obtained using fewer computational re-

sources than solving the original equations at high resolution provided that the closure models that

simulate the unknown terms are solved efficiently by a model reduction, usually a reduction in the

extent of the spatial domain. Details regarding the closure model follow.

5.2.4 Moisture closure equation

The closure model is obtained by subtitution of (5.11) into (5.10),

q′t + (u′q′)x + µq′xxxx = K(q)βu− q̄t − µq̄XXXX − (ūq̄)x − (ūq′)x − (u′q̄)x. (5.14)

The system is solved on the periodic subdomains 0 ≤ xi < 2π/NF where NF is the number of

large-scale grid points. Terms on the right hand side of the equation involve inputs from the

filtered model. Due to the periodicity imposed at the boundaries of each subdomain, filter-scale

inputs to the closure model, ū, q̄ are considered constants across the extent of each subdomain

and their derivatives, q̄t, q̄X , q̄XXXX , are zero. As was done for the filtered moisture equation, the

filter-closure interaction terms in advection are also neglected in the moisture closure equation.

With the simplifications described above, rearrangement of the remaining terms in (5.14) is

consistent with the closure model of Randall and Khairoutdinov (2010),

qt = BC +BG + SC ,

which is their equation (6). In their notation, BG, the adiabatic tendency of q due to filter-scale
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effects, corresponds to −(ūq̄)X in our equation (5.14) or B(v̄) from section 5.1.1. Their adiabatic

tendency of q due to advection on the closure scale, BC , corresponds to our term −(u′q′)x or

B(v′). The sources/sinks of q due to closure-scale physics, SC , corresponds to our source term plus

dissipative losses, K(q)βu−µq′xxxx or S(v). One can also verify that by filtering equation (5.14) we

recover (5.12) and that this remains consistent with Randall and Khairoutdinov (2010) equation

(8).

While equation (5.14) provides q′ leading to a satisfactory closure of equation (5.12), there is

nothing inherent in the equation to ensure the closure is economical. The key to computational

savings with MMF is to reduce the cost of simulating q′ in the closure model through dimension

reduction. Our simplified model allows us to systematically study the effect of reducing the di-

mension of the closure-scale models in several ways, albeit with fewer configuration options than

those available to the higher-dimensional climate systems where typically an entire spatial degree

of freedom, like longitudinal variation, is omitted. In this one-dimensional system, the subdomain

dimension may be reduced such that it spans less than the spacing between filter-scale grid points.

Alternately, a spectral truncation could be applied to the model equations eliminating negligible

wave dynamics, and this is discussed further in the next chapter in 6.3.

5.2.5 Momentum equation

Ordinarily, the momentum equation (5.9) would be divided into filtered and closure parts as was

done for moisture. The coupled system of filter-scale momentum and moisture equations together

would comprise a large-scale system solved numerically on a coarse grid. This system would interact

with an array of closure-scale systems made up of the small-scale momentum and moisture equations

solved on fine grids.

However, the main goal of this work is to illustrate unambiguously the strengths and weaknesses

of MMF in controlled experiments without other sources of error. As we saw from section 5.2.1,

MMF is not sufficiently accurate for application to the KS equation alone because the boundedness

of solutions is highly sensitive to the term needing closure, uux. Although we could develop an

alternative expression to close this term, it would not have anything to do with MMF and would

introduce unrelated errors.

Instead, the way in which we proceed is to always solve the momentum equation (5.9) on
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one continuous high-resolution grid over the full 2π-length domain (as opposed to on the periodic

subdomains). Where ū(Xi, t) is an input into the moisture equations, the high-resolution solution

u(x, t) is filtered and discretized at the large-scale grid points. Similarly, u′(xi) is computed as

u(xi, t)− ū(Xi, t).

One complication is that the momentum equation is forced by −γq(x). An approximate high-

resolution forcing is computed by concatenation of the piece-wise moisture solutions, (q̄(Xi)+q
′(xi)),

and interpolation onto the continuous fine grid. There may be some errors introduced at the

discontinuous boundaries of the piece-wise solutions, however these are minor compared to errors

introduced by MMF approximations.

5.2.6 Numerical simulation

For direct numerical integration of the KS-q system, all terms are discretized in space using spectral-

Galerkin approximation except for the moisture source which is computed by spectral-collocation.

The spatial resolution is N = 64 which includes wavenumbers up to k = ±32. The time-stepper is

implicit trapezoidal for all linear terms and explicit second-order Adams-Bashforth for the nonlinear

terms. The time step used for all simulations is ∆t = 0.001.

The filtered system uses the same integration scheme as KS-q except that the spatial resolution

varies between NF = 2 and NF = 8 with the resolved wavenumbers varying accordingly. The

moisture closure models are integrated in physical space on 36 or 16 grid points using the same

time-stepper as KS-q. The first- and fourth- order derivatives are computed using centered and five-

point differences, respectively, both with second-order accuracy. Outputs to the filtered equation

are transformed to Fourier-space by collocation. The filtered and closure models use the same time

step as KS-q DNS.

We also use a spectral-Galerkin numerical scheme to solve the closure model equations to

investigate model reduction in the following chapter in section 6.3. It has similar performance to

the finite-difference scheme and is easier to implement different spectral truncations for lowing the

cost of simulations. Resolutions include k = ±16, 8, and 4 wavenumbers. It uses the same time-

stepper and time step as the finite-difference closure model. To facilitate using a variety of closure

models, a flexible Python code manages inputs and outputs at the interface between closure and

filtered numerical models.
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MMF simulations iterate according to algorithm 3 below. The closure model simulations may

easily be computed in parallel.

