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Abstract

To directly image an Earth-like planet orbiting another star, coronagraphs would
have to suppress the light from that star to within one part per ten billion. Such
observations would have to be carried out from space and even then, the images will
be extremely sensitive to structural and thermal fluctuations in the optical elements
of the telescope. With just tens of photons reaching each detector during a single
exposure, sensing time variations in the residual starlight (speckles) and discerning
them from planets proves to be a challenging task. This thesis describes algorithms for
estimating the speckles both during the observations and in post-processing. It states
these estimation problems in terms of the electric field rather than the intensity of the
light, which then become non-linear and high-dimensional. On the other hand, this
approach allows taking into account the influence of deformable mirrors, and seam-
lessly incorporating probabilistic and reduced-order formulations for the underlying
optimization tasks.

This thesis also present numerical simulations of a realistic model of a space coro-
nagraph in various observation scenarios. They suggest that it is possible to contin-
uously maintain a high image contrast even when pointing at a dim star. Moreover,
employing a reduced-order model of the electric field allows increasing the accuracies
of both online and offline estimators without increasing their time complexity. Under
favorable conditions, the corresponding planet detectability thresholds lie within less

than an order of magnitude of the instrument’s theoretical limits.
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Chapter 1

Introduction

1.1 Detecting and Characterizing Exoplanets

Coronagraphs are optional elements in modern telescopes and were invented in the
1930’s to study the solar corona by blocking most of the light from the Sun[I]. Since
the 2000’s, they have been used to detect planets orbiting around stars other than the
Sun (exoplanets)|2, B, 4, [5] — a field known as “high-contrast imaging”. The “contrast”
above refers to the ratio of light intensities between the host star and the detected
exoplanet.

However, out of more than four thousand confirmed planets discovered by the year
2020, less than fifty were detected via direct imaging (see fig. [L.1)[6]. Methods which
yield the vast majority of detections rely on variations in the starlight: it either dims
slightly when the star is partially blocked by a transiting planet|7, 8] or is Doppler
shifted by small variations in the radial velocity of the star[d] due to the gravitational
pull of its planets.

The difference between the nominal spectrum of the star and its spectrum when
partially obstructed by a planet, gives some insight into the contents of the atmosphere

of the transiting planet[I0]. Such high precision transmission/emission spectra are
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Figure 1.1: Confirmed exoplanets from NASA’s exoplanet archive[6]. Most are gas
giants detected by indirect methods.

currently available only for a small fraction of the exoplanets, mostly gas giants with
thick atmospheres orbiting close to their host stars[IT]. On the other hand, rocky
planets such as Earth or Mars, have a very thin to non-existent atmosphere, and
are therefore extremely hard to characterize by indirect methods[12]. Direct imaging
would circumvent this issue by measuring the reflected spectrum of such exoplanets

although, so far, it has been proven to be even more challenging.



1.2 High Contrast Imaging

To illustrate the difficulties involved in direct imaging, consider the planet 51 Eridani
b which was discovered in 2014 at a distance of 13 AU (1.9 - 10'?> m) away from the
its host star, 51 Eridani[4]. Since 51 Eridani is located 961y (9.0 - 10'" m) away from

Earth, the angular separation between the two objects is just

1.9-10™

= 90107 2 107 rad = 0.44 arcsec.

7

51 Eridani b was detected by a D = 8.1 m wide telescope[I3] in near infrared light

with wavelengths on the order of A ~ 1 um. The ratio between the two,

1
A D = 81% = 1.2-1077 = 0.025 arcsec,

is a close approximation of the angular resolution of the telescope. In other words,
the planet was detected at an angular separation of about 18 A/ D, which is considered
relatively close.

At such small angular separations, the wave-like nature of the light plays an
important role[I4]. A star 96 light years away is, for all purposes, a point source,
but when observed through a finite diameter circular aperture, it creates a diffraction
pattern (similar to the one shown on figure [1.2] top left), also known as the point
spread function (PSF). Although at 18 A\/D this PSF is 10° dimmer than at its peak,
51 Eridani b would still not be detectable by a conventional telescope as it is about
10° times dimmer than its host. Put differently, a circular aperture D = 8.1 m
wide telescope alone, doesn’t provide the 10° contrast necessary to detect a planet
at 0.44 arcsec separation (in infrared). Indeed, the first directly observed exoplanets
were hot self-luminous giants located far away from the star with contrasts between

10? and 10|15, 16].
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Figure 1.2: Point Spread Functions (on a logarithmic scale) of a star (top) and a planet
(bottom). The diffraction pattern of a star observed through a circular aperture is
many orders of magnitude brighter than that of a planet at 3.5 A\/D (left). A passive
shaped masked at the pupil plane reduces the brightness in some regions of the image
significantly, but the remaining speckles are still many times brighter than the planet
(middle). By modifying the shapes of the DM upstream of the pupil plane, the
intensity of the speckles is reduced further to create regions of very high contrast —
the dark hole (right). The PSF were generated by a numerical model of the shaped
pupil coronagraph at Princeton’s High Contrast Imaging Laboratory|17, [18].



Coronagraphs block some of the light from the star (an on-axis source), effectively
reducing the intensity of its PSF without significantly affecting the off-axis PSF, i.e.,
without significantly reducing the intensity of the planet. They allowed the discoveries
of slightly cooler giants located closer to the star with contrast of about 10°, e.g. 51
Eridani b. However, Earth-like planets orbiting close to their hosts are expected to
have contrasts on the order of 10'°[19], far above what has been achieved to date
outside of a lab.

The major limiting factor for Earth-based observatories is atmospheric turbu-
lence: spatial fluctuations in the density of the air above the telescope which distort
the incoming light (wavefront) and the delicate diffraction pattern behind the corona-
graph. Modern telescopes employ adaptive optics (AO|20]) — fast deformable mirrors
which correct the wavefront, and are able to reduce the residual wavefront errors to
a ~ 100 nm level|2I]. Still, the finite number of photons arriving from the star and
the chaotic nature of turbulence, limit the theoretical effectiveness of AO systems to
a contrast of about 10° in the visible light[22] 23].

It is important to note that the above limit applies to the contrast during the
observations phase: the intensity ratio between the planets and the residual starlight,
also called “speckles” (or, in the context of ground based coronagraphy, “atmospheric
halo”). The threshold of the dimmest detectable planets and the signal-to-noise ratio
(S/N) depend additionally on the length of the observation and the image post-
processing strategy[24], 25]. In other words, planets dimmer than the speckles can, in
theory, be detected and characterized, given enough exposures and some algorithmic
means to differentiate their signal from the time-varying speckles. Assuming a “per-
fect knowledge” of the speckles and the probabilistic nature of photon arrival rates
(known as shot-noise), the time to achieve a given S/N is inversely proportional to

the contrast[26],
(desired S/N)?

contrast

observation time



One way to avoid the atmospheric limitation and directly image exoplanets within
a reasonable time frame, is to put a coronagraph in space. One such mission is the up-
coming Wide-Field Infra-Red Survey Telescope (WFIRST) Coronagraph Instrument
(CGI)|27] which is planned to be able to detect Jupiter-like planets. Future tele-
scopes such as the Large UV /Optical /IR Surveyor (LUVOIR)[28| and the Habitable
Exoplanet Imaging Mission (HabEx)[29] are projected to detect tens of Earth-like
exoplanets|30].

To achieve a contrast of 10® at around 3 — 6 /D the WFIRST-CGI will contain
a variety of passive and active optical components. Besides the 2.4 m primary mir-
ror, it will employ several optimized optical masks[31], fast steering mirrors|32] (the
FSM reject “low-order” wavefront errors such as line-of-sight jitter[33]) and slower
deformable mirrors (DM). The FSM and the DM will be positioned upstream of the
so called “pupil plane” after which most of the light is blocked by shaped masks.

As illustrated in Fig. actively controlling the DM is crucial to achieve con-
trasts above the passive 10? level|34] in a high-contrast region of the image commonly
referred to as the “dark hole”. Although yet to be tested in space[35], the algorithm for
creating dark holes, the Electric Field Conjugation|36], was shown to reach contrasts
above 10? in a lab setting[37].

This thesis, however, will mostly focus on the tens of hours long observation phase
that follows the creation of the dark hole. The numerical simulations of WFIRST-CGI
in Sec. [2.3]show that the dark hole is extremely sensitive to accumulation of wavefront
errors: a non-evenly distributed displacement of the primary mirror by just 1nm root-
mean-square (RMS), can halve the contrast. In fact, low sensitivities of the wavefront
errors to thermal and mechanical stresses are one of the major design requirements
for WFIRST-CGI|38|, [39]. For example, the error budget for the quadrafoil error (a
higher error mode not attenuated by the FSM) is on the order of just 0.1 nm[40] - the

diameter of a Hydrogen atom.



1.3 Organization and Contributions

The stability requirements for future space based telescopes are expected to increase
even further[4I]. It therefore becomes clear that the high contrast in the dark hole
has to be actively maintained.

Chapter 2| presents an algorithm for dark hole maintenance. It belongs to the
field of Focal Plane Wavefront Sensing and Control since it continuously estimates the
speckle field in the dark hole by measuring its intensity in the focal (image) plane. This
estimation task proves to be challenging due to the small amount of light available at
high contrasts, although it avoids non-common path errors (i.e., discrepancies between
the speckles and their estimates based on measurements outside of the dark hole).

This chapter is based on

e L. Pogorelyuk and N. J. Kasdin. Dark hole maintenance and a posteriori inten-
sity estimation in the presence of speckle drift in a high-contrast space corona-

graph. The Astrophysical Journal, 873(1):95, 2019.

Chapter (3| discusses the potential benefits of reduced-order estimation for sys-
tems coupled via low-dimensional stochastic input. Specifically, in introduces the
computationally efficient “block-diagonal filter” which exploits the large number of
measurements and the “smooth” nature of the speckles in the dark hole, potentially

relaxing its stability requirements even further. This chapter is based on

e L. Pogorelyuk, C. W. Rowley, and N. J. Kasdin. An efficient approximation of
the Kalman filter for multiple systems coupled via low-dimensional stochastic

input. submitted.

Chapter (4| presents a formulation of the “post-processing” problem that incorpo-
rates the history of the DM actuations throughout the observation. These actuations
introduce the so called “phase diversity”[42] which can help detect planets signifi-

cantly dimmer than the speckles. Moreover, the probabilistic framework provided
7



in this chapter allows incorporating various constraints on the electric field of the
speckles, e.g. their spatial and temporal “smoothness”, to help distinguish them from

other sources including planets. It is based on

e L. Pogorelyuk, N. J. Kasdin, and C. W. Rowley. Reduced order estimation of the
speckle electric field history for space-based coronagraphs. The Astrophysical
Journal, 881(2):126, 2019.

Chapter |5 discusses future potential application of the above “smoothness” no-
tion. In particular, in the context of “learning” equations of motion from videos
(an ongoing work with S. E. Otto and Dr. C. W. Rowley), it may allow extracting
physically meaningful coordinates from sequential data.

Chapters [2| through {4 also incorporate results from the following conference pro-

ceeding and article:

e L. Pogorelyuk and N. J. Kasdin. Maintaining a dark hole in a high contrast
coronagraph and the effects of speckles drift on contrast and post processing
factor. In Techniques and Instrumentation for Detection of Exoplanets IX, vol-
ume 11117, pages 397 — 403. International Society for Optics and Photonics,
SPIE, 2019.

e L. Pogorelyuk, L. Pueyo, and N. J. Kasdin. On the effects of pointing jitter, ac-
tuators drift, telescope rolls and broadband detectors in dark hole maintenance

and electric field model reduction. submitied.

The next section introduces notations, physical quantities and assumptions that

are used throughout this thesis.



1.4 Achieving High Contrast

Before a hybrid coronagraph can begin its observations, it has to create a dark hole —
a region of the image where the speckles are very dim, i.e., the contrast is very high.
One of the several[43] methods that achieve this is the Electric Field Conjugation
(EFC|36]) which is described below. It formulates the problem in terms of intensities
and electric fields, which will be denoted by I and E respectively. For the purposes
of this thesis, intensities and electric fields can be thought of merely as mathematical
constructs which describe the probability of detecting photons and the way in which
this probability is affected by deformable mirrors and telescope instabilities.

