
Uncovering Structure with

Data-driven Reduced-Order Modeling

Vivian T. Steyert

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Mechanical and Aerospace Engineering

Adviser: Clarence W. Rowley

May 2022

© Copyright by Vivian T. Steyert, 2022.

All rights reserved.

Abstract

In this dissertation, we apply data-driven reduced-order modeling to several example

systems. In each case, we consider systems with some mathematical structure we

hope to capture in the model, and we investigate what approach will best uncover or

make use of that structure.

First, we examine the convergence of extended dynamic mode decomposition

(EDMD) in systems with continuous spectra. We test the performance of EDMD on

ergodic discrete-time dynamical systems on the two-dimensional torus. We demon-

strate that even in systems with some continuous spectrum, the point spectrum of

the Koopman operator can be approximated using EDMD. However, the quality of

this approximation depends on the observables chosen. We consider Fourier modes,

delay embeddings, and radial basis functions as possible sets of observables.

Second, we approximate the Koopman operator in a system with continuous sym-

metry. We apply linearly-recurrent autoencoder networks, EDMD using observables

obtained from proper orthogonal decomposition, and a reproducing kernel Hilbert

space method for approximating the Koopman generator. All of these are applied to

the Kuramoto-Sivashinsky equation, in a regime with modulated traveling waves. We

demonstrate that applying a template-based symmetry reduction method, where the

traveling speed is modeled separately from the reduced dynamics using a deep neural

network, provides a significant improvement in prediction quality for these models.

We also examine the eigenvalues and eigenfunctions of these Koopman approxima-

tions.

Finally, we use data-driven methods to find equations of motion for a rigidly-

rotating body in three dimensions, given orthogonally projected two-dimensional

data. To achieve this approximation, we first apply diffusion maps to learn the

manifold where the governing equations can be best represented. Next, we find the

rotation matrices, and thus angular velocities, at each timestep using optimization

3

and methods from cryogenic electron microscopy. Then, we are able to approximate

the equations of motion, including approximating the principal moments of inertia

which appear as coefficients.

In each case, we find interpretable, low-order predictive models with data-driven

methods. We also demonstrate that, in these complicated cases, careful prepara-

tion including choice of observables, preprocessing steps, or manifold learning can be

beneficial or even necessary to produce useful models.

4

Acknowledgements

First, I would like to thank Dr. Clarence Rowley, my thesis adviser. His support,

patience, and advice have been critical to my success. He helped me become more

independent as a researcher. I also enjoyed being an assistant in instruction for his

courses, and learned a lot about pedagogy from him.

I am also thankful to the professors who have served as PhD committee members,

readers, and examiners: Dr. Michael Mueller, Dr. Yannis Kevrekidis, Dr. Amit

Singer, and Dr. Anirudha Majumdar. They have all provided excellent advice as my

work grew and progressed, especially my collaborators Dr. Singer and Dr. Kevrekidis.

In addition, the Princeton Mechanical and Aerospace Engineering department admin-

istrative staff have been very helpful, especially Jill Ray and Katerina Zara.

I would also like to thank the graduate students and post-docs I have had the

pleasure of meeting throughout my time at Princeton. Collaborating with Samuel

Otto and Dr. Amit Moscovich was great. The whole Rowley lab has been very

friendly and willing to help. Samuel Otto, Scott Dawson, and Alberto Padovan

deserve special mention for helping to foster a collaborative environment in the lab.

Outside of work, the group of MAE graduate students who entered in the same year

as me helped make my time at Princeton more fun. I am glad we remained friends

after splitting off into different labs and careers.

I would like to thank all the teachers and professors who encouraged my curiosity,

and who gave me the knowledge and self-confidence I needed to get here. Special

thanks go to Mr. Chang, Mr. Hensley, Ms. Eubanks, Dr. Cha, Dr. Bassman, and

Dr. Cardenas.

I owe an immense debt of gratitude to Aaron Pribadi, who has stuck with me

through the whole PhD process, and makes my life better every day by being a part

of it. Finally, I must thank my mother Susan Leonard and my sister Marilyn Steyert

for helping me grow up to be the person I am today. My mom taught me to value hard

5

work and education, leading by example, and my sister has been a great companion

over the years.

The work presented in this dissertation was supported by the National Science

Foundation Graduate Research Fellowship Program and the Army Research Office

(grant W911NF-17-1-0512).

This dissertation carries T3431 in the records of the Department of Mechanical

and Aerospace Engineering.

6

Contents

Abstract . 3

Acknowledgements . 5

List of Figures . 10

1 Introduction 16

1.1 Motivation . 16

1.2 Extended dynamic mode decomposition and the Koopman operator . 18

1.2.1 Proper orthogonal decomposition 18

1.2.2 Dynamic mode decomposition 19

1.2.3 Extended dynamic mode decomposition 20

1.2.4 Connection to the Koopman operator 22

1.3 Diffusion maps . 24

1.3.1 Basic procedure . 24

1.3.2 Theory . 26

1.4 Organization of this dissertation . 27

2 EDMD convergence with continuous spectra 29

2.1 Introduction . 29

2.2 Background . 30

2.2.1 Measure preserving, ergodic, and mixing dynamical systems . 30

2.2.2 Motivating results and example 34

7

2.3 Computational Koopman eigenvalue and eigenfunction convergence . 37

2.3.1 Illustrating the rank condition 37

2.3.2 Less perfect observables . 39

2.3.3 System with mixing . 42

2.4 Radial basis function observables . 43

2.5 Conclusions and future directions . 49

3 Approximating the Koopman operator in a case with symmetry 51

3.1 Introduction . 51

3.2 Theory . 53

3.2.1 Groups and symmetries . 53

3.2.2 Method of slices . 54

3.2.3 Kuramoto-Sivashinsky equation 56

3.2.4 Our approach . 57

3.2.5 Linearly Recurrent Autoencoder Networks (LRAN) 59

3.2.6 Approximating the Koopman generator using reproducing ker-

nel Hilbert spaces . 61

3.2.7 Symmetry and Koopman eigenfunctions 66

3.3 Prediction accuracy results . 68

3.3.1 Improvement offered by symmetry reduction 69

3.3.2 Reducing encoded state dimension 73

3.3.3 EDMD with POD modes . 76

3.3.4 RKHS method . 80

3.4 Koopman eigenvalue and eigenfunction results 82

3.4.1 Approximate Koopman eigenvalues 82

3.4.2 Approximate Koopman eigenfunctions 88

3.5 Conclusions and future directions . 92

8

4 Finding equations of motion from projected data 95

4.1 Introduction . 95

4.2 Theory . 97

4.2.1 Rotations and SO(3) . 97

4.2.2 Data used . 100

4.2.3 More direct approaches fail . 102

4.2.4 Algorithmic details on diffusion maps 107

4.2.5 Wigner D-functions . 110

4.2.6 Optimization used . 112

4.2.7 Common line approach . 114

4.2.8 From rotation matrices to equations of motion 119

4.3 Numerical results . 122

4.3.1 Numerical setup . 122

4.3.2 Basic validation . 123

4.3.3 Wigner-D function validation 124

4.3.4 Finding rotation matrices . 126

4.3.5 Finding equations of motion 128

4.4 Conclusions and future directions . 129

5 Overall conclusions and future directions 130

9

List of Figures

2.1 Eigenvalues calculated from data for the system in Equation (2.19)

with 25 Fourier modes. (a) uses 24 data points, while (b) uses 25. . . 38

2.2 Eigenfunction calculated from data for the system in Equation (2.19)

with 25 Fourier modes, using 24 (insufficient) or 25 (sufficient) data

points. 38

2.3 Real part of eigenfunction approximation cross-sections at x = 0 for

the system in Equation (2.21). The eigenfunction being approximated

is ϕ(x, y) from Equation (2.24). In (a), we approximate using Fourier

observables fk(x, y) = e2πi(x+ky) for k = −N, . . . , N . In (b), we use

delay observables f, Uf, . . . , Un−1f with f defined in Equation (2.25). 40

2.4 Convergence results for the system described in Equation (2.21). In (a),

eigenvalue convergence toward the true eigenvalue λ of U as a function

of number of delay observables used. In (b), eigenfunction convergence

toward the true eigenfunction ϕ of U as a function of number of delay

observables used, n. Compares results from eigenvector of A with

summation results using Equation (2.26). 41

2.5 Real part of eigenfunction approximation cross-sections at x = 0 for

the system in Equation (2.27). In (a), with Fourier observables. In (b),

with delay observables f, Uf, . . . , Un−1f where f is defined in Equa-

tion (2.25). 43

10

2.6 Convergence results for the system described in Equation (2.27) with

delay observables. In (a), eigenvalue convergence toward the true eigen-

value λ of U as a function of number of delay observables f, Uf, . . . , Un−1f

used. In (b), eigenfunction convergence toward the true eigenfunction

ϕ of U as a function of number of delay observables used, n. Com-

pares results using eigenvector of A with results from summation in

Equation (2.26). 44

2.7 Real part of eigenfunction for the system in Equation (2.27). 45

2.8 Found eigenfunctions, from EDMD eigenvectors with 300 observables.

In (a), observables are a delay embedding of f from Equation (2.25),

while in (b), observables are radial basis functions. 46

2.9 Convergence to true (a) eigenvalue and (b) eigenfunction as number

of observables increases, with delay observables and with radial basis

functions. 46

2.10 Centroid locations chosen. Darkest-colored centroids were chosen ear-

liest, and lightest-colored latest. 48

2.11 Convergence to true (a) eigenvalue and (b) eigenfunction as number

of observables increases, with delay observables and with radial basis

functions, as in Figure 2.9, but with radial basis functions with chosen

centroid locations as well (“improved RBF” in the figure). 48

3.1 Architecture of the LRAN, from [53], used with permission. 60

3.2 Example simulation from training data. 69

3.3 Using LRAN, with 16-dimensional encoded state. (a) example predic-

tion, (b) mean square relative error over many predictions. 70

3.4 Symmetry reduction, LRAN, and ġ neural network, recombined to give

overall prediction, with 16-dimensional encoded state. (a) example

prediction, (b) mean square relative error over many predictions. . . . 71

11

3.5 Predicted states with symmetry taken out r, using LRAN with 16-

dimensional encoded states. (a) example prediction, (b) mean square

relative error over many predictions. 72

3.6 Neural network finding ġ given predicted LRAN 16-dimensional en-

coded states. (a) example prediction, (b) mean square error over many

predictions. 72

3.7 Integrating from neural network finding ġ given predicted LRAN 16-

dimensional encoded states, to get g predictions. (a) example predic-

tion, (b) mean square error over many predictions. 73

3.8 Using LRAN, with 16-dimensional encoded state, with T = 50. (a)

example prediction, (b) mean square relative error over many predictions. 74

3.9 Symmetry reduction, LRAN, and ġ neural network, recombined to

give overall prediction, with 3-dimensional encoded state. (a) example

prediction, (b) mean square relative error over many predictions. . . . 74

3.10 Using LRAN, with 3-dimensional encoded state. (a) example predic-

tion, (b) mean square relative error over many predictions. 75

3.11 Using LRAN, with 5-dimensional encoded state. (a) example predic-

tion, (b) mean square relative error over many predictions. 76

3.12 First 30 POD modes. 77

3.13 Using EDMD with POD observables, with A ∈ R16×16. (a) example

prediction, (b) mean square relative error over many predictions. . . . 77

3.14 Using EDMD with POD observables, with A ∈ R3×3. (a) example

prediction, (b) mean square relative error over many predictions. . . . 78

3.15 Using EDMD with POD observables, with A ∈ R5×5. (a) example

prediction, (b) mean square relative error over many predictions. . . . 78

3.16 First 30 POD modes of state with symmetry taken out. 79

12

3.17 Using EDMD with POD observables, with A ∈ R16×16, for symmetry-

reduced state. (a) example prediction, (b) mean square relative error

over many predictions. 79

3.18 Using EDMD with POD observables, with A ∈ R3×3, for symmetry-

reduced state. (a) example prediction, (b) mean square relative error

over many predictions. 80

3.19 Using RKHS method, with 16 eigenvalues kept, for full state. (a)

example prediction, (b) mean square relative error over many predictions. 81

3.20 Using RKHS method, with 100 eigenvalues kept, for full state. (a)

example prediction, (b) mean square relative error over many predictions. 81

3.21 Using RKHS method, with 16 eigenvalues kept, for symmetry-reduced

state. (a) example prediction, (b) mean square relative error over many

predictions. 82

3.22 Approximate Koopman eigenvalues from symmetry-reduced case using

LRAN, with encoded state dimension in legend. (a) shows all found

eigenvalues, (b) zooms in. 83

3.23 Approximate Koopman eigenvalues from symmetry-reduced case using

EDMD with POD modes, with encoded state dimension in legend. (a)

shows all found eigenvalues, (b) zooms in. 84

3.24 Approximate Koopman eigenvalues from symmetry-reduced case us-

ing RKHS method, with 16 eigenvalues kept. Colored by associated

Dirichlet energy (darker colors mean lower Dirichlet energy). (a) shows

all found eigenvalues, (b) zooms in. 84

3.25 Approximate Koopman eigenvalues from full state using LRAN, en-

coded state dimension in legend. (a) shows all found eigenvalues, (b)

and (c) zoom in near beating and traveling frequencies respectively. . 85

13

3.26 Approximate Koopman eigenvalues from full state using EDMD with

POD modes, encoded state dimension in legend. (a) shows all found

eigenvalues, (b) zooms in. 86

3.27 Approximate Koopman eigenvalues from full state using RKHS method,

with 100 eigenvalues kept. Colored by associated Dirichlet energy

(darker colors mean lower Dirichlet energy). (a) shows all found eigen-

values, (b) and (c) zoom in near beating and traveling frequencies

respectively. 87

3.28 Eigenfunction evaluation, for inputs vh(x) = sin(x+h), plotted against

shift amount h, with the associated eigenvalue (near the beating fre-

quency) in the title of each plot. Results from LRAN on full state u

with q = 16. 90

3.29 Eigenfunction evaluation for inputs vh(x) = 5 sin(2x), plotted against

shift amount h, with the associated eigenvalue (near the beating fre-

quency) in the title of each plot. Results from LRAN on full state u

with q = 16. 91

4.1 An example of the difference between (a) the projection used in this

work and (b) the projection used in SfM. 103

4.2 On the left, three images showing a stick figure projected into different

planes, with common lines indicated. On the right, projections of the

stick figure from the images onto the common lines. 116

4.3 A 3D view of the stick figure from Figure 4.2, with common lines

indicated. The planes onto which we projected for each image are also

indicated. 117

14

4.4 Histogram shows the empirical probability density function of angles,

in radians, for our random rotations, generated to come from a uniform

distribution with respect to Haar measure. Curve shows the theoretical

probability density function for the same. 124

4.5 Eigenvalues from diffusion maps, from rigid body rotation data. . . . 125

4.6 Convergence of subspace from diffusion maps eigenfunctions with sub-

space from rotation matrix elements. 126

4.7 Empirical distribution of relative angles, in radians, between found and

true rotations from rigid body rotation data. 127

4.8 Mean relative angle between true and found rotation matrices, as a

function of number of trajectories used. 127

4.9 Error in each coefficient, plotted in log scale against number of trajec-

tories used. The legend indicates the true value for each coefficient. . 128

15

Chapter 1

Introduction

1.1 Motivation

Increasingly, data-driven methods are being applied to a variety of problems from

agriculture [38] to particle physics [7]. Data-driven models can predict future system

behavior, and in an idealized sense can be created without any knowledge of the

underlying system besides the data collected from it, though in practice we must

provide some space of possible functions as well. With a careful choice of methods,

and an understanding of the mathematical concepts upon which those methods are

built, these approaches can be more than simply a black box into which we feed our

data. They can help us better understand the systems we model.

One data-driven modeling approach which is central to much of the work in this

dissertation is approximating the Koopman operator. Dynamic mode decomposition

(DMD) and its cousin extended dynamic mode decomposition (EDMD), relatively

simple methods of approximating the Koopman operator from data, have been used

in a wide variety of contexts. Within the field of fluid dynamics, they have been

used to create data-driven models of jets in crossflow [65], wind turbine blades [17],

boundary layers [67], wakes and shear layers [80], and many others. Beyond that,

16

they have been applied to epidemiology [59], controls [58], the stock market [27], and

other disciplines [35]. With EDMD being applied in so many cases, it is worthwhile

to study its capabilities, and find best practices for using it or related tools within

particularly challenging contexts. For example, we examine different choices for the

space of possible functions mentioned above, and their effects on model accuracy.

This investigation is one focus of my work.

Another focus of this work is on extracting and revealing the structure present

in the data, using data-driven techniques. We consider a dynamical system with

the mixing property, where some structure is present, but some seeming-randomness

as well. We also consider cases where there is a specific mathematical property or

structure to the system being modeled, where it obeys some symmetry or acts on some

manifold, and where a careful approach to data-driven modeling which accounts for

that property proves beneficial.

In the rest of this chapter, we introduce data-driven methods used in the remainder

of this dissertation, and then provide information on the organization of subsequent

chapters. Specifically, §1.2 introduces model reduction approaches commonly used in

the fluids community, namely proper orthogonal decomposition (POD), DMD, and

EDMD. It also introduces the Koopman operator and its connection to these model

reduction methods. EDMD and the Koopman operator are used in Chapter 2, with

many of the specific observable choices mentioned in §1.2.3. POD, EDMD, and other

approximations of the Koopman operator are used in Chapter 3. The diffusion maps

method for finding a data-driven set of coordinates is introduced in §1.3, and used in

Chapters 3 and 4. The specific diffusion maps method we use in this work is detailed

in §4.2.4, but the information in §1.3 should be enough to understand diffusion maps

in a broad sense. Finally, in §1.4, the organization of the rest of the dissertation is

explained.

17

1.2 Extended dynamic mode decomposition and

the Koopman operator

In this section, we provide some background information on common data-driven re-

duced order modeling approaches, focusing on the methods most relevant to our work

in Chapters 2 and 3. We also connect one of these approaches, extended dynamic

mode decomposition (EDMD), with the Koopman operator. The Koopman operator

is a mathematical object arising in the study of dynamical systems. For a thorough

review of reduced-order modeling approaches relevant to modeling fluid flows, includ-

ing approaches not covered here, see [62]. For a recent and in-depth review of reduced

order modeling methods related to the Koopman operator, see [54].

1.2.1 Proper orthogonal decomposition

One relatively simple way to obtain lower-dimensional representations of states for

high-dimensional systems like fluid flows is called proper orthogonal decomposition

(POD). The idea goes by different names, including principal component analysis

(PCA) or Karhunen-Loève expansion [62], but is known as POD in the fluids commu-

nity, where it was introduced by Lumley [41] and given its commonly used modern

form by Sirovich [75]. Our explanation follows that of [62].

For this technique, we begin with a set of m snapshots of the system’s state at

different times. For example, with a dataset from a fluids application, we might have

snapshots which each consist of velocity data at many stations throughout the flow.

We call each snapshot xj ∈ Rn, and assemble the snapshots into a matrix X ∈ Rn×m

where each column is a snapshot. Next, we perform a singular value decomposition

(SVD) on X, to obtain

X = UΣV T =
r∑
j=1

σjujv
T
j (1.1)

18

where r is the rank of X, uj ∈ Rn and vj ∈ Rm are the orthonormal columns of

the matrices U and V respectively, and σj are the non-zero entries in the diagonal

matrix Σ. The vectors uj are called the POD modes, the values σj are the “energy” in

each mode, and the vectors vj give the coefficients required to represent each snapshot

in terms of the POD modes scaled by their energies. By the “energy” associated with

a POD mode we mean that
∑m

k=1 ‖ujuTj xk‖2 = σ2
j where the operator uju

T
j projects

vectors orthogonally onto the POD mode uj. If we choose the d largest σj values for

any d ≤ r, then their corresponding modes uj form the d-dimensional subspace which

optimally captures the data, i.e. minimizes the remainder upon projecting the data

into that subspace. In practice, it is common to apply this technique to data with

the mean subtracted out.

Although POD can identify a lower-dimensional space into which we can project

the data, it does not on its own help us to describe the dynamics of the system

generating the data. Furthermore, the space it finds may not be the best one for

describing the dynamics, because even low-energy modes might still be dynamically

relevant.

1.2.2 Dynamic mode decomposition

Dynamic mode decomposition (DMD), introduced by Schmid [68], finds a low-dimensional

representation of the dynamics under which a state evolves. The version of DMD used

in this work comes from Tu et al. [81]. For this method, using the standard nota-

tion of the field, we assume we have pairs of snapshots xj and x#
j separated by a

fixed timestep. In cases where the data form a long sequential series of snapshots

x1,x2, . . . ,xm, it is common to take x#
j = xj+1. However, the flexibility that comes

from only requiring sequential pairs of snapshots allows us to work with datasets

besides those that are one long sequence.

The data are organized into matrices X and X# whose columns are the snap-

19

shots xj and x#
j respectively. Then, we hope to find a matrix A such that

X# = AX. (1.2)

Such a solution is only sometimes possible, generally only if m ≤ n (so we have

relatively few snapshot pairs compared to the dimension of each snapshot) barring

some linear dependence between different snapshot pairs. In practice, we take

A = X#X+ (1.3)

where X+ denotes the Moore-Penrose pseudoinverse of X. If X = UΣV T is the

reduced SVD of X, then the pseudoinverse is defined to be X+ := V Σ−1UT [21].

This value for A is the minimum-Frobenius-norm solution to Equation 1.2 if a solution

exists, and a least-squares minimization of ‖X#−AX‖ otherwise. Unlike POD, DMD

is performed without subtracting the mean from the dataset first. DMD can generate

predictions of future states. Given an initial state x, the predicted next state is Ax.

In practice, this work uses a low-rank approximation of A, rather than calculating

the full A directly, as described in [62]. One can truncate the results by keeping

only a certain quantity of singular values in the SVD of X, or only keeping singular

values above some threshold. In §3.3.3 the number of singular values retained (using

EDMD, a method very related to DMD) is one of the parameters varied. Commonly,

one plots the singular values on a log scale and finds breaks where the values jump

significantly lower, to choose singular value thresholds.

1.2.3 Extended dynamic mode decomposition

One limitation of DMD is that the dynamics of the models it produces are always

linear. Linear systems are conveniently simple, but sometimes nonlinear models are

required to produce good predictions that match the nonlinear behavior of systems

20

being modeled. Extended dynamic mode decomposition (EDMD), as defined by

Williams et al. [86], attempts to overcome this limitation of DMD via a nonlinear

change of coordinates. For EDMD, we apply functions ψ, called observables or fea-

tures, to the state xj to obtain yj = ψ(xj). Using these observables, we form the

matrices Y and Y#, then use those as we would X and X# in DMD.

The use of observables allows us to, in many cases, obtain more accurate predic-

tions than DMD alone can provide. In cases where the dynamics are linear, DMD

should be able to represent the exact dynamics given sufficient data. However, when

the dynamics are nonlinear, EDMD is often superior, with appropriately chosen ob-

servables. Some possible observables suitable for different cases are suggested in [86],

including Hermite polynomials, radial basis functions, and discontinuous spectral ele-

ments. POD modes coefficients and their quadratic combinations as observables in a

case of flow past a cylinder leading to periodic vortex shedding are used in [62]. When

the number of observables is large, there can be computational benefits to using a

kernel method, as in [87].

Another commonly chosen type of observables is delay embeddings. For this

approach, the value of an observable some fixed time in the past is taken to be

another observable itself. Using delay embeddings to find attractors from data is an

established idea thanks to the Takens embedding theorem [79]. When sequences of

delays of a single scalar observable are used as the set of observables, the resulting

matrices Y and Y# have the structure of Hankel matrices. The use of Hankel matrices

for DMD or closely related techniques has been well studied, especially for ergodic

systems [1, 6, 19].

As part of Chapter 2, we consider observable options including both delay em-

bedding and radial basis functions, in §2.3-2.4. In one of the approximation methods

considered in Chapter 3, we use POD mode coefficients as observables for EDMD.

Also in Chapter 3, we apply methods related to EDMD but not the same. In §3.2.5,

21

we use a neural network to apply observables when approximating the Koopman

operator, while in §3.2.6, we use diffusion maps observables and approximate the

Koopman generator.