Algorithm 3 Time stepping routine in MMF filtered-closure model simulations.

1. Initialize q̄(X)0, q(x)0, u(x)0, q′(xj)
0 for j = 1 to NF

2. For t = 0 to T

(a) Time step equation (5.9) and (5.12) to compute u(x)t+1 and q̄(X)t+1

(b) For every filter-scale grid point, Xj , where j = 1 to NF

i. Pass u(xj)
t, q̄(Xj)

t as inputs to the jth closure model

ii. Time step the closure model (5.14) to compute q′(xj)
t+1

iii. Compute (5.13) from the closure model solution

(c) Supply the vectors (K(q)βu)(X)t+1 and −γq(x)t+1, aggregated from the closure model
results, as input to (5.9) and (5.12) on the next time step.

5.3 Concluding remarks

This chapter reviewed the closure technique of multiscale modeling and introduced a novel test

system that couples the KS equation to an evolution equation for moisture-like processes. An earlier

test model using just the KS equation was rejected because the terms that needed the closure were

the very terms that determined whether solutions grew unbounded. The moisture source term in

the KS-q system, which does not have this property, is now the focus of our multiscale modeling

efforts. The KS-q model is an appropriate test bed for the MMF method because it permits

investigation of error sources one at a time. The results of this are the topic of the next chapter.
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Chapter 6

Performance evaluation of dynamical

closure

In this chapter, we provide an analysis of the errors due to each of the MMF approximations outlined

in chapter 5. Our approach applies just one approximation at a time. First we consider the effects

of neglecting filter-closure scale interactions in the quadratic terms of the filter-scale equation (5.12)

in section 6.1. Next in section 6.2, we examine errors introduced by periodic boundary conditions

applied to the closure-scale equation (5.14). In this section the closure model output and filtered

model output are considered separately, without coupling to each other. This helps us dissect the

error contribution of each equation without the possibility of canceling or compounding errors over

time from coupling. In section 6.3, we evaluate the effect of reducing the dimension of the closure

model. The coupled filtered-closure system is addressed in section 6.4.

6.1 Neglecting filter-closure interactions

A common approximation in MMF applications has been to neglect cross terms involving filter-

scale and closure-scale variables that arise out of separating scales in the quadratic advection terms.

We assess the validity of this approximation by simulating the KS-q system (5.9)–(5.10) where the

advection term, A, is provided as forcing, computed ahead of time from DNS in three different ways:

(1) exact advection, (uq)x, as in DNS, (2) cross-terms omitted, retaining only (ūq̄)X and (u′q′)x

terms, and (3) all terms involving closure-scales omitted, leaving just the filter-scale advection term,
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(ūq̄)X .

Figure 6.1: A realization of the filtered moisture field, q̄, satisfying qt+A+νqxxxx = Kβu, where
(left) all scales are included in advection, (center) filtered-closure scale-interactions are omitted
from advection, and (right) all advection terms involving closure-scale variables are omitted.

The resulting moisture solutions, q, are coarsely box-filtered with box length ∆ = π to illustrate

how well each advection closure captures filter-scale behavior. A comparison of q̄ for the three

advection scenarios, given a particular initial condition, is plotted in figure 6.1. We see that beyond

about one time unit, the individual eddies (local minima or maxima) become less clearly defined as

the advection term is increasingly made approximate. The simulation neglecting only filter-closure

interactions looks to have statistical behavior closer to the DNS simulation than the simulation

neglecting all closure-scale terms. This is evident by comparison of the strength and size of eddies:

the temporal duration of the eddies is generally longest and the amplitude weakest in the simulation

neglecting all closure-scale terms (far right plot). For a more rigorous analysis of the eddy energy

at various length scales, we turn to a spectral analysis.

The time-averaged spectra of q and (uq)x are plotted in figures 6.2 and 6.3, respectively, for

each of the advection scenarios. In figure 6.2, it is evident that the cross-terms are responsible for

a large amount of energy in the q spectrum at all wavenumbers. The omission of all closure terms

introduces significant error in addition to this for wavenumbers greater than the cutoff of k = 1.

(Although our MMF application uses a box filter, the filtering effects are similar to applying a

sharp spectral filter with cutoff wavenumber kcut = π/∆ = 1.) Beyond k = 2, the performance

of the no-closure-term scenario is as bad as if we had neglected advection altogether. Thus, when

all closure-scale terms are neglected, energy found at high wavenumbers is due to the nonlinear

moisture source term rather than any mixing due to advection.
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Figure 6.2: Comparison of the time-averaged energy spectra for q corresponding to the real-
izations of figure 6.1: all scales included in advection (solid), filter-closure scale interactions
omitted from advection (dash), and all advection terms involving closure-scale variables omitted
(dot). In addition, the spectrum without any advection of moisture at all is shown for reference
(dash-dot).

Figure 6.3: Comparison of the time-averaged energy spectra of (uq)x including (solid) and
neglecting (dash) cross-terms.

