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Abstract

One of the most critical tasks in fluid dynamics and control is to build simple, low-

order, and accurate models. The models are essential for understanding dynamics and

control. However, in many cases, the models are either unknown or too complicated to

be useful. As an example, fluid flows are governed by Navier-Stokes equations (NSE),

which remain intractable for real-time applications. Meanwhile, with increasing com-

putational power and advances in experimental and numerical methods, researchers

have access to much more data about dynamical systems. For instance, computa-

tional fluid dynamics (CFD) produces tons of data, but the data have not been fully

utilized.

Data-driven modeling addresses these challenges by learning dynamical system

models from data. This thesis focuses on data-driven modeling methods for appli-

cations in fluid dynamics and control. First, we propose an evaluation criterion to

quantify the accuracy of dynamic mode decomposition (DMD), a data-driven algo-

rithm for extracting spatial and temporal features about dynamical systems from

data. DMD is a numerical approximation to the linear Koopman operator associated

with a dynamical system. By exploiting this connection, the accuracy criterion is

purely data-driven and physically meaningful. It also applies to other variants of

DMD algorithms and assists in model selection.

Second, fast algorithms are developed for online dynamic mode decomposition

(ODMD). Given real-time measurement about a dynamical system, this algorithm

efficiently updates an adaptive model upon each new snapshot. It reduces both the

computational time and memory requirements by order of magnitudes compared with

existing methods. ODMD algorithm can be modified to gradually forget old data,

which enables faster tracking of dynamics. ODMD also extends to both linear and

nonlinear system identification, where control is included.
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Finally, we study the input-output response of a separated flow past a flat plate.

The analysis is based on the frequency-domain transfer function of the linearized NSE

about the mean flow. The control input is body forcing, and the output is the flow

field. This analysis sheds light on the optimal control placement and reveals that the

trailing edge separation bubble is most sensitive to streamwise body force (control)

in upstream of the separation point.
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Introduction
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Organization

This thesis focuses on data-driven modeling methods for applications in fluid dynam-

ics and control. Part I summarizes the high-level idea of the thesis contributions.

The main results are organized into chapters as follows.

• Chapter 1 outlines the modeling challenges in fluid dynamics and control, and

proposes the necessity to develop data-driven modeling methods. The canonical

flow separation problem is introduced to motivate the thesis research.

• Chapter 2 presents an accuracy criterion for dynamic mode decomposition. It

guides the selection of models to better represent the dynamics in the separated

flow. More information can be found in chapter 6.

• Chapter 3 describes fast algorithms for online model learning. These online algo-

rithms lay the foundation for efficient real-time model updating, prediction, and

control (e.g., it has been applied to the canonical separated flow problem [18]).

For more details, refer to chapter 7.

• Chapter 4 investigates the input-output response of the canonical separated

flow, and suggests that the separation bubble is most sensitive to streamwise

body force (control) in the upstream of the separation point. It is further

elaborated in chapter 8.

• Chapter 5 summarizes the thesis contributions and outlines a few directions for

future work.

Notation

This thesis covers multiple fields, such as fluid dynamics, control, and Koopman

analysis. Each chapter is mostly self-contained. In terms of notation, we decide to

2



respect the convection in each field. Therefore, some variables can take different

meanings depending on the context. Of course, the notation will be clearly defined

when introduced. To avoid any confusion, we make efforts to ensure that the meaning

of notation is clear from the context.
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Chapter 1

Motivation

1.1 Fluid dynamics

The study of fluid dynamics appears in many aspects of science and engineering and

plays an important role in broad fields such as energy [40], health [94], and the envi-

ronment [100]. The well-known Navier-Stokes equations (NSE) describes the motion

of fluid flows (established in the early 18th century [12]). After almost two hundred

years, the existence and smoothness of its solution remain unknown, and is one of

the seven Millennium Prize Problems [28]. At high Reynolds number, a complicated

phenomenon called turbulence will occur, but the turbulence mechanism is not well

understood. Richard Feynman considered turbulence as the most important unsolved

problem of classical physics [29].

The (non-dimensional) incompressible NSE reads [90]

∂u

∂t
= −u · ∇u−∇p+

1

Re
∇2u, (1.1a)

∇ · u = 0, (1.1b)

where u is the velocity field (in three directions), p is the pressure field, and Re

is the Reynolds number. Reynolds number is the most important nondimensional
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parameter in fluid dynamics, and fluid flows can exhibit different behaviors under

different Reynolds number. NSE is a typical example of nonlinear partial differential

equations (PDE).

Fluid dynamics is characterized by high dimensionality and nonlinearity. In prac-

tice, NSE is usually spatially discretized, resulting in high-dimensional and nonlinear

ordinary differential equations (ODE). However, for many real-time applications, we

can not afford such high dimensionality due to the high computational time and

memory requirements. For example, consider a spatial domain of 1m× 1m× 1m, the

resulting discrete state dimension will easily reach one million if the discretization size

is 0.01m. Also, when the Reynolds number is high, a smaller discretization size has

to be used in order to resolve the physics. In particular, the discretization size scales

like Re−
3
4 [3], where Re is the Reynolds number. The total computational time of

computational fluid dynamics (CFD) [2] simulation will scale as Re3 [3]. Due to the

computational time and memory requirements, CFD is mainly an “offline” method.

That is, CFD simulation is run, and the result is analyzed before the actual applica-

tion of fluid systems. For instance, Boeing utilizes CFD to test its airplanes [50]. The

nonlinearity of NSE poses serious computational challenges to numerical simulation.

Typically, implicit and iterative methods (high computational time) must be used to

ensure the numerical accuracy and stability of CFD [2].

Additionally, CFD simulation of the full NSE requires very detailed and accurate

information about the boundary condition, and measurement of the full flow field,

which are often unavailable in real-time applications.

Therefore, for real-time applications, we desire simple, low-order, and accurate

models. The model will be an approximate model to the NSE and describes the

essential features of fluid flows, but is much simpler. The simplified model paves the

way for efficient real-time prediction, estimation, and control [95].
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1.2 Control

Optimal control deals with finding optimal control law for a dynamical system over

a period of time so as to optimize an objective function [6]. It has wide applications

in various fields including fluid dynamics [56], aerospace engineering [97], and even

economics [87].

The mathematical theory of control is concerned with a dynamical system where

control input exists. In general, the state-space representation of a (discrete-time)

dynamical system [6] is

xk+1 = f(xk,uk), (1.2a)

yk = g(xk,uk), (1.2b)

where k is the time step, xk is the state, uk is the control (input), yk is the observation

(output). The dynamical system is called autonomous if control is absent. Notice

that NSE can be cast into the above state-space form after spatial and temporal dis-

cretization. Therefore, fluid flow systems are also dynamical systems. The functions

f and g together specify the dynamical system model.

In the special case where both f and g are linear and time-invariant in x,u,

the dynamical system is called linear time-invariant (LTI) [6] and takes the following

form:

xk+1 = Axk +Buk, (1.3a)

yk = Cxk +Duk, (1.3b)

where A,B,C,D are properly sized matrices. LTI system is well studied and comes

with many powerful techniques. At present, nonlinear system control still remains

very challenging in general. Even seemingly simple nonlinear dynamical systems

6



can exhibit complex behaviors such as chaos (e.g., Lorenz system [39]), limit cy-

cle [13] (e.g., Van der Pol oscillator [39]), and ergodicity [102] (e.g., irrational rotation

map [89]).

The high dimensionality of dynamical systems also poses computational chal-

lenges. For example, Kalman filter [53] and linear quadratic regulator (LQR) [6] are

probably the two most widely used techniques for control. However, their computa-

tional time both scale like O(n3), where n is the state dimension. In high-dimensional

case, the numerical stability and accuracy also become an issue (e.g., when computing

matrix inverse in Kalman filter [53]).

In summary, high dimensionality and nonlinearity also arise as challenges in ap-

plications of control theory. For efficient prediction, estimation, and control, we aim

to build low-order simplified models.

1.3 Data-driven modeling

In the field of fluid dynamics and control, we both require low-order, simple, and

accurate models. However, in many applications of interest, the models are unknown

or too complicated to be useful. Consider a flow control problem, where we can only

measure the velocity/pressure at a limited number of locations by placing sensors.

Even though the NSE governs the motion of the whole flow field, we do not have an

explicit model for the measured states. Now imagine that we can measure the full

flow field (the discrete state dimension is in the order of millions), it is still inefficient

to work with such high dimensionality. In these cases, we hope to build a low-order

approximate model for the original high-dimensional systems.

At present, with more powerful computers and advancement in experimental and

numerical techniques, simulating and measuring dynamical systems have become

much easier. To make better use of the available data, data-driven modeling methods
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are desirable. Now, to formalize the notion of data-driven modeling, assume that we

have history measurement of state, control, and observation up to time step k,

{xi,ui,yi}ki=0. (1.4)

Depending on the application domain, one or two of these quantities may be absent.

For example, for an autonomous system, there is no control. In some cases, the

observation will be the same as the state. The task is to learn a low-order, simple, and

accurate model that describes the essential behaviors of the observed data. Typically,

we aim for a state-space form, and it amounts to learning the functions f , g.

There are a few widely used data-driven modeling methods including proper or-

thogonal decomposition (POD) [60], Galerkin projection (GP) [78], dynamics mode

decomposition (DMD) [81], input-output analysis (also referred to as resolvent anal-

ysis) [63]. For a more comprehensive review of these methods, see [95].

1.4 Flow separation control

To motivate the research work in this thesis, we present the flow separation control

problem. At a high angle of attack, the flow past an airfoil will separate, as sketched

in Figure 1.1. Flow separation is typically a deleterious phenomenon because of the

loss of lift and increase of drag [67]. Flow separation induces complex flow behaviors,

including Kelvin-Helmholtz instability, wake shedding, flow recirculation, and sepa-

ration bubble oscillations [67]. Therefore, flow separation control is an active area of

research [85, 33, 68, 76].

A simplified model for airfoil separation flow is proposed as the so-called canonical

separated flow [37]. A sketch of the setup is shown in Figure 1.2a. It removes

the curvature of the airfoil (by using a flat plate), but retains essential separation

characteristics as shown in Figure 1.2b. An adverse pressure gradient is imposed by

8



Figure 1.1: Sketch of flow separation around an airfoil. Credit to [18].

the suction fan, and the flow is re-attached by the blowing fan. More information

regarding the separation system and the flat plate model can be found in [18].

(a) Flate plate model and separation system (b) Flow physics

Figure 1.2: Canonical separated flow. Images from collaborators [18].

Unsteady pressure fluctuations are measured by an array of 13 microphones within

the separation region. The microphones are placed at the centerline of the plate,

between x/c = 0.70 and 0.94 , with a spacing of 4x/c = 0.02. A zero-net mass-flux

(ZNMF) [32] actuator is employed to control the separated flow, which is located at

x/c = 0.61. For further details refer to [18].

This is a practical flow control problem. First of all, we can not measure the

whole flow field. The only available information is the 13 pressure measurements and

9



ZNMF control history. The model is unknown because NSE is only satisfied by the

full flow field. Second, we can control the ZNMF actuator upstream. We want to

adjust the control signal based on the measurements, and this strategy is known as

closed-loop (feedback) control [6]. There exist model-free control methods, such as

reinforcement learning (RL) [93]. However, RL typically requires many iterations and

experiments before learning meaningful control strategies, making it inapplicable to

many real-time applications. For robustness, simplicity, and efficiency, it is desirable

to construct an explicit model from data.
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Chapter 2

Accuracy criterion for dynamic

mode decomposition

2.1 Background

Dynamic mode decomposition (DMD) [81] is a data-driven method to decompose

spatio-temporal data into spatial modes and temporal functions describing their evo-

lution (in the form of frequency and growth/decay rate). Over the past decade, DMD

has been successfully utilized for many applications in fluid dynamics [80, 98, 19, 113].

Consider a discrete-time (autonomous) dynamical system

x(k + 1) = F (x(k)), (2.1)

where x(k) ∈ Rn is the state and F : Rn → Rn is the dynamics (map). Let

ψ1, ψ2, · · · , ψq be scalar-valued functions, and ψ : Rn → Rq be a vector-valued observ-

able function whose components are (ψ1, ψ2, · · · , ψq). We consider pairs of snapshots

(xk,x
#
k ), k = 1, 2, · · · ,m, where x#

k = F (xk) is the image of xk under dynamics F .

This formulation [99] is slightly more general than the original DMD [81] which is

designed for sequential data. For sequential data x(1),x(2), · · · ,x(m+ 1), it can be
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handled in this new formulation by taking x#
k = xk+1. Next, we form two matrices

Y ∈ Rq×m,Y # ∈ Rq×m whose columns are yk = ψ(xk),y
#
k = ψ(x#

k ) respectively.

DMD aims to find a matrix A ∈ Rq×q such that

y#
k = Ayk. (2.2)

The optimal (least square or minimum norm) solution is [81]

A = Y #
k Y

+
k . (2.3)

More details about the DMD algorithm can be found in [99]. Denote the eigenvalues

and eigenvectors of A by (µi,vi)
q
i=1. Suppose the initial condition is y1 =

∑q
i=1 civi,

the prediction will be

yk+1 = Aky1 =

q∑
i=1

ciµ
k
i vi, (2.4)

where µi is the DMD eigenvalue, and vi is the DMD mode. Therefore, each DMD

mode is associated with a single frequency and growth/decay rate (DMD eigenvalue).

There are connections between DMD and the infinite-dimensional linear Koopman

operator [54]. The high-level idea is that under certain conditions [99], DMD gives a

finite-dimensional approximation to the Koopman operator. Koopman operator acts

on scalar-valued functions of the state space. Given the dynamics 6.1, and a function

space Φ ⊆ L2(Rn), the Koopman operator K : Φ→ Φ is defined as [54]

(Kφ)(x) = (φ ◦ F )(x) = φ(F (x)), (2.5)

where φ ∈ Φ. In other words, K maps a function φ to another function φ ◦ F , and

(Kφ)(x) gives the values of φ(x) at the next time step under the dynamics. We

make two remarks about the Koopman operator. Frist, the Koopman operator acts

on functions of the state instead of the state itself. Second, the Koopman operator
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is linear even though the dynamics might be nonlinear. By studying the Koopman

operator, we are looking at an infinite-dimensional linear operator instead of the

original finite-dimensional nonlinear dynamics. Due to the linearity of the Koopman

operator, it may have eigenvalues and eigenfunctions, which satisfy

Kϕ = µϕ, (2.6)

where ϕ is the eigenfunction with eigenvalue µ. (µ, ϕ) is called a Koopman eigenpair.

Koopman eigenfunction gives a change of coordinate in which the dynamics becomes

linear. To show this, let zk = ϕ(xk), we have

zk+1 = ϕ(xk+1) = ϕ(F (xk)) = (Kϕ)(xk) = µϕ(xk) = µzk. (2.7)

Assume the Koopman eigenfunction ϕ(x) (with eigenvalue µ) lies in the span of the

observablesψi, i.e., there existsw∗ such that ϕ(x) = w∗ψ(x). Under other additional

conditions [99], w∗ will be a left eigenvector of the DMD matrix A with eigenvalue

µ (i.e., w∗A = µw∗). In practice, the conditions might not be satisfied exactly or

the collected data may be corrupted with noise. In this case, DMD only provides

an approximation to the Koopman eigenpairs. In summary, by computing the left

eigenvalues and eigenvectors (µi,w
∗
i ) of the DMD matrix, we can get (approximate)

Koopman eigenpairs (µi, ϕi(x)) where ϕi(x) = w∗iψ(x).

2.2 Method

As mentioned above, DMD is only an approximation to the Koopman operator. The

first question we should ask is: how accurate is the DMD approximated eigenpairs?

We should answer this fundamental question before interpreting DMD results or con-

structing models. Indeed, it is very tempting to change the coordinate using Koopman

13



eigenfunctions to make the dynamics linear. However, we must assess the quality of

DMD results in advance. In most applications, the true eigenpairs are unknown.

Thanks to the connection between DMD and the Koopman operator, we can

evaluate the accuracy of DMD eigenvalue and DMD mode by looking at the accuracy

of its corresponding Koopman eigenpair. To be specific, given a DMD approximated

eigenpair (µ, ϕ) (using training data) where ϕ(x) = w∗ψ(x), and we want to assess

its accuracy. The true eigenpair satisfies the relationship ϕ ◦ F = µϕ. For a DMD

approximated eigenpair, ideally we should compute

‖ϕ ◦ F − µϕ‖
‖ϕ‖

, (2.8)

where ‖ · ‖ is the norm of a function. However, evaluation of this quantity requires

explicit knowledge of F , which is unknown in most cases of interest. To bypass this

problem, we rely on the collected data. The sampled snapshot pairs are split into

training data and testing data. Training data is used in DMD to approximate the

Koopman eigenpairs, and testing data will be used to estimate the above quantity.

Particularly, we define the following accuracy criterion

α =

∑
k |ϕ(x#

k )− µϕ(xk)|∑
k |ϕ(xk)|

, (2.9)

where ϕ(x) = w∗ψ(x), and the summation is over the testing data. A diagram

summarizing how this accuracy criterion may be applied is shown Figure 2.1.

The numerator measures to what extent the eigenfunction equation holds, and

the denominator gives a measure of the magnitude of the eigenfunction. Here α can

be interpreted as the error of a (DMD approximated) Koopman eigenpair. Notice

that each eigenpair can be assessed independently. Therefore it makes sense to call

α the mode error. Also, it is purely data-driven and does not require any knowledge
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DMD

Figure 2.1: A diagram summarizing the implementation of the accuracy criterion.
Training data is used to approximate Koopman eigenpairs with variants of DMD,
while testing data is used to evaluate the quality of Koopman eigenpairs. Reproduced
from Figure 6.1.

of the dynamics. Smaller α indicates higher accuracy and α = 0 for a true eigenpair.

Typically, we only care about the eigenpairs with 0 ≤ α� 1.

2.3 Results

First of all, the accuracy criterion is validated with a dynamical system where the

true Koopman eigenpairs are known. Consider a 2D nonlinear map (also considered

in [99]) with dynamics defined by

x1

x2

 7→
 γx1

δx2 + (γ2 − δ)x2
1

 , (2.10)

where γ = 0.9, δ = 0.8. It is straightforward to verify that γ, δ are Koopman eigen-

values with respective eigenfunctions ϕγ(x) = x1, ϕδ(x) = x2−x2
1. Additional Koop-

man eigenvalues and eigenfunctions are given by µk,` = γkδ`, ϕk,` = ϕkγϕ
`
δ, where

k, ` = 0, 1, 2, · · · are non-negative integers.

In the case where the observable ψ(x) is not identity, the DMD algorithm becomes

the extended DMD (EDMD) algorithm [104]. Proper data is collected, and observ-

able functions are taken to be monomials up to degree 5 (e.g., x1, x2, x
2
1, x

2
2, x1x2, · · · ).

The accuracy criterion α is compared with true eigenvalue error τ and true eigen-
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Figure 2.2: Comparison between the accuracy criterion α, eigenvalue error τ , and
eigenfunction error θ. The eigenvalues are indexed by their absolute value, in de-
scending order. Reproduced from Figure 6.2.

function error θ, which are defined by comparing with the true Koopman eigenpairs.

In particular, they are defined as

τ =
|µ− µtrue|
|µtrue|

, θ =
‖ϕ− ϕtrue‖
‖ϕtrue‖

. (2.11)

The result is shown in Figure 2.2. Obviously, the accuracy criterion highly correlates

with the true error. Here the errors are many orders of magnitude apart (almost

15 orders of magnitude), but the accuracy criterion is also effective for cases where

the separation of scale is smaller. Keep in mind that the accuracy criterion does not

assume any knowledge about the true dynamics, and it is purely data-driven. It is

capable of indicating the accuracy very well.

If the the observable function ψ(x) is implicitly defined by kernel function, the

algorithm is called the kernel DMD (KDMD) [105]. In KDMD, EDMD is reformulated

such that only the inner products of observables need to be computed. A kernel

function k : Rn × Rn → R is defined as [11]

k(x, x̂) = 〈ψ(x),ψ(x̂)〉. (2.12)

Kernel function allows efficient computation of inner product between high-

dimensional (even infinite-dimensional) observables . As an example, consider a
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(a) Mode 1, f1 = 0.90 Hz (b) Mode 2, f2 = 1.77 Hz (c) Mode 3, f3 = 2.69 Hz

Figure 2.3: Three dominant DMD modes (real part) picked out by accuracy criterion.
Reproduced from Figure 6.7.

polynomial kernel k(x, x̂) = (1 + xT x̂)d. This kernel corresponds to a set of observ-

ables ψ(x) consisting of all monomials in components of x up to degree d [11]. In

particular, taking n = 2 and d = 2, this kernel function expands to

(1 + xT x̂)2 = 1 + 2x1x̂1 + 2x2x̂2 + 2x2
1x̂

2
1 + 2x1x2x̂1x̂2 + x̂2

1x̂
2
2

= 〈ψ(x),ψ(x̂)〉,
(2.13)

where ψ(x) = (1,
√

2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2).