1.2.4 Connection to the Koopman operator

DMD and EDMD are closely related to the Koopman operator, which was introduced

by Koopman in 1931 [31]. Given a discrete-time dynamical system xn+1 = T (xn),

there is an associated Koopman operator that acts on scalar functions f of the state.

The associated Koopman operator is K such that

Kf = f ◦ T. (1.4)

for all f in the domain. To be more precise, we could specify the space of functions

as, for example, L2(M) where M is a measure space in which the state x resides.

Concepts related to measure spaces and the Koopman operator are discussed in §2.2.1

in more detail. The Koopman operator is infinite-dimensional (given that its inputs

and outputs are functions). It is also linear, so that

aKf + bKg = K(af + bg) (1.5)

for any scalars a, b ∈ C and any scalar functions f, g of the state.

As a linear operator, K can have eigenfunctions and eigenvalues. These are very

connected to the results of EDMD. To be more precise, suppose the Koopman op-

erator K has an eigenfunction φ that lies in the span of the EDMD observables

{ψ1, . . . , ψn}, with associated eigenvalue λ. Then

φ(x) = w̄1ψ1(x) + · · ·+ w̄nψn(x) = w∗ψ(x) (1.6)

22

for some vector w = (w1, . . . , wn) ∈ Cn. Further, suppose that w is in the range of

the matrix Y from EDMD whose columns are yj = ψ(xj). Then, as shown in [81]

and stated succinctly in [62], λ is an eigenvalue of the EDMD matrix A = Y#Y+ with

left eigenvector w, so that w∗A = λw∗. Thus, the eigenfunctions and eigenvalues of

the Koopman operator correspond with the (left) eigenvectors and eigenvalues of the

EDMD matrix A, as long as we have appropriate observables and enough data in the

specific ways mentioned above.

If we have the true Koopman eigenvalues and eigenfunctions, we can use those to

make predictions. If xk indicates the state at the k-th timestep, and there are n pairs

of Koopman eigenvalues λj and eigenfunctions φj, then

ψ(xk) =
n∑
j=1

λkjφj(x0)vj (1.7)

where vj are vectors of coefficients for representing the observables ψ in terms of

the eigenfunctions φj. If we satisfy the conditions necessary to find the Koopman

eigenvalues and eigenfunctions using EDMD, then we can further say

ψ(xk) =
n∑
j=1

λkjw
∗
jψ(x0)vj (1.8)

where wj are the left eigenvectors of A, λj are its eigenvalues, and vj are its right

eigenvectors, with the eigenvectors normalized so that 〈vi,wj〉 = δij [62]. The vectors

vj are called the Koopman modes [65]. Unlike the Koopman eigenvalues or eigen-

functions, the modes depend on the choice of observables used. They can also provide

physical insights, as in [65] where the approximate Koopman modes illustrate periodi-

cally oscillating components of a jet flow, with the approximate Koopman eigenvalues

giving the corresponding frequencies.

23

1.3 Diffusion maps

Diffusion maps provide a useful parameterization of high-dimensional data. They can

be used for dimensionality reduction, and work well in cases where the apparently

high-dimensional data actually reside on a low-dimensional manifold. The essence of

this approach, which is explained more thoroughly below, is to create an weighted

adjacency graph for the data, then use eigenvectors of the normalized graph Laplacian

as the new coordinates. The weights in this adjacency graph are typically the distance

between points or some other kernel function applied to the points. The name and full

theoretical underpinnings of diffusion maps were given by Coifman and Lafon [10].

However, the basic procedure was already used in various contexts including Laplacian

eigenmaps and locally linear embeddings [3, 61]. The relationship between diffusion

maps and existing spectral clustering techniques is explained in [49].

1.3.1 Basic procedure

The basic procedure for diffusion maps, based on [10], is described here. First, we

apply a kernel function k(x, y) to all pairs of points x, y ∈ X where X is the dataset.

This kernel function must be symmetric, so that k(x, y) = k(y, x). It must also be

positivity preserving so that k(x, y) ≥ 0, for any points x, y ∈ X. A square matrix

K is formed where Kij = k(xi, xj) where xi, xj ∈ X. This matrix is a kind of graph

Laplacian matrix for the data.

One common choice is a Gaussian kernel

k(x, y) = exp

(
−‖x− y‖

2

ε

)
(1.9)

with a positive parameter ε ∈ R. The specific kernel used in this work is a variable-

bandwidth Gaussian kernel discussed in §4.2.4, in which the parameter ε depends

on x and y. With a kernel like this Gaussian, which approaches 0 as the distance

24

between x and y grows large, we can conveniently approximate the kernel evaluations

between relatively distant pairs of points as exactly zero, leaving us with only a sparse

set of nonzero kernel evaluations to store and use. For our purposes, we begin with a

fixed number of nearest neighbors for each point, then remove points from those sets

until K is symmetrical. With the datasets used in this work, this did not lead to too

much isolation of points, but other methods may work better in other cases.

After the matrix K is formed, it is normalized. Different normalizations are used

in different contexts, and the one we use is detailed in §4.2.4, but the basic principle

is to find the degree

d(x) =

∫
X

k(x, y)dµ(y) (1.10)

for each datapoint x, in effect summing each row of the matrix K. With these, we

can define a new positivity-preserving kernel

p(x, y) =
k(x, y)

d(x)
(1.11)

which is not symmetric, but does satisfy

∫
X

p(x, y)dµ(y) = 1, (1.12)

which allows us to think of p(x, y) as the probability of stepping directly from x to y in

a random walk where stepping to nearby points is more likely than to distant points.

This is useful for reasons explained in §1.3.2. Different normalizations based on this

concept are used in [10, 13, 84], with the one we use based on [13] described in more

detail in §4.2.4.

Once we have the normalized matrix, we simply find its eigenvalues and eigen-

vectors. The eigenvalues associated with the largest eigenvalues provide the diffusion

maps coordinates, a new parameterization of the data. In particular, in [10], the

25

eigenvectors are normalized, then scaled by their associated eigenvalues raised to

some power to provide the diffusion maps coordinates. A range of diffusion maps

parameterizations are possible with different powers applied to the eigenvalues.

1.3.2 Theory

As shown in [10], the normalized matrix we obtain can be viewed as the transition

matrix for a Markov chain, due to Equation (1.12), where we are more likely to tran-

sition to nearby datapoints. One can define “diffusion distances” from the normalized

kernel, as defined in [10]. The diffusion maps coordinates found from the eigenvectors

and eigenvalues of the normalized matrix embed the data into a space where the dif-

fusion distance between datapoints is equal to the Euclidean distance in this space,

up to a relative accuracy term related to the space’s dimension.

One can also, with some normalization choices including the one we use, obtain an

approximation of the Laplace-Beltrami operator, and then find eigenfunctions of that

approximate operator. This property is shown in [3] for one normalization approach,

and it is discussed in [10, 19, 20]. The Laplace-Beltrami operator is ∆ such that

∆f := − div∇(f), (1.13)

defined in a space with a Riemannian metric [28]. As shown in [3], the eigenfunctions

of the Laplace-Beltrami operator optimally preserve locality in a particular sense.

When a normalization is chosen so that the diffusion maps coordinates approximate

eigenfunctions of the Laplace-Beltrami operator, the relative densities of the data in

different regions of the underlying manifold do not impact the result, and we obtain

(approximately) the underlying Riemannian geometry of the data [10].

26

1.4 Organization of this dissertation

Each subsequent chapter consists of one research project I undertook, and includes

both the necessary background specific to that project and my own contributions. In

each of these chapters, the research is primarily my own, advised by Dr. Clarence

Rowley. Additional collaborators and their roles are discussed in the organizational

information below.

In Chapter 2, we focus primarily on testing the boundaries of EDMD’s capabilities

with a selection of challenging example problems motivated by turbulence. Within

that chapter, §2.3 and §2.4 are my own research. The rest of the chapter is discussion,

written by me, on background information, motivation, and future directions. The

work of §2.3 also appears in a publication of mine [78]. The results shown in §2.4

previously appeared in a conference poster of mine [77].

In Chapter 3, we test several Koopman-operator-based approaches for one ex-

ample problem with continuous symmetry. We learn more about best practices for

modeling this type of system, both in terms of prediction accuracy and in terms of

approximating the features we expect of the Koopman operator. The research in

Chapter 3 was a collaboration with Samuel Otto and Dr. Yannis Kevrekidis. As

detailed in the relevant sections of Chapter 3, some of the code used was written

by Otto. Additionally, I had many helpful discussions with him, primarily on the

linearly recurrent autoencoder network of §3.2.5. I also had helpful discussions with

Kevrekidis. The chapter consists of my writing on motivation, background, and future

directions, plus my original research in §3.2.4, §3.3, and §3.4.

Finally, in Chapter 4, we find a data-driven method for learning the dynam-

ics of a model system best understood in a manifold other than Rn. This chap-

ter’s research was a collaboration with Dr. Amit Singer and Dr. Amit Moscovich,

thanks to many helpful discussions with both of them. The chapter consists of my

writing on motivation, background, and future directions, plus my original research

27

in §4.2.2, §4.2.3, §4.2.8, and §4.3. In addition, §4.2.6 and §4.2.7 include both back-

ground information and my original research. Within those sections, I have endeav-

ored to be clear about what is from references and what is original.

28

Chapter 2

EDMD convergence with

continuous spectra

2.1 Introduction

For the work in this chapter, we focus on extended dynamic mode decomposition

(EDMD), a method of model reduction explained in §1.2. As mentioned there, EDMD

has had many successful applications, including in complicated systems like fluid

flow. However, as EDMD is brought to bear on increasingly complex systems, it is

worth stepping back and checking how well this tool will work given those additional

complications.

In particular, we are inspired by the potential application of turbulent fluid flows,

to consider how EDMD works in cases with some of the properties of turbulence,

especially mixing. As a mathematical term, mixing is defined in §2.2.1, and the

implications for Koopman operators are discussed. Essentially, we hope that with

EDMD, we can still find useful information about the structured part of the system,

despite the seeming randomness brought by chaos or mixing. As will be clearer with

the definitions in §2.2.1, we hope to find the eigenvalues and eigenfunctions associated

29

with the point spectrum of the Koopman operator, even in the presence of continuous

spectrum. Results on this topic are in §2.3.3.

Generally, we want to approximate the Koopman operator and its eigenvalues and

eigenfunctions well, and it is worth understanding how well EDMD does in various

cases. In §2.2.2, some results from a paper by Rowley and myself [78] are intro-

duced regarding how the Koopman operator and its eigenvalues and eigenfunctions

are approximated with EDMD, based on a simple rank condition. With some ex-

ample systems that display some of the complications discussed above, we provide a

demonstration of those results in §2.3.

Additionally, a perpetual problem in EDMD is choosing appropriate observables

for each system. In machine learning more broadly, this problem would be called

feature selection. In §2.3 and §2.4, we test the convergence of some commonly used

observables for interesting example systems.

2.2 Background

2.2.1 Measure preserving, ergodic, and mixing dynamical

systems

In the results that follow in §2.3 and §2.4, we consider systems with particular prop-

erties. Here, we introduce those properties and what they imply about the Koopman

operator. In this chapter we are concerned with discrete transformations, but analo-

gous concepts can be applied to continuous flows and the associated time-t Koopman

operator.

First, many systems are measure preserving. Given a measure space (M,B, µ) and

a transformation T : M →M , T is measure preserving if

µ(B) = µ(T−1(B)) (2.1)

30

for all B ∈ B [37]. Here, B is a σ-algebra and µ is a measure.

As an example, consider the transformation Tx = 2x (mod 1) for x ∈ [0, 1), and

the set B =
[

1
3
, 2

3

]
. Where can points have come from to end up in this set? It

turns out T−1(B) =
[

1
6
, 2

6

]
∪
[

4
6
, 5

6

]
. Notice µ(B) = µ(T−1(B)) with the standard

Lebesgue measure. Whatever set B we picked, we would have found that the set and

its preimage had the same measure. This is because the transformation T chosen

here is measure preserving for the Lebesgue measure.

For measure preserving systems, the associated Koopman operator is an isometry

on the space of square-integrable functions L2(M,µ) where µ is the measure preserved

by the associated system T (the invariant measure). By this, we mean that the

measure of functions in L2(M,µ) is unchanged by applying U , so
∫
M
|f |2µ(dx) =∫

M
|Uf |2µ(dx). To show this, let Tx = y, and consider

〈Uf, Ug〉 =

∫
M

Uf(x)Ug(x)µ(dx) (2.2)

=

∫
M

f(Tx)g(Tx)µ(dx) (2.3)

=

∫
M

f(y)g(y)µ(T−1dy) (2.4)

=

∫
M

f(y)g(y)µ(dy) (2.5)

= 〈f, g〉 , (2.6)

where we obtain Equation (2.5) by recalling µ(B) = µ(T−1(B)) for any set B. Since

〈Uf, Ug〉 = 〈f, g〉 for any f, g ∈ L2(M,µ), we conclude U is an isometry.

If T is invertible as well as measure preserving, we can go further and state

that the associated Koopman operator U : L2(M,µ)→ L2(M,µ) is unitary. Again,

we can show this fact. First, we determine the adjoint of U , the U∗ such that

31

〈Uf, g〉 = 〈f, U∗g〉. Let y = Tx again and consider

〈Uf, g〉 =

∫
M

f(T (x))g(x)µ(dx) (2.7)

=

∫
M

f(y)g(T−1y)µ(T−1dy) (2.8)

=

∫
M

f(y)g(T−1y)µ(dy) (2.9)

=
〈
f, g ◦ T−1

〉
. (2.10)

Thus, U∗g = g ◦ T−1. We also know Uf = f ◦ T . Therefore,

U∗Uf = U∗(f ◦ T) = (f ◦ T) ◦ T−1 = f, (2.11)

and

UU∗f = U(f ◦ T−1) = (f ◦ T−1) ◦ T = f, (2.12)

for any f ∈ L2(M,µ), so U∗U = UU∗ = I which means U is unitary.

Systems may have invariant sets or functions. For a transformation T : M →M ,

the function f is invariant if f(x) = f(Tx) = f(T−1x) for all x ∈M , if f is constant

along trajectories. A set B ∈ B is invariant if the indicator function for that set 1B

is an invariant function [11]. In effect, points do not enter or leave invariant sets

throughout their trajectories.

A system is called ergodic if its only invariant sets have either measure 0 or full

measure (the same measure as the whole space). Consequently, the only invari-

ant functions for ergodic systems are constant almost everywhere [11]. Due to the

Birkhoff-Khinchin ergodic theorem, it is commonly said that for functions evalu-

ated on M and ergodic systems T : M → M , the spatial average of the function

is equal to the time average of the function evaluated at points along a trajectory

{x, Tx, T 2x, . . .} in the limit of infinite trajectory length, for almost every x ∈M [11].

32

For an ergodic system, the associated Koopman operator’s only eigenfunctions with

eigenvalue 1 are constant functions [37].

Some ergodic systems are mixing. Given a measure space (M,B, µ) and measure

preserving transformation T : M →M , the system T is mixing if and only if

lim
n→∞

µ(B ∩ T−n(C)) = µ(B)µ(C) (2.13)

for all B,C ∈ B [11, 37]. To understand this definition, consider some points x where

x ∈ B and T nx ∈ C. These are points that start in B and end up in C after n

iterations of T . Equation (2.13) is saying that, in the limit as n → ∞, the measure

of the set of such points x is just the product the measures of B and C, regardless

of where B and C are (and regardless of, for instance, how much B and C overlap).

The fraction of C containing points that came from B is the same as the fraction of

the whole space that B takes up; things from B get spread in some sense evenly all

over the space, or mixed.

For example, Tx = 2x (mod 1) for x ∈ [0, 1) considered above is mixing. However,

Tx = x + α (mod 1) for a constant α is not mixing. This should make intuitive

sense; sets of points get smeared out over the whole space in the doubling map

Tx = 2x (mod 1). However, thinking of [0, 1) with (mod 1) in the map as a circle,

we see that sets of points in Tx = x+α (mod 1) just rotate around the circle staying

fixed relative to themselves, not mixing into the whole space.

Finally, for infinite-dimensional linear operators such as the Koopman operator,

we must generalize the concept of eigenvalues. For a bounded operator W that acts

on a Banach space X , the set of λ such that λI−W does not have a bounded inverse

is called the spectrum of W [16, 60]. If λI −W is not one-to-one (injective), then

there is some nonzero x ∈ X such that (λI−W)x = 0, and λ is said to be in the point

spectrum of W [16]. The point spectrum is essentially the set of eigenvalues. With an

33

infinite-dimensional operator, though, there are other ways that λI −W could fail to

have a bounded inverse. If λI−W is injective but not surjective, and in particular the

range of λI −W is a dense subset of X , but not all of X , then λ is in the continuous

spectrum of W . Finally, for cases where λI −W is injective, not surjective, and has

a range that is not dense in X , we have λ in the residual spectrum [16].

For the Koopman operator associated with a mixing system, the eigenvalue 1

associated with constant eigenfunctions is the only thing in its point spectrum; all

the rest is continuous spectrum [60].

2.2.2 Motivating results and example

In this section, we primarily summarize theoretical results and an example appearing

in [78] by Rowley and myself, which motivated my own work in §2.3 and that paper.

First, some notation. We consider a discrete-time dynamical system with a map

T : M → M . We also consider observables, complex-valued functions of the state

space M . These are fj : M → C for j ∈ [1, n], and they belong to a vector space V .

Let S = span {f1, . . . , fn}, and note S is a subspace of V . Also, let F (c) =
∑n

j=1 cjfj

for c = (c1, . . . , cn) ∈ Cn. This F will let us move between functions that are acted on

by the Koopman operator, and vectors that are acted on by matrix approximations

thereof.

The Koopman operator associated with T is U : V → V such that Uf(x) = f(Tx)

for all f ∈ V . Given state values at sample points xk for k ∈ [1,m], we can assemble

a matrix X with entries Xkj = fj(xk), and another matrix with observations one

timestep later, X#
kj = fj(Txk). Then with EDMD, we take A = X+X# to be a

matrix approximating U in some sense. Results in [78] allow us to be more precise

about the relationship between A and U .

First, it is shown that with X and F (c) as defined above, if rankX = dimS, then

34

for all c ∈ Cn,

UF (c) = F (Ac) + g (2.14)

where g ∈ S⊥ [78]. This result means that, if the rank condition on X is met, then

EDMD’s A is a matrix representation of the projection of U onto S (the span of the

observables). This rank condition should be fairly simple to meet in most applications.

The dimension of S is at most the number of observables n. X has n columns, and

as many rows as data points m. In most cases, if rankX is insufficient, we can add

data points to reach the required rank.

Next, we consider a specific case where Uf ∈ S for all f ∈ S, or in other

words where S is invariant under U . It is shown that if S is invariant under U

and rankX = dimS, then

UF (c) = F (Ac), (2.15)

so if c is an eigenvector of A with eigenvalue λ then F (c) is an eigenfunction of U

with the same eigenvalue [78]. This condition on S is fairly strict, and may not be

met in many practical applications of EDMD.

Similar results are found in [1], but with somewhat different assumptions and

conclusions. That work focuses specifically on ergodic systems with Takens delay

embeddings for observables. It also establishes convergence towards Koopman eigen-

functions and eigenvalues as the number of observables goes to infinity, unlike the

result in Equation (2.15) above which leads to exact matches of eigenvalues and

eigenfunctions with finite numbers of observables in the special case described.

Also in [78], an example system (a “toy problem”) which motivates some of my

work in §2.3.2 and §2.3.3 is considered. In this example, the space V where U operates

is V = `2(Z+), the Hilbert space of square-summable sequences of complex numbers

35

x = (x0, x1, . . .). For this example, let

U(x0, x1, x2, . . .) = (λx0, 0, x1, x2, . . .) (2.16)

where |λ| = 1. We notice that ‖Ux‖ = ‖x‖ so U is an isometry. We can also examine

what U does to basis elements ek = (x0, x1, . . .) where xj = δjk. Ue0 = λe0, so e0 is

an eigenvector of U with eigenvalue λ. For the others, we have

Uek = ek+1, k 6= 0, (2.17)

so U acts as a right shift on span {e1, e2, . . .}. It has no other eigenvectors besides e0. If

we were to take f = ek for k 6= 0 and use delay observables to do EDMD, we would be

projecting onto span {f, Uf, U2f, . . . , Un−1f} = span {ek, ek+1, ek+2, . . . , ek+n}. This

projection into a finite-dimensional subspace would lead to some spurious eigenvalues

and eigenvectors being computed, even though the projection of U onto the infinite-

dimensional span {ek, ek+1, . . .} for k 6= 0 has no eigenvectors at all.

However, if we used f = e0 as our observable, we would project into the one-

dimensional subspace span {e0} which is an invariant subspace of U , and we would

correctly compute the eigenvector e0 with eigenvalue λ.

Consider using f = e0 + e1 with Takens delay embeddings as in [78]. We have

f = (1, 1, 0, 0, 0, . . .), Uf = (λ, 0, 1, 0, 0, . . .), U2f = (λ2, 0, 0, 1, 0, . . .), etc. With

span {f, Uf, U2f, . . . , Un−1f}, we cannot get the eigenvector e0 exactly, but we can

approximate it with

1

n

(
f + λ̄Uf + . . .+ λ̄n−1Un−1f

)
=

1

n

(
n, 1, λ̄, . . . , λ̄n−1, 0, 0, . . .

)
=

1

n

(
ne0 + e1 + λ̄e2 + . . .+ λ̄n−1en

)
(2.18)

which goes to e0 in `2 norm as n goes to infinity [78]. This approximation motivates

36

the eigenfunction approximations in §2.3.2 and §2.3.3.

2.3 Computational Koopman eigenvalue and eigen-

function convergence

This section is a slightly altered version of my own work appearing in Rowley’s and

my paper [78].

2.3.1 Illustrating the rank condition

The first example system we consider is T : [0, 1)→ [0, 1) where

Tx = x+ α (mod 1), (2.19)

for 0 < α < 1, as was used in §2.2. The map is ergodic when α is irrational. We

choose α =
√

5−1
2

. The system has eigenfunctions ϕk(x) = e2πikx for k = 0,±1,±2, . . .

with corresponding eigenvalues λk = e2πikα, since

Uϕk(x) = ϕk(Tx) = e2πik(x+α) = λkϕk(x). (2.20)

For observables, we choose Fourier modes fj(x) = e2πijx for j = 0, . . . , n− 1. The

subspace S = span (f1, . . . , fn) is clearly n-dimensional. Also, with our convenient

choice of observables, the subspace S is invariant under U . Therefore, according to

Equation (2.15) and its associated assumptions, as long as rankX = n, we should

expect to calculate eigenvalues and eigenfunctions of U exactly with EDMD.

In Figure 2.1 (a), we see a case where rankX < n. For this case, we use n = 25

observables but only m = 24 data points to find A. The eigenvalues of A, plotted in

the figure, clearly do not match the eigenvalues λk of U , which are on the unit circle.

37

(a)
-1 -0.5 0 0.5 1

real part

-1

-0.5

0

0.5

1

im
ag

in
ar

y
 p

ar
t

Eigenvalues

(b)
-1 -0.5 0 0.5 1

real part

-1

-0.5

0

0.5

1

im
ag

in
ar

y
 p

ar
t

Eigenvalues

Figure 2.1: Eigenvalues calculated from data for the system in Equation (2.19) with
25 Fourier modes. (a) uses 24 data points, while (b) uses 25.

In Figure 2.1 (b), in contrast, m = 25 data points are used so that rankX = n. In

this case, as Equation (2.15) tells us, we can calculate the eigenvalues of U exactly

from data. The eigenvalues of A plotted here match the expected eigenvalues λk of U .

0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

re
al

 p
ar

t
o

f
ei

g
en

fu
n

ct
io

n

sufficient data

insufficient data

Figure 2.2: Eigenfunction calculated from data for the system in Equation (2.19) with
25 Fourier modes, using 24 (insufficient) or 25 (sufficient) data points.

Corresponding eigenfunctions found from data for the m = 24 and m = 25 cases

are plotted in Figure 2.2. As illustrated by these example eigenfunctions, the eigen-

functions match the correct eigenfunctions ϕk of U as soon as the rank condition is

met.