The greatest discrepancy in the q spectra occurs at the zeroth wavenumber, but as we observe

in figure 6.3, there is no error in the spectrum of (uq)x from cross-term omission at k = 0. The

error in advection spectra does not become significant until k ≥ 3 and increases steadily from there

to a peak around k = 7. The energy discrepancy for q at k = 0 is actually due to indirect effects

from the system’s coupled-oscillator-like behavior. High wavenumber energy in the q spectrum that

is lost due to omission of terms feeds back to the momentum equation whose higher modes will

likewise be less excited. Less energy in the spectrum of u feeds back to the energy of q at k = 0 by

way of diminished amplitude in the mean mode of the moisture source K(q)βu.

We explain the behavior observed in figures 6.2 and 6.3 in greater detail by considering advection

expressed in Fourier space and by defining cross-terms and closure-terms with respect to the Fourier
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modes they include.

The derivation of advection in Fourier space and term definitions are as follows. Momentum,

moisture, and advection may be written, respectively, as the following series of Fourier mode

products,

u(x, t) =
∑
k

ûk(t)φk(x) (6.1)

q(x, t) =
∑
k

q̂k(t)φk(x) (6.2)

(uq)x(x, t) =
∑
k

âk(t)φk(x), (6.3)

with φk the Fourier mode at the kth wavenumber. Substituting (6.1) and (6.2) into (6.3) and

applying standard Galerkin projection, the coefficient for the kth Fourier mode in advection is a

series of products of u and q Fourier coefficients,

âk =

N/2∑
j=−N/2

ikûj q̂k−j . (6.4)

Here, N is the total number of modes included in the series and i =
√
−1. Given this, a cross-

term may be defined as any product of Fourier coefficients in (6.4), ûj q̂k−j where |j| and |k − j|

lie on opposite sides of the filter cutoff wavenumber. A closure-scale term is one in which both

|j|, |k − j| > kcut.

With these definitions, it is evident that mean advection is zero or â0 = 0, which is consis-

tent with the fact that on a periodic domain, the net transport due to advection must be zero.

Consequently, both spectra shown in figure 6.3 intersect origin and neglecting cross terms in â0 is

not a source of error in the energy of q̂0. The importance of cross-terms increases with increasing

wavenumber to reach a maximum near k = 7 and then diminishes. The increase is due to two

factors. First, the number of cross terms in Fourier series (6.4) increases with wavenumber such

that â1 has 2 cross terms: û−1q̂2, û2q̂−1; â2 has 4 cross terms: û0q̂2, û−1q̂3, û2q̂0, û3q̂−1; and âk

where k ≥ 3 have all 6 cross terms: û0q̂k, û1q̂k−1, û−1q̂k+1, ûkq̂0, ûk−1q̂1, ûk+1q̂−1, the maximum

number of interactions possible between coefficients on opposite sides of the cutoff. Second, the

peak wavenumber in the u spectrum occurs near k = 7. After that, the error diminishes because
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the energy in u diminishes according to fourth order dissipation.

When all closure-scale terms are neglected, the error in the advection energy spectrum is infinite

for k ≥ 3. This is because there are no components in (6.4) that involve only large-scale terms, i.e.

no terms have both |j|, |k − j| ≤ kcut.

The above analysis tells us that cross-terms and closure-scale terms in advection are of first

order importance. Neglecting them will be a major source of error in MMF simulations of our

system.

6.2 Periodic boundary error

In this section the periodic boundary assumption is evaluated. We begin with a discussion of what

that means for the ability of MMF to close closure-scale advection terms in section 6.2.1. Next

we evaluate the assumption in each of the MMF equations separately. Initially we evaluate the

closure equation by dynamical downscaling in which (5.14) is forced by filter-scale inputs computed

ahead of time from DNS. The resulting realizations of q′ and their statistical properties and energy

spectra are compared to the correct DNS values in section 6.2.2. Then the q′ realizations are used

to compute the terms needed to close the filter-scale equation (5.12) in section 6.2.3.

6.2.1 Advection

As was made evident by the analysis of section 6.1, small-scale advective transport has leading

order effects on the energy spectra of the large-scale KS-q model. Unfortunately, due to its periodic

subdomain configuration MMF cannot be used as a closure method for these effects. According

to MMF, the unknown advection terms would be computed on each subdomain with subdomain-

average values passed to the filtered equation. With periodic boundary conditions, the net advection

out of a subdomain is artificially constrained to be zero. This undesirable feature of MMF closure

models prohibits modeling advection transport other than at the filter scale between large-scale

grid points.

There has been some work in the literature to remedy the problem by Jung and Arakawa (2005).

Their scheme prescribes Dirichlet boundary conditions by interpolating the large-scale solution at

the borders of each closure model domain. However, alternatives to periodic boundaries remain
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an area for additional research. One issue with prescribing boundaries is that they cannot evolve

with the closure model; they are determined by the large-scale and fixed for the duration of each

large-scale timestep. Foreseeable solutions may have more in common with finite element methods

like discontinuous Galerkin (Cockburn (2004); Xu and Shu (2006)) where elements pass fluxes at

their borders rather than merely sharing a common prescribed boundary.

In three-dimensional climate applications the problem may be less severe than in our simple test

system because it only affects horizontal advection. The cloud-resolving closure models occupy the

full vertical extent of a filter-scale grid column which has aperiodic vertical boundary conditions so

vertical transports can be modeled.