Each individual photon has a probability of reaching a particular region of the
image depending on its energy (or wavelength) and direction of arrival (DOA). In
Fourier optics[44], this probability is given by the squared magnitude of the complex
electric field associated with a particular wavelength and DOA. The more photons
are likely to arrive from a particular direction (with a particular wavelength), the
higher the squared magnitude of the corresponding electric field is and the brighter
the source of the light in this direction (and wavelength) is. The sum over the squared
field magnitudes of all the sources — the intensity at the image plane, is proportional
to the mean rate of photons arrival at the detectors.

The necessity of representing the probabilities as squared magnitudes of a com-
plex fields becomes evident when analyzing the effects of various optical elements.
In particular, the first order impact of a given DM perturbation on some image in-
tensity is not uniquely defined by just those perturbation and intensity. Instead, the

linearization needs to be carried out in terms of the electric field, as shown below.



1.4.1 A Linear Coronagraph Model

In a simplified model of a coronagraph, the dark hole is a collection of n pixels
enumerated by 7. At any given frame (or image) k, the detector at pixel i makes
a measurement ;. This measurement is assumed to follow a known distribution
parameterized by an unknown intensity, /; ;. In the absence of detector “read noise”,

yir is Poisson distributed|45],
Yir ~ Poiss(a - I; 1), (L.1)

where « is an instrument-dependent constant which describes the probability of de-
tecting a certain number of photons in a given period of time. Without loss of gen-
erality, it is possible to scale the physical quantities of the system such that o = 1.
As mentioned earlier, the intensity, I;x, is a sum (also known as an “incoherent
sum”) of scaled photon arrival probabilities for various sources. For simplicity, these

sources will also be assigned intensities and split into three categories,
L= 1D+ I + 1T, (1.2)

where I is the intensity of the speckles (residual starlight), I/, includes all distant
sources other than the star (planets, debris disks, zodiacal dust, etc.), and Iﬁ: rep-
resents the dark current noise — a source of Poisson distributed thermal electrons
internal to the telescope.

The high contrast is achieved by modifying the diffraction pattern of the speck-
les, I°, in the dark hole. Below, the star will be considered as a monochromatic
point source, i.e., having a single DOA and a single wavelength. Its diffraction pat-

tern therefore corresponds to a single electric field, E (see Sec. for a broadband

10



formulation),

I5, = |Eix|* € R. (1.3)

This diffraction pattern depends on the configuration of various optical elements:
deformable mirrors whose a control inputs, u?™ € R?, are assumed to be known;
passive elements that vary slowly between time frames, k; and FSM whose effects will
be ignored until Sec. (where it will be shown that they can be attributed to the

IZ% term). This dependency will be expressed as

The linear model of the coronagraph describes the effects of small DM perturba-

tions, u, about some nominal DM setting u? ~ uP™. To first order, this can be

expressed as
OF;

ik, ul™ +w) & Ei(k, w™) + 55,

(1.4)

which neglects the non-linearities in E; and variations in the Jacobian, gV =

\T .
(aﬁfi}M) € C?, as a function of k and uP™.

It is convenient to denote the electric field as a vector over the reals,

Re{E}]
Im{E,}
E = |Re{E,}| € R™,
Im{E,}

11



and the Jacobian (across all pixels) as

(Re{gl'})

. (Im{g}'})"
GU%auDM: (Re{gl})" | € R¥™, (1.5)

(Im{gd})"

where n is the number of pixels in the dark hole and a is the number of DM actuators

(possibly across multiple mirrors). The linear approximation (1.4)) then becomes

E(k,uf™ +u) ~ E(k,ul™) + GV, (1.6)

and is the basis for the EFC algorithm below.

1.4.2 Electric Field Conjugation (EFC)

The process of creating the dark hole is relatively short and the magnitudes of the
electric field are large, hence the fluctuations of the passive optical elements in time
(k) are typically neglected during this stage. Put differently, the goal of this process

is to estimate and reduce the magnitude of electric field as a function of just the

controls, ||E(0, uf™)|.

The estimation is done via pair-probing[46]. A set of images is taken with some

T
j=1

DM

predetermined probes, {£u;} added on top of the controls u”" (here [ denotes

the iteration of the EFC algorithm as opposed to the time k). Since the mean of
the Poisson distribution in (1.1 is al;, = I, it follows from (1.2)-(1.4) that the

measurements, y; +;;, approximately satisfy

2
Yitjl ~ }Ei(oyuzDM)ngzU'uﬂ +I7+ 17, (1.7)

12



where y; +;; is the number photons measured at pixel ¢ when the probe +u; was
added to the control during the /th iteration of the EFC algorithm (here, I and I”
lost their time index, k, because they are assumed to be either very small or constant
or both).

Although FE; are unknown, subtracting the measured intensities for each pair of

probes gives r equations in terms of the electric field estimates, Ei,
Yi+jl — Yi—ji = 4Re {Ei(()’ U—ZDM)} Re {gzU : uj} + 4Im {Ei<07 uzDM>} Im {gzU : uj} :

These equations, put together for all probes, can be rearranged as one overdetermined

linear equation,

ARe{g! - u;} 4Im{g’-u} )} Vi1, — Yi—1,

4Re {gZU . 112} 4Im {ggj . 112} : { ( Yit21 — Yi—21| (1.8)
m i

and solved (in least-squares sense) for £;(0, uPM).
The EFC control law aims at reducing E(0, u”*) based on the pair-probing esti-

mate, E(0,uPM), and is given by,
u Y —uM = —Kprey B0, uPM) (1.9)

where uPY is the nominal control chosen for the next iteration and Kpgpcy is the

EFC gain. The gain,

Kerea = ((6°) (€Y) +lua) (67" (1.10)

13



takes the energy of the controls into account by carefully choosing the ~; param-
eter (which multiplies the identity matrix I,.,) at each iteration[18] (although for
simulation purposes, v, can be chosen by trial and error).

The crucial assumption that allows disregarding wavefront instabilities during
the creation of the dark hole is that the discrete number of detected photons is large
enough so that holds and therefore the electric field can be accurately estimated.
However, when observing dim stars, the time scales required to collect a large number
of photons are long enough for wavefront instabilities to have a significant impact. A
method which takes those instabilities and the probabilistic nature of photon arrival

rates is presented in the next chapter.

14



Chapter 2

Dark Hole Maintenance

A typical WFIRST-CGI observation scenario consists of pointing at a relatively dim
(~ 5 mag) star for tens of hours, during which it will detect a total of just ~ 103
photons per pixel|26]. At the same time, the wavefront will change by hundreds of

picometers and the contrast will decrease significantly[48]. While the effects of time
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Figure 2.1: The intensity of dark-hole speckles relative to the maximum intensity of
the star (the inverse of the contrast) as it evolves during a simulated 30 hour obser-
vation (for details see Sec. 2.3). In the baseline WFIRST-CGI scenario[d7] (dashed
blue line), the DM are kept constant for 8 hours while wavefront errors accumulate
and the contrast decreases. The telescope is then pointed at a reference star for 2
hours to re-create the dark hole. On the other hand, a closed-loop scenario (solid red
line) allows continuously maintaining a fixed contrast, albeit at slightly lower level
than achievable by pointing at bright reference star.
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varying wavefront errors may be mitigated by periodically re-creating the dark hole,
it can only be done by pointing at a bright reference star for several hours[47|. This is
a consequence of the pair-probing procedure (Eq. (1.8))) which relies on a large (> 1)
number photons per exposure. Otherwise, Poisson statistics, , dictate that the
standard deviation of each measurement becomes as large as the measurement itself
and the approximation in breaks down.

Additionally, periodic changes in the orientation of the telescope might further
accelerate wavefront variations by exciting structural and thermal modes, resulting in
peaks of decreased contrast after each such maneuver[48]. Putting these effects aside,
the contrast profile corresponding to a WFIRST-CGI observation strategy resembles
a sawtooth pattern — slowly decreasing when pointed at a target star and collecting
no scientific data during dark-hole recreation phases (dashed blue line in figure 2.1)).

An alternative closed-loop approach[49] is presented below. While continuously
observing the dim target, it maintains a fixed contrast at a slightly lower level than
in a “perfect” dark hole but significantly higher than the average open-loop contrast
(red line in figure . Unlike pair probing and EFC, this approach does not perform
“batch estimation” since it cannot rely on just a few low-intensity measurements
(ground-based approaches for maintaining high contrast based on a single intensity
measurement[50, 51|, can also be considered batch estimators and would similarly

suffer from issues with low photon arrival rates in the context of space coronagraphs).

2.1 Non-linear Recursive Estimation

Recursive estimation allows merging all prior intensity measurements to get signifi-
cantly more accurate estimates of the electric field that would otherwise be possible
with a small number of low magnitude probes (such that they do not significantly

increase the intensity of the speckles). Although each new measurement is very noisy

16



(S/N ~ 1), and past measurements become increasingly irrelevant, their information
content can be appropriately scaled and combined in real time. In the contexts of
linear dynamical systems this can done optimally via the Kalman Filter (KF)[52] 53].
However, since the intensity measurements depend non-linearly on the electric field,

the algorithm below uses the sub-optimal Extended Kalman Filter (EKF).

2.1.1 State Equations

To formulate the estimation problem, it is convenient to define the hypothetical “open-
loop” electric field,

EkOL = E(kv uB]\qu

where ub¥ is the nominal dark hole DM setting (e.g. the last command computed

by the dark hole creation procedure described in Sec. . The actual, “closed-loop”,
electric field depends on the correction, u;, added to the nominal control at the kth

step of the maintenance procedure. In light of (1.6)) it is approximately given by,
E(k,ubY + ;) ~ EQY + GV, (2.1)

Note that the first order effects of the wavefront drift and the effects of control are
independent, i.e., ngl — E9L evolves on its own. A further simplifying assumption,
to be somewhat relaxed in chapters |3 and [4] is that the electric field increments are
uncorrelated in time, Normally distributed and independent between pixels,

Re { EOF , — EOF 0
{ i,k+1 i,k ~ N 72i : (22)
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with ¥, € R?*2, Vi fixed and known. This completes the description of the evolution
of the state of the system, EO (which excludes the intensities incoherent with the
speckles, I, IP, that are assumed to be fixed).

The influence of the controls shows up in the measurement equation,
Yix ~ Poiss (I; ) = Poiss (!Eka + gZU Sy ? + IiP + IiD> , (2.3)

which, for the purposes of formulating an EKF, is approximated by a Normal distri-

bution with the same mean and variance,

Yike ~ N (Lig, Lik) - (2.4)

2.1.2 Estimation with an Extended Kalman Filter (EKF)[]

In this section, the EKF will be formulated for each pixel separately and the estimates
EA%k, Vi will be computed in parallel. The Kalman Filter was also experimented
with in the context of dark hole creation with pair probing[54], but turned out to be
unstable when applied directly to the above state equations (or a variation thereof,
see “zero probes” EKF in [55]).

Below is a standard formulation of the EKF (e.g. [53]), assuming noise sources
with known fixed intensity, I/, = I”, and negligible planet signal I, < I7, (the
extension to an EKF which accounts for varying IP + [Z{D .. is straightforward but

cumbersome[49]). The state equation (2.2 gives difference equations for the predic-

L' A code example is available at
https://github.com/leonidprinceton/DHMaintenanceExample
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tion step of the filter,

Re{EiOL N } Re{EiO{ _ }
A klk—1 _ ) Jk—1]k—1 ’ (25)
m{ B0 b [m{B%E )

P pp—1 =P p—1p—1 + 2, (2.6)

where E?,f_llk_l is the estimate of the open-loop field, Ei?kL_l, at frame £ — 1 and
P j—1j5—1 is the (approximation of the) covariance of the error EiOkL—1|k—1 — EgL .
Incorporating the kth measurement is done in the update step,
OL OL
Re {Ezk\k} Re {Ei,k\kq

cor 1| oL } + Ko (Vi — Jik), (2.7)
m{ B | { B9}

which follows from the non-linear measurement equation (2.4 with,

R 2
Yik = )Ei%kq +gi - uk‘ + 17, (2.8)
1
Kiy = SAkPi,k\k—lHZka (2.9)
and
. 2Re{EiOL_ —i—gg]-uk}
HT, = i j _ A lk—1 (210)
0 [Re {Eka'k_l} Im {EAz‘(,)kleq}} 2Im {Ei%k—l + gV u,
Sik = Hz‘,kpi,mk—lﬂgk + Yi k- (2.11)

It is also necessary to specify the initial distribution of the electric field. For

example,

Re {EZ%L
~N (,ui,(b z31’,0) ) (2-12)
Im { EGf
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Figure 2.2: Dark hole maintenance loop. Based on the measurements, y, the EKF
computes an estimate of the hypothetical open-loop electric field, EOL, used to choose
a DM correction, u, to reduce the magnitude of the actual speckle field, E, which
varies in time due to wavefront instabilities. The correction, u, combines an EFC
control law with small random actuations (dithering) to ensure the stability of the
EKF. adapted from [{9]

yields a natural initialization of the EKF with Ez‘OOL|0 = {1 \ /_1] “pio and P g0 = X 0.
For numerical purposes, it is convenient to choose XJ; o to be a multiple of ¥; and EZ%L
to be either 0 or the last estimate from the preceding observation (or dark hole

creation).