38

2.3.2 Less perfect observables

The next map we consider is a logical extension of the system above, where the new

map acts on the space M = [0, 1)× [0, 1). It is

T (x, y) = hT1h
−1(x, y) (2.21)

where

T1(x, y) = (x+ α, y + β) (mod 1), (2.22)

h(x, y) =

(
x+

1 + cos 2πy

2
, y

)
. (2.23)

The constants α and β are chosen to be relatively irrational. In particular, β = α
π

is

used.

One of the eigenfunctions of the operator U corresponding to this T from Equa-

tion (2.21) is

ϕ(x, y) = e2πi(x− 1+cos 2πy
2) (2.24)

with corresponding eigenvalue λ = e2πiα. The real part of this eigenfunction is plotted

in Figure 2.7 below. To begin, we use observables that are Fourier modes in the y-

direction, of the form fk(x, y) = e2πi(x+ky) for k = −N, . . . , N . These observables

do not span a subspace that is invariant under U , so we do not expect to meet the

assumptions necessary to apply Equation (2.15). Instead, gradual movement toward

the correct eigenfunctions and eigenvalues is observed, as illustrated by the cross

sections of data-driven approximations of ϕ at x = 0 in Figure 2.3 (a). To find A,

m = 1000 random uniformly distributed data points in M are used. Approximations

of this eigenfunction are found using the eigenvector of A whose eigenvalue is closest

to λ.

Next, we consider a different set of observables, related to the toy problem in §2.2.2.

39

Let

f(x, y) = e2πix + e2πiy. (2.25)

Then our observables of choice are f, Uf, U2f, . . . , Un−1f . Again, we observe that

the eigenfunctions gradually approach the true eigenfunction ϕ, as shown in Fig-

ure 2.3 (b). This behavior is again expected, since span (f, Uf, . . . , Un−1f) is not

invariant under U .

(a)
0 0.2 0.4 0.6 0.8 1

y

-1.5

-1

-0.5

0

0.5

1

1.5

re
al

 p
ar

t
o
f

ei
g
en

fu
n
ct

io
n

exact

N=3

N=5

(b)
0 0.2 0.4 0.6 0.8 1

y

-1.5

-1

-0.5

0

0.5

1

1.5

re
al

 p
ar

t
o
f

ei
g
en

fu
n
ct

io
n

exact

n=7

n=14

Figure 2.3: Real part of eigenfunction approximation cross-sections at x = 0 for
the system in Equation (2.21). The eigenfunction being approximated is ϕ(x, y) from
Equation (2.24). In (a), we approximate using Fourier observables fk(x, y) = e2πi(x+ky)

for k = −N, . . . , N . In (b), we use delay observables f, Uf, . . . , Un−1f with f defined
in Equation (2.25).

We can examine how the eigenvalue found from A converges to the true eigen-

value λ of U as the number of delays n increases. This convergence is shown in

Figure 2.4 (a). Eventually, we reach machine precision.

We can also examine how the eigenfunction found with eigenvectors of A converges

toward the true eigenfunction ϕ of U . Additionally, with the particular choice of

observables of the form f, Uf, . . . , Un−1f , we can use a second data-driven method

to approximate the eigenfunction, inspired by the toy problem in §2.2.2, particularly

Equation (2.18). Given the eigenvalue λn found from A with n delay observables, our

40

new approximation for the eigenfunction is

ϕn =
1

n

n−1∑
j=0

λ−jn U jfd. (2.26)

The convergence of both the standard data-driven eigenfunction approximation, and

the approximation introduced in Equation (2.26), to the true eigenfunction ϕ of U ,

is shown in Figure 2.4 (b).

(a)
10

0
10

1
10

2
10

3

Number of Delays

10
-15

10
-10

10
-5

10
0

E
ig

en
v
al

u
e

E
rr

o
r

approx eigenvalue

n-1.5 reference

(b)
10

0
10

1
10

2
10

3

Number of Delays

10
-15

10
-10

10
-5

10
0

E
ig

en
fu

n
ct

io
n
 E

rr
o
r

from eigenvector

from sum

n-1 reference

Figure 2.4: Convergence results for the system described in Equation (2.21). In (a),
eigenvalue convergence toward the true eigenvalue λ of U as a function of number of
delay observables used. In (b), eigenfunction convergence toward the true eigenfunc-
tion ϕ of U as a function of number of delay observables used, n. Compares results
from eigenvector of A with summation results using Equation (2.26).

The eigenfunction approximation found from an eigenvector of A eventually comes

within machine precision of the true eigenfunction ϕ of U , just as the eigenvalue

approximation comes within machine precision of λ. However, the eigenfunction

approximation using a summation inspired by §2.2.2, as in Equation (2.26), converges

much more slowly toward ϕ. Its convergence rate is roughly comparable to 1
n

in this

case, for sufficiently large n.

With Fourier observables, the convergence is faster than with the delay observables

shown in the figure, which we might expect since Fourier modes are a natural set of

functions to apply on our toroidal domain. The performance of these Fourier mode

observables is not the focus of this work, however.

41

The convergence to eigenvalue and eigenfunction of U shown in Figure 2.4 will

be contrasted with the much slower convergence displayed in the next section, for a

slightly different system with the same delay observables.

2.3.3 System with mixing

For an additional example, we consider

T (x, y) = hT2h
−1(x, y) (2.27)

where h is unchanged from §2.3.2 but

T2 = (x+ α, 3y) (mod 1). (2.28)

This mapping combines elements of the examples given previously, and results in

mixing in the y-direction with some point spectrum due to the x-direction behavior.

The new corresponding U has the same eigenfunction ϕ and eigenvalue λ from (2.24).

In Figure 2.5 (a) we see the eigenfunction approximations obtained with the same

Fourier-in-y observables used in Figure 2.3 (a) previously.

We can again introduce delay observables f, Uf, . . . , Un−1f with the same f as in

Equation (2.25). The approximations of the eigenfunction found using eigenvectors

of A, shown in Figure 2.5 (b), only move very slowly toward the true eigenfunction ϕ

of U they mean to approximate. This approximation is also shown in Figure 2.8 (a)

below.

To see the slow convergence more clearly, we can examine eigenvalue and eigen-

function convergence in Figure 2.6. Also in Figure 2.6 (b) is an approximation for

the eigenfunction using the same summation idea from Equation (2.26).

The eigenvalue convergence is close to n−1.5 for sufficiently large n, while the

eigenfunction convergence is close to n−0.5 for sufficiently large n. Unlike in §2.3.2,

42

(a)
0 0.2 0.4 0.6 0.8 1

y

-1.5

-1

-0.5

0

0.5

1

1.5

re
al

 p
ar

t
o
f

ei
g
en

fu
n
ct

io
n

exact

N=3

N=5

(b)
0 0.2 0.4 0.6 0.8 1

y

-1.5

-1

-0.5

0

0.5

1

1.5

re
al

 p
ar

t
o
f

ei
g
en

fu
n
ct

io
n

exact

n=7

n=70

Figure 2.5: Real part of eigenfunction approximation cross-sections at x = 0 for
the system in Equation (2.27). In (a), with Fourier observables. In (b), with delay
observables f, Uf, . . . , Un−1f where f is defined in Equation (2.25).

the eigenfunction convergence is similar between the two approximation methods, and

even slightly better for the summation approach from Equation (2.26) for some n.

However, both eigenvalue and eigenfunction convergence are much slower for the

system in Equation (2.27) than they were for the system in Equation (2.21). The

difference is mainly that the latter system has continuous spectrum as well as point

spectrum, while the former has only point spectrum.

2.4 Radial basis function observables

Continuing with the system from § 2.3.3 as given in Equations (2.27) and (2.28), we

consider yet another choice of observables: radial basis functions. The work in this

section was first presented in poster form at the SIAM Conference on Applications of

Dynamical Systems [77].

Radial basis functions (RBFs) have been sometimes used for EDMD observables,

for example in [86]. In particular, thin plate spline RBFs have been employed, where

there is no width parameter to choose. Thin plate spline RBFs have the form

g(x, y) = r2(x, y) log r(x, y) (2.29)

43

(a)
10

0
10

1
10

2
10

3

Number of Delays

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
ig

en
v
al

u
e

E
rr

o
r

approx eigenvalue

n-1.5 reference

(b)
10

0
10

1
10

2
10

3

Number of Delays

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ig

en
fu

n
ct

io
n
 E

rr
o
r

from eigenvector

from sum

~n-0.5 reference

Figure 2.6: Convergence results for the system described in Equation (2.27) with
delay observables. In (a), eigenvalue convergence toward the true eigenvalue λ of U
as a function of number of delay observables f, Uf, . . . , Un−1f used. In (b), eigen-
function convergence toward the true eigenfunction ϕ of U as a function of number of
delay observables used, n. Compares results using eigenvector of A with results from
summation in Equation (2.26).

where r(x, y) is the distance between the point (x, y) and the center for that RBF [85].

In [86] the centers for the RBFs were chosen using k-means clustering on the data

points, which meant that regions of state space that were more densely sampled also

had finer resolution with the resulting observables [5, 42, 86].

As such, our work also began with thin-plate spline radial basis functions, with

centers chosen through k-means clustering. The data points for our generated data

were plentiful (1000 of them as in §2.3.3 where this T was examined above), and were

chosen randomly from a uniform distribution, so the advantages of k-means clustering

were perhaps less pronounced in our case.

As can be seen by comparing the true eigenfunction in Figure 2.7 and the approx-

imations from EDMD in Figure 2.8, the RBF observables were more successful at

approximating the correct eigenfunction than the observables f , Uf , U2f , etc. from

Equation (2.25).

By examining the form of Unf , we can see why the horizontal stripes appear in

44

Figure 2.7: Real part of eigenfunction for the system in Equation (2.27).

Figure 2.8 (a).

Unf = Un
(
e2πix + e2πiy

)
= e2πi(x− cos 2πy

2)e
2πi

(
nα+ cos 2π3ny

2

)
+ e2πi3ny (2.30)

and that second term, with 3ny in the exponent, adds on a complex sinusoid in y whose

frequency increases rapidly with n. The first part of the first term is proportional to

the eigenfunction ϕ, but the second part of the first term will also vary with y, with

rapidly increasing frequency as n grows. These oscillatory parts cannot get cancelled

out as we take more observables, so there must be high-frequency variation with y in

any eigenfunction approximations formed from f, Uf, . . . , Unf .

From the convergence rates shown in Figure 2.9 (b), we see that, as expected

based on the above considerations, the delay observables lead to slower convergence

than RBF observables for the eigenfunction. However, as seen in Figure 2.9 (a), the

eigenvalue actually converges faster with delay observables, for low to moderate num-

bers of observables. The eigenvalue converges around n−1.5 for sufficient n with delay

observables, and does not reach a steady exponential rate with RBFs. Meanwhile,

the eigenfunction converges at around n−0.5 with delays and n−1.5 with RBFs once n

45

(a) (b)

Figure 2.8: Found eigenfunctions, from EDMD eigenvectors with 300 observables.
In (a), observables are a delay embedding of f from Equation (2.25), while in (b),
observables are radial basis functions.

is sufficiently large.

In an attempt to improve on the RBF observables’ convergence, we consider an

alternative method of choosing center locations. Instead of choosing each center’s

location with k-means clustering for a chosen number of RBFs k, we place the centers

to greedily maximize accurary. More specifically, the centers are placed one at a time,

with each new center being chosen to minimize the overall error in the eigenfunction ϕ

and eigenvalue λ pair according to an empirical error metric.

(a)
10

0
10

1
10

2
10

3

Number of Observables

10
-4

10
-3

10
-2

10
-1

10
0

E
ig

en
v

al
u
e

E
rr

o
r

Delay

RBF

n
-1.5

(b)
10

0
10

1
10

2
10

3

Number of Observables

10
-2

10
-1

10
0

E
ig

en
fu

n
ct

io
n

 E
rr

o
r

Delay

RBF

n
-0.5

n
-1.5

Figure 2.9: Convergence to true (a) eigenvalue and (b) eigenfunction as number of
observables increases, with delay observables and with radial basis functions.

46

The error metric we use was introduced by Zhang et al. [88]. Given an empirical

eigenvalue-eigenvector pair φ, µ from EDMD, we can take

∑
i |φ(Txi)− µφ(xi)|∑

i |φ(xi)|
(2.31)

to be the error, where the xi are data points. This empirical error metric can be

evaluated without knowing the true eigenvalue or eigenfunction; it simply measures

the extent to which the found pair act like a true eigenvalue and eigenfunction, as

evaluated at the data points, and suitably normalized.

In our case, we consider the EDMD eigenvalue with the second-largest magnitude

and its associated eigenfunction, and take the error for that pair to be the cost we

try to minimize by optimally placing the new RBF’s center as we add in RBFs one

by one. The reason we take the eigenvalue with the second-largest magnitude is that

we expect a true eigenvalue of 1 to be associated with a true eigenfunction which is

constant, and this trivial pair is often readily found with EDMD so there should be

a µ ≈ 1 eigenvalue which should be ignored.

After a small number of random center locations are chosen for a few initial RBF

observables, each subsequent observable is placed one at a time by minimizing the

cost above. To perform the optimization and choose the optimal center location, a

Nelder-Mead, or simplex, method is used [50]. This type of minimization algorithm

works well in cases like ours where derivatives are unknown and the dimension of the

search space is relatively low, and it is simple to implement. It is in general possible

this search method will not converge to the correct answer [45], but for our purposes

it works sufficiently well.

In Figure 2.10, the locations for the centers chosen by our greedy optiminzation

are shown. In Figure 2.11, we can see the resulting improvement in eigenvalue and

eigenfunction convergence, as compared with the performance of RBFs whose centers

47

0 0.2 0.4 0.6 0.8 1

x location of RBF centroids

0

0.2

0.4

0.6

0.8

1

y
 l

o
ca

ti
o
n
 o

f
R

B
F

 c
en

tr
o
id

s

original points

optimal additions

5

10

15

20

25

30

35

40

o
rd

er
 p

o
in

ts
 w

er
e

ch
o

se
n

Figure 2.10: Centroid locations chosen. Darkest-colored centroids were chosen earli-
est, and lightest-colored latest.

are placed with k-means clustering. The improvement becomes more noticeable as

the number of observables used increases. Even with our simple, greedy method, a

substantial improvement in convergence can be obtained, and these improvements

are sustained over many successive greedy choices.

(a)
10

0
10

1
10

2

Number of Observables

10
-3

10
-2

10
-1

10
0

E
ig

en
v
al

u
e

E
rr

o
r

Delay
original RBF

improved RBF

(b)
10

0
10

1
10

2

Number of Observables

10
-1

10
0

E
ig

en
fu

n
ct

io
n

 E
rr

o
r Delay

original RBF

improved RBF

Figure 2.11: Convergence to true (a) eigenvalue and (b) eigenfunction as number
of observables increases, with delay observables and with radial basis functions, as
in Figure 2.9, but with radial basis functions with chosen centroid locations as well
(“improved RBF” in the figure).

48

2.5 Conclusions and future directions

Some basic goals of this work, set out in §2.1, are met. We test how EDMD works in

cases with both point and continuous spectrum, as in the system of Equation (2.27).

This system, with mixing in the y-direction leading to continuous spectrum, but

still having eigenvalues and eigenfunctions associated with its ergodic, non-mixing

x-direction map, is tested with several choices of observables. In each case, EDMD

successfully converges toward giving a correct element of the point spectrum, despite

the presence of continuous spectrum. In this way, we could say that EDMD meets

the task of separating structured behavior from other unstructured behavior (in this

case mixing). With the question of finding the Koopman operator’s point spectrum

in the presence of continuous spectrum answered, some work has been done on the

related problem of finding the continuous spectrum itself [1, 32].

The convergence results show how, for some “difficult” systems or poor matches of

observable and system, as with delays of Equation (2.25) and the part-mixing system,

convergence can be quite slow. They are slow even compared to similar situations

like the same observables and the non-mixing system of Equation (2.21).

With the RBF observables, we try another type of observable from the literature,

and find broadly similar convergence performance to other choices on the part-mixing

system of Equation (2.27), better on the eigenfunction but worse on the eigenvalue.

With the ability to evaluate eigenvalues and eigenfunctions in a data-driven way,

granted by [88], we are able to improve performance by choosing RBF center locations

that most improve the eigenvalue and eigenfunction we wish to approximate.

We also demonstrate some of the motivating results from Rowley’s and my pa-

per [78] as described in §2.2.2. The projection result with its rank and invariant

subspace conditions, from Equation (2.15), is demonstrated in §2.3.1 on a simple

ergodic system. Also, the sum in Equation (2.18) for approximating eigenfunctions

is applied to the example systems of §2.3.2 and §2.3.3. The convergence of this ap-

49

proximation is compared against the convergence of the eigenfunction found from the

EDMD eigenvector, with both cases using a delay embedding of the same function f ,

and with the summation making use of the eigenvalue from EDMD. The summation

converges more slowly in the non-mixing case, but very similarly or slightly faster in

the mixing case.

The problem of choosing the best observables is a large and ongoing effort, for

which the work presented here is just a small piece. There is much future work to

be done on the subject. Some other approaches to choosing observables have already

been covered in §1.2. An additional option is essentially using neural networks to

choose observables, as we do in Chapter 3 with the linearly recurrent autoencoder

network of §3.2.5.

50

Chapter 3

Approximating the Koopman

operator in a case with symmetry

3.1 Introduction

In this work, we examine methods for data-driven model reduction in a case where

the underlying system has a continuous symmetry. In many real-world systems, the

governing equations of a system are, for example, translation invariant, or apply

equally well in any inertial reference frame, or obey some other symmetry. Previous

work has considered separating the dynamics into components, with a reduced state

where the symmetry has been removed and a component related just to the group

action [63, 64]. We apply this separation-based approach in our work, but use a

neural network to predict the group action component based on the reduced state,

and apply data-driven methods to learn the reduced state’s dynamics.

We consider the example problem of the Kuramoto-Sivashinsky equation, which

has a continuous translational symmetry. We test three methods of approximating the

full or reduced state. Primarily, we build on the linearly recurrent autoencoder net-

work (LRAN) of [53]. However, we also test the simpler method of EDMD with POD

51

mode observables, and a recent method using reproducing kernel Hilbert spaces [13].

With all of these methods, we can examine both the accuracy of our predictions, and

the properties of the approximate Koopman operator we find. We show, among other

results, that applying the “method of slices” from [63] to learn components of the

state separately produces much better predictions than attempting to predict the full

state with any one method.

Related work has been done by Linot and Graham [39]. They also consider the

Kuramoto-Sivashinsky system, apply spatial shifts to separate the translational sym-

metry out, and learn the reduced system’s dynamics and the shift dynamics with

neural networks. However, they consider a different behavioral regime for the system

by choosing a different L, and their model for the reduced dynamics does not have

a Koopman-related component, so they do not investigate the data-driven approx-

imate Koopman operator’s eigenvalues and eigenfunctions. They are focused more

on choosing the best neural network parameters to accurately predict the system’s

future behavior, and they incorporate energy conservation.

We begin with the background and theory of our approach in §3.2. The methodol-

ogy outlined in §3.2.4 is a novel combination of the theory of the “method of slices” [63]

with existing data-driven modeling techniques to make the component predictions.

Next, we compare the predictions of various methods in §3.3. We find that combining

existing data-driven approaches with our method-of-slices based approach improves

the predictions significantly. We then examine the properties of the approximate

Koopman operators found with those methods in §3.4. Finally, we provide some

conclusions and future directions in §3.5.

52

3.2 Theory

In this section, we provide the theoretical groundwork necessary to understand the

results of subsequent sections. We begin with mathematical background on groups

and symmetry in §3.2.1, introducing a few necessary terms and concepts for the rest

of the section. Next, we summarize the “method of slices” from [63] in §3.2.2, sim-

plifying to the applicable case where it is not necessary to rescale time. In §3.2.3, we

introduce our example system, the Kuramoto-Sivashinsky equation. Next, in §3.2.4,

we explain how we apply the method of slices to our example system in a data-driven

context, introducing a framework for our numerical investigations. The next two

sections, §3.2.5 and §3.2.6, give more details on the two relatively recent methods

of Koopman approximation that we apply within the overall framework given in the

previous section. Finally, we explain our motivation for investigating the approximate

Koopman operator’s eigenfunctions based on recent work [46, 66, 74].

3.2.1 Groups and symmetries

Our basic approach is to separate the dynamics into two parts, one of which deals

with the symmetry, and the other of which is independent from the symmetry. First,

though, we introduce some of the basic terminology and concepts used hereafter.

A group consists of a set and a binary operation that can be applied to two ele-

ments of the set, producing another element of the set, where some properties must be

satisfied [36]. Let a, b, c be any elements of the set, and denote the binary operation

with “◦”. The binary operation must be associative so that a ◦ (b ◦ c) = (a ◦ b) ◦ c.

There must be an identity element of the set (call it e) such that a ◦ e = e ◦ a = a

for every element a. Finally, each element must have a unique inverse, so that

a ◦ a−1 = a−1 ◦ a = e where a−1 is the inverse of element a [36]. For a straightfor-

ward example of a group, consider the set of integers Z with the binary operation of

53

addition, and the identity element zero. Another example of a group consists of the

set {−1, 1} with the operation of multiplication, with the identity element being 1.

We can relate some groups to a group action, an action group elements can take

on the elements of some set. Let (G, ◦) be a group and S be a set. Then in order

for “·” to be a group action of G on S, we must have g ·s ∈ S for all g ∈ G and s ∈ S.

Additionally, e · s = s must be true for the group’s identity e ∈ G and for all s ∈ S,

and (g1 ◦g2) ·s = g1 · (g2 ·s) must be true for all g1, g2 ∈ G and s ∈ S [8]. For example,

there are some groups whose elements are matrices, and they can have a group action

on the set of vectors of appropriate dimension via multiplication. Returning to the

simple example above with two elements, we could take the action associated with −1

to be flipping some 2D shape along a given axis, and the action associated with 1

to be leaving the shape alone. With this example, we can see why groups are often

related to symmetries. A shape that remains unchanged by the action of any element

of our group would have mirror symmetry along the given axis.

A Lie group is a smooth manifold where the associated binary operation and

inversion are also smooth [23, 33]. One Lie group, SO(3), is discussed extensively in

Chapter 4. A straightforward example of a Lie group is the set of real numbers R with

the binary operation of addition. Associated with each Lie group is a Lie algebra.

For our purposes, it is sufficient to know that Lie algebras are vector spaces together

with a specific type of operation called a Lie bracket, and that a Lie algebra’s vector

space is really the tangent space of the associated Lie group at the group’s identity

element. One example of a Lie algebra is the vector space R3 with the bracket being

the vector cross product [23]. For details on Lie algebras, see [8, 23, 30, 33, 43].

3.2.2 Method of slices

To be more specific about how we separate the dynamics, we are applying the ideas

of Rowley et al. from [63] and [64] for separating dynamics in cases with continuous

54

symmetries. The mathematical results and the “method of slices” from [63, 64] are

described below. The cases considered in [63] are more general to allow for cases like

self-similarity, but for our purposes we will simplify slightly by excluding those cases

and considering just spatial symmetries in the dynamics.

Consider a dynamical system u̇ = X(u) with u on the manifold M . Also consider

a Lie group G whose group elements have an action on M , so that g · u ∈ M for

u ∈ M and g ∈ G. Let the action of G on the tangent space TM be simply the

tangent of the action on M , and denote it with g · u̇ for u̇ ∈ TM , g ∈ G.

We suppose that there is some symmetry in the dynamical system, related to the

Lie group G. Specifically, that the vector field X is equivariant with respect to the

group actions on M and TM , i.e.

X(g · u) = g ·X(u) ∀u ∈M, g ∈ G. (3.1)

Furthermore, we assume that the flow of X is also equivariant, so that if a trajectory

u(t), t ∈ [0, T] satisfies the dynamical system u̇ = X(u), then so does g·u(t), t ∈ [0, T]

for any g ∈ G.

Consider a solution

u(t) = g(t) · r(t) (3.2)

to the dynamics u̇ = X(u), where g(t) is a curve in G and r(t) is a curve in M .

Differentiating Equation (3.2) with respect to t gives us

u̇ = g · (ṙ + ξM(r)) (3.3)

where ξ = g−1ġ is in the Lie algebra g of G (so in the tangent space to G at the

identity), and ξM is the infinitesimal generator of the group action in the direction

of ξ. Essentially, each ξ ∈ g has an associated vector field ξM on M , somewhat

55

analogous to a derivative. For a curve g(t) ∈ G, we have ξM(r) = d
dt

(g(t) · r)|g(0)=I ,

as the example in [63] shows.