Because advection will be a major source of error for MMF given our model, we will proceed

by removing advective transport from the moisture equation for the rest of the simulations in

this chapter. This will allow us to focus on evaluating MMF as closure for the moisture source

term alone, which is the main process targeted for improvement by MMF in more comprehensive

climate model applications. However, even without the complications of advection, there are still

other limitations we will encounter due to the assumption of periodicity. This is the topic of the

remainder of section 6.2.

6.2.2 Downscaling

The following results are from simulations of the closure model (5.14) alone where time series

of filter-scale inputs are computed a priori by filtering KS-q DNS. The closure model provides

realizations of q′ which we simulate for two different box filter length scales: box length ∆ = π

and π/2. This is equivalent to discretizing the domain such that the number of filter-scale grid

points, NF , is equal to 2 and 4 points (or up to wavenumbers 1 and 2), respectively. This is also

the number of subdomains on which we run the closure model.

Representative simulation results are shown in figure 6.4 for half of the full length 2π domain.

The other half is computed, of course, but is statistically very similar and so not shown here.

Comparing the results from NF = 4 to NF = 2, we see that closure simulations using four shorter

subdomains are less accurate than simulations on just two long subdomains. Temporal frequency of

fluctuations seem to agree between the true and model estimated simulations as expected because we

did not filter the KS-q system in the time domain. However, the modeled simulations with NF = 4
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Figure 6.4: Comparison of q′ realizations from DNS and closure models with two filter length-
scales: NF = 4 (left group) and NF = 2 (right group). Within each grouping, the left plots are
from DNS and the right plots are from closure models.

do not fluctuate with enough amplitude compared to the true simulations. The perturbations, q′,

are too weak and this is a consequence of imposing periodic boundaries on short subdomains.

Periodicity constrains the values and gradients of solutions at the boundaries to agree with each

other. This may inhibit wave development and lead to damping of the overall spatial variability

if the subdomain is too short. This turns out to be the case for NF = 4; the subdomain length

is about equal to the length of the largest eddy we try to capture with the closure model so the

constrained boundaries have a profound effect on the magnitude of eddies at this scale in the interior

of the subdomain.

To preserve variability in the interior in the presence of damped boundaries, it is necessary to

increase the subdomain length to twice the eddy length or longer. The simulations with NF = 2

satisfy this requirement, and so we see marked improvement in the accuracy of spatial variations.

The statistics of the realizations provided in table 6.1 and the energy spectra in figure 6.5 confirm

the finding that the spatial variance is too weak for NF = 4 but acceptable for NF = 2.

Var(q′)
NF DNS Closure Model

4 2.19 0.99
2 4.64 3.98

Table 6.1: Spatial variance, |q′(x)|2, in simulations of the closure model averaged over the
simulation time and over all subdomains from DNS and two closure models.

Close inspection of the spectra for NF = 2 in figure 6.5 reveals yet another limitation of periodic
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boundaries. Although the overal variance and peak energy are quite accurate, substantial energy

is missing at wavenumbers two and higher. High energy modes are needed to capture the aperiodic

boundaries of the DNS, a phenomenon well understood by Gibbs. In the periodic closure models

such discontinuities at the boundaries are quickly diffused by 4th order dissipation.

Figure 6.5: Comparison of energy spectra of q′ from each closure model realization at the two
filter scales: NF = 4 (left) and NF = 2 (right). DNS spectra shown as solid lines and closure
model spectra are dashed.

Although the variance is underestimated for NF = 4, both discretizations capture an important

feature of the closure-scale behavior: heterogeneity in the development of eddies, or intermittent

periods of high and low eddy activity. Intermittent behavior is evident in the time-series of spatial

variance shown in figure 6.6 for both NF = 4 and NF = 2. This is the main benefit of using

a dynamical closure model derived from first principles; one achieves heterogenous solutions in

agreement with the true dynamics of the system without any need for empirical tuning.
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Figure 6.6: Comparison of spatial variance of q′ over time from DNS (solid) and closure model
solutions (dash).The top two plots are results from two representative subdomains where NF = 4.
The bottom plot is from one representative subdomain where NF = 2.
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6.2.3 Upscaling

We now use the realizations of q′ computed via downscaling to compute the closure terms and pass

them back to the filtered equation (5.12) as external forcing. The q′ from the ith closure model are

supplied in the filter-scale moisture source term defined as

M(u, q)(Xi) = K(q̄(Xi) + q′(xi))β(ū(Xi) + u′(xi)), (6.5)

where i = 0, 1. As we learned in the previous section that closure simulations are more accurate

for NF ≤ 2, we use NF = 2 as the filter-scale resolution for all of the upscaled simulations.

We compare solutions for q̄ where the unknown M is computed from DNS, from MMF closure

models, and from large-scale closure alone. Large-scale closure is computed without any knowledge

of sub-filter-scale perturbations, M = K(q̄)βū.

The MMF simulation substantially outperforms the large-scale closure as evident in table 6.2

when comparing the spatial variances of q̄ averaged over the simulation time period. The small

discrepancy between the MMF closure and DNS is due to the missing high wavenumber energy

in q′ (see figure 6.5) that is responsible for additional attenuation of q̄. We confirmed this by

adapting the closure model code to accept Dirichlet/Neumann boundary conditions extracted from

DNS. With near perfect simulation at the now aperiodic boundaries, the MMF performance was

excellent. Unfortunately, this is not a viable solution because in actual coupled simulations, the

boundary values would not be known a priori, they evolve with the simulation.