2.2 Closing the Loop and Dithering

Equipped with an EKF estimate of the open-loop electric field, EQ_LM_I, at frame
k — 1, the goal is to choose a DM command correction for the next frame, ug, (the
total DM command would than be uP?” = ub¥ + ;). As shown in Fig. , the
correction is meant to reduce the magnitude of the closed-loop electric field of the
speckles. However, it is also supposed to ensure that the EKF remains stable which

is not guaranteed in this non-linear setting.
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2.2.1 Dark Hole Maintenance Control Law

Closing the loop by simply applying an EFC correction, as during the dark hole
creation in Eq. , causes the EKF to diverge due to lack of phase diversity. Indeed,
if H; ;, in Eq. remains close to constant, the EKF is close to not being observable:
the pair (loxo, H) is unobservable for any fixed H € R**![56], where Iy stands
for the identity transformation describing the evolution of the electric field in (2.2)).
Fortunately, this issue can be resolved by dithering the DM, i.e., adding small random
actuations to uy which directly modify H,; between iterations.

A closed loop control law that is capable of maintaining high contrast while in-

troducing enough phase diversity is therefore given by,
up = _KEFC’EQ_LHk_l + 5“14:7 (213)

where Kgpe = Kgpey is the EFC gain used in the last step (last ) of the dark hole

creation, Eq. (1.10). The dither, duy, is randomly sampled for example via

Sup ~ N (0,021,x0) (2.14)

YT u

where 0 € R® is the zero vector and o, is the dither magnitude — a parameter which
can be optimized (see, for example, Fig. in the next section). The DM dither

therefore plays a similar role to the DM probes but is slightly more general.

2.2.2 Recalibration

The main difference between creating the dark hole and maintaining it is that the
latter keeps track of the open-loop electric field rather than the actual, closed-loop

electric field in the dark hole. This approach seems to give a more stable EKF since
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the linearization and model errors appear in the measurement equation and only
indirectly affect the estimate.

Eventually, though, the electric fields drifts enough so that the linearization in
(L-4), begins to break down making the estimates increasingly biased and the control
less effective. A possible solution is to perform one “recalibration” step every N
maintenance steps. Formally, this is done by updating the dark hole setting, uB}

and the open-loop estimate, Eg‘é, when £ mod N = N — 1 via

DM DM SOL
upy < Upy — KercEyy,

SOL | fOL U SO
Eyr < Egy — G KprcEyy,

where “<—” denotes assignment. In a wide range of drift magnitudes simulated for
the numerical results section below, any choice of 10 < N < 100 prevented the non-

linearities from destabilizing the EKFE or diminishing the performance of the EFC.

2.2.3 Broadband Light

The derivations of the EFC and EKF assumed that the star is a monochromatic
source, hence the vector E corresponded to values of just one electric field at various
dark-hole pixels. This formulation can be readily extended|[57] to broadband light
assuming that it is well approximated by several monochromatic intensities generated
by their corresponding electric fields. In other words, the intensity of the speckles at

the 7th pixel is approximately given by the incoherent sum

I~ > Bl (2.15)
AEA;
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where A; = {\i1, \i2,...} is some spectrum discretization. Note that this discretiza-
tion is parameterized by the pixel index, since each pixel may “receive” a different

part of the spectrum.

In vector form, (2.15) can be written as,

Iy~ (BigoBiy) = 1, - B (2.16)

)

where 1; is a vector of ones, o stands for the elementwise (Hadamard) product and

Re {E/\i,l,i,k}-
Im {E)\M,i,k:}
Ei,k = | Re {E)\i,2,i,k}

Im {E)\m’i,k}

The remainder of the derivation of the broadband EKF follows the procedure in
sections [L.4] and 2.1
The open-loop electric field(s) defined in (2.1) becomes

OL _ U
ik — Eir — Gy,

where the Jacobian GY = OE;/0u is the broadband extension of gV. The drift in

(2.2) retains the same form in a higher dimension,

EgkL—O—l - Eg]f ~ N (Om EZ) )
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and so do most of the EKF equations, (2.5)-(2.11]),

1y

NOL _ FOL
E k-1 = BOl -1
Pigk—1 = Pig—1p—1 + X,

~OL _ 1nOL ~
Eiiir = Eigpo1 + Kk (Yik — Uik)

1
T
Kix = —P p—1H,
Sik

T N
Sik = Hi g Py pe—1H; j, + Uik

A minor subtlety arises due to the incoherent addition of intensities in (2.16)). The

intensity estimate becomes,
OL v \?, D

and therefore,

=2 (B9 + Gluy).

In the numerical simulations below, each detector corresponded to a single wave-
length, |A;| = 1, but multiple wavelengths were simulated in parallel. As a con-
sequence, the estimator used monochromatic EKF equations (2.7))-(2.11]), while the
controller used a broadband estimate since it technically contained monochromatic

estimates at multiple wavelengths.

2.3 Numerical Results

The numerical results in chapters [2] to [4] were simulated using the Fast Linearized
Coronagraph Optimizer (FALCO)[58|, and in particular its model of the WFIRST
hybrid Lyot coronagraph. All simulations began after a dark hole in a ring between 3

and 9 \/D was created (by FALCO) with a contrast of 4.2-1071%. Figure[2.3[shows the
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A = 546 nm A = 560 nm A =574 nm A = 588 nm A =602 nm

Speckles

Perturbed Speckles

Planet

Figure 2.3: WFIRST-CGI point spread functions of an on-axis star and an off-axis
planet in various wavelengths (the intensities are in photons per frame). Top: lowest
speckle intensity - immediately after creating the dark hole. Middle: speckle intensity
after 10 hours of open-loop observation. Bottom: the planet PSF whose main lobe is
visible at 6 A\/D. The variations of its shape with wavelength and DM commands are
unnoticeable. simulated by FALCOI58]|

initial dark hole PSF of the star and the planet in five different wavelengths uniformly
spaced between 546 nm and 602 nm. The measurements were derived from five sets
of simulated monochromatic intensities, one for each of the above wavelengths.

In a hypothetical observation scenario the speckles initially had an average in-
tensity of 1.2 % across n = 2608 x 5 pixels, and the frames were chosen to be

At = 100 sec long to make the total observation time consistent with WFIRST-CGI

projections|26]. The drift of the speckles was introduced through a random walk of
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the first 21 Zernike coefficients of the wavefront in the pupil plane,

2
o9 _ . O'd .
szl 2 251’ 2j NN (0, (m) At) > 0 < ] < P (217)

where p is the order of the polynomial, j is its azimuthal degree and o, is the mag-
nitude of the drift in units of %

The model incorporated two deformable mirror with 48 x 48 actuators each (a =
4608) and their Jacobian, GY, was computed via straightforward numerical differenti-
ation. Similarly, the effects of drift on the electric field, 3; in (2.2)), were numerically
estimated for the trajectories of E;j given a sample path generated by . The
DM dithering magnitude, o, in (2.14)), was on the order of 10 mV where an input of
1V to a particular actuator translated to a maximum of 1 nm change in DM surface
shape at the location of that actuator.

In this section, the only source of noise other than the speckles, was dark current —

a uniform flux of thermal electrons that is indistinguishable from a uniform intensity

source in photon counting mode[59]. As such, it was also Poisson distributed as part

of (2.3) with IP = 0.25 Brotons ;.

frame

The contrast history of a sample scenario with o4 = 0.2 % and o, = 5mV is
shown on figure 2.1] The open-loop contrast decreases by about a factor of 2 in the
first eight hours and, in the baseline WFIRST-CGI scenario, the telescope would be
pointed at a reference star for two hours to recreate the dark hole. The combination of
the EKF and the closed-loop control law in Eq. , allows maintaining a constant
contrast indefinitely. This closed-loop contrast, although higher than the average

open-loop contrast, is lower than in the initial dark hole due to dithering. This loss

of contrast is addressed next.
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Figure 2.4: (a) The average dark hole (inverse) contrast during a 14.2 hour long ob-
servation as a function of DM dithering magnitude, o, for two closed-loop scenarios:
with low, o4 = 50 3—%, and high, o4 = 770 3—%, drift magnitudes. The open-loop
contrast at the end of the observation is shown for comparison. The “optimal” o,
correspond to the “best” contrast. (b) The average closed-loop (with optimal o,,) and
the final open-loop contrasts as a function of drift magnitude o,4. from [60]

2.3.1 Effectiveness of Closed-Loop Dark Hole Maintenance

The phase diversity provided by the dithering of the DM (o) is necessary for the
EKF to keep up with the drift (o4). For 0, /04 that are two small, the estimation error
constantly increases, the loop opens and the contrast decreases as illustrated on the
left of figure (a). On the other hand, the larger the dither, the more adversely it
impacts the delicate speckles and the lower the steady-state contrast becomes (right
of Fig. 2.4(a)). Intuitively, there exists an optimal value of o, for which the EKF
remains accurate with minimal increase in speckle intensity.

Another source of process noise is the drift of the DM actuators[61] which is
indistinguishable from electric field drift under the linearity assumptions, and
. However, the covariances ¥; need to be increased accordingly to account for
the adverse effects of the DM. Jitter[62], on the other hand, appears as a source of
incoherent intensity (see discussion below in Sec. which varies slowly in
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time. As such it can be assumed roughly known throughout the observation and
attributed to I” as an additional source of measurement noise.

Figure 2.4(b) presents the final open-loop contrast (at the end of the observation)
and the closed-loop contrast (throughout the observation) after a hypothetical 14.2
hour long observation for various values of o4. The advantage of closing the loop
can be interpreted as either delaying the onset of drift effects from 100 3—% to 1 \1}—%
or maintaining a significantly higher contrast when the drift is large. Moreover,
by considering a more elaborate model of the coronagraph, it is possible to further

increase the accuracy of the EKF and potentially stabilize the dark hole with even

less dither.
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Chapter 3

Reduced-order Approximation of the

Filtering Problem

In previous chapters there was a discrepancy in the treatment of the electric field
between its estimation and its control. Both the pair probing, Eq. , and the
EKF, Egs. (2.5)-(2.11)), were estimating the electric field at a single pixel at a time.
On the other hand, the EFC law for the creation of the dark hole, Eq. , as well

Initial Dark Hole 24~ Perturbation 24~ Perturbation 2%~1 Perturbation

Figure 3.1: The complex electric field in the WFIRST-CGI dark hole and its re-
sponse to Zernike phase perturbations in the pupil plane. The uncertainties in the
initial distribution of the electric field are high-dimensional while its increments may

potentially be well approximated by a small number of drift modes. simulated by
FALCOI58]
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as during its maintenance, Eq. , relies on the estimate of the field at all pixels.
Of course, the disturbances in the field are correlated between pixels both due to DM
actuations and due to wavefront errors. The difference lies in the computation cost
required to account for this correlation: the EFC gain is computed just once, while
the full EKF gain would have to be computed at every iteration of the maintenance
scheme (the flight computer on WFIRST[63], for example, will not be able to per-
form multiplications and inversions of matrices with millions of entries after every
exposure).

In general, the time complexity of an n-dimensional Kalman Filter (KF) is O(n?).
However, by ignoring the correlation between subsystems (see (2.2) where X; are
defined for each pixel separately), the process noise covariance matrix for the whole

system becomes block diagonal,

S0 0
0 % 0

S = (3.1)
0 0 S

Moreover, since the measurement noise is uncorrelated between pixels, its covariance
is also block diagonal, and so is the initial error covariance (this is implicit in the
choice of P, gj9). Therefore, the subsystems remain decoupled, the error covariances
are always block diagonal, and the EKF is advanced in O(n) by effectively ignoring
the O(n?) zero terms on the off-diagonals of the “full” covariance matrices. This will
be referred to as the “banded filter’[64]. While fast, the banded filter completely
ignores the correlation between the fluctuations of the “smooth” speckles at separate
pixels.