If we substitute Equation (3.3) into the system dynamics u̇ = X(u), and apply

the equivariance from Equation (3.1), we can eliminate g and obtain the reduced

dynamics

ṙ = X(r)− ξM(r). (3.4)

These reduced dynamics do not depend on g directly. Once we specify a ξ (which

will come from choosing an r with the method of slices below), we will be able to

predict r without knowing g. From there, the idea is that g can be found based on r

using ξ(r) = g−1ġ, and the full dynamics u = g · r can be reconstructed.

Using the “method of slices” from [63], we separate g and r as follows. We choose

a template r0, and consider a “slice” Sr0 consisting of the r ∈ M such that r − r0

is orthogonal to ξM(r0) for all ξ ∈ g. We can interpret {ξM(r0)|ξ ∈ g} as being the

tangent space to the group orbit {g ·r0|g ∈ G} at r0. Thus, the slice Sr0 is orthogonal

to this tangent space. Given u ∈M , we can find a r = g−1 ·u in the slice by choosing g

to minimize ‖g−1 · u− r0‖. Once we restrict r to be in the slice, one can find ξM as a

function of r as in [63]. Then, dynamics in the slice obey the reduced dynamics from

Equation (3.4).

3.2.3 Kuramoto-Sivashinsky equation

For this work, we consider the dynamical system described by the Kuramoto-Sivashinsky

equation

ut + uxx + uxxxx +
1

2
(ux)

2 = 0 (3.5)

for x ∈ [0, L], with periodic spatial boundary conditions [26]. This equation was

introduced by Kuramoto [34] and Sivashinsky [76] to describe diffusion-induced chaos

in chemical reactions and instabilities in flame behavior. It has since been adopted

56

as a model problem where turbulence can arise with only one spatial dimension.

The solutions to this partial differential equation exhibit a wide variety of be-

haviors as the parameter L varies. In particular, as L increases, we see bifurcations

resulting in traveling waves, modulated traveling waves, heteroclinic cycles, and other

behaviors, before eventually breaking down into chaos at high L [2, 26, 29]. For our

purposes, we work with the beating traveling wave regime L ∈
[
π
√

86, π
√

89
]

[64].

Specifically, we choose L = π
√

87 ≈ 29.3.

We can see by examining the governing Equation (3.5) and the spatially periodic

boundary conditions, that if u(x, t) is a solution, then so is u(x+c, t) for any constant

shift c ∈ R. If we consider a Lie group G whose elements g ∈ G act on the state u so

that g · u(x, t) = u(x+ g, t), then we can say that the dynamics are equivariant with

respect to G as discussed in §3.2.2. Additionally, it is worth noting that if u(x, t) is

a solution, then so is u(−x, t), so there is another symmetry present associated with

the finite group with two elements described in §3.2.1.

3.2.4 Our approach

With the Kuramoto-Sivashinsky equation described in §3.2.3 as our example system

displaying translational symmetry, we apply the method of slices described in §3.2.2.

Specifically, we learn a data-driven Koopman-based model for the reduced dynamics,

and learn the behavior of g(t). With models for each part of the system’s behavior,

we can reconstruct the overall system behavior. This approach is compared against

learning a single data-driven model for the full system’s dynamics, using the same

techniques applied to the reduced dynamics.

By numerically simulating the Kuramoto-Sivashinsky equation, we obtain time-

series of u(x, t) for discretized x and t. To learn our models, we use several such

timeseries with different random initial conditions.

From there, for cases where we separate the dynamics as in Equation (3.2), we

57

find g(t) for this training data, and use that to find r(x, t). Effectively, we use a

template r0(x) = cos(x), and choose g(t) ∈ R to minimize

‖g−1 · u− r0‖2 =

∫
x

‖u(x− g(t), t)− r0(x)‖2. (3.6)

Practically, this is achieved by taking the Fourier transform in x of u(x, t), and then

choosing g(t) based on the coefficient associated with the fundamental spatial fre-

quency. Once g(t) is found, the reduced state r(x, t) = u(x− g(t), t) can be found in

a straightforward manner. With our method, we adjust all the Fourier coefficients to

apply this shift, then take the inverse Fourier transform. With the Fourier-transform

based method, g(t) is not restricted by the fact that our representations of u and r

are discretized in x.

Three different Koopman-based methods for learning the dynamics of r are tested.

First, the linearly recurrent autoencoder network (LRAN) introduced by Otto and

Rowley [53] is applied. This method is described in §3.2.5 in more detail, but essen-

tially, EDMD is performed with a neural network choosing the observables. Observ-

ables are chosen based on the predictive performance of the resulting model. Second,

and most simply, extended dynamic mode decomposition (EDMD) is applied, using

proper orthogonal decomposition (POD) modes as the observables. This method is

often applied to fluid flows, as discussed in Chapter 1. EDMD and POD are reviewed

in §1.2. Third, a method by Das et al. [13] for finding the Koopman generator using a

reproducing kernel Hilbert space is applied. This method is discussed in §3.2.6. Each

of these three methods is also applied to the original unshifted data u, to provide a

basis of comparison for our separation-based approaches. Our main focus is on the

LRAN approach, with the other two providing a basis for comparison.

In addition to learning the reduced dynamics r(x, t), we must also learn the dy-

namics of the shift g(t) in order to make predictions about the full reconstructed

58

state u(x, t). We accomplish this by training a neural network to find ġ(t) given r(t),

where the r it sees is in the low-dimensional form where the dynamics are linear,

found in the Koopman-based step described above.

Once we have these models, we can generate predictions. Given an initial con-

dition u(x, 0), we find the initial shift g(0) and reduced state r(x, 0). We find the

low-dimensional (“encoded” in the parlance of LRAN) state corresponding to r(x, 0),

and evolve it according to the dynamics by multiplying it by the EDMD matrix A,

or a related procedure in the case where we learn the Koopman generator instead.

This can be repeated to generate predictions further into the future. The encoded

state is also given to our neural network to find ġ at each of the timesteps of our

prediction. Integrating numerically from our start at g(0), we can find g(t). The

encoded states are decoded into predictions of r(x, t). Then, we find our predicted

values of u(x, t) = r(x+ g(t), t) by applying a Fourier transform to the predicted r(t),

altering the coefficients to shift it by g(t), then applying the inverse Fourier transform,

matching the procedure used to create the training data on r and g.

With the Koopman-based methods for learning the dynamics of r or u that we are

using, we can perform an eigendecomposition on the matrices we find. The results of

this eigendecomposition can be compared against our intuition about the Koopman

eigenvalues and eigenfunctions of the system. For example, since (with our parameter

choice for L) we have beating traveling waves, we should expect to see an eigenvalue

associated with the beating frequency. For the unshifted data u, we should also

expect an eigenvalue associated with the frequency at which the wave travels around

the domain.

3.2.5 Linearly Recurrent Autoencoder Networks (LRAN)

In this section we explain the LRAN from [53], as used in this work. The LRAN is

shown schematically in Figure 3.1. Two dense neural networks are used: an encoder

59

𝚿

෩𝚿 ෩𝚿 ෩𝚿

𝑲𝑇 ⋯

𝒙𝑡

ෝ𝒙𝑡 ෝ𝒙𝑡+1 ෝ𝒙𝑡+2

𝒛𝑡
ො𝒛𝑡+1 ො𝒛𝑡+2

Teacher: 𝒙𝑡 Teacher: 𝒙𝑡+1 Teacher: 𝒙𝑡+2

𝚿

𝒛𝑡+1

Teacher: 𝒙𝑡+1

𝚿

𝒛𝑡+2

Teacher: 𝒙𝑡+2

𝑲𝑇 𝑲𝑇

Figure 3.1: Architecture of the LRAN, from [53], used with permission.

and a decoder. The encoder takes a snapshot xt as input, and outputs a few useful

features or observables for that snapshot in a small vector zt. The decoder moves

from the low-dimensional representation of the snapshot produced by the encoder zt,

to a reconstruction x̂t which should be close to the original snapshot xt.

In addition to the encoder and decoder, a matrixK is learned, such thatKTzt = ẑt+1,

with the goal that ẑt+1 should be close to the encoded state zt+1 from the snap-

shot xt+1. This matrix K is analogous to the EDMD matrix A, as a finite-dimensional

approximation of the Koopman operator on the observables. In an LRAN framework,

if the data provided contain longer series of snapshots, then K can be chosen trying

not just to get KTzt close to zt+1, but (K2)
T

zt close to zt+2, and (K3)
T

zt close

to zt+3, etc. In contrast, even if the data provided for conventional EDMD are in

longer sequences, only pairs of temporally adjacent snapshots are considered to find A.

The weights and biases for the encoder and decoder networks, and the matrix

entries in K, are all learned at once using stochastic gradient descent with Adaptive

Moment Estimation (ADAM). The loss function, evaluated empirically on randomly

drawn minibatches of the available training data, is

E
1

1 + β

[
T −1∑
τ=0

δτ∑T −1
s=0 δ

s

‖x̂t+τ − xt+τ‖2

‖xt+τ‖2 + ε1
+ β

T −1∑
τ=0

δτ−1∑T −1
s=0 δ

s−1

‖ẑt+τ − zt+τ‖2

‖zt+τ‖2 + ε2

]
, (3.7)

60

where E denotes the expected value over a series of data {xt, . . .xt+T −1}. Here, x̂t+τ

is the decoding of the predicted future encoded state ẑt+τ = (Kτ)T zt. The first term

being summed is the reconstruction error, and the second is the error in the time

evolution of the encoded state. The parameter β determines the relative importance of

these two terms in the overall loss. The parameter δ ∈ (0, 1) is used to give decreasing

importance to predictions further in the future (with larger τ) in the sums, with

appropriate normalization constants in the denominators. The small parameters ε1

and ε2 prevent division by zero in case the true state xt+τ or its encoding zt+τ go to

zero.

The encoder and decoder each consist of dense neural networks, with the activation

function

elu(x) =


x x ≥ 0

ex − 1 x < 0

(3.8)

for each of the hidden layers, and a linear activation for the output layer of each.

These exponential linear units are introduced by Clevert et al. in [9] and used in

the LRAN of [53] for their differentiability and because, unlike typical rectified linear

units (ReLU’s), these provide nonconstant output even if the inputs are negative

throughout the provided data so that they do not become useless in that way.

For our work, we use an implementation of the LRAN in TensorFlow written by

Otto. Parameters we choose for this application are given in §3.3.1.

3.2.6 Approximating the Koopman generator using repro-

ducing kernel Hilbert spaces

We implement a version of the data-driven approximation of the Koopman generator

presented by Das et al. in [13]. There are various results about compactness and

convergence for this approach proved within [13], and such guarantees can make it

61

an attractive choice of methodology.

Essentially, we first learn about the manifold on which our dynamics exist, using

diffusion maps as described in §1.3, with the variable bandwidth Gaussian kernel of

[4, 13, 19]. The specifics of our diffusion maps procedure are in §4.2.4. Then, using the

diffusion maps eigenfunctions evaluated at our data points as the observables at those

data points, we compute a matrix approximation of the Koopman generator as in [13],

using a fourth-order central difference scheme to perform the numerical differentiation

required, taking care that the endpoints of each trajectory are handled in a way that

preserves the skew-symmetry of the result. The imaginary parts of the eigenvalues

of the matrix we find in this step are our approximation of the Koopman generator’s

eigenvalues. From eigenvectors of this matrix, we can obtain the eigenfunctions of

the operator approximating the Koopman generator, expressed in the basis of the

diffusion maps eigenfunctions.

The time evolution of Koopman eigenfunctions is linear, so we can make predic-

tions about the state time t into the future of these eigenfunctions using the time-t

discrete eigenvalues associated with the approximate Koopman generator’s eigenval-

ues we find. The space of diffusion maps eigenfunction coordinates is an example of

a reproducing kernel Hilbert space (RKHS), which provides methods for evaluating

out-of-sample data points. Procedures are outlined in [4, 13, 19]. With this ability,

we can make predictions based on initial conditions outside our training data. To

get from predictions about the Koopman eigenfunctions, back to predictions in our

original space u (or r, depending on whether we apply this procedure to the whole

state or the reduced state with the symmetry shifted out), requires further approx-

imation. The transformation from data points to their eigenfunction coordinates is

not invertible. Instead, for any function of the state, we find a linear approximation

for that function in a basis of the approximate Koopman eigenfunctions, using the

training data to learn the appropriate coefficients. Then, using the linear evolution

62

of the approximate Koopman generator’s eigenfunctions and the learned coefficients

to return to the desired function of the state, we can predict future values of that

function. In our case, the value of u (or r) at each x station is a function that we

approximate and make predictions about.

This method generates many eigenfunctions and eigenvalues of the approximate

Koopman generator. Some are more useful than others. One way to choose the

most relevant eigenfunctions, and the method used in [13, 19], is to compare the

Dirichlet energies of the approximate eigenfunctions. The Dirichlet energy can be

thought of as a measure of the roughness of a function; it is larger for more rapidly-

oscillatory functions. The Dirichlet energy of a function is the squared norm of the

function’s gradient, suitably normalized [18, 19]. We employ the normalization given

in [13] which penalizes high frequencies due to the possibility of finding eigenvalues

numerically that exceed the Nyquist frequency associated with the sampling rate. In

fact, we find that for central difference schemes beyond second order, it is possible

to find numerical eigenvalues beyond the sampling frequency, so we introduce a steep

additional penalty on eigenvalues above the sampling frequency. When forming a low-

dimensional model, we rank the eigenfunctions by their normalized Dirichlet energies

and keep those with the lowest values. As argued in [19], we expect that with our finite

datasets, functions with low Dirichlet energies can be approximated more precisely

anyway.

The procedure we use to make predictions about u or r is given below. It is based

extensively on [13].

1. Perform the diffusion maps process, with variable bandwidth Gaussian kernel,

described in §4.2.4 on the training data of r or u. We chose to use k = N/15

nearest neighbors, where N is the number of training sample points. From this,

we obtain the diffusion maps eigenvalues λ`, the diffusion maps eigenvectors φ`,

and diffusion maps coordinates ψ`. We also obtain the kernel parameters ε̂, m̂,

63

and ε, and the effective sampling densities ρj at each point, and the diagonal

matrix Q−1/2 and right singular vectors γj which are found along the way.

2. Approximate the Koopman generator as follows:

(a) Find the diagonal matrix Λ̃1/2 with diagonal entries Λ̃
1/2
`` = e

τ
2 (1−λ−1

`) where

τ is an empirically chosen parameter. We found that, as in [13], τ = 1e−4

worked for our purposes.

(b) Assemble the diffusion maps eigenvectors into a matrix Φ whose columns

are φ` and whose rows each correspond to one timestep.

(c) Numerically take the time derivative of Φ. We must do this in a skew-

symmetric way, so we must use a central differencing scheme. Also, the

resulting matrix Φt must have the same size as the original, so our nu-

merical derivatives at the beginning and end of each contiguous series of

timesteps in the training data are inaccurate (effectively we assume values

of 0 before and after the timeseries), and we just assume that these will

not have an undue influence on our overall results, as in [13]. We found a

fourth-order central differencing approach worked for our purposes.

(d) Compute the matrix W = Λ̃1/2ΦTΦtΛ̃
1/2, which is our approximate Koop-

man generator.

3. Choose which eigenfunctions and eigenvalues of the approximate Koopman gen-

erator to use as follows:

(a) Let ξ` be the eigenvectors of W normalized to norm 1, and ω` be the

imaginary parts of the corresponding eigenvalues.

(b) Assemble the diagonal matrix Λ−1/2 whose diagonal entries are Λ
−1/2
`` =

λ
−1/2
` . Use that to find the modified Dirichlet energy D` for each approxi-

64

mate Kooman generator eigenfunction, with

D` =

(
‖Λ̃1/2Λ−1/2ξ`‖2

2

‖Λ̃1/2‖2
2

− 1

)(
1− (ω`∆t)

2
)−1

(3.9)

as in [13]. Then, as a quick way of dealing with cases where ω` is faster

than the sampling frequency, scale D` by a large constant (e.g. 1e5 or

more) if ω`∆t > 1.

(c) Choose the number L of eigenfunctions of the approximate Koopman gen-

erator to use (e.g. L = 16 in much of our work), and keep the L eigenvectors

ξ` and imaginary parts of eigenvalues ω` with lowest corresponding D`.

4. Prepare to predict the state by approximating the state in terms of the eigen-

functions as follows:

(a) Let ζ` = Ψξ` where Ψ is a matrix whose columns are the diffusion maps

coordinates ψ` from the diffusion maps process in §4.2.4.

(b) Let F be a matrix where each row is one timestep from the training data

(u or r) and each column corresponds with one of M features (in our case,

the features are values at particular x locations). Form the L×M matrix

c where each row is c` = ζT` F .

(c) Form the diagonal matrix U with diagonal entries U` = eiω`∆t.

5. Process the initial conditions from the testing data as follows:

(a) Given N̂ initial condition testing datapoints x̂i, find the k nearest neighbors

of each testing datapoint from among the N training datapoints xj.

(b) Compute the effective sampling density for each testing datapoint x̂i as

in Equation (4.17), using the parameters ε̂ and m̂ found in Step 1 of the

current procedure.

65

(c) Form the (sparse, using only nearest neighbors) N̂ × N kernel matrix K̂

with entries K̂ij = κ(x̂i, xj)/N using κ from Equation (4.12) and the pa-

rameter ε and sampling densities ρj of training points found in Step 1 of

the current procedure.

(d) Find the degree of each testing datapoint d̂i =
∑N

j=1 K̂ij, and form the

diagonal matrix D̂−1 where D̂−1
ii = 1/d̂i.

(e) Find the N̂ × N kernel matrix ˆ̃K = D̂−1K̂Q−1/2 using Q−1/2 found in

Step 1 of the current procedure, and find the diffusion maps coordinates of

the testing datapoints ψ̂j = K̂γj using the right singular values γj found

in Step 1 of the current procedure.

(f) Find the approximate Koopman generator eigenfunctions ζ̂` of the testing

datapoints with ζ̂` = Ψ̂ξ` where Ψ̂ is a matrix whose columns are the ψ̂j

found above. Assemble them into a ζ̂ matrix whose columns are ζ̂` and

whose rows each correspond to one initial condition testing datapoint.

6. Generate a prediction k timesteps into the future from initial condition testing

datapoint j using fj = ζ̂jU
kc where ζ̂j is the jth row of the matrix ζ̂. The

prediction fj should be a vector of predicted either r or u values at all the x

locations.

3.2.7 Symmetry and Koopman eigenfunctions

Others have investigated how the Koopman operator of a system is affected by sym-

metries in the system, and data-driven methods for approximating the Koopman

operator in symmetric systems [46, 66, 74]. These works focus primarily on finite

symmetries, but some of their results apply to our Lie group symmetry case as well.

If we consider our dynamics u̇ = X(u) for u ∈ M , and the associated flow

map Xt where u(t) = Xt(u(0)), then the time-t Koopman operator for our system is

66

Kt : L2(M)→ L2(M) such that

Ktψ(u) = ψ(Xt(u)) (3.10)

for all ψ ∈ L2(M).

We take X to be equivariant with respect to group actions of the group G, as

in Equation (3.1). Again, considering a more restricted set of systems than in [63],

we take the flow to be equivariant as well, so that if we have one trajectory that is

a solution to u̇ = X(u), then acting on that whole trajectory with any one g ∈ G

produces another valid trajectory. As noted in [66], in these cases, the time-t flow

map Xt is also equivariant, so g ·Xt(u) = Xt(g · u).

To proceed, we must define the group action on L2(M) as well. As shown in [74],

for ψ ∈ L2(M),

(g · ψ)(u) = ψ(g−1 · u) (3.11)

defines a group action for g ∈ G on L2(M).

With this definition of the group action, we can show, as in [46, 66, 74], that

when the flow is equivariant with respect to group actions, so is the time-t Koopman

operator Kt.

g · (Ktψ)(u) = (g · ψ)(Xt(u)) = ψ(g−1 ·Xt(u))

= ψ(Xt(g
−1 · u)) = Ktψ(g−1 · u) = Kt(g · ψ)(u) (3.12)

for any u ∈ M, ψ ∈ L2(M), g ∈ G. In cases where we apply the method of slices

and separate the group action from the reduced dynamics as discussed in §3.2.4, we

are in effect using Equation (3.12). We do not explicitly construct an approximation

for the overall Koopman operator in those cases, but we rely on the idea that the

group action passes through the Koopman operator when we make predictions by

67

applying a group action the initial condition to align it with the template, applying

our reduced dynamics, then applying a new group action to get the predicted future

state. In cases where we attempt to approximate the overall Koopman operator to

predict the full state evolution directly, we do not make use of Equation (3.12).

Additionally, as shown in [66, 74], and similar to a result in [46], if φ ∈ L2(M)

is an eigenfunction of Kt with eigenvalue λ, then g · φ is also an eigenfunction of Kt

with eigenvalue λ, for any g ∈ G. Hence, we could say that the eigenspaces associated

with each eigenvalue of Kt are invariant under group actions of G. Since Ktφ = λφ,

and using Equation (3.12), we have

Kt(g · φ) = g · (Ktφ) = g · (λφ) = λ(g · φ) (3.13)

so g ·φ is indeed an eigenfunction of Kt with eigenvalue λ. This result about the eigen-

functions of the Koopman operator leads to some useful questions when examining

the eigenfunctions of our Koopman approximations in §3.4.2.

3.3 Prediction accuracy results

Our goal here is to learn reduced-order models for the Kuramoto-Sivashinsky equa-

tion at the particular parameter choice L = π
√

87 ≈ 29.3 which leads to beating,

traveling waves. The models are both trained on, and tested against, data from

numerical simulations of this partial differential equation’s evolution. We simulate

with a semi-implicit pseudo-spectral method, as in [53]. We provide initial condi-

tions using normally-distributed random initial Fourier coefficients for the first three

non-constant spatial Fourier modes, then evolve the system for an initial tinit = 1500

to avoid transients before we start recording. For each of training, evaluation, and

testing data, we record 20 simulations consisting of data with ∆t = 1 and 512 spa-

tial locations, for 500 steps after the initial transient period mentioned above. An

68

example training simulation is shown in Figure 3.2.

Figure 3.2: Example simulation from training data.

In Figure 3.2, we can clearly see the beating with a period of approximately 10,

and the much slower traveling with a period of nearly 2000. Due to the flip symmetry

in the Kuramoto-Sivashinsky equations, some simulations have the wave traveling in

the −x direction, as shown here, and some have the wave traveling in the opposite +x

direction, depending on the initial condition.

3.3.1 Improvement offered by symmetry reduction

In this section we focus on the neural network approach using the LRAN, and compare

the case where we learn one model for u’s evolution using the LRAN against the

approach where we learn the reduced state r’s evolution with the LRAN and then

learn to find ġ from the encoded state, as described in §3.2.4.

In both cases, the LRAN is used with layer sizes [512, 32, 32, 16, q] where q is the

dimension of the encoded state. For this section, we choose q = 16. The decoder’s

layer sizes are the same as the encoder’s, in reverse order. Increasing the sizes of

the encoding and decoding networks did not offer substantial accuracy benefits in

the few tests performed regarding those parameters. For the parameters referenced

69

in Equation (3.7), we use β = 1 to give equal importance to the two terms in the

loss function, and δ = 0.1, and T = 5. After training, to test the LRAN’s accuracy

at predicting u, an initial condition from the testing dataset is provided, and the

LRAN’s encoding, decoding, and approximate Koopman matrix are used to evolve

the state forward for the 500 steps provided in the simulation we test against.

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.3: Using LRAN, with 16-dimensional encoded state. (a) example prediction,
(b) mean square relative error over many predictions.

In Figure 3.3, the performance of the LRAN at predicting the behavior of the full

state u is shown. Figure 3.3(a) shows one example prediction of testing data, and

Figure 3.3(b) shows the mean square relative error (MSRE) over the entire testing

dataset. As can be seen, the short-term performance is good, but as traveling becomes

relevant, the prediction worsens, reaching errors of order 1 at long time horizons.

The performance at the first timestep reflects the accuracy of the encoding-and-

decoding process of representing states with the LRAN, while the medium-to-long

term performance is increasingly influenced by the inaccuracy of the approximate

Koopman operator.