The large-scale-closure solution has several long periods of high variance that skew its result as

shown in the top plot of figure 6.7. Each one is preceded by a spike in the variance of M shown

in the bottom plot. Large-scale-closure M has higher spatial variance for longer time periods than

for DNS or MMF because it is missing the attenuating effects that come with greater resolution of

q as was explained in section 5.2.2. Also, the large M fluctuations persist for longer because ū and

q̄ vary less rapidly in time than u and q. This is evident by the bottom plot of figure 6.7 but also

from the integral of |M | over the simulation period provided in table 6.2. The slow variations in

the large-scale source term make its overall contribution to the evolution of q̄,
∫
|M |dt, almost 1.5

times greater than for DNS and MMF closure.

94



Var(q̄) Var(q′)
∫
|M |dt

DNS 1.89 4.64 187
MMF closure 3.48 3.98 185

Large-scale closure 16.8 - 268

Table 6.2: Comparison of simulation statistics time-averaged over the simulation period: the
spatial variance of q̄, the spatial variance of q′ and the integral of the magnitude of the moisture
source M (6.5) of the KS-q system using different closure models.

Figure 6.7: (top) Spatial variance of q̄ over time from DNS (solid), MMF closure (dash), and
large-scale closure (dot). (bottom) Same as top but for the moisture source M (6.5).

6.3 Closure model dimension reduction

The final approximation to investigate is the reduction of the state dimension of the closure model

to achieve savings in computational cost. For CRMs this is typically accomplished by shortening

the horizontal extent of the closure model subdomain. Given what we have learned about the

effect of periodic boundary conditions on very short subdomains, shortening the subdomain length

further is not possible without greatly increasing error. Instead, we propose reducing the number

of Fourier modes used as a basis for a spectral version of the closure model.

Evident from the energy spectra plotted in figure 6.5, most of the energy and hence the vari-

ability in the closure-scale moisture solutions is contained in the first 4 Fourier modes. Therefore,

a reasonable reduced order model should be obtained eliminating as much as mode 5 and higher,

which would still retain about 94% of the energy in the spectrum.

We run downscaling simulations of the closure model decreasing the number of complex modes

95



Figure 6.8: Realizations of q′ generated by spectral closure models with the number of Fourier
modes resolved decreasing from left to right, kres = 16, 8, and 4, respectively.

resolved from kres = 16 down to the coarsest simulation at kres = 4. Note that because solutions

are all real, we only need to numerically integrate equations for Fourier coefficients corresponding

to positive wavenumbers, the negative coefficients are their complex conjugates.

The resulting realizations of q′ in figure 6.8 are shown for the same initial condition on the same

closure model subdomain (x1) as in figure 6.4. The left plot with NF = 2 in figure 6.4 is the truth

from DNS to which these runs should be compared. The reduced-order runs perform very well,

capturing the distribution of major spatial features correctly with only minor loss of some of the

finer features as resolution decreases.

The effect of resolution on the variance of q′ is summarized in table 6.3. The variances among

the three resolutions are almost identical though they underestimate the true variance slightly

due to the periodic boundary effects explained in section 6.2.2. The energy spectra in figure 6.9

shows the same missing energy in modes two and higher that was observed in figure 6.5 using the

finite-difference closure model.

Cost savings is achieved when the resolution of each of the two closure models is less than 16

modes. Direct numerical simulations of the entire 2π domain requires 32 Fourier modes. MMF

simulations reduce cost by about 50% when the closure models resolve 8 modes and by 75% when

closure models resolve 4 modes.
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kres (% Energy) Var(q′) Percent Error

DNS 4.64 -
16 (100%) 3.95 14.9%
8 (97.7%) 3.96 14.7%
4 (93.7%) 3.97 14.5%

Table 6.3: Spatial variance, |q′(x)|2, and percent error in simulations of the closure model
averaged over the simulation time and over all subdomains, as the dimension of the model, kres,
is reduced by truncating the number of Fourier modes that are resolved.

Figure 6.9: Comparison of energy spectra of q′ averaged over all subdomains for each of the
resolutions in table 6.3. DNS spectrum is shown as solid line and closure model spectra are
dashed and lie on top of one another.

Our approach to dimension reduction in which we project the closure model dynamics onto a

Fourier basis and select which modes to retain based on their energy content is an old approach in the

area of low-dimensional modeling (Lumley (1970); Holmes et al. (1996)) but is a new contribution

to MMF. Previous applications achieve reduction by eliminating spatial dimensions which does not

take energy content into account and would not have had as successful low-order results in our

test model. Our example is only the beginning of how dynamical considerations, like energy, can

be used to build low-dimensional closure models. The area of reduced order modeling is rich with

techniques for systems with more complex geometries than our one-dimensional periodic example.