One approach to modeling the “smoothness” of the speckles stems from the as-

sumption that most of the “energy” of wavefront drift is associated with a small
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number of structural modes, r (e.g. the 21 Zernike modes in (2.17))). This can be

expressed by splitting the open-loop electric field increments across all pixels into

EYL — EYF = GV Avy, + Awy, (3.2)
Avk ~ N (O, Vk) 5

AWk ~ N(O, Wk) y

where GV € R?™ " and V), € R™" are low rank, and W), € R?"*2" is block diagonal.
The purpose of Wy, is to model the remainder of the process-noise (not captured by
the low rank variations, V;) as uncorrelated. The columns of GV will be referred to
as speckle modes, several of which are shown in Fig. and their estimation will be
discussed in chapter [} The increments of the coefficients of the modes, Av, € R”,
act as a “global” source of process noise whereas Aw;, € R?" correspond to a “local”
source with a much smaller impact than GY Avy,.

Presumably, the coupling, Avy, is low dimension compared to the number of mea-
surements, r < n. Therefore, a KF formulated according to Eq. will potentially
estimate the coupling with high precision and eliminate this major source of uncer-
tainty. Unfortunately, despite V, being low rank and W} being block diagonal, the
covariance of the full KF is neither. Since advancing KF matrices in O(n?) is pro-
hibitively time consuming, a sub-optimal estimator would be necessary to utilize the
convenient but incompatible numerical properties of the two noise sources.

In the literature, the low rank cross-correlation term, Avy, is sometimes viewed
as an “unknown input”[65] and can be “decoupled” and optimally estimated under
certain assumptions[66]. Although these estimators are as computationally expensive
as the full KF, they can be significantly “accelerated” by employing reduced order
filters[67] and their extensions to systems with unknown inputs[68]. The faster per-

formance of reduced order filters stems from the restriction of the estimates to a low
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dimensional subspace of the original state space. This restriction, however, results
in poor estimates of the speckle field since it is generated by an unrelated process of
dark hole creation, has a high-dimensional drift component, Aw;,, and therefore does
not lie in any low dimensional subspace.

Another family of algorithms known as “sub-optimal schemes” comes from the
area of atmosphere and ocean data assimilation[69, [70]. The multi-dimensional high-
resolution models required to simulate large bodies of fluid, maintain an order of
magnitudes more parameters than the number of pixels in a space telescope, hence the
O(n?) complexity of the KF remains prohibitive even for land-based supercomputers.
In these schemes, the measurements are “assimilated” using sub-optimal gains based
on increasingly sophisticated approximations of the state covariance matrix. The
banded filter[64] simply discards all off-diagonal terms of the process-noise covariance
matrix which, when used to estimate the speckles, results in mediocre accuracy (see
Sec.[3.2). Asymptotic filters (e.g. [70]), use a precomputed covariance approximation,
but still require O(n?) operations to compute the gain for time-varying systems (i.e.,
when the matrices H;j in Eq. are not known ahead of time). Reduced order
equivalents|71l, [72] suffer from the above mentioned problem of projecting the state
onto a low dimensional subspace — an approximation uncharacteristic of a realistic
speckle distribution.

Several other methods employ a low-rank representation of the covariance matrix,
but allow the estimates to remain in a high dimensional space. This can be achieved
by propagating the state along the most dominant “error subspaces” |73, [74] or using
low dimensional Monte Calro approximations of the covariance (i.e., the Ensemble
Kalman Filter[75]). In both cases the sub-optimal gains are based on low rank covari-
ance matrices, hence the estimates are “updated” exclusively along low-dimensional
error subspaces. The convergence of such methods would be too slow for speckle es-

timation purposes because the initial covariance matrix is high-dimensional, but the
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number of measurements is relatively low due to the lengthy exposure times at high
contrasts.

Other methods for large distributed systems where the EKF is prohibitively ex-
pensive include the Interlaced Kalman Filter[76] (used for robot localization), the
Decoupled Kalman Filter[77] (training of neural networks) and the Fusion Kalman
Filter[78] (for multiple sensors with dynamical states). These and other approaches,
presume no cross-correlation between process noises of a large number of otherwise
decoupled subsystems.

The next section describes a sub-optimal filter which allows for high-dimensional
state updates in O(n) time complexity, while also accounting for the “nice” properties
of the sources of the process noise. Sections and study the cost-efficiency of

the filter and its analytical properties in some simple cases.

3.1 A Block-diagonal Approximation

To make the discussion more general, the states of the ith subsystem will be denoted

as x,(f) € R¢ which can stand for the electric field of just one pixel (¢ = 2 and
T

Xt = |Re { ElOkL} Im { ElOkL} ), the electric field and the incoherent intensity of

)

just one pixel (¢ = 3), or of groups of multiple pixels (¢ > 4). The state of the full

system composed of n subsystems will be denoted as,
X1,k

cn
Xk = | Xok € R,

and the measurement as,
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for some d.

The most general linear state equation corresponding to Eq. (3.2)) is
Xip = FypXipo1 + GV Avy, + Aw, ., Vi,

with G} € R¥" and Aw; ;, € R° being the ¢th row elements of GV and Awy, respec-
tively. Alternatively,
X = Fka_l + GVAVk + Awk,

where Fj, € R consists of F;; € R“¢ on its main diagonal,

(note that the random walk assumption in Eq. (2.2)) translates into F; ; = I5x2).
The error covariance, Py,_1, of the of the state estimate, Xp,_1, of the full (Ex-
tended) Kalman Filter is based on the error covariance of the previous estimate,

Py_1)x—1, and of the process noise, )y,

Prjgp—1 = FkPk—l\k—leT + Qk;

Qr = GV, (GY)" + W,

The (E)KF then incorporates the measurements, yy, based on their noise covariance,

Ry = cov{ys,yr} € R and Hy = OYi/OXpjk—1 € R>en — the dependence of
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the predicted measurement, y,, on the state estimate. Since, the measurements are
assumed to be uncorrelated between pixels, Eqgs.(2.8) and (2.10), Ry and Hj, are also

block diagonal,

The dense and high-dimensional Kalman gain is given by,
-1
Ky, = Pop—1 HY (HyP—1 Hy + Ri)
and the state of the filter is updated via,

Xk = Xpjk—1 + Ki (Y& — Ji)

Py = (I — K Hy,) Pyji—1.

Presumably, as the number of subsystems, n, grows, the information available for
estimating the coupling input, Avy, increases as well. In the limit n — oo, one would
expect to be able to perfectly estimate Avy so that it effectively becomes determinis-
tic, and the only remaining source of uncertainty is Awy. While the numerical results
in Sec. suggest that this is indeed what happens in a model of a coronagraph, it
is not necessarily the case for general linear systems as illustrated by an example in
Sec. 3.3

The filter in Sec. used the block-diagonal process-noise covariance, 3, from
Eq. instead of (), i.e., ignored the correlation of the electric fields increments
between pixels. It therefore allowed formulating a separate filter for each pixel which

is equivalent to keeping the covariance matrices, Pyx—iand Py, and gains, Kj, also
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block diagonal. By propagating n filters with a ¢ = 2 dimensional state each, it
avoided the O(n?) time complexity of the full EKF. Also, by discarding the off-
diagonal elements of @)y, it ignored almost all the information about the low dimen-
sional coupling, Avy, resulting in a relatively poor accuracy.

Alternatively, one can choose to discard the off-diagonal elements of Py, rather

than ). This would lead to the following “block-diagonal” approximation, denoted

by ",

Py = FrBeapr B+ Qs (3.3)
~ ~ ~ —1
Ky = Pk\k—lHkT (HkPk|k_1H,Z’ + Rk> ,
Puye =D { (z - f(ka) p,ﬂ,g_l} , (3.4)

where the operator for “discarding” the off-diagonal elements is formally given by,

T )

Ml,l M1,2 Ml,n Ml,l 0 0
M2,1 MQ,Q M2,n 0 M2,2 0
D
L Mn,l Mn,2 Mn,n ) 0 0 Mn,n

for all M1<; j<n- In this case, the sub-optimal gain, K}, does take the cross-correlation
into account and the update-step covariance approrimation, ka =D {pklk}> has just
O(n) elements. An efficient way to advance this filter that avoids explicitly computing

K is given below[79].
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3.1.1 Efficient Computation of the Block-diagonal Approxi-

madtionl]

Note that the prediction-step covariance approximation is not block diagonal,
D {Pk|k_1} #+ Pk‘k_l, and it remains to be shown that advancing ]5k_1|k_1 to ]5k|k can
be done in O(n) operations, i.e., without computing most of the elements of 15141@71-
The matrix inversion lemmal[80] allows expressing Py in terms of a block diagonal

matrix, Ag, and products of rank r matrices,
Py = A+ D{BuCia B + GV Cia (6¥)" + G¥ Cua B + BiCis (GY)}, (35)

which are defined via

Ay =Ly, — Ly Hy M7 Hy, Ly, € R
By, =L . H M *H,G", € ReT
Cra= (Vi '+ Nk)_l ; e R™"

Ckg :Vk (NkaJNk — Nk) Vk + Vk, e R™"

Crs =ViNiCri1 — Vi, e R™"

and
Ly, Zkakfuqug + W, €R™n

My =Ry, + Hy Ly H], e R™

Ny = (GY) HI M H,GY. e R™7

L' A code example is available at
https://github.com/leonidprinceton/block-diagonal-filter
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To get Z5k|k from ﬁ’k_l‘k_l, one first computes, in O(n), Ay, Lx, My since they are
block-diagonal. Then, one proceeds by obtaining Ny and By, in O(nr?) by computing
all the sparse products before multiplying them by GV. The Cy 1, Cy.2, Cr 3 are then
computed in O(r?) since they are r x r matrices. Finally, the O(n) non-zero elements
of PWC are computed in O(r?) each, as products of r dimensional vectors inside the
brackets in Eq. (3.5]).

Moreover, the corresponding approximation of the Kalman gain can be expressed
as

i, = (Lk — BiCiy (GV) = GCrs (GV)T) HT M, (3.6)

and the estimate update, K, (y — y&), can be computed in O(n) by carefully choosing
the order of multiplication.
Although not used for control purposes, the estimate of the coupling, Avy, and

an approximation of its error covariance are given by,

X T _ X
AV = —Cis (GY) HIM (ye — 31)

cov {AV; — Avy, AV, — Avi} ~ (Vi + Ny) ' = G (3.7)

If ]Sk—l\k—l happens to be the true error covariance of X;_;, than the above Av, and
C,1 are exactly the conditional mean and variance of Avy, given the measurement yy.
Eq. also suggests that as the number of subsystems increases, so does the norm
of N, and therefore the uncertainty in the coupling estimate decreases. This could

possibly lead to increasingly better estimates of the block-diagonal filter as discussed

in Sec. B3

38



0.3
, +  banded +
+ X block-diagonal +
= + +
< + +
E 0.2 + +
o + +
2 + +
g + +
= 0.1 + +
= X X x x X + X&x +
—— banded X X x x X X ox o x
=== block-diagonal
0.0
0 100 200 300 10° 10* 102 10* 10°

frame pixels per subsystem computation time

Figure 3.2: Average errors of the banded (solid red line and +) and block-diagonal

photon
frame

(dashed blue line and x) filters across all pixels in the dark hole (in ) as a

function of (from left to right): time, number of pixels assigned to each subsystem,
computation time (arbitrarily scaled). The banded filter ignores the cross-correlation
between subsystems and is therefore faster and less accurate than the block-diagonal
filter. As more pixels are grouped together, its accuracy increases at the expense of
computation time (in the limit of just one subsystem, it becomes the Kalman filter).
The block-diagonal filter has a faster performance for the same accuracy for a wide
range subsystem sizes.