The proposed accuracy criterion is shown to be capable of informing the choice

of right kernel among various kernel functions. For the considered dynamical system,

the polynomial kernel performs best in identifying the correct Koopman eigenpairs,

because its implicit observables span the true Koopman eigenfunctions (both are

polynomials). It is also robust when the data is corrupted with noise, because the

(implicit) observable function is finite-dimensional, making it less likely to overfit in

the presence of noise.

Finally, DMD and its variants are applied to experimental data from flow past a

cylinder and separated flow past a flat plate. In both cases, the accuracy criterion

picks out the important modes that are responsible for the dominant physics in the

flows. For example, the identified dominant modes for flow past a cylinder are shown

in Figure 2.3. These modes agree with the results in previous work [98].
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Chapter 3

Online dynamic mode

decomposition

3.1 Background

From now on, we view DMD as a system identification method. To make it clear, we

need a slightly different formulation. Consider a dynamical system

xj+1 = f(xj,uj), (3.1)

where xj ∈ Rn,uj ∈ Rp are the state and control respectively. Further suppose that

we have measurement history (xj,uj)
k
j=1. To learn a model from data, we assume

the model can be written in the following form

xj+1 = Mφ(xj,uj), (3.2)

where φ : Rn × Rp → Rq is the nonlinearity, and must be specified by the users.

M ∈ Rn×q is unknown, and will be learned from data. For example, the most widely
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used form for φ is the linear form:

φ(xj,uj) =

xj
uj

 . (3.3)

In this case, it amounts to finding a linear-time invariant (LTI) system. In general,

f is unknown, so the nonlinearity φ might not agree with the true nonlinearity in f .

In fluid applications, second order nonlinearity is widely used for φ because of the

nonlinearity in Navier-Stokes equations. The best model (a matrix) M ∈ Rn×q that

fits the data can be found by minimizing the cost function,

k∑
j=1

‖xj+1 −Mφ(xj,uj)‖2 = ‖MX − Y ‖2
F , (3.4)

where X ∈ Rq×q,Y ∈ Rn×q are two matrices where the columns are φ(xj,uj),xj+1

respectively. ‖ · ‖ is the Euclidean on vectors and ‖ · ‖F is the Frobenius norm on

matrices. Assuming X has full row rank, the least squares solution is

M = Y X+. (3.5)

In this formulation, DMD computes a model that can be used for prediction, estima-

tion and control.

The above DMD algorithm is an “offline” algorithm, i.e., it computes the DMD

matrix only once given all the data. However, in real-time applications, data usually

come in a stream. If we want to control a fluid system in real-time such as the

canonical separated flow, the measurements will be a data stream. Intuitively, the

model should be updated so that it better tracks the true dynamics. Therefore, we

desire an “online” algorithm that allows us to update the model in real-time.
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There are a few reasons why we should update the model. First, the dynamical

system might be time-varying. In this case, the model should be adaptive in order

to account for time-varying behaviors. Second, the dynamics may be nonlinear. If

we use a linear form for φ(xj,uj), the learned model is only valid locally (by Taylor

expansion). Thus, the model should be updated so that it remains a valid approxi-

mation. Third, the nonlinearity of the dynamics is typically unknown, so φ(xj,uj)

might not agree with the true nonlinearity. Without any prior knowledge about the

form of nonlinearity, we can simply use a linear form. Linear models will be local

approximations as long as it is continuously updated.

It is worthwhile to point out that if the true dynamics is time-invariant and the

nonlinearity used in φ(xj,uj) agrees with f(xj,uj), then updating the model using

new data does not change the model at all.

3.2 Method

To distinguish the models across time steps, we will index the relevant matrices

by time. Given (xj,uj)
k
j=1, we form matrices Xk,Yk as before, then the model is

Mk = YkX
+
k . Now, at time step k + 1, we have a new observation xk+1. The

question is: how should Mk be updated? First, we rewrite the online model as

Mk = QkP
−1
k , Qk = YkX

T
k , Pk = (XkX

T
k )−1, (3.6)

where Qk ∈ Rn×q,Pk ∈ Rq×q. At time step k + 1, we have

Xk+1 =

[
Xk φk

]
, Yk+1 =

[
Yk xk+1

]
, (3.7)
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where φk is a shorthand for φ(xk,uk). Therefore,

Qk+1 = Yk+1X
T
k+1 = Qk + xk+1φ

T
k , (3.8a)

Pk+1 = (Xk+1X
T
k+1)−1 = (P−1

k + φkφ
T
k )−1. (3.8b)

The data matrices are related by a rank-one update, and this is the most important

observation. Applying Sherman–Morrison formula [88, 41] to Pk+1, and after some

algebraic manipulation, we finally obtain

Pk+1 = Pk − γk+1Pkφkφ
T
kPk, (3.9a)

Mk+1 = Mk + γk+1(xk+1 −Mkφk)φ
T
kPk, (3.9b)

γk+1 =
1

1 + φTkPkφk
. (3.9c)

Notice that the update to the model Mk is proportional to the prediction error of

current model (xk+1 −Mkφk), which makes intuitive sense.

In summary, the algorithm works as follows. First, collect snapshots (xj,uj)
k
j=1.

Second, compute Mk,Pk by definition (3.6). Third, when a new snapshot pair

(φk,xk+1) becomes available, update Mk,Pk according to (3.9). Implementations

of this algorithm in both Matlab and Python are publicly available at [112].

There are two important extensions to the above algorithm. They are both de-

signed to discount old snapshots. First, an exponential weighting factor can be used

to place less weight on old data (weighted online DMD). The cost function will be

k∑
j=1

ρk−i‖xj+1 −Mkφj‖2, 0 < ρ ≤ 1,

where ρ is the weighting factor. Smaller ρ will result in faster tracking of the dynamics.

Second, we can use a sliding window to only use the most recent snapshots (window

DMD). Consider recent w snapshot pairs (φj,xj+1)kj=k−w+1, and the resulting cost
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Aspect Standard DMD Online DMD

Computational time O(kq(n+ q)) O(q(n+ q))
Memory requirements O(kq(n+ q)) O(q(n+ q))

Table 3.1: Computational time and memory requirements of online DMD compared
with standard DMD. k is current time step, n is state dimension, q is nonlinearity
dimension, k � max(n, q).

function is
k∑

j=k−w+1

‖xj+1 −Mkφj‖2.

The above online algorithms can be modified for these two extensions.

The model form (3.2) is very general and encompasses many familiar dynamical

system models. As we have mentioned, LTI system can be represented by taking

linear form (3.3) for φ(xj,uj). The well-known autoregressive (AR) model [103],

which resembles the Takens’ delay embedding for dynamical systems [96, 73], can

also be cast into form (3.2). Additionally, many classical nonlinear systems (e.g.,

logistics map, Duffing oscillator, Lorenz attractor, and Van der Pol oscillator) [39]

can be written in this form.

3.3 Results

The online algorithms are superior to existing standard methods in terms of both

computational time and memory requirements, as summarized in Table 3.1. Both the

computational time and memory requirements are improved from cubic to quadratic.

Furthermore, they do not depend on the time step k anymore (k � max(n, q)), which

essentially goes to infinity in real-time applications.

Consider a 2D time-varying system

ẋ(t) = A(t)x(t), (3.10a)
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Figure 3.1: Solution of the linear time-varying system (3.10), and frequencies pre-
dicted by various DMD algorithms. Reproduced from Figure 7.4.

where x(t) ∈ R2, and the time-varying matrix A(t) is given by

A(t) =

 0 ω(t)

−ω(t) 0

 , (3.10b)

where ω(t) = 1 + εt. We set ε = 0.1, so that the system is slowly varying in time.

The eigenvalues of A(t) are purely imaginary ±iω(t). The system is simulated for

t ∈ [0, 10] starting from initial condition (1, 0), and the snapshots are taken with time

step4t = 0.1. We apply online DMD algorithm (and its variants) to fit the model and

compute the resulting frequency. The result is presented in Figure 3.1. Both window

DMD and (weighted) online DMD are able to track the time-varying frequencies.

For online DMD, smaller values of the parameter ρ result in faster tracking of the

time-varying frequency.

Additionally, the online algorithms have been shown to successfully capture the

time-varying dynamics in the pressure fluctuation in the canonical separated flow.

In fact, the online DMD algorithm has been applied to this flow separation control

problem [18] for system identification and real-time control. The high-level idea is to
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learn an adaptive linear model with online DMD, and apply LQR control based on

the estimated model.
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Chapter 4

Input-output analysis of separated

flow

4.1 Background

As mentioned in section 1.4, flow separation is usually an undesirable behavior due to

lift decreasing and drag increasing [67]. There have been some studies [85, 33, 68, 76]

trying to find the optimal ZNMF actuator parameter by systematic parameter search.

However, these approaches suffer from high experimental or simulation costs. They

only provide limited insight into the relevant physics in the problem.

To better understand the physics, and gain more insights about optimal actu-

ation, we investigate the problem from the perspective of input-output response.

The input-output analysis was originally proposed to study the response of a flow

field to disturbances [51, 63]. Later, it is also referred to as the resolvent analysis,

and has been widely used in turbulence modeling and building reduced-order mod-

els [59, 30, 49, 35]. For a review of various applications, refer to [95].

The input-output analysis utilizes the transfer function (a linear operator) from

the input forcing (including nonlinear advective forcing, and any other external forc-
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Figure 4.1: Sketch of separated flow on a flat plate (not to scale). Credit to [107].
Reproduced from Figure 8.1.

ing) to the output response (velocity and pressure field). This operator is often low

rank (sometimes approximately rank-one). From it, one can find the optimal forc-

ing mode that actuates the optimal response that has maximum amplification. The

optimal forcing mode provides clues about where is the most efficient place to actu-

ate. For example, it has guided the design of airfoil separation control [109], where

localized unsteady thermal actuation is used.

We consider a laminar boundary layer with a separation bubble along a flat plate.

The pressure gradient is imposed by suction and blowing on the top boundary, as

shown in Figure 4.1. Three-dimensional numerical simulation is performed, and for

more details, refer to [107]. The physical quantities are nondimensionalized by the

free-stream velocity U∞,0, and the boundary thickness δ0 of the Blasius velocity profile

at the inlet. The Reynolds number is Re = U∞,0δ0/ν = 1000, where ν is the kinematic

viscosity.

A simulation with no forcing is performed, and the result is visualized in Figure 4.2.

The flow is mainly two-dimensional, along with small spanwise fluctuations. The

separation bubble spans from x = 10δ to x = 55δ. The fluctuation field is mainly

concentrated in and behind the trailing edge of the separation bubble region. The

mean flow will be taken as the base flow in the input-output analysis, and we then

study the response of the fluctuation field to external forcing.
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(a) (b)

Figure 4.2: (a) Time and spanwise averaged field. (b) Spanwise averaged fluctuation
field. Reproduced from Figure 8.2.

4.2 Method

To introduce the input-output analysis, we start with the incompressible Navier-

Stokes equations

∂tũ = −ũ · ∇ũ−∇p̃+
1

Re
∇2ũ, (4.1a)

∇ · ũ = 0. (4.1b)

The full flow field (ũ, p̃) is decomposed into a base flow (ū, p̄) (usually mean flow or

steady solution of the Navier-Stokes equations), and a fluctuation field (u, p), and we

derive an equation for the fluctuations. Let ũ = ū+u, p̃ = p̄+ p and substitute into

(4.1), we have

∂tu = Lu−∇p+ f , (4.2a)

∇ · u = 0, (4.2b)

where

Lu = −ū · ∇u− u · ∇ū+
1

Re
∇2u,

and L is called the linearized Navier-Stokes operator. The forcing term f includes

all additional terms, including the nonlinear advective term and any external forcing

terms such as body forcing and boundary forcing.
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Treating the nonlinear advective term and external forcing as input and velocity

field as output, we can derive a state-space representation for the fluctuation field. If

we define

q =

u
p

 , A =

 L −∇

∇· 0

 , M =

1 0

0 0

 , B =

1

0

 , C =

[
1 0

]
,

then (4.2) can be put into state-space form

M∂tq = Aq +Bf , (4.3a)

u = Cq, (4.3b)

where f is the input and u is the output.

If we consider sinusoidal forcing f = f̂eiωt, then the state and output will be

sinusoidal because the system is linear. Let u = ûeiωt, and use (4.3), we have

û = H(iω)f̂ ,

where

H(iω) = C(iωM − A)−1B

is the transfer function from input (f = f̂eiωt) to output (u = ûeiωt). This transfer

function is a linear operator, and is unique for each frequency ω.

It can be shown (see, e.g., [10]) that the optimal forcing mode that induces maxi-

mum amplification in the responese can be found from singular value decomposition

(SVD) of the transfer function. Let the SVD of the transfer function be

H =
∑
j

σjψjφ
∗
j ,
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where ψ∗iψj = δij, φ
∗
iφj = δij, and σj ≥ 0 is in descending order. Then the optimal

forcing is the first right singular vector φ1 and the optimal response is the first left sin-

gular vector ψ1. The largest singular value σ1 gives the corresponding amplification.

For an arbitrary forcing f̂ , the response û can be written as

û =
∑
j

σjψj(φ
∗
j f̂),

where φ∗j f̂ is the projection of f̂ in the direction of φj. For many shear flows of

practical interest [63, 59, 30, 10] the linear operator H can be closely approximated

by an operator of rank one: σ1 � σj≥2. A rank-one approximation of the response is

then

û ≈ σ1ψ1(φ∗1f̂), (4.4)

and one expects this to be a close approximation of the response for a typical forcing f̂

(i.e., as long as the direction of forcing is not such that φ∗1f̂ is small).

The spanwise and time-averaged flow is taken as the base flow in input-output

analysis. After spatial discretization, the transfer function H(iω) is a huge matrix

of size 0.26 million by 0.26 million. Therefore, the efficient randomized SVD method

of [42] is used to obtain the approximate leading singular values and singular vectors.

4.3 Results

Assuming sinusoidal forcing in both time and the spanwise direction, the output will

also be sinusoidal (in time and the spanwise direction), because the system is linear.

In particular, let

f(x, y, z, t) = f̂(x, y)ei(kzz+ωt), u(x, y, z, t) = û(x, y)ei(kzz+ωt),
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(a) (b)

Figure 4.3: Global forcing result. (a) Streamwise and wall-normal optimal response
mode û, v̂. kz = 0, ω = 0.377. (b) Streamwise optimal forcing mode f̂x and zoom-in
view in the region (x/δ, y/δ) ∈ [0, 15]× [0, 3]. Reproduced from Figure 8.7.

and we consider only two-dimensional forcing in this study, i.e., kz = 0.

It is verified that the transfer function is approximately rank-one for a wide range

of frequencies ω. The first singular value is six orders of magnitude larger than the

second and the rest. We set ωp = 2πfp = 0.377, where fp = 0.06 is the peak from

discrete Fourier transform of the flow.

The optimal response mode and optimal forcing mode are shown in Fig. 4.3. First,

we look at the response mode. The energy in the optimal response mode is mainly

concentrated in the streamwise and wall-normal component (û, v̂). The response is

primarily in and behind the trailing edge of the separation bubble, from x = 40δ to

x = 70δ. Therefore, the separation bubble is receptive to disturbances.

As for the optimal forcing mode, we find that f̂y is much smaller than f̂x, and f̂z is

nine orders of magnitude smaller than f̂x. Therefore, only the streamwise component

f̂x of the forcing is shown. There are three interesting observations. First, the optimal

forcing mode reveals that streamwise body force disturbance is much more important.

However, the ZNMF actuator produces disturbances mainly in the wall-normal di-

rection. This result implies that a more effective actuator should instead introduce

streamwise disturbances, which are much more efficient at exciting a response in the

separation bubble.
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Second, the optimal forcing energy is distributed along the wall, upstream of

the separation bubble. Upstream disturbances to the flow travel downstream and

produce a response in the separation bubble. This observation confirms that an

actuator should be placed upstream, as in previous studies [67, 76].

Third, the streamwise optimal forcing alternates between positive and negative

values in the upstream region. According to (4.4), if the forcing is applied in both the

positive region and negative region, their responses will be out of phase and cancel

each other. Typically, the location of a ZNMF actuator (which resembles a local body

force) is not well-tuned due to a lack of physical insight. The optimal forcing mode

suggests that the body force actuator should be carefully placed in order to avoid

cancellation in the response.
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Chapter 5

Conclusion

5.1 Summary

Data-driven modeling is a new paradigm for understanding and controlling dynam-

ical systems. High dimensionality and nonlinearity pose serious challenges to many

applications in fluid dynamics and control. For efficient prediction, estimation, and

control, we desire simple, low-order, and accurate models. In some sense, this thesis

is motivated by the flow separation control problem. The flow physics is complicated,

but we still need to control it in real-time. As a result, we must build simplified

models. This is a perfect use for data-driven modeling.

The contribution of this thesis consists of three parts. First, we proposed an

accuracy criterion to evaluate the accuracy of DMD results. This criterion assists

model selection to better represent the dynamics in separated flow. It is purely data-

driven and can be applied to other variants of DMD. It quantifies the accuracy of

DMD results in the sense of approximating the Koopman eigenpairs.

Second, fast algorithms for online model learning are proposed. These algorithms

have been successfully applied for learning adaptive models in the canonical separated

flow [18]. These models allow for efficient real-time prediction and control. The
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algorithms are orders of magnitude more efficient than existing standard algorithms,

when the state is not compressed by projection. Both the computational time and

memory requirements are significantly reduced. Additionally, the algorithms can be

modified to discount old data, which allows for faster tracking of the dynamics.

Third, we study the input-output response of separated flow past a flat plate to

the external body forcing. It is confirmed that the optimal actuator placement is

upstream of the separation location, as used in previous work [67, 76]. Also, the

result suggests that the separation region is most receptive to streamwise body force

(control). Finally, the control should be properly placed to avoid cancellation effects

in the response. Therefore, this study provides a guide for control design.

5.2 Outlook

There have been fruitful advances in data-driven modeling methods for fluid dynamics

and control in recent decades [95]. However, plenty of interesting open questions are

still waiting to be answered. In this spirit, we outline a few directions for future

research. First of all, we discuss some questions that are tightly related to this thesis.

It is unclear how to select a subset of Koopman eigenpairs such that the origi-

nal (nonlinear) system is accurately approximated. The proposed accuracy criterion

sheds light on the problem by quantifying the reliability of Koopman eigenpairs. How-

ever, how to select the most dynamically important Koopman eigenpairs remains an

open question. Unlike proper orthogonal decomposition (POD) [60], where the modes

are orthogonal by construction, Koopman eigenfunctions are generally not orthogo-

nal. Therefore, mode amplitudes (projection coefficients of data onto DMD modes)

are not necessarily a meaningful criterion for evaluating importance. An possible

method is choosing a sparse set of Koopman eigenfunctions that best predict long

term trajectory.
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The proposed online model learning algorithm works for weakly nonlinear and

slowly time-varying systems. The approach is based on the Taylor expansion: the

online model is only valid locally, and the region of validity shrinks when the true dy-

namics becomes more complicated. It also relies on the fast sampling of the snapshots

(fast compared with the characteristic time of dynamics variations). Quantifying the

uncertainty and accuracy of the learned model as a function of data quality (e.g.,

amount and type of noise), dynamics nonlinearity, and the sampling rate is a mean-

ingful research direction. In general, all data-driven modeling methods depend on

data, and the quality of the models needs to be characterized.

The online model learning algorithm assumes a very general model form, which en-

compasses many familiar models. The model can take an arbitrary form of nonlinear-

ity for the state and control, but must be linear in the unknown parameters. Examples

include LTI system, polynomial nonlinear models, autoregressive (AR) model [103]

(and vector AR), and Takens’ delay embedding for dynamical systems [96, 73]. It

is also capable of learning static relationships, e.g., nonlinear regression. In brief, it

applies to any problem where a function of a particular form needs to be learned from

data. The application of this algorithm to other problems is an interesting research

direction.

The input-output analysis provides the optimal forcing and optimal response mode

corresponding to the maximum amplification. However, the most amplified direction

is not necessarily the most physically preferable (e.g., in the sense of control). For

example, an unstable system will not be stabilized by amplifying the output response.

How to make use of the input-output transfer function to build low-order models for

flow prediction, analysis, and control is still an open question.

Next, we suggest several general directions for the development of data-driven

modeling methods. These questions may draw attention from the research community

in the next decade.
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Most existing data-driven modeling methods do not make use of first principles

from physics (e.g., Newton’s laws of motion). For example, DMD is purely data-

driven and has been employed for many fluid dynamics applications. Despite the fact

that the Navier-Stokes equations govern the motion of fluid flows, this information is

not fully exploited. It is helpful to incorporate physical knowledge into data-driven

methods, so they become more robust, require less data, and suffer less from the

overfitting problem. Bayesism [8] seems promising because it provides a natural way

to include prior information. However, physical knowledge is much more challenging

to represent compared with simple prior distribution. Therefore, we need a new

approach to express the prior physical knowledge in a meaningful and mathematically

rigorous way.