To test the combined approach involving symmetry reduction, a g is found for the

testing initial condition u, and the shift is applied to obtain an initial r. That r is

evolved forward with the LRAN, and the encoded state at each timestep is provided

to the neural network finding ġ. With the initial g and the found ġ’s, a simple

70

integration is performed to find predicted g’s at every step. The r predictions are

then shifted back using the g predictions to obtain u predictions.

The neural network used to find ġ uses ReLU’s, with layer widths [q, 32, 16, 8, 1].

The weights and offsets involved in this dense neural network are learned using

ADAM, and the network is implemented using Pytorch. The loss used for learn-

ing is simply the error in predicting ġ, averaged over a minibatch of examples.

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.4: Symmetry reduction, LRAN, and ġ neural network, recombined to give
overall prediction, with 16-dimensional encoded state. (a) example prediction, (b)
mean square relative error over many predictions.

In Figure 3.4, we see the overall prediction for u for testing data, found using the

symmetry-reduction approach described above. Unlike the approach of Figure 3.3

where the LRAN is used to predict the whole state on its own, this method allows us

to approximate the traveling observed in the true behavior. The beating behavior also

appears here, as it does in Figure 3.3’s case. The MSRE for this symmetry-reduction

case is lower than in the other case throughout, but especially in the medium to long

term. In fact, we can use fewer than the 16 dimensions used here for the encoded

state and still obtain a good prediction, as shown in §3.3.2.

We can also examine how each component used to obtain Figure 3.4’s prediction

performs in isolation. Figure 3.5 shows the true and predicted r, where the prediction

is found using the LRAN. Figure 3.6 shows the predicted and actual ġ, found using a

dense neural network as described above, taking the LRAN predictions of Figure 3.5

71

as inputs. In Figure 3.7, the ġ predictions are integrated starting from the correct

initial g to provide a comparison between true and predicted shift amounts g.

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.5: Predicted states with symmetry taken out r, using LRAN with 16-
dimensional encoded states. (a) example prediction, (b) mean square relative error
over many predictions.

(a)
� ��� ��� ��� ��� ���

�

�����

�����

����

����

����

�
���

��
��
��
��
��

���
���

��
���

����

���
�	�����

(b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�
��
��

��
�

�	
���

���

�	

�

Figure 3.6: Neural network finding ġ given predicted LRAN 16-dimensional encoded
states. (a) example prediction, (b) mean square error over many predictions.

As can be seen from Figures 3.5–3.7, the LRAN is highly accurate at predicting r,

and ġ is also found with very low mean squared error. However, as we integrate the ġ

predictions to obtain g, we notice that the traveling speed is not quite right, and the

predictions diverge from the truth in the long term. This slowly-accumulating error

in g, with highly accurate r predictions, explains the behavior noted above in the

overall prediction for u, where this approach has lower MSRE than the attempt to

directly learn the full state, but the MSRE increases with time rather than reaching

72

(a)
� ��� ��� ��� ��� ���

�

���

���

���

���

���

���

���

���

�

���
���

��
���

����

���
�	�����

(b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�
��
��

��
�

�	
���

���

�	

�

Figure 3.7: Integrating from neural network finding ġ given predicted LRAN 16-
dimensional encoded states, to get g predictions. (a) example prediction, (b) mean
square error over many predictions.

a plateau.

To give the LRAN a better chance at learning to predict the full state, we also test

training with T = 50, rather than the more typical T = 5 used throughout the rest

of this work. Theoretically, accounting for errors further into the future with each

attempted prediction during training might be expected to better teach the LRAN

about slow trends such as the traveling wave here. As Figure 3.8 shows, the LRAN

still does not learn to correctly predict the full state. Some traveling in the correct

direction is predicted, but it is not the smooth travel at a constant rate that truly

occurs. The MSRE is higher throughout than in the combined approach of Figure 3.4

where the LRAN learns the reduced state, and g captures the traveling separately.

Further alterations to the training approach would be required to make the LRAN

alone predict the full state as accurately as the combined approach above does with its

fairly default LRAN parameter choices. As it is, looking ahead this far to determine

losses leads to appreciably slower training in this T = 50 case.

3.3.2 Reducing encoded state dimension

In fact, the symmetry-reducing approach to predicting u shown in Figure 3.4 is so

successful that it is worth considering whether q = 16 is unnecessarily high for the

73

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.8: Using LRAN, with 16-dimensional encoded state, with T = 50. (a)
example prediction, (b) mean square relative error over many predictions.

encoded state dimension. In Figure 3.9, we see the same combination approach using

the LRAN to find r as described above, but with a 3-dimensional encoded state. The

results are very similar to the higher-dimensional model results, so evidently q = 3 is

sufficient both for the LRAN and for learning ġ from the encoded state. The q = 3

case is chosen because we expect one complex conjugate pair of Koopman eigenvalues

associated with the beating frequency observed in r, plus the eigenvalue 1 associated

with the constant eigenfunction. The eigenvalues found in our approximations of the

Koopman operator are discussed in §3.4.1. A three-dimensional model was used for

this system in [64] as well.

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.9: Symmetry reduction, LRAN, and ġ neural network, recombined to give
overall prediction, with 3-dimensional encoded state. (a) example prediction, (b)
mean square relative error over many predictions.

74

For consistency, we also consider using a smaller encoded dimension where the

LRAN learns the full state u on its own, as in Figure 3.3. We check q = 3 and q = 5

in Figures 3.10 and 3.11 respectively. With q = 3, the model found by the LRAN

has an oscillation frequency relatively far from the beating frequency, as shown in

Figure 3.10.

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.10: Using LRAN, with 3-dimensional encoded state. (a) example prediction,
(b) mean square relative error over many predictions.

Once we reach q = 5 in Figures 3.11, the beating frequency is roughly obtained,

although there are some issues with stability, and obvious issues with the traveling

wave part of the motion. The maximum magnitude reached appears to increase

with time in these predictions, indicating long-term instability. The traveling issues

are to be expected since even q = 16 could not correctly capture this behavior.

It is unsurprising that we require q = 5 to deal with the dynamics of u, since we

expect a complex conjugate pair of Koopman eigenvalues associated with the traveling

frequency, in addition to the pair associated with the beating frequency and the one

constant function eigenvalue, for a total of five expected eigenvalues. Again, the found

eigenvalues are discussed in §3.4.1.

75

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.11: Using LRAN, with 5-dimensional encoded state. (a) example prediction,
(b) mean square relative error over many predictions.

3.3.3 EDMD with POD modes

We check whether a method simpler than the LRAN for modeling r can perform as

well as the LRAN does. We also check this more conventional method’s performance

on the task of predicting u directly, a task the LRAN struggled to perform. This

simpler method is EDMD with POD mode observables, as described in §3.2.4. We

use the first 30 most significant POD modes as our observables. For the task of

predicting u, those POD modes are shown in Figure 3.12. For the purposes of this

approach, we subtract out the spatial mean of the data before further processing, and

add it back in to generate our predictions. As we might expect given that we have

many datapoints u(t) which are essentially spatially shifted versions of each other

in the training data, the POD modes mostly resemble Fourier modes that do not

distinguish one spatial location from another.

Using those POD modes as observables, we perform EDMD, keeping a q × q

sized A matrix. In Figure 3.13, we use q = 16 for comparison against the LRAN

results above. Using EDMD as shown here to predict u, we cannot even reliably

display beating, much less traveling. Instead, even worse than the LRAN prediction

of u in Figure 3.3, we quickly dissipate to a fairly steady-looking prediction with large

error.

76

����
���
���

����
���
���

����
���
���

����
���
���

����
���
���

� ���
����
���
���

� ��� � ��� � ��� � ���

Figure 3.12: First 30 POD modes.

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.13: Using EDMD with POD observables, with A ∈ R16×16. (a) example
prediction, (b) mean square relative error over many predictions.

In Figures 3.14 and 3.15, we consider the cases of q = 3 and q = 5 respectively.

These results can be compared against Figures 3.10 and 3.11 above. With EDMD,

we avoid the unstable growth in prediction magnitude found in some of the low-

dimensional LRAN predictions of u, but still do not perform well. Also, these EDMD

predictions never display the beating behavior well, unlike the LRAN predictions

for q ≥ 5.

Next, we consider using EDMD with POD mode observables to find r, the symmetry-

reduced state. In Figure 3.16, the 30 POD modes of the symmetry-reduced, mean-

subtracted data we use are shown. Here, since we have shifted the data to be spatially

77

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.14: Using EDMD with POD observables, with A ∈ R3×3. (a) example
prediction, (b) mean square relative error over many predictions.

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.15: Using EDMD with POD observables, with A ∈ R5×5. (a) example
prediction, (b) mean square relative error over many predictions.

78

����
���
���

����
���
���

����
���
���

����
���
���

����
���
���

� ���
����
���
���

� ��� � ��� � ��� � ���

Figure 3.16: First 30 POD modes of state with symmetry taken out.

aligned, the POD modes are less like Fourier modes, and show some nonuniformity

in x, unlike the case for the full state POD modes of Figure 3.12.

In Figure 3.17, we use EDMD with POD mode observables to predict the reduced

state r, with A ∈ R16×16. This result is most comparable to Figure 3.5, where we use

LRAN to predict r. The beating is correctly found. The error is still several orders

of magnitude larger than in Figure 3.5, but the performance is nevertheless much

superior to the predictions of the full data u using this EDMD method above.

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.17: Using EDMD with POD observables, with A ∈ R16×16, for symmetry-
reduced state. (a) example prediction, (b) mean square relative error over many
predictions.

In Figure 3.18, we use this same prediction method for r, this time for a 3 × 3

79

(a) (b)
� ��� ��� ��� ��� ���

�

����

����

����

����

����

���

�

��
��

�

��

��
��

�
��

��
	�

��
���

��

	�

Figure 3.18: Using EDMD with POD observables, with A ∈ R3×3, for symmetry-
reduced state. (a) example prediction, (b) mean square relative error over many
predictions.

matrix A. The result is worse than the 16 × 16 case in Figure 3.17, with visible

dissipation of the beating as time advances, but still hugely superior to the predictions

of the full state u above.

3.3.4 RKHS method

As with the other methods for approximation, we test approximating both the reduced

state r and the full state u, this time using the method described in §3.2.6.

In Figure 3.19, we attempt to predict the full state using a 16-dimensional state

based on the q = 16 lowest-Dirichlet energy choices of eigenvalue and eigenfunction.

The approach does not pick up the beating frequency with this few modes kept, and

so it is fairly inaccurate at even medium-term predictions. It is also worth noting that,

since the “decoding” from linearly evolving encoded state back to the full state at

each x-location is linear, even the initial state cannot be represented very accurately

with only a 16-dimensional encoded state. Therefore, the error is high even at very

low t values.

It turns out that, once we keep at least 22 eigenvalues, the RKHS method’s pre-

diction of the full state contain a complex conjugate pair of eigenvalues approximately

associated with the beating frequency, and the prediction improves. As the reduced

80

(a) (b)
0 100 200 300 400 500

t

M
ea

n
 S

q
u
ar

e
R

el
at

iv
e

E
rr

o
r

(M
S

R
E

)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Figure 3.19: Using RKHS method, with 16 eigenvalues kept, for full state. (a) example
prediction, (b) mean square relative error over many predictions.

state’s dimension further increases, the problem of linearly approximating the state

becomes less severe, leading to further improvement in the short-term prediction. In

Figure 3.20, we see these improvements with q = 100 eigenvalues kept. However, even

with this large reduced-order approximation, the traveling component is not found

accurately, and the beating component that is found soon dissipates.

(a) (b)
0 100 200 300 400 500

t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
ea

n
 S

q
u
ar

e
R

el
at

iv
e

E
rr

o
r

(M
S

R
E

)

Figure 3.20: Using RKHS method, with 100 eigenvalues kept, for full state. (a)
example prediction, (b) mean square relative error over many predictions.

Similar issues are present in the approximation of the symmetry-reduced state r

using the RKHS method. Keeping only the 14 lowest-associated-Dirichlet-energy

eigenvalues is necessary to represent the beating frequency in the reduced state ap-

proximation, as opposed to the 22 necessary in the full state’s approximation. Thus,

the 16-dimensional model’s predictions for r, shown in Figure 3.21, are more success-

81

ful than the comparable predictions for the full state in Figure 3.19. The problem

with representing any state as a linear combination of a few reduced-order features

persists, leading to relatively low accuracy at short times.

(a) (b)
0 100 200 300 400 500

t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
ea

n
 S

q
u
ar

e
R

el
at

iv
e

E
rr

o
r

(M
S

R
E

)

Figure 3.21: Using RKHS method, with 16 eigenvalues kept, for symmetry-reduced
state. (a) example prediction, (b) mean square relative error over many predictions.

At least a fourth-order central difference method was required to find the correct

beating frequency. With a second order central difference method, there were visible

beats in the MSRE as the predicted and actual beating waves moved in and out of

phase with each other. With a fourth or higher order central difference method, the

error steadily increases with time. Also, the error over short time horizons is sub-

stantially less than for the full state, even before the beating should have a significant

impact on MSRE. Thus, something besides sheer number of eigenfunctions available

for use in approximation of observables must be influencing the approximation quality

at short times.

3.4 Koopman eigenvalue and eigenfunction results

3.4.1 Approximate Koopman eigenvalues

Since we find approximations of the Koopman operator for each of the models wtih

predictions shown above, we can examine those approximations and their properties.

82

One relevant property is the eigenvalues. We expect that there should be a complex

conjugate pair of eigenvalues associated with the beating frequency. In our discrete-

time Koopman operators with ∆t = 1, the expected eigenvalues are simply e±2πi/τ

where the beating period is τ . From our simulations, the observed beating period is

approximately τ = 9.95.

In Figure 3.22, the approximate Koopman eigenvalues from our LRAN model for

the reduced state r are plotted, with both the 3- and 16-dimensional cases represented.

The expected eigenvalues from the beating frequency and trivial eigenfunction with

eigenvalue 1 are also displayed for reference. In Figure 3.22(b), we zoom in on the

region near the expected beating eigenvalue. In both the 3- and 16-dimensional cases,

there is one eigenvalue quite near each of the three expected eigenvalue locations.

(a)
-1 -0.5 0 0.5 1

real part of Koopman eigenvalues

-1

-0.5

0

0.5

1

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

16

3

expected

(b)
0.76 0.78 0.8 0.82 0.84

real part of Koopman eigenvalues

0.56

0.58

0.6

0.62

0.64
im

ag
in

ar
y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

16

3

expected

Figure 3.22: Approximate Koopman eigenvalues from symmetry-reduced case using
LRAN, with encoded state dimension in legend. (a) shows all found eigenvalues, (b)
zooms in.

In Figure 3.23, we plot the approximate Koopman eigenvalues found using EDMD

with POD modes to predict the reduced state r. The eigenvalues found are not quite

as close to the expected values as in the LRAN case, but still the beating frequency

is approximately found.

In Figure 3.24, we plot the approximate Koopman eigenvalues found using the

RKHS method described in §3.2.6 to predict the reduced state r. The eigenvalue

associated with the beating frequency is found. The eigenvalues in Figure 3.24 are

83

(a)
-1 -0.5 0 0.5 1

real part of Koopman eigenvalues

-1

-0.5

0

0.5

1

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

16

3

expected

(b)
0.76 0.78 0.8 0.82 0.84

real part of Koopman eigenvalues

0.56

0.58

0.6

0.62

0.64

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

16

3

expected

Figure 3.23: Approximate Koopman eigenvalues from symmetry-reduced case using
EDMD with POD modes, with encoded state dimension in legend. (a) shows all
found eigenvalues, (b) zooms in.

colored by the associated Dirichlet energy. In our method, when reducing the encoded

state dimension, we include the lowest Dirichlet energy components first, so those with

the darkest color in Figure 3.24. In addition to eigenvalues near 1 and the beating

frequency, we observe eigenvalues near the sampling frequency as well.

(a)
-1 -0.5 0 0.5 1

real part of Koopman eigenvalues

-1

-0.5

0

0.5

1

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

(b)
0.76 0.78 0.8 0.82 0.84

real part of Koopman eigenvalues

0.56

0.58

0.6

0.62

0.64

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

Figure 3.24: Approximate Koopman eigenvalues from symmetry-reduced case using
RKHS method, with 16 eigenvalues kept. Colored by associated Dirichlet energy
(darker colors mean lower Dirichlet energy). (a) shows all found eigenvalues, (b)
zooms in.

For the Koopman approximations regarding the full state u, where there are beat-

ing, traveling waves, instead of stationary beating waves, we expect an additional

complex conjugate pair of eigenvalues associated with the traveling period. Based on

our simulations, the traveling period is approximately τ = 1940. Again, the expected

84

(a)
-1 -0.5 0 0.5 1

real part of Koopman eigenvalues

-1

-0.5

0

0.5

1

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

16

7

5

3

expected

(b)
0.76 0.78 0.8 0.82 0.84

real part of Koopman eigenvalues

0.56

0.58

0.6

0.62

0.64

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

16

7

5

3

expected

(c)
0.992 0.994 0.996 0.998 1 1.002

real part of Koopman eigenvalues

-4

-2

0

2

4

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

10
-3

16

7

5

3

expected

Figure 3.25: Approximate Koopman eigenvalues from full state using LRAN, encoded
state dimension in legend. (a) shows all found eigenvalues, (b) and (c) zoom in near
beating and traveling frequencies respectively.

eigenvalues are e±2πi/τ . The beating frequency’s eigenvalues should be at the same

location as for the shifted (reduced) data.

As with the symmetry-reduced case above, we can examine how the approximate

Koopman eigenvalues for the full state u vary as the encoded state dimension q

changes. In Figure 3.25, we see the eigenvalues found using LRAN on the full state u,

as the encoded state varies. With q = 3, not even the beating frequency’s eigenvalues

are near the expected value, which explains the observed difficulty with predicting

the beating in Figure 3.10. With q ≥ 5, the beating eigenvalues are approximately

found, and once we reach q = 7 we have a multiplicity of eigenvalues near that beating

frequency. Also at q ≥ 7, a pair of eigenvalues appears near the traveling frequency,

although it does not lead to correct prediction of traveling behavior.

In contrast with the LRAN results for the full state shown in Figure 3.25, the

85

eigenvalues from EDMD with POD mode observables, shown in Figure 3.26, do not

approach any of the expected eigenvalues (except the eigenvalue 1 associated with the

trivial constant eigenfunction) very closely. As we expect from the EDMD predictions

in §3.3.3, even the beating frequency is not found with the EDMD approximation for

the full state u. Instead, many eigenvalues in the interior of the unit disk appear,

leading to the decaying behavior observed in Figure 3.13 through Figure 3.15. Some

of these eigenvalues with magnitude less than 1 do appear somewhat near the trav-

eling frequency in their angle, as shown in Figure 3.26(b), although as shown in the

predictions of §3.3.3, the traveling is not correctly predicted.

(a)
-1 -0.5 0 0.5 1

real part of Koopman eigenvalues

-1

-0.5

0

0.5

1

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

16

7

5

3

expected

(b)
0.992 0.994 0.996 0.998 1 1.002

real part of Koopman eigenvalues

-4

-2

0

2

4

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

10
-3

16

7

5

3

expected

Figure 3.26: Approximate Koopman eigenvalues from full state using EDMD with
POD modes, encoded state dimension in legend. (a) shows all found eigenvalues, (b)
zooms in.

In Figure 3.27, we see the 100 lowest-associated-Dirichlet-energy eigenvalues from

approximating the full state evolution with the RKHS method. They are colored

by associated Dirichlet energy, with darker colors being lower Dirichlet energy. As

in the reduced state case of Figure 3.24, the beating frequency is found. Unlike in

the reduced case, we do not also find eigenvalues near the sampling frequency. The

reason for this difference is unknown at this point. Instead, the entire region near

the traveling frequency’s associated eignevalues is covered in found eigenvalues with

relatively low Dirichlet energy in Figure 3.27. However, without distinguishing the

traveling frequency, it does not lead to correct traveling predictions.

86

(a)
-1 -0.5 0 0.5 1

real part of Koopman eigenvalues

-1

-0.5

0

0.5

1

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

(b)
0.76 0.78 0.8 0.82 0.84

real part of Koopman eigenvalues

0.56

0.58

0.6

0.62

0.64

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

(c)
0.992 0.994 0.996 0.998 1 1.002

real part of Koopman eigenvalues

-4

-2

0

2

4

im
ag

in
ar

y
 p

ar
t

o
f

K
o
o
p
m

an
 e

ig
en

v
al

u
es

10
-3

Figure 3.27: Approximate Koopman eigenvalues from full state using RKHS method,
with 100 eigenvalues kept. Colored by associated Dirichlet energy (darker colors mean
lower Dirichlet energy). (a) shows all found eigenvalues, (b) and (c) zoom in near
beating and traveling frequencies respectively.

87

3.4.2 Approximate Koopman eigenfunctions

According to Equation (3.13), if we have an eigenvalue λ of the discrete-time Koopman

operatorKt with associated eigenfunction φ, then g·φ is also a Koopman eigenfunction

with the same eigenvalue, for any g ∈ G, assuming the flow Xt is equivariant with

respect to the actions of group G. Our numerical approximations of the Koopman

operator produce associated eigenvalues and eigenfunctions. In fact, in the case of the

LRAN finding an approximate Kt for the full state u, with encoded state size q = 16,

there are two eigenvalue complex conjugate pairs found near the beating frequency.

It is plausible that these eigenvalues, which are very near each other, could have

associated eigenfunctions which are nearly group actions away from each other.

To test this possibility, we must examine the eigenfunction outputs for some in-

puts, since the numerical nature of our work does not allow us to write the found

eigenfunctions down analytically. In our case, the discrete-time Koopman opera-

tor acts on functions in L2(M), so these functions take as input something like the

state u ∈ M . In theory, for our problem, the state u ∈ M is a function u(x) of

position x ∈ [0, L). In practice, we evaluate this function u at the 512 x values used

in the datasets to provide a numerical vector input.

In §3.2.3, we note that for the Lie group G we consider here, g ∈ G acts on the

state u so that g ·u(x) = u(x+g). We consider states u1, u2 and some g ∈ G satisfying

u1(x) = u2(x− g) (3.14)

for all x ∈ [0, L), so that u2 = g−1 ·u1. Now, we also consider functions φ1, φ2 ∈ L2(M)

where φ1 = g · φ2 for the same g ∈ G. Using Equation (3.11), we have

φ1(u1) = (g · φ2)(u1) = φ2(g−1 · u1) = φ2(u2). (3.15)

88

Hence, if we have two eigenfunctions satisfying φ1 = g · φ2, as is plausible based on

the analysis in §3.2.7, then Equation (3.15) should hold for any u1, u2 pair satisfying

Equation (3.14) for that g. Of course, eigenfunctions are only unique up to a constant

scaling factor, so for the eigenfunctions found numerically, the true relationship could

be

cφ1 = g · φ2 (3.16)

for some c ∈ C.

Even if our approximate Koopman eigenfunctions are related as in Equation (3.16),

we do not know the relevant g ∈ G or c ∈ C. We test a range of candidate g ∈ G

choices, as follows. First, we choose a base function v ∈ M . We then consider a set

of functions vh such that vh(x) = v(x + h) for a range of h ∈ [0, L). Evaluating an

eigenfunction φi at one of our vh’s produces a complex number. We can plot these

eigenfunction evaluations as a function of h. If it were true that φ1 = g · φ2 for

some g ∈ G, then we would expect to see the plots for φ1 and φ2 as almost identical,

but with one shifted a consistent amount g along the x-axis compared to the other.

If we plot the complex numbers in terms of their absolute value and phase, then if it

were true that cφ1 = g · φ2 as in Equation (3.16), we would expect to see the x-axis

shift as described above, a constant-factor scaling in the absolute values between the

two plots from |c|, and a vertical shift in the phases from the phase of c.

We should note that observing the behavior described above for some chosen v

is not sufficient to prove that Equation (3.16) is true. For that equation to hold,

we would need Equation (3.15) to hold for every pair u1, u2 ∈ M satisfying Equa-

tion (3.14). It would be challenging to prove that were true, especially given that

the eigenfunctions φi can be nonlinear. However, if we can find some u1, u2 satisfying

Equation (3.14) where the eigenfunctions do not satisfy Equation (3.15), then that

example is sufficient to disprove Equation (3.16) for those eigenfunctions.