3.2 Numerical Results

The cost-efficiency of the block-diagonal filter is analyzed below for the data simulated
in the scenario described in detail in Sec. 2.3l The empirical covariance matrix of

open-loop electric field increments,
o) o) o) o)

was computed in full and then split into GVV (GV)T and W via Singular Value

Decomposition (SVD). Specifically, if

01

Q=T"] o ()",
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then GV was chosen as the first 21 (per (2.17))) columns of TV, and hence

01

Figure [3.2| shows the average error of the estimate of the banded filter employed
in Sec. and the block-diagonal filter given by Egs. and (3.6). The left
panel depicts the evolution of the errors in time, with the block-diagonal filter clearly
outperforming the banded filter. However, the former was also about 30 times slower
than the latter.

The accuracy of both filters can be increased at the expense of their performance.
By bundling adjacent pixels together into the same block, the dimension of each
subsystem, ¢, can be increased while keeping the dimension of the whole system fixed,
i.e., n o< ¢c”'. As shown in the middle panel of Fig. [3.2] the accuracy of the banded
filter greatly benefits from increasing the size of subsystem and in the limit ¢ = 2n
(not computed) it becomes the full KF. Yet, since the computational complexity of
the filters grows as c2, the slight improvements in accuracy slow down the estimation
process by orders of magnitude.

The cost-efficiency of the block-diagonal filter becomes evident when the errors are
plotted against computation time (right panel of Fig. . The banded filter with 16
pixels per block is less than half as accurate and almost as slow as the block-diagonal
filter with one pixel per block. To reach the same accuracy, the banded filter would
have to be about 400 times slower with 650 pixels per block. Therefore, if a good
low-dimensional model of the drift is available and the computational power allows,
the block-diagonal filter would be preferable to the pixel-based EKF in Sec[2.] since

it would allow reducing the dither magnitude and help reject faster wavefront drifts.
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3.3 Properties (Fixed Matrices Case)

The block-diagonal filter is clearly sub-optimal, but one could hope to show that
it is stable and gets “close” to the Kalman Filter as the “relative importance” of the
coupling input decreases. Unfortunately, neither property is necessarily true although
they can be proven to hold under some specific conditions. The discussion will, for
simplicity, be constrained to fixed matrices even though a precomputed gain would
be preferable to the block-diagonal filter in that case.

First, it will be shown that the gain of the block-diagonal filter “converges” in time
which will then allow formulating conditions for the asymptotic stability of the filter.
Finally, the question of asymptotic decoupling will be addressed, i.e., whether as the
number of subsystem increases, the coupling term (GVAv, in Eq. ) becomes

effectively “deterministic”.

3.3.1 Convergence

For fixed system matrices (Fy, = F, etc.) such that the pair [F, H] is stabilizable and

[F,1/Q)] is detectable (with /Q(v/Q)T = Q), the prediction-step covariance of the

full KF, Py;—1, converges to a unique limit, P. = klim Pyjp—1. This limit satisfies the
— 00

discrete Algebraic Ricatti Equation(ARE)|[81],
P—F(P~PH" (HPH"+R)" HP)F' +Q. (3.8)
The update-step covariance and the asymptotic Kalman gain are also unique,

K = lim K, =PHT (HPH" + R)™",

k—o0

P = lim Py, = (I — KH) P,
k—o0
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and the closed loop transition matrix of the KF, Fo = (I — KH) F, is a stability
matrix.

Similarly, for ¢ > 0, the prediction-step covariance approximation of block-
diagonal filter, I5k|k_1, has a limit, P = kli_)rgloﬁm_l. It is a solution of an analogous
equation,

P=D {F (P_ — PH" (HP.H" + R)™ HP.) FT} +Q, (3.9)

that also happens to be unique|[79]. The corresponding asymptotic gain and update-

step covariance approximation are given by

. . - . -1
K = lim Ky = PH" (HPH" + R)
k—o0
P = lim By, = D{(J - KH)P_}.
k—o0
Note that, P and P. are not the actual covariance matrices of the error estimates,
X, — Xp in the limit £k — oo and, in some cases, might be very poor approximations
thereof. Some counter-examples and conditions for when P does get close to P are

given below.
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3.3.2 Stability

The first case in which the block-diagonal approximation, P, is poor, is when it results

in an unstable block-diagonal filter. For example, consider

0.998 —0.052 1.01 1 1 1
0.052  0.998 1 101 1 1
F= L Q= . (3.10)
0.993 —0.110 1 1 101 1
0.110  0.993 1 1 1 1.01
10 1
H - 9 R = 9
10 1

with n = ¢ = 2, and note that the system itself is stable (the eigenvalues of I are

all inside the unit circle). In this case, the matrix P can be computed as the limit of

equations (3.3))-(3.4)) to be

0.57 —0.46

—0.46 24.87

el

0.58

—0.39

—-0.39 11.65

and it results in an unstable filter. That is, it can be directly verified that one of
the eigenvalues of the closed loop state transition matrix, Fo = (I — f(H) F is just
outside the unit circle.

The numbers in (3.10) were chosen carefully so that the system is “barely” ob-
servable and @ is far from being block diagonal. However, when the coupling, Av, is
“weak”, it can be seen as a perturbation of Eq. around a solution of the ARE,

(3.8) (since the equations coincide when @ is block diagonal).
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Formally, let

v=[eviEy, .11

be a measure of the effect of the coupling. For small 7, the difference between the

covariance of the KF and its block diagonal approximation, HP — ﬁ‘

, is linearly
bounded by 7,
-#]-o0

when all other parameters are held constant|[79]. The difference between the gains

and the closed loop transition matrices can similarly be bound by 7,

e~ =00

HFC - FCH = O(n).

If follows from eigenvalue perturbation theory[82] that the eigenvalues of Fe also
remain within O(n) of the eigenvalues of F. Finally, since F is a stability matrix,
its eigenvalues are inside the unit circle, and therefore there exists 7 small enough
such that F is a stability matrix too. Still, this criterion for the stability of the
block-diagonal filter is not useful when the number of subsystems is large since 7

increases with the number of rows in GV.

3.3.3 Asymptotic Decoupling

As the number of subsystems, n, increases, their measurements provide more infor-
mation about the coupling, Av, whose dimension remains fixed. If Av was perfectly
known, it would have no effect on the KF covariance (i.e., V' = 0) and the steady-state
update-step covariance of both the KF and the block-diagonal filter would coincide
and satisty,

Py =D{R} = (FRF'+W)™ + HTR‘1H>_1 .
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Figure 3.3: (a) The scaled difference between the steady-state covariance of the de-
coupled filter, Py, and of the block-diagonal approximation of the coupled system, P,
corresponding to Eqs. (3.12)) and (3.13). The blocks on the main diagonal of these
two matrices get close to one another as the number of subsystems, n, increases re-
gardless of 3. (b) The scaled difference between P and the covariance of the full
KF of the coupled system, P. For 8 beyond some critical value, P becomes a poor
approximation of P. It follows that P also remains far from F, i.e., the KF remains

coupled despite the increasingly available information about the coupling, Av. from
[79]

Hence, one might expect that as n — oo, the coupling will become better estimated,
AV, — Avy, and the filters will become decoupled, P, P — P,.
The next example shows otherwise. Consider a set of identical systems parame-

terized by S

0.9 1
F, = ’ , Gy = aHi_|:1 1], (3.12)

V:|:1:|,VVZ': o ,Rz:M, (3.13)

which is another case in which the block-diagonal approximation, P, might diverge
from the true covariance. Figure[3.3|a) shows the norm of the difference between each

block on the main diagonals of Py and P (or equivalently HPO - PH /n). It decreases
F
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linearly with the number of subsystems regardless of the value of the parameter 3, i.e.,
the block-diagonal filter approximates the system as becoming increasingly decoupled.

Yet, the actual system and the corresponding full KF covariance, P, do not nec-
essarily become decoupled. Indeed, for 8 above some critical value, HIS — PHF/n
does not decrease with n thus rejecting the possibility that P becomes close to P
(or Py). Since P is the true covariance of the (optimal) KF, the true covariance of
the block-diagonal filter must be larger and even further away from P, (and from its
approximation, P). For other 3, one has HP - PHF/n — 0 and [|[P— Bl|p/n—0
and, as a consequence of the triangle inequality, also HPO — PHF /n — 0, i.e., the full
KF becomes decoupled.

To quantify the convergence of P to Py, it is helpful to define the relative influence

of the coupling,
T . -1 -
C= (v1 + (6" HT (H (FPFT + W) HT + R) HGV) e R™  (3.14)

where P is the asymptotic covariance approximation of the banded filter (which as-

sumes that the process noise covariance is block diagonal, D {Q}),

-1

-1
P=D {P} - <(FPFT + D{Q}> + HTR—lH) .
Note that P > P, since D {Q} = D {GVV (G’V)T + W} > W. The intuitive meaning
of C'is the first covariance of Av,— Avy if the coupling, Avy , was suddenly to appear
after the “decoupled” filter has converged.
Careful inspection of Eq. (3.14) shows that C' “decreases” with the addition of new

subsystems since P and W are block diagonal and positive definite. In particular,

if the subsystems are identical as in the above example, the norm of C' is roughly
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inversely proportional to their number,
IC] =6

This implies that the effect of coupling on each subsystems diminishes with n.

Formally, let
- Jeto@y]
F

be a measure of the influence of the coupling on the ith system, and note that ¢;
decreases with n (unlike 7 in Eq. (3.11)). For small ¢;, the difference between the ith

block of Py and P is linearly bounded by ¢;, i.e.,

H(Po)i - ]51

= O(e:)

when all other parameters are held constant|79].

The block-diagonal filter is therefore a good approximation of the full KF if the
latter becomes decoupled. This is likely to happen for large systems with mixed low-
order and uncorrelated process noise such as the WFIRST-CGI model in Sec. 3.2 In
those cases, the block-diagonal filter is significantly more accurate than the banded

filter and vastly more efficient than the full KF.
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Chapter 4

Reduced-order Approach to Post

Processing

The standard post-processing pipeline begins with raw history of detector measure-
ments that needs to be parsed, calibrated and reduced to a small set of images at dif-
ferent telescope orientations and wavelengths[83]. These intensity images are mostly
of speckles (residual starlight) with other objects (e.g. planets or debris disks) mixed
within. Most such objects are not immediately distinguishable from speckles in any
single image, and there exist many approaches and several software libraries which
allow extracting these dim signals[84] [85].

The simplest post-processing method is PSF subtraction and, as its name sug-
gests, it involves subtracting the presumably known PSE of the speckles from the
images. The subtracted PSF can be obtained, for example, by making another ob-
servation of a reference star with a spectrum similar to that of the target|86]. When
multiple reference observations are available, they can be linearly combined into the
to-be-subtracted PSF that best matches a given image. The basis for this procedure

is known as Karhunen-Loéve Image Projection (KLIP)[87] or Principal Component
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Analysis (PCA)[88, 89], and more sophisticated versions include the robust PCA [90)]
and the Non-negative Matrix Factorization(NMF)[91].

In it also possible to discern the incoherent signal from speckles in a single set
of images based on their different physical behavior in terms of spectrum[92, 93] 94],
polarization[95], phase apodization[96] 97|, etc. However, most of these phenomena
provide little phase diversity at small angles of separation[98| (for example, the loca-
tions of the peaks of the perturbed speckles in Fig. do not move significantly as a
function of wavelength and, in that sense, behave similarly to planets).

A source of diversity that will be exploited by WFIRST-CGI is image orientation.
Similarly to ground-based telescopes which rotate with Earth, WFIRST will be rolled
along its observation axis by 26 deg every two hours[47]. While the diffraction pattern
of the starlight and measurement noise are internal to the instrument and therefore
do not depend on the roll angle, PSE' from other objects will change their location in
the image. The Angular Differential Imaging (ADI)[99, 100] and Locally Optimized
Combination of Images (LOCI)|[101] are methods that subtract and recombine images
at different orientation to retrieve those incoherent signals.

Yet, none of the above approaches take DM actuations into account. Most use
“co-added” images of thousands of short exposures with different DM setting each,
although it is also possible to incorporate short exposures of “frozen speckles” and data
from wavefront sensors used by AO[102]. In space-based telescopes, the slowly varying
nature of the speckles implies that even minute-long exposures are well modeled by
just one electric field per wavelength. It might therefore be beneficial to formulate the
post-processing problem in terms of the electric field rather than intensity to allow
taking the history of DM controls into account. Moreover, the dithering of the DM
which is necessary for dark hole maintenance (Sec. [2.2)), itself constitutes a source of

phase diversity.
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4.1 An Electric Field Formulation of the Post-
processing Problem

If the observation of a target star was performed in a closed-loop manner as discussed
in chapter [2| then its data would consist of n - T photon counts, {y; } across n pixels
and T frames, the history of the DM controls {u;}, and the controls Jacobian, GY.
The goal of the probabilistic algorithms below is to estimate the total intensity of all
incoherent sources, I/, = I} + I],, by separating it from the time varying intensity

of the speckles, Ifk

4.1.1 A Maximum Likelihood (ML) Formulation

The number of detected photons has a known distribution parameterized by the

incoherent sum of the intensities, (1.1)) or
Yix ~ Poiss (I; ) = Poiss ([fk + Illk) .