The pursuit of “white box” models has lasted for thousands of years and dom-

inated the history of science. For instance, Newton’s laws of motion and laws of

universal gravitation are highly interpretable and are considered “white box” theory.

Traditionally, scientists hold the belief that having too many parameters in the model

is a bad idea. For example, John von Neumann said that “with four parameters I

can fit an elephant, and with five I can make him wiggle his trunk.” [23]. However,

it seems that now lots of problems can only be solved by “black box” methods. In

the past few decades, deep neural networks with millions of parameters have been

successfully used for many challenging tasks (e.g., image understanding [77], natural

language processing [20]) that traditional methods can not solve. In this new era with

more and more data, is white box models and interpretability still indispensable? Is

it possible that black box modeling leads to the next science explosion?

Data-driven modeling methods share many similarities with machine learning

methods. In fact, both research communities focus on the problem of learning mod-

els from data. Here are a few examples. First, the proper orthogonal decomposition

(POD) [60] (1967) is also called the principal component analysis (PCA) [74] (1901)
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in machine learning. Second, recurrent neural networks (RNN) [24] (1990s) are widely

used in sequential modeling [58] (e.g., time series and natural language processing),

and they are actually dynamical systems (1900s). Third, reinforcement learning [93]

(1950s) is closely related to optimal control theory [92] (1950s). Machine learning pro-

vides many powerful methods for learning models from data. Therefore, both fields

can benefit from bridging the gap between them. Nevertheless, most machine learning

algorithms are designed for learning static functions and relationships (e.g., regression

algorithms, feed-forward neural networks [82]). Dynamical systems are characterized

by their temporal dynamic behaviors. How to effectively leverage machine learning

for dynamics learning and understanding remains an unsolved problem.
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Part II

Publications
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Organization

Part II contains published articles. There might exist minor formatting differences

between the published papers and the chapters here. The publications are organized

into chapters as follows.

• Chapter 6 proposes an accuracy criterion for dynamic mode decomposition. The

criterion is purely data-driven and physically meaningful. It applies to variants

of DMD, and assists in model selection.

• Chapter 7 develops fast algorithms for online model learning. It can be applied

to a stream of real-time measurements and is capable of discounting old snap-

shots. Also, the algorithms can be used for both linear and nonlinear system

identification, where control is included.

• Chapter 8 studies the input-output response of a separated flow past a flat

plate and reveals that the separation bubble is most sensitive to streamwise

body force (control) in the upstream of the separation point.

Author contributions

In the following chapters, I did the majority of the research, programming, analysis,

and writing. Clancy Rowley guided me on almost every aspect of the research and

revised the papers. The other co-authors helped me mainly by providing numerical

and experimental data. I describe specific contributions from the co-authors, and the

rest unlisted contributions are from myself.

• In chapter 6, Clancy Rowley proposed the counterexample to show that mode

amplitude can be misleading and is not always a useful criterion for mode se-

lection. Scott Dawson helped to structure the paper and proofread the draft.
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Eric Deem and Louis Cattafesta provided the experimental data for the canon-

ical separated flow. An anonymous reviewer suggested studying the long term

Koopman prediction error quantified by the accuracy criterion. Dr. Jessica

Shang (appears in the paper acknowledgment) authorized our use of the flow

past circular cylinder experiment data.

• In chapter 7, Clancy Rowley suggested a more compact formulation of the

window DMD algorithm and proposed the 2D linear time-varying system. Eric

Deem provided the data for the canonical separated flow experiment. Louis

Cattafesta suggested a power spectral density analysis of the pressure data. An

anonymous reviewer suggested changing the fan rotation speed for the system

to exhibit time-varying dynamics. Dr. Maziar Hemati (appears in the paper

acknowledgment) made helpful suggestions about references.

• In chapter 8, Clancy Rowley suggested a detailed discussion of the optimal

forcing mode and the numerical simulation setup in the future work section.

Wen Wu, Charles Meneveau, and Rajat Mittal provided the simulation data

for the canonical separated flow.
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Chapter 6

Evaluating the accuracy of the

dynamic mode decomposition

Hao Zhang1, Scott T. M. Dawson2, Clarence W. Rowley1, Eric A. Deem3,

and Louis N. Cattafesta3

1Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

2Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA

3Mechanical Engineering, Florida State University, Tallahassee, FL 32310, USA

Appears as [111], Journal of Computational Dynamics, 2019, doi: 10.3934/jcd.2020002.

Dynamic mode decomposition (DMD) gives a practical means of extracting dynamic

information from data, in the form of spatial modes and their associated frequencies

and growth/decay rates. DMD can be considered as a numerical approximation to

the Koopman operator, an infinite-dimensional linear operator defined for (nonlin-

ear) dynamical systems. This work proposes a new criterion to estimate the accu-

racy of DMD on a mode-by-mode basis, by estimating how closely each individual

DMD eigenfunction approximates the corresponding Koopman eigenfunction. This

approach does not require any prior knowledge of the system dynamics or the true

Koopman spectral decomposition. The method may be applied to extensions of DMD

40

https://doi.org/10.3934/jcd.2020002


(i.e., extended/kernel DMD), which are applicable to a wider range of problems. The

accuracy criterion is first validated against the true error with a synthetic system

for which the true Koopman spectral decomposition is known. We next demonstrate

how this proposed accuracy criterion can be used to assess the performance of various

choices of kernel when using the kernel method for extended DMD. Finally, we show

that our proposed method successfully identifies modes of high accuracy when apply-

ing DMD to data from experiments in fluids, in particular particle image velocimetry

of a cylinder wake and a canonical separated boundary layer.

6.1 Introduction

The decomposition of spatio-temporal data into spatial modes and temporal functions

describing their evolution gives a means to isolate coherent features and assemble low-

order representations of complex dynamics. Over the past decade, the dynamic mode

decomposition (DMD) [81] has become a routinely-used method for such purposes

[80, 98, 19, 113]. See, for example, [57] and [79] for reviews of many ensuing uses

and applications of DMD. While successfully used on a range of datasets, general

questions still exist in terms of how to select a reduced set of modes, and how to

ensure results are quantitatively accurate. On the first point, numerous methods

have been proposed to select a reduced number of modes that best represent the

dynamics of the system [15, 108, 52, 55]. On the second point, the sensitivity of the

outputs of DMD to noisy data has also been investigated [22, 7], and a number of

modified algorithms proposed that give improved accuracy for noisy data [46, 17, 4].

The present work differs from these past studies by providing a means of estimating

the accuracy of DMD on a mode-by-mode basis, without any a-priori knowledge of the

system dynamics, noise characteristics, or truncation of low-energy modes. A related
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method has been considered in [21]. It has been shown previously [80, 99] that DMD

approximates the Koopman operator, an infinite-dimensional linear operator defined

for (nonlinear) dynamical systems. In this work, we will exploit this connection by

estimating the accuracy to which we approximate eigenfunctions of the Koopman

operator. This approach allows our analysis to naturally generalize to extensions of

DMD [104] that are designed to improve the approximation to the Koopman operator

for nonlinear systems. Extended DMD uses nonlinear observables to expand the

space in which the Koopman operator is approximated. However, EDMD suffers

from the curse of dimensionality: that is, the computational cost increases rapidly

with the dimension of the state. To circumvent this issue, kernel DMD (KDMD)

[105] was proposed as a computationally inexpensive alternative, which makes use of

a kernel function to implicitly include a rich (and nonlinear) set of observables, while

maintaining the same computational cost as DMD. The optimal choice of kernel

function for KDMD is still an open question, and here we demonstrate that the

accuracy criterion may be used to evaluate and compare the performance of various

kernels.

The structure of this work is as follows. We first review DMD, the Koopman op-

erator, and kernel DMD in section 6.2, before presenting and validating our proposed

accuracy criterion in section 6.3. Section 6.4 uses the accuracy criterion to measure

the performance of various kernels in KDMD for a simple nonlinear system, while

section 6.5 demonstrates that this criterion is effective in selecting accurate DMD

modes from experimental data.
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6.2 Background

We first give a review of previous results, including the DMD algorithm and its con-

nections to the Koopman operator (section 6.2.1), as well as extensions of DMD that

can better approximate the Koopman operator for nonlinear systems (section 6.2.2).

6.2.1 Dynamic mode decomposition

Dynamic mode decomposition was introduced in [81], and our presentation here fol-

lows that in [99, 79]. Consider a discrete-time dynamical system whose state space is

denoted by X ⊂ Rn, and suppose the dynamics are given by

x(k + 1) = F (x(k)), x(k) ∈ X. (6.1)

Let ψ1, . . . , ψq be real-valued functions on X, which we call observables, and let

ψ : X → Rq denote the vector-valued function whose components are (ψ1, . . . , ψq).

We may not be able to measure the state x directly, but instead, we can measure the

vector

y = ψ(x).

As a special case, y could be the state itself, i.e., y = ψ(x) = x. For complex

systems, it can be advantageous to define observables that are nonlinear functions of

the state, which will be discussed in more detail in section 6.2.2. For the purposes of

describing standard DMD, we assume y = x.

We consider pairs of snapshots (xk,x
#
k ), with xk ∈ X, k = 1, 2, . . . ,m, and where

x#
k = F (xk) is the image of xk upon application of the dynamics (6.1). For sequential

data, x(1), . . . ,x(m+1) satisfying (6.1), one takes xk = x(k), x#
k = x(k + 1), though

non-sequential data may also be used, such as from multiple runs of experiments or
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simulations [99]. In DMD, we seek a matrix A ∈ Rq×q such that

y#
k = Ayk, k = 1, 2, . . . ,m

holds, at least approximately. We form two matrices

Y =

[
y1 y2 · · · ym

]
, Y # =

[
y#

1 y#
2 · · · y#

m

]
,

and define the DMD matrix A by

A = Y #Y +, (6.2)

where Y + denotes the Moore-Penrose pseudoinverse [34] of Y . DMD modes

and eigenvalues are the eigenvectors and eigenvalues of A. A typical algorithm to

compute these modes and eigenvalues is as follows [99]:

Algorithm (DMD)

1. Compute the reduced SVD Y = UΣV T .

2. (Optional) Truncate the SVD by only retaining the first r colunms of U ,V ,

and the first r rows and columns of Σ, to obtain Ur,Σr,Vr.

3. Let Ã = UT
r AUr = UT

r Y
#VrΣ

−1
r , Ã ∈ Rr×r.

4. Find the eigenvalues µi and eigenvectors ṽi of Ã, such that Ãṽi = µiṽi.

5. The (projected) DMD modes are given by vi = UT
r ṽi, with corresponding

(discrete-time) DMD eigenvalues µi.

The eigenvectors of the matrix A ∈ Rq×q can be found from the eigenvectors of

the smaller matrix Ã ∈ Rr×r. We denote the eigenvalues and eigenvectors of A by
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{µi,vi}. In the case of sequential data (for which y#
k = yk+1), suppose that we can

express the initial state as

y1 =

q∑
i=1

civi.

The time evolution of the system (starting at y1) is then predicted by DMD to be

yk+1 = Aky1 =

q∑
i=1

ciµ
k
i vi. (6.3)

Therefore, each DMD mode vi is associated with a single frequency and growth/decay

rate (DMD eigenvalue µi). In reality, (6.3) may not hold exactly, depending on

the quantity and quality of data used, whether the system dynamics are nonlinear,

whether the SVD is truncated in step 2 of the DMD algorithm above, etc. For cases

where equation (6.3) does not give an exact description of the dynamics, DMD gives

a least-squares fit to the data (as pairs of snapshots).

There are connections between DMD and an infinite-dimensional linear operator

called the Koopman operator [99, 80], with the high-level idea being that DMD gives a

finite-dimensional numerical approximation of the Koopman operator. Our proposed

criterion for evaluating the accuracy of DMD exploits this connection. For a given

state-space X, the Koopman operator acts on scalar-valued functions of X, which we

referred to earlier as observables. Here, we consider observables in L2(X), the space

of square integrable functions on X. Given the dynamics in (6.1), one defines the

Koopman operator K : L2(X)→ L2(X) as follows: for any f ∈ L2(X),1

(Kf)(x) = (f ◦ F )(x) = f(F (x)). (6.4)

1To be rigorous, one typically assumes there is a measure µ that is preserved under the dynam-
ics (6.1), in which case it follows that for any function f ∈ L2(X,µ), the function f ◦ F is also in
L2(X,µ); in fact, if F is measure preserving, then K is an isometry.
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That is, K maps a function f to another function f ◦F , and (Kf)(x) gives the value

of f(x) at the next time step. Here we emphasize two points: first, that the Koopman

operator acts on functions of the state instead of the state itself; and second, that the

Koopman operator is linear, even though the dynamics might be nonlinear. On the

second point, note that

K(c1f1 + c2f2) = c1(Kf1) + c2(Kf2)

holds for any functions f1, f2 and any scalars c1, c2. Since the Koopman operator is

linear, it may have eigenvalues and eigenfunctions, which satisfy

Kϕ = µϕ, (6.5)

where ϕ is the eigenfunction with eigenvalue µ.

One reason that one might be interested in finding Koopman eigenfunctions is

that such eigenfunctions may be used to define coordinates in which the dynamics

are particularly simple—in fact, linear. To see this, let

z(k) = ϕ(x(k)) (6.6)

be the new coordinate, where ϕ is an eigenfunction of the Koopman operator. Then

the new coordinate evolves according to

z(k + 1) = ϕ(x(k + 1)) = ϕ(F (x(k))) = Kϕ(x(k)) = µϕ(x(k)) = µz(k), (6.7)

where we have used the property of a Koopman eigenfunction (6.5). Therefore, the

new coordinate z(k) evolves linearly.
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Now, suppose we have a given set of observables {ψ1, ψ2, . . . , ψq}, and suppose ϕ

is a Koopman eigenfuntion (with eigenvalue µ) that lies in the span of {ψj}: i.e.,

ϕ(x) = w̄1ψ1(x) + . . .+ w̄qψq(x) = w∗ψ(x), (6.8)

for somew∗ ∈ Cn. Then one can show (see [99, §4.1]) that under certain conditions on

the data, w∗ is a left eigenvector of the DMD matrixA with eigenvalue µ (i.e., w∗A =

µw∗). This connection implies that we can approximate Koopman eigenfunctions

(and eigenvalues) for a given unknown dynamical system directly from data using

DMD. In particular, given left eigenvectors of the DMD matrix (w∗iA = µiw
∗
i ), we

consider ϕi(x) = w∗iψ(x) as a DMD-approximated Koopman eigenfunction, with

eigenvalue µi.

6.2.2 Extended DMD and kernel DMD

In order to apply the connection between DMD and Koopman mentioned above, the

Koopman eigenfunctions must lie within the space spanned by the observables {ψj}.

If one takes ψ(x) = x, as with standard DMD, then the subspace spanned by {ψj}

consists only of linear functions of x, and this subspace is often not large enough to

include eigenfunctions of K (a notable exception being the case in which F is linear).

Extended DMD (EDMD) was proposed in [104] in order to enlarge the subspace of ob-

servables, and therefore better approximate Koopman eigenfunctions. In particular,

Extended DMD approximates the Koopman operator by a weighted residual method,

with trial functions given by {ψj} and a particular choice of test functions specified by

the data. Examples of observables ψj(x) could include polynomials, Fourier modes,

indicator functions, or spectral elements, as suggested in [104]. For instance, if we

take x ∈ R2 and take observables to be monomials in components of x up to degree
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d = 2 (including the constant 1), then the vector of observables is

ψ(x) =

[
1 x1 x2 x2

1 x1x2 x2
2

]T
.

We can potentially approximate many more accurate Koopman eigenfunctions with

EDMD than we can with DMD. However, EDMD suffers from the curse of dimen-

sionality [11]. If the state dimension is n and we consider (multivariate) polynomials

up to degree d, then the number of observables is q =
(
n+d
d

)
, which is approximately

nd for large n. For large problems (as arise in fluids), data might typically have

n ≈ 106, so even if one considers only quadratic polynomials, the number of observ-

ables is q ≈ 1012, too large for practical computation. It is thus very computationally

expensive to consider large subspaces of observables.

Kernel DMD (KDMD) has been proposed to deal with this curse of dimensionality

[105]. In KDMD, EDMD is reformulated such that only inner products of observables

need to be computed. The inner product can be evaluated by making use of a kernel

function, a common technique in the community of machine learning [11]. A kernel

function k : Rn × Rn → R is defined as

k(x, x̂) = 〈ψ(x),ψ(x̂)〉. (6.9)

To appreciate how kernel functions work, consider for example a polynomial kernel

k(x, x̂) = (1 + xT x̂)d as an example. This kernel corresponds to a set of observables

ψ(x) consisting of all monomials in components of x up to degree d [11]. Taking

n = 2 and d = 2, this kernel function can be expanded as

(1 + xT x̂)2 = 1 + 2x1x̂1 + 2x2x̂2 + 2x2
1x̂

2
1 + 2x1x2x̂1x̂2 + x̂2

1x̂
2
2

= 〈ψ(x),ψ(x̂)〉,
(6.10)
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where ψ(x) = (1,
√

2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2). In the terminology of machine learn-

ing, ψ is called the feature map, and ψ(x) ∈ Rq is called the feature space (which

might be infinite-dimensional). In the example above, the dimension of the (implic-

itly defined) feature space is q = 6, but in order to compute k(x, x̂), we require inner

products only in state space, which has dimension n = 2. Kernel functions hence

can be used to evaluate the inner product in a high-dimensional (or even infinite-

dimensional) feature space in an efficient way. More examples of kernel functions are

given in section 6.4.1.

6.3 Accuracy criterion for DMD

The connection between DMD and the Koopman operator as discussed in section 6.2.1

implies that we can use variants of DMD (e.g., DMD, EDMD, or KDMD) to approx-

imate Koopman eigenfunctions and eigenvalues, given access to data. By applying

DMD variants to a given dataset, we can potentially identify many Koopman eigen-

functions and eigenvalues (which we refer to as eigenpairs). However, the reliability

of these eigenpairs remains unknown. Before using DMD results for any analysis

or reduced-order modeling, it is desirable and necessary to assess the quality (i.e.,

accuracy) of the results. In this section, we will develop a criterion for evaluating

the accuracy of DMD-approximated Koopman eigenpairs. We describe this accuracy

criterion in section 6.3.1, and then validate it in section 6.3.2 using a simple nonlinear

system where the analytical Koopman eigenpairs are known.

The most common way to select which of the computed DMD modes are most

relevant is to use the “mode amplitude”: for sequential data, one projects the initial

condition onto DMD modes and one views the magnitude of the projection coefficients

as the mode amplitudes. It is common practice [99, 44, 80] to retain the modes of

largest amplitude. This approach sounds plausible; however, it was observed in [52]
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(which used sparsity-promoting techniques to select modes) that mode amplitude is

not always a useful criterion for mode selection. Indeed, mode amplitudes can be

misleading, as we illustrate below with a simple example.

Suppose we have three DMD modes,

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 1, ε), (6.11)

where ε is small and thus v2 and v3 are almost parallel. If we consider an initial

condition x0 = (1, 0, ζ), and project it onto these DMD modes, we obtain

x0 = v1 −
ζ

ε
v2 +

ζ

ε
v3. (6.12)

For instance, if ζ = 10−3 and ε = 10−6, then ζ/ε = 103, so the mode amplitude

(defined as the magnitude of the projection coefficients) indicates that v2 and v3 are

much more important than v1. The mode amplitudes indicate that we might be able

to neglect v1 without significant adverse effects. However, it is clear that v1 is much

more relevant for reconstructing x0: if we use only v2 and v3, we obtain

− ζ

ε
v2 +

ζ

ε
v3 = (0, 0, ζ), (6.13)

which does not accurately approximate x0 = (1, 0, ζ). A better approximation to x0

is simply v1 = (1, 0, 0). This example illustrates that mode amplitude is not always a

reliable criterion for selecting which modes are essential, especially when modes are

almost parallel. Note that this problem would also arise if using other methods to

measure mode amplitude (e.g., [55]).

The accuracy criterion we describe below does not provide a way of selecting

which modes are dominant, and in the example above, the accuracy of the modes

did not play a role. However, the accuracy criterion can provide a way of eliminating
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candidate modes that we know to be inaccurate, so in this way it can help with the

problem of mode selection.

6.3.1 Proposed accuracy criterion

Given data from an experiment or simulation, we can split the dataset into training

data and testing data. Training data is used to approximate DMD modes (and associ-

ated Koopman eigenpairs), while testing data is used to evaluate the quality of these

identified modes. Data-driven algorithms may suffer from the problem of over-fitting

[43], so any evaluation criteria should use testing data that differs from the training

data. The notion of training and testing data is the same as that commonly used

in machine learning: training data is used for fitting models (in this case, Koopman

eigenpairs), and testing data is used for evaluating models (in this case, accuracy of

the Koopman eigenpairs).