The first v we test is v(x) = sin(x). In Figure 3.28, we evaluate the two approx-

89

�
 �� �
 �� �
 ��
������������

 ���

 ��

���

��

���

��

���

��
��
��
��
��
��
��
��
��
��
���
�

���
����������
����	�
��

���
�����

�
 �� �
 �� �
 ��
������������

���

����

���

����

���

���

��

���

��
��

��
��

��
��
��
��

��
��

���
�

��������
���

	�
����

���
�����

Figure 3.28: Eigenfunction evaluation, for inputs vh(x) = sin(x+ h), plotted against
shift amount h, with the associated eigenvalue (near the beating frequency) in the
title of each plot. Results from LRAN on full state u with q = 16.

imate Koopman eigenfunctions associated with the found eigenvalues near the beat-

ing frequency (taking the positive-imaginary-part eigenvalue for each pair), using the

Koopman approximation from the LRAN on the full state u, with a 16-dimensional

encoded state. These eigenfunctions are evaluated at vh for h ∈ [0, L) to produce the

plots in the figure. There are some superficial similarities, such as the large broad

peak in the phase. However, upon closer examination, it is clear that these eigen-

functions do not have a relationship like the one described above, where the pair of

eigenfunction plots would be the same except for a shift of the whole plot along the

h-axis, a vertical shift in the phase, and a vertical scaling in the magnitude.

Some allowance should be made for the imprecision that may come from finding

these eigenfunctions numerically. Also, it is plausible that these eigenfunctions are

chosen by the neural network mainly for their values near the relevant u’s from our

training data, so we should test a case with v’s near those states to avoid extrapo-

lating too far from our dataset. The example u’s, which come from simulating the

Kuramoto-Sivashinsky equation at our L value, generally contain two each of local

maxima and minima, and have a magnitude near 5. Therefore, the next v we test is

v(x) = 5 sin(2x). Plots of eigenfunction evaluation versus shift amount h for this vh

are in Figure 3.29. Again, it is clear that the relationship of Equation (3.16) does not

90

hold here. Here, the phases wrap around by 2π in opposite directions, with a signifi-

cant local maxima and minima in one while the other changes almost monotonically.

The magnitudes are also quite different, with one eigenfunction having four notable

peaks and the other three.

�
 �� �
 �� �
 ��
������������

�

�

�

�

	

�

�

��
��

��
��

��
��
��
��

��
��

���
�

���
����������
����	�
��

���
�����

�
 �� �
 �� �
 ��
������������

 ��

 �

 	

 �

�

�

	

��
��
��
��
��
��
��
��
��
��
���
�

���
��������
�	�
����

���
�����

Figure 3.29: Eigenfunction evaluation for inputs vh(x) = 5 sin(2x), plotted against
shift amount h, with the associated eigenvalue (near the beating frequency) in the
title of each plot. Results from LRAN on full state u with q = 16.

Indeed, if Equation (3.16) were true for some pair of eigenfunctions, then we would

need Equation (3.15) to hold for any u1, u2 ∈M satisfying Equation (3.14), with the

same g across all those cases. Thus, there were some amount of horizontal shift in

Figure 3.28 we could identify between the pair of eigenfunctions, then that same

amount of shift should appear in Figure 3.29 as well. We have already identified a

method for determining shift amounts from spatially discretized data, when finding g

from our training data. We choose a template of cos(x) and find the shift required

to best match that template by finding the lowest-frequency Fourier coefficient in the

Fourier transform of our data. The difference in these found shifts between two eigen-

functions should, if Equation (3.16) is true, be the same (mod L) across any v’s we

could test. Checking those relative spatial shifts, for the two v’s represented in figures

here plus several other somewhat arbitrary sinusoidal v’s, results in varied relative

shifts between eigenfunctions as v varies. This finding is another piece of evidence

that these found, approximate Koopman eigenfunctions with similar eigenvalues are

91

not just a group action away from each other.

3.5 Conclusions and future directions

In this work we have explored the performance of Koopman approximation methods

on a system with continuous symmetry, namely the Kuramoto-Sivashinsky equation.

We consider three different methods for approximating the Koopman operator. First,

the LRAN [53]. Second, a simple implementation of EDMD using POD modes as

observables. Third, the RKHS-based method for approximating the Koopman gen-

erator [13]. In each case, we have tested both learning the approximate dynamics

of the full state u and a symmetry-reduced state r, where we apply a version of the

“method of slices” [63, 64] to produce this reduced state.

At predicting the symmetry-reduced state’s behavior, all three methods perform

well. However, the RKHS method requires a higher-dimensional Koopman approxi-

mation than the other two methods to achieve accurate predictions. With the LRAN

and EDMD with POD modes methods, reasonably good predictions are generated

from an only three-dimensional encoded state. All three of the approximation meth-

ods find the beating wave behavior present in the data.

None of the three methods, when applied directly to the full state, are successful

at generating long-term predictions. The LRAN and RKHS methods approximate

the short-term beating behavior, but the EDMD method does not even find that

behavior (at the encoded state dimensions used). None of the methods predict the

slow traveling wave behavior present in the data.

Using the LRAN’s prediction of the symmetry-reduced state, we train another

neural network to predict ġ, the derivative of the shift amount required to move

from the full state to the reduced state. With these, we can obtain a combined

prediction for the full state, making use of our accurate prediction of the symmetry-

92

reduced state along the way. These combined predictions outperform the predictions

of the full state made more directly. Although the traveling frequency is not matched

exactly, leading to long-term drift, this method is the only one even close to correctly

predicting traveling behavior.

It is possible that, with different parameter choices, the LRAN learning the full

state directly could have performed better at making long-term predictions and ac-

counting for the traveling present in the data. Compared with the other methods,

there were more parameters to choose in the LRAN approach. Also, it is the only

method to look farther than one timestep ahead when forming its approximation, so

with appropriate parameter choices, it is conceivable that it could pick up on slower

phenomena like the traveling. As another option, it is conceivable that one could

somehow restrict the LRAN’s available features to respect the symmetry properties

discussed in §3.2.7, which could lead to better predictions and even different eigen-

function properties in §3.4.2. However, the combined approach required none of this

tweaking to succeed.

We analyze the approximate Koopman eigenfunctions found for the full state.

The full state evolves based on the Kuramoto-Sivashinsky equations, which have a

continuous symmetry. Based on related work in [46, 66, 74], we show that where the

flow has a symmetry, each eigenvalue corresponds with a space of eigenfunctions that

are all a group action away from each other. However, we also show that numerically

found eigenfunctions associated with nearly matching eigenvalues are not necessar-

ily just a group action apart, by analyzing the full state LRAN eigenfunctions for

eigenvalues near the beating frequency.

This method of slices, applied using a Koopman-based method for predicting the

reduced state, and a neural network to learn the derivative of the required shift,

would likely be suitable for other systems with continuous symmetries besides the

Kuramoto-Sivashinsky equations investigated here. The most successful Koopman-

93

based prediction method in this work was the LRAN, so it is a strong candidate for

further application to similar problems.

94

Chapter 4

Finding equations of motion from

projected data

4.1 Introduction

In this project, we consider a rotating 3D body, and attempt to discover the equations

of motion governing its rotation from a timeseries of 2D projections of that body. Our

previous work had focused on using dynamic mode decomposition (DMD) and related

reduced order modeling techniques to find simplified models of dynamics from data.

Here, we extend that overall goal of finding useful dynamics models to a situation

where the DMD approach is not the best choice.

Unlike in some other problems we have tackled, the dynamics of this problem

occur within the context of a manifold which is quite dissimilar to Rn, namely SO(3).

As mentioned in some other reduced-order modeling work, it behooves us to consider

the manifold in which the dynamics make sense. For example, in [52], features are

found which provide an immersion or embedding of the underlying manifold. In our

case, we found that the best approach involved approximating the manifold using

diffusion maps. From there, we were able to find a representation of the rotations

95

between timesteps, and then use those to approximate the equations of motion.

There have been other efforts to learn the physical equations of motion governing

various systems from image data, such as work using neural nets to learn Lagrangian

dynamics [89]. However, the application to rigid body rotation, in particular, is not

as well-studied.

Methods to find the relative rotation between 2D images of the same 3D object

have been developed in multiple fields of study. Within the field of computer vision,

structure-from-motion deals with this task, albeit with a different type of projected 2D

image. Their approach and its differences from ours are explained in §4.2.3.

More relevant to our work is cryogenic electron microscopy (cryo-EM), and specifi-

cally single-particle reconstruction. The goal is, given several 2D images of a molecule,

frozen in random unknown orientations, to find the 3D structure of the molecule. To

do this, one of the critical steps involved is learning the relative rotations between the

images. As one can imagine, the objects being imaged are small enough that one must

account for effects like diffraction [72]. Still, some of the work there is used within

our own method, as described in §4.2.7. Another work relevant to our own is [20],

as discussed in §4.2.6, in which a scattering-based model for 2D image formation was

used.

Some recent work in cryo-EM has considered the dynamics of large molecules, like

proteins, which have some flexibility and may deform. As summarized in [48], those

efforts are mostly about finding the different configurations a molecule may take,

and possibly finding plausible transitional states between the low energy conforma-

tions. They work by classifying the 3D structures observed. Thus, although this

work on cryo-EM with dynamics may sound related to our work, it is actually quite

distinct from finding the equations of motion governing the trajectories of rotating

rigid bodies.

In this project, we develop a method for finding equations of motion for a rotating

96

body given orthogonally projected point data. We make use of other work in places,

particularly [19] for diffusion maps, and then [20] and [83] which together help us find

rotation matrices from diffusion maps data, but the method as a whole is, as far as

we know, novel.

4.2 Theory

The method we use is given step-by-step in this section, along with the necessary

background to understand each step. In §4.2.1, we provide the necessary information

about rotations to understand the subsequent work, and in §4.2.2 we describe the

dataset we use. Then, in §4.2.3 we explain why some alternative methods to the one

given below were rejected. Essentially, from the 2D projections described in §4.2.2,

we find diffusion maps eigenfunctions using the steps in §4.2.4, which are related to

a representation of the rotations between timesteps via the Wigner D-functions as

explained in §4.2.5. For more information on diffusion maps generally, §1.3 provides

the relevant information, while the specifics of the approach used throughout our

work are given in §4.2.4. We perform an optimization to obtain rotation matrices

from these eigenfunctions as given in §4.2.6, initializing the optimization using the

common lines approach as described in §4.2.7. From the rotation matrices, we obtain

the angular velocities via numerical differentiation, and choose features to form the

equations of motion using processes given in §4.2.8.

4.2.1 Rotations and SO(3)

As mentioned in §4.1, we aim to learn the rotations required to get from one timestep

to another. It is worth understanding some theory about rotations in R3 before we

proceed.

There are many ways of specifying a rotation in R3. One is with Euler angles:

97

three angles indicating how far to rotate about given axes, in a given order, to achieve

the overall rotation desired. There are several competing conventions about which

axes in which order are used. We will clarify where necessary which convention is

applied in the rest of this chapter.

Another way to indicate a particular rotation in R3 is with a 3 × 3 rotation

matrix. Rotation matrices are the primary representation used in this work. Given

a vector x = (x, y, z)T ∈ R3, a rotation matrix R acts so that x′ = Rx is the rotated

vector. There are a few observations about rotation matrices that will be relevant

in subsequent sections. Rotation matrices are the orthonormal R3×3 matrices with

determinant 1. Since it is an orthonormal matrix, RT = R−1. The fact that all the

rows and columns are orthonormal is encoded in the matrix equation

RRT = RTR = I. (4.1)

Given a rotation matrix from a to b and from b to c, the rotation matrix to get from a

to c is

Rac = RbcRab. (4.2)

Other ways to specify a rotation include the axis-angle form and quaternions,

each of which are only used briefly here. In the axis-angle form, one specifies a unit

vector in R3, which specifies the axis about which the rotation is performed, and

an angle in [0, π] radians by which to rotate in a right-handed sense. Quaternions

extend some of the concepts of complex numbers; they have similar special rules

for multiplication. A quaternion has four components, each a real scalar. The unit

quaternions can be used to encode rotations, with performing a series of rotations

being equivalent to multiplying the associated quaternions. For each rotation, there

are two equivalent ways of representing it in quaternions. To convert from quaternions

to rotation matrices one can use the Euler-Rodrigues formula [12].

98

The space of rotations is referred to as SO(3), the special orthogonal group of

order 3. The 3 × 3 orthogonal matrices with determinant 1, described above, are a

representation of this group; there exists a unique group element for every such matrix

and vice versa, and composing group actions by stringing together multiple rotations

in sequence produces the same result as multiplying the relevant rotation matrices

together in the proper order. We should note that the order in which rotations are

applied is important; switching the order will produce a different final orientation.

The space SO(3) is diffeomorphic to the real projective space P (R)3 [23]. Real

projective spaces are spheres with the antipodal points identified, so SO(3) can be

thought of as the unit hypersphere S3, but with points directly across from each other

identified as the same element of SO(3). This can explain why unit quaternions, whose

coordinates could also identify a point on S3, have two possible ways to represent each

element of SO(3).

In addition, we should note that SO(3) is a Lie group, and that, as one might

gather from the relationship with S3 described above, it is a manifold. Our goal in

using diffusion maps is to learn the manifold SO(3) from our dataset, so that we

can identify the rotations between timesteps from the diffusion maps coordinates we

obtain. It turns out that special tools within the field diffusion maps are relevant if a

manifold is not orientable [73], so it is worth checking that SO(3) is indeed orientable.

First, we note that a manifold is orientable if we can transport a set of coordinates

in any loop on the surface without finding it flipped when we return to where we

started. For example, the surface of a cylinder is orientable, but the surface of a

Möbius strip is not. The surface of the 3-sphere is orientable, so the question that

remains is whether the map identifying the antipodal points is orientation-preserving.

If so, we could move in any loop we wanted on SO(3), including jumping to antipodal

points on S3 if we wanted, without losing orientation.

The antipodal map takes us from a point (w, x, y, z) in S3 to (−w,−x,−y,−z),

99

so we could write it as multiplication by−I4, where I4 is the 4×4 identity. Linear maps

are orientation preserving if their determinant is positive [15]. Since det (−I4) = 1 > 0,

this map is orientation preserving (unlike the related antipode map on the sphere S2,

for example). Thus, we see that SO(3) is orientable, and it is possible to use diffusion

maps on that manifold, rather than needing to find its double covering with the vector

diffusion maps developed in [73].

4.2.2 Data used

We consider a rigid body rotating according to Euler’s equations for rigid body rota-

tion

Iω̇ + ω × (Iω) = 0 (4.3)

where I is the inertia matrix and ω is the vector of angular velocity about the principal

axes [43]. The goal will be to find these equations of motion, including values for the

parameters in I, from partial observations.

We assume that at each time step, we obtain a 2-dimensional image of the rotat-

ing object. Furthermore, we assume that we can locate, within each image, several

distinct points on the body. Indeed, to generate the dataset used, we simply apply the

rotations dictated by the equations of motion to a set of k points, then orthogonally

project those rotated point locations into a plane to obtain what would otherwise

come from processing an image.

The problem of finding identifiable points in multiple images of the same object is

known as the “correspondence problem” in computer vision, and is often treated sep-

arately from other computer vision tasks. For example, in Longuet-Higgins’ seminal

1981 structure from motion (SfM) paper [40], the author assumes the correspondence

problem has already been done. Likewise, in [44], a book on vision, some chapters

discuss methods for the correspondence problem, while others assume a starting point

100

where correspondence has been done already, and instead focus on other computer

vision tasks. Thus, our assumption that we can start with labelled points is follow-

ing in a computer vision tradition, and our work focuses on problems other than

correspondence.

Unlike in typical computer vision problems, where a pinhole-camera-type model

is assumed [40], we use a simple orthogonal projection onto a plane to generate

point locations in our 2D images. This difference in projection is discussed in more

detail in §4.2.3, and it necessitates a totally different approach from the typical SfM

techniques. Part of our contribution in this project is finding methods for dealing with

orthogonal projection, where established SfM techniques would likely be sufficient

with the perspective-based projections used in that field.

The generated data, rather than coming from one long trajectory, come instead

from many shorter trajectories with different initial orientations and angular veloci-

ties. It was found that using a single trajectory did not adequately explore the space

of possible rotations, leading to poor diffusion maps. Instead, initial rotations were

chosen randomly, uniformly sampling SO(3).

In order to give meaning to the phrase “uniformly distributed,” we must specify

a measure. The correct measure to use here is the Haar measure for rotations, the

unique measure on SO(3) which is invariant under the actions of the rotation group

members [24]. To generate random points in SO(3) that are uniformly distributed

with respect to the Haar measure, the following procedure is used. First, sample

points in R4 with a Gaussian distribution. Next, normalize those points in R4 onto the

surface of the unit 3-sphere. Finally, treating these normalized points as quaternion

coefficients, use the Euler-Rodrigues formula to convert from quaternions to rotation

matrices.

Just as we must use many random initial orientations to explore enough of SO(3),

we must also use many initial angular velocities to provide enough information to

101

deduce the equations of motion. For a given kinetic energy, the space of possible

angular momenta can be seen as a sphere in R3 due to the conservation of angular

momentum, with trajectories forming closed orbits on that sphere [43]. With too few

trajectories, we would not see enough of the state space to find the correct equations

of motion. Thus, initial angular velocities are chosen randomly (each element coming

from a uniform distribution on an interval [−1, 1], with the resulting vector scaled so

that all trajectories have the same kinetic energy).

Finally, the “shape” of our 3D object, or the locations of our points in 3D space,

is chosen to be non-symmetrical to avoid further complicating our efforts.

4.2.3 More direct approaches fail

If we retained the full 3D locations of points, it would be trivial to find the relative

rotation between two timesteps. If a point’s location at one timestep is x = (x, y, z)T

and at another is x′, then

x′ = Rx (4.4)

where R ∈ R3×3 is the matrix describing the rotation undergone between those two

timesteps. If we wanted to solve for R, then we could set up several of these equations

with several of our labelled points, and unless there was a weird coincidence in the

points chosen (e.g. choosing three collinear points), three points would be enough to

solve for the nine elements of R. However, the dataset we use does not consist of full

3D point locations, but instead 2D projections of those locations.

In the SfM community, there are established methods for moving from 2D pro-

jections of point locations to finding the relative rotation. As explained in a survey

paper for SfM [55], a pinhole camera projection model is used, and both the relative

rotation and the camera translation are found. In practice, this projection means

that if a point’s location is (x, y, z), then its projection’s location in the image is

102

(x/z, y/z), as explained in initial work by Longuet-Higgins [40]. In this initial work,

eight corresponding image points were required for the calculation, but modern work

based on Nister’s solution [51] requires only five points.

As mentioned in §4.2.2, in this work we use simple orthogonal projection to get

point locations in the image plane; if the location of a point in space is (x, y, z), we say

its location in the image is (x, y). The difference between our data and the data used

in SfM is illustrated in Figure 4.1. The example uses a “house” shape with a square

base and triangular prism top. The face of the house nearest to the image plane is

drawn with a solid line, while the face furthest from the image plane is drawn with a

dashed line. The points are in the same locations in 3D space in the two examples;

the difference comes solely from projection method. In the projection used in SfM,

points further away from the image plane appear closer together. In contrast, the

projection used in this work gives no such indication of what is nearer or farther from

the image plane. With such significant differences in the kind of data used, the SfM

methods do not work on our dataset.

(a)
-3 -2 -1 0 1

x

-1

0

1

2

y

(b)
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x

-0.4

-0.2

0

0.2

0.4

0.6

y

Figure 4.1: An example of the difference between (a) the projection used in this work
and (b) the projection used in SfM.

Without existing techniques to guide us, we might still hope to be able to solve

directly for R given enough points from the relevant two timesteps’ images. There are

several relevant equations to include in our efforts. Ultimately, we will show that we

cannot solve the resulting system of equations uniquely. Therefore, we must instead

103

use a the more complicated approach overviewed above and described in subsequent

sections. However, it is worth understanding how solving for relative rotations directly

from our dataset fails.

If we let rij indicate the element of R in the i-th row and j-th column, then we

can write out the scalar equations

0 = r11x+ r12y + r13z − x′ (4.5)

0 = r21x+ r22y + r23z − y′ (4.6)

where z and all six rijs above are unknown, but x, y, x′, and y′ are known. If we use k

copies of these equations for the k identified points in the image pairs, we will have 2k

equations and k + 6 unknowns; each point adds its own unknown z. Naively, then,

we might expect that six points should be sufficient to solve the system of equations.

Note that we could additionally be including the z′ equations, but since z′ is unknown,

and there is a different z′ at each point, we would be adding one equation and one

unknown each time we added a z′ equation, so it would not help us find values other

than the z′s.

Without attempting an analytical solution, we can see whether a solution is pos-

sible by imagining solving the system of equations numerically. To do so, we would

use Newton’s method, which involves inverting the Jacobian matrix. If the matrix is

not invertible, then the system does not have a unique solution. The Jacobian in this

104

case is

J =



x1 y1 z1 0 0 0 r13 0 0 0 0 0

x2 y2 z2 0 0 0 0 r13 0 0 0 0

x3 y3 z3 0 0 0 0 0 r13 0 0 0

x4 y4 z4 0 0 0 0 0 0 r13 0 0

x5 y5 z5 0 0 0 0 0 0 0 r13 0

x6 y6 z6 0 0 0 0 0 0 0 0 r13

0 0 0 x1 y1 z1 r23 0 0 0 0 0

0 0 0 x2 y2 z2 0 r23 0 0 0 0

0 0 0 x3 y3 z3 0 0 r23 0 0 0

0 0 0 x4 y4 z4 0 0 0 r23 0 0

0 0 0 x5 y5 z5 0 0 0 0 r23 0

0 0 0 x6 y6 z6 0 0 0 0 0 r23



(4.7)

where the subscripts on x, y, and z indicate which of the k points is referenced. Here,

the top rows come from the x′ equations, and the bottom rows from the y′ equations.

It turns out this matrix has only rank 9. The simplest way to check is to construct

one row using seven of the other rows (e.g. we can construct the row from the y′4

equation using the pairs of rows for points 1 through 3, plus the x′4 row). Beyond the

first three points, each additional pair of equations brings with it one row that can

be constructed from the others. If we only use half of each additional equation pair

to avoid this issue (e.g. only x′is), then with each point we add one equation and one

unknown zi. Either way, we cannot obtain a full-rank Jacobian. Since the Jacobian

is not invertible, the system of equations cannot be solved uniquely.

There are additional facts that could be brought to bear in this situation. Ro-

tation matrices are orthonormal, and have determinant 1. Using the fact that the

bottom row is orthogonal to the other two rows, and that it has norm 1, gives us

the magnitudes of the bottom row of R once we have the values of the top two rows.

105

Using the fact that the determinant is 1, not −1, gives us the signs on the bottom row

given the other rows. Thus, once we have the top two rows, we can uniquely find the

last three entries in R. There are three remaining scalar equations that come from

orthonormality, pertaining only to the top two rows, that can be brought to bear;

0 = r2
11 + r2

12 + r2
13 − 1 (4.8)

0 = r2
21 + r2

22 + r2
23 − 1 (4.9)

0 = r11r21 + r12r22 + r13r23. (4.10)

Using these plus the x′i and y′i equations from three points, we obtain another

Jacobian,

J =



x1 y1 z1 0 0 0 r13 0 0

x2 y2 z2 0 0 0 0 r13 0

x3 y3 z3 0 0 0 0 0 r13

0 0 0 x1 y1 z1 r23 0 0

0 0 0 x2 y2 z2 0 r23 0

0 0 0 x3 y3 z3 0 0 r23

2r11 2r12 2r13 0 0 0 0 0 0

0 0 0 2r21 2r22 2r23 0 0 0

r21 r22 r23 r11 r12 r13 0 0 0



. (4.11)

It turns out this matrix has rank 8; as can be verified with some algebraic manipu-

lation, any one row can be found as a linear combination of the other eight rows. As

explained above, due to patterns in the rank deficiency of Equation 4.7, adding rows

from additional points would not help. There is no way to simply solve directly for

the rotation matrices given data of the type we use. Thus, we turn to more complex

approaches, as detailed in subsequent sections.