In other words, the probability of observing vy, given I;; (or the likelihood of I;

given the measured y; ) is

Izy}c" exp (—I;x)

P (Yigl Lig) = , (4.1)
Yik:
The effects of the controls, g¥ - Auy, are assumed to be known (see ((1.4))),
[5/<; = EfkaﬂLgiU-uk 2,
and thus can be incorporated into the above likelihood function,
2
p (yzk| Ez?kL’ IzIk:) =D (yzk\ ’Ei?kL + giU : Uk‘ + Ifk) . (4.2)
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Unfortunately, p (yi,k]Eka,[i{ k) now contains three real-valued parameters for

each measurement, and the unconstrained maximum likelihood (ML) formulation,

max p(y“€|EZ VAN (4.3)

is ill-posed. However, arbitrary changes in electric fields and intensities between ad-
jacent time frames are unphysical, and the problem can be regularized by introducing
suitable constrains on these quantities.

The first such constraint prevents the incoherent intensity from fluctuating (except
if the telescope changes its orientation amidst the observation, see Eq. and
surrounding discussion). This is a good assumption for the main PSF lobes of the
exoplanet as they do not vary significantly with wavefront and DM perturbations (see
Fig. . In other words, the intensity satisfies I/, = I = const, ¥k, and furthermore
it can be approximated as the average discrepancy between the measurements and

the speckles,
T
Z Yik — [
k:

Formally, the incoherent intensity estimate, I f i, 1s defined as the following function

. T
of the estimates of the open-loop electric field, {EiOkL} ,
) k=1

‘2 - I?) } +IP, (4.4

where, I is the constant intensity of the dark current which must be above ff . This

is ensured by the ramp function,

§ >0
ramp{¢} = .

0 £€<0
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Although the estimation problem is now formulated in terms of just the electric
field, it still remains ill-posed. The two techniques below regularize the problem by

imposing either temporal or spatial smoothness on the speckles.

4.1.2 Regularization via Drift Increments Prior

The assumption that the electric field performs a random walk, (2.2) and (2.12),

provides a probability distribution for the electric field increments,

T
p (EOkLH - E-OkL) = exp _1 Re {EgkLJrl a EgkL —1 Re {Ei?kLH - EgkL
o 2 |t { B, — B Im { B, — B9
(4.5)
T
(E00) = xp | L TP b |y e B =)
2,0 - i,0
2 Im {EgOL - ,ui,()} Im {EZ'?OL — /’Li,O}
(4.6)

which act as a prior for the trajectory {EZOkL }:: K This prior penalizes solutions of
that overfit the noisy measurements, {yhk}f:l, with large temporal “jumps” in
the electric field.

This soft constraint transforms the goal into finding the maximum of the a-

posteriori (MAP) probability of the measurements given Eqgs. (4.5) and (4.6)), i.e.,

T T—1
max klep(yi,k!Eﬁf,T{k)] : LT:I p(EQi —EOD) | p(E) . (47)
{ESKL k:1’{li{k}k:1 ! !

Numerically, a local maximum of the above posterior is found by optimizing a log-

likelihood cost function, J;. It is defined below in terms of the “intermediate” estimate
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of the incoherent intensity, Eq. (4.4)[49],

N T T . 2 A . 2 A
5 ({Be} ) =3 ([Boe e it = yetog (|02 + 87w+ 11))
- k=1

(4.8)
A A T A A
12 Re {EiOkLJrl - Ei?k:L} sl Re {Ei?kLJrl - Ei?k:L}
2 \ [ { Bk, - B (m{ B9, - B
T
1 |Re{EZ — pio} o1 Re {Ef%" — pio}

+3 )
Im {Ei(,)OL — ,uz-yo}

2 Im {E’L?OL — ,Ui,O}
21 ~on 1 AOL U 2 D D
I; {Ezk }k:1 =ramp TZ Yik — ’Ezk + g; 'uk‘ — I + 17,

k=1

)

which is obtained by combining Eqs. (4.1)), (4.2) and (4.4)-(4.6)) and dropping constant

terms. The resulting incoherent intensity estimate is given by

. T
II'| argmax J; ({E’?’“L}k:l)

{BoFYT
ik Jp=1

4.1.3 Regularization via Electric Field Order Reduction
(EFOR)[]

Another way to make the ML estimation problem well posed is to reduce the number

of free parameters by constraining speckles to a low-dimensional subspace,
EYL = GYvy. (4.9)

Here, the modes, GV € R**"_have the same meaning as in Chapterexpect that they

also contain the initial electric field, since their coeflicients, {vk};‘::l, will be estimated

L' A code example is available at
https://github.com/leonidprinceton/EFOR
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rather than their increments, {Avy}. ;. If 7 is small enough, the total number of
free parameters, 2nr + T'r, is small compared to the number of measurements, n7T,
hence the estimation problem is over-constrained. Note that it is still ill-posed in the
absence of DM dithering, u; = 0, Vk, due to phase ambiguity.

Since the increments are now coupled between pixels, the optimization will be

formulated in global terms, i.e.,
02
p (v BP9 1) = p (vel B (B + G uy) ™ 4 1) (4.10)

instead of , with p now standing for the multivariate Poisson distribution, o
denoting an elementwise squaring, and B — the linear operation of adding the con-
tributions of the real and imaginary parts of the electric field (in the monochromatic
case, B = I, ® {1 11 € R™?" where ® stands for the Kronecker product). Simi-

larly, the incoherent intensity estimate in Eq. (4.4) becomes,

T
A ~ . 1 o 02
il (Gv’ {Vk}£:1> = ramp {TZ (yk —B. (vak + GUuk> - ID) } + 12,
k=1
(4.11)
where ramp is the elementwise ramp function and I” is the vector of dark currents

at all pixels.

The cost function used to maximize the log-likelihood with EFOR is[103]

J (GV7{{;]€}£:1) =
1. ETJ <B- ((;Vok. + GUuk)o2 +1' —yy olog (B- <@V0k +GUuk)02 +if>) :
ke

(4.12)

where 1- stands for summing over the log-likelihoods of all pixels. Note that this is a

ML estimator and therefore requires no prior knowledge about the distribution of the
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electric field trajectories. The only hyper-parameter of this method is the number of

electric field modes, 7, the choice of which is discussed in Sec.

4.1.4 Numerical Optimization Procedure

. . T . T
Expressing the incoherent intensity, I/, in terms of either {EgL} or {Gvffk}
k=1 k=1

facilitates the optimization in two ways: first, the expression in Eqgs. and
ensure that the logarithms of the intensities always act on positive numbers; second,
the optimization is not sensitive to the relative scaling and domain of the optimized
parameters. Since the expressions for J; and J above are differentiable with respect

to their parameters given that

d 1 £€>0
Seramp(c) = ,
0 £€<0

a straightforward approach to optimization is gradient descent.

One particularly convenient optimization library for this purpose is Tensorflow [104].
Given the definitions of J and I/ , it computes their analytical gradients with respect
to GV, {Vi},_, (or {E?,f}:ﬂ) and employs the Adam Optimizer[I05] as its algo-
rithm for gradient descent (it requires choosing a single order-of-magnitude hyper
parameter — the “learning rate”). Moreover, Tensorflow was designed to run on
Graphics Processing Units (GPU) which accelerate the optimization by at least an

order of magnitude.

— 00, the optimization always converges.

Conveniently, since lim J = oo as HEQL
However, the minima it finds are mostly local and not isolated since GV and {f/k}le
can be mutually rescaled without affecting J. Additionally, since J (0, {O}f:1> is a
saddle point, it is preferable to initialize GV as a random orthogonal matrix and pick

a random initial guess for {f/k}gzl with a reasonable magnitude.

29



4.1.5 Realistic Telescope Effects with EFOR

EFOR also allows accounting for residual jitter from FSM[62] and telescope rolls|57]
(but not DM actuators drift[61] since its effects are not low-order). This is done by
modifying, Eq. to incorporate a model of these effects as described below.
Telescope rolls may be employed during the observation to increase image diversity
since they only affect the constant incoherent sources external to the instrument, I

Formally this can be described as,
I = R {1}, (4.13)

where Rj, denotes the rotation of the nominal incoherent image, I", due to the dif-
ference in orientation between frames k£ and 0. R; is assumed to be invertible and
differentiable and for numerical purposes it will be approximated by a permutation
matrix acting on the pixels in the way best resembling image rotation.

Line-of-sight jitter requires a more detailed approach. In general, if there is a clear
separation between the fast and slow variations of the electric field, it is reasonable

to split the electric field modes accordingly,
V(t) = Vi + (SV(t), t e [tk, tk+1) .

where the average of dv(t) over frame k is defined to be zero, (dv(t)), = 0. Conse-
quently, vy is the average of v(t) over [ty,tyi1), L.e., v = (v(t)),, and it is assumed
to vary slowly between frames.

The intensity of the speckles corresponding to frame k is now redefined as the
average intensity during that frame,

(B-E2(t)), = <B A(GYv(t) + GUuk)02>k, (4.14)
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and can be split into two parts, (B - E°%(t)), = I + I, with

02

Ig =B- (vak + GUuk) ,

/=8 <(GV5v(t))°2> .

k

Note that the static speckles term, I¥, has been already accounted for by both online,
Eq. , and offline, Fqs. and , estimators. The additional jitter term, I},
is not affected by controls and therefore appears as an incoherent source. Since the
fast electric field variations cannot be directly sampled, one has to make additional
assumptions on 6v(t) in order to distinguish between I} and external incoherent
sources, I7.

To keep the problem tractable, the number of modes that exhibit fast time varia-

tions will be constrained to m ~ O(1), without loss of generality
5vj(t) =0, Vj > m.

Given that the jitter is mostly the residual of the FSM (tip/tilt modes), a reasonable
value for m is 2, and the specific choice of which columns of GV correspond to tip/tilt
modes is inconsequential since they are found during the optimization.

Even though the time history of dv;(t), 1 < j < m cannot be recovered, the jitter

intensity can be expressed as a linear sum of (g”) products of jitter modes,

m i 02
Il=B-> (Zw,}j’kgjv) (4.15)
i=1 \j=1

where g}/, 1 < j < m are columns of GV and Wik, 1 < 7 <1 < m are some
coefficients. This allows estimating and distinguishing the contribution due to jitter

from external signals.
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Combining Eqs. (4.4)), (4.12)), (4.13)), and (4.15)) together, the more general cost

function, J (GV, ity {\?Vk}zﬂ), becomes
T R 02 R R 02 N
J=1- Z (B : (Gvfzk + GUuk> + Il —ypolog (B : (Gvfzk + GUuk> +I£)) ,
k=

1

(4.16)

I = R IV + 1) + 17,

. 1 R 02

IF = ramp {TZRkl <},k —B. (GV\?k + GUuk) —I] - ID> } ,
S 02

=B}, (Z’wm,kgjv ) :
i=1 \j=1

where iéj is the estimate of the external signal (corresponding to the first telescope

orientation) and Wy = [W; ], <<, are the estimates of the jitter coefficients. The
additional parameters, wy, behave similarly to v, and, as long as their number is
relatively small (() = % < r), they have a minor effect on the numerical

optimization.

4.1.6 Reference Observations

As demonstrated with KLIP[87], reference observations allow building a library of
speckle intensity modes thus facilitating their subtraction. This is analogous to having
a good guess for the electric field modes, GV, which can be incorporated in several
ways. If the modes, GV, are perfectly known, the optimization of the cost function,
J, can be done in terms of just {{fk}le. Although, since the system is not perfectly
linear, it might be beneficial to perform a follow-up optimization in terms of both GV
and {vi},_,.