The idea of our approach is to evaluate the accuracy of a DMD mode (and eigen-

value) by looking at the accuracy of its corresponding Koopman eigenfunction. Sup-

pose we are given an approximate Koopman eigenpair (µ, ϕ), and we wish to evaluate

its accuracy. If (µ, ϕ) were a true Koopman eigenpair, then by definition it would

satisfy

ϕ ◦ F = µϕ,

where F defines the dynamics in (6.1). Ideally, we would like to compute

‖ϕ ◦ F − µϕ‖
‖ϕ‖

, (6.14)

where ‖ · ‖ is the norm of a function. (We divide by ‖ϕ‖ so that the above quantity

is independent of the scaling of the eigenfunction ‖ϕ‖.) However, in order to com-

pute (6.14), we require explicit knowledge of the dynamics F , which is unknown in

most cases of interest. Instead, we can estimate the above quantity using finite num-
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Figure 6.1: A diagram summarizing the implementation of the accuracy criterion.
Training data is used to approximate Koopman eigenpairs with variants of DMD,
while testing data is used to evaluate the quality of Koopman eigenpairs.

ber of data points (i.e., the testing data). The estimation should give some sense of

the quantity in (6.14), using only the testing data, which consists of pairs of samples

(xk,x
#
k ) with xk ∈ X and x#

k = F (xk). This observation motivates the following

definition of an accuracy criterion:

α =

∑
k |ϕ(x#

k )− µϕ(xk)|∑
k |ϕ(xk)|

, (6.15)

where | · | denotes the absolute value, and the summation is over the entire testing

dataset. A diagram summarizing how this accuracy criterion may be applied is shown

in Figure 6.1. More specifically, given a DMD-approximated eigenfunction ϕ(x) =

w∗ψ(x) with eigenvalue µ (i.e., w∗A = µw∗, withA as defined in (6.2)), the accuracy

criterion, or estimated mode error, can be written as

α =

∑
k |w∗ψ(x#

k )− µw∗ψ(xk)|∑
k |w∗ψ(xk)|

. (6.16)

The numerator measures to what extent the eigenfunction equation holds, and

the denominator gives a measure of the magnitude of the eigenfunction. Here α

can be interpreted as the error of a Koopman eigenpair. The error is defined on a

mode-by-mode basis, which enables independent evaluation for each individual DMD

mode. Therefore it makes sense to call α the mode error. Observe that α is always

non-negative, and it is usually less than 1. When we feed in the true Koopman
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eigenfunction and eigenvalue into α in equation (6.15), then α = 0 (assuming that

the testing data is noise-free). If α is close to 1, the Koopman eigenpair is extremely

unreliable, because the discrepancy in the eigenfunction equation is of the same order

as the magnitude of the eigenfunction. Therefore, usually we only care about the

DMD eigenpairs for which 0 ≤ α � 1. In our definition in (6.15), we have used the

absolute value to indicate the discrepancy in the eigenfunction equation. However, it

is also possible to use other norms, such as the `2 norm (or its square), which yield

similar results in terms of indicating the relative accuracy of modes.

Long-term accuracy. The proposed accuracy criterion may also be used to

quantify the accuracy of a long-term simulation of the reduced model, at least in

certain situations. Recall that, given a Koopman eigenpair, a new coordinate defined

by (6.6) will evolve linearly. Suppose that {ϕ, µ} is a DMD-approximated Koop-

man eigenpair, and suppose we have sequential testing data x0,x1, . . . ,xm (satisfying

x#
k = F (xk) = xk+1). We further assume that |µ| ≤ 1; that is, the eigenfunction ϕ

corresponds to a stable direction. Consider the new coordinate zk = ϕ(xk), and start

from initial condition x0. After m steps, the reduced model prediction is µmϕ(x0)

(see (7.5)), while the true state in the new coordinate is ϕ(xm). The error of the long

term simulation in the new coordinate is

Em = |ϕ(xm)− µmϕ(x0)|. (6.17)

We can rewrite the error as the telescoping sum

Em =

∣∣∣∣ m∑
k=1

µm−k
(
ϕ(xk)− µϕ(xk−1)

)∣∣∣∣ ≤ m∑
k=1

|µ|m−k
∣∣ϕ(xk)− µϕ(xk−1)

∣∣,
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where we have used the triangle inequality. Given the assumption |µ| ≤ 1, and for

sequential data (x#
k = xk+1), we have

Em ≤
m∑
k=1

|ϕ(xk)− µϕ(xk−1)| =
m−1∑
k=0

|ϕ(x#
k )− µϕ(xk)| = α

m−1∑
k=0

|ϕ(xk)|, (6.18)

where α is the accuracy criterion defined by (6.15). Therefore the long-term simula-

tion error of the corresponding coordinate of the reduced model is also characterized

by α.

Scaling. A meaningful evaluation criterion should be (fairly) independent the

scaling of the eigenfunctions, the scaling of the testing data, and the size of the testing

set. The proposed accuracy criterion approximately satisfies all of these. To show this,

we consider the simple case where the full system state is used in DMD, i.e., ψ(x) = x

and the DMD-computed eigenfunction is linear, i.e., ϕ(x) = w∗ψ(x) = w∗x. The

fact that we normalize by the magnitude of the observables means that α is relatively

independent of eigenfunction scaling, data scaling, and data quantity, as is desired. In

the case where the observable is not the full state (i.e., when using EDMD or KDMD),

the scaling of the eigenfunctions and size of testing again do not influence α, for the

same reason. However, due to the nonlinear transformation ψ(x), the scaling of

testing data x may play some role in the size of α. Fortunately, it is reasonable to

expect that the relative magnitude of α should still indicate the relative accuracy of

different DMD-computed Koopman eigenpairs.

We point out that if the testing data is clean, mode error is determined only by the

quality of DMD-approximated Koopman eigenpairs. If the testing data is noisy, mode

error is also affected by the noise in testing data. For experimental data, we have

access only to the noisy measurements. In these cases, the relative magnitude of α is

still expected to indicate the relative accuracy of Koopman eigenpairs. We reiterate
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again that this definition of error does not assume access to analytical Koopman

spectral decomposition, which is unknown in most cases.

6.3.2 Validating the accuracy criterion

We have proposed an accuracy criterion that exploits the connection between DMD

and the Koopman operator. Before applying this criterion to real data, we first seek

to validate it as a reliable measure of accuracy. We will first consider a simple 2D

nonlinear system for which the analytical Koopman spectral decomposition is known.

Given analytical Koopman eigenpairs, we can define the true error to be the distance

between the DMD eigenvalue and the true eigenvalue (eigenvalue error), or the dif-

ference between the DMD eigenfunction and the true eigenfunction (eigenfunction

error). We will validate the accuracy criterion against the true error, and show that

the accuracy criterion reliably indicates accuracy.

Here we consider a 2D nonlinear map (also considered in [99]) with dynamics

defined by x1

x2

 7→
 γx1

δx2 + (γ2 − δ)x2
1

 , γ = 0.9, δ = 0.8. (6.19)

It is straightforward to verify that γ, δ are Koopman eigenvalues with respective

eigenfunctions

ϕγ(x) = x1, ϕδ(x) = x2 − x2
1.

Additional Koopman eigenvalues and eigenfunctions are given by

µk,` = γkδ`, ϕk,` = ϕkγϕ
`
δ, (6.20)

where k, ` = 0, 1, 2, . . . are non-negative integers. The analytical eigenvalues are both

real, and they are shown in Figure 6.2 (a). Notice that the analytical eigenfunctions

are multivariate polynomials in the state variables.
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Figure 6.2: (a) Analytical eigenvalues. (b) Comparison between the accuracy criterion
α, eigenvalue error τ , and eigenfunction error θ. The eigenvalues are indexed by their
absolute value, in descending order.

To collect training data, m = 100 random initial points are sampled from a uniform

distribution on [−1, 1] × [−1, 1], and their images are found by applying the map

defined in equation (6.19). Similarly we also generate mtest = 100 snapshot pairs as

the testing data. The generated training and testing dataset are used for subsequent

analysis in both this and the next section.

Here we apply EDMD with monomials as observables. In particular, the observ-

ables are taken to be

ψk,`(x) = xk1x
`
2, k, ` = 0, 1, 2, 3, 4, 5,

where the feature space dimension is q = 6×6 = 36. We report the accuracy criterion

for EDMD approximated Koopman eigenvalues in Figure 6.2 (b). We note that mode

error indicates that leading eigenvalues are approximated very accurately (α ∼ 10−15),

and this is consistent with the comparison to analytical eigenvalues. As mentioned

in section 6.2.1, if the Koopman eigenfunctions lie in the span of the observables,

the eigenfunction can be found exactly by EDMD. In this case, monomials up to

degree 5 span the leading Koopman eigenfunctions, and hence these eigenvalues can

be identified.
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To validate that the proposed accuracy criterion does indeed indicate accuracy,

now we compare α with the true error. We can compute the discrepancy between

DMD eigenvalues, indicated by µ̂i, and true eigenvalues µk,` = γkδ` given in equa-

tion (6.20), by defining the eigenvalue error

τi =
|µ̂i − µk,`|
|µk,`|

, (6.21)

where the indices (k, `) are chosen such that µk,` is the closest eigenvalue to µ̂i. We

then interpret µ̂i as a DMD approximation to the analytical eigenvalue µk,`. We can

also compute the discrepancy between DMD eigenfunctions ϕ̂i and true eigenfunctions

ϕk,` given in equation (6.20). We normalize the eigenfunctions ϕ̂i and ϕk,` so that

|ϕ|max = 1 in the domain Ω = [−1, 1]× [−1, 1], and define the eigenfunction error as

θi =
‖ϕ̂i − ϕk,`‖
‖ϕk,`‖

, (6.22)

where ‖ · ‖ denotes the L2 norm given by

‖f‖2 =

∫
Ω

|f(x)|2dx. (6.23)

In order to validate the accuracy criterion, we compare αi with the eigenvalue

error τi and eigenfunction error θi in Figure 6.2 (b). We observe that α highly cor-

relates with both τ and θ, even though the proposed accuracy criterion does not

assume access to analytical Koopman eigenpairs. The proposed accuracy criterion

hence indicates accuracy very well, by comparison with the true error defined using

true Koopman eigenpairs. Starting from the 13th eigenvalue µ̂13 ≈ µ6,0 = γ6δ0 =

(0.9)6(0.8)0 = 0.531441, the error dramatically increases, which implies that the re-

maining eigenfunctions cannot be accurately identified using EDMD with this choice

of observables. This is expected, as monomials up to degree 5 can not represent the
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Figure 6.3: Eigenfunctions for the system defined in (6.19), restricted to a domain
of [−1, 1] × [−1, 1], and normalized such that |ϕ(x)|max = 1. The analytical eigen-
function ϕ1,1 shown in (a) is closely approximated by the eigenfunction ϕ̂6 computed
by EDMD, shown in (b). However, the analytical eigenfunction ϕ6,0 (with eigenvalue
µ6,0 = 0.531441) shown in (c) is not closely approximated by its corresponding eigen-
function ϕ̂13 computed by EDMD (with eigenvalue µ̂13 = 0.5250 + 0.0030j), whose
real part is shown in (d).

eigenfunction ϕ6,0(x) = x6
1. This comparison gives us confidence in the reliability of

the accuracy criterion.

We now consider the 6th eigenvalue µ̂6 ≈ µ1,1 = 0.72, and the 13th eigenvalue

µ̂13 ≈ µ6,0 = 0.531441. The errors τ6 ≈ 10−15 and θ6 ≈ 10−13 indicate that the 6th

eigenpair is approximated very accurately, while τ13 ≈ 10−2, θ13 ≈ 100 indicate that

the 13th eigenpair is approximated with lower accuracy. The EDMD eigenfunctions

are compared with the analytical eigenfunctions in Figure 6.3. It is observed that the

6th eigenfunction is indeed approximated very accurately, as α6 ≈ 10−15 suggests.

The 13th eigenfunction are approximated less accurately, as is expected given that

α13 ≈ 10−3. This comparison shows that the accuracy criterion does indicate the

accuracy of DMD approximated Koopman eigenpairs, without assuming access to

the true Koopman eigenpairs.
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6.4 Evaluating the performance of kernels with the

accuracy criterion

This section focusses on using the accuracy criterion defined in section 6.3.1 to eval-

uate the performance of KDMD using various kernel functions. We first introduce

a few commonly used kernel functions in section 6.4.1, then we compare the perfor-

mance of various kernels in section 6.4.2, using the same test problem considered in

section 6.3.2. Following this, section 6.4.3 studies the robustness of various kernels

for the case where the data are noisy.

6.4.1 Kernel functions

In section 6.2.2 we briefly described KDMD, which makes use of a kernel function to

circumvent the curse of dimensionality associated with EDMD. Application of KDMD

requires a suitable choice of kernel function. In order to appreciate how a kernel

function may implicitly define a observable function, note that Mercer’s theorem [65]

states that a (quite broad) class of “Mercer kernels” k(x, x̂) may be written as

k(x, x̂) =
∞∑
i=1

ciψi(x)ψi(x̂), ci ≥ ci+1 ≥ 0. (6.24)

Hence there exists an infinite-dimensional implicit observable function (also called

feature map in the machine learning community)

ψ(x) =

[
√
c1ψ1(x)

√
c2ψ2(x) · · · √ciψi(x) · · ·

]T
(6.25)

such that k(x, x̂) = 〈ψ(x),ψ(x̂)〉. We now introduce a few commonly used kernel

functions, and in section 6.4.2 we compare their performance on the example from

the previous section.
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Polynomial kernel

k(x, x̂) = (1 + xT x̂)d (6.26)

The (implicit) observables associated with the polynomial kernel are all monomials

in components of x ∈ Rn up to degree d. The dimension of the observable vector is

q =
(
n+d
d

)
. The feature map for arbitrary n ≥ 1, d ≥ 0 is described in details in [16].

The observables when n = 2, d = 2 are given by equation (6.10).

Exponential kernel

k(x, x̂) = exp
(
xT x̂

)
(6.27)

The (implicit) observables associated with the exponential kernel are all monomials

in components of x, up to infinite degree. An explicit feature map can be also found

from a Taylor expansion of the exponential kernel [16]. Taking x ∈ R2 for example,

the kernel can be expanded as

exp{xT x̂} =
∞∑
`=0

(xT x̂)`

`!
=
∞∑
`=0

(x1x̂1 + x2x̂2)`

`!

=
∞∑
`=0

∑`
k=0

(
l
k

)
(x1x̂1)k(x2x̂2)`−k

`!
= 〈ψ(x),ψ(x̂)〉,

where the observable is ψ`,k(x) =
((

`
k

)/
`!
)1/2

xk1x
`−k
2 , where ` = 0, 1, 2, . . ., and k =

0, 1, 2, . . . , `. Notice that the number of observables is infinite, q =∞.

Gaussian kernel

k(x, x̂) = exp

(
− ‖x− x̂‖

2
2

σ2

)
, (6.28)

where ‖ · ‖2 is the `2 norm, and σ scales the kernel width [27].
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The Gaussian kernel is a Mercer kernel for all dimensions n ≥ 1 [83]. Take x ∈ R

as an example, the (implicit) observables as in equation (6.24) are given by [36]

ψk(x) ∝ exp(−(d− a)x2)Hk(x
√

2d),

where

ck ∝ bk, b < 1,

a, b, d are functions of σ, and Hk is the k-th order Hermite polynomial. The number

of observables is infinite, q = ∞. For arbitrary n, an explicit feature map can in

principle be also found from Taylor expansion of the Gaussian kernel [16].

Laplacian kernel

k(x, x̂) = exp{−‖x− x̂‖2

σ
} (6.29)

Note the similarity between the Laplacian and Gaussian kernels, with the difference

being that that the Laplacian kernel uses the `2 norm in the exponent without squar-

ing [91]. For arbitrary n, the Laplacian kernel is a valid Mercer kernel [83].

6.4.2 Performance of kernels

We now compare the above kernel functions using the example considered in sec-

tion 6.3.2. Figure 6.4 shows the performance of polynomial, exponential, Gaussian,

and Laplacian kernels in identifying the Koopman eigenvalues of the system, using

the same training and testing data as in section 6.3.2.

We find that a polynomial kernel of degree d = 5 accurately identifies the leading

eigenvalues (µk,` ∈ [0.6, 1]) with very high accuracy (α ≈ 10−14), as was the case with

EDMD. This is not surprising, as the polynomial kernel implicitly defines monomials

of states as observables, which span the same space as the explicitly defined monomials
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Figure 6.4: Performance of various kernels. Eigenvalue error τ , eigenfunction error
θ, and accuracy criterion α are shown. (a) Polynomial kernel of degree d = 5, q =(

2+5
5

)
= 21. (b) Exponential kernel, q =∞. (c) Gaussian kernel with σ = 1, q =∞.

(d) Laplacian kernel with σ = 1, q =∞.

used in EDMD. With the increasing order of the polynomial kernel, more eigenvalues

can be accurately identified. It is found that the exponential kernel can identify more

eigenvalues (µk,` ∈ [0.5, 1]) than the polynomial kernel with satisfactory accuracy

(α ≈ 10−4), since the implicit observables associated with the exponential kernel are

monomials up to infinite degree. The Gaussian kernel is able to find the leading

eigenvalues (µk,` ∈ [0.65, 1]) with mode error (accuracy criterion) α ≈ 10−4 to 10−3,

even though the implicit observables of the Gaussian kernel are not monomials. This

demonstrates the potential power of kernel functions: they are able to span a useful

function space, primarily because the dimension of the space of (implicit) observables

can be large, and even infinite. The Laplacian kernel can approximate only a few

leading eigenvalues (µ = 1.0.9, 0.8), and with a lower accuracy of α ≈ 10−2.

We emphasize that, while the exact Koopman eigenvalues are known in this case,

it is possible to use the accuracy criterion to compare the performance of different

kernels even when the true dynamics are unknown. Indeed, using only the results of

the accuracy criterion, we would reason that the polynomial kernel is the best choice

for identifying the leading Koopman eigenvalues accurately.
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Figure 6.5: Performance of various kernels in the presence of noise. Eigenvalue error
τ , eigenfunction error θ, and accuracy criterion α are shown. (a) Polynomial kernel
of degree d = 5, q =

(
2+5

5

)
= 21. (b) Exponential kernel, q =∞. (c) Gaussian kernel

with σ = 1, q =∞. (d) Laplacian kernel with σ = 1, q =∞.

6.4.3 Sensitivity of kernels to noise

In practice, data is typically corrupted with noise. Here we present a study of the

sensitivity of different kernels with respect to the presence of noise. We add zero-

mean Gaussian noise with a standard deviation σnoise = 10−3 to the 100 random

uniformly distributed data pairs taken from [−1, 1]× [−1, 1], resulting in a signal-to-

noise ratio (SNR) of about 106. The training data is noisy, but the testing data is

“clean”. Therefore, the accuracy criterion only accounts for the accuracy of DMD

approximated Koopman eigenpairs.

The results are shown in Figure 6.5. We observe that the polynomial kernel is

slightly more robust than the other kernels (α ≈ 10−3) in the presence of noise, and

is able to accurately identify the first few leading eigenvalues (µ = 1, 0.9). The reason

for this is that the dimension of the implicit observables associated with the polyno-

mial kernel is finite and small (q = 21) in comparison to the number of snapshots

(m = 100), so we avoid problems of overfitting. In KDMD, the Koopman eigenpairs

are found from the eigendecomposition of the matrix AKDMD = Y +Y #, where the

columns of Y and Y # are y = ψ(x) ∈ Rq and y# = ψ(x#) ∈ Rq respectively,
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and Y ,Y # ∈ Rq×m. The matrix AKDMD has the same non-zero eigenvalues as the

DMD matrix A = Y #Y +. A is the optimal (least-square or minimum-norm) solu-

tion to minA ‖AY − Y #‖F , where Y ,Y # ∈ Rq×m. For the polynomial kernel, A

is the solution to an over-constrained problem (q < m), and is hence more robust

to noise. In contrast, the exponential kernel, Gaussian kernel, and Laplacian kernel

span an infinite-dimensional space of observables (q = ∞). The finite-dimensional

approximation to the Koopman operator is found by solving an under-constrained

problem (q � m), which makes it more sensitive to noise, as these three kernels tend

to over-fit the noise in the training dataset. Given noisy data, they are only able to

accurately identify the eigenvalue µ = 1, whose eigenfunction is a constant.