106

4.2.4 Algorithmic details on diffusion maps

As the first step in our algorithm, we find diffusion maps coordinates for the data

described above in §4.2.2. In this section, we provide details on the diffusion maps

procedure used throughout this dissertation. An introduction to diffusion maps is

in §1.3. The procedure described here is used in §3.2.6 as well as this chapter.

In our work, we use a variant on the Gaussian kernel of Equation (1.9), called

the variable-bandwidth Gaussian kernel. As described in [4, 13, 19], it is useful in

situations where the datapoints are not distributed uniformly over the manifold to

be found. The kernel is

κ(xi, xj) = exp

(
−‖xi − xj‖

2

ερiρj

)
, (4.12)

where ε is chosen automatically based on the data, and the bandwidth function ρ,

based on a kernel density estimate, is also found automatically. The procedure we use

for setting up κ given a dataset with N points is as follows, drawn primarily from [19]

though with some influence from [4, 13], and with sometimes different notational

conventions:

1. Choose a constant k for the initial number of nearest neighbors to find. We

typically use 15% of the total number of datapoints, but smaller values would

likely also work, as in [4] where a separate, smaller k is used for setting up κ.

2. For each datapoint xi, find the k nearest neighbor points yi` with ` ∈ [1, k], and

the square distances ‖xi−yi`‖2 between the point xi and each of its neighbors yi`.

3. Keep only mutual neighbors, so that the resulting sparse matrices would be

symmetric. For each datapoint xi, record its number of neighbors kept ki (in-

cluding the point itself as the very nearest neighbor).

107

4. Evaluate the ad-hoc bandwidth function

ri =
1

ki − 1

(
ki∑
`=1

‖xi − yi`‖2

)1/2

(4.13)

to find the average distance of each point (indexed by i) from its non-self neigh-

bors.

5. For a range of values of α each separated by a stepsize h, compute the sum

Σα =
1

N2

N∑
i=1

ki∑
`=1

κα(xi, yi`) (4.14)

where the temporary kernel κα is

κα(xi, xj) = exp

(
−‖xi − xj‖

2

2αrirj

)
. (4.15)

In [4], a very wide range α ∈ [−30, 10] with stepsize h = 0.1 is used. For our

purposes, we found that α ∈ [−15, 10] was sufficient, and this part runs quickly

enough that further range refinement is unnecessary.

6. Choose the bandwidth parameter ε̂ = 2α where α maximizes

Σ′α =
log Σα+h − log Σα

log 2α+h − log 2α
(4.16)

and set the approximate manifold dimension m̂ = 2Σ′α for the maximal Σ′α.

7. Calculate the effective sampling density

ρi =

(
1

(πε̂)m̂/2

ki∑
`=1

exp

(
−‖xi − yi`‖

2

ε̂

))−1/m̂

(4.17)

for each datapoint, as in [13].

108

8. Similar to step 5, for a range of values β each separated by a stepsize h, compute

the sum

Σβ =
1

N2

N∑
i=1

ki∑
`=1

κβ(xi, yi`) (4.18)

where the temporary kernel κβ is

κβ(xi, x`) = exp

(
−‖xi − x`‖

2

2βρiρ`

)
. (4.19)

9. Similar to step 6, choose the parameter ε = 2β where β maximizes

Σ′β =
log Σβ+h − log Σβ

log 2β+h − log 2β
. (4.20)

The parameter ε and the density estimates ρ at each datapoint can now be used in

the kernel given by Equation (4.12).

The normalization used throughout our work is from [13]. It uses a bistochas-

tic kernel normalization that results in a symmetric, positive-definite Markov kernel.

These properties make it suitable for use with diffusion maps and to define a repro-

ducing kernel Hilbert space as discussed in §3.2.6. Rather than finding the normalized

kernel matrix explicitly, we find a non-symmetric kernel matrix K̃, and K̃K̃T is the

actual kernel matrix whose eigenvalues and eigenvectors we want. The eigenvectors

are equal to the left singular vectors of K̃, and the eigenvalues are equal to the squares

of the singular values of K̃. The procedure is as follows:

1. Choose a quantity L < N of eigenvalues and eigenvectors to find.

2. Find the (sparse, keeping only ki nearest neighbors found above) N ×N kernel

matrix K with Kij = κ(xi, xj)/N using κ from Equation (4.12).

3. Find the degree of each datapoint di =
∑N

j=1 Kij, and form the diagonal ma-

trix D−1 where D−1
ii = 1/di and off-diagonal entries are zero.

109

4. Find qi =
∑N

j=1(KD−1)ij, and form the diagonal matrixQ−1/2 whereQ
−1/2
ii = q

−1/2
i

and off-diagonal entries are zero.

5. Form the (sparse) kernel matrix K̃ = D−1KQ−1/2.

6. Find the L largest singular values σ1, . . . , σL of K̃, and set λ` = σ2
` to be the

diffusion maps eigenvalues. The corresponding left singular vectors φ`, normal-

ized to the unit 2-norm, are the diffusion maps eigenvectors. However, similar

to scaling the eigenvectors by their associated eigenvalues, and in order to allow

new points’ parameterizations to be found in a similar manner to the existing

points used to find the parameterization, we actually use the right singular vec-

tors γ`, normalized to the unit 2-norm, to find the diffusion maps coordinates

we employ. The diffusion maps coordinates we use are ψ` = K̃γ`.

4.2.5 Wigner D-functions

Using diffusion maps as described above and in §1.3 on the dataset, we should learn

the manifold SO(3). That is to say, the eigenfunctions that come out of the diffusion

maps procedure should be (approximately) eigenfunctions of the Laplace-Beltrami

operator on SO(3), specifically the Laplace-Beltrami operator associated with the

round metric on SO(3) [20].

Conveniently, there is established theory about the eigenfunctions of the Laplace-

Beltrami operator on SO(3). If ∆B is the Laplace-Beltrami operator, j ∈ N, and

m,n ∈ [−j, j] are integers, then the functions conventionally denoted Dj
mn that solve

the eigenvalue problem

∆BD
j
mn = j(j + 1)Dj

mn (4.21)

with eigenvalues j(j + 1) are called Wigner D-functions [8, 20].

Note that the eigenvalue j(j + 1) has multiplicity (2j + 1)2. Therefore, when

examining the eigenvalues we find with diffusion maps, we should expect to see 1

110

eigenvalue alone, then a group of nine at a similar value to each other, then a group

of 25, etc. Indeed, in §4.3.3, this is the behavior we find.

With a particular choice of Euler angle convention, we can write explicit formulas

for the nine j = 1 Wigner-D functions [20]:

D1
00(α, β, γ) = cos(β)

D1
±10(α, β, γ) = − 1√

2
e∓iα sin(β)

D1
0±1(α, β, γ) = − 1√

2
e∓iγ sin(β)

D1
11(α, β, γ) = e−i(α+γ) cos2

(
β2

2

)
(4.22)

D1
−1−1(α, β, γ) = ei(α+γ) cos2

(
β2

2

)
D1
−11(α, β, γ) = ei(α−γ) sin2

(
β2

2

)
D1

1−1(α, β, γ) = e−i(α−γ) sin2

(
β2

2

)
.

With that same choice of Euler angle convention, the rotation matrix is

R =


cosα cos β cos γ − sinα sin γ − cos γ sinα− cosα cos β sin γ cosα sin β

cosα sin γ + cos β cos γ sinα cosα cos γ − cos β sinα sin γ sinα sin β

− cos γ sin β sin β sin γ cos β

 .
(4.23)

One can show that each of these rotation matrix elements can be written as a

linear combination of Wigner D-functions. Thus, the eigenspace formed by these

nine Wigner-D functions with j = 1 should match the subspace consisting of the nine

rotation matrix elements. Indeed, in §4.3.3, we will see that this is (approximately)

the case with our dataset.

These eigenfunctions of the Laplace-Beltrami operator are related to irreducible

representations of SO(3). By irreducible representations, we mean representations

111

with no nontrivial subrepresentations. A representation of a group G is a vector

space V and a morphism ρ which takes elements of G to endomorphisms of V .

This morphism must respect the properties of the group, so that for any g, h ∈ G,

ρ(g)ρ(h) = ρ(gh). If V is a representation of a group G, and ρ(g) is a representation

of a group element g ∈ G, then a subrepresentation is a subspace W ⊂ V such that

ρ(g) · w ∈ W for all g ∈ G and w ∈ W [30, 33].

The 3 × 3 rotation matrices are one irreducible representation of SO(3). If we

represent points on a sphere with (x, y, z) coordinates, then the 3×3 rotation matrices

map each point to another point. We could also represent points on a sphere with

five coordinates using polynomials of degree 2: (x2, xy, xz, y2, yz). The z2 coordinate

is unnecessary since z2 is uniquely determined by the x2 and y2 coordinates, since

x2 + y2 + z2 = 1. With this representation of points on a sphere, there are 5 × 5

orthogonal matrices that map one point to another. Hence, with j = 1 there are 3×3

Wigner D-functions, and with j = 2 there are 5×5. The pattern continues. For more

information on irreducible representations and SO(3), see [8].

4.2.6 Optimization used

Even though the subspaces spanned by the nine relevant diffusion maps eigenfunctions

and the nine rotation matrix elements match, it is not straightforward to find the best

linear transformation to get from one to the other. If the values of the nine relevant

eigenfunctions at a given sample are in the vector v, and the orientation at that

sample is given by the rotation matrix R, which can be reshaped into a vector r, then

we seek C ∈ R9×9 such that

r = Cv (4.24)

at every sample. We should expect that this C will not be unique, because the

diffusion maps process strips away any information about fixed frames of reference,

112

and all we use are distances between samples. Thus, only relative rotations between

samples are expected to be learned even in the best case where we learn SO(3) exactly.

Any global rotation could be applied to all the rotation matrices, resulting in a totally

different C, and it would still be an equally valid answer.

We follow the approach in [20], where with a different initial dataset, Giannakis et

al. also seek to learn rotations from diffusion maps results. We can minimize a cost

function to find a value for C, where the cost is higher the further the resulting rs are

from being valid rotation matrices, evaluated at many timesteps. If ri = Cvi comes

from the diffusion maps eigenfunctions at sample i, and Ri is that result reshaped

into a 3× 3 matrix, then

Gi(C) =
∥∥RT

i Ri − I
∥∥2

F
+ |det (Ri)− 1|2 (4.25)

is the cost associated with that sample, where ‖ · ‖F denotes the Frobenius (elemen-

twise) norm of a matrix. The first term is punishing matrices Ris that do not obey

Equation 4.1 enforcing orthonormality, and the second term is punishing matrices

Ris that do not obey the determinant 1 property of rotation matrices. We then find

the C that minimizes ∑
i

Gi(C), (4.26)

and use this C to find rotation matrices from diffusion maps eigenfunction coordi-

nates v. From there, we have several options for numerically minimizing the objective.

We find empirically that, to obtain decent results, we must provide a reasonable ini-

tial guess at C, to avoid falling into other local minima that did not give the correct

relative rotations. In §4.2.7, our method for obtaining that initial guess is discussed.

If the results of our optimization produce matrices R that are close to being

rotation matrices but are not precisely correct, there is a simple method for finding a

rotation matrix related to the matrix found. The real polar decomposition is A = OS

113

where A is any real square matrix, O is an orthogonal matrix, and S is symmetric

and positive semi-definite [20, 23]. Roughly speaking, the matrix can be decomposed

into the part dealing with rotation (and possibly flipping) and the part dealing with

stretching and scaling. We can compute the polar decomposition of our found R

matrices and keep only O.

4.2.7 Common line approach

As mentioned in above, we must provide some initial guess at a reasonable C value

to use in Equation 4.24, before performing the optimization to find a better C. As

discussed in §4.2.3, we cannot simply solve for the relative rotations between a few

points with algebraic manipulation or SfM techniques. However, we can almost com-

pletely determine relative rotations between points using a different method described

by Van Heel [83] and by Vainshtein and Goncharov [82] for applications in electron

microscopy, leaving only one sign flip undetermined as discussed later. For a related

approach to reconstructing relative angles from common lines, [71] gives a clear ex-

planation and procedure. Below is an overview of the method of [83] which is applied

in our work, with added examples.

In the electron microscopy applications considered in [83], the inputs are modeled

as 2D images formed by integrating density along the direction perpendicular to the

image plane. It is shown that for any pair of 2D projections of this kind, projecting

the same object into different planes, there exists a “common line,” by which we mean

that projecting the 2D images each down into 1D along some line (the common line)

will produce the same 1D image.

Conveniently, we can think of our problem’s set of a few points as an object with

density only at those points, and then the projection is essentially the same in our

work as in [83]. To illustrate the idea of “common lines,” an example is provided in

Figures 4.2 and 4.3. They show a stick person posed with one arm and one leg raised.

114

Each limb has its own color and marker for clarity. The three images on the left of

Figure 4.2 are obtained by projecting the 3D locations of points on the stick person

into different planes. If the points are further projected onto the common lines, we

obtain the 1D results on the right of Figure 4.2. Projecting onto the common line for

images 1 and 2, for example (the solid black line in the figures), produces the same

result whether we start from image 1 or from image 2. Figure 4.3 shows another view

of the stick person, the planes onto which we projected to obtain each image, and

the common lines embedded in each image plane. The common lines occur where the

image planes intersect.

Returning from our example to [83], the approach used to find these common

lines is simply projecting each image onto a sweep of potential common lines over

all possible angles. Then, for a given pair of images, all pairs of projections are

considered, and the pair of lines resulting in the most similar 1D projections are

chosen as the common line.

Once these common lines are established, the angles between the image planes

can be determined. Using those angles between image planes, thinking through all

the geometry, the relative rotations between images, up to a choice of “handedness”

or chirality, is determined [83]. In the procedure, this ambiguity arises when we must

take an inverse sine to determine what one of the intermediate angles is, but we have

no information about the sign of the cosine of that angle.

We can understand this ambiguity by considering the example of Figure 4.2. Im-

age 1 could show roughly the front of the stick person, which is raising its left arm

and right leg. Images 2 and 3 are consistent with that interpretation of the person

(image 3 would be from the back and left of the person). However, image 1 could also

show roughly the back of the stick person, which is raising its right arm and left leg.

Images 2 and 3 are also consistent with this alternative interpretation (now image 3

would be from the front left). These different interpretations of the object would lead

115

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Image 1

-3 -2 -1 0 1 2 3

Common line for 1 and 2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Image 2

-3 -2 -1 0 1 2 3

Common line for 2 and 3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Image 3

-3 -2 -1 0 1 2 3

Common line for 1 and 3

Figure 4.2: On the left, three images showing a stick figure projected into different
planes, with common lines indicated. On the right, projections of the stick figure
from the images onto the common lines.

to different required rotations to get from one view to another, in effect flipping some

signs in the rotation matrix.

The SfM techniques mentioned in §4.2.3 do not experience this issue because of

their different projection method. If they had enough images to get a sense of the

shape of the house in Figure 4.1, they would be able to tell which face was the back

in that image, because things further away appear smaller in their projection. If we

116

Figure 4.3: A 3D view of the stick figure from Figure 4.2, with common lines indicated.
The planes onto which we projected for each image are also indicated.

used that projection, then the raised leg in Figure 4.2 would appear larger or smaller

than normal in image 1, and that would tell us whether the leg was coming towards

us or away from us and resolve the ambiguity.

For our purposes, based on the procedure given in [83], we can input a set of three

samples’ images (2D projected data), and get out the relative rotations between

them (up to chirality). Searching for the common lines, with sufficient granularity to

produce good results, takes time, so it would not be wise to abandon the diffusion

maps procedure and simply find all the rotation matrices required for the subsequent

dynamics-learning step in this way. Instead, we find just enough rotation matrices

to provide an initial guess at C, and from there we use the minimization in §4.2.6 to

find the best linear map from diffusion maps eigenfunctions to rotation matrices.

In practice, we must supply rotation matrices describing the orientation for nine

samples to solve for C. We choose an arbitrary set of nine to use, and designate the

first one as the standard against which all the others will be compared. Thus, the

rotation matrix we use for the first of these samples is I. From there, we perform

the common line procedure to find rotation matrices (up to chirality) to get from

117

what is shown in sample 1 to what is shown in sample j for j ∈ [2, 9], and call

these found rotation matrices R̂1j, then perform some corrections described below

so that at least all the found rotation matrices are consistent with each other and

assume the same chirality as each other. More sophisticated methods for dealing with

chirality agreement in cryo-EM applications with many more than nine samples are

given in [57, 70], but our simple approach given below is sufficient for our purposes.

For each found relative rotation matrix, it could be (approximately) correct, or it

could be the opposite-chirality case. If the correct matrix is

Rij =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (4.27)

then the reversed chirality one is

R̃ij =


r11 r12 −r13

r21 r22 −r23

−r31 −r32 r33

 . (4.28)

We observe that, since Equation 4.2 implies that R1j = R2jR12, we have

R̃1j = R̃2jR̃12. (4.29)

However, R2jR̃12 and R̃2jR12 will produce a result with different magnitudes for each

element than in R1j or R̃1j.

The correction procedure we found to obtain relative rotations with a consistent

chirality is as follows. We find R̂12, which is either R12 or R̃12 but we do not know

which, and keep it fixed. We also find R̂1j and R̂2j for j ∈ [3, 9]. For each j, we

calculate R̂2jR̂12 and R̂2j
˜̂
R12 (where to find

˜̂
R12 we reverse the appropriate signs in R̂2j

118

to produce the opposite of whatever its original chirality was). We then compare the

elementwise absolute values of R̂2jR̂12 and R̂2j
˜̂
R12 against the elementwise absolute

value of R̂1j, and call whichever product is closer P . We can conclude that the

chiralities assumed in the two rotation matrices comprising P are the same, based on

the observations above. Next, we compare P against R̂1j and
˜̂
R1j, and use whichever

one is closer as our guess for R1j. In this way, we can obtain a set of relative rotation

matrices R1j which are consistent with our choice of R12.

Once we have a consistent set of relative rotation matrices R1j for j ∈ [1, 9], we

can calculate an initial guess for C. We end up with two reasonable guesses available

(stemming from our arbitrary, blind choice for which R12 chirality to use), and each

should lead to a similarly valid minimum once the optimization in §4.2.6 is completed

because, as we have said, it is impossible to tell from just the dataset we use, from

which chirality the data are generated.

4.2.8 From rotation matrices to equations of motion

Given rotation matrices at timesteps along trajectories, we can find the associated

angular momentum since

Ω = R−1Ṙ (4.30)

where Ω is a skew-symmetric matrix whose entries are the angular velocity compo-

nents in the body frame, in the coordinates implied by R [43], so

Ω =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4.31)

These angular velocities and their derivatives feature in the equations of motion gov-

erning the rigid body, Equation (4.3).

119

To find Ṙ, we apply a finite differencing scheme. With second order central

difference, we have

Ωj =
R−1
j Rj+1 −R−1

j Rj−1

2∆t
. (4.32)

We must also find the derivatives of the angular velocities, which are stored in Ω̇.

Since d
dt
R−1 = −R−1ṘR−1, we have

d

dt
Ω =

d

dt

(
R−1Ṙ

)
= −

(
R−1Ṙ

)2

+R−1R̈. (4.33)

From there, we can apply second order central differencing schemes to find Ṙ and R̈

numerically, obtaining

Ω̇j = − 1

4∆t2
(
R−1
j Rj+1 −R−1

j Rj−1

)2
+

1

∆t2
(
R−1
j Rj+1 − 2I +R−1

j Rj−1

)
(4.34)

where I is the 3× 3 identity matrix.

In scalar form, the true equations of motion are

ω̇1 =
I2 − I3

I1

ω2ω3

ω̇2 =
I3 − I1

I2

ω3ω1 (4.35)

ω̇3 =
I1 − I2

I3

ω1ω2

where the angular velocities ωk are about the principal axes of the body, and Ik are the

scalar principal moments of inertia of the body, not to be confused with the identity

matrix. These equations of motion have a messier-looking form with many more

terms when written in a different coordinate system, some arbitrary global rotation

away from the principal axes.

We address the global rotation issue below. First, though, we give the overall

approach to finding the equation of motion from ωk and ω̇k found numerically, as-

120

suming for now that the correct global rotation has already been applied so that when

R = I, we are aligned with the principal axes of the object. We simply use linear

and quadratic monomials from the ωk’s as features, and find the best coefficients, in

a least-squares sense, to approximate the ω̇k’s, using data from all the trajectories.

Linear and quadratic monomials are reasonably common terms in equations of mo-

tion generally, so it does not require great insight to include them as features even

without knowing that the true equations of motion in this case use a single quadratic

monomial each.

Now we address the problem of finding the best global rotation to apply. It

is reasonable even without knowing the true equations of motion to assume that

there might be a preferred coordinate choice leading to simpler equations. We also

know that our procedure for finding the rotation matrices may be an arbitrary global

rotation away from the coordinates in which the data were generated. With this in

mind, we search over possible global rotations applied to the R’s we find, to choose the

global rotation with the most promising resulting set of feature coefficients. Either

minimizing the 1-norms of the coefficient sets required for each scalar equation, or

maximizing the absolute value of the single largest coefficient across all equations,

results empirically in approximately the same choice of global rotation to apply. The

logic of the former is to search for an orientation where each scalar equation is sparse,

requiring few features. The logic of the latter is also to find an orientation where there

is at least one clearly significant feature. We expect a few options for global rotation

to be equally good; it should not matter which of the axes is called x and which is

y or z, or even whether they are +x or −x etcetera, as long as they are a consistent

right-handed coordinate system aligned with the principal axes of the body.

Based on the considerations above, at a given global rotation, we assemble the

right-hand-side terms into a vector ω =

[
ω1 ω2 ω3 ω2

1 ω1ω2 ω1ω3 ω2
2 ω2ω3 ω2

3

]T
,

and find the vectors of coefficients ai to minimize
∥∥ω̇i − aTi ω

∥∥ for i ∈ [1, 3]. We search

121

over global rotations for the rotation that minimizes
∑

i |ai|21, the square sum of the

one-norms of the vectors ai. We could also search for the global rotation that maxi-

mizes maxi |ai|∞, the largest element across all the vectors ai.

Once one of the best global rotations for the coordinate system has been chosen,

we can take the features with the coefficients ai for i ∈ [1, 3] from the least squares

fit to give us our equations of motion from data. A possible alternative is to use

a sparsity-promoting method to choose feature coefficients, which should result in

found equations of motion with fewer terms. One simple, not necessarily optimal but

sufficient for this task, sparsity-promoting approach is to use orthogonal matching

pursuit [56].

With this approach, we should be able to determine the coefficients like I2−I3
I1

that

appear in Equation (4.35). As we shall see in §4.3.5, application of these methods still

leaves substantial error in the recovered equations of motion, likely due to inaccuracy

in the recovered rotations, but we do obtain approximately the correct coefficients.

These and other results, as well as potential avenues for improvement, are discussed

further in subsequent sections.

4.3 Numerical results

4.3.1 Numerical setup

For the results shown here, 30000 short trajectories, starting from random uni-

formly distributed initial rotations, were generated. Each trajectory had only three

timesteps, just enough to take the necessary numerical derivatives. The initial angular

velocities were also randomized, then normalized so that the kinetic energy was 0.2.

The set of principal moments of inertia used was (0.9, 0.5, 0.2), with moments chosen

to be distinct from each other but not on such different scales as to further increase

the difficulty of our task.

122

With some empirical tuning, it was found that a timestep of ∆t = 0.1 produced

the best results. With smaller ∆t, the resolution coming from diffusion maps to get

the smaller relative rotations from one timestep to the next was not sufficient to

take good numerical derivatives. Of course, with larger ∆t, the numerical derivatives

were simply less accurate. The number of nearest neighbors to keep track of for

the diffusion maps process was also chosen empirically based on a tradeoff between

precision and computing time required. Here, we use 1/20 of the total points initially,

which may end up reduced later in the procedure when only mutual neighbors are

retained.

4.3.2 Basic validation

We can check that our random rotations used as initial conditions for each trajectory

are truly from a uniform distribution with respect to Haar measure. The procedure

used to generate these initial rotations, as described in §4.2.2, uses quaternion rep-

resentations along the way and produces rotation matrices. We can also consider

rotations in the axis-angle formulation, where the angle associated with the relative

rotation between two rotations is a natural and simple-to-calculate way to think of

distances between those rotations. In axis-angle form, for rotations drawn from a

uniform distribution with respect to Haar measure, the angles of the rotations should

have the probability density function

f(θ) =
1− cos θ

π
(4.36)

plotted as a curve in Figure 4.4 [47]. The histogram in Figure 4.4 shows that our

actual generated random rotations follow the shape of this theoretical curve well.