A great advantage of MMF is that it breaks a system into distinct, parallel, regional models with

clear large-scale inputs and outputs. This makes MMF very compatible with advanced techniques

from reduced order modeling and system identification that may be used to build highly efficient

input-output maps to approximate the regional model dynamics.
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6.4 Coupling error

In this final section of experiments, we present the results of simulations where the filtered equation

is fully coupled to the closure models. In fully coupled simulations all of the previously examined

sources of error (besides advection which is still ignored here) come into play simultaneously. Plus

additional error is introduced due to the fact that respective inputs to the equations are no longer

prescribed from DNS computed ahead of time as they were for the downscaling and upscaling

experiments. For the first time in this chapter, the momentum equation responds dynamically to

the MMF estimates of q through the forcing −γq. Error in either field leads to changes in the

evolution of the other. Because the simulations are not anchored to prescribed inputs, our goal

with MMF is to match the statistics of the true model rather than specific realizations.

We compare MMF runs to DNS and to simulations of the filtered equation with only large-

scale closure where NF = 2. We also compare the MMF results to simulations of the filtered

equation with higher resolution, NF = 16, which is comparable in expense to the MMF runs

that use two closure models resolving 4 Fourier modes each. This comparison is rarely made for

more comprehensive climate models because their parameterizations are not generally designed to

scale with resolution. Such a comparison would require substantial new model development to fit

parameterizations to the higher resolution model. Our system has the advantage of easy adaptation

to various resolutions.

Figure 6.10: Coupled realizations of the filtered moisture field, q̄ for four different model config-
urations: DNS, MMF, LS2, and LS16 from left to right, respectively.
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Figure 6.11: (top) Comparison of spatial variance of q̄ over time from DNS (solid), MMF (dash),
and LS2 (dot). (bottom) Comparison of spatial variance of q̄ over time from DNS (solid), MMF
(dash), and LS16 (dot).

Realizations of q̄ are shown in figure 6.10 for qualitative comparison of four model configurations:

DNS, MMF with NF = 2, kres = 4, large-scale closure with NF = 2 (called LS2) and large-scale

closure with NF = 16 (called LS16). The fluctuations in the LS2 simulation are obviously too

strong over several time periods. LS16 performs much better and is quite similar to MMF and

DNS solutions. The frequency and magnitude of oscillations are in agreement on average. The

LS16 simulation does have two peaks in spatial variance at about t = 14 and t = 16 that are larger

than any individual fluctuation found in the DNS or MMF runs. This is apparent in the bottom

plot of figure 6.11 which shows the spatial variance of LS16, DNS, and MMF over time. Generally,

MMF and LS16 both capture equally well the average variance and the intermittency of periods of

high variance interspersed with less active periods. The top plot shows the same comparison but

with LS2. All four simulations could not be shown on the same axes because the LS2 simulation

has three very large peaks that far exceed peaks in all of the other runs.

The statistics of the runs are summarized in table 6.4. Perhaps surprisingly, compared to the

upscaling statistics from table 6.2, the fully coupled MMF performance is actually much improved.

In spite of the missing energy in the spectrum of q′ that caused too much variance in q̄ in the

upscaling experiments, the agreement of q̄ from DNS and MMF in the coupled experiments is

excellent. This suggests that even in this simple system, there exists cancellation of errors. The
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Resolution Var(q̄) Var(q′)

DNS, N = 64 1.89 4.64
MMF, NF = 2, kres = 4 2.05 4.15

LS16, NF = 16 2.14 -
LS2, NF = 2 16.8 -

Table 6.4: Spatial variance of q̄ and where applicable of q′ for four different model configurations
averaged over the simulation time and over all subdomains.

cancellation occurs by the following mechanism. The oscillator behavior allows u to respond to

errors in the magnitude of q. The magnitude of the moisture source depends on u and q oppositely:

missing energy in u causes decreased variance in q̄ which counteracts the variance increasing effects

of missing energy in q. We verify that indeed this cancellation is occurring by measuring a slight

drop in the spatial variance of u.

6.5 Concluding remarks

In summary, this chapter detailed a series of simulation results with the KS-q test model to highlight

the strengths and weaknesses of MMF. We showed that the approximations of neglecting cross-

terms in the filtered equation and applying periodic boundaries to the closure models are the most

dominant sources of error. In spite of these difficulties, we showed that MMF may be a good closure

technique in cases where the terms needing closure depend primarily on local effects rather than

nonlocal processes occurring outside of the closure model. The moisture source term in our system

is an example of the former, whereas sub-filter-scale advective transport proved to fall in the latter

category.

We also introduced a new way of thinking about dimension reduction in the closure models based

on energy content. The Galerkin projection of model dynamics onto Fourier modes and subsequent

truncation of low-energy modes is a common approach to dimension reduction in the area of reduced

order modeling but it has not previously been used with MMF. This has most likely been due to

the availability of existing cloud resolving models that have already reduced physical dimensions

from three- to two-dimensional domains. Application of reduced order modeling techniques is a

promising future direction for attaining better low cost closure models.

Finally, we compared results from the MMF system to both DNS and a large-scale model with
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expense comparable to the MMF. Both of these comparisons would be difficult if not impossible for

comprehensive global climate models. We found that, statistically, both MMF and the comparable

large-scale model are almost equally good approximations to DNS. This raises the question of

where to invest computational resources as they become increasingly available. Assuming that the

use of global cloud resolving models for climate applications remains prohibitively expensive for

another decade, should present model development focus on higher resolution MMF closure models

or increasing global model resolution and updating parameterizations to match?