6.5 Identifying accurate DMD modes using exper-

imental data

Having demonstrated the use of the accuracy criterion with synthetic data, now we

turn our attention to data from fluids experiments. In these cases, the analytical

Koopman spectral decomposition is unknown. An crucial advantage of the proposed

accuracy criterion is that it does not rely on known Koopman eigenpairs, and can be

applied so long as there is data available. We will use the proposed accuracy criterion

to identify accurate DMD modes for vorticity data from flow past a circular cylinder

in section 6.5.1, and from a separation experiment in section 6.5.2.

6.5.1 Flow past a circular cylinder

In this example, we use the experimental particle image velocimetry (PIV) data for

flow past a circular cylinder at a Reynolds number of 413. The PIV velocity data

were sampled at a frequency of 20 Hz with a resolution of 135× 80. See [98] for more

details about this experiment. This dataset has been used in other studies [47, 105] for
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(a) Instantaneous spanwise vorticity (b) Time averaged spanwise vorticity

Figure 6.6: (a) An instantaneous spanwise vorticity field of flow past a circular cylin-
der at Re = 413. (b) Time averaged spanwise vorticity field

testing various proposed DMD algorithms. A typical instantaneous spanwise vorticity

field and the time-averaged spanwise vorticity field are shown in Figure 6.6. It is clear

that there is vortex shedding behind the cylinder. We will use spanwise vorticity data

for DMD, which can be computed from velocity data by finite difference methods.

The state dimension is n = 135×80 = 10800, and the number of snapshots in training

data is taken to be m = 1000. We use an additional mtest = 1000 snapshot pairs as

testing data.

When we apply DMD to sequential data that has time step 4t, the continuous-

time DMD eigenvalues λDMD are related to the discrete-time DMD eigenvalues µDMD

by

µDMD = eλDMD4t. (6.30)

The discrete-time DMD eigenvalues are computed with DMD and converted to

continuous-time DMD eigenvalues by equation (7.35), and in this example the time

spacing is 4t = (1/20)s. The DMD frequency fDMD is related to the continuous-time

DMD eigenvalues λDMD by

fDMD =
Im(λDMD)

2π
, (6.31)

where Im(λDMD) is the imaginary part of λDMD.
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Figure 6.7: (a)–(b) Continuous-time DMD eigenvalues (circles) colored by the accu-
racy criterion α (a) and mode amplitude β (b). Mode amplitudes are normalized by
the maximum amplitude. Dominant frequencies (black cross sign ×) are shown for
comparison. (c)–(e) Three dominant DMD modes (only show real part) picked out
by accuracy criterion and mode amplitude.

We first apply the standard DMD method described in section 6.2.1. We use

a truncation level of r = 100, which corresponds to preserving 78.16% of the total

energy of the snapshots. The continuous-time DMD eigenvalues are shown shaded by

the corresponding accuracy criterion values α in Figure 6.7 (a), and time-averaged

mode amplitudes β in Figure 6.7 (b) (defined as in [55]).

Inspecting Figure 6.7 (a), we observe that eigenvalues near the imaginary axis are

more accurate, and this observation is consistent with physical intuition: this flow

exhibits a von Kármán vortex street, whose dominant dynamics evolve on a limit

cycle. For this experiment, the wake shedding frequency is fwake = 0.889 Hz [98],

In previous work [98], the physically relevant dominant frequencies are reported as

f0 = 0 Hz, f1 = 0.89 Hz, f2 = 1.77 Hz, f3 = 2.73 Hz. The DMD mode associated with

f0 is the mean of the flow, and f1, f2, f3 are the first, second, and third harmonic of
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Figure 6.8: (a)–(b) Continuous-time KDMD eigenvalues (circles) colored by the ac-
curacy criterion α (a) and mode amplitude β (b). Mode amplitudes are normalized
by the maximum amplitude. Dominant frequencies (black cross sign ×) are shown
for comparison. (c)–(e) Three dominant KDMD modes (only show real part) picked
out by accuracy criterion and mode amplitude.

the fundamental wake frequency fwake. These four frequencies represent the dominant

dynamics in this flow. This observation indicates that the proposed accuracy criterion

can be used to identify physically relevant DMD modes/eigenvalues, and distinguish

relevant modes from irrelevant ones. By comparing Figure 6.7 (a) and Figure 6.7 (b),

we verify that the accuracy criterion indicates the same dominant frequencies as the

mode amplitude. The DMD modes that have higher accuracy, as indicated by the

accuracy criterion are shown in Figure 6.7 (c)–(e). We verify that they look similar

to those identified in previous work [98].

Next, we investigate the performance of KDMD on this dataset. Figure 6.8 shows

results for a polynomial kernel of degree d = 5, again using a truncation level of

r = 100. The DMD eigenvalues are shown in Figure 6.8 (a)–(b), colored by both

accuracy criterion and mode amplitude. The relevant DMD modes picked out by
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accuracy criterion, and mode amplitude are shown in Figure 6.8 (c)–(e). We verify

that the accuracy criterion is able to isolate dominant modes when using KDMD.

6.5.2 Canonical separated flow

(a) Experiment setup (b) The PIV measurement region

(c) Time-averaged spanwise vorticity field in the PIV measurement region

Figure 6.9: (a) Sketch of the canonical separated flow experiment setup (adapted
from [37]). (b) PIV measurement region. (c) Mean spanwise vorticity field

In this example, we use PIV data from a canonical flow separation experiment

sketched in Figure 6.9 (a)–(b). Separation is induced on the surface of a flat plate

by a zero-net suction/blowing boundary condition imposed on the wall of the wind

tunnel, near the trailing edge of the plate. The free-stream velocity is U∞ = 3.9 m/s,

the chord length is c = 402 mm, the span is s = 305 mm, and the height is h = 0.095c.

The Reynolds number based on chord length is Rec = 105, small enough that the

boundary layer is laminar upstream of the separation point. The average separation

bubble length is Lsep = 0.2c. More information regarding the separation system and

the flat plate model can be found in [19].
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Figure 6.10: TDMD frequency (fTDMD) and corresponding mode error/amplitude.
Mode amplitudes are normalized by the maximum mode amplitude. The truncation
level is r = 25. The shear layer frequency fSL = 106 Hz is denoted with a red square,
and corresponds to the most accurate (smallest α) and largest amplitude (largest β)
mode.

Two-component PIV velocity data is sampled at fs = 1600 Hz, with a resolution of

319× 62. The time-averaged spanwise vorticity field in the PIV measurement region

is shown in Figure 6.9 (c). The PIV spanwise vorticity dataset for the separated flow

studied here consists of m = 3000 snapshot pairs (the training data), with a state

dimension n = 319× 62 = 19778. We also take another mtest = 3000 snapshot pairs

as testing data.

This particular experimental dataset has been used and studied in previous work

[44], in which the shear layer frequency was found to be fSL = 106 Hz. The shear

layer frequency is a periodic roll-up of the shear layer due to the Kelvin-Helmholtz

instability. The shear layer frequency fSL can be identified by applying total-least-

squares DMD (TDMD), a variant of DMD which makes use of total-least-square

regression to improve the accuracy of DMD for noisy data [17, 46]. As in [44], we use
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Figure 6.11: KDMD frequency (fKDMD) and corresponding mode error/amplitude.
The truncation level is r = 25. The shear layer frequency fSL = 106 Hz is denoted
with a red square.

a truncation level of r = 25, which corresponds to preserving 74% of the energy of

the data. In this example the time spacing is 4t = 1/fs = (1/1600)s.

For comparison, we also compute the time-averaged mode amplitude β, as in the

example in section 6.5.1 (e.g., Figure 6.7 (b)). The DMD frequencies are plotted

against their accuracy criterion values and mode amplitudes in Figure 6.10 (a)–(b).

It is observed that fSL = 106 Hz is accurately identified by TDMD. In addition, it

stands out by having a small mode error. The DMD mode associated with shear

layer frequency is plotted in Figure 6.10 (c), and it agrees with the mode identified

in previous work [44].

We apply KDMD to this dataset, using polynomial kernels of degree d = 5,

again with a truncation level of r = 25. Eigenvalue frequencies, and corresponding

accuracy criterion values and mode amplitudes are plotted in Figure 6.11 (a)–(b). We

observe that the shear layer frequency has a small error and large mode amplitude,

70



and once again verify that the DMD mode associated with shear layer frequency

(Figure 6.11 (c)) agrees closely with that found in previous work [44].

6.6 Conclusion and outlook

Exploiting the connection between DMD and the Koopman operator, we have pre-

sented an accuracy criterion to evaluate the quality (accuracy) of Koopman eigenpairs

approximated with DMD variants. The criterion does not assume access to the an-

alytical Koopman spectral decomposition, which is generally unknown in practice.

Furthermore, the proposed accuracy criterion naturally applies to other variants of

DMD, because it is based on the general notion of Koopman eigenfunctions. We

show that in certain situations, the accuracy criterion may also be used to quan-

tify the long-term simulation error of a reduced-order model. In particular, given a

testing dataset, the long-term error is shown to be bounded by a multiple of the accu-

racy criterion. The proposed accuracy criterion is validated with a synthetic system

where the analytical Koopman eigenpairs are known. Using this accuracy criterion,

we present a study of the performance of various kernels, and assess their sensitiv-

ity to noisy data. In our examples, the polynomial kernel (with finite-dimensional

observables) performs well both in the sense of accuracy and robustness to noise. Ex-

ponential, Gaussian, and Laplacian kernels are able to span an infinite-dimensional

function space, but the tradeoff is that they are significantly more sensitive to noise in

the dataset. We demonstrate that the accuracy criterion can assist in identifying ac-

curate and physically relevant DMD modes/eigenvalues from experimental data with

measurement noise. The accuracy criterion is conceptually simple and easy to use. As

a data-driven algorithm, depending on the nature of the problem, sometimes DMD

produces relevant results and sometimes outputs numerical artifacts. For reduced-
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order modeling based on DMD/Koopman modes, it is vital to assess the quality of

DMD results.

Note that our proposed accuracy criterion requires that some portion of data

snapshots are withheld from the DMD analysis for purposes of assessing mode accu-

racy. However, it would be possible to incorporate this additional data into the DMD

analysis after the DMD modes and eigenvalues of interest have been identified.

The demand for accurate reduced-order models (ROM) has increased rapidly in

recent years, but it is still unclear how to select a subset of Koopman eigenpairs such

that the original (nonlinear) system is accurately approximated. In order to build

any meaningful ROM, we need to at least assess the accuracy and importance of

DMD-approximated Koopman eigenpairs. The present work has shed some light on

the accuracy side. However, how to select the most dynamically important Koopman

eigenpairs remains an open question. Unlike techniques such as proper orthogonal

decomposition, in which the modes are orthogonal by construction, Koopman eigen-

functions are in general not orthogonal (though orthogonal DMD-like modes may

be obtained [72]). Mode amplitudes obtained by a projection of data onto DMD

modes are not necessarily always a meaningful criterion for evaluating importance,

as demonstrated in the example in section 6.3. It would be desirable to develop a

criterion that can guide the selection of modes for the purpose of representing the

dynamics accurately.
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Dynamic mode decomposition (DMD) is a popular technique for modal decompo-

sition, flow analysis, and reduced-order modeling. In situations where a system is

time-varying, one would like to update the system’s description online as time evolves.

This work provides an efficient method for computing DMD in real-time, updating

the approximation of a system’s dynamics as new data becomes available. The al-

gorithm does not require storage of past data, and computes the exact DMD matrix

using rank-1 updates. A weighting factor that places less weight on older data can be

incorporated in a straightforward manner, making the method particularly well suited
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to time-varying systems. A variant of the method may also be applied to the online

computation of “windowed DMD”, in which only the most recent data are used. The

efficiency of the method is compared against several existing DMD algorithms: for

problems in which the state dimension is less than about 200, the proposed algorithm

is the most efficient for real-time computation, and it can be orders of magnitude

more efficient than the standard DMD algorithm. The method is demonstrated on

several examples, including a time-varying linear system and a more complex example

using data from a wind tunnel experiment. In particular, we show that the method

is effective at capturing the dynamics of surface pressure measurements in the flow

over a flat plate with an unsteady separation bubble.

7.1 Introduction

Modal decomposition methods are widely used in studying complex dynamical sys-

tems such as fluid flows. In particular, dynamic mode decomposition (DMD) [81, 80]

has become increasingly popular in the fluids community. DMD decomposes spatio-

temporal data into spatial modes (DMD modes) each of which has simple temporal

behavior characterized by single frequency and growth/decay rate (DMD eigenval-

ues). DMD has been successfully applied to a wide range of problems, for instance

as discussed in [79, 57]. The idea of DMD is to fit a linear system to observed dy-

namics. However, DMD is also a promising technique for nonlinear systems, as it

has been shown to be a finite-dimensional approximation to the Koopman operator,

an infinite-dimensional linear operator that captures the full behavior of a nonlinear

dynamical system [80, 99]. A few methods [111, 21] have been proposed to assess the

accuracy (quality) of the DMD approximated Koopman eigenfunctions/eigenvalues.
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Recently, several algorithms have been proposed to compute DMD modes effi-

ciently for huge datasets, for instance using randomized methods [25, 26]. In situa-

tions in which the incoming data is “streaming” in nature, and one does not wish to

store all of the data, a “streaming DMD” algorithm performs online updating of the

DMD modes and eigenvalues [47]. Streaming DMD keeps track of a small number

of orthogonal basis vectors and updates the DMD matrix projected onto the cor-

responding subspace. Another related method uses an incremental SVD algorithm

to compute DMD modes on the fly [62]. The work proposed here may be viewed

as an alternative to streaming DMD, in that we provide a method for updating the

DMD matrix in real-time, without the need to store all the raw data. Our method

differs from Streaming DMD in that we compute the exact DMD matrix, rather

than a projection onto basis functions; in addition, we propose various methods for

better approximations of time-varying dynamics, in particular by “forgetting” older

snapshots, or giving them less weight than more recent snapshots.

It is worth emphasizing that our proposed algorithm relies on an important as-

sumption: the number of snapshots is much larger than the state dimension. In

practice, DMD is often applied to fluid problems for which the opposite is true: the

state dimension is high, and much larger than the number of snapshots. In this paper,

we explore an algorithm for real-time updating of the linear model (DMD matrix),

with the ultimate goal of real-time modeling and control. For offline data analysis,

one can have access to datasets with huge numbers of states (e.g., measurements of

the full flow field). However, in real-time modeling, it is often the case that we have

only a small number of measurements (for instance pressure measurements from an

array of sensors). Given this limited amount of information, we are trying to find

adaptive real-time models.

The paper is organized as follows. In section 7.2, we give an overview of DMD,

and describe the online DMD algorithm. In section 7.3, we discussed a variant called
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windowed DMD, in which only the most recent data are used. In section 7.4, we

briefly describe how these methods may be used in online system identification, and

in section 7.5 we compare the different algorithms on various examples.

7.2 Online dynamic mode decomposition

7.2.1 The problem

We first give a brief summary of the standard DMD algorithm, as described in [99].

Suppose we have a discrete-time dynamical system given by

xj+1 = F (xj),

where xj ∈ Rn is the state vector, and F : Rn → Rn defines the dynamics. For

a given state xj, let yj = F (xj); we call (xj,yj) a snapshot pair. For DMD, we

assume we have access to a collection of snapshot pairs (xj,yj), for j = 1, . . . , k. (It

is often the case that xj+1 = yj, corresponding to a sequence of points along a single

trajectory, but this is not required.)

DMD seeks to find a matrix A such that yj = Axj, in an approximate sense.

DMD modes are then eigenvectors of the matrix A, and DMD eigenvalues are the

corresponding eigenvalues. In the present work, we are interested in obtaining a

matrix A that varies in time, giving us a local linear model for the dynamics, but in

the standard DMD approach, one seeks a single matrix A.

Given snapshot pairs (xj,yj) for j = 1, . . . , k, we form matrices

Xk =

[
x1 x2 · · · xk

]
, Yk =

[
y1 y2 · · · yk

]
, (7.1)

which both have dimension n × k. We wish to find an n × n matrix Ak such that

AkXk = Yk approximately holds; in particular, we are interested in the overcon-
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strained problem, in which k > n. When the problem is underconstrained , the model

will tend to overfit the data, and any noise present in the data will lead to poor

performance of the model [11]. Note that DMD has typically been used on under-

constrained problems, in which the number of states is greater than the number of

snapshots (e.g., in [99]), while in this paper we consider the overconstrained case. In

either case, the DMD matrix Ak is found by minimizing the cost function [81, 80]

Jk =
k∑
i=1

‖yi −Akxi‖2 = ‖Yk −AkXk‖2
F , (7.2)

where ‖ · ‖ denotes the Euclidean norm on vectors and ‖ · ‖F denotes the Frobenius

norm on matrices. The unique minimum-norm solution to this least-squares problem

is given by

Ak = YkX
+
k , (7.3)

where X+
k denotes the Moore-Penrose pseudoinverse of Xk.

Here, we shall assume thatXk has full row rank, in which caseXkX
T
k is invertible,

and

X+
k = XT

k (XkX
T
k )−1. (7.4)

This assumption is essential for the development of the online algorithm, as we shall

see shortly. Under this assumption, the Ak given above is the unique solution that

minimizes Jk. This corresponds to the case in which the number of snapshots k is

large, compared with the state dimension n.

Our primary focus here is systems that may be slowly varying in time, so that

the matrix Ak should evolve as k increases. In the following section, we will present

an efficient algorithm for updating Ak as more data becomes available. Furthermore,

if the system is time-varying, it may make sense to weight more recent snapshots

more heavily than less recent snapshots. In this spirit, we will consider minimizing a
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Time

Figure 7.1: A cartoon of the online DMD setup. Ak is the optimal (least-squares)
fit that maps Xk = [x1,x2, · · · ,xk] to Yk = [y1,y2, · · · ,yk]. Arrow indicates the
information flow, and box denotes block of information. At time k+1, Ak is updated
to find Ak+1, using the information from time k, and new available snapshot pair
xk+1,yk+1 at time k + 1. Ak+1 is the optimal (least-squares) fit that maps Xk+1 =
[x1,x2, · · · ,xk,xk+1] to Yk+1 = [y1,y2, · · · ,yk,yk+1].

modified cost function

J̃k =
k∑
i=1

ρk−i‖yi −Akxi‖2, (7.5)

for some constant ρ with 0 < ρ ≤ 1. When ρ = 1, this cost function is the same

as (7.2), and when ρ < 1, errors in past snapshots are discounted. Our algorithm

will apply to this minimization problem as well, with only minor modifications and

no increase in computational effort.

A sketch of the online DMD setup is shown in Figure 7.1. Suppose we have already

computed Ak for a given dataset. As time progresses and a new pair of snapshots

(xk+1,yk+1) becomes available, the matrix Ak+1 may be updated according to the

formula given in (7.3). If Ak+1 is computed directly in this manner, we call this the

“standard approach”.

There are two drawbacks to the “standard approach”. First, it requires computing

the pseudoinverse ofXk whenever new snapshots are acquired, and for this reason it is

computationally expensive. In addition, the method requires storing all the snapshots

(i.e., storing the matrix Xk), which may be challenging or impossible as the number

of snapshots k increases.
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7.2.2 Algorithm for online DMD

To overcome the above two shortcomings, we propose a different approach to find the

solution to (7.3) in the “online setting”, in which we want to compute Ak+1 given

a matrix Ak and a new pair of snapshots (xk+1,yk+1). The algorithm we present is

based on the idea that Ak+1 should be close to Ak in some sense. For the online

updating, our approach is similar to the classical recursive least-squares estimation

algorithm as formulated in [48]. Here we focus on updating the DMD matrix in

real-time, but the recursive least-squares algorithm updates a vector in real-time.

First, observe that, using (7.4), we may write (7.3) as

Ak = YkX
T
k (XkX

T
k )−1 = QkPk, (7.6)

where Qk and Pk are n× n matrices given by

Qk = YkX
T
k , (7.7a)

Pk = (XkX
T
k )−1. (7.7b)

The condition that Xk has rank n ensures that XkX
T
k is invertible, and hence Pk is

well defined. Note also that Pk is symmetric and strictly positive definite.

At time k + 1, we wish to compute Ak+1 = Qk+1Pk+1. Clearly, Qk+1,Pk+1 are

related to Qk,Pk:

Qk+1 = Yk+1X
T
k+1 =

[
Yk yk+1

] [
Xk xk+1

]T
= YkX

T
k + yk+1x

T
k+1,

P−1
k+1 = Xk+1X

T
k+1 =

[
Xk xk+1

] [
Xk xk+1

]T
= XkX

T
k + xk+1x

T
k+1.

Because Xk already has rank n, and adding an additional column cannot reduce the

rank of a matrix, it follows that Xk+1 also has rank n, so Pk+1 is well defined. The
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above equation shows that, given Qk and P−1
k , we may find Qk+1 and P−1

k+1 with

simple rank-1 updates:

Qk+1 = Qk + yk+1x
T
k+1,

P−1
k+1 = P−1

k + xk+1x
T
k+1.