If an accurate GV is not available, multiple (or reference) observations from the

same instrument can still be combined to achieve more accurate estimates. This is
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illustrated below with a single additional observation of a reference star, but can
be extended to any number of observations. The reference data consists of a set
of measurements, {yZ}Z;l, the corresponding history of controls, {uZ};‘C;l, and the
Jacobian, GY, which is some scaling of GU since the reference star may have a different
spectrum and intensity than the target. The electric field modes, on the other hand,
are properties of the instrument, i.e., shared between observations. It is therefore
possible to define a joint cost function based on Eq. for both target and reference

observations,

J + Jr = Jjoint (Gva {‘A/k}Z:l ’ {Wk}Z:1 , {Vk k=1> {Wk k= 1) (4.17)
T “ 02 R “ 02 N
J=1.% (B . (vak + GUuk) 1 yuolog <B - (vak + GUuk> + Ig)) ,
k=1
Ir R 02 . R 02 ar T
=1 (B- (G¥vi+GVup) "+ T — yjolog (B- (G¥vi+GVup) + 1 )> .
k=1

Jjoint 15 then optimized with respect to all of its parameters which include the coeffi-
cients history for both observations.

The term, J,., can be thought of as an additional regularization that prevents
GV from overfitting the data (see Fig. . Interestingly, the nature of Poisson
distribution makes the measurements from a brighter reference star, {yZ}f;l, have a
proportionally larger weight in Jj,,: which is consistent with them having a higher

S/N.

4.2 Numerical Results

Below, the observation scenario described in Sec. is used to compare intensity-

based post-processing (PCA /KLIP and ADI) with a probabilistic formulation in terms

photon

of the electric field (previous section). To this end, a planet with an intensity of 15>

was added at 4.5 A\/D and the errors in its estimate were computed inside its half-
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MAP EFOR EFOR w/ Rolls ADI PCA

Closed Loop w/ Jitter  Closed Loop

Open Loop

Figure 4.1: Post-processing results for the observation scenario described in Sec.
(only the A = 546 nm channel). The added planet at 4.5 A\/D is best visible in
the top three images on the left, corresponding to a closed-loop observation scenario
with no simulated jitter. The highest accuracy was achieved by EFOR, with[57]
and without|103] telescope rolls, followed by maximum a-posteriori (MAP)[49] then
ADI[100] and PCA[87]. Open-loop wavefront drift or line-of-sight jitter, each had a
negative impact on accuracy of all methods.

max region (i.e., at pixels where the intensity of the planet was at least half of its
maximum intensity). Scaling this error by the half-max error of a PSF subtraction in
a “perfect” observation scenario (a stable dark hole), gives the relative post-processing
factor (PPF),

rel. PPF = avg. post-processing error

. 4.18
avg. error of perfect PSF subtraction ( )

Since the ideal PSF subtraction is limited by the variance of photon arrival events
(shot-noise), the relative PPF has a theoretical lower limit of 1.

The effects of telescope rolls were simulated by rotating the PSE of the planet
about the center of the image, once per observation for EFOR, and once every 2
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hours for ADI. PCA was given 216 reference images from a simulated magnitude
2 star. The jitter was simulated as sinusoidal perturbations in the tip/tilt Zernike

modes,

2

A7) = (2571, = a;tsin (ét) € [th, tre), (4.19)
2

2L — <zlv+1>k = a; ' sin (ét + Qbk) ;U E [trotii) (4.20)

with afl slowly varying between 0 and 1.4nm (the residual error budget for WFIRST-
CGI[62]) and ¢y between 0 and 2.

Figure [4.1) shows post-processing results based on the A = 546 nm channel of the
images simulated in the open-loop and closed-loop scenarios in Sec. 2.3 The best
relative post-processing factor of about 1.3 was achieved with EFOR with telescope
rolls, Eq. , in the absence of line-of-sight jitter. The errors of maximum a-
posteriori, Eq. (4.8), EFOR without rolls, Eq. (£.12)), and ADI were about 50% higher
while that of PCA was almost 3 times higher.

When jitter was included in the simulation, MAP was the most severely affected
since it cannot distinguish between jitter and other incoherent sources. EFOR and
ADI became at least 4 times less accurate and PCA was not significantly affected
by jitter. EFOR with telescope rolls remained the best performing methods with a
relative PPF of about 3.

In the open-loop scenario (without jitter), both PCA and ADI had a relative PPF
of about 6. However, in a realistic scenario, the dark hole might not be recreated with
as high contrast as depicted in Fig. 2.1 Additionally, changing the telescope’s orien-
tation and pointing every 10 and 2 hours respectively, might excite wavefront errors
and increase jitter[48]. These effects were not simulated here but would presumably

increase the post-processing error even further.
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Figure 4.2: (a) Relative post-processing factors, Eq. 4.18, of EFOR with and with-
out reference observations and intensity-based PCA. The PPF of EFOR are plotted

against the number of electric field modes, r, and those of PCA are plotted against

T("TH). (b) The cost function of EFOR and the truncation singular value, o, of the

speckle basis used for PCA. Both EFOR with reference images and PCA suggest that

there are » > 12 dominant electric field modes present in the data. adapted from
[103]

4.2.1 Effects of Dimensionality

While the speckle electric field may lie in a low-dimensional subspace, the dimension
itself might not be known. Figure [4.2fa) shows that without reference images, EFOR
may overfit the data if r is assumed too large. Its error is smaller than that of PCA-
based post-processing but has a similar growth rate with a caveat: EFOR’s error
corresponding to r modes should be compared to PCA’s error corresponding to w
modes.

Indeed, if the electric field, E® lies in an r dimensional subspace of R?", then
the intensity I° = B - E° lies in an (;) = @ dimensional subspace of R" (a worst
case). This implies that the number of free parameters required to fit the same speckle
patterns is significantly lower when formulating the problem in terms of the electric

field, and helps explain the lower error of EFOR. Overall, EFOR was between 1.8 and

2.5 times more accurate than PCA depending on whether reference data was used.
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Figure 4.3: (a) Relative post-processing factors, Eq. [4.18] of EFOR with and without
a “perfect” guess of the electric field modes, GV, as a function of the dither magnitude,
0y, for two drift magnitudes, o4. The higher the drift, the more dithering is necessary
to reach an optimal PPF. (b) The relative PPF for an optimal choice of dithering
magnitude as a function of drift magnitude , o4. from [60]

Reference data can also provide a guess for the number of significant electric field

modes. Figure[4.2b) shows that the decrease in the cost function, Jjm in Eq. (4.17),
slows down after about » = 12, which also corresponds to the most accurate estimate

of EFOR without reference images.

4.2.2 Effects of Drift Magnitude

Finally, the relation between drift magnitude and post-processing factor of EFOR is
depicted in Fig. In this case, the presence of reference images was simulated by
having a “perfect” initial guess for the electric field modes, GV, before the optimization
procedure began.

Similarly to Fig. 2.4(a), the optimal dithering magnitude, this time in terms of
the PPF, depends on the magnitude of the drift — the faster the drift, the more

dithering was required to accurately estimate the state of the speckles. Also, similarly
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to Fig. (b), closing the loop with optimal dithering provides steady contrast and
post-processing accuracy for a wide range of drift values.

It should be noted however, that EFOR breaks down when DM actuator drift
becomes dominant since its impact is not low-dimensional as required per Eq. .
In that case a closed-loop observation with at least one telescope roll combined with

ADI gives the best PPF.
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Chapter 5

Future Directions

5.1 EFOR for Ground-based Coronagraphy

During ground-based observations, the interaction of atmospheric turbulence with
Adaptive Optics (AO) results in small unknown speckle perturbation of high spatial
variability. It has been previously speculated that this variability increases the S/N in
post-processing [106], although it was later proved not to be the case in practice[107].
As shown in the previous chapter for the case of space-based coronagraphs, closing
the loop does reduce post-processing error, but the history of DM controls needs to
be taken into account to get the full advantage out of it.

Recently, methods which incorporate wavefront sensor data|l08] and known DM
ripples[102] have been proposed. Although suggested to improve the post-processing
factor of ground-based telescopes, the history of DM controls does not explicitly
appear in their estimates. In fact, the control history is usually not even stored due
to the extreme rapidity of AO cycles.

However, if images with short exposures, corresponding AO controls and their in-
fluence function (the Jacobian) are available, the data resembles the inputs of the al-

gorithms presented in chapter [ Incorporating all of the available information might
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bring ground based observations somewhat closer to their theoretical shot noise limit
without modifying currently operating instruments. This approach will be entertained

in the near future using numerical models of ground based coronagraphs|109, 110].

5.2 Low-order Coordinates Extraction via Debiased

Isomapd]]

The emphasis in chapter 4 was on finding electric field modes, GV € R?>"*", which
described the evolution of some measurements given a non-linear model of how to
construct images. The coefficients of these modes, v, € R", were of little interest as
they were assumed to arise from a random walk of wavefront errors. In a broader
context of non-linear dimensionality reduction|ITT], these coefficients can be thought
of as “coordinates” or “latent variables” of an r-dimensional manifold embedded in
an n-dimensional space of speckle intensities. Theoretically, one could learn this
low-dimensional representation (in the above case - the description of intensities in
terms of electric fields) to gain physical insight|I12] into and allow controlling of the
underlying system|I13].

As an example, Fig. 5.1fa) shows frames from a video (i.e., a sequence of noisy
images) of a physical pendulum. A natural choice of a latent variable, v(t), to describe
its frames is the angle of the pendulum whose evolution is shown in Fig. [(5.1j(c).
However, if the trajectory of v was not given, would it be possible to “learn” it from
just those video frames?

In this particular example, the task of extracting the angle of the pendulum yields
to standard image-processing techniques[115] since the object of interest is unobscured

and has clear boundaries. If the measurements were spatially “smooth”, as is the

L' A code example is available at
https://github.com/leonidprinceton/debiased-Isomaps
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Figure 5.1: (a) Four frames from a slow-motion video of a physical pendulum. (b)
Absolute values of pixel-wise differences between two frames with a clearly visible
grain noise. (c¢) The angle of the pendulum (solid red line) as a function of the
video frame number. The method proposed in this section “learns” coordinates which
(almost) lie on a circle in R?, Their natural parameterization by an angle is shown in
dashed blue line. (d) A frame from the pendulum video with pixels randomly shuffled
around. The method is equally applicable to this case. adapted from [114]

; the video of the pendulum was taken by D. Feng
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case with speckles in high contrast imaging, the more natural approach would be
projection-based methods|116]. However, both approaches would fail in more general
cases, for example, if the pixels of the video were not given in order (i.e., randomly
shuffled as in Fig.[5.1{d)). In that case, one would have to resort to unsupervised non-
linear dimensionality reduction methods|[I11], e.g. Locally Linear Embedding[117] or
Isomaps|118].

Unsupervised learning of coordinates can be done either with the dynamics|119,
120, 121] (and even controls[122] 123]) in mind from the very beginning, or by ex-
tending existing methods|[124] 125]. Tt has been tested on complex datasets such as
bio-medical data|126], 127], facial expressions[128] 129] and human motion[I30]. Yet,
it is difficult to find an example of physically meaningful coordinates extracted from
a real video of a simple system, e.g. the pendulum in Fig.

It is worth noting that a major motivation for “learning” a system is to au-
tonomously control it. In many cases it is possible to do so by directly interacting
with the system (known as “reinforcement learning”) and without explicitly iden-
tifying the underlying latent variables[131, 113, 132, 133] (usually with the help
of neural networks[134]). Still, it is possible to incorporate low-order constraints,
e.g. via autoencoders[135], to enhance the learning rate and performance for such
tasks[136, 137, 138].

In particular, autoencoders were successfully used to identify physical coordinates
and dynamics from videos|139, [140]. Yet, they require large amounts of training data
which, so far, has been simulated rather than real (interestingly, the objects in these
simulated videos have “soft” edges, unlike in Fig. [.1). Below, Isomaps|[118] is used
to identify the coordinate(s) describing the aforementioned video of a pendulum with
very little assumptions about the “measurements” and no external information or

training data.
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Isomaps is an unsupervised metric-based dimensionality reduction method. As an

input, it accepts a matrix of pairwise distances,

D=1d (Yk7YZ)]1§k,l§T7 (5.1)

between some general data points {yk};‘::l. Only a fraction of the smallest distances
is deemed to be “related to” or “representative of” the latent coordinates (there are
numerous criteria for selecting these “representative” distances, some discussed be-
low). The data points that are considered to be close to each other in that sense,
are called “connected”. The discarded distances between “disconnected” points are
then recomputed as the distances along the shortest paths through the connected
points. These are known as the “geodesic distances” (or simply “distances” in graph

theory[141]),

Dgeo - [dgeo (yk" yl)]lgk,lST :

The hope is that the geodesic distances, D, are not significantly affected by
the non-linearities of the space in which the data (y) resides, and are therefore more
representative of distances along the submanifold corresponding to the latent variables
(v). The final step of Isomaps is to assign the data points coordinates in a low-
dimensional Euclidean space via Multidimensional scaling (MDS)[142] of Dg.,. The
subtleties that arise when applying this procedure to data from a real video are

discussed next.