Neither of these approaches converges to a global cloud resolving model with increasing reso-

lution. However, MMF may be a preferred approach for a few reasons not directly addressed in

our work with the KS-q system. First, MMF provides a framework for coupling existing large-scale

general circulation models of the climate with existing cloud-resolving models which minimizes the

amount of new model development. Conventional parameterizations, on the other hand, do not

generally take grid-resolution as an input parameter so higher-resolution parameterizations would

need to be developed anew. Second, if the climate has greater scale separation than our test system,

MMF may prove more economical. An increase in resolution would extend the spectrum of resolved

scales in a continuous manner. Supposing processes act at large and small scales with some spectral

band gap between them, MMF would enable modeling just the relevant scales discretely. Finally,

MMF closure models may capture the interaction of multiple sub-filter-scale processes. This kind

of interaction is difficult to model by conventional parameterizations which do not interact in as

dynamically consistent a way. In the words of Jung and Arakawa (2005), MMF may be thought of

as a useful ‘physics-coupler’ providing a viable intermediate approach to modeling cloud processes

until the computational power is available to resolve them globally.
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Chapter 7

Conclusion

The main contributions of this thesis are: three applications of systematic closure methods to

simple climate models, adaptations to the formulation of two of the methods, development of one

new model, and an advancement in the scientific understanding of uncertainty in short range climate

change. The systematic closure methods are the unscented Kalman filter, the adaptive-covariance-

rank unscented Kalman filter, and the multiscale modeling framework. They are applied for the

first time to a zero-dimensional energy balance, the Lorenz 1996 abstract atmospheric system,

and the coupled Kuramoto-Sivashinksy and scalar transport equations, respectively. Each model

embodies one of the major difficulties in closure of the climate system: uncertain and limited data,

high dimension, and vast scale. Each application demonstrates how one of these difficulties may be

addressed systematically.

In the energy balance example, uncertain data was the primary concern. This included unknown

historical forcing and natural variability in the temperature record. These factors make it difficult

to precisely estimate the transient climate sensitivity. The unscented Kalman filter was shown

to efficiently account for uncertainty in data and provide probabilistic estimates of TCS rather

than focusing strictly on a single value for it. The UKF was an advantageous approach for its

efficiency, second-order error bounds, and built in uncertainty analysis through the Kalman update

of both mean and covariance. Also, because UKF is a sequential Bayesian method, it allowed us to

experiment with the effects of initial uncertainty assumptions and to easily make future predictions

of uncertainty reductions given additional data.

Our successful application of the UKF method led to a scientific contribution in short range
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climate prediction. We produced a set of TCS probability densities mostly independent of global

climate model results that were consistent with findings of the IPCC AR4 and other studies. We

also found that the uncertainty in the predicted TCS range has the potential to narrow by about

45% given two additional decades of future data. Giving credibility to our results, we validated

the method on output from the comprehensive global climate model CM2.1 developed at GFDL

by showing that it estimated the TCS of CM2.1 to within predicted error bounds.

In the Lorenz 1996 system we addressed the issue of large dimension. We designed an adaptation

to the UKF to minimize the number of model evaluations required to make probabilistic state

and parameter estimates. The new algorithm, called adapative-covariance-rank UKF, reduced

computational expense by modal decomposition of the error covariance matrix and truncation of

its higher order modes. This led to a smaller error space for sampling by sigma points. We found it

achieved cost savings of 30-60% over the original UKF formulation without the need to introduce

any additional heuristic tools.

Work on a scalar transport equation for cloud-like processes coupled to the Kuramoto-Sivashinsky

equation highlighted the problem of wide ranging length scales. We designed a model that could be

divided into filter-scale and sub-filter-scale dynamics and applied the multiscale modeling frame-

work to efficiently simulate sub-filter-scale dynamics. The model was developed especially to address

some of the complications in understanding the performance of MMF with more complex climate

models. Our model made possible direct comparison of MMF performance with DNS and an alter-

native model of comparable expense. We found that the MMF and comparable models had similar

accuracy but that the MMF may be advantageous for coupling multiple small-scale processes and

in systems with greater scale separation.

Our application of MMF modified the usual means of achieving dimension reduction in the

physical domain of the sub-filter-scale models to instead use reduced order models truncated to

maximize energy content. Using a reduced order modeling approach allowed reduction of the

closure model dimension up to 75% while retaining the same level of accuracy. This would not have

been the case if we had made the same reduction by cropping the physical domain length.

The MMF application also illustrated some of the strengths of MMF as well as some weaknesses.

Specifically, we explained that MMF is not an appropriate closure method for the Kuramoto-

Sivashinsky equation because the boundedness of its solutions was highly sensitive to the accuracy
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of the closure. Also, with sub-filter-scale models that do not communicate at their borders, MMF

is not effective at closing terms like advection that depend on transport between sub-filter-scale

domains. The MMF is better suited to closing terms dependent on more localized dynamics like

the source term in our moisture transport equation. Finally, the periodic boundaries of the closure

models limited the minimum length of subdomains to two eddy lengths. Anything shorter resulted

in artificial attenuation of variability on the interior of the subdomain.

In summary, this thesis applied methods adapted from estimation techniques in the fields of

system identification and model reduction to models adapted from the fields of climate science and

dynamical systems. Recommendations for continued work at the intersection of these fields are

made below.

7.1 Future research directions

Uncertain climate data. Future work with respect to the problem of uncertain or limited

observational and forcing data could address the use of datasets with more spatial resolution than

the globally-averaged surface temperature and forcing records used in this work. For example, a first

step could be to resolve the data for each hemisphere and modify the energy balance appropriately.