The updated DMD matrix is then given by

Ak+1 = Qk+1Pk+1 = (Qk + yk+1x
T
k+1)(P−1

k + xk+1x
T
k+1)−1. (7.8)

Then the problem is reduced to how to find Pk+1 from Pk in an efficient manner.

Computing the inverse directly would require O(n3) operations, and would not be

efficient. However, because Pk+1 is the inverse of a rank-1 update of P−1
k , we may

take advantage of a matrix inversion formula known as the Sherman-Morrison formula

[88, 41].

Suppose A is an invertible square matrix, and u,v are column vectors. Then

A+ uvT is invertible if and only if 1 + vTA−1u 6= 0, and in this case, the inverse is

given by the Sherman-Morrison formula

(A+ uvT )−1 = A−1 − A
−1uvTA−1

1 + vTA−1u
. (7.9)

This formula is a special case of the more general matrix inversion lemma (or Wood-

bury formula) [106, 41].

Applying the formula to the expression for Pk+1, we obtain

Pk+1 = (P−1
k + xk+1x

T
k+1)−1 = Pk − γk+1Pkxk+1x

T
k+1Pk, (7.10a)
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where

γk+1 =
1

1 + xTk+1Pkxk+1

. (7.10b)

Note that, because Pk is positive definite, the scalar quantity 1 + xTk+1Pkxk+1 is

always nonzero, so the formula applies. Therefore, the updated DMD matrix may be

written

Ak+1 = (Qk + yk+1x
T
k+1)(Pk − γk+1Pkxk+1x

T
k+1Pk)

= QkPk − γk+1QkPkxk+1x
T
k+1Pk

+ yk+1x
T
k+1Pk − γk+1yk+1x

T
k+1Pkxk+1x

T
k+1Pk.

(7.11)

We can simplify the last two terms, since

yk+1x
T
k+1Pk − γk+1yk+1x

T
k+1Pkxk+1x

T
k+1Pk = γk+1yk+1(γ−1

k+1 − x
T
k+1Pkxk+1)xTk+1Pk

= γk+1yk+1x
T
k+1Pk,

where we have used (7.10b). Substituting into (7.11), we obtain

Ak+1 = QkPk − γk+1QkPkxk+1x
T
k+1Pk + γk+1yk+1x

T
k+1Pk

= Ak − γk+1Akxk+1x
T
k+1Pk + γk+1yk+1x

T
k+1Pk,

and hence

Ak+1 = Ak + γk+1(yk+1 −Akxk+1)xTk+1Pk. (7.12)

The above formula gives a rule for computingAk+1 givenAk,Pk and the new snapshot

pair (xk+1,yk+1). In order to use this formula recursively, we also need to compute

Pk+1 using (7.10), given Pk and xk+1.

There is an intuitive interpretation for the update formula (7.12). The quantity

(yk+1−Akxk+1) can be considered as the prediction error from the current model Ak,

and the DMD matrix is updated by adding a term proportional to this error.
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The updates in (7.10) and (7.12) together require only two matrix vector multipli-

cations (Akxk+1 and Pkxk+1, since Pk is symmetric), and two vector outer products,

for a total of 4n2 floating-point multiplies. This is much more efficient than apply-

ing the standard DMD algorithm, which involves a singular value decomposition or

pseudoinverse, and requires O(kn2) multiplies, where k > n. In our approach, two

n×n matrices need to be stored (Ak and Pk), but the large n× k snapshot matrices

(Xk,Yk) do not need to be stored.

It is worth emphasizing that the update formulas (7.10) and (7.12) compute the

DMD matrix Ak+1 = Yk+1X
+
k+1 exactly (up to machine precision). That is, with

exact arithmetic, our formulas give the same results as the standard DMD algorithm.

The matrix Pk does involve “squaring up” the matrix Xk, which could in principle

lead to difficulties with numerical stability for ill-conditioned problems [110, 1]. How-

ever, we have not encountered problems with numerical stability in the examples we

have tried (see section 7.5).

Initialization The algorithm described above needs a starting point. In particu-

lar, to apply the updates (7.10) and (7.12), one needs the matrices Pk and Ak at

timestep k. The initialization technique is similar to the initialization of the recursive

least-squares estimation described in [48]. Two practical approaches are discussed

below. The most straightforward way to initialize the algorithm is to first collect at

least n snapshots (more precisely, enough snapshots so that Xk as defined in (7.1) has

rank n), and then compute Pk and Ak using the standard DMD algorithm, from (7.6)

and (7.7):

Ak = YkX
+
k , Pk = (XkX

T
k )−1. (7.13)

If for some reason this is not desirable, then an alternative approach is to initialize

A0 to a random matrix (e.g., the zero matrix), and set P0 = αI, where α is a large
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positive scalar. Then in the limit as α → ∞, the matrices Pk,Ak computed by the

updates (7.10) and (7.12) converge to the true values given by (7.13).

Multiple snapshots In our method, the DMD matrix Ak gets updated at every

time step when a new snapshot pair becomes available. In principle, one could up-

date the DMD matrix less frequently (for instance every 10 time steps). The above

derivation can be appropriately modified to handle this case, using the more general

Woodbury formula (see (7.23)) [106, 41]. However, if s is the number of new snap-

shots to be incorporated, the computational cost of a single rank-s update is roughly

the same as applying the rank-1 formula s times, so there does not appear to be a

benefit to incorporating multiple snapshots at once.

Extensions As is the case for most DMD algorithms (including streaming DMD),

the online DMD algorithm described above applies more generally to extended DMD

(EDMD) [104], simply replacing the state observations xk,yk by the corresponding

vectors of observables. In addition, the algorithm can be used for real-time online

system identification, including both linear and nonlinear system identification, as we

shall discuss in section 7.4.

Summary To summarize, the algorithm proceeds as follows:

1. Collect k snapshot pairs (xj,yj), j = 1, . . . , k, where k > n is large enough so

that RankXk = n (where Xk is given by (7.1)).

2. Compute Ak and Pk from (7.13).

3. When a new snapshot pair (xk+1,yk+1) becomes available, update Ak and Pk

according to (7.12) and (7.10).

Implementations of this algorithm in both Matlab and Python are publicly available

at [112].
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7.2.3 Weighted online DMD

As mentioned previously, the online DMD algorithm described above is ideally suited

to cases for which the system is varying in time, so that we want to revise our es-

timate of the DMD matrix Ak in real-time. In such a situation, we might wish to

place more weight on recent snapshots, and gradually “forget” the older snapshots, by

minimizing a cost function of the form (7.5) instead of the original cost function (7.2).

This weighting scheme is analogous to that used in real-time least-squares approxi-

mation [48]. This idea may also be used with streaming DMD, and in fact has been

considered before (the conference presentation [44] implemented such a “forgetting

factor” with streaming DMD, although it did not appear in the associated paper).

It turns out that the online DMD algorithm can be adapted to minimize the cost

function (7.5) with only minor modifications to the algorithm.

We now consider the cost function

J̃k =
k∑
i=1

ρk−i‖yi −Akxi‖2, 0 < ρ ≤ 1,

where ρ is the weighting factor. For instance, if we wish our snapshots to have a

“half-life” of m samples, then we could choose ρ = 2−1/m. In practice, ρ should be

chosen according to how fast the dynamics are changing. There is a tradeoff between

faster tracking and noise filtering: a smaller ρ will result in faster tracking, while

inevitably making the identified model more sensitive to noise in the data (since we

are forgetting old samples). For convenience, let us take ρ = σ2 where 0 < σ ≤ 1,

and write the cost function as

J̃k =
k∑
i=1

‖σk−iyi −Akσ
k−ixi‖2.
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If we define matrices based on scaled versions of the snapshots, as

X̃k =

[
σk−1x1 σk−2x2 · · · xk

]
,

Ỹk =

[
σk−1y1 σk−2y2 · · · yk

]
,

then the cost function can be written as

J̃k = ‖Ỹk −AkX̃k‖2
F .

The unique least-squares solution that minimizes this cost function (assuming X̃k has

full row rank) is given by

Ak = ỸkX̃
+
k = ỸkX̃

T
k (X̃kX̃

T
k )−1 = Q̃kP̃k,

where we define

Q̃k = ỸkX̃
T
k ,

P̃k = (X̃kX̃
T
k )−1.

At step k + 1, we wish to compute Ak+1 = Q̃k+1P̃k+1. We write down X̃k+1, Ỹk+1

explicitly as

X̃k+1 =

[
σkx1 σk−1x2 · · · σxk xk+1

]
=

[
σX̃k xk+1

]
,

Ỹk+1 =

[
σky1 σk−1y2 · · · σyk yk+1

]
=

[
σỸk yk+1

]
.

85



Therefore, Q̃k+1 can be written

Q̃k+1 = Ỹk+1X̃
T
k+1 =

[
σỸk yk+1

] [
σX̃k xk+1

]T
= σ2ỸkX̃

T
k + yk+1x

T
k+1

= ρQ̃k + yk+1x
T
k+1,

and similarly

P̃−1
k+1 = ρP̃−1

k + xk+1x
T
k+1. (7.14)

The updated DMD matrix is then given by

Ak+1 = Q̃k+1P̃k+1 = (ρQ̃k + yk+1x
T
k+1)(ρP̃−1

k + xk+1x
T
k+1)−1.

As before, we can apply the Sherman-Morrison formula (7.9) to (7.14) and obtain

P̃k+1 =
P̃k
ρ
− γk+1

P̃k
ρ
xk+1x

T
k+1

P̃k
ρ
,

where

γk+1 =
1

1 + xTk+1(P̃k/ρ)xk+1

.

Let us rescale P̃k, and define

P̂k =
P̃k
ρ

=
1

ρ
(X̃kX̃

T
k )−1.

Then after some manipulation, the formula for Ak+1 becomes

Ak+1 = Ak + γk+1(yk+1 −Akxk+1)xTk+1P̂k, (7.15)
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where

P̂k+1 =
1

ρ
(P̂k − γk+1P̂kxk+1x

T
k+1P̂k), (7.16a)

γk+1 =
1

1 + xTk+1P̂kxk+1

. (7.16b)

Observe that the update (7.15) for Ak+1 is identical to the update (7.12) from the

previous section, with Pk replaced by P̂k, and the update rule (7.16) for P̂k+1 differs

from (7.10) only by a factor of ρ. When ρ = 1, of course, the above formulas are

identical to those given in section 7.2.2.

7.3 Windowed dynamic mode decomposition

In section 7.2.3, we presented a method for gradually “forgetting” older snapshots, by

giving them less weight in a cost function. In this section, we discuss an alternative

method, which uses a hard cut-off: in particular, we consider a “window” containing

only the most recent snapshots, for instance as used in [38, 61].

7.3.1 The problem

If the dynamics are slowly varying with time, we may wish to use only the most recent

snapshots to identify the dynamics. Here, we consider the case where we use only a

fixed “window” containing the most recent snapshots. Here, we present an “online”

algorithm to compute windowed DMD efficiently, again using low-rank updates, as in

the previous section. We refer to the resulting method as “windowed dynamic mode

decomposition” (windowed DMD).

At time tk, suppose we have access to past snapshot pairs {(xj,yj)}kj=k−w+1 in

a finite time window of size w. We would like to fit a linear model Ak, such that
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Time

Figure 7.2: A cartoon of the windowed DMD setup. At time k, Ak depends only on
the w most recent snapshots. At time k + 1, one new snapshot is added, and the
oldest snapshot is dropped.

yj = Akxj (at least approximately) for all j in this window. Let

Xk =

[
xk−w+1 xk−w+2 · · · xk

]
, Yk =

[
yk−w+1 yk−w+2 · · · yk

]
, (7.17)

both n × w matrices. Then we seek an n × n matrix Ak such that AkXk = Yk

approximately holds. More precisely (as explained in section 7.2.1), the DMD matrix

Ak is found by minimizing

Jk = ‖Yk −AkXk‖2
F . (7.18)

As before, we assume that the rank of Xk is n ≤ w, so that there is a unique solution

to this least-squares problem, given by

Ak = YkX
+
k , (7.19)

where X+
k = XT

k (XkX
T
k )−1 is the Moore-Penrose pseudoinverse of Xk. (Note, in

particular, that we require that the window size w be at least as large as the state

dimension n, so that XkX
T
k is invertible.)

A sketch of the windowed DMD setup is shown in Figure 7.2. As time progresses,

we can updateAk according to the formula given in (7.19). However, evaluating (7.19)

involves computing a new pseudoinverse and a matrix multiplication, which are costly
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operations. We may compute this update more efficiently using an approach similar

to that in the previous section, as we describe below.

7.3.2 Algorithm for windowed DMD

As in the approach presented in section 7.2.2, observe that (7.19) can be written as

Ak = YkX
+
k = YkX

T
k (XkX

T
k )−1 = QkPk, (7.20)

where

Qk = YkX
T
k =

k∑
i=k−w+1

yix
T
i ,

Pk = (XkX
T
k )−1 =

( k∑
i=k−w+1

xix
T
i

)−1

. (7.21)

where Qk and Pk are n×n matrices. The condition that Xk has rank n ensures that

XkX
T
k is invertible, so Pk is well defined.

At step k + 1, we need to compute Ak+1 = Qk+1Pk+1. Clearly, Qk+1,Pk+1 are

related to Qk,Pk. To show this, we write them down explicitly as

Qk+1 = Yk+1X
T
k+1 =

k+1∑
i=k−w+2

yix
T
i = Qk − yk−w+1x

T
k−w+1 + yk+1x

T
k+1,

P−1
k+1 = Xk+1X

T
k+1 =

k+1∑
i=k−w+2

xix
T
i = P−1

k − xk−w+1x
T
k−w+1 + xk+1x

T
k+1.

There is an intuitive interpretation to this relationship: Qk,Pk forgets the oldest

snapshot and incorporates the newest snapshot, and gets updated into Qk+1,Pk+1.

As in section 7.2.2, where we used the Sherman-Morrison formula (7.9) to update Pk,

we may use a similar approach to update Pk in this case.
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Letting

U =

[
xk−w+1 xk+1

]
, V =

[
yk−w+1 yk+1

]
, C =

−1 0

0 1

 ,
we may write Qk+1,Pk+1 as

Qk+1 = Qk + V CUT ,

P−1
k+1 = P−1

k +UCUT ,

therefore

Ak+1 = Qk+1Pk+1 = (Qk + V CUT )(P−1
k +UCUT )−1. (7.22)

Now, the matrix inversion lemma (or Woodbury formula) [106, 41] states that

(A+UCV )−1 = A−1 −A−1U (C−1 + V A−1U)−1V A (7.23)

wheneverA,C, andA+UCV are invertible. Applying this formula to our expression

for Pk+1, we have

Pk+1 = Pk − PkUΓk+1U
TPk, (7.24a)

where

Γk+1 = (C−1 +UTPkU)−1. (7.24b)

Substituting back into (7.22), we obtain

Ak+1 = (Qk + V CUT )(Pk − PkUΓk+1U
TPk)

= QkPk −QkPkUΓk+1U
TPk

+ V CUTPk − V CUTPkUΓk+1U
TPk.

(7.25)
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The last two terms simplify, since

V CUTPk − V CUTPkUΓk+1U
TPk = V C(Γ−1

k+1 −U
TPkU)Γk+1U

TPk

= V CC−1Γk+1U
TPk = V Γk+1U

TPk,

where we have used (7.24b). Substituting into (7.25), we obtain

Ak+1 = QkPk −QkPkUΓk+1U
TPk + V Γk+1U

TPk

= Ak −AkUΓk+1U
TPk + V Γk+1U

TPk,

and hence

Ak+1 = Ak + (V −AkU)Γk+1U
TPk. (7.26)

Notice the similarity between this expression with the updating formula (7.12) for

online DMD. Γk+1 is the matrix version of γk+1 in (7.10b). The matrix (V −AkU)

can also be considered as the prediction error based on current model Ak, and the

correction to DMD matrix is proportional to this error term.

The updates in (7.26), (7.24) require two products of n×n and n×2 matrices (to

compute AkU and PkU , since Pk is symmetric), and two products of n×2 and 2×n

matrices, for a total of 8n2 multiplies. This windowed DMD approach is much more

efficient than the standard DMD approach, solving (7.20) directly (O(wn2) multiplies,

with w ≥ n). Windowed DMD can be initialized in the same manner as online DMD,

discussed in section 7.2.2.

In order to implement windowed DMD, we need to store two n × n matrices

(Ak,Pk), as well as the w most recent snapshots. Thus, the storage required is more

than in online DMD, or the weighted online DMD approach discussed in section 7.2.3,

which also provides a mechanism for “forgetting” older snapshots. It is worth pointing

out that the update formulas (7.24), (7.26) give the exact solution Ak+1 = Yk+1X
+
k+1

from (7.22), without approximation.

91



Larger window stride size We can in principle move more than one step for win-

dowed DMD, i.e., forgetting multiple snapshots and remembering multiple snapshots.

If we would like to move the sliding window for s steps (s < n/2), then after sim-

ilar derivations, we can show that the computational cost is 8sn2 multiplies, which

is the same as applying the rank-2 formulas s times. Therefore, there is no obvious

advantage to incorporating multiple snapshots at one time.

Extensions Similar to online DMD, we can also incorporate an exponential weight-

ing factor into windowed DMD. In particular, consider the cost function as

J̃k =
k∑

i=k−w+1

ρk−i‖yi −Akxi‖2, 0 < ρ ≤ 1,

where ρ is the weighting factor. Then, proceeding as in section 7.2.3, we obtain the

update formulas

Ak+1 = Ak + (V −AkU)Γ̃k+1U
T P̂k, (7.27)

P̂k+1 =
1

ρ
(P̂k − P̂kU Γ̃k+1U

T P̂k), (7.28a)

where

Γ̃k+1 = (C̃−1 +UT P̂kU)−1, C̃ =

−ρw 0

0 1

 . (7.28b)

As with the online DMD algorithm, the above windowed DMD algorithm applies

generally to extended DMD (EDMD) [104] as well, if xk,yk are simply replaced by the

observable vector of the states. In addition, the algorithm can be used for real-time

online system identification, including both linear and nonlinear system identification,

as discussed in section 7.4.

Summary To summarize, the algorithm proceeds as follows:
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1. Collect w snapshot pairs (xj,yj), j = 1, . . . , w, where w ≥ n is large enough so

that RankXk = n (where Xk is given by (7.17)).

2. Compute Ak and Pk from (7.13), where Xk,Yk is given by (7.17).

3. When a new snapshot pair (xk+1,yk+1) becomes available, update Ak and Pk

according to (7.26) and (7.24).

Implementations of this algorithm in both Matlab and Python are publicly available

at [112].

7.4 Online system identification

As previously mentioned, the online and windowed DMD algorithms discussed above

can be generalized to online system identification with control in a straightforward

manner. For a review of system identification methods, see [5].

7.4.1 Online linear system identification

Dynamic mode decomposition can be used for system identification, as shown in [75].

Suppose we are interested in identifying a (discrete-time) linear system given by

xk+1 = Axk +Buk, (7.29)

where xk ∈ Rn,uk ∈ Rp are the states and control input respectively, A ∈ Rn×n,B ∈

Rn×p.

At time k, assume that we have access to x1,x2, · · · ,xk+1 and u1,u2, · · · ,uk.

Letting

Ỹk =

[
x2 x3 · · · xk+1

]
, X̃k =

x1 x2 · · · xk

u1 u2 · · · uk

 , Ã =

[
A B

]
,
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we may write (7.29) in the form

Ỹk = ÃX̃k. (7.30)

The matrices A,B may then be found by minimizing the cost function

Jk = ‖Ỹk − ÃkX̃k‖2
F . (7.31)

As before, the solution is given by

Ãk = ỸkX̃
+
k . (7.32)

At time k + 1, we add a new column to X̃k and Ỹk, and we would like to update

Ãk+1 using our previous knowledge of Ãk. Using the same approach as in section 7.2,

it is straightforward to extend the online DMD and windowed DMD algorithms to

this case. In particular, the square matrix Ak from section 7.2 is replaced by the

rectangular matrix Ãk defined above, and the vector xk in the formulas in section 7.2

is replaced by the column vector xk
uk

 .
7.4.2 Online nonlinear system identification

The efficient online/windowed DMD algorithms apply to nonlinear system identifica-

tion as well. In general, nonlinear system identification is a challenging problem; see

[71] for an overview. Some interesting methods are to use linear-parameter-varying

models [101, 45], or to consider a large dictionary of potential nonlinear functions,

and exploit sparsity to select a small subset [14].
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Suppose we are interested in identifying a nonlinear system

xk+1 = f(xk,uk)

directly from data, where xk ∈ Rn,uk ∈ Rp are the state vector and control input

respectively. The specific form of nonlinearity is unknown, but in order to proceed,

we have to make some assumptions about the nonlinear form. Assume that we have

q (nonlinear) observables zi(x,u), i = 1, 2, · · · , q, such that the underlying dynamics

can be approximately described by

xk+1 = Azk, (7.33)

where A ∈ Rn×q, and

zk =

[
z1(xk,uk) z2(xk,uk) · · · zq(xk,uk)

]T
.