5.2.1 Choice of the Distance Metric

Even if the intensity measurements (images) are precise, the metric used by Isomaps
may not be “consistent” with the latent dynamics. To illustrate this with a simple an-

alytical example, consider the following dependency of the “infinite-resolution” image,
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image intensity, [

position, x and v

Figure 5.2: A “bowl” shaped object described by Eq. . The latent variable, v,
describes the position of the object while the measurements are the images of the
object, I(x). Small changes in the position, Av, are proportional to the shaded area
representing the difference between two images shifted by Av. Because of the sharp
discontinuities in the object’s shape, this area can be computed using the L' but not
the L? norm. adapted from [114]

I : R — R, on the unidimensional latent variable, v,

(z—v)* ze€v—1v+1]
I(z) = : (5.2)

0 otherwise

This image corresponds to a moving object with sharp edges as illustrated in Fig.

Intuitively, a consistent metric on the space of images would manifest small
changes in the latent variable in a fashion that is independent of the rate of change
of the variable. Put differently, the metric d should be approximately proportional to
small changes in v,

d(I(v), I(v+ Av)) = k|Av], (5.3)

for small Av, where x > 0 may depend on v.
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An example of a metric that is “inconsistent” with Eq. (5.2)) is the one induced by

the L? norm, since

NI

11(0) = I(v + Av)|, = /(I(U—£)—I(U+Av—x))2d:c _

—0o0

- (2 |Av| + §Av2 + ) = O(|Av]?).

This /|Av| dependency will result in a non-diminishing local curvature “computed”
by Isomaps even as the data points get closer to each other. Indeed, let dv < 1
and consider the three images, {I(—dv), I(0), I(dv)}. The L?* distances between these

images are

|1(=6v) — I(0)]}, ~ V2v/5,
|1(~6v) — I(50)]|, ~ 2v/3v,
11(0) — 1(60), ~ V2V/5v.

Yet, any three points with the above distances cannot lie on a straight line no matter
how small jv is (how fine the data is sampled). The output of Isomaps will therefore
suggest that the latent variable lies in a Euclidean space of dimension two or higher,
even though v € R! by construction.

On the other hand, the L' norm gives
[1(v) = I(v+ Av)||; = / [[(v—2) = I(v+ Av —z)| dz = O(|Av]),

and Isomaps will correctly identify some affine transformation of v as the latent

variable, as long as the sampling is fine enough and no noise was added to /. The
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technique described next, provides a way for estimating the impact of noise as well

as testing whether a given metric is consistent.

5.2.2 Estimation of Metric Bias

When measurement noise is present (e.g. Fig. p.1(b)), two identical states, vy = v,
correspond to the same images, I(vy) = I(v;), but different measurements, y; # y;.

Therefore, regardless of the choice of metric, d,

d(yr, y1) > d(I(ve), I(v1)),

or

E{d(yr y1) —d(I(vi),I(w)))} = b >0, (5.4)

where E{-} denotes expectation (across multiple realizations of the measurement).
This bias in all the distances causes Isomaps to overestimate the local curvature (which
manifests itself similarly to the metric “inconsistency” in the previous example).
Assuming that the bias, b, does not depend on the coordinate, v, is it possible
to estimate it from measurements, {y}, alone? In the particular case of {y;} being
generated by a smoothly varying latent variable, the answer depends on the metric d
and the sampling of {vy}. If the trajectory of v is smooth and the sampling is “fine”

enough, nearby points on the trajectory “almost” lie on a line, in which case
m
[Vitm — Vil = E [Viti = Virioall -
i=1

Additionally, if the metric d is consistent in the sense of Eq. (5.3)), then
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Figure 5.3: An empirical method for testing the consistency a metric and computing
its bias, b. It is based on a matrix of distances D = [D; ;| and the assumption that

adjacent images (i close to j) belong to adjacent points on a smooth trajectory of
i+k—1

a latent variable. If true, Eq. (5.5 suggests that k# > Dj+1,; should be propor-
j=t

tional to ﬁDHk’i + b for most ¢ and small k. (a) This is indeed the case for the

pendulum video images from Fig. when the metric is induced by the ! norm. It

allows estimating the bias via linear regression (in this case using Random Sample

Consensus[143] to reject the visible outliers). (b) The [ norm in inconsistent with

the dynamics of the pendulum, in the sense of (5.3]), and Isomaps will not reproduce

the local curvature of the latent variable (angle) correctly. from [114]

which, in light of Eq. (5.4), gives

b—E{d (Yiim,yx)} =0

Z (b= E{d (Yt Yiri-1)})
=1

= mb — ZE {d (Yivir Yiri-1)} - (5.5)

=1

Although one does not have access to multiple realizations of y, for any single k,
it is possible to estimate b based on all available measurements. That is, one needs

to find b such that

Z1E {d (Yk+i> }’kﬂel)} —E {d (Yk+m7 Yk)}
b~ =

m—1

is accurate for most k.

73



This is illustrated in Fig. for various choices of m and two metrics on the
pendulum video images induced by the I* and [? norms. Eq. also acts as an
empirical consistency test, which holds well for small m and just the ' norm. In light
of the example in Fig.[5.2] a possible explanation for the failure of [? is the existence

of sharps discontinuities between adjacent sections of the pendulum.

5.2.3 Choice of Neighborhood Criterion

It remains to describe a mechanism for choosing what distances in D in Eq.
that are considered “representative” of the latent variables. One common approach is
to pick a fixed number of nearest neighbors of data points y;. However, if the data
comes from a finely sampled trajectory (which is a prerequisite for bias estimation),
most of the nearest neighbors are also likely to be temporally close to each other.

In the worst case, which occurs when picking just two nearest neighbors, the
pendulum data is mapped by Isomaps into a trajectory in R!. This suggests that in
order for Isomaps to deduce the correct topology from smooth-trajectories data, the
choice of neighbors must include points on “returning trajectories” (sometimes also
called “nearest nontrivial neighbors”[124]).

The e-neighborhood criterion which keeps all distances below some threshold, ¢,
is arguably more fitting for this purpose. In the context of smoothly varying latent
variables, € must be large enough to include “returning trajectories” but small enough
such that the consistency criterion, , remains valid (otherwise, second order terms
in the image function, I, will be attributed to the coordinates, v).

Figure (a) provides a possible way for choosing . The MDS invoked at the last
step of Isomaps provides eigenvalues, {\1, \a, ...}, which correspond to the relative im-
portance of the “learned” modes that describe the data. The ratios of these eigenvalues
can be used to infer the dimensionality of the latent space and, if a low-dimensional

representation of the data exists, should not be sensitive to other parameters. Indeed,
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Figure 5.4: A technique for choosing the threshold, ¢, for the nearest-neighbors cri-
terion of Isomaps (a) The ratios of the first three eigenvalues computed by MDS (the
last step of Isomaps) for various values of . The ratios are insensitive to the ex-
act threshold value in a region which spans almost an order of magnitude beginning
at 10°. (b) This “insensitivity” region corresponds to thresholds which include all
“returning” trajectories and excludes far away regions of the latent space where the
metric depends non-linearly on the angle. This is illustrated by the distance, D;,
between each jth and the zeroth frames (using the ' norm). from [114]

for a wide range of thresholds in Fig. [5.4|(a), the ratios A;/As 3 remain almost fixed.

This is a consequence of the wide range of angle differences which are proportional

to the distances between corresponding images (Fig. [5.4(b)).

5.2.4 Results

With a “consistent” and debiased metric choice and a reasonable neighbors criterion,
Isomaps yields a smooth trajectory on what appears to be a circle in R? (Fig. [5.5(a)).
Assigning a phase to each point on that circle, gives a shifted approximation of the
true angle of the pendulum (dashed blue line in Fig.[5.1)(c)). On the other hand, using

the [2 norm or a significantly different e, results in spurious oscillation or a wrong

topology altogether ((Fig. (.5/(b,c,d)).
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(a) (b)

Figure 5.5: (¢) The output of Tsomaps with the debiased distance based on the [*
norm and € = 3 - 10°. The coordinates lie close to a circle in R? which is a “natural”
embedding of the pendulum angle in a Euclidean space. (d) When the threshold is
too small, some “returning” trajectories are not “captured” by Isomaps resulting in a
wrong topology of the coordinates. When the threshold is too large, (e), or the norm
is inconsistent, (f), Isomaps’ approximation of the local curvature is inaccurate and
gives rise to oscillatory artifacts. from [114]

It the future, this method will be used to find the equations of motion of the
pendulum and possibly other systems. This will be done with the help of algorithms

for automated discovery of dynamics from trajectories|[144, [145] 146].
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Chapter 6

Conclusions

This thesis presents a theoretical approach to mitigating the effects of wavefront in-
stabilities in space-based high-contrast imaging. Chapter [2| describes the potential
benefits of continuous Focal Plane Wavefront Sensing and Control (FPWSC) during
lengthy observations. Specifically, it allows maintaining a fixed contrast at a sig-
nificantly higher level than the obtained by periodically “re-creating” a dark hole.
As a consequence, it reduces the number of necessary telescope maneuvers, avoiding
potential structural and thermal instabilities as well as increased line-of-sight jitter.

Closed loop maintenance of the contrast relies on non-linear control and estimation
of the electric field in the dark hole. The coupling between the two manifests itself
in the necessity to dither the deformable mirrors to generate enough phase diversity
for the estimator to remain stable. This dither slightly decreases the contrast in the
dark hole but the closed loop approach appears to be worthwhile for a wide range of
wavefront drift rates. It will be subject to numerical optimization and lab experiments
in the near future[147].

The accuracy of the electric field estimator, and therefore the stability of the
contrast, can be increased by incorporating a more detailed model of the evolution

of the electric field. This can be achieved by accounting for the “smoothness” of the
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speckles, interpreted as cross-pixel correlation between the increments of the electric
field. Even simply bundling adjacent pixels together into subsystems, significantly
increases the accuracy of the estimates at each individual pixel.

However, the computation time of the optimal estimator (the Kalman Filter)
grows proportionally to the cube of the number of pixels per subsystem. The sub-
optimal filter described in chapter [3| takes advantage of the potentially low-order
wavefront errors while doing so in linear time complexity. It keeps track of the error
covariances only within each subsystem (the main block-diagonal of the full covariance
matrix), but advances each estimate based on all available measurements. Although
slower than treating each subsystem separately, its accuracy becomes close to that of
the full Kalman Filter under certain conditions. These conditions seem to hold for a
space-based coronagraph model whose wavefront drift is well described by variations
in just tens of Zernike modes.

A low dimensional model of wavefront drift, if true, becomes especially advanta-
geous in post-processing. The number of measurements per observation is propor-
tional to the number of detectors (thousands) and exposures (hundreds), and the
number of unknown system parameters is at least three times as large. Chapter
formulates the post-processing problem in terms of electric fields and then constrains
them to a low-dimension subspace. This greatly reduces the number of free parame-
ters and, under favorable conditions, results in a numerical scheme which gets close
to the theoretical (shot-noise) error limit. Unlike intensity-based order-reduction
methods such as KLIP, a formulation in terms of electric fields makes the problem
non-linear but also allows incorporating the history of controls. This is especially
helpful in a closed-loop observation scenario since the effects of deformable mirrors
on the dark hole intensity are usually high dimensional.

Although the results presented here are based on a simulation of the WFIRST-

CGI, they are applicable to all future telescopes capable of FPWSC, e.g. LUVOIR.
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In fact, as the contrast of space coronagraphs increases, they will become more sus-
ceptible to wavefront drift, to the point where stability issues may become a major
driving factor behind their cost. The ideas presented in this thesis will hopefully help

alleviate some of those issues.
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