Similarly, the model could be extended to include upwelling-diffusion processes in a horizontally

averaged global ocean. This would allow for use of temperature data at depths below the surface.

It would also make possible UKF estimates of the equilibrium climate sensitivity. One challenge

in this direction will be that with increased resolution, additional unknown parameters will arise

in the model. It would be useful to understand whether the increased number of observational

constraints overcomes the increased uncertainty in the model. Also, experiments could be repeated

with longer and improved forcing estimates such as those recently made by Friend (2011) dating

back to AD 1.

High dimension. Further work in the area of parameter estimation for very large systems

using Kalman filters will involve additional strategies to minimize the number of times a model must

be evaluated to generate accurate enough probability densities. One specific area of research would

address the process and measurement noise spaces. If these uncertainties can be approximated as

constants or as linearly additive then explicit model runs to sample these errors may not needed.
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Breadth of scales. A promising area for future work with multiscale modeling is in the design

of alternative sub-filter-scale modeling techniques. Already there has been some work examining

ways to improve the communication between neighboring closure models. (Jung and Arakawa

(2005); Majda (2007)) These efforts attempt to alleviate the errors arising from periodic boundary

conditions. Further investigation would be useful including understanding how finite element meth-

ods like discontinuous Galerkin (Cockburn (2004); Xu and Shu (2006)) could help. Another line of

work could use reduced order modeling techniques on the cloud-resolving closure models used in

more realistic multiscale applications. Toward this end, Bailon-Cuba and Schumacher (2011) have

recently built a low-dimensional model for turbulent Rayleigh-Benard convection using Galerkin

projection of the Boussinesq equations onto a modal basis obtained using Proper Orthogonal De-

composition (Lumley (1970); Holmes et al. (1996)) also known in the weather and climate field

as Empirical Orthogonal Function evaluation (Lorenz (1956)). This model could be tested as a

closure model in the multiscale framework. Similar models but including cloud equations could be

developed.

Combined methods. Finally, this work focused on the application of one method at a time

to models that isolate a single closure issue. However, no physically realistic climate model exhibits

only one of these issues. Conversely, no single method addresses every issue. For realistic systems,

one or more methods may be applied. Future work could involve developing criteria for prioritizing

the closure issues that should and could be addressed for more complex models. New methods could

be designed that merge aspects of the filtering and multiscale approaches. For example, adding

sigma points to the UKF that correspond to MMF design parameters would allow one to sample

some of the structural uncertainties in the model, like sub-filter-scale domain length, closure model

resolution, or cloud microphysical formulation.
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Appendix A

Filter Review

This appendix provides an overview of commonly used filter equations for nonlinear systems. We

review these concepts in order to establish general concepts and define variables that are referenced

in the specific filter implementations in the main text. This baseline will also aid in the comparison

of the original UKF presented in 2.3.1 with our modified adaptive-rank version in 4.1.

In general, filter algorithms follow a common two-step format where, after initialization, the

system state estimate and error covariance are first forecast in time according to a dynamic model,

and second, corrected by a set of observations to the extent possible given measurement errors.

Consider the following discrete-time, nonlinear system,

xk = f(xk−1, uk, wk)

yk = hk(xk, uk, vk)

(A.1)

where f is a forward model operator and hk is a measurement operator that may vary every k-th

filter iteration, as in, for example, a moving sensor network. The system state, xk is Lx-dimensional

with covariance

P xk = E[(xk − E(xk))(xk − E(xk))
T ].

The system has known input uk. The system also has unknown input wk, which is Lw-dimensional

zero-mean Gaussian process noise with covariance Rwk = E[wkw
T
k ]. The system outputs yk may

be a function of Lv-dimensional zero-mean Gaussian measurement noise vk, with covariance Rvk =

E[vkv
T
k ]. For implementation of the UKF, one typically considers an augmented system of dimen-
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sion L = Lx + Lw + Lv, in which the noise variables are appended to the state vector:

xaugk =


xk

wk

vk

 .

Assuming there is no cross-correlation between the state and noise variables, we form the augmented

block-diagonal covariance matrix

Pk =


P xk 0 0

0 Rwk 0

0 0 Rvk

 . (A.2)

In the forecast step, filters provide estimates, xfk and P x
f

k , of the state, xk and its covariance at

a future time according to the following,

xfk = E[f(xk−1, uk, wk)]

P x
f

k = E[(xk − xfk)(xk − xfk)T ]

In the measurement update, the following equations are used to provide the corrected quantities,

often called the state and covariance after analysis:

xak = xfk +Kk(yk − E(yk)) (A.3)

P x
a

k = P x
f

k −KkP
yy
k KT

k . (A.4)

Here, the gain

Kk = P xyk (P yyk )−1 (A.5)

weights the correction based on the relative contribution to the overall uncertainty from dynamic

and measurement factors. The matrices P xyk and P yyk are the state-measurement error cross-
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covariance and measurement error covariance, and are given by

P xyk = E[(xk − xfk)(yk − E(yk))
T ]

P yyk = E[(yk − E(yk))(yk − E(yk))
T ].

For detailed derivations of these equations, see, for instance, Simon (2006). Specific filter im-

plementations vary in their assumptions about the system (for example, linearity), and in their

approximations of the expected values and error covariances in the above expressions.
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