To illustrate how this representation works, we take x ∈ R,u ∈ R for example, and

assume the nonlinear dynamics is given by

xk+1 = a1xk + a2x
2
k + a3uk + a4u

2
k + a5xkuk.

Then by setting z1(x, u) = x, z2(x, u) = x2, z3(x, u) = u, z4(x, u) = u2, z5(x, u) = xu,

we can write the dynamics in the form (7.33), with

A =

[
a1 a2 a3 a4 a5

]
.

Note that in the above, the state xk still evolves nonlinearly (i.e., xk+1 depends in

a nonlinear way on xk and uk), but we are able to identify the coefficients ak using

linear regression (i.e., finding the matrix A in (7.33)).
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This approach is related to Carleman linearization [9, 31], although in Carleman

linearization, the goal is to find a true linear representation of the dynamics in a

higher-dimensional state space, and for most nonlinear systems of practical interest,

it is not possible to obtain a finite-dimensional linear representation. This is also

related to extended DMD [104] and kernel DMD [105] where Koopman eigenfunctions

are used to determine coordinates in which the nonlinear system becomes linear. Our

approach is to define a collection of observables in order to write the original nonlinear

system in a linear fashion. It is generally difficult to determine what observables to

use, and sparsity-promoting system identification [14] is one possible method. If one

knows something about the form of the nonlinearity (e.g., the nonlinear terms are

quadratic), then this can inform the choice of observables (e.g., including all quadratic

couplings of the states).

In summary, by assuming a particular form of the nonlinearity, we can find the

coefficients of a nonlinear system using the same techniques as used in linear system

identification, writing the nonlinear system in the form (7.33).

7.5 Application and results

In this section, we illustrate the methods on a number of examples, first showing

results for simple benchmark problems, and then using data from a wind tunnel

experiment.

7.5.1 Benchmarks

We now present a study of the computational time of various DMD algorithms. Two

benchmark tasks are considered here. In the first task, we wish to know the DMD

matrix only at the final time step, at which point we have access to all of the data.

In the second task, we wish to compute the DMD matrix at each time, whenever a
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new snapshot is acquired. The first task thus represents the standard approach to

computing the DMD matrix, while the second task applies to situations where the

system is time-varying, and we wish to update the DMD matrix in real-time.

Asymptotic cost First, we examine how the various algorithms scale with the

state dimension n and the number of snapshots m, for the two tasks described above.

In particular, we are concerned with the over-constrained case in which n < m. For

the standard algorithm, in which the DMD matrix is computed directly using (7.3),

one must compute an n×m pseudoinverse and an n×m, m×n matrix multiplication.

For the first task, the computational cost (measured by the number of multiplies) is

thus

Tstandard = O(nmmin(m,n) +mn2) = O(mn2).

For the second task, in which we compute the DMD matrix at each time, we refer to

the standard algorithm as “batch DMD”, since the snapshots are processed all in one

batch. The method is initialized and applied after m0 snapshots are gathered (and

in the examples below, we will take m0 = n), so the computational cost is

Tbatch = O
( m∑
k=m0

(nkmin(k, n) + kn2)

)
= O(m2n2),

Next, we consider windowed DMD, for a window containing w snapshots (with n <

w < m). In this case, we refer to the standard algorithm, in which DMD matrix

is computed directly using (7.19), as “mini-batch DMD”. The computational cost is

given by

Tmini-batch = O
( m∑
k=w

(nwmin(n,w) + wn2)

)
= O(mwn2),

For streaming DMD [47] for a fixed rank r, the cost of one iteration is O(r2n), and

for full-rank streaming DMD, the cost of one iteration is O(n2). Thus, for either task,
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the overall cost after m snapshots is

T r=nstreaming = O(
m∑
k=1

n2) = O(mn2),

and

T r<nstreaming = O(
m∑
k=1

r2n) = O(mr2n).

(If, in streaming DMD, the compression step (step 3 in the algorithm in [47]) is

performed only every r steps, then the cost is reduced to O(mrn).) Finally, for both

online and windowed DMD algorithms, discussed in section 7.2.2 and section 7.3.2,

the cost per timestep is O(n2). The algorithms are applied after w snapshots are

gathered, so the overall cost of either algorithm is

Tonline = Twindow = O(
m∑

k=w+1

n2) = O(mn2).

Results We now compare the performance of the different algorithms on actual

examples, for the two tasks described above. In particular, we consider a system with

state x ∈ Rn, where n varies between 2 and 1024. The entries in the n×nmatrixA are

chosen randomly, according to a normal distribution (zero-mean with unit variance).

The snapshots x1, . . . ,xm are also chosen to be random vectors, whose components

are also chosen according to the standard normal distribution. In the tests below,

we use a fixed number of snapshots m = 104. For mini-batch DMD and windowed

DMD, the window size is fixed at w = 2048, and online DMD and windowed DMD

are both initialized after the first w snapshot pairs. For streaming DMD with a fixed

rank r, we take r = 16. The simulations are performed in MATLAB (R2016b) on a

personal computer equipped with a 2.6 GHz Intel Core i5 processor.

The results are shown in Figure 7.3. For the first task (computing the DMD

matrix only at the final step), the standard DMD algorithm is the most efficient,
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Figure 7.3: Performance of the different DMD algorithms on the benchmark cases
described in section 7.5.1. For low-rank streaming, the dimension is limited to r = 16.

for the problem sizes considered here. However, note that streaming DMD with a

fixed rank r scales much better with the state dimension n, and would be the fastest

approach for problems with larger state dimensions.

Our primary interest here is in the second task, shown in Figure 7.3b, in which

the DMD matrix is updated at each step. For problems with n < 256, online DMD is

the fastest approach, and can be orders of magnitude faster than the standard batch

and mini-batch algorithms. For problems with larger state dimensions, streaming

DMD is the fastest algorithm, as it scales linearly in the state dimension (while the

other algorithms scale quadratically). However, note that streaming DMD does not

compute the exact DMD matrix: instead, it computes a projection onto a subspace of

dimension r (here 16). By contrast, online DMD and windowed DMD both compute

the full DMD matrix, without approximation.

These results focus on the time required for these algorithms, but it is worth

pointing out the memory requirements as well. Streaming DMD and online DMD

do not require storage of any past snapshots, while windowed DMD and mini-batch

DMD require storing the w snapshots in the window, and batch DMD requires storage

of all past snapshots.
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7.5.2 Linear time-varying system

We now test the online DMD and windowed DMD algorithms on a simple linear

system that is slowly varying in time. In particular, consider the system

ẋ(t) = A(t)x(t), (7.34a)

where x(t) ∈ R2, and the time-varying matrix A(t) is given by

A(t) =

 0 ω(t)

−ω(t) 0

 , (7.34b)

where

ω(t) = 1 + εt.

We take ε = 0.1, so that the system is slowly varying in time. The eigenvalues of

A(t) are ±iω(t), and it is straightforward to show that ‖x(t)‖ is constant in t. We

simulate the system for 0 < t < 10 from initial condition x(0) = (1, 0)T , and the

snapshots are taken with time step ∆t = 0.1 as shown in Figure 7.4a. It is evident

from the figure that the frequency is increasing with time.

Given the snapshots, we apply both brute-force batch DMD and mini-batch DMD

as the benchmark, then we compare streaming DMD, online DMD and windowed

DMD with these two benchmark brute-force algorithms. The finite time window size

of mini-batch DMD and windowed DMD is w = 10. Batch DMD takes into account

all the past snapshots, while mini-batch DMD only takes the recent snapshots from a

finite time window. Streaming DMD, online DMD, and windowed DMD are initialized

using the first w = 10 snapshot pairs, and they start iteration from time w+1. Batch

DMD and mini-batch DMD also starts from time w + 1. The results for streaming

DMD, online DMD (ρ = 1, ρ = 0.95, ρ = 0.8), and windowed DMD are shown in
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Figure 7.4: Solution of the linear time-varying system (7.34), and frequencies pre-
dicted by various DMD algorithms. For mini-batch and windowed DMD, the window
size is w = 10. For online DMD, smaller values of the parameter ρ result in faster
tracking of the time-varying frequency.

Figure 7.4b. DMD finds the discrete-time eigenvalues µDMD from data, and the figure

shows the continuous-time DMD eigenvalues λDMD, which are related to these by

µDMD = eλDMD∆t, (7.35)

where ∆t is the time spacing between snapshot pairs. We show the DMD results

starting from time w + 1, and the true eigenvalues are also shown for comparison.

Observe from Figure 7.4b that the eigenvalues computed by the standard algo-

rithm (batch DMD) agree with those identified by streaming DMD and online DMD

with ρ = 1, as expected. Similarly, windowed DMD perfectly overlaps with mini-

batch DMD. When the weighting ρ in online DMD is smaller than 1, the identified

frequencies shift slightly towards those identified by windowed DMD. If we further

decrease the weighting factor (ρ = 0.8), online DMD aggressively forgets old data,

and the identified frequency adapts more quickly. This example demonstrates that

windowed DMD and weighted online DMD are capable of capturing time-variations in
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Figure 7.5: (a) Schematic of the flat plate model and flow separation system. (b)
Separation fan rotation speed (rotation per second).

dynamics, with an appropriate choice of the weight ρ. A Matlab script implementing

this example can be found in [112].

7.5.3 Pressure fluctuations in a separation bubble

We now demonstrate the algorithm on a more complicated example, using data ob-

tained from a wind tunnel experiment. In particular, we study the flow over a flat

plate with an adverse pressure gradient, and investigate the dynamics of pressure

fluctuations in the vicinity of a separation bubble.

The setup of the wind tunnel experiment is shown in Figure 7.5a. A flat plate

with an elliptical (4:1) leading edge is placed in the flow, and zero-net mass flux

suction and blowing are applied at the ceiling of the wind tunnel in order to impose

an adverse and subsequent favorable pressure gradient along the surface of the plate,

causing the boundary layer to separate and then re-attach. More information about

the separation system and the plate model can be found in [19].

These experiments were conducted in the Florida State Flow Control (FSFC)

open-return wind tunnel. The cross-sectional dimensions of the test section are
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30.5 cm × 30.5 cm, and the length is 61.0 cm. The contraction ratio of the inlet

is 9:1. An aluminum honeycomb mesh and two fine, anti-turbulence screens con-

dition the flow at the inlet and provide a freestream turbulence intensity of 0.5%.

The suction/blowing on the ceiling of the wind tunnel test section is provided by

a variable-speed fan mounted within a duct fixed to the ceiling of the wind tunnel,

which pulls flow from the ceiling and reintroduces it immediately downstream. The

chord of the flat plate model is c = 40.2 cm, and the height is h = 0.095c. For these

experiments, the freestream velocity is U∞ = 3.9 m/s and the Reynolds number is

Rec = U∞c/ν = 105.

Unsteady surface pressure fluctuations within the separated flow are monitored

by an array of 13 surface-mounted Panasonic WM-61A electret microphones located

within the separation region. The microphones are placed at the centerline of the

plate, between x/c = 0.70 and 0.94, with a spacing of 4x/c = 0.02. More details

regarding this microphone array can be found in [19]. These 13 microphone signals

provide the data we use for online DMD.

We change the rotation speed of the separation fan slowly, in order to impose time-

varying boundary conditions and induce time-varying dynamics in the separation

bubble. The size of the separation bubble increases with the rotation speed of the

separation fan. The rotation speed starts at about 25 Hz (rotation per second), and

increases slowly to reach a high of about 30 Hz, then back to initial speed of 25

Hz. The blade rotation rate is shown in Figure 7.5b. The pressure data sampling

frequency is fs = 104, and we collect data for T = 30 sec. The total number of

samples is m = 3 × 105, and the state dimension is n = 13 (there are 13 pressure

sensors).

To study the frequencies from the pressure data, we first present a spectral analysis

of the pressure data using short-time discrete Fourier transform (DFT). Figure 7.6

shows the results for the 7-th (medium) pressure sensor; other pressure sensors have
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Figure 7.6: Power spectral density (PSD) of the pressure measurement at the 7-th
(medium) pressure sensor. There is no persistent peak frequency, and the dominant
frequencies are time-varying.

similar results. A window size of fs = 104 is used (along with a Hamming window

of the same length), with 90% overlap of samples between adjoining sections. It is

observed that there is no persistent peak frequency, and the dominant frequencies

are time-varying. In order to gain a comprehensive understanding of the frequency

variations in all the pressure sensors, and how these might be related to one another,

we apply online DMD and windowed DMD to the all the pressure data.

The number of snapshots m = 3 × 105 is much larger than the state dimension

is n = 13, so the over-constrained assumption is satisfied. Recall that our proposed

algorithm relies on the assumption that the number of snapshots is larger than the

state dimension. Therefore, we can apply both online DMD and windowed DMD

for this problem. The dynamics of the pressure fluctuations can be characterized by

the DMD frequencies, which may be slowly varying in time. The DMD frequency is

defined as

fDMD =
Im(λDMD)

2π
,

where Im(λDMD) is the imaginary part of the continuous-time DMD eigenvalues com-

puted from (7.35). (The discrete-time eigenvalues µDMD are eigenvalues of the 13×13
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Figure 7.7: DMD frequencies identified by different DMD algorithms from 13 pressure
signals, as described in section 7.5.3. The two vertical lines indicate the time when
the fan rotation rate starts to increase (t = 13 sec) and finally settles down to the
original speed (t = 27 sec).

matrix matrix Ak.) The frequencies computed by the various DMD algorithms are

shown in Figure 7.7. There are 13 DMD eigenvalues in total, and one of them is

f0 = 0 Hz corresponding to the mean. The remaining DMD eigenvalues consist of

six complex-conjugate pairs, corresponding to six non-zero DMD frequencies. The

DMD computation reveals three zero frequencies for all cases we run, indicating that

there are only five active (non-zero) frequencies present in the system. Online DMD

with ρ = 1 is run to obtain the standard DMD result. We use a weighting factor of

ρfs = 0.5 (corresponding half-decay life is fs samples, i.e., one second.) for weighted

online DMD and window size of w = fs = 104 for windowed DMD. The DMD algo-

rithms are initialized with the first w snapshots, and the resulting DMD frequencies

are computed starting from time step w + 1.

Recall that with ρ = 1, online DMD coincides with the standard DMD algorithm.

From Figure 7.7, we see that for this case, the three leading frequencies remain more

or less constant in time. However, we expect the dynamics in the separation bubble

to be time-varying. In response to the change of fan speed, the frequencies should

start to change at t = 13 sec, and return close to their original values at t = 27 sec

(with some lag). The weighted online DMD and windowed DMD both act as desired,
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while the standard DMD is clearly erroneous. With weighting factor ρfs = 1/2,

online DMD behaves more like windowed DMD: in particular, the method is better

at tracking variations in the frequency. The weighting factor in online DMD acts

like a soft cut-off for the old snapshots, compared with the hard cut-off imposed by

windowed DMD. Online DMD gradually forgets the old snapshots, so it is expected

to be smoother than windowed DMD. From the results, we confirm that the online

DMD is smoother compared to the windowed DMD. While the frequency variations

shown in Figure 7.7 appear to be rapid or noisy, note that the time interval shown in

the figure is quite long (about 300 periods for the lowest frequency of around 10 Hz),

so it is reasonable to consider these frequencies as slowly varying in time.

Due to the slowly time-varying boundary condition imposed by the separation fan,

the dynamics of the pressure fluctuations in the separation bubble is expected to be

slowly time-varying too. When we simply use standard DMD, then the frequencies

(and linear models) we identify will not be adaptive to the flow conditions in real-

time. In contrast, weighted online DMD and windowed DMD successfully tracks the

time variations from the pressure signals. Therefore, the proposed online algorithms

are demonstrated to be beneficial in real-time modeling of time-varying systems. In

fact, the online DMD algorithm has been applied to this particular separation control

problem [18] for system identification and real-time control purposes. The idea is

to use online DMD to find an adaptive linear model from pressure measurements

and control input history (see section 7.4.1), and apply linear control based on this

adaptive model.

7.6 Conclusion and outlook

In this work, we have developed efficient methods for computing online DMD and

windowed DMD. The proposed algorithms are especially useful in applications for
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which the number of snapshots is huge compared to the state dimension, and when

the dynamics are slowly varying in time. The number of snapshots is assumed to be

larger than state dimension, because we are primarily interested in real-time modeling

(updating the DMD matrix). In real-time, it is often the case that we have a relatively

small number of measurements, and as time progresses, eventually we will always

have more snapshots than measurements. A weighting factor can be included easily

in the online DMD algorithm, which is used to weight recent snapshots more heavily

than older snapshots. This approach corresponds to using a soft cut-off for older

snapshots, while windowed DMD uses a hard cut-off, from a finite time window. The

proposed algorithms can be readily extended to online system identification, even for

time-varying systems.

The efficiency is compared against the standard DMD algorithm, both for situa-

tions in which one computes the DMD matrix only at the final time, and for situations

in which one computes the DMD matrix in an “online” manner, updating it as new

snapshots become available. The latter case is applicable, for instance, when one

expects the dynamics to be time-varying. For the former case, the standard DMD

algorithm is the most efficient, while for the latter case, the new online and windowed

DMD algorithms are the most efficient, and can be orders of magnitude more efficient

than the standard DMD algorithm. Table 7.1 provides a brief comparison of the main

characteristics and features of standard DMD, batch DMD, mini-batch DMD, (low

rank) streaming DMD, online DMD, and windowed DMD.

The algorithms are further demonstrated on a number of examples, including a

linear time-varying system, and data obtained from a wind tunnel experiment. As

expected, weighted online DMD and windowed DMD are effective at capturing time-

varying dynamics.

In this paper we assign different weights to different samples, and in particular a

weighting factor is used to forget old snapshots. This choice of weight is especially
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Aspect Standard Batch Mini-batch Streaming Online Windowed

Computational time O(mn2) O(kn2) O(wn2) O(r2n) 4n2 8n2

Memory mn kn wn O(rn) 2n2 wn+ 2n2

Store past snapshots Yes Yes Yes No No Yes
Track time variations No No Yes Yes Yes Yes

Real-time DMD matrix No Yes Yes Yes Yes Yes
Exact DMD matrix Yes Yes Yes No Yes Yes

Table 7.1: Characteristics of the various DMD algorithms considered. Relevant pa-
rameters are state dimension n, total number of snapshot pairs m� n, window size
w such that n < w � m, low rank r < n, and discrete time k > n. Computational
time denotes the required floating-point multplies for one iteration (computing the
DMD matrix).

useful for time-varying systems, as older information becomes outdated. As one re-

viewer pointed out, some real-world applications might involve measurements with

different degrees of reliability (e.g., different levels of uncertainty, different measure-

ment methods). One could in principle place different weights on different samples,

according to how much one “trusts” them, which would lead to a weighted linear

regression problem. This could be an interesting direction for future work.

Another relevant direction for future work is a more detailed study of the appli-

cation of proposed online/windowed DMD algorithms to system identification. In

situations where there are variations in dynamics, or where we desire real-time con-

trol, it is crucial to build accurate and adaptive reduced order models for effective

control, and the methods proposed here could be useful in these cases.
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The response of a separated flow to external forcing is investigated using input-

output analysis. A laminar separation bubble is induced on the flow past a flat

plate by imposing an adverse pressure gradient. We study the response of spanwise-

constant perturbations to both global body forcing and local body forcing. Input-

output analysis (also referred to as resolvent analysis) uses a linear operator that

maps the external forcing to the response of the flow field. For this flow forced at a

single frequency, the linear operator is closely approximated by an operator of rank

one and describes the optimal spatial forcing for which the resulting response has

maximum amplification. The input-output analysis gives valuable information about

optimal actuator placement and optimal actuation frequency. It is found that the
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flow response is maximized when forcing at the natural frequency of the separation

bubble. The optimal response mode implies that the separation bubble is receptive

to the upstream body forcing. The optimal forcing mode indicates that body forcing

should be applied upstream of the separation bubble, and gives information about

the size and shape of the region where forcing should be applied, in order to maximize

the response in the separation bubble.

8.1 Introduction

Flow separation is usually an undesirable phenomenon in aerodynamic applications

because it reduces lift and increases (pressure) drag [67]. The complicated nonlin-

ear dynamics of flow separation are characterized by Kelvin-Helmholtz instability,

wake shedding, and separation bubble oscillations [67]. Efforts have been devoted

to designing control methods to suppress separation and reattach a separated flow.

A number of studies try to find the optimal actuation parameters by searching the

parameter space: see [85, 33, 68, 76] for example. Parameter-searching control meth-

ods usually require huge experimental or simulation efforts, and provide only limited

physical insights about the problem. Among various separation control methods,

zero-net-mass-flux (ZNMF) actuators are simple to implement and have been shown

to be effective in reducing flow separation [32, 84, 33, 64, 18].