123

Figure 4.4: Histogram shows the empirical probability density function of angles, in
radians, for our random rotations, generated to come from a uniform distribution with
respect to Haar measure. Curve shows the theoretical probability density function
for the same.

4.3.3 Wigner-D function validation

As mentioned in §4.2.5, the diffusion maps eigenvalues fall into groups of 1 eigenvalue

associated with the constant eigenfunction, then a set of 9, then next should be a set

of 25, etc. In practice numerically, the groups of eigenvalues start to blur together as

we proceed, but the isolated groupings of 1 and 9 can be seen in Figure 4.5 from our

dataset.

The nine eigenfunctions associated with this group of eigenvalues are expected

to span the same subspace as the Wigner D-functions for j = 1. Therefore, they

should span the same subspace as the true rotation matrices’ nine elements, since

the rotation matrix elements can be written as a linear combination of j = 1 Wigner

D-functions.

To check the similarity between the two subspaces numerically, we consider the

vectors which contain either diffusion maps eigenfunction evaluations at each timestep,

or rotation matrix element values at each timestep. From each set of nine long vec-

tors, we construct a set of orthonormal vectors that span the same subspace using

124

0 10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

d
if

fu
si

o
n

 m
ap

s
ei

g
en

v
al

u
e

Figure 4.5: Eigenvalues from diffusion maps, from rigid body rotation data.

Gram-Schmidt orthogonalization [22]. Let oRj denote the j-th orthonormalized row

vector from the rotation matrix set and oEj denote the same but from the diffusion

maps eigenfunction set. Taking the product



oR1

oR2
...

oR9


(
oEj
)T

(4.37)

produces a nine-dimensional column vector whose entries are the inner products of

oEj with the elements of the rotation matrix basis. Taking the norm of this result

gives us an indication of how much of oEj is in the subspace spanned by the rotation

matrix elements. If that norm is 1, then oEj is entirely within that subspace, and if it

is 0 then oEj is entirely orthogonal to that subspace.

From our dataset, these ranged from 0.9986 to 0.9951 among the nine oEj ’s, with

a mean value of 0.9975. Thus, we can conclude that the subspaces are very close to

matching, but are not perfect. Taking the mean value for various numbers of trajec-

tories, and finding the difference between that mean value and the desired 1, produces

125

the convergence results shown in Figure 4.6. The subspaces align increasingly well as

the number of trajectories used increases.

10
2

10
3

10
4

10
5

number of trajectories used

10
-3

10
-2

10
-1

m
ea

n
 e

rr
o

r
in

 s
u

b
sp

ac
e-

m
at

ch
in

g error

~n-1 reference

Figure 4.6: Convergence of subspace from diffusion maps eigenfunctions with subspace
from rotation matrix elements.

4.3.4 Finding rotation matrices

The rotation matrices obtained numerically through diffusion maps and then the

process described in §4.2.6 and §4.2.7 are reasonably close to the true rotations gen-

erated initially, up to a global rotation. To check this, a global rotation was applied

to the found rotations so that they match the true rotations exactly at one timestep.

Then, relative rotations were obtained between the true and found rotations at each

timestep, and the angle (as in the axis-angle formulation) of that relative rotation

was recorded.

The distribution of those angles across all timesteps is shown in Figure 4.7, in

radians. The mean relative angle is 0.13 radians, or about 7.5°. For reference, the

expected value of the relative angle between two random rotations (drawn from a

uniform distribution with respect to Haar measure) is π
2

+ 2
π
≈ 2.21 radians, or about

126.5°. This expected value can be derived from the probability density function of

126

Figure 4.7: Empirical distribution of relative angles, in radians, between found and
true rotations from rigid body rotation data.

Equation (4.36) [47]. The mean relative angle between our true and found rotations,

in some sense our error in trying to find the true rotations, is thus about 6% of what

we would expect if we just found random rotations that were unrelated to the true

rotations.

The mean relative angle decreases as the number of trajectories used increases, but

seems to level off for very large numbers of trajectories, as can be seen in Figure 4.8.

This leveling off is possibly due to fixed discretization errors, or premature stopping

of the optimization step. Further investigation is warranted, as mentioned in §4.4.

10
2

10
3

10
4

10
5

number of trajectories used

10
-1

10
0

10
1

m
ea

n
 r

o
ta

ti
o

n
 m

at
ri

x
 a

n
g

le
 e

rr
o

r,
 r

ad
ia

n
s

error

~n-1 reference

Figure 4.8: Mean relative angle between true and found rotation matrices, as a func-
tion of number of trajectories used.

127

4.3.5 Finding equations of motion

With the moments of inertia chosen, we expect the coefficients in Equation (4.35)

to be (2,−7/5, 1/3). We also expect that the right-hand side of the equation for ω̇i

should only include the quadratic term ωjωk where i 6= j 6= k.

With our data, we find that the correct features are consistently chosen. With the

least-squares approach to choosing feature coefficients, the coefficient corresponding

to the correct feature is clearly the largest for each scalar equation. Using orthog-

onal matching pursuit to greedily add one feature at a time, the correct feature is

consistently chosen first.

The coefficients found for those correct features, with either least squares or or-

thogonal matching pursuit, are noticeably off. Rather than (2,−7/5, 1/3), we get

(1.79,−1.31, 0.30), so about 10 percent error.

This error decreases as the number of trajectories used increases, as can be seen in

Figure 4.9. Error is only plotted for each coefficient in cases with enough trajectories

that the correct feature is chosen.

10
3

10
4

10
5

number of trajectories used

10
-2

10
-1

10
0

er
ro

r
in

 c
o

ef
fi

ci
en

ts

should be 2

should be -7/5

should be 1/3

~n-1 reference

Figure 4.9: Error in each coefficient, plotted in log scale against number of trajectories
used. The legend indicates the true value for each coefficient.

128

4.4 Conclusions and future directions

Our approach showed promise, and correctly identified the features that appear in

the true equations of motion. The coefficients for the equations of motion were found

as well, although the roughly 10% error is larger than desirable.

The obvious area for future work on this problem is improving the estimates of

the coefficients in our found equations of motion. We believe the current issue is

that, even with our relatively low error in finding rotation matrices, they are simply

not accurate enough. Parameters have been carefully tuned, and processes tested, to

eliminate potential quick fixes to the issue. It is possible that with more data, accuracy

would further improve. The agreement improves as more points are used. However

the leveling-off observed in rotation matrix error observed in Figure 4.8 is worrying.

Finding the cause of this leveling-off would help us choose the most impactful parts of

the process to improve. We have implemented the diffusion maps part of the process

using sparse storage and generally with an eye toward space-efficiency, so that we

can run problems with many points on computer clusters. The next area to improve

computational efficiency would be to choose a faster optimization method for choosing

the best global rotation in which to obtain the equations of motion. However, it is also

possible that further increases in data quantity would provide diminishing returns,

and solutions to improving accuracy must be found elsewhere.

Another potential area for improvement is robustness to noisy data. The common

lines approach used here to initialize our optimization is known within the cryo-

EM community to be sensitive to noise, and other more robust methods are being

developed, such as the method of moments [69]. It is possible that these alternatives

could apply to our work and increase our robustness to noise as well.

129

Chapter 5

Overall conclusions and future

directions

In this work, we consider many challenging model problems in data-driven model-

ing. We consider systems with continuous spectrum, with Lie group symmetries,

and where the data are best described as lying in the manifold of SO(3). In all of

these cases, we focus on finding low-order models that reveal information about the

underlying system rather than opaquely producing predictions alone. In Chapters 2

and 3, the eigenvalues of the approximate Koopman operators we find indicate im-

portant frequencies in the system’s behavior. In Chapter 4, we find the approximate

governing equations, which have physically meaningful variables and constants.

We contribute to the ongoing study of how best to perform EDMD or related data-

driven Koopman approximation techniques, by testing its capabilities on complex

problems. The perennial problem of choosing the best observables for a given problem

is addressed in Chapter 2, where we test the convergence of common observable

choices on a system with mixing in one direction. It is shown that some common

choices in literature such as delay embeddings can converge extremely slowly in the

presence of continuous spectrum.

130

In Chapter 3, we consider several possible methods for Koopman operator approx-

imation. However, we do not have the same focus on observables as in Chapter 2;

the POD mode observables we chose work reasonably well for the reduced state’s

dynamics. Using diffusion maps coordinates as observables to find the Koopman

generator also works for the reduced state, as does using a deep neural network in

the LRAN. None of these choices of observables are sufficient to let produce accurate

long-term predictions of the full state on their own, though. Instead, we must mod-

ify the Koopman approximation approach using the method of slices to split up the

work, and predict the group action separately. It is possible that a different observ-

able choice, such as one that somehow enforces the symmetry conditions of §3.2.7,

would work without requiring the method of slices. Based on our work, though, we

can recommend applying the LRAN in combination with the method of slices, with a

separate neural network trained to approximate the temporal derivative of the group

action from the encoded state, for cases where reduced-order models of systems with

continuous symmetries are desired.

Although Chapter 4 does not use EDMD, it still concerns finding a low-dimensional

model for system dynamics. There, diffusion maps coordinates are very helpful. In

fact, the Fourier mode observables of Chapter 2, where approximate eigenfunctions

converge more quickly for the example problems given, are approximately the ob-

servables that diffusion maps coordinates on the torus would give us. Diffusion maps

coordinates are also used in Chapter 3 in one of our approaches, and they work rea-

sonably well on the reduced state. Thus, in our search for principles to guide the

choice of observables, one “rule of thumb” we can offer is that, where the data lie in

a low-dimensional manifold, approaches like diffusion maps which find coordinates in

that manifold may be a good choice.

In fact, more general than our point about finding good coordinates for the under-

lying manifold, the work in this dissertation has found success by making use of what

131

we know about the structure of the system being modeled. In the case of Chapter 4,

this involved knowledge about rotations and the manifold SO(3), partly in the form of

using diffusion maps. In Chapter 3, this involved using our knowledge that a contin-

uous symmetry was present to separate out the group action. In Chapter 2, we could

make recommendations like “avoid using delay embedding observables for systems

with mixing,” to help others use their knowledge of the system they are modeling.

The obvious area for future work that applies across the variety of work in this

dissertation is to apply the tools developed and studied here to practical problems.

This applies especially to Chapter 3, where our study of alternative approaches has

led to a concrete, applicable methodology for producing data-driven reduced-order

models in systems with continuous symmetry, using the LRAN and the method of

slices, with a neural network finding the derivative of the group action from the

encoded state. Our investigations in Chapter 2 were motivated by real-world systems

with mixing, like turbulent fluid flow, and our conclusions could be applied to those

problems. The work in Chapter 4 is not very applicable to real-world problems in its

entirety, but it demonstrates the utility of diffusion maps in a variety of contexts. If

an imaging process like the one used in cryo-EM is ever developed that can produce

temporally linked snapshots of the same molecule, then work like ours would be more

directly applicable as scientists try to learn the dynamics of large molecules bending

and deforming.

Another area for future work that could benefit all the different projects presented

here is incorporating the possibility of noisy data. All the work in this dissertation

used synthetically generated data which did not have added noise. However, in many

practical applications, the presence of noise can lead to slightly different approaches,

such as total-least-squares DMD [14, 25], being preferred. It is worth investigating

how the presence of noise affects the methods presented here.

132

Bibliography

[1] H. Arbabi and I. Mezić. Ergodic theory, dynamic mode decomposition, and
computation of spectral properties of the Koopman operator. SIAM Journal on
Applied Dynamical Systems, 16(4):2096–2126, 2017.

[2] D. Armbruster, J. Guckenheimer, and P. Holmes. Kuramoto-Sivashinsky dy-
namics on the center-unstable manifold. SIAM Journal on Applied Mathematics,
49(3):676–691, 1989.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation, 15(6):1373–1396, 2003.

[4] T. Berry, D. Giannakis, and J. Harlim. Nonparametric forecasting of low-
dimensional dynamical systems. Physical Review E, 91(3):032915, 2015.

[5] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[6] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz. Chaos as
an intermittently forced linear system. Nature communications, 8(1):1–9, 2017.

[7] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-
Maranto, and L. Zdeborová. Machine learning and the physical sciences. Reviews
of Modern Physics, 91(4):045002, 2019.

[8] G. S. Chirikjian and A. B. Kyatkin. Engineering applications of noncommutative
harmonic analysis: with emphasis on rotation and motion groups. CRC press,
2000.

[9] D. A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,
2015.

[10] R. R. Coifman and S. Lafon. Diffusion maps. Applied and computational har-
monic analysis, 21(1):5–30, 2006.

[11] I. P. Cornfeld, S. V. Fomin, and Y. G. Sinai. Ergodic theory, volume 245. Springer
Science & Business Media, 2012.

133

[12] J. S. Dai. Euler–Rodrigues formula variations, quaternion conjugation and in-
trinsic connections. Mechanism and Machine Theory, 92:144–152, 2015.

[13] S. Das, D. Giannakis, and J. Slawinska. Reproducing kernel hilbert space com-
pactification of unitary evolution groups. Applied and Computational Harmonic
Analysis, 54:75–136, 2021.

[14] S. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley. Characterizing
and correcting for the effect of sensor noise in the dynamic mode decomposition.
Experiments in Fluids, 57(3):1–19, 2016.

[15] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov. Modern geometry—methods
and applications: Part I: the geometry of surfaces, transformation groups, and
fields, volume 93. Springer Science & Business Media, 1984.

[16] N. Dunford and J. T. Schwartz. Linear operators, part 1: general theory, vol-
ume 10. John Wiley & Sons, 1988.

[17] R. Dunne and B. J. McKeon. Dynamic stall on a pitching and surging airfoil.
Experiments in Fluids, 56(8):1–15, 2015.

[18] L. C. Evans. Partial differential equations, volume 19. American Mathematical
Society, 1998.

[19] D. Giannakis. Data-driven spectral decomposition and forecasting of ergodic
dynamical systems. Applied and Computational Harmonic Analysis, 47(2):338–
396, 2019.

[20] D. Giannakis, P. Schwander, and A. Ourmazd. The symmetries of image forma-
tion by scattering. I. Theoretical framework. Optics express, 20(12):12799–12826,
2012.

[21] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University
Press, 1996.

[22] W. H. Greub. Linear algebra, volume 23. Springer Science & Business Media,
2012.

[23] B. Hall. Lie groups, Lie algebras, and representations: an elementary introduc-
tion, volume 222. Springer, 2015.

[24] P. R. Halmos. Measure theory, volume 18. Springer, 2013.

[25] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta. De-biasing
the dynamic mode decomposition for applied koopman spectral analysis of noisy
datasets. Theoretical and Computational Fluid Dynamics, 31(4):349–368, 2017.

[26] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, coherent
structures, dynamical systems and symmetry. Cambridge University Press, 2012.

134

[27] J. C. Hua, S. Roy, J. L. McCauley, and G. H. Gunaratne. Using dynamic mode
decomposition to extract cyclic behavior in the stock market. Physica a: Statis-
tical mechanics and its applications, 448:172–180, 2016.

[28] J. Jost. Riemannian geometry and geometric analysis, volume 42005. Springer.

[29] I. G. Kevrekidis, B. Nicolaenko, and J. C. Scovel. Back in the saddle again: a
computer assisted study of the Kuramoto–Sivashinsky equation. SIAM Journal
on Applied Mathematics, 50(3):760–790, 1990.

[30] A. Kirillov Jr. An introduction to Lie groups and Lie algebras. Number 113.
Cambridge University Press, 2008.

[31] B. O. Koopman. Hamiltonian systems and transformation in Hilbert space.
Proceedings of the National Academy of Sciences, 17(5):315–318, 1931.

[32] M. Korda, M. Putinar, and I. Mezić. Data-driven spectral analysis of the koop-
man operator. Applied and Computational Harmonic Analysis, 48(2):599–629,
2020.

[33] Y. Kosmann-Schwarzbach. Groups and Symmetries: From Finite Groups to Lie
Groups. Springer, 2010.

[34] Y. Kuramoto. Diffusion-induced chaos in reaction systems. Progress of Theoret-
ical Physics Supplement, 64:346–367, 1978.

[35] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic mode
decomposition: data-driven modeling of complex systems. SIAM, 2016.

[36] S. Lang. Algebra, volume 211. Springer Science & Business Media, 2012.

[37] A. Lasota and M. C. Mackey. Chaos, fractals, and noise: stochastic aspects of
dynamics, volume 97. Springer Science & Business Media, 2013.

[38] K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis. Machine
learning in agriculture: a review. Sensors, 18(8):2674, 2018.

[39] A. J. Linot and M. D. Graham. Deep learning to discover and predict dynamics
on an inertial manifold. Physical Review E, 101(6):062209, 2020.

[40] H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. Nature, 293:133–135, 1981.

[41] J. L. Lumley. Stochastic tools in turbulence. Elsevier, 1970.

[42] J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297, 1967.

135

[43] J. E. Marsden and T. S. Ratiu. Introduction to mechanics and symmetry: a
basic exposition of classical mechanical systems, volume 17. Springer Science &
Business Media, 2013.

[44] W. N. Martin and J. K. Aggarwal. Motion Understanding. Springer, 1988.

[45] K. I. McKinnon. Convergence of the Nelder–Mead simplex method to a nonsta-
tionary point. SIAM Journal on optimization, 9(1):148–158, 1998.

[46] A. Mesbahi, J. Bu, and M. Mesbahi. On modal properties of the koopman opera-
tor for nonlinear systems with symmetry. In 2019 American Control Conference
(ACC), pages 1918–1923. IEEE, 2019.

[47] R. E. Miles. On random rotations in Rˆ3. Biometrika, 52(3/4):636–639, 1965.

[48] K. Murata and M. Wolf. Cryo-electron microscopy for structural analysis of dy-
namic biological macromolecules. Biochimica et Biophysica Acta (BBA)-General
Subjects, 1862(2):324–334, 2018.

[49] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffusion maps,
spectral clustering and eigenfunctions of Fokker-Planck operators. In Proceedings
of the 18th International Conference on Neural Information Processing Systems,
pages 955–962, 2005.

[50] J. A. Nelder and R. Mead. A simplex method for function minimization. The
computer journal, 7(4):308–313, 1965.

[51] D. Nister. An efficient solution to the five-point relative pose problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(6):756–770, 2004.

[52] S. E. Otto and C. W. Rowley. A discrete empirical interpolation method for
interpretable immersion and embedding of nonlinear manifolds. arXiv preprint
arXiv:1905.07619, 2019.

[53] S. E. Otto and C. W. Rowley. Linearly recurrent autoencoder networks for
learning dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):558–
593, 2019.

[54] S. E. Otto and C. W. Rowley. Koopman operators for estimation and control
of dynamical systems. Annual Review of Control, Robotics, and Autonomous
Systems, 4:59–87, 2021.

[55] O. Özyeşil, V. Voroninski, R. Basri, and A. Singer. A survey of structure from
motion. Acta Numerica, 26:305–364, 2017.

[56] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition.
In Proceedings of 27th Asilomar conference on signals, systems and computers,
pages 40–44. IEEE, 1993.

136

[57] G. Pragier, I. Greenberg, X. Cheng, and Y. Shkolnisky. A graph partitioning
approach to simultaneous angular reconstitution. IEEE Transactions on Com-
putational Imaging, 2(3):323–334, 2016.

[58] J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decomposition with
control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

[59] J. L. Proctor and P. A. Eckhoff. Discovering dynamic patterns from infectious
disease data using dynamic mode decomposition. International health, 7(2):139–
145, 2015.

[60] M. Reed and B. Simon. Methods of modern mathematical physics, volume 1.
Elsevier, 1972.

[61] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

[62] C. W. Rowley and S. T. Dawson. Model reduction for flow analysis and control.
Annual Review of Fluid Mechanics, 49:387–417, 2017.

[63] C. W. Rowley, I. G. Kevrekidis, J. E. Marsden, and K. Lust. Reduction and
reconstruction for self-similar dynamical systems. Nonlinearity, 16(4):1257, 2003.

[64] C. W. Rowley and J. E. Marsden. Reconstruction equations and the karhunen–
loève expansion for systems with symmetry. Physica D: Nonlinear Phenomena,
142(1-2):1–19, 2000.

[65] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson. Spectral
analysis of nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.

[66] A. Salova, J. Emenheiser, A. Rupe, J. P. Crutchfield, and R. M. D’Souza. Koop-
man operator and its approximations for systems with symmetries. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 29(9):093128, 2019.

[67] T. Sayadi, P. J. Schmid, J. W. Nichols, and P. Moin. Reduced-order represen-
tation of near-wall structures in the late transitional boundary layer. Journal of
fluid mechanics, 748:278–301, 2014.

[68] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of fluid mechanics, 656:5–28, 2010.

[69] N. Sharon, J. Kileel, Y. Khoo, B. Landa, and A. Singer. Method of moments for
3d single particle ab initio modeling with non-uniform distribution of viewing
angles. Inverse Problems, 36(4):044003, 2020.

[70] Y. Shkolnisky and A. Singer. Viewing direction estimation in cryo-em using
synchronization. SIAM journal on imaging sciences, 5(3):1088–1110, 2012.

137

[71] A. Singer, R. R. Coifman, F. J. Sigworth, D. W. Chester, and Y. Shkolnisky.
Detecting consistent common lines in cryo-EM by voting. Journal of structural
biology, 169(3):312–322, 2010.

[72] A. Singer and F. J. Sigworth. Computational methods for single-particle electron
cryomicroscopy. Annual Review of Biomedical Data Science, 3:163–190, 2020.

[73] A. Singer and H.-T. Wu. Orientability and diffusion maps. Applied and compu-
tational harmonic analysis, 31(1):44–58, 2011.

[74] S. Sinha, S. P. Nandanoori, and E. Yeung. Koopman operator methods for global
phase space exploration of equivariant dynamical systems. IFAC-PapersOnLine,
53(2):1150–1155, 2020.

[75] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent
structures. Quarterly of applied mathematics, 45(3):561–571, 1987.

[76] G. I. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar
flames—i. derivation of basic equations. Acta astronautica, 4(11):1177–1206,
1977.

[77] V. T. Steyert and C. W. Rowley. Data-driven reduced order modeling for se-
lect features of complex flows. Poster at SIAM Conference on Applications of
Dynamical Systems, May 2019.

[78] V. T. Steyert and C. W. Rowley. Computing the spectrum from data. Manuscript
in preparation, 2022.

[79] F. Takens. Detecting strange attractors in turbulence. In Dynamical systems
and turbulence. Springer, 1981.

[80] J. Tu, C. Rowley, E. Aram, and R. Mittal. Koopman spectral analysis of sep-
arated flow over a finite-thickness flat plate with elliptical leading edge. In
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, page 38, 2011.

[81] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. On
dynamic mode decomposition: Theory and applications. Journal of Computa-
tional Dynamics, 1:391–421, 2014.

[82] B. Vainshtein and A. Goncharov. Determination of the spatial orientation of ar-
bitrarily arranged identical particles of unknown structure from their projections.
In Soviet Physics Doklady, volume 31, page 278, 1986.

[83] M. Van Heel. Angular reconstitution: A posteriori assignment of projection
directions for 3d reconstruction. Ultramicroscopy, 21(2):111–123, 1987.

[84] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

138

[85] H. Wendland. Meshless galerkin methods using radial basis functions. Mathe-
matics of computation, 68(228):1521–1531, 1999.

[86] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A data–driven approx-
imation of the Koopman operator: Extending dynamic mode decomposition.
Journal of Nonlinear Science, 25(6):1307–1346, 2015.

[87] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis. A kernel-based method for
data-driven Koopman spectral analysis. Journal of Computational Dynamics,
2(2):247, 2015.

[88] H. Zhang, S. Dawson, C. W. Rowley, E. A. Deem, and L. N. Cattafesta.
Evaluating the accuracy of the dynamic mode decomposition. arXiv preprint
arXiv:1710.00745, 2017.

[89] Y. D. Zhong and N. Leonard. Unsupervised learning of Lagrangian dynamics
from images for prediction and control. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

139