The input-output analysis was introduced to the fluid community to study the

response of a flow field to disturbances [51, 63]. This approach uses the transfer

function (a linear operator) from the input forcing (including nonlinear advective

forcing, and any other external forcing) to the output response (velocity and pressure

field). This linear operator is often low rank (sometimes approximately rank-one),

and from it, one can deduce the optimal forcing mode that actuates the optimal
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response that has maximum amplification at any given forcing frequency. Input-

output analysis, also referred to as resolvent analysis, has been used for a wide range

of problems [59, 30, 49, 35], ranging from pipe turbulence control to building reduced-

order models. A review of various applications is presented in [95].

The focus of this paper is to better understand the physics of a separated flow,

with the ultimate objective of controlling the flow. We consider a laminar boundary

layer with a separation bubble along a flat plate. The separation is induced by a

pressure gradient imposed through suction and blowing at the upper wall of the

numerical domain. The forcing and response determined by input-output analysis

can be extremely useful, since the optimal forcing and response can be used to guide

the placement of actuators and other aspects of the control design. Input-output

analysis has been utilized for the design of airfoil separation control [109], in which

localized unsteady thermal actuation is applied near the leading edge. A previous

study has looked into the response mode of incompressible jets to both body forcing

and boundary forcing [30]. In the present work, we actuate the separated flow by

both global and local body forcing.

8.2 Methodology

8.2.1 Flow setup and numerical simulation

In this paper, we study a laminar boundary layer with a separation bubble induced

by an adverse pressure gradient. The pressure gradient is imposed by suction and

blowing on the top boundary, as shown in Fig. 8.1. This configuration has been widely

studied as a proxy for separation in the flow past a wing at a high angle of attack,

because it isolates the effects of separation from other geometric effects such as wall

curvature [69].
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Figure 8.1: Sketch of separated flow on a flat plate (not to scale). Adapted from
[107].

The numerical simulation of the three-dimensional incompressible Navier-Stokes

equations is performed with a second-order finite difference code ViCar3D [66]. Fur-

ther details about the numerical schemes of the solver can be found in [86, 107].

The flow variables are nondimensionalized by the free-stream velocity U∞,0, and the

boundary thickness δ0 of the Blasius velocity profile at the inlet of the flow domain.

The Reynolds number of the flow is Re = U∞,0δ0/ν = 1000, where ν is the kinematic

viscosity. The size of the computational domain is 75δ0 in the streamwise direction,

15δ0 in the wall-normal direction, and 24δ0 in the spanwise direction.

Blasius velocity profiles are imposed at the inlet, and a Neumann boundary con-

dition is used at the outlet (zero normal derivative). A no-slip boundary condition

is imposed at the bottom wall, and a suction-blowing boundary condition (for wall-

normal velocity) is imposed at the top boundary. At the top boundary, the stream-

wise velocity is implied by a zero-spanwise-vorticity condition. Periodic boundary

conditions are assumed in the spanwise direction. The pressure satisfies a Neumann

boundary condition at all boundaries (zero derivative normal to the boundary).

A simulation with no forcing is performed, and that is denoted as the base case

(“case B”). For this case, the flow field averaged in time and in the spanwise direc-

tion is shown in Fig. 8.2, along with the spanwise-averaged fluctuations (deviations

from the time-averaged flow). The time and spanwise averaged field will be used as

base flow in the input-output analysis. The spanwise velocity is not reported here
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(a) (b)

Figure 8.2: (a) Time and spanwise averaged field. (b) Spanwise averaged fluctuation
field.

because it is small and close to zero. The flow is mainly two-dimensional, along with

small spanwise fluctuations. Observe first that the imposed adverse pressure gradient

successfully induces a separation bubble. The separation bubble spans from x = 10δ

to x = 55δ. The fluctuation field is nonzero mainly in and behind the trailing edge

of the separation bubble region. The time- and spanwise-averaged flow field is taken

as the base flow for the input-output analysis. We then study the response of the

fluctuation field to external body forcing.

8.2.2 Input-output analysis formulation

To formulate the input-output analysis, we start from the incompressible Navier-

Stokes equations

∂tũ = −ũ · ∇ũ−∇p̃+
1

Re
∇2ũ, (8.1a)

∇ · ũ = 0. (8.1b)

The full flow field (ũ, p̃) is decomposed into a base flow (ū, p̄), which is usually

taken to be the mean flow or a steady solution of the Navier-Stokes equations, and

a fluctuation field (u, p), and we derive an equation for the fluctuations. Letting
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ũ = ū+ u, p̃ = p̄+ p and substituting into Eq. (8.1), we obtain

∂tu = Lu−∇p+ f , (8.2a)

∇ · u = 0, (8.2b)

where

Lu = −ū · ∇u− u · ∇ū+
1

Re
∇2u,

and L is the linearized Navier-Stokes operator. The forcing term f includes all

additional terms, including the nonlinear advective term and any external forcing

terms such as body forcing and boundary forcing.

The governing equation of the fluctuation field is linear. Treating the nonlinear

advective term and external forcing as input and velocity field as output, we can

derive a state-space representation for the fluctuation field. If we define

q =

u
p

 , A =

 L −∇

∇· 0

 , M =

1 0

0 0

 , B =

1

0

 , C =

[
1 0

]
,

then Eq. (8.2) can be put into state-space form

M∂tq = Aq +Bf , (8.3a)

u = Cq, (8.3b)

where f is the input and u is the output. If we consider sinusoidal forcing f = f̂eiωt,

then both the state q and output u will be sinusoidal because the system is linear.

Letting u = ûeiωt and substituting into Eq. (8.3), we obtain

û = H(iω)f̂ ,
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where

H(iω) = C(iωM − A)−1B

is the transfer function from input (f = f̂eiωt) to output (u = ûeiωt). The transfer

functionH(iω) is the centerpiece of input-output analysis. (The operator (iωM−A)−1

is called the resolvent operator, and analysis of this operator is often referred to as

“resolvent analysis.”) Notice that H(iω) will be different for each different frequency

ω. Keep in mind that H(iω) is the transfer function from the forcing at a particular

frequency ω to the response at the same frequency. In what follows, we fix a particular

frequency ω, and we drop the explicit dependence of H on ω. However, note that the

forcing and response modes we discuss below depend on the frequency ω.

Now let us consider the maximum amplification problem. We are interested in

finding an input forcing with unit norm such that that the output has maximum

norm:

max
f̂
‖û‖, s.t. ‖f̂‖ = 1,

where ‖ · ‖ denotes a suitable norm on the flow field û and forcing term f̂ . One can

show (see, e.g., [10]) that the optimal forcing f̂ is an eigenvector of H∗H, where H∗

denotes the adjoint of H: in particular, the optimal f̂ is the solution of

H∗Hf̂ = σ2f̂

corresponding to the largest eigenvalue σ2. The solution to the eigenvalue problem

can be found from the singular value decomposition (SVD) of the linear operator

H =
∑
j

σjψjφ
∗
j ,

where ψ∗iψj = δij, φ
∗
iφj = δij, and σj ≥ 0 is in descending order. The optimal forcing

is the first right singular vector φ1 and the optimal response is the first left singular
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vector ψ1. The largest singular value σ1 gives the corresponding amplification. For

an arbitrary forcing f̂ , the response û can be written as

û =
∑
j

σjψj(φ
∗
j f̂),

where φ∗j f̂ is the projection of f̂ in the direction of φj. For many shear flows of

practical interest [63, 59, 30, 10] the linear operator H can be closely approximated

by an operator of rank one: σ1 � σj≥2. A rank-one approximation of the response is

then

û ≈ σ1ψ1(φ∗1f̂), (8.4)

and one expects this to be a close approximation of the response for a typical forcing f̂

(i.e., as long as the direction of forcing is not such that φ∗1f̂ is small).

The base flow is computed from the simulation previously described as “case B.”

We select a particular frequency ω, as the dominant frequency observed in the fluc-

tuations for case B (as discussed in the next section). The transfer function H(iω) is

discretized with a finite-difference method, with appropriate boundary conditions for

the fluctuations deduced from the simulation boundary conditions. After discretiza-

tion, H(iω) is a huge matrix of size 0.26 million by 0.26 million. For a matrix of

this size, it is too cumbersome to compute the matrix inverse (iωM −A)−1 explicitly,

and accordingly, is extremely computationally expensive to find the SVD of H(iω)

directly. Fortunately, we only need the first (few) singular values and singular vec-

tors of H. The randomized SVD method of [42] is used to obtain the approximate

leading singular values and singular vectors, without the need to explicitly compute

the transfer function H or the resolvent (iωM − A)−1.
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8.2.3 Local body forcing

In the presentation above, the body force is global. However, it is usually not practical

to impose a body force everywhere in space. We now consider external forcing as a

local body force. The governing equation for the fluctuation field is

∂tu = Lu−∇p+ b(x)f , (8.5a)

∇ · u = 0, (8.5b)

with appropriate boundary conditions as specified in previous section. b(x) embeds

where the local body force is applied. In this study, we consider local body force

in the upstream near the wall boundary (due to global forcing analysis). Following

the derivation in section 8.2.2, we can obtain a state-space representation similar to

Eq. (8.3). For local forcing, we essentially have a different B matrix, which allows us

to select which part of the flow field to apply forcing.

8.3 Results and Discussion

8.3.1 Modal decomposition analysis

We start with a modal decomposition analysis of this problem. In particular, we con-

sider three methods: discrete Fourier transform (DFT), proper orthogonal decompo-

sition (POD) [60], and dynamic mode decomposition (DMD) [81]. They will provide

insight into the coherent structures and main flow physics in the flow. Both three

methods are based on temporal-spatial data (discrete velocity field measurements that

evolve in time). DFT gives spatial mode associated with uniformly spaced frequen-

cies ranging from zero to Nyquist frequency. POD extracts the most energetic spatial

mode from data. DMD finds spatial mode that evolves in time with a fixed frequency
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(a) (b)

Figure 8.3: (a) DFT frequency and amplitude (normalized by maximum amplitude).
(b) DFT mode û, v̂ (real part) associated with the peak frequency f = 0.0567.

(a) (b)

Figure 8.4: (a) Explained variance ratio with respect to number of POD modes. (b)
First POD mode û, v̂.

(a) (b)

Figure 8.5: (a) DMD frequency and amplitude (normalized by maximum amplitude),
largest amplitude occurs at f = 0.0571. (b) Dominant (largest amplitude) DMD
mode û, v̂.

and growth/decay rate. For more details and reviews about modal decomposition

methods in fluid flows, see [79, 95].

First, we apply DFT to the fluctuation velocity field which consists of 300 snap-

shots with a time step of 4t = 2. DFT frequencies, amplitudes, and the first mode
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are shown in Fig. 8.3. It is revealed that there is a (non-dimensional) peak frequency

at f = 0.0567. The associated mode resembles the fluctuation velocity field, as shown

in Fig. 8.2 (b). This Fourier mode indicates the coherent structure in this flow.

Next, we analyze the same fluctuation velocity field with POD. The result is

presented in Fig. 8.4. We report the explained variance ratio, which is defined as

rk =
k∑
j=1

σ2
j/(

N∑
j=1

σ2
j ), (8.6)

where k is the number of modes used, N is the total number of modes, and σj is

the j-th singular value (in descending order) of the snapshot matrix (whose column

is the discrete velocity field). rk quantifies how much energy is explained by the first

k POD modes. The first 10 POD modes account for about 90% of the total energy

in the flow field. The first POD mode is shown in Fig. 8.4 (b), and this is considered

as the dominant coherent structure in the fluctuation field. Observe that it is very

similar to the dominant DFT mode.

Finally, DMD is used to find coherent structures in the fluctuation flow field. We

first project the snapshots onto the subspace spanned by the leading POD modes of

the snapshot matrix, and then perform DMD in this subspace. This approach is more

numerically stable and computationally efficient [79]. We use 11 POD modes, which

amounts to keeping about 90% of the total energy in the snapshots. The result is

shown in Fig. 8.5. DMD amplitude is defined as the magnitude of the coefficient when

the initial condition is projected onto the DMD modes. DMD identifies a dominant

frequency of f = 0.0571, which is (almost) the same as the DFT peak frequency

f = 0.0567. The associated dominant DMD mode is similar to those found by DFT

and POD.
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(a) (b)

Figure 8.6: Global forcing result. (a) Singular values of the linear operator (transfer
function) for kz = 0, ωp = 0.377. (b) First three singular values of the transfer
function for a range of frequency ω around ωp. kz = 0 is fixed.

(a) (b)

Figure 8.7: Global forcing result. (a) Streamwise and wall-normal optimal response
mode û, v̂. kz = 0, ω = 0.377. (b) Streamwise optimal forcing mode f̂x and zoom-in
view in the region (x/δ, y/δ) ∈ [0, 15]× [0, 3].

8.3.2 Global body forcing and optimal actuator placement

One question we are interested in is the optimal location of an actuator. As discussed

in the previous section, the optimal forcing mode gives insight into this question,

since it gives the forcing term (with unit norm) that has the largest amplification.

We first present results of input-output analysis considering the global body forcing

distributed in the whole domain. Because the body force is global instead of local,

the optimal forcing mode will shed light on the optimal actuator placement.

Assuming sinusoidal forcing in both time and the spanwise direction, the output

will also be sinusoidal (in time and the spanwise direction), because the system is
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linear. Let

f(x, y, z, t) = f̂(x, y)ei(kzz+ωt), u(x, y, z, t) = û(x, y)ei(kzz+ωt).

We consider only two-dimensional forcing in this study, i.e., kz = 0. For each ω,

we have a different transfer function, and therefore a different set of optimal forcing

modes and response modes. We consider a particular frequency ω determined from the

simulation previously described as “case B.” From a power spectral density analysis

of the streamwise velocity of a probe in the separation bubble, a (non-dimensional)

peak frequency of fp = 0.06 is found, which corresponds to the natural frequency

of the separation bubble [107]. This frequency is also very close to the dominant

frequency found from the discrete Fourier transform of the full fluctuation velocity

field. To report the result, we set ωp = 2πfp = 0.377. The first eight singular values

computed by randomized SVD are shown in Fig. 8.6 (a). The first singular value and

singular vector change no more than 1% when we increase the number of random

vectors in the randomized SVD algorithm by a factor of 2, verifying the convergence

of the algorithm.

We observe that the first singular value is six orders of magnitude larger than

the second and the rest, so the transfer function may indeed be approximated by

an operator of rank one. To study the validity of rank-one approximation for other

frequencies, we show the first three singular values of the transfer function (found by

randomized SVD algorithm) for frequency ω varying around ωp in Fig. 8.6 (b). It is

verified that rank-one approximation is valid for a range of frequencies. Furthermore,

we find that ωp = 0.337 has the maximum amplification among all the frequencies

around it. This is consistent with the standard practice to force the flow at its natural

frequency.
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The optimal response mode and optimal forcing mode are shown in Fig. 8.7. The

energy in the optimal response mode is mainly concentrated in the streamwise and

wall-normal component (û, v̂). The spanwise response ŵ is found to be five orders of

magnitude smaller than û, v̂. Only two-dimensional disturbances are considered here,

so we do not expect a response in the spanwise component. Recall that the optimal

response mode is the dominant response to disturbances in the flow. The response is

primarily in and behind the trailing edge of the separation bubble, from x = 40δ to

x = 70δ. Therefore, the separation bubble is receptive to disturbances.

As for the optimal forcing mode, we find that f̂y is much smaller than f̂x, and f̂z is

nine orders of magnitude smaller than f̂x. Therefore, only the streamwise component

f̂x of the forcing is shown. The optimal forcing mode reveals that streamwise body

force disturbance is much more crucial. Nonetheless, the ZNMF actuator produces

disturbances mainly in the wall-normal direction. This result implies that a more

effective actuator should instead introduce streamwise disturbances, which are much

more efficient at exciting a response in the separation bubble. The optimal forcing

energy is distributed along the wall, upstream of the separation bubble. Upstream

disturbances to the flow travel downstream and produce a response in the separation

bubble. This observation indicates that an actuator should be placed upstream, as

in previous studies [67, 76]. The forcing mode also shows similarity with the optimal

disturbances in the Blasius boundary layer reported in [70]. In [70], the optimal initial

condition leading to the largest growth at finite times and the optimal time-periodic

forcing leading to the largest asymptotic response are both considered.

The streamwise optimal forcing alternates between positive and negative values

in the upstream region. Recall from Eq. 8.4 that the response is approximately

proportional to the projection of the forcing in the direction of the optimal forcing

mode φ1. When the forcing is applied in both the positive region and negative region,

their responses will be out of phase, and cancel each other. Typically, the location of
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(a) (b)

Figure 8.8: Local forcing result. (a) Singular values of the linear operator (transfer
function) for kz = 0, ωp = 0.377. (b) First three singular values of the transfer
function for a range of frequency ω around ωp. kz = 0 is fixed.

(a) (b)

Figure 8.9: Local forcing result. (a) Streamwise and wall-normal optimal response
mode û, v̂. kz = 0, ω = 0.377. (b) Streamwise optimal forcing mode f̂x.

a ZNMF actuator (which resembles a local body force) is not well-tuned due to a lack

of physical insight. The optimal forcing mode suggests that the body force actuator

should be carefully placed in order to avoid cancellation in the response.

8.3.3 Local body forcing

The governing equation Eq. (8.5) is spatially semi-discretized and put into state

space form. Then we can derive the corresponding transfer function. We are mainly

interested in local body forcing near the upstream of the wall. Consider local body

forcing in the region (x/δ, y/δ) ∈ Ω, where Ω = [0, 15]× [0, 3]. This can be achieved

by choosing b(x) to be 1 in Ω and 0 elsewhere in Eq. (8.5).
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Experiment Simulation Description

1
S1A streamwise forcing placed upstream near the wall
S1B streamwise forcing placed upstream away from the wall

2
S2A=S1A see S1A

S2B wall-normal forcing applied at the same region as streamwise forcing

3
S3A=S1A see S1A

S3B streamwise forcing with the same shape but different orientation

Table 8.1: Setup of three control experiments. Each control experiment consists of
two numerical simulations.

Similar to global forcing, the randomized SVD algorithm is used to compute the

leading singular values and singular vectors of the transfer function. The singular

values for the case of ωp = 0.337 is presented in Fig. 8.8 (a). In addition, the first

three singular values for a range of frequencies ω is shown in Fig. 8.8 (b). We conclude

that rank-one approximation is valid for a range of frequencies ω. The optimal forcing

and response mode corresponding to ωp is illustrated in Fig. 8.9. Again the wall-

normal forcing mode is much smaller and thus not shown here. Observe that both

the response mode and forcing mode are almost identical to those found by global

body forcing.

8.3.4 Implications and future work

In this part, we will further discuss the implications of input-output analysis. While

the preceding analysis provides insight about where and how to force the flow field,

we still need to validate these implications numerically. We will outline future work.

Based on the discussion in 8.3.2, the optimal forcing mode is concentrated up-

stream near the wall, and streamwise forcing is much more important (compared

with wall-normal forcing). In addition, the forcing mode consists of patches alternat-

ing between positive and negative values. As a result, in order to get a significant

response, one should pay attention to this pattern to avoid cancellation effects.
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Figure 8.10: (a) Experiment 1: forcing should be concentrated upstream near the wall.
(b) Experiment 2: streamwise forcing is more important than wall-normal forcing.
(c) Experiment 3: there exists cancellation effect

In order to validate these implications, we will do three control experiments. There

are two simulations in each. The first experiment aims to show that forcing should be

applied upstream near the wall. The second experiment is designed to validate that

streamwise forcing is more critical than wall-normal forcing. The third experiment

is intended to demonstrate the cancellation effect due to the pattern in the forcing

mode. Details about these three experiments are summarized in Table. 8.1. To better

describe the control experiments, we present a visualization of the simulation setup

in Fig. 8.10.

8.4 Conclusion

In this work, we performed an input-output analysis for a separated flow past a

flat plate. The body forcing (global or local) is taken as input, and the flow field

is taken as output. A transfer function that maps input to output can be derived

by assuming sinusoidal forcing in time. It is validated that the transfer function
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is indeed approximately rank-one. The forcing mode corresponds to the maximum

amplification in the response provides insight about optimal forcing location and

frequency.

We find that when the flow is forced at the natural frequency of the separation

bubble, the response is maximized (in terms of energy). The response is mainly in and

behind the trailing edge of the separation bubble, demonstrating the receptivity of the

separation bubble to the body forcing. Furthermore, the forcing mode indicates that

the optimal forcing location is upstream near the wall. In order to get a significant

response, one should carefully place the forcing in the upstream region, to avoid

cancellation effects.

In future work, we will perform a numerical simulation to validate these implica-

tions. In particular, we would like to verify that (a) the optimal forcing should be

concentrated upstream near the wall, (b) streamwise is the optimal forcing direction,

and (c) there exists a cancellation effect in the response.
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